# Automatic Extraction of Keywords and Cooccurrence Keyword Sets 

Mong-Hang Vo<br>San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects
Part of the Computer Sciences Commons

## Recommended Citation

Vo, Mong-Hang, "Automatic Extraction of Keywords and Co-occurrence Keyword Sets" (2006). Master's Projects. 25. DOI: https://doi.org/10.31979/etd.5mej-jmzn
https://scholarworks.sjsu.edu/etd_projects/25

# AUTOMATIC EXTRACTION 

OF

# KEYWORDS AND CO-OCCURRENCE KEYWORD SETS 

A Project Report<br>Presented to<br>The Faculty of the Department of Computer Science<br>San Jose State University<br>In Partial Fulfillment of the Requirements for the Degree<br>Master of Science by<br>Mong-Hang Vo<br>November 2006

© 2005-2006
Mong-Hang Vo
ALL RIGHTS RESERVED

## APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Tsau Young Lin

Dr. Suneuy Kim

Dr. Robert Chun

## APPROVED FOR THE UNIVERSITY

Dr. Tsau Young Lin

## Dr. Suneuy Kim

Dr. Robert Chun

## ABSTRACT <br> AUTOMATIC EXTRACTION OF KEYWORDS AND CO-OCCURRENCE KEYWORD SETS

by Mong-Hang Vo

Internet search has become an essential part of almost everyone's daily life and work. To make wise personal and business decisions in a timely fashion, one must access the most relevant information efficiently. Because the amount of information on the Internet is enormous, it is important that a search engine ranks the information appropriately when it presents search results to users. Latent Semantic Indexing (LSI) addresses relevance ranking based on how significant a search word is in each document.
Some innovative approaches of computing higher dimensional LSI (HD-LSI) were explored in this project. In traditional LSI, the term frequency-inverse document frequency (TFIDF) is calculated based on how significant a single word is in a document. The goal of this project is to generalize LSI to higher dimensions regarding the traditional LSI as the one-dimensional special case.

A benefit of the project is to enable a search engine to rank documents based on the special meaning of multi-word phrases, such as "wall street," which is captured by a two-dimensional LSI method. Another benefit of the project is the reusable Java software components that compute HD-LSI and store the indexes into a relational database, from which many types of applications can access the HD-LSI data. The software components may be reused for studying the proximity of semantics among documents in high dimensional space in future research.

Besides the software engineering aspect, this project contributes to computer science by studying the different approaches to HD-LSI computation. In particular, the dimensional trends in each case were analyzed.

## ACKNOWLEDGEMENTS

Foremost, my many thanks to my advisor Dr. T. Y. Lin for his invaluable insights and knowledgeable guidance, without which I would have certainly fallen into hopeless black holes and never been able to complete this project.

Moreover, I offer my deepest appreciation to Dr. Suneuy Kim and Dr. Robert Chun for participating in my project committee. Finally, I want to give special thanks to Dr. Cay Horstmann, for his support as a graduate coordinator of the computer science department.

## Table of Contents

1. Introduction ..... 10
2. Requirements ..... 10
2.1 Project Scope ..... 10
3. Design ..... 10
3.1 Software Architecture ..... 10
3.1.1 Document Preprocessor ..... 11
3.1.2 Computation Unit of LSI for One Keyword (LSI1) ..... 13
3.1.3 Computation Unit of LSI for Two Keywords (LSI2) ..... 14
3.1.4 Computation Unit of LSI for Three or More Keywords (LSI3, LSI4, ...) ..... 17
3.2 Database Schemas ..... 18
4. Implementation ..... 22
4.1 Main Objective ..... 22
4.2 Data Structure ..... 22
4.3 Algorithm ..... 22
4.3.1 Implementation of $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ Computation ..... 22
4.3.2 Performance Consideration ..... 23
4.3.3 Maintainability Consideration ..... 24
4.4 Programming Language ..... 24
5. Deployment ..... 24
5.1 Overview of Testing ..... 25
5.2 Testing Requirements ..... 25
5.2.1 Hardware Requirements ..... 25
5.2.2 Software Requirements ..... 25
5.3 Test cases ..... 25
5.3.1 Document Preprocessor Test ..... 25
5.3.2 Sparse Matrix Test ..... 25
5.4 Program Run Dependencies ..... 28
6. Analysis ..... 29
6.1 Method 1 - Use TFIDF as a Threshold and $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ as an Integer ..... 29
6.1.1 LSI1 ..... 29
6.1.2 LSI2 ..... 31
6.1.3 LSI3 ..... 33
6.1.4 LSI4 ..... 34
6.1.5 Dimensional Trends ..... 36
6.2 Method 2 - Use TFIDF as a Threshold and $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ as a Fraction ..... 37
6.2.1 LSI1 ..... 37
6.2.2 LSI2 ..... 38
6.2.3 LSI3 ..... 39
6.2.4 LSI4 ..... 41
6.2.5 Dimensional Trends ..... 42
6.3 Method 3 - Use Document Frequency as a Threshold and $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ as a Fraction ..... 43
6.3.1 LSI1 ..... 43
6.3.2 LSI2 ..... 44
6.3.3 LSI3 ..... 46
6.3.4 LSI4 ..... 47
6.3.5 Dimensional Trends ..... 49
6.4 Method 4 - Refined Method 2 by Removing Stop Words during Document Preprocessing ..... 49
6.4.1 LSI1 ..... 50
6.4.2 LSI2 ..... 51
6.4.3 LSI3 ..... 52
6.4.4 LSI4 ..... 53
6.4.5 Dimensional Trends ..... 55
7. Conclusion ..... 56
8. Appendices ..... 57
8.1 Appendix A - Stop List ..... 57
8.2 Appendix B - Database Samples ..... 57
8.2.1 Method 1 ..... 58
8.2.2 Method 2 ..... 62
8.2.3 Method 3 ..... 66
8.2.4 Method 4 ..... 70
8.3 Appendix C - References ..... 74

## List of Figures

Figure 1. Overview of The Design ................................................................................................................ 11
Figure 2. Document Preprocessor and Inverted Table
12
Figure 3. Computation Unit of LSI for One Keyword (LSI1)............................................................................... 13
Figure 4. Preparation Phase of LSI for Two Keywords (PreLSI2) .................................................................. 14
Figure 5. Main Computation Unit of LSI for Two Keywords (LSI2) ................................................................. 15
Figure 6. UML Class Diagram......................................................................................................................... 16
Figure 7. Preparation Phase of LSI for Three Keywords (Pre-LSI 3) ............................................................ 17
Figure 8. Main Computation Unit of LSI for Three Keywords (LSI 3) ............................................................ 18
Figure 9. Improved Algorithm for LSI Computation ........................................................................................ 24
Figure 10. Unit Tests Developed under the JUnit Framework Executed by Eclipse ...................................... 27
Figure 11. Program Run Dependencies .......................................................................................................... 28
Figure 12. The Size of the Inverted Table Generated from Document Preprocessor .................................... 29
Figure 13. Dimensional Trends of Method 1.................................................................................................. 36
Figure 14. Dimensional Trends of Method 2................................................................................................. 43
Figure 15. Dimensional Trends of Method 3.................................................................................................. 49
Figure 16. Dimensional Trends of Method 4.................................................................................................. 55
Figure 17. Method1: LSI1................................................................................................................................. 58
Figure 18. Method1: LSI2.......................................................................................................................... 59
Figure 19. Method1: LSI3.......................................................................................................................... 60
Figure 20. Method1: LSI4.......................................................................................................................... 61
Figure 21. Method2: LSI1 .......................................................................................................................... 62
Figure 22. Method2: LSI2............................................................................................................................. 63
Figure 23. Method2: LSI3............................................................................................................................... 64
Figure 24. Method2: LSI4.......................................................................................................................... 65
Figure 25. Method3: LSI1......................................................................................................................... 66
Figure 26. Method3: LSI2......................................................................................................................... 67
Figure 27. Method3: LSI3.......................................................................................................................... 68
Figure 28. Method3: LSI4............................................................................................................................. 69
Figure 29. Method4: LSI1................................................................................................................................ 70
Figure 30. Method4: LSI2............................................................................................................................... 71
Figure 31. Method4: LSI3............................................................................................................................... 72
Figure 32. Method 4: LSI4............................................................................................................................ 73
List of Tables
Table 1. Inverted Table Schema ..... 18
Table 2. LSI 1 Table Schema ..... 19
Table 3. Reduced Inverted2 Table Schema ..... 19
Table 4. LSI 2 Table Schema ..... 20
Table 5. Reduced Inverted3 Table Schema ..... 20
Table 6. LSI 3 Table Schema ..... 21
Table 7. LSI 4 Table Schema ..... 21
Table 8. Method1: LSI1 Analysis ..... 30
Table 9. Method1: LSI2 Analysis ..... 32
Table 10. Method1: LSI3 Analysis ..... 34
Table 11. Method1: LSI4 Analysis ..... 36
Table 12. Method2: LSI1 Analysis ..... 38
Table 13. Method2: LSI2 Analysis ..... 39
Table 14. Method2: LSI3 Analysis ..... 40
Table 15. Method2: LSI4 Analysis ..... 42
Table 16. Method3: LSI1 Analysis ..... 44
Table 17. Method3: LSI2 Analysis ..... 45
Table 18. Method3: LSI3 Analysis ..... 47
Table 19. Method3: LSI4 Analysis ..... 49
Table 20. Method4: LSI1 Analysis ..... 51
Table 21. Method4: LSI2 Analysis ..... 52
Table 22. Method4: LSI3 Analysis ..... 53
Table 23. Method4: LSI4 Analysis ..... 55

## 1. Introduction

Popular Web search services have substantially changed the way we get information for work and life. Data mining technologies, such as those adopted by Amazon.com, have changed how we interact with one another in a large community. Therefore, an important question is whether we can apply advanced data mining technologies on improving Web search services. There are a number of efforts in making text search take advantage of meaning or semantics instead of merely relying on keywords [C97].

This project explores several approaches of high dimensional latent semantic indexing (HD-LSI) techniques. We will view traditional LSI as one-dimensional LSI [W05a]. This project will explore "LSI of cooccurring keywords." The project will begin a formal study, which consists of two parts: software engineering and empirical study. The goal of the software engineering part of the project is to develop a generic framework and a testable system that facilitate the extension of LSI to higher dimension. The goal of the empirical part of the project is to explore and analyze several approaches of computing HD-LSI using the system developed in the first part of the project.

## 2. Requirements

### 2.1 Project Scope

The goals of this project are as follows.

- To design software that computes HD-LSI.
- To design experiment to compare four methods for computing HD-LSI. Method 1 uses tfidf as a threshold to limit the size of input to HD-LSI computation. Method 2 differs from Method 1 in that a denominator is introduced in calculation of $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$, which is an important factor in the calculation of tfidf. In Method 2, the denominator is the total number of all types of tokens in document dj. Method 3 differs from Method 2 only on how the input sizes of multi-dimensional LSI calculation. Method 3 uses document frequency (DF) as the threshold to pick up only the terms with high enough DF to feed into the computation of LSI2 to reduce its input size. Method 4 differs from Method 2 in that it discards common function words (sometimes known as stop words) during document preprocessing.
The main scope of the project includes:
- Processing the entire collection of 16330 documents from University of California, Irvine Knowledge Discovery in Databases (UCI KDD) [U06]. Because LSI computation involves the entire collection of documents, the larger the collection, the more meaningful the result. The same is true for HD-LSI.
- Designing a database schema to store documents, terms, occurrence locations, and LSI information.
- Writing Java programs that process text documents and access an Oracle database via Java Database Connectivity (JDBC).
- Setting up a computer and deploying both the Java programs and the Oracle database on the computer to process a large set of text documents to produce scientific results.


## 3. Design

### 3.1 Software Architecture

Figure 1 shows the software architecture of this project that consists of the following major components:

- The document preprocessor.
- The computation unit of LSI for one keyword (LSI1).
- The computation unit of LSI for two keywords (LSI2).
- The computation units of higher dimensional LSI for $n$ keywords (LSIn) work similarly. The objectoriented framework is designed to facilitate the extension of LSI to any dimension. The author has implemented the computation units up to dimension four in this project.

The document preprocessor reads the entire set of documents from a file system and stores the resulting inverted files as tables in a database. LSI1 takes the inverted tables from the database to calculate the LSI and stores the LSI into a different table in the same database. LSI2 takes as its input the Cartesian product of the inverted tables filtered with LSI to reduce its size. It then calculates the LSI for each pair of terms and stores them into a different table in the database. LSI3 and higher dimensional LSI modules work in a way similar to LSI2.

