
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

DNA Sequence Representation by Use of
Statistical Finite Automata
Asmi Shah
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shah, Asmi, "DNA Sequence Representation by Use of Statistical Finite Automata" (2009). Master's Projects. 40.
DOI: https://doi.org/10.31979/etd.hpx4-ds3g
https://scholarworks.sjsu.edu/etd_projects/40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/40?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


 

 

DNA Sequence Representation by Use of Statistical Finite Automata 

 

 

  

 

A Project  

Presented to  

Prof. Dr. T.Y. Lin 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Masters of Science 

 

 

 

 

By 

Asmi Shah 

December 2009

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2009 

Asmi Shah 

ALL RIGHTS RESERVED 

 
 
 
 

 
 



 

 

SAN JOSÉ STATE UNIVERSITY  
 

The Undersigned Project Committee Approves the Project Titled  
 

DNA SEQUENCE REPRESENTATION BY USE OF STATISTICAL FINITE 
AUTOMATA 

By  
Asmi Shah 

 
 
 
 
 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 
 
________________________________________________________________________ 
Prof. T.Y Lin, Department of Computer Science     Date 
 
________________________________________________________________________ 
Prof. Robert Chun, Department of Computer Science    Date 
 
________________________________________________________________________ 
Prof. Chris Pollett, Department of Computer Science    Date 
 
 
 
 
 

APPROVED FOR THE UNIVERSITY 
 
 
 
 

Associate Dean         Date  
 



 

 

ABSTRACT 

 

DNA SEQUENCE REPRESENTATION BY USE OF STATISTICAL FINITE 
AUTOMATA THEORY 

By Asmi Shah 

 

This project defines and intends to solve the problem of representing information carried 

by DNA sequences in terms of amino acids, through application of the theory of finite 

automata. Sequences can be compared against each other to find existing patterns, if any, 

which may include important genetic information. Comparison can state whether the 

DNA sequences belong to the same, related or entirely different species in the ‘Tree of 

Life’ (phylogeny).  This is achieved by using extended and statistical finite automata. In 

order to solve this problem, the concepts of automata and their extension, i.e. Alergia 

algorithm have been used. In this specific case, we have used the chemical property - 

polarity of amino acids to analyze the DNA sequences. 

  



v 

 

ACKNOWLEDGEMENT 

 

I would like to thank my advisor Dr. Tsau Young Lin for his guidance throughout the 

duration of my project. He has been extremely supportive and without his mentorship, 

this project would not have been possible. The enthusiasm and interest shown by him in 

my project helped me get through the challenging task with relative ease.   

I am thankful to the committee members for their help, and insightful discussions on the 

progress of the project in general or certain minor details. 

I would like to express my sincere thanks to the Department of Computer Science at San 

Jose State University to provide me an opportunity to explore and publish my views and 

ideas. 

Finally, I am grateful to my parents and family members who have always been there for 

me to cherish my successes and support my failures. Without them, I would not have 

achieved my career milestones. My friends have played an equally important role 

towards my achievements so far. I am especially thankful to Sujay, Chintan, Varun, and 

Maulik with whom I was able to discuss the technical or logical aspects of my project. 

  



vi 

 

Table of Contents 

 

1. Overview ................................................................................................................................. 9 

1.1 Introduction .................................................................................................................... 9 

1.2 Prior Work ................................................................................................................... 10 

2. DNA Sequence Representation with respect to Amino Acids .......................................... 12 

3. Why Finite Automata for DNA Representation? .............................................................. 15 

4. Automata Modeling with Alergia Algorithm .................................................................... 20 

5. Implementation .................................................................................................................... 34 

6. Results ................................................................................................................................... 38 

7. Literature Review: Alternative Methods for DNA Representation ................................ 45 

7.1 3D Technique of DNA Pattern Matching .................................................................. 45 

7.2 DNA Pattern Matching using FPGA .......................................................................... 46 

7.3 Comparison with Alternative Methods ...................................................................... 46 

8. Future Work ......................................................................................................................... 48 

9. References ............................................................................................................................. 49 

 

  



vii 

 

List of Figures 

 

 

Figure 1: Gene Transcription, Translation, and Protein Synthesis [28] ......................................... 13 

Figure 2: Genetic Code [2] ............................................................................................................ 14 

Figure 3: A Prefix Tree Acceptor (PTA) accepting the Training Strings ...................................... 24 

Figure 4: Alergia Algorithm [13] ................................................................................................... 26 

Figure 5: Different Algorithm [13] ................................................................................................ 28 

Figure 6: Compatible Algorithm [13] ............................................................................................ 29 

Figure 7: Flow chart of the logical process of program ................................................................. 30 

Figure 8: PTA of Set S ................................................................................................................... 31 

Figure 9: Merging – Step1 ............................................................................................................. 32 

Figure 10: Merging – Step2 ........................................................................................................... 32 

Figure 11: Merging – Step3 ........................................................................................................... 33 

Figure 12: BLAST results, aligned Nebulin sequences of Human and Mouse ............................. 42 

Figure 13: BLAST results, aligned mitochondrion sequences of Lungworm and Hookworm ...... 43 

  



viii 

 

List of Tables 

 

 

Table 1: Frequency Statistics for PTA of strings in set S .............................................................. 31 

Table 2: Transition Table for the example discussed .................................................................... 39 

Table 3: Results for the program with respect to different confidence parameter α values for 
Human and Mouse Nebulin sequences .......................................................................................... 40 

Table 4: Results for the program with respect to different confidence parameter α values for 
lungworm and hookworm mitochondrion sequences .................................................................... 43 

 

 

 

 

 

 

 

 

 

 

  



9 

 

1. Overview 

This chapter gives a small introduction to the problem. The outline of the report that 

follows is briefly summarized here. Chapter 2 provides the background on DNA 

sequences and protein synthesis. Chapter 3 justifies why automata theory works for 

representing DNA sequences as data. Chapter 4 provides the background for automata 

theory and describes how the Alergia algorithm is applied to DNA sequences to extract 

information. In Chapter 5, the implementation details of the program are discussed. In 

Chapter 6, various experimental data and results obtained using the program on these data 

sets are described. The report ends with suggestions for future work and enhancements 

that could be done to the program.  

