
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Authoring and Sharing of Programming Exercises
Somyajit Jena
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Jena, Somyajit, "Authoring and Sharing of Programming Exercises" (2008). Master's Projects. 19.
DOI: https://doi.org/10.31979/etd.gevj-k88n
https://scholarworks.sjsu.edu/etd_projects/19

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/19?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 1

AUTHORING AND SHARING OF PROGRAMMING
EXERCISES

CS 298 Project Report
Presented to

Computer Science Department
San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Computer Science

By
Somyajit Jena

May 2008

 2

ABSTRACT

Authoring and Sharing of Programming Exercises
By Somyajit Jena

In recent years, a number of exercises have been developed and published for educating
students in the field of Computer Science. But these exercises exist in their own silos.
There is no apparent mechanism to share these exercises among researchers and
instructors in an effective and efficient manner. Moreover, the developers of these
programming exercises are generally using a proprietary system for automatic submission
and grading of these exercises. Each of these systems dictates the persistent format of an
exercise that may not be inter-operable with other automatic submission and grading
systems.
This project provides a solution to this problem by modeling a programming exercise into
a Learning Object metadata definition. This metadata definition describes the learning
resource in terms of its contents, classifications, lifecycle and several other relevant
properties. A learning Object (LO) is persisted in a repository along with its metadata.
This repository supports simple and advanced queries to retrieve LO�s and export them to
various commercially available or home-grown e-learning systems. In a simple query,
keywords given by the user are matched against a number of metadata elements whereas
an advanced query allows a user to specify values for specific metadata elements.

 3

Acknowledgments

I am deeply indebted to Professor Cay Horstmann for his invaluable comments

and assistance in the preparation of this study.

 4

Table of Contents

1.1 Problem Domain...5
1.2 Defining Metadata ..9
1.3 LOM Structure ... 10
2.1 Web-CAT.. 13

2.1.1 Setting Up A Course Offering... 13
2.1.2 Setting Up An Assignment.. 15
2.1.3 Web-CAT assignment submission .. 23

2.2 Labrat.. 25
2.2.1 Metadata Structure.. 25
2.2.2 Directory Layout .. 26

3.1 Java Server Faces (JSF) Framework .. 29
3.1.1 JSF Programming Model .. 31

3.2 Java Persistence Architecture... 34
3.2.1 Entities ... 35
3.2.2 Object Relational (OR) Mapping .. 36
3.2.3 Query ... 40

3.3 Web-Tier Programming Model � JSF, EJB 3.0 and JPA................................... 41
.. 41
3.3.1 Entity Management... 44
.. 44

4.1 CollabX Repository Overview... 48
4.2 Integration with External Systems ... 49

4.2.1 Web-CAT Interoperability .. 49
4.2.2 Labrat Interoperability .. 56
4.2.3 Labrat Feature Extension .. 56

4.3 CollabX Solution Use Cases .. 56
4.3.1 Use Case � Upload ... 56
4.3.2 Use Case � Search .. 62
4.3.3 Use Case � Fork.. 65
4.3.4 Use Case � Download... 71
4.3.5 Use Case � Critique .. 74
4.3.6 Use Case � Categorize .. 76

 5

1. Introduction
One of the many challenges facing e-learning systems is that the course wares that are
developed, exists in their own proprietary format in their respective repositories. There
are no mechanisms of sharing this repository of knowledge and learning, to the outside
world. These course wares can be shared with a large number of students� worldwide
thus enhancing instructional efficiency and re-usability of these learning resources. In this
era of modern communication and collaboration, the internet as we know it, is a great
delivery platform for sharing and authoring learning resources. This will enable new
forms of collaboration between educational institutions increasing the overall
effectiveness of the educational systems.

1.1 Problem Domain
Today, instructional designers and developers of course content can develop assignments
which can be graded by one of the many auto submission and grading tools available in
the market. At Virginia Tech, researchers and instructors use Web-CAT, the Web based
center for automated testing, for several years to automatically grade students
assignments. Web-CAT [9] has an internal scoring strategy that assesses the validity and
completeness of the student�s tests, which then become the primary indicator of
correctness of student�s work. A set of �reference� tests can also be provided by the
instructor to evaluate a student�s work.
Labrat is another such tool which was developed by Cay Horstmann for Wiley to
automatically grade student assignments. These assignments are programming exercises
that are selected from the student�s textbooks published by Wiley. Listing 1 shows a
programming assignment developed for this tool and assigned to students of a particular
course offering. This programming assignment is presented to students as a task of
implementing an instructor provided interface so that each of the student�s submission
can be tested by the same set of unit tests. Automatic grading of the student�s submission
requires the instructor to develop reference test cases that can be used to verify different
segments of the assignment.

An assignment adapted to the Labrat format will require the following from the
instructor:

! Description of the assignment
 A write-up on the assignment as shown in Listing 1. It describes the assignment
 and has instructions for the students to submit the same.

! Describing the assignment

 The programming assignment needs to be described in terms of metadata defined
 by Labrat. This metadata describes among other things � main class of the
 assignment, list of classes that the student must submit and test related data for the
 submission.

 6

Listing 1. A typical assignment in Java

Exercise 7.10 Factoring of integers. Write a program that asks the user for an integer and then
prints out all its factors in increasing order. For example, when the user enters 150, the
program should print

2
3
5
5

Use a class FactorGenerator with a constructor FactorGenerator(int numberToFactor) and
methods nextFactor and hasMoreFactors .

 /**
 This class generates all the factors of a number.
 */
 public class FactorGenerator
 {
 /**
 Creates a FactorGenerator object used to determine the factor of
 an input value.
 @param aNum is the input value
 */
 public FactorGenerator(int aNum)
 {
 // TODO
 }
 /**
 Determine whether or not there are more factors.
 @return true there are more factors
 */
 public boolean hasMoreFactors()
 {
 // TODO
 }
 /**
 Calculate the next factor of a value.
 @return factor the next factor
 */
 public int nextFactor()
 {
 // TODO
 }
 // TODO: instance fields
 }

Supply a class FactorPrinter whose main method reads a user input, constructs a FactorGenerator
object, and prints the factors.

 7

The instructor has to package the assignment into a single zip file structure with its own
internal directory structure conforming to the format set by Labrat. The metadata file,
which describes the assignment, needs to be in certain directories for Labrat to recognize
it. The directory structure format for sample exercise shown in Listing 1 is shown in
Figure 1.

Figure 1 Directory structure of Labrat

The metadata file in Labrat is called check.properties and this file is present in the grader
directory. Labrat will consult this file to prompt for the required files for submission and
then automatically grade it in a manner defined by the instructor in the grading metadata.
Students can submit solutions to assignments as shown in Figure 2. Depending on the
grading scheme setup in the metadata file, the submission page will prompt for the
required files that must be included in the submission.

<repository root>

ExP7_10

description

grader

solution

student

index.html

FactorGenerator.java
FactorPrinter.java

supplemental-instructions.html
FactorGeneratorTester.java

check.properties
FactorGeneratorTest.java

 8

Figure 2 Labrat submission page

Once the student submits the required files, Labrat will execute reference test cases as
shown in Listing 2 to verify the correctness of the submission and then reports a score to
the student and instructor.
public class FactorGeneratorTester
{
 public static void main(String[] args)
 {
 FactorGenerator generator = new FactorGenerator(2 * 2 * 3 * 5);
 System.out.println(generator.hasMoreFactors());
 System.out.println("Expected: true");
 System.out.println(generator.nextFactor());
 System.out.println("Expected: 2");
 System.out.println(generator.hasMoreFactors());
 System.out.println("Expected: true");
 System.out.println(generator.nextFactor());
 System.out.println("Expected: 2");

 9

 System.out.println(generator.hasMoreFactors());
 System.out.println("Expected: true");
 System.out.println(generator.nextFactor());
 System.out.println("Expected: 3");
 System.out.println(generator.hasMoreFactors());
 System.out.println("Expected: true");
 System.out.println(generator.nextFactor());
 System.out.println("Expected: 5");
 System.out.println(generator.hasMoreFactors());
 System.out.println("Expected: false");
 }
}

Listing 2. Labrat instructor reference test case
Designing a programming assignment as described above shows that there is a substantial
effort by a computer science instructor to develop an assignment for an automated grader
tool. Specifically for Labrat, the following needs to be provided �

assignment write-up A write-up on the assignment with instructions for the
student on how to submit the assignment.

check.properties Metadata file which has the grading metadata
Tester.java Instructor reference test cases
test*.in, test*.out Test data for inputs and outputs
Packaging The assignment needs to be packaged as a zipped file

archive with its own internal data-structures.

Even if the instructor does wish to share this assignment with the rest of the community,
there are no widely used mechanisms that support instructors in finding and sharing such
resources. At the same time, other instructors may have to spend a good amount of time
and effort themselves in order to reshape a potential assignment into something that can
be used in their own courses. The goal of this project is to prototype a shared repository
of assignments defined in a common metadata format so that it can be shared with the
rest of the community. This common metadata format should be extensible and flexible
enough to handle assignments written for any programming language at any level of
proficiency. The shared repository will make use of the common metadata format to
export an assignment to a target automated grader tool so that it can be adapted or reused
without any additional work from the instructor in their courses. As more and more
instructors use automated grading tools to process student submissions, there is a growing
need for a shared repository of assignments defined in an interchange format, which can
lead to a community practice of sharing resources in a way that overcomes existing
barriers to such reuse.

1.2 Defining Metadata
The basic step in sharing a learning resource is to tag it with a metadata definition. A
metadata definition will describe the learning resource in terms of its contents,
classifications, lifecycle and several other relevant properties. It will help an author in
authoring or aggregating several learning resources in producing a new one. The two

 10

main metadata schemas and standards used today by digital libraries of educational
resources are Dublin Core (DC) and IEEE Learning Object [1] Metadata (LOM) (see
Table 1). LOM was released as IEEE 1484.12.1 in June 2002 [1].
The present study will take a subset of data elements that are enumerated in LOM in
describing learning resources that are uploaded to the repository. LOM is a structural,
offering rich description of a learning resource in terms of data elements that grouped
into different categories.

1.3 LOM Structure
Data elements describe a learning object and are grouped into categories. The LOMv1.0
Base Schema consists of nine such categories:

General category groups the general information that
describes the learning object as a whole.

Meta-Metadata category groups information about the metadata
instance itself

Technical category groups the technical requirements and
technical characteristics of the learning
object.

Educational category groups the educational and pedagogic
characteristics of the learning object.

Rights category groups the intellectual property rights and
conditions of use for the learning object.

Relation category groups features that define the relationship
between the learning object and other
related learning objects

Annotation category provides comments on the educational use
of the learning object and provides
information on when and by whom the
comments were created

 11

Classification category describes this learning object in relation to
a particular classification system.