Documents (files)


Figure 1. Overview of The Design

### 3.1.1 Document Preprocessor

The document preprocessor reads text documents from a file system. It preprocesses each document by extending the analyzer of a popular open-source software package, Apache Lucene. The analysis involved in document preprocessing consists of the following steps:

1. Tokenization is the preprocessing step for dividing a document into terms or words. The step is performed by the LetterTokenizer of Lucene, which uses the Java built-in method Character.isLetter(char) to determine whether a character is a letter or not. Any non-letter character is regarded as a separator between terms.
2. Canonicalization is the preprocessing step for reducing different forms of the same term into a single representation for accurate comparison between terms. Canonicalization involves lowercasing and stemming.
a. Lowercasing converts each letter of each term into lower case. For example, "Apple" and "apple" are both converted to "apple" so that the system regards them as being the same term regardless of whether the term appears at the beginning or somewhere in the middle of a sentence.
b. Stemming removes inflectional morphemes from each term. For example, "apples" is converted to the same representation as "apple" so that the system regards both "apples" and "apple" as being the same term regardless of whether the term is in its plural or singular form. Lucene uses Porter's Algorithm for stemming.

For each term in each document, the document preprocessor canonicalizes the term and associates it with the document in which the term appears by inserting a row into inverted tables in an Oracle database. In the same row, the document preprocessor also records the location or position in which the term appears in the document.


Figure 2. Document Preprocessor and Inverted Table

### 3.1.2 Computation Unit of LSI for One Keyword (LSI1)

LSI1 reads the inverted tables. It computes LSI for each term in each document. It then inserts its results into the LSI1 table in the database. The LSI1 table contains the information on how significant each term in each document. For example, if the term "apple" is very significant in Document \#2, the tuple <"apple", 2, Isi1> will have a very large value for its Isi1. The author implemented the entire algorithm of LSI calculation in Java, and the algorithm and data structures will be described in Section 4 below.


Inverted table

LSI 1 table

Figure 3. Computation Unit of LSI for One Keyword (LSI1)

### 3.1.3 Computation Unit of LSI for Two Keywords (LSI2)

The goal of LSI2 is to find out how significant each pair of tokens in each document. In theory, the input of LSI2 is the Cartesian product between the inverted table and itself. Since the inverted table has more than 5 million rows, the Cartesian product would have more than $2.5 \times 10^{13}$ rows. Since the author did not have access to the computing machinery required for processing this enormous number of rows, the size of the inverted table needed to be reduced. The preparation phase of LSI2 (PreLSI2) was created for this purpose.

During the preparation phase of LSI2 computation, a subset of the inverted table is copied into a "reduced" inverted table. The resulting reduced inverted table contains only the terms that pass the criterion defined by the method of computation, to be described in Section 6. The reduced inverted table joins with itself forming the inverted table for LSI2 ("inverted table2").


Figure 4. Preparation Phase of LSI for Two Keywords (PreLSI2)

The main computation unit LSI2 takes inverted table 2 as input to compute the LSI for each pair of terms in inverted table 2. The algorithm and data structure for the computation will be described in Section 4 below.


Figure 5. Main Computation Unit of LSI for Two Keywords (LSI2)

Since LSI2 shares the same algorithm and data structure as LSI1, LSI2 simply "extends" LSI1 using the object-oriented inheritance mechanism provided by Java, as shown in Figure 6. Because of the use of inheritance, the source code that implements the LSI algorithm and the necessary sparse matrix data structure that supports it is reused rather than being duplicated. The corresponding database access modules are reused in a similar way. For example, as shown in Figure 6, DbForLSI2 extends DbForLSI1. This allows all the reusable source code to be in DbForLSI1. The reusable source code accesses Oracle database using Java Database Connectivity (JDBC), and it does not need to reappear in DbForLSI2. The only source code that needs to be in DbForLSI2 is two SQL statements that are specific to two-dimensional LSI. The two SQL statements are invoked during the execution of the common LSI algorithm by polymorphism in Java.

Using the same object-oriented programming framework, the author implemented LSI3 and LSI4 with little additional source code. In the future, higher dimensional LSI Java classes can be made to be automatically generated from this framework.


Figure 6. UML Class Diagram
LSI3, LSI4, ... LSIn (not shown in Figure 6) are all sub-classes of LSI1 similar to LSI2. DbForLSI3, DbForLSI4, ... DbForLSIn are all sub-classes of DbForLSI1 similar to DbForLSI2.

### 3.1.4 Computation Unit of LSI for Three or More Keywords (LSI3, LSI4, ...)

The computation of LSI3 is very similar to that of LSI2. During the preparation phase, the reduced inverted table joins with itself three times to forming the inverted table for LSI3 ("inverted table3").


Figure 7. Preparation Phase of LSI for Three Keywords (Pre-LSI 3)

The main computation unit LSI3 takes inverted table 3 as input to compute the LSI for each tuple of terms in inverted table 3. The algorithm and data structure for the computation are the same as those for LSI2. The framework is general enough to be extended to handle LSI4 and higher dimensions. As an initial experiment, the author has extended the framework to implement the calculation of high dimensional LSI up to LSI4.


Figure 8. Main Computation Unit of LSI for Three Keywords (LSI 3)

### 3.2 Database Schemas

The document preprocessor reads 16,330 text documents downloaded from UCI KDD. Each term in each document is stored into one big inverted table in the database. Table 1 shows the schema for the inverted table.

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM | NOT NULL | VARCHAR2(18) |
| LOCATION | NOT NULL | NUMBER(5) |

Table 1. Inverted Table Schema

For each document, a value of LSI1 for each term is stored in the database. Table 2 shows the schema for the LSI1 table. The larger is the value of LSI1, the more important is the term in that document.

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM | NOT NULL | VARCHAR2(18) |
| LSI1 | NOT NULL | FLOAT(126) |

Table 2. LSI 1 Table Schema
The reduced inverted table, which is a subset of the inverted table and contains only the terms that have high LSI1 values, joins with itself forming the inverted table for LSI2 ("inverted table2").

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM1 | NOT NULL | VARCHAR2(18) |
| TERM2 | NOT NULL | VARCHAR2(18) |
| LOCATION1 | NOT NULL | NUMBER(5) |
| LOCATION2 | NOT NULL | NUMBER(5) |

Table 3. Reduced Inverted2 Table Schema

Similarly, for each document, a value of LSI2 for each high-LSI1 term-pair is stored in the database. Below is the schema for the LSI2 table. The larger is the value of LSI2, the more important is the pair of terms in that document.

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM1 | NOT NULL | VARCHAR2(18) |
| TERM2 | NOT NULL | VARCHAR2(18) |
| LSI2 | NOT NULL | FLOAT(126) |

Table 4. LSI 2 Table Schema
Similarly, during the preparation phase of LSI4's computation, the reduced inverted3 table, which is a subset of the inverted table2 and contains only the terms that have high LSI2 values, joins with itself three times to forming the inverted table for LSI3 ("inverted table3").

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM1 | NOT NULL | VARCHAR2(18) |
| TERM2 | NOT NULL | VARCHAR2(18) |
| TERM3 | NOT NULL | VARCHAR2(18) |
| LOCATION1 | NOT NULL | NUMBER(5) |
| LOCATION2 | NOT NULL | NUMBER(5) |
| LOCATION3 | NOT NULL | NUMBER(5) |

Table 5. Reduced Inverted3 Table Schema

For each document, a value of LSI3 for each term is stored in the database. Table 3 shows the schema for the LSI3 table.

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM1 | NOT NULL | VARCHAR2(18) |
| TERM2 | NOT NULL | VARCHAR2(18) |
| TERM3 | NOT NULL | VARCHAR2(18) |
| LSI3 | NOT NULL | FLOAT(126) |

Table 6. LSI 3 Table Schema
Similarly, for each document, a value of LSI4 for each 4-tuple of terms is stored in the database. Below is the schema for the LSI4 table.

| Name | Null? | Type |
| :--- | :--- | :--- |
| DOCUMENT | NOT NULL | VARCHAR2(6) |
| TERM1 | NOT NULL | VARCHAR2(18) |
| TERM2 | NOT NULL | VARCHAR2(18) |
| TERM3 | NOT NULL | VARCHAR2(18) |
| TERM4 | NOT NULL | VARCHAR2(18) |
| LSI4 | NOT NULL | FLOAT(126) |

Table 7. LSI 4 Table Schema

## 4. Implementation

This section describes the implementation details of the computation of TFIDF: its objective, data structure, algorithm, and programming language.

### 4.1 Main Objective

The key computation of latent semantic indexing is to calculate term frequency-inverse document frequency (TFIDF) based on the formulae below [W05b].

$$
\text { TFIDF(term_i, document_j) =tf(ti; dj) } \log |\operatorname{Tr}| /|\operatorname{Tr}(\mathrm{ti})|
$$

where $\operatorname{Tr}(t i)=$ the number of documents in $\operatorname{Tr}$ in which $t i$ occurs at least once.

$$
\mathrm{tf}(\mathrm{ti} ; \mathrm{dj})=\left\{\begin{array}{l}
1+\log (\mathrm{N}(\mathrm{ti} ; \mathrm{dj})) \text { if } \mathrm{N}(\mathrm{ti} ; \mathrm{dj})>0 \\
0 \text { otherwise }
\end{array}\right.
$$

$\mathrm{N}(\mathrm{ti}, \mathrm{dj})=$ the frequency of $t i$ in $d j$.
As shown above, the computation of TFIDF requires the computation of the important matrix $N(t i, d j)$. Conceptually, $N(t i, d j)$ is a huge matrix, which spans the two-dimensional Cartesian space of terms and documents.

### 4.2 Data Structure

As shown in Figure 6, the SparseMatrix data structure is instantiated and accessed by LSI1, which is the common implementation of all higher dimensional LSI Java classes.

To represent this sparse matrix efficiently in physical memory, the author uses a Java Tree Map to represent $N(t i, d j)$ with the key order $d j$ and then $t i$. A Map in Java is simply a set of key-value pairs. Given a key, a map returns the value that is associated with that key.

If the value of a particular key is zero, the algorithm does not store the key-value pair in the map. If a key does not exist in the map, the algorithm returns zero as the default value of that key. Therefore, the tree map represents the sparse matrix efficiently in physical memory.

### 4.3 Algorithm

Although the formula of TFIDF appears to be straightforward, several issues are taken into consideration during the implementation of the computation unit.

### 4.3.1 Implementation of $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ Computation

The sparse matrix $\mathrm{N}(\mathrm{ti}, \mathrm{dj}$ ) is populated as the program scans through an inverted table. In Method 1 of the analysis, to be described in Section 6, the entry of $\mathrm{N}(\mathrm{ti}, \mathrm{dj}$ ) is incremented by 1 per occurrence of ti in dj. In the other methods, it is incremented by $1 /$ (the number of terms in dj ) per occurrence of ti in dj . The resulting $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ may be less than 1 , and therefore $1+\log (\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ ) may be a negative number. When the inverse document frequency (always non-negative) is multiplied by a negative number, the resulting tfidf would not be useful. To avoid this undesirable situation, a large enough coefficient is added in the calculation of term frequency before taking the logorithm of $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ to ensure that the logorithm is always non-negative.

### 4.3.2 Performance Consideration

To take advantage of the efficient representation of sparse matrix, I have redesigned the algorithm mainly for performance. Consider the implementation that directly implements the formulas for TFIDF.

```
For each document dj,
    For each term ti,
        if N(ti; dj) > 0, then
                tf(ti; dj) = 1 + log(N(ti; dj))
        else
            tf(ti; dj) = 0
        TFIDF(ti; dj) = tf(ti; dj) log/ |Tr|/|Tr(ti)|
```

There are severe performance problem with this straightforward implementation because of excessive unnecessary iterations and database access. There were 16330 documents in the UCI KDD corpus, which contains 88867 different terms. The above straightforward implementation would require 1.5 billion ( $16330 \times 88867$ ) iterations. However, the entire inverted table contains only 6.3 million rows. Therefore, only 6.3 million iterations are required in the optimal implementation. ${ }^{1}$ The straightforward implementation also prohibits $\operatorname{Tr}(\mathrm{ti})$ from being efficiently computed in the same loop as the TFIDF computation.