 

1.1 Introduction  

DNA (DeoxyriboNucleic Acid) is the nucleic acid which contains the necessary genetic 

information used in the development and functioning of any prokaryotic or eukaryotic 

organism. Molecules like mRNA (RiboNucleic Acid) and proteins are synthesized using 

the information carried by DNA. DNA is a double helical structure of two strands of 

nucleotides connected via hydrogen bonds. There are four nucleotide bases in any DNA 

sequence: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). In RNA, Thymine 

is replaced by Uracil (U). The DNA template (one of the two strands) is used to read the 

genetic code and pass on the information for protein synthesis. Thus, DNA can be 



10 

 

thought of as a mere sequence of four letters A, C, G, and T. In case of RNA, these letters 

are A, C, G, and U. 

Automata theory is an intelligent approach to represent any regular expression. An 

Automaton learns the pattern of the data fed to it. This approach has been used in the real 

world to solve several scientific problems successfully as described below. It allows a 

certain tolerance of error in the results, and hence can provide approximations as well. 

 

1.2 Prior Work 

So far, Automata have been used to study intrusion detection in the system calls made in 

any computer program [5], to identify the author with respect to their writing pattern and 

to compare different books [6], and also for numerical data sequences. Moreover, cellular 

automata have also been used to generate image representation of DNA sequences [20].  

Thus, the application of automata theory to study DNA sequences in terms of the regular 

expressions of amino acids could prove to be a powerful tool to understand genetic 

patterns phylogenetically. 

Many machine learning methods have been used to analyze the information carried by 

DNA sequences. Majority of the approaches concentrate on the 3D model of DNA [23], 

and the secondary structure of DNA which involves both the strands in parallel [9]. Apart 

from this, some different approaches like FPGAs [13], Optical pattern recognition [15], 

neural networks [18] and H curves [23] [25] are used for representation and pattern 



11 

 

matching in DNA sequences. Representation of protein sequences has also been proposed 

by use of amino acid subalphabets [22].  

Thus, the representation of gene sequence has been the topic of research for several years. 

The first 3D H curve representation of DNA was discussed in [23].  Attempts to visualize 

the DNA sequence as images have been made using automata. They achieved noticeable 

results with the cellular automata on an abstract level, where they were trying to improve 

the quality of predicting protein attributes through images [20].  

The idea of modeling DNA sequences as automata was first proposed in 1984 as 

discussed in [21]. In those days the biological sequence database was limited and the idea 

was to encourage the researchers to try to implement automata based models which may 

be applied to primary or 3D structure of DNA.  

Here, we will propose an approach to represent the primary structure of DNA data in 

terms of automata, and further to compare various DNA sequences to answer the 

similarity and difference among species as per phylogeny.   



12 

 

2. DNA Sequence Representation with respect to Amino Acids 

In order to understand how the data in DNA sequences transform into automata, we need 

to go through a brief introduction to the biological concepts. We need to understand what 

DNAs are and how they are responsible for the life and formation of any species. 

The basic ingredients of any organism (whether a prokaryote or eukaryote) are proteins. 

For example, hair, skin and muscles are largely made up of proteins. Other biochemical 

compounds like fats and carbohydrates are synthesized by enzymes or by other proteins 

which are synthesized using information from DNA. Cells die and new cells are 

generated in a timely manner, for which the genetic information of the organism is 

necessary. An organism has a necessary set of chromosomes by which it differs from 

other organisms (homo-sapiens (humans) have 23 pairs of chromosomes). These 

chromosomes carry the basic information of that organism in terms of shape, size, form 

and other phenotypic characteristics in their respective genes [7]. These genes, which are 

short sequences of DNA, are located at different loci on the chromosomes.  

Proteins are polymers, and the monomeric units are amino acids. In general, there are 20 

amino acids in any organism. It is the length and the sequence of the amino acid chain 

which makes a protein unique. This in turn, depends on the number of nucleotides and its 

sequence in the DNA.  The entire process of protein synthesis is shown in figure 2. 

During the transcription process, information from DNA is passed on to RNA where 

Thymine (T) is replaced by Uracil (U) base in presence of RNA polymerase. 



13 

 

The promoters at specific locations on the DNA indicate the presence of next gene in the 

sequence. Introns are spliced (only exons contain valuable genetic information which are 

just 5-10% of the gene and rest are the introns, also known as the non-coding part of 

DNA) and the mRNA is capped by a modified Guanine base and terminated by a 

repeated sequence of Adenine base A preparing a matured mRNA.  

 

Figure 1: Gene Transcription, Translation, and Protein Synthesis [28] 

Transcription takes place in the nucleus where the information from DNA is transferred 

to mRNA, replacing the Thymine with Uracil. Ribosomes, with help of other cytoplasmic 

RNAs start reading the mRNA three base pairs at a time, which is called a codon. For 



14 

 

each codon, there is an amino acid mapped in the genetic code as shown in figure 2. The 

translation of information from mRNA starts with the first hit of ‘AUG’ codon which 

results in Methionine amino acid. Then, the translation goes on and the amino acids are 

linked to each other creating a chain till the time any of the stop codons (UAA, UGA or 

UAG) are encountered, which indicates an end of the mRNA sequence to be translated. 

The adjacent amino acids join together with polypeptide bonds and result in a newly 

synthesized protein. Thus, taking the amino acids into consideration, we can have a 

ground to analyze DNA sequences. 

 

Figure 2: Genetic Code [2] 

 
 

  



15 

 

3. Why Finite Automata for DNA Representation? 

This chapter introduces Finite Automata and justifies its use in representing the DNA 

sequences. 