Table 1 . LOM Metadata categories

Collectively, these categories as shown in Table 1 form the LOMv1.0 Base Schema. As
stated before, this project takes a subset of categories as represented by the data elements
i.e. General, Lifecycle, Educational, Rights, Relation and Annotation and creates a
metadata representation of a learning resource. The metadata definition and the
corresponding learning resources are persisted in the repository. Given below is an
example of a learning resource as represented by its metadata definition using the above
mentioned data elements-
<learning-resource-description>
 <resource-id> LO-78909087 </resource-id>
 <resource-ref-id> LO-098765 </resource-ref-id>
 <title>This is a lesson in Binary Search </title>
 <language> en </language>
 <description> Any description about this lesson </description>
 <keywords>
 <langstring lang="en">binary search tree</langstring>
 </keywords>
 <duration>60 minutes </duration>
 <version> 1.0 </version>
 <level> Easy </level>
 <owner> jdoe </owner>
 <resource-properties>
 <resource-property>
 <name> TextBook </name>
 <type> String </type>
 <value> Introduction to Data Structures in Java </value>
 <resource-property>
 <resource-property>
 <name> Chapter </name>
 <type> String </type>
 <value> Search Algorithms</value>
 </resource-property>
 </resource-properties>
 <resource-collection>
 <resource>
 <resource-id> folder-student-123 </resource-id>
 <parent-ref> folder-ex-4.2 </parent-ref>
 <name> student </name>
 <type> folder </type>
 <iscontainer> yes </iscontainer>
 <resource>
 <resource>
 <resource-id> file-java-123 </resource-id>
 <parent-ref> folder-student-123 </parent-ref>
 <name> DataSet.java </name>
 <type> file </type>
 <iscontainer> no</iscontainer>
 </resource>

 12

 </resource-collection>
</learning-resource-description>

Listing 3. XML representation of an assignment
The above XML listing lays down the metadata information about the uploaded content
including its layout and relationships between its contents. This metadata information
along with the relationship information will help in the assembly of a Learning Object
persisted in the repository.

 13

2. Related and Prior Work
This chapter covers study of the existing systems.

2.1 Web-CAT
Web-CAT is an automatic grading and submission tool developed at Virginia Tech.
Course developers or instructors can develop courses in Web-CAT and publish them to
their students. Web-CAT automatically grades submitted assignments against an
instructor provided solution. Typically, the instructor solution is executed through a test
harness, which is a collection of test cases provided by the instructor. These test cases
compare the output of a student�s submitted assignment with the expected output of the
solution provided by the instructor.

Web-CAT has two distinct views for an instructor and students. An instructor has to set
up a course offering from a selected list of courses offered by a department of an
institution for a particular semester. Students who are enrolled in the course offering can
submit their assignments by navigating to their enrolled courses. An instructor has to
execute the following set of tasks to create a course offering and assignments for that
course-

2.1.1 Setting Up A Course Offering
A new course offering can be created by an instructor choosing the Courses tab and then
clicking on New sub-tab as shown in Figure 3.

Figure 3 Web-CAT Course Tab

In Web-CAT terminology, the term course refers to the name of an academic course that
is offered at a particular institution and is usually associated with an academic catalog's
course descriptions. It has a name and a unique identifier, which helps in identifying the
department that is offering the course. For example, a course having a name like �CS 40:
Introduction to Java Programming� suggests that the name of the course is �Introduction
to Java Programming� and is being offered by the Computer Science Department having
a unique identifier as �CS 40�.

While a course defines the name, course number, and department, a course offering is a
specific offering of a given course during a specific semester/term, taught by a specific
instructor. In other words, a course offering is a single instance of a course. One course,
like "CS 40", might be offered once during the fall semester. Or there could be three
separate sections that semester--three distinct course offerings. Those offerings might be
taught be the same person, by different people, or even co-taught by a team.

 14

So a course defines set of broad based features that are shared by all offerings. A single
course offering defines the specifics for one section/offering of a course during a single
semester/term--the instructor(s), the graders or TAs (if any), the student roster, etc.
Figure 4 shows the instructor has to select the course for which he wants to create a new
course offering. The list of courses must have already been defined by the department of
an institution.

Figure 4 Pick Course
Once a course has been selected, an instance of the course is defined through a set of
properties. These properties as shown in Figure 5 are unique to a new course offering.

Figure 5 New Course Offering

The description of the course properties are enumerated below:
! Course � This course is being offered by the department for a particular semester.

 15

! CRN � CRN stands for course request number and is a unique identifier for the
course offering, distinguishing it from all others. Different academic institutions
may have different formats to describe this property, but usually it is an
alphanumeric code. It cannot be blank and it has to be unique.

! URL � This is an optional property and is web link to the course offering's home
site on the web. If there is value in this field, then references to the course offering
on other pages will be hyperlinks to this destination. If it is left as blank, those
references will just be plain text, not hyperlinks.

The other properties such as Moodle Id and Group Id are specific to courses offers at
Virginia Tech and can be left blank.

Additional instructors or graders can be added to this new course offering by clicking on
the Add button.

The list of students can be added to the new course offering as shown in Figure 6. They
can be added individually or by uploading a CSV file.

Figure 6 Course Student roaster

The new course offering is saved to the database by clicking the Finish button. The new
course offering forms its unique identity from the course name, CRN and the time-period
for which it is offered at the institution.

2.1.2 Setting Up An Assignment
Once a course offering is set up, users with instructor permissions can create assignments
for the enrolled students. An instructor will pick the course from the list of course
offerings offered by a department for a particular semester as shown in Figure 7.

 16

Figure 7 Pick Course For Assignment

Once the instructor has picked the course, he can see a list of assignments already created
for the course offering as show in Figure 8.

Figure 8 Create or Reuse Assignment
The instructor has the choice of creating a new assignment or re-using an existing
assignment. By selecting an existing assignment, one can edit its properties to tailor it to
the requirement on hand. If the instructor chose to create a new assignment, it can be a
completely new assignment or derived from an existing assignment that had been created
before for the course offering. In either case, the assignment specific properties need to
be defined or edited.
The term assignment is used to refer to the name and basic properties of a programming
assignment � the kinds of things one would associate with an assignment write-up or a
program specification. For example, "Program 1: Hello World", might be an assignment
used in a CS 101 course.

 17

In Web-CAT, an assignment can be reused across course sections (that is, among many
course offerings). The concept of "assignment" is associated with the reusable, shared
properties that all offerings of an assignment have in common. Besides the assignment's
name and a URL for the corresponding write-up or activity description, an assignment
also has a submission policy (including whether or not late submissions are allowed, with
or without associated penalties), and a grading scheme, which defines how submissions
from students will be processed and scored.
The Edit assignment properties page is shown in Figure 9. This page shows both the
shared properties for all instances of this assignment, as well as the properties unique to
this course offering.

2.1.2.1 Properties For All Instances Of This Assignment
The following properties are shared by all instances of the assignment. For example if the
same assignment is being offered across different sections of a graduate class, then these
properties will be retained across all the different instances that were created.

Name This property is an identifier that uniquely identifies this

assignment from all others in this course offering.
Short Description Optionally, enter a brief description of the assignment. For

example Project 1 : Binary Search for a CS 46 course offering.
URL Optionally, provide an URL which has elaborate information

about the assignment. This URL will be hyperlinked with the
Name of the assignment.

Upload Instructions Optionally, enter any assignment-specific instructions that will
be shown to students when they upload submissions through
Web-CAT's web interface.

 18

Figure 9 Web-CAT assignment properties

2.1.2.2 Grading Schemes for All Instances
The grading scheme consists of a policy defining the submission rules, and a series of one
or more plug-ins that specify how student submissions are processed and scored.

 19

2.1.2.2.1 Submission Rules

The submission rules define the policy that governs acceptance of student submissions,
including the points available, limits on the number or size of submissions, the applicable
late policy, and any penalties for late submissions (or bonuses for early submissions). A
Submission rule for an assignment can be created by Clicking on the New button or can
be assigned from a previously created one as shown in Figure 10.

Figure 10 Submission Rules

A new submission profile consists of properties as shown in Figure 11. A submission
profile can be configured to allocate different points from manual testing, static analysis
tools and correctness testing.

Figure 11 Submission Profile

The maximum number of submissions and size of each submission can also be specified
in the submission profile. The instructor can also specify when Web-CAT should begin
accepting submissions for the assignment � say, two hours before the due date for a

 20

closed lab, or leave blank for unlimited. It can also be specified when Web-CAT should
begin refusing submissions for an assignment � say, allowing submissions up to one week
after the due date. A value of zero will deny all late submissions. Instructor can also
specify that bonus points be awarded for early submissions, or penalty points be deducted
for late submissions � say, a penalty of 10 points per day late, or a bonus of 10 points per
day early.

2.1.2.2.2 Grading Scheme

The grading scheme configures the list of steps an assignment will be processed upon
submission by a student. These lists of steps may include configuring language specific
plug-in, static analysis tools, and code coverage tools for student submitted tests. An
assignment that requires students to write-up a Java program, the instructor needs to add
the JavaTddPlugin as shown in Figure 12. This will ensure that student submissions
will be processed as per the Java guidelines set in this plug-in.

Figure 12 Plug-in Configuration

Various properties that need to be configured for this plug-in is show in Figure 13. The
JavaTddPlugin plug-in is designed to provide full processing and feedback
generation for Java assignments where students write their own JUnit test cases. It
includes Ant-based compilation; JUnit processing of student-written tests, support for
instructor-written reference tests, PMD and CheckStyle analysis, and Clover-based
tracking of code coverage during student testing.

 21

Figure 13 JavaTDDPlugin Configuration

The assignment-specific options for the JavaTDDPlugin are shown in Table 2.

Configuration
Parameter

Parameter Value Description

JUnit Reference
Test Class(es)

SJSU/admin/ExP7_10/web
catbin/ExP7_10_29_TestC
ase.java

A Java source file (or directory of
source files) containing JUnit tests to
run against student code to assess
completeness of problem coverage. If
a single Java file is selected, it must
contain a JUnit test class declared in
the default package. If a directory is
selected, it should contain JUnit test
classes arranged in subdirectories
according to their Java package
declarations.

 22

Supplemental
Classes for
Assignment

SJSU/admin/ExP7_10/clas
ses.jar

A jar file (or a directory of class files
in subdirs reflecting their package
structure, or a directory of multiple
jar files) containing precompiled
classes to add to the classpath when
compiling and running submissions
for this assignment.

Data Files for
Student

SJSU/admin/ExP7_10/web
catdata

A file (or a directory of files) to place
in the student's current working
directory when running his/her tests
and when running reference tests. The
file selected (or the entire contents of
the selected directory) will be copied
into the current working directory
during grading so that student-written
and instructor-written test cases can
read and/or write to the file(s). The
default is to copy no files.

Table 2 . JavaTddPlugin Configuration parameters

Each of the file system paths shown in Table 2 can be configured as shown in Figure 14.

Figure 14 Configuring Java Plug-in

Each parameter value shown in Table 2 is a relative path to the resource from the root
folder of the assignment. When a submitted assignment is being graded, the

 23

JavaTDDPlugin reads these configuration values to fetch the various resources from the
respective file paths.