### 4.3.2.1 Improved Algorithm

The author has designed and implemented an algorithm that has the number of iterations equal to the number of rows in the inverted table. Furthermore, it computes $\operatorname{Tr}(\mathrm{ti})$ efficiently in the same loop as the TFIDF computation.

```
1: sql = getComputeMatrixSql();
    try
    {
        resultSet = stmt.executeQuery(sql);
        int rowNumber = 0;
2: Set incrementedTrtiForCurrentDocument = new HashSet();
        String previousDocumentId = null;
        while (resultSet.next())
        {
            String documentId = resultSet.getString(1);
            String term = resultSet.getString(2);
            int denominator = resultSet.getInt(3);
            Ntidj.incrementByOneOverDenominator(term, documentId, (double)
denominator);
3: if (! documentId.equals(previousDocumentId))
            // Now it is a different document
            incrementedTrtiForCurrentDocument.clear();
            previousDocumentId = documentId;
            // Increment Trti only if it has not been
```

[^0] is severe regardless of whether short documents are removed.

```
    // incremented for the current document.
        if (! incrementedTrtiForCurrentDocument.contains(term))
        {
        Trti.incrementByOne(term);
        incrementedTrtiForCurrentDocument.add(term);
    }
    if (fivePercent == 0 || (rowNumber % fivePercent == 0))
        // Print progress indicator
        System.out.print(String.valueOf((short) (rowNumber * 100.0
            / totalNumberOfRows + .5))
            + "% ");
        rowNumber++;
    }
    System.out.println();
}
```

Figure 9. Improved Algorithm for LSI Computation
Line 1 polymorphically gets the SQL statement that selects the rows from the inverted table ordered by document ID. Line 2 instantiates a HashSet for computing $\operatorname{Tr}(\mathrm{ti})$ efficiently. The set remembers the terms that have incremented $\operatorname{Tr}(\mathrm{ti})$ for the current document. The algorithm loops through each row of the inverted table in the order of document ID. Whenever it detects a new document ID, it empties out the HashSet to ensure that $\operatorname{Tr}(\mathrm{ti})$ is computed correctly, as shown in Line 3.

### 4.3.3 Maintainability Consideration

Because of the object-oriented design as shown in Figure 6, the improved algorithm for LSI computation shown in Figure 9 automatically benefits any higher dimensional LSI computation without duplicating the source code. The polymorphism in Java allows each higher dimensional LSI database module to implement its own SQL statement to be returned by the method getComputeMatrixSql(). This allows the same efficient Java code to be shared by different dimensional calculations with each dimension having its own SQL for database access.

### 4.4 Programming Language

The main criteria of choosing the Java programming language of this project are:

- Cross-platform independent
- Easy to maintain
- Productive IDEs (Eclipse and NetBeans)
- Unit test using JUnit test framework

Java works across many operating systems, including Unix and Windows, without much modification of source code. It also has the industry-wide standard database interface JDBC, which allows a program to use database software from many vendors and open-source communities, such as Oracle, DB2, and MySQL. Because of the popularity of Java in both industry and academia, many useful tools and frameworks have been developed to improve the productivity of programmers and testers. Eclipse/NetBeans and JUnit are good examples.

## 5. Deployment

This section describes the deployment aspects of the project. It describes the testing considerations for each component and the dependencies among the components.

### 5.1 Overview of Testing

For unit testing, the author has developed test cases using the JUnit test framework [J01] because many open source and commercial tools support the framework.

### 5.2 Testing Requirements

This section describes the hardware and the software requirements for testing.

### 5.2.1 Hardware Requirements

This project currently has been tested on an HP AMD64 3700 PC with the Windows XP Media Center Edition. The computation of LSI for two-keyword pairs is too resource intensive for a typical personal computer to handle. Therefore, the current LSI2 program uses a very high threshold (LSI1=10.0) to filter out most of the possible two-keyword pairs from its input.

To calculate LSI for two-keyword pairs for an input of a good size, the program will need to be deployed onto a server machine.

### 5.2.2 Software Requirements

The following software needs to be installed on a windows machine for further developing the system.

- Java Development Kit 1.5.0+
- Java Unit test framework (JUnit 3.0+). [J01]
- Oracle9i Enterprise Edition Release 9.2.0+
- Apache Lucene 2.0.0+. [A06]


### 5.3 Test cases

The system consists of several components, and each component performs a specific function. The following sections describe how each the unit test verifies the function of each component.

### 5.3.1 Document Preprocessor Test

Given a test input line of text, the preprocessor is expected to perform the following tasks correctly: tokenizing, lowercasing, stemming, and stop-word filtering.

### 5.3.2 Sparse Matrix Test

The test case ensures that the data structure behaves as expected. It verifies the functionality by performing the following tests:

- Test writing and then reading: write a value into the matrix, read it back, and expect the same value.
- Test reading the default value: read a non-existing entry and expect that the matrix returns zero.
- Test incrementing by one: Write a value into the matrix, increment the value by one in the matrix, read it back, and expect the value to be one greater than the original one.
Two articles were chosen from the Wall Street Journal as the input documents for the test cases.


### 5.3.2.1 Test LSI 1

The test case ensures that the computation behaves as expected. It verifies the functionality by performing the following tests:

- Test the normal case with a keyword "hedge," which appears five times in the first document, but does not appear in the second documents.
- TestZero: a real word that does not appear in a particular document
- Test NaN: "garbage1874650*\#"


### 5.3.2.2 Test LSI 2

The test case ensures that the computation behaves as expected. It verifies the functionality by performing the following tests:

- Test the normal case with a keyword "hedge fund," which appears four times in the first document, but does not appear in the second documents.
- TestZero: a real word that does not appear in a particular document
- Test NaN: "garbage1874650*\# garbage1874650*\#"


### 5.3.2.3 Test LSI 3

The test case ensures that the computation behaves as expected. It verifies the functionality by performing the following tests:

- Test the normal case with a keyword "service oriented architecture"
- TestZero: a real word that does not appear in a particular document
- Test NaN: "garbage1874650*\# garbage1874650*\# garbage1874650*\#"

Figure 10 shows the results of a successful execution of all the unit tests in the Eclipse integrated development environment. All the test cases were developed under the JUnit framework, which provides a standard way that facilitates the integration and testing efforts.


Figure 10. Unit Tests Developed under the JUnit Framework Executed by Eclipse

### 5.4 Program Run Dependencies

Although the author has implemented the LSI computation units up to 4 dimensions, the software system and framework can be extended to compute LSI of any number of dimensions. The DocumentPreprocessor and the single dimensional LSI (LSI1) computation have to be run only once.

Each of the higher dimensional LSI computations depends only on LSI1 and can be run in parallel independently. For any number of dimension $d$, PreLSI $d$ must be run before LSI $d$ because the PreLSI program produces the input for LSI $d$ by reducing the size of the (conceptual) d-way Cartesian Product of the inverted table of LSI1. All unit tests have no dependencies.


Figure 11. Program Run Dependencies

## 6. Analysis

Method 1, Method 2, and Method 3 have the same preprocessor step. The document preprocessor took 31 minutes to finish. The algorithm in Method 2 favors the short documents, and as a results, precision was severely impaired.

The author decided to remove short documents by implementing a Java utility (ClassifyLongAndShortDocs) that invokes the tokenizer of Lucene and removes the documents with less than 200 tokens. As a result, out of 16330 documents in UCI KDD, 5147 short documents were removed. To produce scientific results, all methods use the same set of 11183 documents. Before the author removed short documents, there were 6336032 rows in the inverted table in the Oracle database. After the author removed short documents, there were 5560671 rows in the inverted table in the Oracle database.


Figure 12. The Size of the Inverted Table Generated from Document Preprocessor
The corpus used in these experiment contains some uuencoded binary files, whose semantics cannot be captured by LSI. However, uuencoding is no longer popular nowadays. To reduce the effect of uuencoded binary files, the author examines only those tokens that have more than four characters because most tokens, such as "ax," in a typical uuencoded file are short. For all the methods and number of dimensions of LSI below, only tokens with more than four characters are analyzed.

### 6.1 Method 1 - Use TFIDF as a Threshold and N(ti, dj) as an Integer

In Method $1, \mathrm{~N}(\mathrm{ti}, \mathrm{dj})$ is simply the number of times that token ti occurs in document dj .

### 6.1.1 LSI1

The author judged whether a term was significant in a document by examining the term in the context of the document. The 20 document-term pairs with the highest TFIDF were examined. In the cases where the author and the algorithm disagree, the author assumes that she is right and the algorithm is wrong.

As it turns out, the algorithm was right 18 times out of 20 , which is $90 \%$. In both of the error cases, the document was source code of a computer program. It took 30 minutes to finish the LSI1 computation. The following SQL query is used for selecting the results for analysis.

```
select * from lsil_SWL_integer where length(term)>4 and lsil > 37.7 order by
lsil desc;
```

| DOC | TERM | LSI1 | SIGNIFICANT? | EXPLANATION |
| :--- | :--- | :---: | :---: | :---: |
| 84286 | elohim | 51.923125 | Yes | The document explores the question whether Robert |


|  |  |  |  | Weiss is the only Orthodox Christian. It made many references to Elohim and Jehovah, where Elohim is the Father/God and Jehovah is the Son/Lord. |
| :---: | :---: | :---: | :---: | :---: |
| 178571 | stephanopoulo | 45.460611 | Yes | The document describes a press briefing by George Stephanopoulos. |
| 76479 | gayan | 44.808429 | Yes | The document is on the dispositions of three people, of which Gayane (Gaya) Vazgenovna Hakopian is one of them. |
| 76479 | zinaida | 44.3846219 | Yes | The document is on the dispositions of three people, of which Zinaida Poghosovna Hakopian is one of them. |
| 14991 | maxbyt | 44.1652671 | No | The document contains the assembly source code implementing the Lattice Gas based encryption algorithm. "MAXBYTE" is a symbolic constant that happens to occur many times in the document. |
| 178314 | stephanopoulo | 43.9494823 | Yes | The document describes a press briefing by George Stephanopoulos |
| 179073 | stephanopoulo | 42.6479084 | Yes | The document describes a press briefing by George Stephanopoulos |
| 178898 | reisman | 41.0286224 | Yes | The document describes Judith Reisman, who is prosecution's expert witness at the Mapplethorpe trial in Cincinnati. |
| 59283 | cesarean | 40.7167397 | Yes | This document is about Rates of Cesarean Delivery -- United States, 1991. |
| 84286 | mcconki | 39.9085595 | Yes | The article comments on many writings of Mcconki. |
| 176936 | bolshevik | 39.8853719 | Yes | The document is about American Bolshevik war. |
| 59554 | retinol | 39.7085148 | Yes | This document is about Vitamin A (Retinol) and infection. |
| 84286 | jehovah | 39.5070241 | Yes | The document is about God. The Father is "Jehovah". |
| 176944 | stephanopoulo | 39.0801272 | Yes | The document describes a press briefing by George Stephanopoulos. |
| 84314 | zarathushtra | 39.0579779 | Yes | The document is about ZARATHUSHTRA, founder of the religion know as Zoroastrianism or Mazdaism. |
| 176936 | falkland | 38.5348479 | Yes | The document describes "Falklands crisis". |
| 38692 | sphinx | 38.1373116 | Yes | This document is about SPHINX: Satellite Image Processing under X11. It is a subject of the email. |
| 51151 | enviroleagu | 38.1373116 | Yes | This document is about "EnviroLeague", which is new youth movement. . It is a subject of the email. |
| 66435 | xclrp | 37.703645 | No | "XClrp" is a variable in the C code. |
| 83442 | caligiuri | 37.703645 | Yes | This document is about David Caligiuri received one of The Advocate's homophobia rewaa awards: the A Prayer A Day Keeps the Lust Away citation. |

Table 8. Method1: LSI1 Analysis

### 6.1.2 LSI2

The algorithm was right 17 times out of 20, which is $85 \%$. In all three of the error cases, the document is a list of products, which is a semi-structured document. For instance, in one of such documents, the "version" field often just happens to come immediately before the "comment" field.

```
Version: 2.1
Comments: General purpose, Notebook interface on Next, Mac,
    nice graphics.
```

As we can see, "version comment" is not a significant phrase in the document.
To reduce the size of the input to LSI2 computation, a threshold is set so that only terms with high enough TFIDF are used in LSI2 computation. The author chose 14 as the threshold in this case. It took 1 hour and 5 minutes to finish the computation of LSI2. The following SQL statement is used for reducing the size of the inverted table for LSI2 computation.

```
insert into reduced_inverted select distinct * from inverted_table where term
in (select term from lsil where lsil >= 10)
```