Kolmogorov theory combines information theory, probability theory and randomness. 

According to Kolmogorov theory, a string, which has patterns, can always be represented 

and written by some “simple” Turing machine. There is no practical way to express 

Turing machine. We can use finite automata to approximate this turing machine. Here, 

we use Alergia algorithm to approximate this simple Turing machine by finite automata. 

From a Granular Computing (GrC) point of view, finite automata form granules in the 

category of Turing machines. So the approximation theory of GrC was one of the factors 

responsible for the success of this approach in previous text representations [5], and 

computer security [6].  We apply this approach to DNA representation, which is more 

complex and deeper. We have to differentiate the species as individuals and have to 

group them to show their common ancestor or as belonging to the same taxon. Say, 

humans and mice are distinct, but in the tree of life they are closer than other mammals 

like marsupials. We will see this through an example explained in detail in a later 

chapter. 

The synthesis of proteins involves a mere repetition of various amino acids in the chain. 

Each codon is a permutation of any 3 nucleotides out of 4; so this makes a total of 64 

codons. They code for 20 amino acids. Now these 20 amino acids can be categorized 



16 

 

further depending upon their chemical property - polarity. Each amino acid has an amino 

group and a side chain which varies in polarity, depending on its structure. Some are 

hydrophobic being non-polar and the rest are hydrophilic being polar, which again can be 

subcategorized in neutral, acidic (negatively charged) and basic (positively charged) 

polar amino acids depending on their acidic/basic behavior.  

 It has been proved that during the translation process replacement of one amino acid by 

another can result in silent replacement if they fall in the same category due to their 

similar chemical and structural properties [7] [8]. This indicates that ‘intra’ amino acid 

group replacement results in no major harm and the protein still results in the supposed 

one with no major dysfunction in its properties. 

Hence, we have four main amino acid groups and the mapping of the amino acids with 

their codons is shown below. We enumerate the groups from 0 to 3 for the amino acid 

groups and -1 for the stop codons. (Refer genetic code in figure 2.)  

 

0 – NonPolar  

Glycine (G) – GGU, GGC, GGA, GGG;  

Alanine (A) – GCU, GCC, GCA, GCG;  

Valine (V) – GUU, GUC, GUA, GUG;  

Leucine (L) – CUU, CUC, CUA, CUG, UUA, UUG;  

Isoleucine (I) – AUU, AUC, AUA;  

Proline (P) – CCU, CCC, CCA, CCG;  



17 

 

Methionine (M) – AUG;  

Phenylalanine (F) – UUU, UUC;  

Tryptophan (W) – UGG 

 

1 – Polar Neutral  

Serine (S) – UCU, UCC, UCA, UCG;  

Threonine (T) – ACU, ACC, ACA, ACG;  

Cysteine (C) – UGU, UGC;  

Asparagine (N) – GAU, GAC;  

Glutamine (Q) – CAA, CAG;  

Tyrosine (Y) – UAU, UAC 

 

2 – Polar Acidic  

Aspartic Acid (D) – GAU, GAC;  

Glutamic Acid (E) – GAA, GAG 

 

3 – Polar Basic  

Lysine (K) – AAA, AAG;  

Arginine (R) – CGU, CHC, CGA, CGG, AGA, AGG;  

Histidine (H) – CAU, CAC 

 

-1 – Stop Codons  



18 

 

UAA,  

UAG,  

UGA 

 

Thus, we can think of the DNA sequence as having a regular expression of amino acids 

group being 0, 1, 2, 3, and -1.  

The DNAs are sequenced in laboratories and are experimental data. The online databases 

such as GenBank, NCBI, Swissprot available for the DNA/protein sequences are updated 

with correct and exchanged sequence data almost every day. Moreover, mutations are 

possible in the cellular process itself which may result in a silent mutant protein (like due 

to the intra amino acid replacements), totally deviated (missense), or senseless protein 

(nonsense) or no protein at all [7].  

In order to tackle with the silent point mutation, we need some fault tolerance acceptance 

probability to represent the DNA sequence and also to align two sequences. Finite 

automata can not only learn the sequence pattern, but also have the capability of fault 

tolerance which is integrated using the Alergia Algorithm with acceptable confidence 

probability.  

We deal with the point mutation of substitution here.  For example, in a DNA sequence 

we encountered G G U (which is Glycine falling under the group of nonpolar amino acid 

– 0) as a codon instead of G C U (which is a different amino acid – Alanine falling under 

the same group – 0) due to mutation where G got replaced by the base C, then it would 



19 

 

translate into and represent the same amino acid group even though they code for 

different amino acids. 

Moreover, there are many nucleotide sequence patterns in DNA sequences. One can 

come to know the evolution of different species by their DNA patterns. Many of the 

disorders or diseases seen in the species happen to have a repetitive pattern of certain 

nucleotides on specific loci on chromosomes. There are certain repetitions of nucleotides 

significant in gene location too (e.g., TATA box, gene promoter, is a repetition of ‘T’ and 

‘A’ as TAATAATATATA.) This kind of patterns can be viewed as Regular Expression. 

Finite Automaton is one of the best methods to catch the pattern and represent them as 

regular expressions, and hence the same holds for DNA sequences.  

  



20 

 

4. Automata Modeling with Alergia Algorithm 

Machine learning approach has been used to analyze the secondary structure of DNA 

sequences [9]. Deterministic finite Automaton can be used to study the sequence where it 

can easily identify the patterns in the sequence in terms of branches and loops of the 

substrings. Regular expressions can compress the repetition and represent them in lesser 

space [11], and these regular expressions can be studied well by use of Stochastic Finite 

Automata with its state merging techniques described in [13]. 

