San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Authoring and Sharing of Programming Exercises

Somyajit Jena
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Computer Sciences Commons

Recommended Citation
Jena, Somyajit, "Authoring and Sharing of Programming Exercises" (2008). Master's Projects. 19.

DOI: https://doi.org/10.31979/etd.gevj-k88n
https://scholarworks.sjsu.edu/etd_projects/19

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/19?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AUTHORING AND SHARING OF PROGRAMMING
EXERCISES

CS 298 Project Report
Presented to
Computer Science Department

San Jose State University
In Partial Fulfillment
Of the Requirements for the Degree
Master of Science in Computer Science

By
Somyajit Jena
May 2008

ABSTRACT

Authoring and Sharing of Programming Exercises
By Somyajit Jena

In recent years, a number of exercises have been developed and published for educating
students in the field of Computer Science. But these exercises exist in their own silos.
There is no apparent mechanism to share these exercises among researchers and
instructors in an effective and efficient manner. Moreover, the developers of these
programming exercises are generally using a proprietary system for automatic submission
and grading of these exercises. Each of these systems dictates the persistent format of an
exercise that may not be inter-operable with other automatic submission and grading
systems.

This project provides a solution to this problem by modeling a programming exercise into
a Learning Object metadata definition. This metadata definition describes the learning
resource in terms of its contents, classifications, lifecycle and several other relevant
properties. A learning Object (LO) is persisted in a repository along with its metadata.
This repository supports simple and advanced queries to retrieve LO’s and export them to
various commercially available or home-grown e-learning systems. In a simple query,
keywords given by the user are matched against a number of metadata elements whereas
an advanced query allows a user to specify values for specific metadata elements.

Acknowledgments
I am deeply indebted to Professor Cay Horstmann for his invaluable comments

and assistance in the preparation of this study.

Table of Contents

1.1 Problem Domain..........c.eeeeeiiiiiieeiiiiiie e 5
1.2 Defining Metadata...........ooeeiuiiiieiiiiiieeeiiiee e 9
1.3 LOM StIUCLUIE ..eevieeiiiiiiiiiieee et e e 10
2.1 WED-CAT ettt ettt ettt ettt e e e bee et 13
2.1.1 Setting Up A Course Offering.........cceeeeeiviiiieeniiiiiieeeiiiee e 13
2.1.2 Setting Up An ASSIZNMENL.........ccceriiiiieeiiiiieeeniieeeeniiieeeeeerieeeeseveeens 15
2.1.3 Web-CAT assignment SUDMISSIONeeeeeruevireeeriiriieeeeiiieeeeeinennsn 23
N I o) ¢ | SO PR PPURRUPPRRRIN 25
2.2.1 Metadata StrUCEUTE.vvieeiiiiiee et 25
2.2.2 Directory Layoutccccueeiiiiiiiiiieeiiiee e 26
3.1 Java Server Faces (JSF) Frameworkcccoooovuiiiiiiiiiiiiiiiieeeeee e, 29
3.1.1 JSF Programming Modelcccceiiiiiiiiiiiiiiiiieeiiee e 31
3.2 Java Persistence Archit@Cture...........cceevuiiiiiiiiiiiieeeiiiee e 34
321 ENEIEIES 1oniviiieeeiiiiee ettt e e ettt e e ettt e e e et e e e et eeeenbaeeeeennnbaeeeenes 35
3.2.2 Object Relational (OR) Mappingccccueeeeeruiieeeeniiiieeeeniiieeeeniieeeeenes 36
3.2.3 QUETY ettt ettt et 40
3.3 Web-Tier Programming Model - JSF, EJB 3.0 and JPA............cceevrviiiireennnnn. 41
.. 41
3.3.1 Entity Management............cccureeeiruiieeeiniiiieeeeniieeeeesineeeeeniaeeeeennseeaeenes 44
.. 44
4.1 CollabX RepoSItOTY OVEIVIEWcccueviieeeiiiiieeeiiiiieeeeiiieeeesirieeeesireeeeeseneeeesanes 48
4.2 Integration with External SyStemsccceeeiiiiiiieiiiiiieeiiiiee e 49
4.2.1 Web-CAT Interoperability...........ccccoveeeiiiiiieeiiiiieeeeiiieeeeieeenn 49
4.2.2 Labrat Interoperabilitycccceeviiiiieiiiiiiieeeiiee e 56
423 Labrat Feature EXtensionccevvviieeeiiiiiieeeiiiiiee e 56
4.3 CollabX SoIution USE CaS@Seeeerurrireeriiiieeeiiiiieeeeiiieeeeeiiieeeeesinreeesennneeeaeanes 56
4.3.1 Use Case — Uploadcceeeieeiiiiiieeiiiieeeiee e 56
4.3.2 Use Case — Searchcceivveiiiiiiieiiieeeee e 62
433 Use Case — FOrK.......oooiiiiiiiiiiiieeeeeeeeee e 65
434 Use Case — Download..........ccccuviiieiiiiiieeiiiieeeiieeeeeee e 71
4.3.5 USE Case — CIItIQUE ..eeeovvveieeeeiiieeeeeiiieeeeeiieeeeeeiieeeeesireeeeenaaeees 74
4.3.6 Use Case — CatEZOTIZEeeeeeeuriieeeeiiiieeeeiiieeeeeiteeeeenireeeeeivaeees 76

1. Introduction

One of the many challenges facing e-learning systems is that the course wares that are
developed, exists in their own proprietary format in their respective repositories. There
are no mechanisms of sharing this repository of knowledge and learning, to the outside
world. These course wares can be shared with a large number of students’ worldwide
thus enhancing instructional efficiency and re-usability of these learning resources. In this
era of modern communication and collaboration, the internet as we know it, is a great
delivery platform for sharing and authoring learning resources. This will enable new
forms of collaboration between educational institutions increasing the overall
effectiveness of the educational systems.

1.1 Problem Domain

Today, instructional designers and developers of course content can develop assignments
which can be graded by one of the many auto submission and grading tools available in
the market. At Virginia Tech, researchers and instructors use Web-CAT, the Web based
center for automated testing, for several years to automatically grade students
assignments. Web-CAT [9] has an internal scoring strategy that assesses the validity and
completeness of the student’s tests, which then become the primary indicator of
correctness of student’s work. A set of “reference” tests can also be provided by the
instructor to evaluate a student’s work.