The following SQL query is used for selecting the results for analysis.

```
select * from lsi2_SWL_integer where length(term1)>4 and length(term2)>4 and
term1 != term2 and lsi2 > 35.0 order by lsi2 desc;
```

| DOC | TERM1 | TERM2 | LSI2 | SIGNIFICANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 68012 | window | microsoft | 50.6268891 | Yes | The document is on X Servers for DOS, Microsoft Windows, OS/2, etc. |
| 176936 | south | georgia | 43.232274 | Yes | The document is on the secret purpose of Falklands War, in which the military secret of South Georgia Island is significant. |
| 39632 | gamma | correct | 42.9836686 | Yes | The document is on gamma correction. |
| 176960 | senior | administr | 42.5567375 | Yes | The document is on a background briefing by senior administration officials. |
| 176936 | georgia | island | 40.712587 | Yes | The document is on the secret purpose of Falklands War, in which the military secret of South Georgia Island is significant. |
| 54215 | danger | ordnanc | 38.5516976 | Yes | The document is on Ohio House Bill 278, which expands the definition of dangerous ordnance. |
| 68012 | memori | mbyte | 38.1373116 | Yes | The document is on X Servers for DOS, Microsoft Windows, OS/2, etc. The phrase "Memory: ? Mbyetes" occurs many times indicating megabytes of memory are often a significant system requirement. |
| 15590 | version | comment | 37.6927411 | No | The document is a list of large intege arithmetic packages. The "version" fielc often just happens to come immediatel) before the "comment" field. "Versior comment" is not a significant phrase in the |


|  |  |  |  |  | document. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 59125 | smokeless | tobacco | 37.6927411 | Yes | The document is on various public health issues, one of which is the use of smokeless tobacco among adults. |
| 176960 | administr | offici | 37.1385733 | Yes | The document is on a background briefing by senior administration officials. |
| 59126 | cancer | center | 37.1385733 | Yes | The document is a health newsletter, in which NCl-Designated Cancer Centers are a significant topic. |
| 15252 | product | cipher | 36.7431272 | Yes | The document is an FAQ on product ciphers. |
| 176936 | rockefel | cartel | 36.2666293 | Yes | The document is on the secret purpose of Falklands War, in which Rockefeller cartel plays a significant role. |
| 9956 | paradox | engin | 36.2666293 | Yes | The document is on Borland/Microsoft database C libraries, in which the Paradox Engine is a major topic of discussion. |
| 59283 | cesarean | deliveri | 35.73379 | Yes | This document is about Rates of Cesarean Delivery. |
| 68012 | network | softwar | 35.3090937 | No | This document is on X Windows on the PC. The phase happens to be a field that repeats many times. |
| 176936 | secret | naval | 35.1686381 | Yes | This document on the secret purpose of Falklands War. Plan to unveil their secret weapons, especially their secret naval fleets. |
| 59126 | comprehens | cancer | 35.1686381 | Yes | This document describes comprehensive" cancer centers (28), which emphasize a Multidisciplinary approach to cancer research, patient care, and community outreach. |
| 68012 | price | latest | 35.1686381 | No | This document is on X Windows on the PC. The phase happens to be a field that repeats many times. |
| 53663 | ground | conductor | 35.0166177 | Yes | This document is about the equipmentgrounding conductor. |

Table 9. Method1: LSI2 Analysis

### 6.1.3 LSI3

The algorithm was correct 18 times out of 19 , which is $95 \%$. In the only error case, the "price" field often just happens to come immediately before the "latest version" field. An example of such is as follows:

```
Prices:
    $75.00
Latest Version:
    1.5.3
```

As we can see, "price latest version" is not a significant phrase in the document. The computation of LSI3 took about 1 hours and 11 minutes. The following SQL query is used for selecting the results for analysis.

```
select * from lsi3_SWL_integer where length(term1)>4 and length(term2)>4 and
length(term3)>4 and term1 != term2 and term2 != term3 and term1 != term3 and
lsi3 > 27.4 order by lsi3 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | LSI3 | SIGNIFICANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 176960 | senior | administr | offici | 42.5567375 | Yes | The document is on a background briefing by senior administration officials. |
| 176936 | south | georgia | island | 40.712587 | Yes | The document is on the secret purpose of Falklands War, in which the military secret of South Georgia Island is significant. |
| 59126 | comprehens | cancer | center | 35.1686381 | Yes | The document is a health newsletter, in which comprehensive cancer centers are a significant topic. |
| 68012 | price | latest | version | 35.1686381 | No | The document is a list of platformspecific $X$ servers. The "price" field often just happens to come immediately before the "latest version" field. "Price latest version" is not a significant phrase in the document. |
| 53468 | american | hockei | leagu | 30.7871938 | Yes | The document is an FAQ on hockey. The American Hockey League is significant. |
| 10011 | virtual | packet | driver | 29.8050072 | Yes | The document is on setting up a SLIP client under DOS and Windows, in which virtual packet drivers are significant. |
| 59284 | coronari | heart | diseas | 29.8050072 | Yes | The document is an FDA medical newsletter, in which coronary heart disease is a significant subject of discussion. |
| 178918 | holocaust | memori | council | 29.320448 | Yes | The document is on the U.S. Holocaust Memorial Museum, in which the Holocaust Memorial Council is significant |
| 76071 | holocaust | memori | council | 29.320448 | Yes | The document is on the U.S. Holocaust Memorial Museum, in |


|  |  |  |  |  |  | which the Holocaust Memorial Council is significant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38658 | sigkid | research | showcas | 28.7070161 | Yes | This document is about the SIGKids Research Showcase. |
| 59207 | kidnei | stone | format | 28.7070161 | Yes | This document describes how to prevent kidney stone formation. |
| 61316 | meteor | shower | maximum | 28.7070161 | Yes | This document is about the space calendar, which contains Meteor shower. |
| 59323 | experiment | doubl | blind | 28.7070161 | Yes | This document is about the Experimental Double-blind Study, "The efects of vitamin B6 Supplementation on premenstrual sysmptoms" Obstet. |
| 61435 | celsiu | degre | fahrenheit | 28.4980162 | Yes | This document is about solar system containing Celsius Fahrenheit and degrees. |
| 176936 | secret | naval | instal | 27.4622164 | Yes | This document on the secret purpose of Falklands War. Plan to unveil their secret weapons, especially their secret naval fleets. |
| 76943 | ghost | rider | appear | 27.4622164 | Yes | This document is about the comics (Ghost Rider). |
| 61316 | solar | longitud | degre | 27.4622164 | Yes | This document is about the space calendar, which contains solar longitude degrees. |
| 52619 | nilsson | calgari | flame | 27.4622164 | Yes | This document reports the stats of National Hockey League, and Kent Nilsson, Calgary Flames won many rounds. |
| 61293 | redesign | advisori | committe | 27.4622164 | Yes | This document is about a report on redesign team. Comment to Redesign Advisory Committee. |

Table 10. Method1: LSI3 Analysis

### 6.1.4 LSI4

The algorithm was correct 16 times out of 20 , which is $80 \%$. There is no apparent common cause among the error cases. The computation of LSI4 took about 2 hours. The following SQL query is used for selecting the results for analysis.

```
select * from lsi4_SWL_integer where length(term1)>4 and length(term2)>4 and
length (term3)>4 and length (term4)>4 and term1 != term2 and term2 != term3 and
term1 != term3 and term3 != term4 and lsi4 > 19.56 order by lsi4 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | TERM4 | LSI4 | SIG? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59323 | experiment | doubl | blind | studi | 27.4622164 | Yes | The document explores the question whether PMS can be prevented by a diet change. The experimental |


|  |  |  |  |  |  |  | double-blind studies on various nutrients are important. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59207 | prevent | kidnei | stone | format | 26.0252007 | Yes | The document is on how to prevent kidney stone formation. |
| 178918 | holocaust | memori | museum | newslett | 24.0901005 | Yes | The document describes a build problem of XView on SPARC Classic, in which the source file build/include/xview/notify.h has many compilation problems. |
| 76071 | holocaust | memori | museum | newslett | 24.0901005 | Yes | The document describes a build problem of XView on SPARC Classic, in which the source file build/include/xview/notify.h has many compilation problems. |
| 104312 | orang | counti | fairgnd | costa | 22.2453941 | Yes | The document is on the latest SoCal rides. Orange County Fairgnds, Costa Mesa. is a significant locat |
| 67882 | troubl | shoot | strang | error | 22.2453941 | Yes | The documents is an FAQ on OPEN LOOK GUI, and "Trouble Shooting: Strange Error Messages" is an important subject. |
| 59435 | huntington | medic | research | institut | 22.2453941 | Yes | The document is a press release from Huntington Medical Research Institutes. |
| 60774 | upper | atmospher | research | satellit | 21.4588112 | Yes | The document is on the ozone images taken from the Upper Atmosphere Research Satellite. |
| 38778 | siggraph | onlin | bibliographi | project | 19.6237818 | Yes | This document describes siggraph online bibliography project |
| 10099 | bjorn | myrland | sipaa | sintef | 19.5635786 | No | The phase is a part of email address in the email header. |
| 178573 | alcohol | cigarett | marijuana | cocain | 19.5635786 | Yes | This document is about "Drug Use Up At Younger Age". |
| 179054 | foreign | intellig | advisori | board | 19.5635786 | Yes | The document describes a CLINTON: Press Briefing by Dee Dee Myers. |
| 38658 | sigkid | research | showcas | entri | 19.5635786 | Yes | This document is about the SIGKids Research Showcase. |
| 54215 | lawfulli | acquir | possess | carri | 19.5635786 | Yes | This document is about Ohio House Bill 278 (Sec. |


|  |  |  |  |  |  |  | 2923.1). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59122 | highwai | traffic | safeti | administr | 19.5635786 | No | This document is about Medical Newsletter. The phase just occurs to be in the references. |
| 76943 | panther | havok | black | panther | 19.5635786 | Yes | This document is about comics. |
| 76943 | havok | black | panther | havok | 19.5635786 | Yes | This document is about comics. |
| 76943 | black | panther | havok | black | 19.5635786 | Yes | This document is about comics. |
| 68012 | higher | wollongong | pathwai | access | 19.5635786 | No | This document is on X Windows on the PC. The phase happens to be a field that repeats many times. |
| 67107 | graphic | displai | defaultscreen | graphic | 19.5635786 | No | This document describes how to get the actual size of memory for running computer programming. The phases are the parameters of the function. |

Table 11. Method1: LSI4 Analysis

### 6.1.5 Dimensional Trends

Method 1 appears to produce very good precision, especially in higher dimensions. Moreover, its preciseness appears to be independent of the dimension. The method performs well no matter whether short documents are included in the analysis.

A potential drawback of Method 1 is that it seems to favor long documents. This is not an issue if the long document is full of content in the form of unstructured text because the latent semantic indexing works especially well when it has enough content to perform upon.


Figure 13. Dimensional Trends of Method 1
This long-document effect becomes an issue only when the long document is somewhat content-less. In the UCI KDD corpus, a common example of such a "content-less" long document is a uuencoded binary file. The corpus consists of Usenet newsgroup articles from the 80s and early 90s, during which it was a common practice to post uuencoded binary files on the Internet. Although these files have many tokens
when tokenized by Lucene, the LSI algorithm performs poorly in capturing the semantics or contents in them. Because (by the design of uuencoding scheme) uuencoded binary files appear to be ASCII to any algorithm, it poses a challenge to remove them from the corpus automatically. Fortunately, most tokens produced from uuencoded files are four-character or shorter. The author uses this four-character threshold to produce meaningful results from this experiment practically reducing the effect from uuencoded files.

While uuencoding has become less popular nowadays, another type of long documents will likely to continue to pose a challenge to LSI. They are semi-structured documents, which contain many repeated fields (name-value pairs with different values) embedding in ASCII files in non-standard ways. An example is as follows:

```
Prices:
    $75.00
Latest Version:
    1.5.3
```

In this example, because the combination "price latest version" just happens to occur many times in the documents, the TFIDF ends up to be very high from the LSI3 algorithm. However, "price latest version" is not a significant phrase in the document. The document was a list of platform-specific $X$ servers. It remains a challenge to identify semi-structured documents or to improve the precision of LSI on them.

### 6.2 Method 2 - Use TFIDF as a Threshold and $\mathbf{N}(\mathrm{ti}, \mathrm{dj})$ as a Fraction

Method 2 differs from Method 1 in that a denominator is introduced in calculation of $N(t i, d j)$. In Method 2, the denominator is the total number of all types of tokens in document dj. The intent of introducing the denominator is to normalize $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ so that long documents (those with many tokens) do not get higher values.

For TFIDF to meaningfully indicate the significance of a term in a document, both the TF and the IDF parts must have the same sign. For example, if TF was negative and IDF was positive, the product of TF and IDF would be meaningless. Since IDF is always non-negative, TF should be made non-negative too. With the denominator introduced in the calculation of $N(t i, d j)$, TF (being $1+\log (N(t i, d j))$ ) may be negative in some case. To solve this problem, a large enough constant coefficient is also introduced in the calculation of $N(\mathrm{ti}, \mathrm{dj})$. The author chose 40,000 as the coefficient because it is larger than the total number of tokens of the longest document.

### 6.2.1 LSI1

The algorithm was correct five out of 20 times, which is $25 \%$. Most (14) of the errors are due to that the term is a part of an email address. If we removed email addresses from the documents (say by a regular expression), the algorithm would be correct $95 \%$ of the time $((14+5) / 20 * 100 \%=95 \%)$.