2.1.3 Web-CAT assignment submission
Students can submit assignments by logging in to Web-CAT and clicking on the Submit
tab as shown in Figure 15. It has a list of assignments for a course that the student has
enrolled in.

Figure 15 Listing of student�s assignment

The student selects the assignment and clicks on the Submit icon as shown in Figure 16.

Figure 16 Selecting assignment for submission

Submissions to Web-CAT are always in the form of a single file as shown in Figure 17.
If the solution consists of multiple files, these need to be combined into a single archive.
Web-CAT currently accepts zip, jar, tar, and tgz archives.
After browsing for and selecting the submission file, click �Next�.

 24

Figure 17 Upload files for submission

Web-CAT will summarize the information it knows about the file that has been uploaded,
including its name and size. If an archive has been uploaded, it will summarize the
contents of the archive so that the student can make sure that all relevant files included in
the archive will be submitted. Click �Next� to confirm the submission. Once the files are
submitted, each submission will be tagged by the timestamp of the submission. This will
help in keeping track of multiple submissions by a student. Each submission status can be
checked by the student from the Web-CAT home page. Once the submission has been
graded, its results will be published as shown in Figure 18.

Figure 18 Web-CAT submission results

 25

The results shown in Figure 18 are the result of running the instructor�s reference tests on
the submitted assignments. The assignment was configured by the instructor to execute
only the instructor provided reference tests. If it would have been configured to execute
static analysis, check style and code coverage then these additional results would have
been displayed in the submission results page.

2.2 Labrat
Labrat is an automatic submission and grading tool developed by Cay Horstmann. It is an
extension of a popular open source program called Ant, which is used by developers for
automating their software build process. Each lesson is defined by a metadata structure
that is used in the student submission and grading process.

2.2.1 Metadata Structure
The metadata of the learning lessons defined by Labrat is in a property file called
check.properties. Given below is an illustration of a subset of properties that are used to
automate the submission and grading of a lesson �

check.properties
mainclass The main class of the assignment. This

property is required
requiredclasses comma-separated list of classes that the

student must submit.
optionalfiles If true then during submission of files, the

student will be presented with more files
dialog. If false then asking for more files
will be suppressed other than the main
class and required classes.

test.token This property indicates the type of output
comparison to be made with the expected
value. This value can be one of the 4 types:
line, word, number or a regular expression.
The default value is line.

test.tolerance The degree of tolerance to use when the
output comparison type is number.

Table 3 . Sample Properties

A student while submitting a lesson has to upload the following files �

• ${mainclass}.java

• All java files for requiredclasses.

• Any other *.java files if optionalfiles is not false.

 26

Labrat reads the check.properties file of the lesson being submitted to verify that
submission is in accordance with the values that are set in the properties file. The files
that are submitted are stored in a persistent repository in a Labrat specified directory
layout. This layout is important as the grading process will read the submitted files from a
designated directory.

2.2.2 Directory Layout
The directory layout of a lesson in Labrat format is given in Figure 1. The submitted files
for a lesson are stored in the student directory. This directory could also contain
�Horstmann style� unit tests. These unit tests are Plain Old Java Objects(POJO) and have
a very simple routine to execute the submitted assignments known methods and compare
the return value with the expected value. A scoring strategy is used in Labrat that takes
into account the failure rate of these comparisons and a score is assigned to the
submission.
An example of a �Horstmann style� unit test is given below �
/**
 This is a test driver class for DataSet class.
*/
public class DataSetTester
{
 public static void main(String[] args)
 {
 DataSet a = new DataSet();
 a.add(5);
 a.add(6);
 a.add(8);
 a.add(9);
 System.out.println("count: " + a.getCount());
 System.out.println("Expected: 4");
 System.out.println("average: " + a.getAverage());
 System.out.println("Expected: 7");
 System.out.println("standard deviation: " +
 a.getStandardDeviation());
 System.out.println("Expected: 1.83");
 }
}

Listing 4. Horstmann Style Unit Test

These style of unit tests have a file naming pattern like *Tester*.java. Labrat will
execute these files to compare and evaluate the outcome of a submitted program by a
student. In the above example it is assumed that the $(mainclass}.java translates
to the entry DataSet.java which this tester class tests.

The grading process begins by verifying that submission has at least the
${mainclass}.java and all other java files mentioned in the requiredclasses
property. After a successful compilation process, Labrat looks for Horstmann style unit
tests files that has the pattern *Tester*.java in the student directory. This strategy of

 27

a simple tester class probably gives the simplest test evaluation strategy for a submitted
program. The grading automated script, which is part of Labrat, is given below �

<target name="tester" depends="compile" if="test.tester">
 <java classpathref="runclasspath"
 dir="${submit.dir}"
 classname="${mainclass}"
 failonerror="true"
 timeout="${test.timeout}"
 outputproperty="mainclass.out"
 errorproperty="mainclass.err"
 fork="true">
 <assertions>
 <enable/>
 </assertions>
 </java>
 <echo message="${mainclass.out}" />
 <echo message="${mainclass.err}" />
 <condition property="tester.fail" value="Output not as expected">
 <not>
 <asexpected value="${mainclass.out}"
 tolerance="${test.tolerance}" />
 </not>
 </condition>
</target>

Listing 5. Labrat Grading Script

The Ant target defined above compares the program output with the expected output. An
error is flagged if the corresponding output mismatches.

The contents of an assignment designed for Labrat includes converting the set of artifacts
that make up the lesson into a directory structure as shown in Figure 19, a
check.properties file that defines the metadata of the lesson and a submission page
for the students whose content is derived by introspecting the property file and a grading
process which evaluates the submitted program.
As part of my project, I extended the web-interface of Labrat with the addition of the
following features:

• Designed a new UI interface for Labrat

• Supported uploading of a lesson in the Labrat format by an instructor.

• Generation of check.properties file through a wizard style interface.

 28

3. Architecture
The project implementation is a 3-tier JavaEE based enterprise application as shown in
Figure 19. JavaEE defines a set of standards to break apart a monolithic application into
multiple layers each defined by a set of standardized modular components handling many
details of application behavior � such as security and multithreading � automatically.

Figure 19 JavaEE Layered Architecture

A 3-tier application provides separate layers for each of the following services:

• Presentation: In a typical Web application, the presentation logic is built using
JSPs, JSF, servlets, or XML (Extensible Markup Language) and XSL (Extensible
Stylesheet Language).

 Database

UI
components

Backing
Beans

View
(jsp)

Validator

View controller (Faces servlet)

OR Mapping Transaction
Management

 Data Access

Repository
Service Interfaces

 Repository Beans

J2EE Container

Web Container

EJB 3.0
Container

Open JPA

 29

• Business logic: Business logic is typically implemented in the EJB layer.

• Persistence and Data Access Layer: Data access is best implemented by a
persistence framework, which can serialize and de-serialize entities into a
persistent store.

The application is deployed on Sun Glassfish Application Server and is built on top of the
following technologies (refer to the Figure 20 above):

• Java Server Faces Framework

• EJB 3.0 Framework

• Open JPA Data Access Framework

3.1 Java Server Faces (JSF) Framework
Java Server Faces is a standard web user interface framework for the JavaEE platform. It
is based on component architecture and a rich MVC style infrastructure. It has a basic set
of server side components and an event driven model to synchronize UI components with
the application objects. Figure 20 gives a high level overview of the JSF architecture.

Figure 20 JSF Request Handling

The JSF framework connects the view with the model while rendering the web pages. In
this implementation a view component can be wired to properties of a backing bean
object, and buttons to event handlers and action methods. JSF acts as a controller that
takes in the user input and routes the updates to the target bean object. The view
implementation of JSF is a collection of UI components that are managed by the
framework. Each UI component can maintain state and views are constructed from
composition of different UI components.

JSF Pages

Persistent
Storage

Faces Servlet

Controller View Model

 JavaEE Container
 Application Data

Browser

 30

Figure 21 Rendering of a JSF view

Figure 21 shows the search JSF page of the CollabX application. This page has tags like
core:view and html:inputText. Listing 6 shows a subset of tags that are
contained in the page
<html:panelGroup >
 <html:outputText value="Title (Starts With)" />
 <html:inputText size="30" value="#{search.title}" />
</html:panelGroup>
<html:panelGroup >
 <html:outputText value="Keywords " />
 <html:inputText size="30" value="#{search.keywords}" />
</html:panelGroup>

Listing 6. JSF Tags
Each tag has an associated tag handler class. As the page is being rendered, the JSF tag
handlers collaborate with each other to build a component tree. The component tree is a
data structure that contains Java objects for all user interface elements. Each component
has a renderer that produces HTML output. During the rendering phase, the renderer of
each UI component requests a unique element ID and the current value of the binding
expression. Once all the components of the view root have been rendered, the page is sent
to the browser, and the browser displays as it would any other page. This marks the end
of the rendering phase for a JSF page.

UIViewRoot

HtmlForm

HtmlInputText

HtmlOutputText

HtmlCommand
Button

HtmlInputText

Container

Browser

<core:view>
 <html:form>
 <html:panelGroup >
 <html:outputText
 value=
 "Title (Starts With)" />
 <html:inputText size="30"
 value=
 "#{search.title}" />
 </html:panelGroup>
 <html:panelGroup >
 <html:outputText
 value="Keywords " />
 <html:inputText size="30"
 value=
 "#{search.keywords}"/>
 </html:panelGroup>
 <html:commandButton …/>
 </html:form>
</core:view>

Backing
 Bean

Action Listener

 31

3.1.1 JSF Programming Model
In the JSF programming model, the backing bean is a mediator between the view and the
model. The UI components are bound to the properties of the backing bean, and buttons
to event handlers and action methods. An event change in the UI component is routed to
the backing bean by the JSF framework.
The JavaServer Faces expression language (EL) syntax is used to bind UI component
values and instances to backing bean properties or to reference backing bean methods
from UI component tags. A JavaServer Faces expression can be a value-binding
expression (for binding UI components or their values to external data sources) or a
method-binding expression (for referencing backing bean methods.

An example of each binding expression is given below. A value-binding expression binds
UI components to model tier data as shown in Listing 7.
 <html:panelGroup >
 <html:outputText value="#{search.display.title}" />
 <html:inputText size="30" value="#{search.title}" />
 </html:panelGroup>

Listing 7. Value-binding expression
On form submission, JSF framework will push back data into the model objects based on
the value-binding expression.
A method binding expression binds UI components to �action� methods in the backing
bean as shown in Listing 8. It is a convenient way of describing a method invocation that
needs to be carried out when a component is activated.
<html:panelGrid styleClass="buttonPanel" columns="10">
 <html:commandButton value="#{msgs.search_button}"
 action="#{search.find}">
 </html:commandButton>
 <html:commandButton value="#{msgs.reset_button}"
 action="#{search.reset}"/>
 <html:commandButton value="#{msgs.cancel_button}"
 action="#{search.cancel}" />
</html:panelGrid>

Listing 8. Method-binding expression
In the example shown in Listing 8, the command button component will call
search.find and pass the returned string to the navigation handler. Binding a
component's value to a bean property has the advantage that the backing bean has no
dependencies on the JavaServer Faces API, allowing for greater separation of the
presentation layer from the model layer and it can perform conversions on the data based
on the type of the bean property value.