Labrat is another such tool which was developed by Cay Horstmann for Wiley to
automatically grade student assignments. These assignments are programming exercises
that are selected from the student’s textbooks published by Wiley. Listing 1 shows a
programming assignment developed for this tool and assigned to students of a particular
course offering. This programming assignment is presented to students as a task of
implementing an instructor provided interface so that each of the student’s submission
can be tested by the same set of unit tests. Automatic grading of the student’s submission
requires the instructor to develop reference test cases that can be used to verify different
segments of the assignment.

An assignment adapted to the Labrat format will require the following from the
instructor:

= Description of the assignment
A write-up on the assignment as shown in Listing 1. It describes the assignment
and has instructions for the students to submit the same.

= Describing the assignment
The programming assignment needs to be described in terms of metadata defined
by Labrat. This metadata describes among other things — main class of the
assignment, list of classes that the student must submit and test related data for the
submission.

Exercise 7.10 Factoring of integers. Write a program that asks the user for an integer and then
prints out all its factors in increasing order. For example, when the user enters 150, the
program should print

WD D W N

Use a class FactorGenerator with a constructor FactorGenerator(int numberToFactor) and
methods nextFactor and hasMoreFactors .

/**

*/

This class generates all the factors of a nunber.

public class Fact or Gener at or

{

}

/**
Creates a FactorGenerator object used to determine the factor of
an input val ue.
@aram aNum i s the i nput val ue

*/

publ i ¢ Factor Generator (int aNum

/1 TODO
}

/**

Det ermi ne whet her or not there are nore factors.
@eturn true there are nore factors

*/

publ i ¢ bool ean hasMor eFact or s()

/1 TODO
}

/**

Cal cul ate the next factor of a val ue.
@eturn factor the next factor

=

public int nextFactor()

/] TODO

// TODQO instance fields

Supply a class FactorPrinter whose main method reads a user input, constructs a FactorGenerator
object, and prints the factors.

Listing 1. A typical assignment in Java

The instructor has to package the assignment into a single zip file structure with its own
internal directory structure conforming to the format set by Labrat. The metadata file,
which describes the assignment, needs to be in certain directories for Labrat to recognize
it. The directory structure format for sample exercise shown in Listing 1 is shown in
Figure 1.

[<repository root>]

ExP7_10]

_[description]
index.html]

grader }

FactorGeneratorTest.java

_[
_[solution]
_[

(check.properties]

FactorGenerator.java
FactorPrinter.java

student]

FactorGeneratorTester.java

(supplemental-instructions.html]

-

Figure 1 Directory structure of Labrat

The metadata file in Labrat is called check.properties and this file is present in the grader
directory. Labrat will consult this file to prompt for the required files for submission and
then automatically grade it in a manner defined by the instructor in the grading metadata.

Students can submit solutions to assignments as shown in Figure 2. Depending on the
grading scheme setup in the metadata file, the submission page will prompt for the
required files that must be included in the submission.

FactorPrinter_java

FactorGenerator_java

SRR

This class generates all the factors of a number.

*f

public class FactorGenerator

i

SRR

Creates a FactorGenerator object used to determine

the factor of
an input wvalue.

@param aNum is the input wvalue

| »

mn

public FactorGenerator (int alum)

v

fE

ToDO

Determine whether or not there are more factors.
@return truse there are more factors

Check your work:

]

Figure 2

Labrat submission page

Once the student submits the required files, Labrat will execute reference test cases as
shown in Listing 2 to verify the correctness of the submission and then reports a score to
the student and instructor.

publ i c class Factor Generator Test er

{

public static void main(String[] args)

{

Fact or Gener at or generator = new FactorCGenerator(2 * 2 * 3 * 5);

System
System
System
System
System
System
System
System

out.
out.
out.
out.
out.
out.
out.
out.

pri
pri
pri
pri
pri
pri
pri
pri

nt | n(gener at or

nt | n(" Expect ed:

nt | n(gener at or

nt | n(" Expect ed:

nt | n(gener at or

nt | n(" Expect ed:

nt | n(gener at or

nt | n(" Expect ed:

. hasMbr eFactors());
true");

. next Factor());
2");

. hasMbr eFactors());
true");

. next Factor());
2");

System out . printl n(generator. hashMreFactors());
System out. printl n("Expected: true");

System out . printl n(generator.nextFactor());
System out. printl n("Expected: 3");

System out . printl n(generator. hashMreFactors());
System out. println("Expected: true");

System out. println(generator.nextFactor());
System out. println("Expected: 5");

System out. printl n(generator. hasMreFactors());
System out. println("Expected: false");

Listing 2. Labrat instructor reference test case

Designing a programming assignment as described above shows that there is a substantial
effort by a computer science instructor to develop an assignment for an automated grader
tool. Specifically for Labrat, the following needs to be provided —

assignment write-up A write-up on the assignment with instructions for the
student on how to submit the assignment.

check. properties Metadata file which has the grading metadata

Tester.java Instructor reference test cases

test*.in, test*.out Test data for inputs and outputs

Packaging The assignment needs to be packaged as a zipped file
archive with its own internal data-structures.

Even if the instructor does wish to share this assignment with the rest of the community,
there are no widely used mechanisms that support instructors in finding and sharing such
resources. At the same time, other instructors may have to spend a good amount of time
and effort themselves in order to reshape a potential assignment into something that can
be used in their own courses. The goal of this project is to prototype a shared repository
of assignments defined in a common metadata format so that it can be shared with the
rest of the community. This common metadata format should be extensible and flexible
enough to handle assignments written for any programming language at any level of
proficiency. The shared repository will make use of the common metadata format to
export an assignment to a target automated grader tool so that it can be adapted or reused
without any additional work from the instructor in their courses. As more and more
instructors use automated grading tools to process student submissions, there is a growing
need for a shared repository of assignments defined in an interchange format, which can
lead to a community practice of sharing resources in a way that overcomes existing
barriers to such reuse.

1.2 Defining Metadata

The basic step in sharing a learning resource is to tag it with a metadata definition. A
metadata definition will describe the learning resource in terms of its contents,
classifications, lifecycle and several other relevant properties. It will help an author in
authoring or aggregating several learning resources in producing a new one. The two

main metadata schemas and standards used today by digital libraries of educational
resources are Dublin Core (DC) and IEEE Learning Object [1] Metadata (LOM) (see
Table 1). LOM was released as IEEE 1484.12.1 in June 2002 [1].