It took 18 minutes to finish the computation of LSI1. Let us examine the results.

```
select * from lsil_UCI_KDD_SWL where length(term)>4 and lsil > 75.4 order by
lsil desc;
```

| DOC | TERM | LSI1 | SIGNIFICANT? | EXPLANATION |
| :--- | :--- | :--- | :--- | :--- |
| 66435 | xclrp | 83.5038806 | No | "Xclrp" is a variable in the C code. |
| 60354 | satam | 78.7418875 | No | "Satam" is a first name of the author and a part of <br> email address. |
| 38683 | ilmenau | 78.1819596 | No | "Imenau" is a part of the email address. |
| 60654 | uswnvg | 77.3382247 | No | "Uswnvg" is a part of the email address. |
| 68204 | hardwarecolor | 77.0815098 | Yes | This document is about creating your own ColorMap, |


|  |  |  |  | i.e. Lookup Table in X11 R4. |
| :---: | :---: | :---: | :---: | :---: |
| 15927 | anovak | 76.8772605 | No | "Anovak" is a part of the email address. |
| 39620 | dorsai | 76.8229038 | Yes | This document describes "dorsai", which is a community-based service. |
| 59059 | spect | 76.5953597 | Yes | This document discusses questions about SPECT imaging. |
| 59427 | bracelet | 76.3107344 | Yes | This document is about Copper Bracelet. |
| 53796 | buhrow | 76.1364835 | No | "Buhrow" is a part of the email address and the author's last name. |
| 38289 | ederveen | 76.1268978 | No | "Ederveen" is is an author's last name and is a part of the email address. |
| 60881 | nsiad | 76.0505645 | Yes | This document is about NASP: Key Issues Facing the Program (31 Mar 92) GAO/T-NSIAD-92-26 |
| 67269 | timessqr | 76.0079001 | No | "Timessqr" is a part of the email address. |
| 52210 | callan | 75.8950739 | No | "Callan" is an author's last name and is a part of the email address. |
| 51850 | bucknel | 75.8810662 | No | "Bucknel" is an organization and is a part of the email address. |
| 66987 | ledoux | 75.8810662 | No | "Ledoux" is an author's last name and is a part of the email address. |
| 9961 | frampton | 75.7559348 | No | "Fampton" is a part of the email address. |
| 66950 | savela | 75.5916636 | No | "Savela" is a part of the email address. |
| 38326 | cvtstu | 75.5106009 | No | "Cvtstu" is a part of the email address. |
| 51497 | kitchel | 75.4753564 |  | "Buhrow" is a part of the email address and the author's lastname. |

Table 12. Method2: LSI1 Analysis

### 6.2.2 LSI2

The algorithm was correct 7 out of 20 times, which is $35 \%$. Most (12) of the errors are due to that the term is a part of an email address. If we removed email addresses from the documents (say by a regular expression), the algorithm would be correct $95 \%$ of the time ((12+7)/20 * $100 \%=95 \%$ ).

It took 1 hour and 14 minutes to finish the LSI2 computation. Let us examine the results.

```
select * from lsi2_UCI_KDD_SWL where length(term1)>4 and length(term2)>4 and
term1 != term2 and lsi2 > 84.5 order by lsi2 desc;
```

| DOC | TERM1 | TERM2 | LSI2 | SIGNIFICANT? | EXPLANATION |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 60563 | luoma | binah | 89.6383761 | No | The phase is a part of the email address. |
| 39632 | gamma | correct | 89.1723833 | Yes | This document is about gamma correction. |
| 59427 | copper | bracelet | 89.0597276 | Yes | This document is about Copper Bracelet by the <br> name of Sabona created by Dr. John Sorenson. |
| 38653 | mapsut | einstein | 87.6227118 | No | The phase is a part of path name and the email <br> address. |
| 38653 | shmuel | einstein | 87.6227118 | No | The phase is the name of author and a part of the <br> email address. |
| 68085 | riski | converg | 87.3672945 | No | The phase is a part of the email address. |


| 58144 | compart | syndrom | 87.2173371 |  | Yes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | This document is about compartment syndrome - <br> general information, references, etc. The phase is <br> in the keyword search. |  |  |  |  |
| 84068 | jensen | peruvian | 86.6405253 | No | The phase is a part of the email address. |
| 103434 | battan | sequent | 86.3348536 | No | The phase is a part of the email address. |
| 9975 | instanc | handl | 86.2749039 | Yes | This document describes a module instance <br> handle, HInstance. |
| 38621 | wisdom | attmail | 86.0388875 | No | The phase is a part of the email address. |
| 51850 | coral | bucknel | 85.7520295 | No | The phase is a part of the email address. |
| 101610 | steve | green | 85.5840583 | No | The phase is the author name and a part of the <br> email address. |
| 61015 | stage | version | 85.4190602 | Yes | This document is about the Proton has been <br> used in 2, 3, and 4 stage versions. |
| 74727 | small | claim | 85.1371594 | Yes | This document is about the small claims in the <br> court. |
| 77056 | bitzm | columbia | 85.0975749 | No | The phase is a part of the email address. |
| 20617 | trade | unionist | 84.9408964 | Yes | This document is about the need help with "They <br> came for the Jews" quote. |
| 38935 | gregori | winer | 84.9408964 | No | The phase is the author name. |
| 9752 | stephen | gibson | 84.9408964 | No | The phase is the author name and a part of the <br> email address. |
| 15276 | deuelpm | craft | 84.5603476 | No | The phase is a part of the email address. |

Table 13. Method2: LSI2 Analysis

### 6.2.3 LSI3

The algorithm was correct 14 out of 20 times, which is $70 \%$. All 6 of the errors are due to that the term is a part of an email address or a path name in an email header. If we removed email addresses and header path names from the documents (say by a regular expression), the algorithm would be correct $100 \%$ of the time. The computation took about 2 hours. The following SQL query is used for selecting the results for analysis.

```
select * from lsi3_UCI_KDD_SWL where length(term1)>4 and length(term2)>4 and
length(term3)>4 and term1 != term2 and term2 != term3 and term1 != term3 and
lsi3 > 90.1 order by lsi3 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | LSI3 | SIGNIFICANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60582 | margin | drive | howev | 95.182325 | Yes | This document discusses DOS 6.0 and hard drive. |
| 58100 | immotil | cilia | syndrom | 94.4361548 | Yes | This document describes Immotile Cilia Syndrome. |
| 59121 | sbrun | oregon | uoregon | 93.1021473 | No | The phase is a part of the emai address. |
| 68277 | server | window | hierarchi | 93.1021473 | Yes | This document is about XQueryTree, XGraberver, and robustness. |
| 68277 | custom | error | handler | 93.1021473 | Yes | This document discusses a BadWindow, an X protocol error. |
| 104371 | yanke | trade | kaminicki | 91.4025184 | Yes | This document mentions Yankees |


|  |  |  |  |  |  | trade Kaminicki and Silvestri. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38342 | decreas | speed | thank | 91.4025184 | Yes | This document discusses polygon orientation in DXF. |
| 51303 | electron | paper | trail | 91.4025184 | Yes | This document mentions "you leave an electronic paper trail on the net." |
| 51303 | usual | theist | approach | 91.4025184 | Yes | This document discusses the usual theist approach. |
| 53056 | concert | ecsgat | tlcslip | 91.4025184 | No | The phase is a part of the path name in the email header. |
| 67044 | strip | chart | widget | 91.4025184 | Yes | This document is about an Athena strip chart widge. It includes it the summary. |
| 75971 | mildli | agress | justifi | 91.4025184 | Yes | This document mentions killing people. The is mildly agressive (justified, in your opinion). |
| 59246 | hidden | candida | infect | 91.4025184 | Yes | This document mentions hidden candida infections. This phase occurs 2 times in the document. |
| 53056 | tclark | tlcslip | uncec | 91.4025184 | No | The phase is a part of the email address. |
| 53056 | uvaarpa | concert | ecsgat | 91.4025184 | No | The phase is a part of the path name in the email header. |
| 53056 | ecsgat | ticslip | uncec | 91.4025184 | No | The phase is a part of the path name in the email header. |
| 52831 | ubsil | msuvx | memst | 91.4025184 | No | The phase is a part of the email address. |
| 51303 | natur | argument | someon | 91.4025184 | Yes | This document mentions the "law of nature" argument someone posted recently. |
| 179013 | basic | pragmat | principl | 90.4203319 | Yes | This document discusses "a basic pragmatic principle of day-to-day living". The phase occurs three times. |
| 9975 | modul | instanc | handl | 90.3045273 | Yes | This document is about module instance handle. The phase occurs four times. |

Table 14. Method2: LSI3 Analysis

### 6.2.4 LSI4

The algorithm was correct 12 out of 20 times, which is $60 \%$. Half of the errors are due to that the term is a part of an email address or a path name in an email header. If we removed email addresses and header path names from the documents (say by a regular expression), the algorithm would be correct $80 \%$ of the time. The computation took about 2 hours 21 minutes. The following SQL query is used for selecting the results for analysis.

```
select * from lsi4_UCI_KDD_SWL where length(term1)>4 and length(term2)>4 and
length(term3)>4 and length(term4)>4 and term1 != term2 and term2 != term3 and
term1 != term3 and term3 != term4 and lsi4 > 97.8641 order by lsi4 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | TERM4 | LSI4 | SIGNIFICANT | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51942 | discuss | alreadi | pleas | excus | 108.105569 | No | The phase appears in the P.S in the document. |
| 61027 | softwar | develop | group | survei | 108.105569 | Yes | This document discusses $90 \%$ of the software development groups surveyed were at level 1. |
| 50527 | travi | grundk | macgam | digest | 101.643947 | No | The phase combined author's name and source of information |
| 51302 | extraordinari | claim | requir | extraordinari | 101.643947 | Yes | "Extraordinary claims require evidence." Included evardinary |
| 53056 | concert | ecsgat | tIcslip | uncec | 101.643947 | No | The phase is a part of the path name in the email header. |
| 59242 | discuss | prescript | strength | although | 101.643947 | Yes | This document <br> mentions discussed <br> prescription strength. |
| 83917 | earli | christian | perhap | second | 101.643947 | Yes | The subject is about Ancient references to Christianity. |
| 59575 | submarin | grant | aquariu | rosemount | 101.643947 | No | The phase is the concatenation of the email address and a quote. |
| 53877 | board | decoupl | capacitor | insid | 101.643947 | Yes | The subject is about decoupling caps onboard. |
| 53056 | uvaarpa | concert | ecsgat | ticslip | 101.643947 | No | The phase is a part of the path name in the email header. |
| 58976 | least | intrus | orthoscop | method | 100.067394 | Yes | "The hernia was repaired using the least intrusive (orthoscopic?) method" is used. |


| 102588 | discuss | basebal | salari | addit | 97.8641404 | No | This document is about brewers injuries related with baseball salaries. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 102606 | outstand | predict | record | overal | 97.8641404 | Yes | "Mike Francesa has an *outstanding* prediction record" discussed. |
| 104282 | gatewai | mavenri | altcit | eskimo | 97.8641404 | No | The phase is a part of the email address. |
| 104373 | great | acquisit | decent | offens | 97.8641404 | Yes | "Mark Whiten was a great acquisition... decent offense and great defense in right field" discussed. |
| 104674 | frank | thoma | david | paschich | 97.8641404 | No | The phase combines the names of two people. |
| 15353 | besid | effect | tempest | shield | 97.8641404 | Yes | Thedocument <br> discusses <br> effectiveTEMPEST-shielding. |
| 15353 | equip | besid | effect | tempest | 97.8641404 | Yes | The document <br> effective <br> discusses  <br> TEMPEST-shielding.  |
| 176946 | homosexu | child | molest | simpli | 97.8641404 | Yes | Homosexual $=$ child molester. |
| 176946 | sexual | orient | mortal | netcom | 97.8641404 | Yes | The <br> discusses $\quad$ document <br> "sexual$\|$ |

Table 15. Method2: LSI4 Analysis

### 6.2.5 Dimensional Trends

In LSI1 and LSI2, the precision of the algorithm is impaired by the fact that the introduction of the denominator in the calculation of $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ favors short documents. Nevertheless, an interesting observation is that as the dimension goes higher, this adverse short-document effect becomes less pronounced. In shorter documents, the algorithm is more likely to be misled by tokens in email addresses and email header paths, which do not usually contribute to the main content of the document.

The results presented here came from the analysis of only the long documents (those with more than 200 tokens).


Figure 14. Dimensional Trends of Method 2

### 6.3 Method 3 - Use Document Frequency as a Threshold and N(ti, dj) as a Fraction

Method 3 differs from Method 2 only on how the input sizes of multi-dimensional LSI calculation.