After developing the backing beans to be used in the JSF application, these beans needs
to be configured in the faces-config.xml file, so that the JSF implementation can

 32

construct a managed bean whenever it is first referenced in the application. The managed
bean declarations for the CollabX application are given below:
<faces-config>
 <managed-bean>
 <managed-bean-name>search</managed-bean-name>
 <managed-bean-class>
 com.repository.web.beans.SearchMB
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>lob</managed-bean-name>
 <managed-bean-class>
 com.repository.web.beans.LearningObjectMB
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</faces-config>

A backing bean is defined with a managed-bean element inside the top-level faces-config
element. The scope of the managed beans is session, which means that the managed
bean is created once for each session and the lifetime of the bean spans across
multiple requests. Once the bean�s scope is session, the application developer has to
factor in additional logic to clear out stale request data when handling a subsequent new
request.
In the JSF framework, navigation among pages in a web application is determined by a
set of rules. These rules are defined by the application developer in faces-
config.xml. They determine the next page to be displayed after a button or hyperlink
is clicked, as shown in Figure 22.

 33

Figure 22 JSF programming model

In most web applications, navigation is not static. The navigation flow does not just
depend on which button is clicked but also on the outcome of the triggered process. Each
navigation rule in JSF can navigate from one source page to any of the target pages
defined in the web application. Each navigation case within the navigation rule defines a
target page and a logical outcome that triggers the navigation to the target page.

View
(JSP, Facelets)

<html:commandButton value="#{msgs.save_button}"
 action="#{lob.saveFeedback}" />

 Navigation Rules
 -- (faces-config.xml)

<navigation-rule>
 <from-view-id>
 /pg_view_item.jspx
 </from-view-id>
 <navigation-case>
 <from-outcome>pg_critique</from-outcome>
 <to-view-id>/pg_critique.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/pg_search.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

ou
tc

om
e

 Backing Bean POJO Managed Beans

public String saveFeedback() {
 try {
 //save the feedback
 repository.addAnnotation(id,
 version,this.lob.getAnnotate());
 }finally {

 }
 return “success”;
}

ev
en

t

 34

When a button or hyperlink is clicked, the component associated with it generates an
action event. The framework handles this event and calls the action method referenced
by the component that triggered the event. This action method is located in a backing
bean and is provided by the application developer. It performs some processing and
returns a logical outcome String, which describes the result of the processing. The
framework then selects the page to display next by matching the result of the processing
against the navigation rules in the application configuration resource file.

This is illustrated in Listing 9. When the command button is clicked, the method
lob.saveFeedback is called by the JSF framework. Once the processing is done by
the action method, the navigation rule defined for the view is now processed from the
outcome of the action method lob.saveFeedback.
<html:commandButton value="#{msgs.save_button}"
 action="#{lob.saveFeedback}" />

<navigation-rule>
 <from-view-id>/pg_view_item.jspx</from-view-id>
 <navigation-case>
 <from-outcome>pg_critique</from-outcome>
 <to-view-id>/pg_critique.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>success_feedback</from-outcome>
 <to-view-id>/pg_search.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

Listing 9. Command button and navigation rule

The rule in Listing 9 states that when the button or hyperlink component on
pg_view_item.jsp is activated, the application will navigate from the
pg_view_item.jsp page to the pg_search.jsp page if the outcome referenced
by the button component�s tag is success_feedback.

3.2 Java Persistence Architecture
The Java Persistence Architecture is a key piece of the Java EE platform and provides an
ease-of-use abstraction on top of JDBC so that the user code can be isolated from
database, vendor peculiarities and optimizations. It can also be described as an ORM
(object-to-relational mapping) engine, which means that a user can map Java objects to
relational entities in a database through well-defined metadata annotations. In additional
to object mappings, JPA also provides a query language that is very SQL-like but is
tailored to work with Java objects rather than a relational schema. The primary features
of the architecture are:

• POJOs
Entities are defined as �Plain Old Java classes� and not components.

• Support for enriched domain modeling such as inheritance, polymorphism etc.

 35

• Standardized object/relational mapping

• Using annotations and/or XML

• Support for pluggable persistence providers

• JPQL-Java Persistence Query Language

3.2.1 Entities
Entities, in the Java Persistence specification, are plain old Java objects (POJOs). These
entities are created using the new operator, in exactly the same manner in which an
ordinary class is created. Unlike the past J2EE specifications standards, the entity objects
don�t have to implement any required interfaces. The container contract is abstracted out
by means of annotations, special markers which are recognized by the container to
manage the entity objects. Entities can also be serializable and they can be used as
detached objects in the web tier of an application. This precludes the need for defining
data transfer objects to transfer data between the web tier and the service layer. An
example of an entity is given below:
@Entity
public class LearningObject implements Serializable {

 @Id
 private Long id;

 @Id
 private Long version
 …
 //collection of feedbacks received for this lesson
 private Collection<LessonFeedback> feedbacks;

 public LearningObject() {
 }
 @OneToMany(cascade={CascadeType.ALL})
 public Collection<LessonFeedback> getFeedbacks() {
 return feedbacks;
 }

}

Each entity object has a persistence identity, which maps to a primary key in the
database. A primary key can correspond to a simple type. This is represented by the
following annotations:

• @Id � This will be a single field/property in an entity class

• @GeneratedValue � The persistent identity can be generated automatically

Relationships can exist between entities. A relationship is modeled between entities to
reflect the relational model of the various tables in the database schema. There are four
types of cardinality: one-to-one, one-to-many, many-to-one, and many-to-many. In
addition to this, each relationship can be either unidirectional or bidirectional. The

 36

relationship metadata is again expressed in terms of annotations. Here is an example of a
one-to-many bi-directional relationship:
@Entity
public class LessonPropertyValue implements Serializable {
 @Id
 private Long id;
 protected LessonProperty property;
 @ManyToOne
 public LessonProperty getProperty() {return property;}
 public void setProperty(LessonProperty property) {
 this.property = property;
 }
}

@Entity
public class LessonProperty implements Serializable {
 @Id
 private Long id;
 private List<LessonPropertyValue> values =
 new ArrayList<LessonPropertyValue>();
 @OneToMany(mappedBy=”property”)
 public List<LessonPropertyValue> getPropertyValues() {
 return values;
 }
 public void addPropertyValue(LessonPropertyValue value) {
 getPropertyValues().add(value);
 value.setProperty(this);
 }

}

The relationship that is modeled between entities LessonProperty and
LessonPropertyValue conforms to the One-to-Many Bidirectional relationship. A
one-to-many bidirectional relationship occurs when one entity bean maintains a
collection-based relationship property with another entity bean, and each entity bean
referenced in the collection maintains a single reference back to its aggregating bean.
From the above example the entity LessonProperty is the aggregation bean and
maintains a collection based relationship property with the entity
LessonPropertyValue. This is modeled by the relationship metadata annotation
@OneToMany and @ManyToOne.

3.2.2 Object Relational (OR) Mapping
Entity beans represent data in the database and these beans have to model the relationship
that exists between the data that they represent. The process of mapping persistent object
state to database and mapping of relationships to other entities is known as Object
Relational Mapping (ORM). The metadata for the mapping can be expressed as
annotations or XML. These annotations can be categorized as given below:

! Logical Mapping � Used to define the object model (e.g., @OneToMany,
@Id, @Transient)

 37

! Physical Mapping � Used to map the object�s persistent state to database tables
and columns (e.g., @Table, @Column)

The ORM metadata in annotations can model a simple basic relational mapping or model
a complex relationship between entities.

3.2.2.1 Basic Mapping
A simple mapping provides direct mapping of fields/properties of an entity to database
columns. It maps any of the common simple Java types such as primitives, Date,
Serializable, byte[] etc to its corresponding SQL types. It defaults to the type deemed
most appropriate if no mapping annotation is present. It is used in conjunction with the
@Column annotation type. An example of a basic mapping is given below �
@Entity
public class LessonFeedback implements Serializable {

 @Id
 private Long id;
 private String comments;

 @Column(name="comments",nullable=true)
 public String getComments() {
 return comments;
 }

}

It uses the following annotations-
@Column

This annotation maps the entity beans property to a database column name.
@Id

Every entity bean that maps to a relational table must have an identity. The primary key
is the identity of a given entity bean and it must be unique. This annotation identifies one
or more properties of the entity bean that make up the primary key of the mapped table.

This class physical mapping to a table is given below:

 38

Class LessonFeedback

PK id

comments
feedback
used
studentFeedback
modified

Table LessonFeedback

id
feedback
modified
student_feedback
used
comments

3.2.2.2 Relationship Mapping
The ORM metadata in annotations support relationship with single entity or multiplicity.
The single entity relationship is supported by @ManyToOne and @OneToOne
annotations, while relationship with multiplicity are supported by @OneToMany and
@ManyToMany annotations. Every bidirectional relationship has an owning and inverse
side. The owning side specifies the physical mapping with these annotations

! @JoinColumn � It specifies the foreign key column. If this column is omitted
then the primary key of the target entity is taken as the foreign key.

! @JoinTable � Joins between entities can be done through an association table.
It decouples the physical relationship mappings from the entity tables.

A one-to-many unidirectional relationship between entities LearningObject and
LessonFeedback is given below:

 39

LearningObject

PK id
PK version_id

language
content
title
level
search_tag_keyword
duration
target_audience
installation_help_text
description
create_date

LessonFeedback

PK id

feedback
modified
comments
student_feedback
used

JPA Join Table

PK annotation _id
PK version _id
PK id

The JPA provider generates the schema from the entity bean definitions. The relationship
between the two entities is modeled as given below:
@Entity
@IdClass(ObjectKey.class)
public class LearningObject implements Serializable {
 @Id
 private Long id;
 //collection of feedbacks received for this lesson
 private Collection<LessonFeedback> feedbacks;
 @OneToMany(cascade={CascadeType.ALL})
 public Collection<LessonFeedback> getFeedback() {
 return feedbacks;
 }
 public void setFeedback(
 Collection<LessonFeedback> feedbacks) {
 this.feedbacks = feedbacks;
 }
}
@Entity
public class LessonFeedback implements Serializable {
 //this is the unqiue key of the feedback for the
 //learning resource
 @Id
 private Long id;
 …
}

 40

The one-to-many relationship is declared using the @OneToMany annotation. The
multiplicity in the relationship is represented by defining a relationship property that can
point to many entity beans and annotating it with the @OneToMany. The data type is
typically a java.util.Collection object that contains a homogenous group of
entity object references.
TopLink, which is the default JPA provider in the glassfish container, implements a one-
to-many relationship with a join table mapping. This is an association table that maintains
two columns of foreign keys pointing to both the LearningObject and
LesssonFeedback records. The join table shown in the above figure is an association
table, which is generated by the TopLink to implement the @OneToMany relationship
annotation.