The present study will take a subset of data elements that are enumerated in LOM in
describing learning resources that are uploaded to the repository. LOM is a structural,
offering rich description of a learning resource in terms of data elements that grouped
into different categories.

1.3 LOM Structure

Data elements describe a learning object and are grouped into categories. The LOMv1.0
Base Schema consists of nine such categories:

General category groups the general information that
describes the learning object as awhole.

Meta-Metadata category groups information about the metadata
instance itself

Technical category groups the technical requirements and
technical characteristics of the learning
object.

Educational category groups the educational and pedagogic

characteristics of the learning object.

Rights category groups the intellectual property rights and
conditions of use for the learning object.

Relation category groups features that define the relationship
between the learning object and other
related learning objects

Annotation category provides comments on the educational use
of the learning object and provides
information on when and by whom the
comments were created

10

Classification category describes this learning object in relation to
aparticular classification system.

Tablel. LOM Metadata categories

Collectively, these categories as shown in Table 1 form the LOMv1.0 Base Schema. As
stated before, this project takes a subset of categories as represented by the data elements
i.e. General, Lifecycle, Educational, Rights, Relation and Annotation and creates a
metadata representation of a learning resource. The metadata definition and the
corresponding learning resources are persisted in the repository. Given below is an
example of a learning resource as represented by its metadata definition using the above
mentioned data elements-

<l ear ni ng-r esour ce- descri pti on>
<resource-id> LO 78909087 </resource-id>
<resource-ref-id> LO 098765 </resource-ref-id>
<title>This is a lesson in Binary Search </title>
<l anguage> en </l anguage>
<description> Any description about this |esson </ descri pti on>
<keywor ds>
<l angstring | ang="en">bi nary search tree</|angstring>
</ keywor ds>
<duration>60 m nutes </duration>
<version> 1.0 </version>
<l evel > Easy </l evel >
<owner > j doe </owner>
<resource-properties>
<resour ce- property>
<nane> Text Book </nane>
<type> String </type>
<val ue> Introduction to Data Structures in Java </val ue>
<resour ce- property>
<resour ce- property>
<nane> Chapter </nane>
<type> String </type>
<val ue> Search Al gorithns</val ue>
</ resource-property>
</ resource-properties>
<resource-col | ecti on>
<resour ce>
<resource-id> fol der-student-123 </resource-id>
<parent-ref> folder-ex-4.2 </parent-ref>
<nane> student </nane>
<type> fol der </type>
<i scontai ner> yes </iscontai ner>
<resour ce>
<resour ce>
<resource-id> file-java-123 </resource-id>
<parent-ref> fol der-student-123 </parent-ref>
<nane> Dat aSet.java </ nane>
<type> file </type>
<i scont ai ner > no</i scont ai ner >
</ resource>

11

</resource-coll ecti on>
</ | ear ni ng-resour ce-descri ption>

Listing 3. XML representation of an assignment

The above XML listing lays down the metadata information about the uploaded content
including its layout and relationships between its contents. This metadata information
along with the relationship information will help in the assembly of a Learning Object
persisted in the repository.

12

2. Related and Prior Work

This chapter covers study of the existing systems.

2.1 Web-CAT

Web-CAT is an automatic grading and submission tool developed at Virginia Tech.
Course developers or instructors can develop courses in Web-CAT and publish them to
their students. Web-CAT automatically grades submitted assignments against an
instructor provided solution. Typically, the instructor solution is executed through a test
harness, which is a collection of test cases provided by the instructor. These test cases
compare the output of a student’s submitted assignment with the expected output of the
solution provided by the instructor.

Web-CAT has two distinct views for an instructor and students. An instructor has to set
up a course offering from a selected list of courses offered by a department of an
institution for a particular semester. Students who are enrolled in the course offering can
submit their assignments by navigating to their enrolled courses. An instructor has to
execute the following set of tasks to create a course offering and assignments for that
course-

2.1.1 Setting Up A Course Offering

A new course offering can be created by an instructor choosing the Courses tab and then
clicking on New sub-tab as shown in Figure 3.

@ Web-CAT: Automatic grading using student-written tests

|_Home | Submit | Results VISR Assignments | Plug-ins | Grading |

| Properties [New

Figure 3 Web-CAT Course Tab

In Web-CAT terminology, the term course refers to the name of an academic course that
is offered at a particular institution and is usually associated with an academic catalog's
course descriptions. It has a name and a unique identifier, which helps in identifying the
department that is offering the course. For example, a course having a name like “CS 40:
Introduction to Java Programming” suggests that the name of the course is “Introduction
to Java Programming” and is being offered by the Computer Science Department having
a unique identifier as “CS 40”.

While a course defines the name, course number, and department, a course offering is a
specific offering of a given course during a specific semester/term, taught by a specific
instructor. In other words, a course offering is a single instance of a course. One course,
like "CS 40", might be offered once during the fall semester. Or there could be three
separate sections that semester--three distinct course offerings. Those offerings might be
taught be the same person, by different people, or even co-taught by a team.

13

So a course defines set of broad based features that are shared by all offerings. A single
course offering defines the specifics for one section/offering of a course during a single
semester/term--the instructor(s), the graders or TAs (if any), the student roster, etc.

Figure 4 shows the instructor has to select the course for which he wants to create a new

course offering. The list of courses must have already been defined by the department of
an institution.

Properties b New Som
R rici the Course
b Step1 e
b Ppick the course Create at institution: Guest i

Step 2 Create @ new course offering (section) for the following course:

Edit course properties

Sand 1: Sandbox v
Step 3

Edit student roster

\ Next = I { Cancel I \ Finish |

Figure 4 Pick Course

Once a course has been selected, an instance of the course is defined through a set of
properties. These properties as shown in Figure 5 are unique to a new course offering.

b Properties New Sorr
Edit Course Properties
Step 1 " 3 ca y
Pickithe conse [Dekte You may delete this course offering. It cannot be deleted if it has any assignments (ren
them first, but only if no students have made submissions yet).
b Step 2 Semester: Sping, 2008 - @
b Edit course properties —
Course: CS 1054: Intro to Programming in Java -0
i CRN: Spring 08 i}
Edit student roster
Label: 1]
URL: http/fhorstmann com/javabrat/ExP7_10.html €
Mooilf @ Group Id: i}
[Show Submission Date Range] [i]
User ID Instructor(s) E-Mail Action

jsomya Somyajit Jena jsomva@yahoo.com
_Ad | add another instructor

UserID Graders/Teaching Assistant(s) E-Mail Action
_Ad | add another grader/TA

I < Back I ‘ Next = ‘ [Cancel J | Apply All I | Finish |

Figure 5 New Course Offering
The description of the course properties are enumerated below:

= Course — This course is being offered by the department for a particular semester.