### 6.3.1 LSI1

Since it is not possible to put a threshold to reduce the size of input to LSI1 calculation, Method 3 is the same as Method 2 for LSI1. The algorithm was correct five out of 20 times, which is $25 \%$. It took 19 minutes to finish the computation of LSI1. The following SQL query is used for selecting the results for analysis.

```
select * from lsil_TFDF_SWL where length(term)>4 and lsil > 75.5 order by
lsil desc;
```

| DOC | TERM | TF | DF | LSI1 | SIGNIFICANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66435 | xclrp | . 000089421 | 8.9575774 | 83.5038806 | No | "Xclrp" is a variable in the C code. |
| 60354 | satam | . 000089421 | 8.44675178 | 78.7418875 | No | "Satam" is a first name of the author and a part of email address. |
| 38683 | ilmenau | . 000089421 | 8.38668754 | 78.1819596 | No | "Ilmenau" is a part of the email address. |
| 60654 | uswnvg | . 000089421 | 8.29617892 | 77.3382247 | No | "Uswnvg" is a part of the email address. |
| 68204 | hardwarecolor | . 000089421 | 8.26864076 | 77.0815098 | Yes | This document is about creating your own ColorMap, |
| 15927 | anovak | . 000089421 | 8.24673065 | 76.8772605 | No | "anovak" is a part of the email address. |
| 39620 | dorsai | . 000089421 | 8.24089973 | 76.8229038 | Yes | This document describes "dorsai", a community service |
| 59059 | spect | . 000089421 | 8.21649076 | 76.5953597 | Yes | This document discusses questions about SPECT imaging. |


| 59427 | bracelet | . 000089421 | 8.18595861 | 76.3107344 | Yes | This document is about Copper Bracelet. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53796 | buhrow | . 000089421 | 8.16726647 | 76.1364835 | No | "Buhrow" is a part of the email address and the author's last name. |
| 38289 | ederveen | . 000089421 | 8.1662382 | 76.1268978 | No | "Ederveen" is is an author's last name and is a part of the email address. |
| 60881 | nsiad | . 000089421 | 8.15804982 | 76.0505645 | Yes | This document is about NASP: Key Issues facing the program GAO/T-NSIAD-9226 |
| 67269 | timessqr | . 000089421 | 8.15347315 | 76.0079001 | No | "Timessqr" is a part of the email address. |
| 52210 | callan | . 000089421 | 8.14137013 | 75.8950739 | No | "Callan" is an author's last name and is a part of the email address. |
| 51850 | bucknel | . 000089421 | 8.1398675 | 75.8810662 | No | "Bucknel" is an organization and is a part of the email address. |
| 66987 | ledoux | . 000089421 | 8.1398675 | 75.8810662 | No | "Ledoux" is an author's last name and is a part of the email address. |
| 9961 | frampton | . 000089421 | 8.12644448 | 75.7559348 | No | "Fampton" is a part of the email address. |
| 66950 | savela | . 000089421 | 8.10882288 | 75.5916636 | No | "Savela" is a part of the email address. |
| 38326 | cvtstu | . 000089421 | 8.10012717 | 75.5106009 | No | "Cvtstu" is a part of the email address. |

Table 16. Method3: LSI1 Analysis

### 6.3.2 LSI2

The algorithm was correct seven out of 19 times, which is $37 \%$. All of the errors are due to that the term is a part of an email address or a path name in an email header. If we removed email addresses and header path names from the documents (say by a regular expression), the algorithm would be correct $100 \%$ of the time. The computation took two hours and 12 minutes.

Method 3 uses document frequency (DF) as the threshold to pick up only the terms with high enough DF to feed into the computation of LSI2 to reduce its input size. The author chose 8.0 as the threshold. It took 2 hours and 12 minutes to complete the computation of LSI2. The following is the SQL statement that reduces the size of an inverted table by Method 3.

```
insert into reduced_inverted select distinct * from inverted_table where term
in (select term from lsil where df > min_df)
```

where min_df is 8.0.

The following SQL query is used for selecting the results for analysis.

```
select * from lsi2_TFDF_SWL where length(term1)>4 and length(term2)>4 and
term1 != term2 and lsi2 > 81.5 order by lsi2 desc;
```

| DOC | TERM1 | TERM2 | DF | LSI2 | SIGNIFICANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59427 | copper | bracelet | 9.22505677 | 85.9973634 | Yes | This document is about Copper Bracelet by the name of Sabona created by Dr. John Sorenson. |
| 60563 | luoma | binah | 9.1542877 | 85.3376435 | No | The phase is a part of the email address. |
| 39632 | gamma | correct | 9.14842945 | 85.283032 | Yes | This document is about gamma correction. |
| 58144 | compart | syndrom | 9.09519878 | 84.7868077 | Yes | This document is about compartment syndrome. |
| 38653 | mapsut | einstein | 9.04718956 | 84.3392586 | No | The phase is a part of path name and the email address. |
| 38653 | shmuel | einstein | 9.04718956 | 84.3392586 | No | The phase is the name of author and a part of the email address. |
| 68085 | riski | converg | 8.93987783 | 83.3388825 | No | The phase is a part of the email address. |
| 101610 | steve | green | 8.9156132 | 83.1126841 | No | The phase is the author name and a part of the email address. |
| 9975 | instanc | handl | 8.90200755 | 82.9858501 | Yes | This document describes a module instance handle, HInstance. |
| 53796 | moria | nfbcal | 8.87205523 | 82.7066301 | No | The phase is the author name and a part of the email address |
| 53665 | black | demon | 8.84936382 | 82.4950973 | No | The phase is a part of the email address. |
| 77056 | bitzm | columbia | 8.83662479 | 82.3763422 | No | The phase is a part of the email address. |
| 10099 | bjorn | myrland | 8.83451731 | 82.356696 | No | The phase is the author name and a part of the email address. |
| 9752 | stephen | gibson | 8.81162349 | 82.1432763 | No | The phase is the author name and a part of the email address. |
| 51732 | meridian | demon | 8.79327435 | 81.9722229 | No | The phase is a part of the path name in the email header. |
| 61015 | stage | version | 8.78723204 | 81.9158956 | Yes | This document is about the Proton has been used in 2, 3 , and 4 stage versions. |
| 60866 | space | clipper | 8.78037095 | 81.8519354 | Yes | The subject is about Space Clipper launch article. |
| 74727 | small | claim | 8.77823647 | 81.8320376 | Yes | This document is about the small claims in the court. |
| 51607 | adsdesign | analog | 8.7440033 | 81.5129108 | No | The phase is a part of the email address. |

Table 17. Method3: LSI2 Analysis

### 6.3.3 LSI3

The algorithm was correct eight out of 18 times, which is $44 \%$. The computation of LSI3 took about two hours and 22 minutes. The following SQL query is used for selecting the results for analysis.

```
select * from lsi3_TFDF_SWL where length(term1)>4 and length(term2)>4 and
length(term3)>4 and term1 != term2 and term2 != term3 and term1 != term3 and
lsi3 > 81.3 order by lsi3 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | DF | LSI3 | SIGNIFIC ANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38497 | nation | univers | canberra | 9.43715048 | 87.9745328 | No | The phase is a part of an organization |
| 59023 | diseas | exist | david | 9.39941016 | 87.6227118 | Yes | Thisdocument <br> describes Candida <br> Albicans disease. The <br> phase combines it and <br> author's first name. |
| 67107 | displai | graphic | window | 9.19873946 | 85.7520295 | No | This $\quad$ document  <br> describes how to get the  <br> actual size of memory <br> for running computer <br> programming. The  <br> phases are the <br> parameters of the <br> function.  |
| 38279 | engin | research | institut | 9.1762666 | 85.5425342 | Yes | This document is about the job. System Engineering Research Institute is looking for resumes. |
| 15464 | system | perform | group | 8.99394505 | 83.8429052 | No | The phase is about the organization. |
| 59471 | comput | scienc | nation | 8.9575774 | 83.5038806 | No | The phase is the department where author works at. |
| 74784 | histori | japanes | languag | 8.9575774 | 83.5038806 | Yes | This document is about the books with different subjects. |
| 59471 | scienc | nation | univers | 8.9575774 | 83.5038806 | No | The phase combines the department and University where author works at. |
| 104405 | color | stori | bradlei | 8.88858453 | 82.8607187 | No | This article is about Tribune baseball and New York Times. |
| 53534 | organ | harri | control | 8.88858453 | 82.8607187 | No | The phase is the organization, Harris Controls. |
| 39009 | sound | effect | music | 8.88858453 | 82.8607187 | Yes | The document is about giant software yard sales. |


| 104925 | georgetown | univers | washington | 8.85579471 | 82.5550471 | No | The phase is the name of an organization. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 77277 | kevin | cursor | demon | 8.84509942 | 82.455344 | No | The phase is a part of the email address. |
| 105024 | sport | basebal | organ | 8.82404601 | 82.2590809 | No | The phase is a part of the "Followup To:" in the email header. |
| 59595 | water | current | brian | 8.76342139 | 81.6939291 | Yes | This document mentions water current. |
| 62386 | space | organ | thoma | 8.76342139 | 81.6939291 | Yes | This document is about the Soyuz and Shuttle Comparisons. |
| 75364 | dream | about | islam | 8.76342139 | 81.6939291 | Yes | This document is about ISLAM borders. |
| 62394 | henri | spencer | would | 8.76342139 | 81.6939291 | Yes | This document is about who the Henri Spencer is. |

Table 18. Method3: LSI3 Analysis

### 6.3.4 LSI4

The algorithm was correct six out of 20 times, which is $30 \%$. Most (11) of the errors are due to that the phrases are the names of the organizations of the authors. The computation took two hours and 55 minutes to complete the computation of LSI4. The following SQL query is used for selecting the results for analysis.

```
select * from lsi4_TFDF_SWL where length(term1)>4 and length(term2)>4 and
length (term3)>4 and length(term4)>4 and term1 != term2 and term2 != term3 and
term1 != term3 and term3 != term4 and lsi4 > 82.5 order by lsi4 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | TERM4 | DF | LSI4 | SIG? | EXPLANATION |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 61154 | henri | spencer | write | pluto | 10.2103404 | 95.182325 |  |  |  |


|  |  |  |  |  |  |  |  | organization. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 105564 | organ | oregon | state | system | 9.65072458 | 89.9655026 | No | The phase is a part of the organization. |
| 53598 | receiv | system | organ | northeastern | 9.39941016 | 87.6227118 | Yes | This document discusses receiver system. |
| 59471 | comput | scienc | nation | univers | 9.39941016 | 87.6227118 | No | The phase is about computer science National University, not about hives. |
| 61216 | distribut | comput | group | stanford | 9.29404964 | 86.6405253 | No | The phase is about the Distributed Computing Group at Stanford, not about computer cult. |
| 102651 | system | organ | indiana | univers | 9.11172808 | 84.9408964 | No | The phase is a part of the organization. |
| 53553 | system | organ | laurentian | univers | 9.11172808 | 84.9408964 | No | The phase is the organization. |
| 54022 | programm | organ | auspex | system | 9.11172808 | 84.9408964 | No | The phase is a part of the organization. |
| 59013 | organ | princeton | univers | distribut | 9.11172808 | 84.9408964 | No | The phase is a part of the organization. |
| 178867 | comput | scienc | engin | univers | 9.03168538 | 84.1947262 | No | The phase is a part of the organization. |
| 9882 | window | printer | driver | ashok | 9.03168538 | 84.1947262 | Yes | This document is about WinQVT/Net V3.4, which uses standard Windows printer drivers. |
| 9882 | standard | window | printer | driver | 9.03168538 | 84.1947262 | Yes | This document is about WinQVT/Net V3.4, which uses standard Windows printer drivers. |
| 74805 | system | organ | harvard | univers | 9.03168538 | 84.1947262 | No | The phase is a part of the organization. |


| 39083 | graphic | organ | templ | univers | 8.9575774 | 83.5038806 | No | The phase is a part of the organization. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75395 | jewish | problem | serdar | argic | 8.9575774 | 83.5038806 | Yes | The document discusses Jewish problems. |
| 60461 | mcgill | univers | comput | scienc | 9.65072458 | 83.2761301 | No | The phase  <br> consists of  <br> university's   <br> name and CS <br> department.   |
| 104925 | organ | georgetown | univers | washington | 8.88858453 | 82.8607187 |  | The phase is an organization name. |

Table 19. Method3: LSI4 Analysis

### 6.3.5 Dimensional Trends

Since it is not possible to put a threshold to reduce the size of input to LSI1 calculation, Method 3 is the same as Method 2 for LSI1. From LSI2 on, DF is used as the threshold instead of TFIDF for the purpose of reducing the size of the input to the algorithms. As shown in the chart, the precision does not seem to improve in the multidimensional cases.


Figure 15. Dimensional Trends of Method 3
Among the many cases in which the algorithms made mistakes in the multidimensional cases, most multitoken phrases are pertinent to the authors, such as their name, email, and organization. These phrases are usually not significant in their documents in terms of content. DF is a good indicator of how prolific an individual or an organization is because the more documents that they appear, the higher the value of DF. However, TFIDF is a better indicator of the significance of a phrase in the documents where it occurs. This explains why TFIDF may be a better threshold than DF for reducing the size of the input in the multidimensional cases, as we compare the precision results of Method 3 with those of Methods 1 and 2.