Deterministic Finite Automata in its five tuple notation is 

A = (Q, Σ, δ, q0, F) where, 

• Q is a finite set of states,  

• Σ is the finite state of input symbols, here  

Σ = {A, C, G, U} 

• δ is the transition function which takes a state and an input symbol as arguments 

and return other state showing the transition, here  

δ: Q x Σ→ Q 

• q0 is the intial state, 

• F is the set of the accepting states, 

• The language L defined by this DFA over Σ is a subset of Σ*. 

 



21 

 

A Stochastic deterministic finite automata SFA = (Q, Σ, δ, q0, F, P) consists of the DFA 

and P, a probability function Q ×  Σ ∪{ε}→Q such that: 

�� � �, � P	q, w�
������

� 1 

P is a set of probability matrices of pij(a), which states the probability of state i ending in 

state j with symbol a є Σ. We let pif be the probability of the string w ending in state i 

then the following applies: 

��� � � � ���	�� � 1
��∑. !�"

 

The probability of string w generated by Σ is defined by: 

�	#� �  � p%&	w�
'()Q

p%+ 

The language generated here by the SFA, known as stochastic regular language, is given 

as: 

L = {w є Σ*: p(w) ≠ 0}………………………………(1) 

Now for two languages to be equivalent, it needs to have the probability distribution to be 

identical over Σ*, meaning, not only the strings should be the same, but their probabilities 

should be equal too. 

L1 ≡ L2  , p1(w) = p2(w) , �# � Σ*.......................................(2) 



22 

 

We use Alergia algorithm [13] to build the prefix tree acceptor (PTA) from the sequence 

of DNA which at every node evaluates the probability of the transitions from that node. 

Then the state merging technique tries to merge the equivalent nodes. 

Taking a DNA sequence of any species (taxon), we can have a set of strings where each 

starts with Methionine (AUG) as it is a start codon for being translated into protein and 

ends with one of the stop codons (UAA, UGA, and UAG), and we get rid of rest of the 

nucleotides in the sequence. 

We take a DNA sequence to understand the steps followed for the representation here. 

The following is the DNA sequence taken from NCBI [27] in fasta format: 

>gi|116686129|ref|NM_000024.4| Homo sapiens adrenergic, beta-2-, 

receptor, surface (ADRB2), mRNA 

GCACATAACGGGCAGAACGCACTGCGAAGCGGCTTCTTCAGAGCACGGGCTGGAACTGGCAGGCACCGCG 

AGCCCCTAGCACCCGACAAGCTGAGTGTGCAGGACGAGTCCCCACCACACCCACACCACAGCCGCTGAAT 
GAGGCTTCCAGGCGTCCGCTCGCGGCCCGCAGAGCCCCGCCGTGGGTCCGCCCGCTGAGGCGCCCCCAGC 

CAGTGCGCTCACCTGCCAGACTGCGCGCCATGGGGCAACCCGGGAACGGCAGCGCCTTCTTGCTGGCACC 
CAATAGAAGCCATGCGCCGGACCACGACGTCACGCAGCAAAGGGACGAGGTGTGGGTGGTGGGCATGGGC 

ATCGTCATGTCTCTCATCGTCCTGGCCATCGTGTTTGGCAATGTGCTGGTCATCACAGCCATTGCCAAGT 

TCGAGCGTCTGCAGACGGTCACCAACTACTTCATCACTTCACTGGCCTGTGCTGATCTGGTCATGGGCCT 

GGCAGTGGTGCCCTTTGGGGCCGCCCATATTCTTATGAAAATGTGGACTTTTGGCAACTTCTGGTGCGAG 

TTTTGGACTTCCATTGATGTGCTGTGCGTCACGGCCAGCATTGAGACCCTGTGCGTGATCGCAGTGGATC 

... 

... 

AGTTCAGTTCCTCTTTGCATGGAATTTGTAAGTTTATGTCTAAAGAGCTTTAGTCCTAGAGGACCTGAGT 

CTGCTATATTTTCATGACTTTTCCATGTATCTACCTCACTATTCAAGTATTAGGGGTAATATATTGCTGC 

TGGTAATTTGTATCTGAAGGAGATTTTCCTTCCTACACCCTTGGACTTGAGGATTTTGAGTATCTCGGAC 

CTTTCAGCTGTGAACATGGACTCTTCCCCCACTCCTCTTATTTGCTCACACGGGGTATTTTAGGCAGGGA 

TTTGAGGAGCAGCTTCAGTTGTTTTCCCGAGCAAAGTCTAAAGTTTACAGTAAATAAATTGTTTGACCAT 

GCC 

 

As explained, we get the strings by separating a set of three bases as one word, starting 

from AUG to one of the stop codons. Then for each three base word we map it to our 



23 

 

code of numerical amino acid group and get a file of sequences of those mapped 

numbers. The set of strings is as follows: 

String 1:  AUG GCG CCA AGA GCG CAG GCU CCA CAC GCC CCA AGG 

UGA  

String 2:  AUG AGA GUG UCA AAG CCA CUU UGU ACG UGG UGG UCU 

GGG AGG AAA UCC UUG CUG GCU UCC UUA UGG AUG CGG 

GAC GAU UGA  

String 3:  AUG AGG UCA AGG ACA UAA  

String 4:  AUG GCU GCA ACA GAU UGG AGA AUA UGU ACC GCA ACU 

GCC GUA CUA ACA CAC GGA GUA ACU UGU GUU CUU ACC 

CCC ACA  AGA GUA UUA AUU AGA GAA GCA UGC UAU AAG 

AAA AAA UGA 

The numerical amino group sequences corresponding to the above training strings: 

String 1: 0   0   0   3   0   1   0   0   3   0   0   3   -1   

String 2: 0   3   0   1    3   0   0   1   1   0   0   1   1   3   3   1   0   0   0   1   0   0   0   3   

1   1   -1  

String 3: 0   3   1   3   1   -1    

String 4: 0   0   0   1   1   0   3   0   1   1   0   1   0   0   0   1   3   1   0   1   1   0   0   1   

0   1   3   0   0   0   3   2   0   1   1   3   3   3   -1   



24 

 

Now, having a set of these strings, we can create a prefix tree adapter (PTA) from it, 

which has the codons as the transition and the nodes being states for the finite automata. 