14

= CRN - CRN stands for course request number and is a unique identifier for the
course offering, distinguishing it from all others. Different academic institutions
may have different formats to describe this property, but usually it is an
alphanumeric code. It cannot be blank and it has to be unique.

= URL — This is an optional property and is web link to the course offering's home
site on the web. If there is value in this field, then references to the course offering
on other pages will be hyperlinks to this destination. If it is left as blank, those
references will just be plain text, not hyperlinks.

The other properties such as Moodle Id and Group Id are specific to courses offers at
Virginia Tech and can be left blank.

Additional instructors or graders can be added to this new course offering by clicking on
the Add button.

The list of students can be added to the new course offering as shown in Figure 6. They
can be added individually or by uploading a CSV file.
[Home | submit | Results IRl Assignments | Grading | Plug-ins_| Reports |

b Properties New R Somyajit Jena

Edit Student Roster

Step 1

Pick the course For: CS 1054(Spring '08): Intro to Programming in Java

Step 2 Students enrolled in this course:

Edit course properties Total of 1
HFilters

b Step 3

b Edit student roster User ID= Name=

jsomya Jena, Somyajit jsomya@yahoo.com @

Upload a CSVY Roster
Add more students to your roster using a comma-delimited text file:

CSV File: [Upload |@

Manually add individual students @

[< Back] [Cancel] [Finish]

Figure 6 Course Student roaster

The new course offering is saved to the database by clicking the Finish button. The new
course offering forms its unique identity from the course name, CRN and the time-period
for which it is offered at the institution.

2.1.2 Setting Up An Assignment

Once a course offering is set up, users with instructor permissions can create assignments
for the enrolled students. An instructor will pick the course from the list of course
offerings offered by a department for a particular semester as shown in Figure 7.

15

» Properties New | Student View ELi]

Pick the Course
4

Step 1

¥ Ppick the course Show courses for: Spring. 2008 ~

Step 2 You are an instructor or TA for these courses:
Edit course properties

Step 3
Edit student roster @ Sand 1(012) Sandbox

@ CS 1054(Spring '08) Intro to Programming in Java

| Next = Cancel

Figure 7 Pick Course For Assignment

Once the instructor has picked the course, he can see a list of assignments already created
for the course offering as show in Figure 8.

PRRMMN G:acing | Plug-ins | Reports |

b Properties Som
Create or Reuse?
Step 1 S - .
PiCkEthe CotiTea For CS 1054(Spring '08): Intro to Programming in Java , you can:
b step 2 @ Create a new assignment
B pick the assignment
side step: Create or reuse? Or vou can reuse an existing assignment from another section of CS 1054(Spring '08): Intro to

Programming in Java :
Step 3

Edit assignment properties Show assignments for: Spring, 2008 -

Assignment Description Author
Lab 3A PiggyBank sun
Lab 3A PiggyBank Sun
Lab 3A PiggyBank Sun
Lab 3B EggTrader sun
Lab 3B EggTrader Sun
Lab 3B EggTrader Sun
Lab 3B EggTrader sun
Lab 4 TollLane, EggTrader v.2 Sun
Lab 4 TollLane, EggTrader v.2 Sun
Lab 4 TollLane, EggTrader v.2 sSun
LI BN | TAlll mmAa CanaTeadar o Canen

Figure 8§ Create or Reuse Assignment

The instructor has the choice of creating a new assignment or re-using an existing
assignment. By selecting an existing assignment, one can edit its properties to tailor it to
the requirement on hand. If the instructor chose to create a new assignment, it can be a
completely new assignment or derived from an existing assignment that had been created
before for the course offering. In either case, the assignment specific properties need to
be defined or edited.

The term assignment is used to refer to the name and basic properties of a programming
assignment - the kinds of things one would associate with an assignment write-up or a
program specification. For example, "Program 1: Hello World", might be an assignment
used in a CS 101 course.

16

In Web-CAT, an assignment can be reused across course sections (that is, among many
course offerings). The concept of "assignment" is associated with the reusable, shared
properties that all offerings of an assignment have in common. Besides the assignment's
name and a URL for the corresponding write-up or activity description, an assignment
also has a submission policy (including whether or not late submissions are allowed, with
or without associated penalties), and a grading scheme, which defines how submissions
from students will be processed and scored.

The Edit assignment properties page is shown in Figure 9. This page shows both the
shared properties for all instances of this assignment, as well as the properties unique to
this course offering.

2.1.2.1 Properties For All Instances Of This Assignment

The following properties are shared by all instances of the assignment. For example if the
same assignment is being offered across different sections of a graduate class, then these
properties will be retained across all the different instances that were created.

Name This property is an identifier that uniquely identifies this
assignment from all others in this course offering.

Short Description Optionally, enter a brief description of the assignment. For
example Project 1 : Binary Search for a CS 46 course offering.

URL Optionally, provide an URL which has elaborate information

about the assignment. This URL will be hyperlinked with the
Name of the assignment.

Upload Instructions Optionally, enter any assignment-specific instructions that will
be shown to students when they upload submissions through
Web-CAT's web interface.

17

Edit Assignment Properties

For: CS 1054(Spring "08): Intro to Programming in Java

Properties for All Instances of This Assignment

Name: Project 1: Factroing of Integers i]
Title: Factoring of Integers []
URL: http//horstmann com/javabrat/ExP7_10 html B
Moodle Id: i)
Upload Supply a class FactorPrinter whose main method reads a user #
InStrUCtionS: input, constructs a FactorGenerator object, and prints the
factors.