3.2.3 Query
The Java Persistence query language (JPQL) is used to define searches against persistent
entities independent of the mechanism used to store those entities.. JPQL always
references the properties and relationships of the entity beans rather than the underlying
tables and columns these objects are mapped to. When a JPQL query is executed, the
entity manager uses the information provided through annotations and translates it to a
native SQL query. This generated query is then executed through a JDBC driver in the
targeted database. As such, JPQL is "portable", and not constrained to any particular data
store. It is an extension of the Enterprise JavaBeans query language, EJB QL, adding
operations such as bulk deletes and updates, join operations, aggregates, projections, and
sub queries.

Java Persistence has a query interface to execute JPQL and native SQL queries. This API
gives methods for paging result set and passing java parameters to the query.
EntityManager is the factory for creating queries. Listing 4 shows how to retrieve a
collection of LearningObjects from the CollabX repository. The factory method
createQuery() of EntityManager is invoked to create a dynamic query to
retrieve a collection of LearningObject instances. Listing 10 shows an example of a
dynamic query creation in CollabX and retrieving the result set:
// Retrieve a collection
Query q = em.createQuery(
 "SELECT l from LearningObject as l
 WHERE l.title LIKE :title
 AND l.keywords LIKE :keywords
 ORDER BY l.creationTime");

q.setParameter("title", "Exercise 7.1");
q.setParameter("keywords","factoring integer");
Collection departments = q.getResultList();

Listing 10. Query for retrieving a collection of LearningObjects

 41

Here is an example below that shows how to retrieve a single instance of LearningObject.
// Retrieve a single instance
Query q = em.createQuery(
 "SELECT l from LearningObject as l
 WHERE l.id = :lessoned");
q.setParameter("lessoned", 1234);
//get the result
LearningObject lo = q.getSingleResult();

Listing 11. Query for retrieving a single instance of LearningObject

3.3 Web-Tier Programming Model � JSF, EJB 3.0 and JPA
The Java EE platform supports greatly simplified programming model for enterprise web
applications. Java EE components are configured and deployed using annotations instead
of bulky XML descriptors which needed to be packaged as part of the deployment
archive. Annotations can be used to write specification and behavior of the components
directly in the code. In the Java EE platform, dependency injection can be used for
transparent creation and lookup of the resources to automatically insert references to
other required components or resources using annotations.

Figure 23 Web-Tier programming model

<core:view>
…
…
</core:view>

Persistent
Storage

Faces Servlet

 Application Data

Backing
Beans

Session Beans

Entities

Browser

 42

A logical diagram of the web programming model is given in Figure 23. A typical web
request is first intercepted at Java Server Faces layer. The request data is then marshaled
to the JSF page�s backing bean through value binding expressions which wires the UI
components to properties of the backing bean.

A JSF managed bean as shown in Listing 12 can make calls to EJBs by declaring a field
of that EJB�s type and annotating that field as a reference to a @EJB. The container will
process the @EJB annotation during the deployment of the web application. It will look
for an EJB reference that implements the business interface type as its local or remote
interface. If more than one EJB uses the same business interface, it throws a deployment
exception.
public class LearningObjectMB {
 @EJB
 private RepositoryServiceRemote repository;

 public void dispatch() throws Exception{

 //save the uploaded content in the database
 Properties metadata = new Properties();
 metadata.setProperty("title", this.getCurrentLO().getTitle());
 metadata.setProperty("language", getCurrentLO().getLanguage());
 metadata.setProperty("description",
 getCurrentLO().getDescription());
 metadata.setProperty("help_text",
 getCurrentLO().getHelp_text());

 metadata.setProperty("keywords", getCurrentLO().getKeyword());
 metadata.setProperty("audience", getCurrentLO().getAudience());
 metadata.setProperty("duration",
 Integer.toString(getCurrentLO().getDuration()));
 metadata.setProperty("level", getCurrentLO().getLevel());
 metadata.setProperty("context", "");

 //get the properties
 int suffixIndex = 1;
 for (LOBProperty p : this.getCurrentLO().getProperties()) {
 //check for null
 metadata.setProperty("property_name."+suffixIndex,
 Util.checkNull(p.getName(),"undefined"));

 metadata.setProperty("property_value."+suffixIndex,
 Util.checkNull(p.getValue(),"undefined"));
 suffixIndex++;

 }
 //call the method
 repository.createXObject(metadata, this.getCurrentUpload());

 }

}

Listing 12. Managed Bean with injected EJB reference

 43

The injected remote EJB reference is a stateless session bean. Stateless session beans as
the name suggests doesn�t hold the client conversation state. As soon as it is finished
servicing a method invocation it can be swapped to service request from another client.
Since it doesn�t maintain any client state, there is no overhead in swapping stateless
session beans across multiple client invocations. Stateless session beans are also a prime
candidate for implementation a façade pattern. This façade interface is shown in Listing
13. It centralizes requests to the domain and aggregates multiple calls to the
EntityManager.

@Stateless
public class RepositoryServiceBean implements RepositoryServiceRemote {

 @PersistenceContext(unitName = "collabx")
 private EntityManager em;

 public long createXObject(Properties metadata,byte[] content);
 public PageData findLearningObject(long oid,long version)
 public PageData findLearningObject(long oid,long version,
 boolean load);
 public List<PageData> search(Properties metadata)
 public void addAnnotation(long oid, long version, Feedback critique);
 public void addMetadata(long oid,long version,List<String> keywords,
 Map<String,List<Object>> metadata);
 public void addMetadata(long oid,long version,
 Map<String,List<Object>> metadata);

}

Listing 13. Stateless session bean facade interface

An EntityManager is injected into an EJB by using the
@javax.persistence.PersistenceContext annotation as shown in Listing 14.
This annotation allows the EJB container to inject an EntityManager reference into
the EJB. This is the most preferred method as the EJB container has full control over the
life cycle of the underlying persistence context of the EntityManager. The
application developer doesn�t need to write any additional life cycle code to handle the
cleanup of the EntityManager instance.
@Stateless
public class RepositoryServiceBean implements RepositoryServiceRemote {
 @PersistenceContext(unitName = "collabx")
 private EntityManager em;

}

Listing 14. EntityManager injection in a EJB

EntityManager is the primary interface to persistence runtime and manages the state
of the entities that are attached to it as shown in Listing 15.
LearningObject exercise = new LearningObject();
//set the version
exercise.setVersion(Version.generateVersion());

 44

exercise.setTitle(metadata.getProperty("title",""));
exercise.setContext(metadata.getProperty("context", ""));
exercise.setCreationTime(Calendar.getInstance().getTime());
em.persist(exercise);

//find an entity
ObjectKey key = new ObjectKey(oid,version);
LearningObject lob = em.find(LearningObject.class,key);

Listing 15. Usage of EntityManager API

When an entity is attached to an EntityManager, the manager tracks state changes to
the entity and synchronizes those changes to the database whenever the entity manager
decides to flush its state.
The entity manager manages the attached entities through a persistence context. The
persistence context represents a collection of entities, whose persistence state is tracked
by the entity manager for changes and updates. These changes are then flushed to the
database. In a given persistence context, for each persistence identity there is a unique
persistence instance. Once a persistence context is closed, all managed entities within that
context become detached and are no longer managed by the entity manager. Once an
object is detached from the persistence context, any state changes to this object instance
will be not flushed to the database.

3.3.1 Entity Management
The state of the entity as it flows though the various tiers of an enterprise web application
is shown in Figure 24.

Figure 24 Entity Detach and merge

JSF Managed
Bean

EntityManager

Database

Session Beancreate

 persist

Query

create

detached
Detached
entities

managed

Managed
Entities

 45

An entity can be created with the new() operator like any other ordinary POJO class. In
this state entity is not yet managed or persistent. Code Listing 16 shows the relevant code
for creating an instance of LearningObject entity.
LearningObject exercise = new LearningObject();
//set the version
exercise.setVersion(Version.generateVersion());
exercise.setTitle(metadata.getProperty("title",""));
exercise.setContext(metadata.getProperty("context", ""));
exercise.setCreationTime(Calendar.getInstance().getTime());
exercise.setDescription(metadata.getProperty("description",""));
//get the duration
String duration = metadata.getProperty("duration", "0");
exercise.setDuration(Integer.parseInt(duration));

Listing 16. Creating a New Entity

An entity is persisted in the database by invoking EntityManager.persist()
method as shown in Listing 17. Once an entity is persisted in the database, it is managed
by the EntityManager till the end of the PersistenceContext. If the entity has any
relationships with other entities, these entities may also be created in the database if the
appropriate cascade policies are mentioned in the relationship annotation.
@Entity
@IdClass(ObjectKey.class)
@SequenceGenerator(name="VERSIONKEY_SEQUENCE",sequenceName="VERSIONKEY_
SEQUENCE")
public class LearningObject implements Serializable {

 @Id
 private Long id;
 //collection of properties
 @OneToMany(cascade={CascadeType.ALL})
 private Collection<LessonProperty> properties;
}

@Stateless
public class RepositoryServiceBean implements RepositoryServiceRemote {

 @PersistenceContext(unitName = "collabx")
 private EntityManager em;

 public long createXObject(Properties metadata,byte[] content){

 try {
 LearningObject exercise = new LearningObject();
 //set the version
 exercise.setVersion(Version.generateVersion());
 //check if the HashMap contains
 //pairs of property_name.x and property_value.x
 for(String propertyName : metadata.stringPropertyNames()) {
 if (propertyName.startsWith("property_name")) {
 //get the actual property name and values
 String[] property = Util.getProperty(propertyName,
 metadata);

 46

 properties.add(new LessonProperty
 (property[0],property[1],true));
 }
 }
 if (properties.size() > 0) {
 exercise.setMetadata(properties);
 }
 //set the content
 exercise.setXcontent(content);
 em.persist(exercise);
 return exercise.getId();
 } catch (RuntimeException ex) {

 }
 }

Listing 17. Persisting Entities

Entities become detached and unmanaged when the persistence context or the transaction
scope ends as shown in Figure 24. However, in the detached state, these detached entities
can be serialized and sent over the wire to different tiers of the application. Each of these
tiers can make changes to the state of the entity. The Java Persistence framework does
allow to merge state changes made to a detached entity back into the persistence
repository using the entity manager�s merge() method as shown in Listing 18.
public void addAnnotation(long oid, long version,
 Feedback critique) {
 long id = -1;
 try {
 //form the composite key
 ObjectKey key = new ObjectKey(oid,version);
 LearningObject lob = em.find(LearningObject.class, key);

 //add the feedback
 MetadataAnnotation m = new MetadataAnnotation();
 m.setComments(critique.getComments());
 m.setFeedback(critique.getFeedback());
 m.setStudentFeedback(critique.getStudentFeedback());
 m.setModified(critique.isModified());
 m.setUsed(critique.isUsed());

 lob.getAnnotation().add(m);

 em.merge(lob);

 }catch(RuntimeException rte) {

 Logger.getLogger(getClass().getPackage().getName())
 .log(Level.SEVERE, "", rte);
 throw rte;
 }

 return ;
}

Listing 18. Merging Entities

 47

The most important thing to remember here is that detached entities which had been
serialized to the web tier of an enterprise web application needs to be merged into the
current persistence context to be managed by the EntityManager. And, if the entity is
involved in bi-directional relationships, relationships need to be updated both on the
owning side and dependent side.