### 6.4 Method 4 - Refined Method 2 by Removing Stop Words during Document Preprocessing

Method 4 differs from Method 2 in that it discards common function words (sometimes known as stop words) during preprocessing. The stop words are specified in a stop list, which is a text file downloaded from the WordNet Web site [W06]. The purpose of removing stop words is to reduce the size of the inverted table for LSI1 computation. Stop words, such as "a" and "the," often occur frequently in many
documents, but they usually do not contribute much to the content or the meaning. Therefore, it is often believed that removing stop words does not affect significantly the result of statistical content analysis while gaining some performance in the execution time. The author chose the stop analyzer of Lucene for removing stop words. In method 4, the document preprocessor takes 18 minutes to complete. There are 4175172 rows in the inverted table in the Oracle database.

### 6.4.1 LSI1

The algorithm was correct four out of 20 times, which is $20 \%$. Most (15) of the errors are due to that the term is a part of an email address. If we removed email addresses from the documents (say by a regular expression), the algorithm would be correct $95 \%$ of the time. The computation of LSI1 took about 16 minutes. The following SQL query is used for selecting the results for analysis.

```
select * from lsi1_UCI_KDD_LDOC where length(term)>4 and lsi1 > 78.61 order
by lsi1 desc;
```

| DOC | TERM | LSI1 | SIGNIFICANT | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: |
| 66435 | xclrp | 85.1199559 | No | "Xclrp" is a variable in the C code. |
| 60354 | satam | 80.9712608 | No | "Satam" is a first name of the author and a part of email address. |
| 15927 | anovak | 80.8191165 | No | "Anovak" is a part of the email address. |
| 60654 | uswnvg | 80.8191165 | No | "Uswnvg" is a part of the email address. |
| 38683 | ilmenau | 80.4020113 | No | "Ilmenau" is a part of the email address |
| 59059 | spect | 79.8653086 | Yes | This document discusses questions about SPECT imaging. |
| 39620 | dorsai | 79.8298086 | Yes | This document describes "dorsai", which is a community-based service. |
| 53880 | traider | 79.8045333 | No | "Traider" appears seven times in this document. It is a part of the email address and the name of an organization. |
| 38779 | cogno | 79.7441489 | No | "Cogno" occurs seven times in this document. It is a part of the email address and the name of an organization. |
| 53796 | buhrow | 79.6841504 | No | "Buhrow" is a part of the email address and the author's last name. |
| 51850 | bucknel | 79.447918 | No | "Bucknel" appears seven times in this document. It is a part of the email address and the name of an organization. |
| 38308 | talluri | 79.2174834 | No | "Taluri" occurs seven times in this document. It is a part of the email address and the name of an organization. |
| 59427 | bracelet | 79.1043526 | Yes | This document is about Copper Bracelet. |
| 52210 | callan | 79.0918662 | No | "Callan" occurs 9 times in this document. It is a part of the email address and the name of an organization. |
| 38289 | ederveen | 78.9617523 | No | "Ederveen" is is an author's last name and is a part of the email address. |
| 68204 | hardwarecolor | 78.8885621 | Yes | This document is about creating your own ColorMap, i.e. Lookup Table in X11 R4. |
| 52100 | heurikon | 78.791025 | No | "Heurikon" appears 9 times in this document. It is a part of the email address and the name of an organization. |
| 51989 | pinghua | 78.7187959 | No | "Pinghua" occurs seven times in this document. It is a part of the email address and the name of an |


|  |  |  | Organization. |  |
| :--- | :--- | :--- | :--- | :--- |
| 67269 | timessqr | 78.6649863 | No | "Timessqr" is a part of the email address. |
| 59059 | eliez | 78.6114834 | No | "Elier" appears seven times in this document. It is a part <br> of the email address and the name of an organization. |

## Table 20. Method4: LSI1 Analysis

### 6.4.2 LSI2

The algorithm was correct 5 out of 20 times, which is $25 \%$. All of the errors are due to that the term is a part of an email address or a path name in an email header. The author chose 10 as the threshold. It took one hour and 51 minutes to finish the computation of LSI2. The following SQL query is used for selecting the results for analysis.

```
select * from lsi2_UCI_KDD_LDOC where length(term1)>4 and length(term2)>4 and
term1 != term2 and lsi2 > 80.9 order by lsi2 desc;
```

| DOC | TERM1 | TERM2 | LSI2 | SIGNIFICANT? | EXPLANATION |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 68048 | nordic | offshor | 86.3737811 | No | The phase is a name of the company and a part <br> of the email address. |
| 59427 | copper | bracelet | 84.8051865 | Yes | This document is about Copper Bracelet by the <br> name of Sabona created by Dr. John Sorenson. |
| 10068 | acadvm | uottawa | 83.1536187 | No | The phase is a part of path name and the email <br> address. |
| 84013 | danwel | iastat | 83.0531927 | No | The phase is a part of path name and the email <br> address. |
| 58144 | compart | syndrom | 82.8555066 | Yes | The document is about compartment syndrome - <br> general information, references, etc. |
| 9975 | instanc | handl | 82.7388624 | Yes | This document describes a module instance <br> handle hlnstance. |
| 38653 | mapsut | einstein | 82.3973796 | No | The phase is a part of path name and the email <br> address. |
| 38653 | shmuel | einstein | 82.3973796 | No | The phase is the name of author and a part of the <br> email address. |
| 104697 | thevan | eplrx | 82.1491782 | No | The phase is a part of path name and the email <br> address. |
| 10838 | georg | marengo | 81.9605687 | No | The phase is a part of path name. |
| 60453 | rebox | berlin | 81.6200387 | No | The phase is a part of path name and the <br> organization. |
| 68085 | riski | converg | 81.3662465 | No | The phase is a part of the email address. |
| 74727 | small | claim | 81.3662465 | Yes | This document is about the small claims in the <br> court. |
| 58896 | whole | blood | 81.352346 | Yes | The document is about Blood Glucose test strips. |
| 101610 | steve | green | 81.3412405 | No | The phase is the author name and a part of the <br> email address. |
| 51732 | meridian | demon | 81.3246067 | No | The phase is a part of the email address. |
| 53796 | moria | nfbcal | 81.1191338 | No | The phase is a part of path name and the email <br> address. |


| 53665 | black | demon | 81.0462505 | No | The phase is a part of the email address. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 66962 | pilgrim | umass | 80.9979741 | No | The phase is a part of the project name and email <br> address. |
| 10099 | bjorn | myrland | 80.918061 | No | The phase is the name of author and a part of the <br> email address. |

Table 21. Method4: LSI2 Analysis

### 6.4.3 LSI3

The algorithm was correct 13 out of 20 times, which is $65 \%$. All of the errors are due to that the term is a part of an email address or a path name in an email header. The computation of LSI3 took about two hours and 38 minutes. The following SQL query is used for selecting the results for analysis.

```
select * from lsi3_UCI_KDD_LDOC where length(term1)>4 and length(term2)>4
and length(term3)>4 and term1 != term2 and term2 != term3 and term1 != term3
and lsi3 > 81.4 order by lsi3 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | LSI3 | SIGNIFICANT? | EXPLANATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66451 | implement | pointer | featur | 85.1734588 | Yes | This document discusses a pointer feature in Xlib. |
| 52324 | warren | laplac | biologi | 83.7798334 | No | The phase is part of the email address. |
| 60878 | convent | explos | proof | 83.4615066 | Yes | The document discusses ORION test film, which used conventional explosives as a proof-of-concept test, or another one? |
| 9975 | modul | instanc | handl | 83.4615066 | Yes | This document describes a module instance handle, HInstance. |
| 60878 | explos | proof | concept | 83.4615066 | Yes | The document discusses ORION test film, which used conventional explosives as a proof-of-concept test, or another one? |
| 53194 | gener | capabl | overpow | 83.1536187 | Yes | This document is about political atheists; all humans are generally capable of overpowering their instincts. |
| 54067 | close | caption | decod | 82.8555066 | Yes | This document is indeed about a telecaption decoder module. |
| 54067 | telecapt | decod | modul | 82.8555066 | Yes | This document is indeed about a telecaption decoder module. |
| 59200 | adren | gland | cortic | 82.6618969 | Yes | This document is about a rat cell line of adrenal gland / cortical cell type. |
| 58100 | immotil | cilia | syndrom | 82.4721987 | Yes | This document is indeed about immotile cilia syndrome. The phase occurs three times in the document. |
| 51604 | built | modem | bundl | 82.2862571 | Yes | This document is indeed about Apple machines, which have built-in modems and bundled software. |
| 51604 | modem | bundl | softwar | 82.2862571 | Yes | This document is indeed about Apple machines, which have built-in modems and bundled software. |


| 51168 | anthonyp | riscsm | scripp | 82.2399358 | No | The phase is a part of the email address. <br> It occurs two times in the document. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 82770 | anthonyp | riscsm | scripp | 82.2399358 | No | The phase is a part of the email address. <br> It occurs two times in the document. |
| 61450 devdjn | space | alcbel | 82.1039263 | No | The phase is a part of the email address. <br> It occurs three times in the document. |  |
| 52820 | gleasokr | rintintin | colorado | 82.0140717 | No | The phase is a part of the email address. <br> It occurs two times in the document. |
| 51295 measur | effect | realiti | 81.9250687 | Yes | This document is about God; "beyond <br> measurement means it can have no <br> measurable effect on reality". |  |
| 67044 | strip | chart | widget | 81.5772608 | Yes | This document is about how can the <br> author forces an Athena strip chart to <br> update. |
| 67567 | changj | qucdn | queensu | 81.5772608 | No | The phase is a part of the email address. <br> It occurs three times in the document. |
| 60453 sreck | rebox | berlin | 81.4080717 | No | The phase is a part of the email address. <br> It occurs three times in the document. |  |

Table 22. Method4: LSI3 Analysis

### 6.4.4 LSI4

The algorithm was correct 15 out of 20 times, which is $75 \%$. Most (4) of the errors are due to that the term is a part of an email address or a path name in an email header. The computation of LSI4 took about three hours and 52 minutes. The following SQL query is used for selecting the results for analysis.

```
select * from lsi4_UCI_KDD_LDOC where length(term1)>4 and length(term2)>4
and length(term3)>4 and length(term4)>4 and term1 != term2 and term2 != term3
and term1 != term3 and term3 != term4 and lsi4 > 84.8 order by lsi4 desc;
```

| DOC | TERM1 | TERM2 | TERM3 | TERM4 | LSI4 | SIGNIFICANT? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 82770 | anthoni | pelleti | anthonyp | riscsm | 88.795183 | No | The phase consists of author's first and last name and a part of the email address. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60835 | eugen | mallov | gregori | matloff | 88.2580269 | Yes | The document is about an   <br> excellent reference on <br> ORION system the <br> ORandbook published by <br> han   <br> Eugener Mallove and <br> Gregory Matloff.  |
| 60835 | handbook | eugen | mallov | gregori | 88.2580269 | Yes | The document is about an excellent reference on the ORION system - the handbook published by Eugene Mallove and Gregory Matloff. |
| 84068 | interest | spread | toler | pleas | 88.2580269 | Yes | The document is about experiences with Mormons; the author does this "in the interest of spreading tolerance, so please, no flames." |
| 60835 | starflight | handbook | eugen | mallov | 88.2580269 | Yes | The document discusses "The Starflight Handbook", by Eugene Mallove and Gregory Matloff. |
| 60835 | technic | reader | orion | system | 88.2580269 | Yes | The document is about an excellent reference for nontechnical readers on the ORION system. |
| 176933 | theodor | kaldi | wrote | enter | 87.268719 | No | The phase consist of the author name ,Theodore Kaldis, and the first sentence that he wrote "When I entered 1st grade, |
| 9703 | humbl | opinion | power | access | 87.268719 | Yes | The document is about Borland's Paradox Offer with author's opinion "in my humble opinion, more powerful than Access." |
| 20559 | disagr | christian | resurrect | christ | 85.5567668 | Yes | The document is about religion. |
| 20559 | therefor | immedi | useless | doesn | 85.5567668 | Yes | The document is about religion. |
| 51204 | prove | wrong | illiad | contain | 85.5567668 | Yes | The document is about a discussion of God; the Illiad is the word of God. |
| 51539 | centri | quadra | machin | mention | 85.5567668 | Yes | The document mentions the new centris and quadra machines, which had ROM accelerated video. |


| 51204 | matter | prove | wrong | illiad | 85.5567668 | Yes | The document is about a discussion of God; the Illiad is the word of God. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104371 | trade | kaminicki | silvestri | seattl | 84.8051865 | Yes | The author of this document thinking of why don't the Yankees trade Kaminicki and Silvestri to Seattle for Ken Griffey Jr and Randy Johnson... |
| 52291 | directli | floppi | drive | haven | 84.8051865 | Yes | The document is about author's opnion on Centris 610; the power switch is directly under the floppy dirve. |

Table 23. Method4: LSI4 Analysis

### 6.4.5 Dimensional Trends

The results are similar to those from Method 2. The removal of stop words does not significantly affect the precision of LSI.


Figure 16. Dimensional Trends of Method 4

## 7. Conclusion

From the results of a straightforward computation of latent semantic indexing (in Method 1), the author discovered that the prospect of useful and meaningful extension of LSI to higher dimensions is promising. A challenge is posed by long documents whose content cannot be captured by the LSI algorithm. An important example is semi-structured documents.

To explore the possibility and practicality of normalizing the LSI computation against the length of documents, the author explored that idea of introducing the total number of tokens in a document as the denominator when calculating $\mathrm{N}(\mathrm{ti}, \mathrm{dj})$ (Method 2). Although the results were disappointing for one and two dimensions, some prospect was shown in higher dimensions. Method 4 is a variant of Method 2 in which stop words were removed during the document preprocessing. The effect on precision is not significant.

The author also explored the method of using document frequency (DF) instead of TFIDF as a threshold to limit the size of the input to HD-LSI computation. The precision gets worse as the number of dimensions gets higher. This is probably because TFIDF is a better significance indicator than DF.

The invention of this project is to extend LSI to higher dimensions. The analysis of the research reveals the strengths and weakness of each approach to make the computation of HD-LSI tractable.

## 8. Appendices

### 8.1 Appendix A - Stop List

The following list of 199 stop words was downloaded from WordNet [W06].