Grading Scheme for All Instances

Submission Rules: 1054Projectt =] i]

Automatically grade using these steps in sequence:

Order Plug-in Time Limit (sec) Move Aclion
1 JavaTddPlugin =2z Ho
_Add | Add another step

Properties Unique to This Course Offering

Due: 06/30/08 11-55AM 3|
> Show upcoming assignment deadlines
Score Summary: O-——= = _J [Refresh Cached Graph Data J
Moodle Id: (overrides shared value if set)

Publish it: 1 @ Suspend all grading: [@
[Regrade Everyone J

< Back | | Cancel | [ApplyAll | [Finish |

Figure 9 Web-CAT assignment properties

2.1.2.2 Grading Schemes for All Instances

The grading scheme consists of a policy defining the submission rules, and a series of one
or more plug-ins that specify how student submissions are processed and scored.

18

2.1.2.2.1 Submission Rules

The submission rules define the policy that governs acceptance of student submissions,
including the points available, limits on the number or size of submissions, the applicable
late policy, and any penalties for late submissions (or bonuses for early submissions). A
Submission rule for an assignment can be created by Clicking on the New button or can
be assigned from a previously created one as shown in Figure 10.

Submission Rules: 1054Projecti = i]

Figure 10 Submission Rules

A new submission profile consists of properties as shown in Figure 11. A submission
profile can be configured to allocate different points from manual testing, static analysis
tools and correctness testing.

Edit Submission Profile

Basic Properties

Name: SanJose State University
Points available: from TA
from static analysis tools
100 from correctness/testing
Total points available

Max submissions: 10 (blank for unlimited)

Max upload size: {blank for system maximum)
Start accepting: Dayis) ~ before due date (blank for unlimited)
Stop accepting: 0 Month(s) ~ after due date

Bonuses/Penalties

¥ Award bonus points for early submissions

Award at most 10 pts in increments of 1 for every 1 Day(s) ~ early
[Deduct penalty for late submissions

Deduct at most pts in increments of for every 0 Menth(s) ~ late

External Submission Engines/Plug-ins

List assignment for submission using: Mot listed for external submission ~
Exclude file patterns:
Include file patterns:

Required file patterns:
(use commas to separate multiple patterns)

Figure 11 Submission Profile

The maximum number of submissions and size of each submission can also be specified
in the submission profile. The instructor can also specity when Web-CAT should begin
accepting submissions for the assignment - say, two hours before the due date for a

19

closed lab, or leave blank for unlimited. It can also be specified when Web-CAT should
begin refusing submissions for an assignment - say, allowing submissions up to one week
after the due date. A value of zero will deny all late submissions. Instructor can also
specify that bonus points be awarded for early submissions, or penalty points be deducted
for late submissions - say, a penalty of 10 points per day late, or a bonus of 10 points per
day early.

2.1.2.2.2 Grading Scheme

The grading scheme configures the list of steps an assignment will be processed upon
submission by a student. These lists of steps may include configuring language specific
plug-in, static analysis tools, and code coverage tools for student submitted tests. An
assignment that requires students to write-up a Java program, the instructor needs to add
the JavaTddPl ugi n as shown in Figure 12. This will ensure that student submissions
will be processed as per the Java guidelines set in this plug-in.

Automatically grade using these steps in sequence:

Plug-in Time Limit (sec) Move Actlion
1 JavaTddPlugin Ex =Ha
_Add | Add another step

Figure 12 Plug-in Configuration

Various properties that need to be configured for this plug-in is show in Figure 13. The
JavaTddPl ugi n plug-in is designed to provide full processing and feedback
generation for Java assignments where students write their own JUnit test cases. It
includes Ant-based compilation; JUnit processing of student-written tests, support for
instructor-written reference tests, PMD and CheckStyle analysis, and Clover-based
tracking of code coverage during student testing.

20

Configure Plug-in
Plug-in: JavaTddPlugin

For: FactoringIntegers2: FactoringIntegers2
Reusable Configuration Options

This plug-in supports additional option settings that can be placed in a named configuration profile
that is shared among several assignments.

Reusable option set: Factoring of Integers: Factoring of Integers config - @

Assignment-Specific Opfions

:3e descriptions

JUnit Reference Test Class(es): 515U/admin/ExP7_10/webcatbin/ExP7_10_29_TestCase.java &
| Browse... l [Use Default]

A Java source file (or directory of source files) containing JUnit tests to run against student
code to assess completeness of problem coverage. If you select a single Java file, it must
contain a JUnit test class declared in the default package. If you select a directory, it
should contain JUnit test classes arranged in subdirectories according to their Java package
declarations. If you make no selection, an empty set of instructor reference tests will be
used instead.

supplemental Classes for Assignment: SISU/admin/ExP7_10/classes.jar 4| Browse.. | [UseDefau
A jar file (or a directory of class files in subdirs reflecting their package structure, or a
directory of multiple jar files) containing precompiled classes to add to the classpath when
compiling and running submissions for this assignment. If you want to apply the same jar
settings to many assignments, use the "Supplemental Classes" setting in the "Reusable
Configuration Options" section instead. If you have multiple jars to provide, place them all
in the same directory in your Web-CAT file space and then select the whole directory.

Data Files for Student: SJSU/admin/ExP7_10/webcatdata [Browse.. | [UseDefaut |
A file (or a directory of files) to place in the student’s current working directory when
running his/her tests and when running reference tests. The file you select (or the entire
contents of the directory you select) will be copied into the current working directory during
grading so that student-written and instructor-written test cases can read and/or write to
the file(s). The default is to copy no files.

Figure 13 JavaTDDPlugin Configuration

The assignment-specific options for the JavaTDDPlugin are shown in Table 2.

Configuration Parameter Value Description

Parameter

JUnit Reference SJSU/admin/ExP7_10/web | A Java source file (or directory of

Test Class(es) catbin/ExP7 10 29 TestC | source files) containing JUnit tests to
ase.java run against student code to assess

completeness of problem coverage. If
a single Java file is selected, it must
contain a JUnit test class declared in
the default package. If a directory is
selected, it should contain JUnit test
classes arranged in subdirectories
according to their Java package
declarations.

21

Supplemental SJSU/admin/ExP7 10/clas | A jar file (or a directory of class files
Classes for ses.jar in subdirs reflecting their package
Assignment structure, or a directory of multiple
jar files) containing precompiled
classes to add to the classpath when
compiling and running submissions
for this assignment.

Data Files for SJSU/admin/ExP7 10/web | A file (or a directory of files) to place
Student catdata in the student's current working
directory when running his/her tests
and when running reference tests. The
file selected (or the entire contents of
the selected directory) will be copied
into the current working directory
during grading so that student-written
and instructor-written test cases can
read and/or write to the file(s). The
default is to copy no files.