We start creating states (nodes) where, with the input of the number 0, 1, 2, 3 we have a 

transition from one state to other state. So we get the following PTA (shown partial for 

understanding): 

 

Figure 3: A Prefix Tree Acceptor (PTA) accepting the Training Strings 

  



25 

 

This automata model represents the PTA which accepts 4 training strings precisely. But it 

is too rigid as it would not accept any other string with even a little deviation in these 

strings. As described, in DNA sequences there are chances of errors in experimental data 

or genetic mutations by nature. Thus, to generalize the automata, we would like our 

system to identify the pattern from the training DNA sequence strings and “learn” this 

pattern. This learning should then be helpful to extend the acceptance level. Thus, the 

automata start reducing on rigidness and accept more strings with a little specified 

deviation. This is achieved by Alergia algorithm, a state merging method which is shown 

in Figure 4. Depending on the statistics of the transitions, we merge the nodes if they are 

equivalent and recalculate the statistics of the frequency of transition and get the final 

stochastic finite automata.  

  



26 

 

 

Figure 4: Alergia Algorithm [13] 

 

We track the number of strings passing through the node and strings accepted by the 

node. We denote by ni the number of strings arriving at node qi, fi(a) the number of 

strings following transition δi(a) (viz., transition by input a є A) and fi(#) the number of 



27 

 

strings ending at node qi. The quotients fi(a)/ni and fi(#)/ni give an estimate of the 

probabilities pi(a) and pif  i.e., probabilities of strings leaving from and strings ending at 

the node respectively. Now to add the approximation to the acceptance level of the 

strings by our SFA we need to merge the equivalent nodes. For this we have to compare 

the statistics of all nodes against each other.  

Two nodes are believed to be equivalent if for all symbols a belonging to A, relative 

transition and termination probabilities are equal and the destination nodes from the 

transitions of these nodes are equivalent too. 

qi  ≡  qj   - a є A, we have pi(a) = pj(a) and δi(a) ≡ δj(a)……………..(3) 

As we deal with the substitution mutations, this equivalence should be within a range of 

confidence. The equivalent nodes which adhere to the confidence range are called 

compatible nodes. The confidence probability for a Bernoulli’s variable having 

probability p with frequency f out of n total number according to Hoeffding’s bound is: 

.� /  01 .  2  3 121 log 28  with probability larger than 	1 –  8� … … … … … … 	4� 

This algorithm rejects the equivalence of the nodes if their probabilities differ more than 

the sum of their confidence ranges as shown in the algorithm in Figure 5. So those nodes 

are not compatible.  

  



28 

 

To check the non-compatibility following formula is used. 

E01 /  0 ′

1′
E  F  312 log 28 G 1√1 � 1√1′

I 

 

 

Figure 5: Different Algorithm [13] 

If the nodes are not different, the destination nodes are approached and checked to see the 

compatibility as shown in Figure 6. If they are compatible then we can merge them. In 

the end, the tree is compressed by merging the states which are compatible and the 

properties of each node are recalculated and changed like parent node, child nodes, and 

frequencies of transitions.  



29 

 

 

Figure 6: Compatible Algorithm [13] 

Thus, we extend our SFA for representing DNA sequences, using the original SFA while 

preserving its deterministic properties and order. 



30 

 

To summarize, a flow chart for the whole process is shown below: 

 

Figure 7: Flow chart of the logical process of program 



 

To understand this with an example, let

the automata, as the training set:

S = {λ, λ, 01, 01, 001, 001, 001, 011, 00101, 00101} where

Now, as described above the Prefix Tree Acceptor would be:

The following table shows the frequency statistics for the above PTA, where 

node, ni is the number of strings passin

which has the node i as their terminating node, 

transition of 0 from node 

node i. 

Table 1: Frequency Statistics for PTA of strings in set S

i 0 1 

ni 10 8 

fi(#) 2 0 

fi(0) 8 5 

fi(1) 0 3 

31 

To understand this with an example, let us take a set of strings as given below to create 

the automata, as the training set: 

S = {λ, λ, 01, 01, 001, 001, 001, 011, 00101, 00101} where λ is an empty string

Now, as described above the Prefix Tree Acceptor would be: 

Figure 8: PTA of Set S 

The following table shows the frequency statistics for the above PTA, where 

is the number of strings passing through the node i, fi(#) is the number of strings 

as their terminating node, fi(0) is the number of strings having a 

transition of 0 from node i, and fi(1) is the number of strings having transition of 1 from 

: Frequency Statistics for PTA of strings in set S

 2 3 4 5 

 3 1 5 5 

 2 1 0 3 

 0 0 0 2 

 1 0 5 0 

take a set of strings as given below to create 

λ is an empty string 

 

The following table shows the frequency statistics for the above PTA, where i is the 

is the number of strings 

is the number of strings having a 

is the number of strings having transition of 1 from 

: Frequency Statistics for PTA of strings in set S 

6 7 

2 2 

0 2 

0 0 

2 0 



 

Here, we can clearly see that nodes 3 and 7 and nodes 

frequencies are equivalent. Taking α = 0.7 and applying the fo

frequency fractions, we understand that

compatible. So we can merge these nodes. The m

At last, the frequency statistics are calculated

Merging state 2 and 3: 

 

Merging states 2 and 5: 

 

32 

Here, we can clearly see that nodes 3 and 7 and nodes 4 and 6 are compatible as their 

frequencies are equivalent. Taking α = 0.7 and applying the formula for the difference of 

frequency fractions, we understand that 2, 3, 5, and 7 are compatible and 4 and 6 are 

compatible. So we can merge these nodes. The merging of these states is shown below. 

ncy statistics are calculated and updated. 