 48

4. Solution Implementation
4.1 CollabX Repository Overview
The solution proposes a central repository to which lessons created by different
instructors can be uploaded. Each lesson uploaded to the repository is tagged with
metadata data elements, which are a subset of definitions derived from the IEEE LOM
specifications [1].

It addresses a set of use-cases, which are often valid for users of a shared repository,
specifically

• Search (Advanced Search)
An end user would like to search for a particular lesson contained in the
repository. Each lesson in the repository is tagged with keywords, which is used
to identify and retrieve the lesson.

• Download
An end user can download a lesson from the repository. The format supports
Labrat and a generic zipped version of the resources that make up the lesson.

• Upload
An end user can upload a zipped file containing resources that make up the
lesson. The resources contained in the zipped archive could be any valid file
arranged in any hierarchical layout.

• Fork (a variant of an existing lesson)
An end user can fork a variant from an already existing lesson in the repository.
During the upload process, a user can indicate that the lesson is a variant of an
existing lesson. This relationship will be maintained in the repository and a user
can search for lessons which are derived from a particular type of lesson.

• Critique
An end user can search for a lesson and leave feedback about the quality of the
lesson. This information will again be tagged with that particular lesson with an
Annotation data element, which will be used as a search parameter while
searching for a lesson in the repository.

• Categorize
An end user can categorize a lesson by changing properties associated with the
lesson. These properties may include Text Book Name, Chapter Name, Section
Name, level of difficulty, context etc.

 49

This shared repository implementation introduces collaborative features like "Fork",
"Critique" and "Categorize", which is lacking in other similar repositories. This shared
repository henceforward will be named as CollabX.

4.2 Integration with External Systems
CollabX is built on the premise of a shareable and collaboration platform across global
communities. These individual communities might be using a set of grading systems that
evaluates a student�s submission based on pre-defined set of configuration attributes that
is not inter-operable with each other. CollabX tries to bring a common ground in defining
a consistent vocabulary in developing courseware for Computer Science students. This
common vocabulary takes the shape of a set of metadata definitions that describes a
Computer Science assignment in CollabX. This very set of definitions is then used to
export an assignment to a target system such as Web-CAT or Labrat by using a plug-in
architecture.
CollabX supports plugins for Web-CAT, Labrat and a generic zipped format. The plugin
interface is given below �

package com.repository.plugin;

/**
 * This is an interface which defines the contract for exporting a
 * exercise in the repository into an external format
 *
 * @author Somyajit Jena
 */
public interface Plugin {

 public void export(byte[] lesson) throws Exception;
 public void export(byte[] lesson,FileEventListener listener)
 throws Exception;
 /**
 * A simple getter to return the identifier of the exported
 * lesson from the repository
 * @return - String - an identifier
 */
 public String getExportId() ;
}

This interface exports a lesson to the target system by taking the contents (byte []) of
the persisted lesson in the repository and transforming the same to a deployable unit of
the target system. It uses the metadata definitions that were tagged with the lesson to
build a deployment archive with associated property definitions that matches the target
system�s requirements.

4.2.1 Web-CAT Interoperability
Course developers or instructors can develop courses in Web-CAT and publish them to
their students. Web-CAT automatically grades submitted assignments against an

 50

instructor provided solution. Typically, the instructor solution is executed through a test
harness, which is a collection of test cases provided by the instructor. These test cases
compare the output of a student�s submitted assignment with the expected output of the
solution provided by the instructor.

While creating an assignment in Web-CAT, an instructor can provide reference test cases
in the form of a JUnit test case. These instructors provided test cases are executed by a
JavaTddPlugin when a student submits a solution for the assignment. The
configuration of this plug-in is done as part of the overall set-up of the assignment in
Web-CAT as shown in Fig 25.

Figure 25 JavaTDDPlugin Configuration
An assignment created in Web-CAT should have adequate artifacts to configure the
parameters of JavaTDDPlugin as shown in Table 4.

Configuration
Parameter

Parameter Value Description

JUnit Reference SJSU/admin/ExP7_10/web A Java source file (or directory of

 51

Test Class(es) catbin/ExP7_10_29_TestC
ase.java

source files) containing JUnit tests to
run against student code to assess
completeness of problem coverage. If
a single Java file is selected, it must
contain a JUnit test class declared in
the default package. If a directory is
selected, it should contain JUnit test
classes arranged in subdirectories
according to their Java package
declarations.

Supplemental
Classes for
Assignment

SJSU/admin/ExP7_10/clas
ses.jar

A jar file (or a directory of class files
in subdirs reflecting their package
structure, or a directory of multiple
jar files) containing precompiled
classes to add to the classpath when
compiling and running submissions
for this assignment.

Data Files for
Student

SJSU/admin/ExP7_10/web
catdata

A file (or a directory of files) to place
in the student's current working
directory when running his/her tests
and when running reference tests. The
file selected (or the entire contents of
the selected directory) will be copied
into the current working directory
during grading so that student-written
and instructor-written test cases can
read and/or write to the file(s). The
default is to copy no files.

Table 4 . JavaTDDPlugin Configuration parameters

Each parameter value shown in Table 4 is a relative path to the resource from the root
folder of the assignment. When a submitted assignment is being graded, the
JavaTDDPlugin reads these configuration values to fetch the various resources from
the respective file paths.
Since Web-CAT has support for executing JUnit test cases, the interoperability between
CollabX and Web-CAT was done at a JUnit test case level. This interoperability support
is only applicable for assignments whose content layout confirms to the Labrat format as
show in Section 1.1 of Chapter 1. Each exported assignment from CollabX repository is
tagged with a dynamically generated JUnit test case.

The Web-CAT plug-in of CollabX will generate two test methods �
testMainClassWithInputs and testWithCapturedOutput.

 52

4.2.1.1 Method testMainClassWithInputs

During export of an assignment to a Web-CAT grading system, the plug-in reads the
Labrat metadata file check.properties and contents of directories to generate the
code for this test function. It uses the following rules:

! It reads the value of the property test.test-inputs to determine if the main
class of the submitted assignment needs to be loaded dynamically by the java
classloader. A value �true� indicates that the main class of the assignment needs
to be tested with instructor�s reference test data. The code generated will read the
property mainclass, dynamically load and invoke the java class.

! It scans the student and grader directories for instructor reference test data looking
for files with names having patterns like test*.in or test*.out. The code is
generated to make the program read data from the input test files and compare the
program�s output with instructor provided expected output data.

public void testMainClassWithInputs() throws Exception {
 //the input files are assumed to be
 //test.in and the output is test.out
 Properties properties = null;
 PrintStreamWithHistory saveOutputStream = null;
 try {
 //read the check.properties file
 properties = this.readProperties("check.properties");
 //check with check.properties if the Main class
 //of the assignment needs to be tested with supplied inputs
 boolean testMainClass =
 booleanProperty("test.test-inputs",properties,true);
 if (testMainClass == false) {
 //force a success evaluation
 assertTrue(testMainClass == false);
 return;
 }
 //set the input stream of the test case
 InputStream in = getClass().getClassLoader()
 .getResourceAsStream("test1.in");
 System.setIn(in);
 saveOutputStream = this.systemOut();
 //call the main class
 String mainClass = stringProperty("mainclass",properties,null);
 if (mainClass == null) {
 assertTrue(mainClass == null);
 return;
 }
 //invoke
 this.invokeMainClass(mainClass);

 }catch(Exception e) {
 System.out.println("Exception: Message " + e.getMessage());
 throw e;
 }

 53

 //evaluate the results
 //get the CompareTask
 CompareTask ct = new CompareTask();
 try {
 //set the parameters
 //this configuration is for knowing the comparison
 //mode to test the output comparison
 String outputCompareTokenType = stringProperty("test.token",
 properties,"line");
 ct.setToken(outputCompareTokenType);
 //set the source
 String result = saveOutputStream.getHistory();
 StringReader source1 = new StringReader(result);
 //source2 which is pre-canned
 Reader source2 = new InputStreamReader(getClass.getClassLoader()
 .getResourceAsStream("test1.out"));
 ct.setSource1(source1);
 ct.setSource2(source2);
 //evaluate the output
 assertTrue(ct.compareOutput() == true);

 }finally {

 }
}

4.2.1.2 Method testMainClassWithInputs
This test function is a wrapper around Horstmann style tester classes, which is included
in any assignment that confirms to the Labrat format. Horstmann style tester classes are
Java classes having a naming pattern like *(T|t)ester\\.java$. If there are any
instructor provided Horstmann style tester classes, it will call that tester program with the
appropriate inputs and compare the program output with the instructor provided expected
output. The comparison task reads the test.token and test.tolerance metadata
properties from check.properties file to determine the type of comparison to
make and the level of tolerance to use before flagging the result as an error:

! test.token

This property indicates the type of comparison to use while comparing the
program�s output with the instructor�s reference expected output. The valid values
are line, word, number or regular expression.

! test.tolerance

This property holds the value for the level of tolerance to use while comparing
numbers.

The captured output of a Horstmann style tester class has the following format as given
below:
true
Expected: true
2
Expected: 2

 54

true
Expected: true
2
Expected: 2
true
Expected: true
3
Expected: 3
true
Expected: true
5
Expected: 5
false
Expected: false

The code is generated to compare each output line with the line having the "Expected"
token.
public void testWithCapturedOutput() throws Exception {

 //check if there are any tester classes in any of the
 //directories, we need to attach the System.out and check the
 //expected pattern

 PrintStreamWithHistory saveOutputStream =this.systemOut();
 //call the any * tester class present in the student or grader
 //directory
 FactorGeneratorTester.main(null);

 //all program done. Parse the output
 //get the print history
 String result = saveOutputStream.getHistory();

 //create the compare task object
 CompareTask ct = new CompareTask();
 //get this from check.properties
 ct.setToken("number");
 //get the tokens
 StringReader reader = new StringReader(result);
 List<String> alltokens = ct.getTokens(reader);

 //nothing to compare
 assertNotSame(alltokens.size(), 0);
 ListIterator<String> iter = alltokens.listIterator();

 boolean equals = true;
 while (iter.hasNext()) {
 //source1
 String token1 = iter.next();
 String token2 = iter.next();
 equals &= ct.compare(token1, token2);
 }
 assertTrue(equals == true);
}

The file naming convention of this generated test case is given below �

 55

 <title of the assignment>_<random number>_TestCase.java
Figure 26 shows the layout of the exported assignment when it is deployed in Web-CAT.
The Web-CAT plug-in adds two new directories: webcatbin and webcatdata.