Table2. JavaTddPlugin Configuration parameters

Each of the file system paths shown in Table 2 can be configured as shown in Figure 14.

Edit Your Configuration Files

Any file modifications made on this page will cause all pending changes to be applied. All file actions
take effect immediately.

Select Edit Your Configuration Files

_Sekeet| =424 jsomya R |

_Select | =3 FactoringOfintegers @@
Select | =3 ExP7_10 g

Create a New Subfolder

In: jsomya/FactoringOfintegers ~ new folder name: | Create Folder

Upload a New File

In: jsomya - upload: | Browse...
[Upload File

(2] unzip/expand archive in target folder)

Replace This Entire Folder

Replace with contents of this zip or jar file: Browse.. |
l Replace Entire Folder]

l < Back] I Mext = I | Cancel] I Finish |

Figure 14 Configuring Java Plug-in

Each parameter value shown in Table 2 is a relative path to the resource from the root
folder of the assignment. When a submitted assignment is being graded, the

22

JavaTDDPlugin reads these configuration values to fetch the various resources from the
respective file paths.

2.1.3 Web-CAT assignment submission

Students can submit assignments by logging in to Web-CAT and clicking on the Submit
tab as shown in Figure 15. It has a list of assignments for a course that the student has
enrolled in.

O S ubmit | Resus

b Status My Profile Feedback Som
Your Web-CAT Status

Assignments Accepting Submissions

Assignment Score Distribution Aclion
CS 1054(Spring '08) Project 1: Factroing of Integers: Factoring of Integers 06/30/08 11:55AM = - -1 ‘oR@mad

Announcements

If youre are new to Web-CAT, you might want to watch this movie of making a submission, which also explains how to interpret results.

An Internet Explorer bug may prevent you from downloading files from Web-CAT. You can find out the cause of this bug, as well as availa
workarounds, in this article on the Web-CAT blog. Some Firefox bugs are also covered in other blog articles.

Daily down time is scheduled at 4:00AM each morning . Web-CAT will automatically shut down for a few minutes for house cleaning, anc
should resume operation automatically within 5-15 minutes. Plan your actions accordingly.

Up since 05/31/08 04:03AM
Next scheduled down time 4:00AM
Current users 1
Queued jobs 0
Jobs processed 0
Most recent job wait 00 seconds
Average time per job 30 seconds
New submissions processed in about 30 seconds
Halted assignments 1
Stalled jobs 0

Figure 15 Listing of student’s assignment

The student selects the assignment and clicks on the Submit icon as shown in Figure 16.

Assignment Score Distribution Action
CS 1054(Spring '08) Project 1: Factroing of Integers: Factoring of Integers 06/30/08 11:55AM [= - ‘gRiIsE

Submit to this assignment

Figure 16 Selecting assignment for submission

Submissions to Web-CAT are always in the form of a single file as shown in Figure 17.
If the solution consists of multiple files, these need to be combined into a single archive.
Web-CAT currently accepts zip, jar, tar, and tgz archives.

After browsing for and selecting the submission file, click “Next”.

23

i |

New Submission

SETE N Upioad Your File(s)

Step1
Pick the course

Instructor View EESuNaT

For: CS 1054(Spring '08) Project 1: Factroing of Integers: Factoring of Integers

@ Bermal
Step 2 This is your first submission for this assignment.
Pick the assignment
Supply a class FactorPrinter whose main method reads a user i constructs a FactorGenerator ebject,

nd prints the factors.

Step 3
Upload your file(s)
Choose the file to upload:

Step 4

Confirm your submission C-\projects\sample exerciselsolution jar Browse..
Step 5

View your results [< Back] [Mext =] [Cancel]

Figure 17 Upload files for submission

Web-CAT will summarize the information it knows about the file that has been uploaded,
including its name and size. If an archive has been uploaded, it will summarize the
contents of the archive so that the student can make sure that all relevant files included in
the archive will be submitted. Click “Next” to confirm the submission. Once the files are
submitted, each submission will be tagged by the timestamp of the submission. This will
help in keeping track of multiple submissions by a student. Each submission status can be
checked by the student from the Web-CAT home page. Once the submission has been
graded, its results will be published as shown in Figure 18.

Results |

P Most Recent Past Results Graphs

Your Assignment Submission Results
zes

EELL @ CS 1054(Spring '08): Project 1: Factroing of Integers try #3
LETHC Somyajit Jena (jsomya)
LTl =l 05/31/08 05:23PM, 29 days, 18 hrs, 31 mins early
1R 100.0 + 5.0 early bonus = 105.0/100.0

Correctness/Testing: 100.0/100.0 N
\ Final score: 105.0/100.0 \

Positioninclass: [1 Show Graphs

AU':::!’EGHE Methods Execuled=
FactorGenerator.java 0.0 0.0% I
FactorPrinter.java 0.0 0.0% I

Full Printable Report

EEstimate of Problem Coverage (100%)

Problem coverage: 100%
Your solution appears to cover all required behavior for this assignment.

For this assignment, the proportion of the problem that is covered by your solution is being assessed by running a suite of reference tests
against your solution.

Your original submission ~ [Download Selected File]

Figure 18 Web-CAT submission results

24

The results shown in Figure 18 are the result of running the instructor’s reference tests on
the submitted assignments. The assignment was configured by the instructor to execute
only the instructor provided reference tests. If it would have been configured to execute
static analysis, check style and code coverage then these additional results would have
been displayed in the submission results page.

2.2 Labrat

Labrat is an automatic submission and grading tool developed by Cay Horstmann. It is an
extension of a popular open source program called Ant, which is used by developers for
automating their software build process. Each lesson is defined by a metadata structure
that is used in the student submission and grading process.

2.2.1 Metadata Structure

The metadata of the learning lessons defined by Labrat is in a property file called
check.properties. Given below is an illustration of a subset of properties that are used to
automate the submission and grading of a lesson —

check.properties

mai ncl ass The main class of the assignment. This
property is required

requi redcl asses comma-separated list of classes that the
student must submit.

optionalfiles If true then during submission of files, the

student will be presented with more files
dialog. If false then asking for more files
will be suppressed other than the main
class and required classes.

t est. token This property indicates the type of output
comparison to be made with the expected
value. This value can be one of the 4 types:
line, word, number or a regular expression.
The default value is line.

test.tol erance The degree of tolerance to use when the
output comparison type is number.