```
a aboard about above across after against all along alongside although amid
amidst among amongst an and another anti any anybody anyone anything around
as astride at aught bar barring because before behind below beneath beside
besides between beyond both but by circa concerning considering despite down
during each either enough everybody everyone except excepting excluding few
fewer following for from he her hers herself him himself his hisself i idem
if ilk in including inside into it its itself like many me mine minus more
most myself naught near neither nobody none nor nothing notwithstanding of
off on oneself onto opposite or other otherwise our ourself ourselves outside
over own past pending per plus regarding round save self several she since so
some somebody someone something somewhat such suchlike sundry than that the
thee theirs them themselves there they thine this thou though through
throughout thyself till to tother toward towards twain under underneath
unless unlike until up upon us various versus via vis-a-vis we what whatall
whatever whatsoever when whereas wherewith wherewithal which whichever
whichsoever while who whoever whom whomever whomso whomsoever whose whosoever
with within without worth ye yet yon yonder you you-all yours yourself
yourselves
```


### 8.2 Appendix B - Database Samples

The purpose of this appendix is to allow any interested researcher to reuse the database for further research. In particular, the naming convention for table names is described.

### 8.2.1 Method 1

The suffix "_SWL_integer" indicates that the tables are used for Method 1. The "SW" indicates that stop words are included in the data. The "L" indicates that only long documents (those with more than 200 tokens) are used in the analysis.


Figure 17. Method1: LSI1

The following screenshot shows the input and output tables for LSI2 computation by Method 1.

| c：－Command Prompt＝ora |  |  |  |  | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SQL＞select count（＊）from reduced＿inverted＿SWL＿integer； |  |  |  |  |  |
| COUNT（＊） |  |  |  |  |  |
| 1991946 |  |  |  |  |  |
| SQL＞select count（＊）from inverted＿table2＿SWL＿integer； |  |  |  |  |  |
| COUNT（＊） |  |  |  |  |  |
| 898377 |  |  |  |  |  |
| SQL〉 select＊from lsi2＿SWL＿integer where length〈term1〉＞4 and length〈term2）＞4 an d term1 $:=$ term2 and lsi2＞ 35 ． 0 order by lsi2 desc； |  |  |  |  |  |
| DOCUME | TERM1 | TERM2 | LSI2 |  |  |
| $\begin{aligned} & 68012 \\ & 176936 \end{aligned}$ | window south | microsoft georgia | $\begin{array}{r} 50.6268891 \\ 43.232274 \end{array}$ |  |  |
| 39632 | samma | correct | 42.9836686 |  |  |
| 176960 | senior | administr | 42.5567375 |  |  |
| 176936 | georgia | is land | 40.712587 |  |  |
| 54215 | danger | ordnanc | 38.5516976 |  |  |
| 68012 | memori | mbyte | 38.1373116 |  |  |
| 15590 | version | comment | 37.6927411 |  |  |
| 59125 | smokeless | tobacco | 37.6927411 |  |  |
| $176960$ | administr | offici | $37.1385733$ |  |  |
| 59126 | cancer | center | 37.1385733 |  |  |
| DOCUME | TERM1 | TERM2 | LSI2 |  |  |
| 15252 | product | cipher | 36.7431272 |  |  |
| 176936 | wockefel | cartel | 36.2666293 |  |  |
| 9956 | paradox | engin | $36.2666293$ |  |  |
| 59283 | cesarean | deliveri | 35.73379 35.309097 |  |  |
| 68012 | network | softwar | 35．3096937 |  |  |
| 176936 | secret | naval | 35.1686381 |  |  |
| $59126$ | comprehens | cancer | $35.1686381$ |  |  |
| 68012 53663 | price <br> ground | latest conductor＊ | $\begin{aligned} & 35.1686381 \\ & 35.0166177 \end{aligned}$ |  |  |
| 20 rows selected． |  |  |  |  |  |
| SOL＞ |  |  |  |  | － |

Figure 18．Method1：LSI2

The following screenshot shows the input and output tables for LSI3 computation by Method 1.


Figure 19. Method1: LSI3

The following screenshot shows the input and output tables for LSI4 computation by Method 1.


Figure 20. Method1: LSI4

### 8.2.2 Method 2

The suffix "_UCI_KDD_SWL" indicates that the tables are used for Method 2. The "SW" indicates that stop words are included in the data. The "L" indicates that only long documents (those with more than 200 tokens) are used in the analysis.


Figure 21. Method2: LSI1

The following screenshot shows the input and output tables for LSI2 computation by Method 2.


Figure 22. Method2: LSI2

The following screenshot shows the input and output tables for LSI3 computation by Method 2.


Figure 23. Method2: LSI3

The following screenshot shows the input and output tables for LSI4 computation by Method 2.


Figure 24. Method2: LSI4

### 8.2.3 Method 3

The suffix "_TFDF_SWL" indicates that the tables are used for Method 3. The "TF" stands for term frequency, and the "DF" stands for document frequency. The "SW" indicates that stop words are included in the data. The "L" indicates that only long documents (those with more than 200 tokens) are used in the analysis.


Figure 25. Method3: LSI1

The following screenshot shows the input and output tables for LSI2 computation by Method 3.


Figure 26. Method3: LSI2

The following screenshot shows the input and output tables for LSI3 computation by Method 3.


Figure 27. Method3: LSI3

The following screenshot shows the input and output tables for LSI4 computation by Method 3.


Figure 28. Method3: LSI4

### 8.2.4 Method 4

The suffix "_UCI_KDD_LDOC" indicates that the tables are used for Method 2. The "LDOC" indicates that only long documents (those with more than 200 tokens) are used in the analysis.


Figure 29. Method4: LSI1

The following screenshot shows the input and output tables for LSI2 computation by Method 4.

| c：－Command Prompt＝ora |  |  |  | $\square$ | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2317133 |  |  |  |  | $\triangle$ |
| SQL＞select count（＊）from reduced＿inverted＿UCI＿KDD＿LDOC； |  |  |  |  |  |
| COUNT（＊） |  |  |  |  |  |
| 3002127 |  |  |  |  |  |
| SQL）select count（＊）from inverted＿table2＿UCI＿KDD＿LDOC； |  |  |  |  |  |
| COUNT（＊） |  |  |  |  |  |
| 2317133 |  |  |  |  |  |
| SQL〉 select min＜lsi2），aug＜lsi2）．max＜lsi2）from lsi2＿UCI＿KDD＿LDOC； |  |  |  |  |  |
| MIN（LSI2） |  |  |  |  |  |
| 2.17687442 46．379983 96．4417011 |  |  |  |  |  |
| SQL〉 select＊from lsi2＿UCI＿KDD＿LDOC where length＜term1＞＞4 and length〈term2＞＞4 a nd term1 ：＝term2 and 1 si2 $>80.9$ order by lsi2 desc； |  |  |  |  |  |
| DOCUME | TERM1 | TERM2 | LSI2 |  |  |
| 68048 | nordic | off shor | 86.3737811 |  |  |
| $59427$ | copper | bracelet | 84.8051865 |  |  |
| $\begin{aligned} & 10068 \\ & 84013 \end{aligned}$ | acadum | uottawa | 83.1536187 83.0531927 |  |  |
| 84013 58144 | danwe 1 compart | iastat | 83.0531927 82.855566 |  |  |
| 9975 | instanc | handl | 82.7388624 |  |  |
| 38653 | mapsut | einstein | 82.3973796 |  |  |
| 104697 | shmue ${ }^{\text {tkeuan }}$ | einstein eplrx | 82.34731782 |  |  |
| 10838 | georg | marengo | 81.9605687 |  |  |
| 60453 | rebox | berlin | 81.6200387 |  |  |
| DOCUME | TERM1 | TERM2 | LSI2 |  |  |
| 68085 | riski | converg | 81.3662465 |  |  |
| 74727 | small | claim | 81．3662465 |  |  |
| 58896 | whole | blood | 81.352346 |  |  |
| 101610 | steue | green | 81.3412405 81.324606 |  |  |
| $\begin{aligned} & 51732 \\ & 53796 \end{aligned}$ | meridian moria | demon | 81.32460678 |  |  |
| 53665 | black | demon | 81.0462505 |  |  |
| 66962 | pilgrim | umass | 80.9979741 |  |  |
| 10099 | bjown | myrland | 80.918061 |  |  |
| 20 rows selected． |  |  |  |  |  |
| SQL ${ }^{\text {S }}$ |  |  |  |  | $\checkmark$ |

Figure 30．Method4：LSI2

The following screenshot shows the input and output tables for LSI3 computation by Method 4.


Figure 31. Method4: LSI3

The following screenshot shows the input and output tables for LSI4 computation by Method 4.


Figure 32. Method 4: LSI4

### 8.3 Appendix C - References

[A06] Apache (2006). Apache Lucene. [WWW Document] http://lucene.apache.org/java/docs/index.html (visited 2006, November 24).
[C97] Cheng, I. and Wilensky, R. (1997). An Experiment in Enhancing Information Access by Natural Language. Technical Report. UMI Order Number: CSD-97-963. University of California at Berkeley. [WWW Document]
http://portal.acm.org/citation.cfm?id=893951\&coll=GUIDE\&dl=GUIDE\&CFID=58602024\&CFTOKEN=69210 605 (visited 2005, December 2).
[D90] Deerwester, S., Dumais S., Furnas, S., Landauer, T., and Harshman R. (1990). Indexing by Latent Semantic Analysis. Journal of the Society for Information Science, 41(6), 391-407. [WWW Document] http:///si.research.telcordia.com/lsi/papers/JASIS90.pdf (visited 2005, August 20).
[H99] Hofmann T. (1999). Probabilistic Latent Semantic Analysis. Proc. Uncertainty in Artificial Intelligence. [WWW Document] http://www.cs.brown.edu/people/th/papers/Hofmann-UAI99.pdf (visited 2005, August 19).
[J01] JUnit (2001). JUnit.orig. [WWW Document] http://www.junit.org/index.htm (visited 2005, December 13).
[L98] Landauer T., Foltz P., and Laham, D. (1998). Introduction to Latent Semantic Analysis Discourse Processes, 25, 259-284. [WWW Document]http://lsa.colorado.edu/papers/dp1.LSAintro.pdf (visited 2005, August 20).
[U06] University of California, Irvine (2006). Knowledge Discovery in Databases Archive. [WWW Document] http://kdd.ics.uci.edu/ (visited 2006, November 25).
[W05a] Wikipedia, the free encyclopedia. Latent Semantic Analysis. [WWW Document] http://en.wikipedia.org/wiki/Latent_Semantic_Indexing (visited 2005, August 16).
[W05b] Wikipedia, the free encyclopedia. TF-IDF (Term Frequency Inverse Document Frequency). [WWW Document] http://en.wikipedia.org/wiki/Tf-idf (visited 2005, August 16).
[W06] WordNet (2006). WordNet Similarity 1.02 Stoplist. [WWW Document] http://search.cpan.org/src/TPEDERSE/WordNet-Similarity-1.02/samples/stoplist.txt (visited 2005, August 16).


[^0]:    ${ }^{1}$ Although the numbers here ignore the fact that short documents were removed, the performance problem