Figure 9: Merging – Step1 

Figure 10: Merging – Step2 

 

4 and 6 are compatible as their 

rmula for the difference of 

2, 3, 5, and 7 are compatible and 4 and 6 are 

states is shown below. 

 

 



33 

 

Merging states 2 and 7 and states 4 and 6: 

 

Figure 11: Merging – Step3 

As we can see in Figure 11 above, the automaton defines a language by use of strings in a 

set S, a subset of the set which is represented by the SFA in above figure. Now if we have 

a set Q = {101, 01111, 0101010, 11011, 001010101} then strings 01111 and 001010101 

are accepted by the SFA shown. Thus, the confidence (acceptance) probability will be 

0.40 or 40% as each string carries 20% equal probability. We apply the same concept to S 

as the set of DNA sequence training strings and Q as the set of the DNA sequence testing 

strings. 

 

  



34 

 

5. Implementation 

The implementation is done in Java using Eclipse as the IDE for Java. The program 

mainly consists of two Java files, AminoView.java and Train.java. AminoView.java 

defines the input output directories, training and test DNA sequence files, and makes 

functional calls to the functions defined in Train.java. 

The state in the automata is an instance to the class Node as shown below: 

 

The function GetCodons() takes the input file of DNA sequences which is used as 

training data to generate the automaton as an argument, parses through it, and provides 

the numerical amino group notation for each codon. It then stores an intermediate file as 

shown below. It also takes care of the mRNA sequences (containing U instead of T) 

along with DNA as a prior step: 



35 

 



36 

 

 

Next, the function CreatePTA() generates the prefix tree acceptor ((PTA) from the 

numeric file created by GetCodons(). Here, it manipulates the class Node, where for each 

state a new Node is created. For each state, its parameters are updated as per the SFA. 

Then, there are Compatible() and Differ() functions which are described by algorithms 

previously to check if the nodes in question are compatible to each other.  

 



37 

 

 

Delta() is a transition function which transits from one state to its child depending on the 

input. Recall, δ: Q x Σ→ Q 

 

Once, we know the states that are compatible, they need to be merged. This is done by 

Combine() and MergeAll() functions. In Combine(), flags are set for the states to merge, 

where for state q, to be merged to r, the merge_to property is set to r. In MergeAll(), the 

nodes are finally merged and all properties for the nodes are changed accordingly. A part 

of the code in Combine() is shown below: 

  



38 

 

6. Results 

Alergia based Automata modeling can be used to align and compare two DNA sequences 

against each other. This can even answer the evolution gaps between the DNA sequences 

that have been compared. 

Now, automata have two different notations: a) Transition Diagram, b) Transition table. 

The code generates the automata in terms of the transition table, which is the tabular 

representation of the transition function δ(qi, a) = qj. It shows the transition of the current 

state qi to the destination state qj with the input alphabet a є {0,1,2,3}. 

Let us consider the same DNA sequence taken in Chapter 4 to explain the automaton 

implementation.  Shown in Table 2 is the automata generated when α = (1 – confidence 

level) is set between 0.7 and 1. There are no merging states as for the DNA sequence  a 

value of 0.7 to 1 is too rigid to have compatible nodes. 

When the other sequence comes as input, it is checked against the SFA that was created 

by the first DNA sequence, whether it is acceptable or not. If it is acceptable, the system 

gives the percentage value for the acceptance.  

 
  



39 

 

Table 2: Transition Table for the example discussed 

    a 

q 

0 1 2 3 

1 2    
2 3   14 
3 4    
4  42  5 
5 6    
6  7   
7 8    
8 9    
9    10 
10 11    
11 12    
12    13 
13     
14 15 39   
…     
…     
71  72   
72  73   
73    74 
74    75 
75    76 
76     

 
 

The programs tells you if the sequences taken as inputs are the same, or closely related or 

at the far end of evolutionary tree for different species.  

When it comes to comparing the DNA or protein sequences, or to search homologous 

species or to map evolutionary relations, BLAST (Basic Local Alignment Search Tool) 

[29] is a defacto standard in search and alignment tools in bioinformatics. It’s a heuristic 

approach where it finds a few short matches between two sequences and then starts to 

look for more similar alignments locally, which means it does not cover the entire 



40 

 

sequence space. It may not be the optimal solution to a DNA sequence comparison. To 

match a query and subject sequence, it starts with the matching words of size seven to 

eleven bases. From there, it starts comparing the nearby sequence areas to find more 

matches. The limitation is it only aligns locally, but considers gaps and substitutions. 

We took a human sequence i.e., Homo sapiens nebulin (NEB), transcript variant 1, 

mRNA (locus: NM_001164507) which has 26202 base pairs to create the automata and 

the problem was if the mouse parallel sequence i.e., Mus musculus nebulin (Neb), 

mRNA (locus NM_010889) which has 22489 base pairs was accepted by the language 

generated by the automata.  

Following are the search results with the varying values of confidence parameter α: 

Table 3: Results for the program with respect to different confidence parameter α 

values for Human and Mouse Nebulin sequences 

 confidence parameter α (varies 

between 1 and 0) 

acceptance of the mouse’s 

sequence (percentage) 

Case 1 0.7 15% 

Case 2 0.5 25% 

Case 3 0.3 76% 

 

When these two sequences are aligned by BLAST it gives 88% identity where the 

coverage of the sequence considered was 93%, while we consider the whole 100% of the 

sequence. 



41 

 

The reason we have to take the lower values of α is that the dataset we consider is huge. 

The string lengths considered are bigger values than generally taken as a unit. Each string 

stands for a protein, which normally has 400 – 1000s of amino acids. The smallest 

protein chignolin has 10 amino acids and the largest one being titin has around 27000 

amino acids.  