Table 3. Sample Properties

A student while submitting a lesson has to upload the following files —
e ${mainclass}.java
* Alljava files for requiredclasses.

e Anyother *. j ava files ifopti onal fi | es is not false.

25

Labrat reads the check.properties file of the lesson being submitted to verify that
submission is in accordance with the values that are set in the properties file. The files
that are submitted are stored in a persistent repository in a Labrat specified directory
layout. This layout is important as the grading process will read the submitted files from a
designated directory.

2.2.2 Directory Layout

The directory layout of a lesson in Labrat format is given in Figure 1. The submitted files
for a lesson are stored in the st udent directory. This directory could also contain
“Horstmann style” unit tests. These unit tests are Plain Old Java Objects(POJO) and have
a very simple routine to execute the submitted assignments known methods and compare
the return value with the expected value. A scoring strategy is used in Labrat that takes
into account the failure rate of these comparisons and a score is assigned to the
submission.

An example of a “Horstmann style” unit test is given below —
/**

This is a test driver class for DataSet class.
*/
publ i c cl ass Dat aSet Test er

public static void main(String[] args)

{
Dat aSet a = new Dat aSet () ;

a. add(5);
a. add(6);
a. add(8);
a.add(9);
Systemout.printlin("count: " + a.getCount());
System out. println("Expected: 4");
Systemout.println("average: " + a.getAverage());
System out. println("Expected: 7");
Systemout.println("standard deviation: " +

a. get St andar dDevi ation());
System out. println("Expected: 1.83");

Listing 4. Horstmann Style Unit Test

These style of unit tests have a file naming pattern like * Test er *. j ava. Labrat will
execute these files to compare and evaluate the outcome of a submitted program by a
student. In the above example it is assumed that the $(mai ncl ass}. j ava translates
to the entry Dat aSet . j ava which this tester class tests.

The grading process begins by verifying that submission has at least the

${mai ncl ass}. | ava and all other java files mentioned in the r equi r edcl asses
property. After a successful compilation process, Labrat looks for Horstmann style unit
tests files that has the pattern * Test er *. j ava in the student directory. This strategy of

26

a simple tester class probably gives the simplest test evaluation strategy for a submitted
program. The grading automated script, which is part of Labrat, is given below —

<target name="tester" depends="conpile" if="test.tester">
<j ava cl asspat href ="runcl asspat h"
dir="${submt.dir}"
cl assnanme="${ mai ncl ass}"
failonerror="true"
ti meout ="${test.timeout}"
out put property="mai ncl ass. out"
errorproperty="nai ncl ass.err"
fork="true">
<assertions>

<enabl e/ >
</ assertions>
</java>

<echo nessage="${ maincl ass.out}" />
<echo nessage="${minclass.err}" />
<condi tion property="tester.fail" val ue="CQutput not as expected">
<not >
<asexpected val ue="${ mai ncl ass. out}"
tol erance="%${test.tol erance}" />
</ not >
</ condi ti on>
</target>

Listing 5. Labrat Grading Script

The Ant target defined above compares the program output with the expected output. An
error is flagged if the corresponding output mismatches.

The contents of an assignment designed for Labrat includes converting the set of artifacts
that make up the lesson into a directory structure as shown in Figure 19, a

check. properti es file that defines the metadata of the lesson and a submission page
for the students whose content is derived by introspecting the property file and a grading
process which evaluates the submitted program.

As part of my project, I extended the web-interface of Labrat with the addition of the
following features:

* Designed a new Ul interface for Labrat
* Supported uploading of a lesson in the Labrat format by an instructor.

* Generation of check. properti es file through a wizard style interface.

27

3. Architecture

The project implementation is a 3-tier JavaEE based enterprise application as shown in
Figure 19. JavaEE defines a set of standards to break apart a monolithic application into
multiple layers each defined by a set of standardized modular components handling many
details of application behavior - such as security and multithreading — automatically.

Container
eb Cont: ;fm/er
View controller (Faces servlet)
Ul Backing Validator View
components Beans (isp)

Repository
EJB 3.0 Service Interfaces
Container

Repository Beans
Oben JPA OR Mapping Data Access Transaction
Management
Database

Figure 19 JavaEE Layered Architecture
A 3-tier application provides separate layers for each of the following services:

* Presentation: In a typical Web application, the presentation logic is built using
JSPs, JSF, servlets, or XML (Extensible Markup Language) and XSL (Extensible
Stylesheet Language).

28

* Business logic: Business logic is typically implemented in the EJB layer.

* Persistence and Data Access Layer: Data access is best implemented by a
persistence framework, which can serialize and de-serialize entities into a
persistent store.

The application is deployed on Sun Glassfish Application Server and is built on top of the
following technologies (refer to the Figure 20 above):

e Java Server Faces Framework
e« EJB 3.0 Framework
* Open JPA Data Access Framework

3.1 Java Server Faces (JSF) Framework

Java Server Faces is a standard web user interface framework for the JavaEE platform. It
is based on component architecture and a rich MVC style infrastructure. It has a basic set
of server side components and an event driven model to synchronize UI components with
the application objects. Figure 20 gives a high level overview of the JSF architecture.

Model

=
[~
JSF Pages

Persistent
Storage

Application Data

JavaEE Container

Figure 20 JSF Request Handling

The JSF framework connects the view with the model while rendering the web pages. In
this implementation a view component can be wired to properties of a backing bean
object, and buttons to event handlers and action methods. JSF acts as a controller that
takes in the user input and routes the updates to the target bean object. The view
implementation of JSF is a collection of Ul components that are managed by the
framework. Each UI component can maintain state and views are constructed from
composition of different UI components.