Figure 26 Layout of the exported assignment in Web-CAT

These new directories contains the following artifacts -
! webcatbin

This directory contains the generated JUnit test case for the exported assignment.
This makes it easier to integrate with Web-CAT, since once can easily identify the
folder and configure the test case to be a "Instructor reference test case"

! webcatdata

This directory contains all the test data files whose names match the patterns
test*.in and test*.out.

As shown in Figure 26, file Exp7_10_29_TestCase.java has been configured to
be the instructor reference test case for assignment titled �ExP7_10�. The folder
�webcatdata� has been configured as the test data file that needs to be copied over when
Web-CAT is executing the instructor reference test in a temporary staging area. When a
student submits a solution for an assignment, Web-CAT executes this reference test and
the result is made available to the student.

 56

4.2.2 Labrat Interoperability
An assignment confirming to the Labrat directory layout format is saved in the file
system as shown in Figure 27. This is in addition to being persisted in the repository.

Figure 27 Labrat Interoperability

4.2.3 Labrat Feature Extension
Prior to these feature inclusions, an instructor had to prepare the lesson in the Labrat
format and copy to the root of the repository. The web-interface was enhanced so that a
zipped lesson in Labrat format would be uploaded to the repository. It also supported
generation of the metadata of the uploaded lesson, if check.properties file was not
included in the zipped file.

4.3 CollabX Solution Use Cases

4.3.1 Use Case � Upload
The table below enumerates a set of activities for uploading a lesson to the repository-

User action

System response

User enters the title and selects the zipped archive to
upload

System uploads the zipped archive in to a temporary
staging area. It reads the contents and tags metadata
information to the contents. It then displays the
properties page.

 57

User enters the values for properties Text Book
Name, Chapter, Section, Language, Installation Help
Text, description, level of difficulty, Duration,
Target Audience and any other additional properties
that the use might think deem correct.

System associates these properties with the lesson
and saves it to the repository. It then displays the
page to associate search keyword with the lesson.

User enters the search keywords.

System saves the keywords for the lesson. It then
displays to the user a result screen which has the
contents of the zipped archive, properties and tagged
search keywords. This marks the end of the upload
process.

Table 5 . Use-Case of uploading a lesson to the repository

Figure 28 Flow Diagram of Uploading a Lesson to Repository

4.3.1.1 User Interface
This section has a set screen shots to illustrate the use case given above. Figure 29 shows
the page for uploading a zipped archive into the repository. The user has to select the
zipped archive in the file system. During the upload process, the application scans the
zipped content and tag metadata information with the contents wherever appropriate. It
then stages the uploaded zipped archive in a temporary storage area to gather additional
information about the uploaded content before saving it into the repository. This
additional information is gathered from the user through a wizard like interface as shown
in Figure 30.

Main Upload Screen

Property Page
Tag Search
Keywords

Page

View Upload
Result screen

 58

Figure 29 Screen shot � Repository Upload

Figure 30 shows the Properties page where the user has to add some contextual
information to the uploaded lesson. This helps in describing the lesson and its usefulness
in various environments of study as wells as the targeted audience.

 59

 60

Figure 30 Screen shot � Properties Page

In the above screen shot, a user could also enter additional properties that may further
describe the uploaded lesson for any special circumstances. They could also tag search
keywords for a lesson that could be used in identifying the lesson in the repository as
shown in Figure 31.

Figure 31 Screen shot � Repository upload

 61

Figure 32 shows the result of a successful upload for a zipped archived lesson into the
repository. At this point, the contents of the zipped archive along with the metadata
information have been persisted in the repository.

Figure 32 View uploaded assignment

 62

4.3.2 Use Case � Search
This use case assists users of CollabX in searching for an assignment that has been
persisted in the repository. The user interface exposes a set of search filters for targeted
search of an assignment. Table 5 shows the various search filters that are enabled in the
user interface �

Search Filter Description

Title Search based on title of the assignment. An assignment whose title
starts with the search term is a match.

Keywords Search is based on the �keywords� that was tagged with the
assignment. This search filter finds keywords of an assignment that
contains this term.

Property Name Search is based on the user-defined properties that were associated
with this assignment. This search filter will search for property names
of an assignment which contains this term

Property Value A value entered for this filter will search for property values that
contains this term.

Table 6 . Search Filters

None of the search filters mentioned in Table 6 is mandatory. The default value is a wild-
card search (%) for each of the above search terms. Listing 19 shows an example of a
search query generated from the values entered for the search filters.

SELECT l from LearningObject as l JOIN l.metadata m
WHERE l.title LIKE ‘Exercise 7.10 Factoring%’
AND l.keywords LIKE ‘%integer factorial%’
OR (m.propertyName = 'Text Book' AND
 EXISTS (
 SELECT val from m.propertyValues val
 WHERE val.propertyValue LIKE '%Big Java volume 2%'
)
)
ORDER BY l.creationTime

Listing 19. Generated EJB QL from Search Filters

The table below enumerates a set of activities to search for an assignment in CollabX.

User action

System response

User inputs the data based on which the search will
be executed. The search filters are title, keywords
and property names and values. These are the
properties which are tagged with the assignment

System displays the search results matching the filter
criteria.

 63

when it was uploaded into the shared repository.

User selects one of the assignments that is displayed
in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

Table 7 . Use Case - Search

4.3.2.1 User Interface

Figure 33 UI Flow Diagram of Search

This section has a set screen shots to illustrate the use case given above. Figure 34 shows
the user interface for searching an assignment in the repository. It has the search filters as
discussed in Table 6. If an assignment has multiple user-defined properties, these can be
made part of the search filter by clicking on the �More Properties�� button. On clicking
this button, another set of property name and value will be prompted to the user.

Main Search Page with
filters

Search Results

View Lesson
Details

 64

Figure 34 Search User Interface

Figure 35 shows the results for searching by the title of an assignment which starts with
�Exercise 7.10�. Each search result displays the title and a brief description of the
assignment.

Figure 35 Search Results

 65

4.3.3 Use Case � Fork
This use case assists instructors in uploading a variant of a programming assignment that
they may have downloaded and later modified it to suite their needs. A programming
assignment fork helps the instructor in filling in the gaps in metadata definition of the
altered programming assignment. They can choose to retain all of the original metadata
definition and add new ones to reflect the contents of the altered assignment. Prior to
forking an assignment, an instructor has to search for the original assignment and mark it
as the parent from which the current assignment was created. CollabX will then load the
metadata definition of the original assignment and associate that with the current
assignment that is being uploaded to the shared repository.

The table below enumerates a set of activities to upload a forked assignment into
CollabX.

User action

System response

User enters the title and selects the zipped archive to
upload. The checkbox is marked to denote that the
assignment that is being uploaded is a forked
assignment from an existing one in CollabX.

System uploads the zipped archive in to a temporary
staging area. It parses the contents and then redirects
to a search page.

User inputs the data based on which the search will
be executed. The search filters are title, keywords
and property names and values. These are the
properties which are tagged with the assignment whe
it was uploaded into the shared repository.

System displays the search results matching the filter
criteria.

User selects one of the assignments that is displayed
in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

User marks this assignment as the parent of the
forked assignment that is being uploaded to the
repository.

System shows an editable properties page which the
user can edit metadata of the assignment.

User edits the values for properties Text Book Name,
Chapter, Section, Language, Installation Help Text,
description, level of difficulty, Duration, Target
Audience. The end user can also delete or add
additional properties that can aptly describe the
modified assignment.

System associates these properties with the lesson
and saves it to the repository. It then displays the
page to associate search keyword with the lesson.

User can edit the tagged keywords for the
assignment. These keywords are used as one of
search filters to find an assignment.

System saves the keywords for the lesson. It then
displays to the user a result screen which has the
contents of the zipped archive, properties and tagged
search keywords. This marks the end of the upload
process of a forked assignment.

 66

4.3.3.1 User Interface

This section has a set screen shots to illustrate the use case given above. Figure 36 shows
the page for uploading a zipped archive into the repository.

Figure 36 Screen shot � Repository Upload

Main Upload with Fork
Screen

Search Page
with filters

Edit Property
Page Edit Tag

Search
Keywords

Page

View Upload
Result screen

View Lesson
Details

 67

The user has to locate the zipped archive in the file system and mark the checkbox
denoting that the assignment being uploaded is a fork of an existing assignment in the
repository. During the upload process, the application scans the zipped content and tag
metadata information with the contents wherever appropriate. It then stages the uploaded
zipped archive in a temporary storage area to gather additional information about the
uploaded content; specifically the user has to provide the details of the original
assignment by searching and selecting it. This additional information is gathered from the
user through a search interface as shown in Figure 37.

Figure 37 CollabX search interface

The user has to input the search filter criteria to narrow down the search for the original
assignment. The search results are show in the Figure 38.

 68

Figure 38 Search results page

Each search result shows the title of the assignment and a brief description about it. The
original assignment from which the forked assignment has been derived can be selected
by clicking on the title of the assignment.

Figure 39 given below shows the editable properties page of the selected assignment
where the user can add, delete or edit the metadata definition.

 69

Figure 39 Edit assignment

In the above screen shot, a user could also enter additional properties or edit the existing
ones that may further help in describing the altered assignment. They could also tag
search keywords for a lesson that could be used in identifying the lesson in the repository
as shown in Figure 40 below.

A user could edit the existing keywords list that may help in searching for the lesson in
the shared repository. The keywords are delimited by a semi-colon (;).

 70

Figure 40 Edit Search Keyword Page

Figure 41 shows the result of a successful upload for a zipped archived lesson into the
repository. At this point, the contents of the zipped archive along with the metadata
information have been persisted in the repository.

Figure 41 A Successful Save Page

 71

4.3.4 Use Case � Download
This use case assists instructors, course developers and researchers in downloading an
assignment from the CollabX repository. A user has to search for an assignment before
being able to download it. The download options that are available are shown in Figure
42.

1. Generic zipped format
The selected assignment will be downloaded as a zip file. The entire contents of
the same will be included in the archive. This option is useful in making offline
changes to it and then uploading it as a fork of the original assignment.

2. Web-CAT format
This option will export the selected assignment as a deployable archive in Web-
CAT.

Figure 42 Download Options

Table 8 enumerates a set of activities to download an assignment from the repository.

User action

System response

User clicks on the Download tab.

System redirects to the search page.

User inputs the data based on which the search will
be executed. .

System displays the search results matching the filter
criteria.

User selects one of the assignments that are
displayed in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.
A download button is displayed in this page.

User clicks on the download button System displays a page showing the details of the
assignment selected and the download options as
shown in Figure 46.

User selects one of the formats. System downloads the assignment in that format.