Here, if we analyze the results, we can say that when α is 0.7, the automata is too rigid to 

accept the strings, so by 15% similarity it supports the fact that mouse and human are 

very different species in evolution but with decrease in α we can see 76% similarity, 

which can state the fact that human and mouse are similar, as in taxonomically, in the 

group of mammals (mouse is one of the best model organisms to study human processes.) 

Moreover, as discussed, by our grouping methodology we can take care of the 

substitution mutations, but not the insertion and deletion, as with those two the whole 

sequence of the amino acid changes and so does the protein, which is again a rare 

possibility in gene sequences. This scenario is taken care of by BLAST, which does local 

alignments, and is able to have the gaps in between for a sequence when it has an 

insertion on one or deletion on the other. The results of the BLAST tool are shown below 

for the same sequence alignment, where the grey lines in the middle of the red thick line 

is a part of subject string (Mouse NEB). It does not match with the query sequence 

(Human NEB) at all which is 7% of the later one, and so, is not counted in the local 

alignment: 



42 

 

 

 

Figure 12: BLAST results, aligned Nebulin sequences of Human and Mouse 

Thus, taking this into consideration, we can say that our method is powerful enough to 

generate a language by studying one DNA sequence, and also can say whether the other 

sequence is accepted well with a slight change in selecting the parameter α than the 

conventional way. 

For the second experiment, we took mitochondrion genome sequence of the lungworm 

found in rats as the query string (Angiostrongylus costaricensis mitochondrion, 

complete genome – LOCUS NC_013067) having 13585 base pairs which generates the 

language, and mitochondrion genome sequence of the hookworm found in human 

intestine as the subject string (Necator americanus complete mitochondrial genome – 

LOCUS AJ417719) having 13605 base pairs, and we got the following results: 

 

 

 



43 

 

Table 4: Results for the program with respect to different confidence parameter α 

values for lungworm and hookworm mitochondrion sequences 

 confidence parameter α 

(varies between 1 and 0) 

acceptance of the hookworms’s sequence 

(percentage) 

Case 1 0.7 44% 

Case 2 0.5 71% 

Case 3 0.3 71% 

 

When these two sequences are aligned using the BLAST tool we get 78% identity over 

97% of the coverage of the query string, which means that 3% of the sequences don’t 

match at all and so it is not considered while aligning the sequences. This is visible as the 

gap, white space in the red thick line which is the subject sequence. So there is an identity 

of 78% of the hookworm with respect to the lungworm mitochondrion sequence, while 

we get as 71% which is fairly close to the results we get from BLAST, even when we 

consider the gaps which are shown below with the other results: 

 

 

Figure 13: BLAST results, aligned mitochondrion sequences of Lungworm and 

Hookworm 



44 

 

When the value is varied from 0 towards 1 for the confidence level, the results get 

tougher as the automata get rigid with lesser merges and lose the automata handling of 

repetition and loops with the comparison among sequences.  

Even with the large datasets, the runtime of the program remains linear, that is O(n). It 

may need some virtual space to run on the machine as eclipse is used as the IDE for the 

Java program. With many applications and tasks running at a time on a machine like IBM 

thinkpad, Intel core 2 duo, 1 GB of RAM, it still remains linear for its runtime (takes a 

second or two depending on the size of the sequences in question). 

 

  



45 

 

7. Literature Review: Alternative Methods for DNA Representation 

The analysis of DNA sequences for finding patterns in the sequence as repetition of 

nucleotides, to find important characteristic sites such as the TATA box, and comparison 

the DNA sequences with each other for evolutionary results have been done since 

decades. This has been one of the most important research areas in bioinformatics. Thus, 

there are many alternative techniques that researchers have come up with. Each method 

has its own particular reason of invention and success; we will discuss some of them 

here.  

 

7.1 3D Technique of DNA Pattern Matching 

When the textual DNA sequences (the mere sequence of letters (nucleotides)) are aligned 

and matched against each other, they fail to answer many of the characteristic 

information about the species involved in the analysis [16]. This happens because DNA is 

something more than just the sequence of characters; they are stored in the cells in form 

of double helical structure, where hydrogen bonds are responsible for their build. So the 

3D model of the DNAs is considered and matched to solve the problem. The dimensions 

and the double helix structure of DNA sequences are compared. 

This approach is towards the biological studies for the species behavioral characteristics 

as included in protein folding, whereas, our method works on the primary structure of 

DNA. 

 



46 

 

7.2 DNA Pattern Matching using FPGA 

Here, FPGAs (Field Programmable Gate Arrays) are used to analyze DNA sequences and 

to match patterns between them. This approach uses the hardware directly, and so it 

happens to be efficient enough and expensive too. “The novel aspect of this approach is 

the technique of converting a matching problem into a boolean satisfiability problem and 

then to a circuit, exploiting the reconfigurability of FPGAs [15]”. But, the limitation is of 

the DNA size, meaning the string capacity that FPGAs support. 

In our approach, hardware is not used, the computational time increases in order of the 

size of DNA which is very nominal as compared to the cost of hardware used here. 

Apart from the above described methods, there are solutions such as optical pattern 

recognition [17], neural network based pattern recognition [18], and linear time filtering 

approach to analyze the DNA patterns. 

 

7.3 Comparison with Alternative Methods 

There are several solutions to DNA pattern analysis. Some solutions lack accurate 

findings, some fail in providing cost effective solutions, some are inappropriate as they 

don’t justify the capacity of the input data as large as several DNA sequences, some 

happen to concentrate more on the data of DNA sequence locally and missing out the 

bigger picture, while some distribute the concentration over the whole DNA sequence 

from a limited species. 



47 

 

The better solution may be Automata Theory, where capacity to handle and study the 

sequences and their pattern is higher and there is a control over the fault tolerance which 

is user defined. Automaton can easily identify the hidden patterns in a sequence and the 

comparison is not a mere alignment. 



48 

 

8. Future Work 

Many of the protein behavioral patterns depend on the secondary and 3D structure of the 

DNA sequence which the proposed approach cannot handle [16]. So this can be taken 

care of in the future implications. 

We have used polarity as the property to classify the amino acids. There are even other 

properties of DNAs like their size and shape [14] which may lead us to a total different 

classification with different results. 

We are not handling the mutations in DNA sequences like insertion and deletion which 

will result in a frame shift of the coding sequence [8], which means by inserting even a 

single nucleotide in a sequence somewhere the codons will code for a total different 

genetic code, which may result in ‘missense’ or ‘nonsense’ mutation coding for different 

meaningless or no protein respectively [7]. This is still not a case with the gene sequences 

because in genes, it hardly occurs that they have mutations of insertion or deletion. 

  



49 

 

9. References 

1. Hopcroft, J. E., Motwani R., & Ullman, J.D.: Introduction to Automata Theory, 

Language, and Computation. Addison Wesley. (2001) 

2. Pevsner, J. & Wiley, J.: Bioinformatics and Functional Genomics. (2003) 

3. Watson J., Baker T., Bell S., Gann A., Levine M., Losick R.: Molecular Biology 

of the Gene, Fifth Edition. New York: Benjamin Cummings (2003)  

4. Crick F.: The Great Ideas of Today 1980, Encyclopedia Britannica, 644-683 

(1980) 

5. Baliga P., Lin T.: Kolmogorov Complexity Based Automata Modeling for 

Intrusion Detection. In: Proceeding of the 2005 IEEE International Conference on 

Granular Computing, July 25-27, Beijing, China, 387-392 (2005) 

6. Lin T., Zhang S.: Automata Based Authorship Identification System. In: New 

Frontier in Applied Data Mining, Springer Berlin/Heidelberg, 134-142 (2009) 

7. Jones S.: The Britannica guide to Genetics, Running Press (2009) 

8. Agutter P., Wheatley D.: About Life – Concepts in Modern Biology, Springer 

(2007) 

9. Baldi P., Brunak S.: Bioinformatics: The Machine Learning Approach, MIT Press 

(2001) 



50 

 

10. Chakraborty, S.: Formal Languages and Automata Theory - Regular Expressions 

and Finite Automata (2003) 

11. Sekar R., Bendre M., Dhurjati D., Bollineni P.: A Fast Automaton-Based for 

Detecting Anomalous Program Behoviors. In: Proceedings IEEE Symposium on 

Security and Privacy (2001) 

12. Lin T.: Patterns in Numerical Data: Practical Approximations to Kolmogorov 

Complexity. In: RSFDGrC, 509-513 (1999) 

13. Carraso R., Oncina J.: Learning Stochastic Regular Grammars by means of a 

State Merging Method. In: Proceedings of the 2nd International Colloquium on 

Grammar Inference. Lecture notes in Artificial Intelligence, 139-152 (1994) 

14. Bosnacki D., Eikelder H.M.M., Steijaert M., Vink E.: Stochastic Analysis of 

Amino Acid Substitution in Protein Synthesis. In: CMSB 2008, LNBI 5307, 367–

386, Springer-Verlag Berlin Heidelberg (2008) 

15. Lipson, A. & Scott, H.: DNA Pattern Matching using FPGAs [Electronic Version] 

(2002)  

16. Herrison, J., Payen, G., & Gherbi, R.: A 3D pattern matching algorithm for DNA 

sequences (2007) 



51 

 

17. Martin, J. C. & Hawk, J. F.: DNA sequence analysis by optical pattern 

recognition. In: The International Society for Optical Engineering, 938, 238-45 

(1988) 

18. Cotter, N., Gesteland, R., & Murdock, M.: Neural network based pattern 

recognition for sequenced DNA autoradiograms. In: International Joint 

Conference on Neural Networks, 2, 909 (1991) 

19. Quang V.: A natural number based linear time filtering approach to finding all 

occurrences of a DNA pattern. In: Fourth International Conference on Intelligent 

Sensing and Information Processing, 108-111 (2007) 

20. Xiao X., Shao S., Ding Y., Huang Z., Chen X., Chou K.: Using cellular automata 

to generate image representation for biological sequences. In: Amino Acids, 29-

35 (2005) 

21. Burks C., Farmer D.: Towards Modeling DNA Sequences as Automata. In: 

Physica D: Nonlinear Phenomena, Volume 10, 157-167 (1984) 

22.  Anderson C., Brunak S.: Representation of Protein Sequence Information by 

Amino Acid Subalphabets. In: American Association for Artificial Intelligence, 

Volume 1, 97-104 (2004) 

23. Hamori E., Ruskin J.: H Curves, A Novel Method of Representation of 

Nucleotide Series Especially Suited for Long DNA Sequences. In: The Journal of 

Biological Chemistry, Volume 258, 1318-1327 (1983) 



52 

 

24.  Yin C., Yau S.: Numerical Representation of DNA Sequences based on Genetic 

Code Context and its Applications in Periodicity Analysis of Genomes. In: 

CIBCB – IEEE symposium, 223-227 (2008) 

25.  Lantin M., Carpendale M.: Supporting Detail-in-Context for the DNA 

Representation, H-Curves. In: Proceedings of the Conference on Visualization, 

443-448 (1998) 

26. Ichinose N., Yada T., Takadi T.: Quadtree Representation of DNA Sequences. In: 

Genome Informatics 12, 510-511 (2001) 

27. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov 

28. Stem Cell Information, N.I.H., http://stemcells.nih.gov 

29.  BLAST, Basic Local Alignment Search Tool, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

30. GPCRDB: Information System for G Protein Coupled Receptors, 

http://www.gpcr.org/7tm/ 


	San Jose State University
	SJSU ScholarWorks
	2009

	DNA Sequence Representation by Use of Statistical Finite Automata
	Asmi Shah
	Recommended Citation


	Microsoft Word - Report_12Nov_Final.docx