Table 8 . Use Case - Download

 72

4.3.4.1 User Interface

This section consists of a set of screen shots to illustrate the use case for downloading an
assignment from the CollabX repository. As stated in Table 8, user has to search and
select an assignment for download. Figure 43 shows an assignment that has been
selected for download. It has the following details:
! Properties

It shows the properties that have been set for the specific assignment. The
following properties are displayed � Title, Language, Description, Installation
Help Text, Level, Duration, Target Audience.

Main Download

Search Page
with filters

Download
Options Save

download

View Lesson
Details

 73

Figure 43 Details of a Selected Assignment

! Contents
It shows the contents of the selected assignment

! Additional Properties
It shows any additional user-defined metadata information that has been tagged
with the assignment.

! Keywords

 It displays the specific words that help in searching for an assignment.

 74

Figure 44 Download Assignment
A user can decide to download the assignment based on the information displayed above;
the selected assignment can be downloaded by clicking on the Download button. Figure
44 shows the screen for downloading an assignment from the CollabX repository. User
selects the zipped or Web-CAT format and click on the Export button. The Browser will
then prompt to save the downloaded archive in the file system.

4.3.5 Use Case � Critique
This use case helps instructors, course developers and researchers in providing feedback
for an assignment. These feedback comments are then persisted in the repository and
made available to other users.
Table 9 enumerates a set of activities to provide feedback for an assignment in the
repository.

User action

System response

User clicks on the Critique tab.

System redirects to the search page.

User inputs the data based on which the search will
be executed. .

System displays the search results matching the filter
criteria.

 75

User selects one of the assignments that are
displayed in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.
A Critique button is displayed in this page.

User clicks on the Critique button System displays a page showing a feedback
questionnaire to the user.

User fills up the questionnaire and Clicks on the
Save button

System saves the feedback for the assignment in the
repository.

Table 9 . Use Case - Critique

4.3.5.1 User Interface

This section consists of a set of screen shots to illustrate the use-case for providing
feedback for an assignment in the CollabX repository. As stated in Table 9, user has to
search and select an assignment for providing feedback. Figure 45 shows feedback user
interface for an assignment. User has to provide the following feedback:

! Did they like the assignment?
! Did their students like it?

! Did they modify it?
! Any other comments about the assignment.

Main Critique

Search Page
with filters

Critique
Assignment Save

Feedback

View Lesson
Details

 76

Figure 45 Feedback for a selected assignment

4.3.6 Use Case � Categorize
This use case helps instructors, course developers and researchers in categorizing an
assignment. During the upload process, an assignment is assigned a specific set of
properties and metadata definitions that best describes it. This categorization is persisted
in the repository along with the contents of the assignment. But as more and more users,
start using this assignment for their needs there might be a need to add more metadata
definition to accurately describe the assignment. This might be based on its usage in
various research and academic fields.

Table 10 enumerates a set of activities to categorize an assignment in the repository.

User action

System response

User clicks on the Categorize tab.

System redirects to the search page.

User inputs the data based on which the search will
be executed.

System displays the search results matching the filter
criteria.

User selects one of the assignments that are
displayed in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

 77

A Critique button is displayed in this page.

User clicks on the Categorize button System displays a page to the user with edit controls
to add, edit or remove properties.

User re-categorizes the assignment and clicks on the
Save button.

System saves the categorization of the assignment in
the repository.

Table 10 . Use Case - Categorize

4.3.6.1 User Interface

This section consists of a set of screen shots to illustrate the use-case for categorizing an
assignment in the CollabX repository. As stated in Table 10, user has to search and select
an assignment for categorization. Figure 46 shows the user interface for categorizing a
selected assignment.

Main Categorize

Search Page
with filters

Categorize
Properties Save

Categorization

View Lesson
Details

 78

Figure 46 Categorization of Assignment

In this page, user can perform the following for re-categorization of the assignment-
! Add additional properties to the assignment by clicking on �More Properties...�

button.

! Add multiple values to a property by clicking on the �More Values�� button.

! Deleting a property
! Deleting one of the existing values for a property.

! Edit the list of keywords for the assignment

 79

5 Conclusion
This present study focused on the problem of isolated repositories of programming
exercises. These repositories exist within their own eco-system and can hardly
collaborate with the global communities of computer science researchers, course
developers and instructors. Lack of a common vocabulary and inconsistent terminologies
used across the existing systems, inevitably leads to re-inventing the wheel. Without
knowledge of other people�s work, these exercises developed in isolation get lost due to
lack of collaboration, feedback and insights.
This project attempts to develop a platform for collaboration of programming exercises
among Computer Science instructors, researchers and course developers. The central
point to this platform is the definition and persistence of the metadata in a repository that
describes a programming exercise [1]. There are existing systems like Marmoset [7] and
Web-CAT which supports submission and automatic grading of exercises, but these
exercises are specifically developed for these systems in a proprietary format. As with
any other proprietary technology, the exercises developed for these systems are pinned to
these platforms. The collaboration platform proposed in this study is shown in Figure 47.

Repository of Assignments

Instructor

Author 1

Computer Science Researcher

Metadata
Internet

Search assignment

Ex
po

rt
as

si
gn

m
en

t

Home grown automatic submission and grading tool

Proprietary Definitions

Figure 47 Repository of assignments used by different stakeholders

 80

It has a repository, which is a place holder for programming exercises and its metadata
definition. This persisted metadata will be introspected by the platform to collaborate and
share a programming exercise among researchers and instructors.

The basic step in sharing a learning resource is to tag it with a metadata definition. This
metadata definition is based on the IEEE LOM specification [1]. This specification
leverages the power of XML to describe a learning object in several categories as shown
in Table 11.

General category groups the general information that
describes the learning object as a whole.

Meta-Metadata category groups information about the metadata
instance itself

Technical category groups the technical requirements and
technical characteristics of the learning
object.

Educational category groups the educational and pedagogic
characteristics of the learning object.

Rights category groups the intellectual property rights and
conditions of use for the learning object.

Relation category groups features that define the relationship
between the learning object and other
related learning objects

Annotation category provides comments on the educational use
of the learning object and provides
information on when and by whom the
comments were created

Classification category describes this learning object in relation to
a particular classification system.

Table 11 . IEEE LOM Categories

 81

Figure 48 CollabX user interface

 A programming exercise that is submitted to this repository is modeled in the form of a
Learning Object (LO) [6] with its associated metadata. The metadata residing in the LO
is persisted in the database [4] along with its content. Each LO can also be searched,
critiqued, annotated and rated [8] according to its usefulness as shown in Figure 48. A
feedback rating system and metadata definitions will enhance re-usability of the
programming exercise ([2], [3]) and inter-operability with third party grading and
submission systems [5].

 82

Figure 49 O/R Mapping

The prototype is 3-tier application built on Java EE platform. This platform has support
for Java Server Faces, EJB 3.0 and JPA. The persistence layer is modeled as a set of
lightweight domain objects called entities as shown in Figure 49. These entities have
physical as well as relationship mapping defined by the JPA specification. JPA provider
translates the physical and relationship mappings into a set of tables with referential
constraints mimicking the relationships in the target database as shown in Figure 54.
This research study and implementation has the following achievements-

! The definition and persistence of the metadata in a repository that describes a
programming exercise. The metadata definition was loosely modeled from IEEE
Learning Object Metadata (LOM).

! In a relatively short course of time, built a prototype which can manage the
lifecycle of an exercise in a shareable repository. Lifecycle of an exercise includes
fork, feedback, critique and export.

! This implementation has collaborative features such as "Fork", "Critique" and
"Categorize", which is unavailable in similar repositories.

! Integration with external systems such as Web-CAT and Labrat.

@Entity
@Table(name="X_OBJECTS")
public class LearningObject implements
 Serializable {
 @Id
 private Long id;
 @OneToMany(mappedBy="lo")
 //collection of properties
 private Collection<MetadataProperty>
 metadata;
 …
 }

@Entity
@Table(name="X_OBJECT_PROPERTY")
public class MetadataProperty implements
 Serializable {

 //this is the unique key of the
 //annotation for the learning resource
 @Id
 private Long id;

 @ManyToOne
 LearningObject lo;

 …
}

 X_OBJECTS

ID �

X_OBJECT_PROPERTY

ID
�

X_OBJECTS
_ID

 83

References

[1]. Draft Standard for Learning Object Metadata Sponsored by the Learning Technology

Standards Committee of the IEEE.

[2]. Barbara P. Heath, David J. McArthur, Marilyn K. McClelland, Ronald J. Vetter. Metadata
lessons from the iLumna digital library. Communications of the ACM
Volume 48 , Issue 7 (July 2005)

[3]. Reusable Learning Object Strategy: Designing and Developing Learning Objects for Multiple
Learning Approaches. A Cisco Systems white paper.

[4]. Filip Neven, Erik Duval, LU Leuven. Reusable Learning Objects: a Survey of LOM-Based
Repositories. Proceedings of the tenth ACM international conference on Multimedia,
Juan-les-Pins, France

[5]. Michael T. Helmick. Interface based Programming Assignments and Automatic Grading of
Java Programs. Proceedings of the 12th annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE'07)

[6]. Longzhuang Li, Hongchi Shi, Yi Shang, Su-Shing Chen. Open Learning Objects For Data
Structure Course. Journal of Computing Sciences in Colleges archive
Volume 18 , Issue 4

[7]. Jaime Spacco, David Hovemeyer, William Pugh, Jeff Hollingsworth, Nelson Padua-Perez,
and Fawzi Emad. Experiences with marmoset: Designing and using an advanced submission
and testing system for programming courses. ITiCSE '06: Proceedings of the 11th annual
conference on Innovation and technology in computer science education. ACM Press, 2006.

[8]. Xavier Ochoa, Erik Duval. Use of contextualized attention metadata for ranking and
recommending learning objects. Conference on Information and Knowledge
Management. Proceedings of the 1st international workshop on Contextualized
attention metadata: collecting, managing and exploiting of rich usage information

[9]. Stephen H. Edwards, Manuel A. Pérez-Quiñones. Experiences using test-driven development

with an automated grader. Journal of Computing Sciences in Colleges archive Volume 22 ,
Issue 3 (January 2007)

 84

[10]. Stephen H. Edwards, Manuel A. Pérez-Quiñones. Web-CAT: automatically grading

programming assignments. Proceedings of the 13th annual conference on Innovation and
technology in computer science education.

[11]. Ruby on Rails Project, http://www.rubyonrails.org

[12]. Web-CAT assignment interchange format. http://web-cat.org/assignment-packaging/

[13]. WG6 - Developing a Common Format for Sharing Assignments.
http://www.iticse08.fi.upm.es/WG6.htm. ITiCSE 2008 The 13th Annual Conference on
Innovation and Technology in Computer Science Education

	San Jose State University
	SJSU ScholarWorks
	2008

	Authoring and Sharing of Programming Exercises
	Somyajit Jena
	Recommended Citation

	Microsoft Word - 48D21FB0-46F0-28C140.doc