29

Browser

Container

<core: vi ew>
<htm : forne
<htm : panel G oup >
<ht m : out put Text
val ue=
"Title (Starts Wth)" />

Ul Vi ewRoot
@

<ht m : i nput Text size="30"
val ue= .)
"#{search.title}" /> . ()
</ htm : panel G oup> ‘A Hom | nput Text
<ht m : panel G oup >)
<ht m : out put Text Backing
val ue="Keywords " /> . PR Bean
<ht ml : i nput Text size="30",.-"
val ue= K \ H m | nput Text
"#{sear ch. keywords}"/ > -
</ htnm : panel G oup>
<ht m : conmandButton ..[> —
</htnd:form> e Ht ni Qut put Text
</ core:vi ew> y'e ."'4
~— @
Ht M Conmand
BV @ 4)(Action Listener
| N
Figure 21 = Rendering of a JSF view

Figure 21 shows the search JSF page of the CollabX application. This page has tags like
core:viewand ht nl : i nput Text . Listing 6 shows a subset of tags that are

contained in the page
<htm : panel G oup >

<ht m : out put Text value="Title (Starts Wth)" />
<ht m : i nput Text size="30" val ue="#{search.title}" />

</ htm : panel G oup>
<ht m : panel G oup >

<ht m : out put Text val ue="Keywor ds

/>

<ht m : i nput Text size="30" val ue="#{search. keywords}" />

</ htm : panel G oup>

Listing 6. JSF Tags

Each tag has an associated tag handler class. As the page is being rendered, the JSF tag
handlers collaborate with each other to build a component tree. The component tree is a
data structure that contains Java objects for all user interface elements. Each component
has a renderer that produces HTML output. During the rendering phase, the renderer of
each Ul component requests a unique element ID and the current value of the binding
expression. Once all the components of the view root have been rendered, the page is sent
to the browser, and the browser displays as it would any other page. This marks the end
of the rendering phase for a JSF page.

30

3.1.1 JSF Programming Model

In the JSF programming model, the backing bean is a mediator between the view and the
model. The UI components are bound to the properties of the backing bean, and buttons

to event handlers and action methods. An event change in the Ul component is routed to
the backing bean by the JSF framework.

The JavaServer Faces expression language (EL) syntax is used to bind UI component
values and instances to backing bean properties or to reference backing bean methods
from UI component tags. A JavaServer Faces expression can be a value-binding
expression (for binding UI components or their values to external data sources) or a
method-binding expression (for referencing backing bean methods.

An example of each binding expression is given below. A value-binding expression binds
UI components to model tier data as shown in Listing 7.
<ht m : panel G oup >
<ht m : out put Text val ue="#{search.display.title}" />

<htm :i nput Text size="30" val ue="#{search.title}" />
</ htm : panel G oup>

Listing 7. Value-binding expression

On form submission, JSF framework will push back data into the model objects based on
the value-binding expression.

A method binding expression binds UI components to “action” methods in the backing
bean as shown in Listing 8. It is a convenient way of describing a method invocation that
needs to be carried out when a component is activated.
<htm : panel Gid styl ed ass="buttonPanel " col utmms="10">
<ht m : commandBut t on val ue="#{nsgs. search_button}"
action="#{search.find}">
</ htm : commandBut t on>
<ht m : commandBut t on val ue="#{nsgs.reset _button}"
action="#{search.reset}"/>
<ht m : commandBut t on val ue="#{nsgs. cancel _button}"

action="#{search. cancel }" />
</htm :panel Gid>

Listing 8. Method-binding expression

In the example shown in Listing 8, the command button component will call

sear ch. fi nd and pass the returned string to the navigation handler. Binding a
component's value to a bean property has the advantage that the backing bean has no
dependencies on the JavaServer Faces API, allowing for greater separation of the
presentation layer from the model layer and it can perform conversions on the data based
on the type of the bean property value.

After developing the backing beans to be used in the JSF application, these beans needs
to be configured in the faces-config.xml file, so that the JSF implementation can

31

construct a managed bean whenever it is first referenced in the application. The managed
bean declarations for the CollabX application are given below:

<faces-config>
<managed- bean>
<managed- bean- nane>sear ch</ managed- bean- nanme>
<managed- bean- cl ass>
com reposi tory. web. beans. Sear chMB
</ managed- bean- cl ass>
<managed- bean- scope>sessi on</ managed- bean- scope>
</ managed- bean>
<managed- bean>
<managed- bean- nanme>| ob</ managed- bean- nane>
<managed- bean- cl ass>
com reposi t ory. web. beans. Lear ni ngQbj ect MB
</ managed- bean- cl ass>
<managed- bean- scope>sessi on</ nanaged- bean- scope>
</ managed- bean>
</ faces-config>

A backing bean is defined with a managed-bean element inside the top-level faces-config
element. The scope of the managed beans is Sessi on, which means that the managed
bean is created once for each sessi on and the lifetime of the bean spans across
multiple requests. Once the bean’s scope is SeSSi on, the application developer has to
factor in additional logic to clear out stale request data when handling a subsequent new
request.

In the JSF framework, navigation among pages in a web application is determined by a
set of rules. These rules are defined by the application developer in f aces-

confi g. xm . They determine the next page to be displayed after a button or hyperlink
is clicked, as shown in Figure 22.

32

Figure 22 JSF programming model

In most web applications, navigation is not static. The navigation flow does not just
depend on which button is clicked but also on the outcome of the triggered process. Each
navigation rule in JSF can navigate from one source page to any of the target pages
defined in the web application. Each navigation case within the navigation rule defines a
target page and a logical outcome that triggers the navigation to the target page.

33

When a button or hyperlink is clicked, the component associated with it generates an
action event. The framework handles this event and calls the act i on method referenced
by the component that triggered the event. This action method is located in a backing
bean and is provided by the application developer. It performs some processing and
returns a logical outcome St r i ng, which describes the result of the processing. The
framework then selects the page to display next by matching the result of the processing
against the navigation rules in the application configuration resource file.

This is illustrated in Listing 9. When the command button is clicked, the method

| ob. saveFeedback is called by the JSF framework. Once the processing is done by
the action method, the navigation rule defined for the view is now processed from the
outcome of the action method | ob. saveFeedback.

<ht m : commandBut t on val ue="#{nsgs. save_button}"
action="#{l| ob. saveFeedback}" />

<navi gati on-rul e>
<fromviewid>/pg_view.itemjspx</fromviewid>
<navi gati on- case>
<from out cone>pg_critique</from outcone>
<to-viewid>/pg_critique.jspx</to-viewid>
</ navi gati on- case>
<navi gati on- case>
<fr om out come>success_f eedback</from out cone>
<t o-vi ew i d>/ pg_search. jspx</to-viewid>
</ navi gati on- case>
</ navi gati on-rul e>

Listing 9. Command button and navigation rule

The rule in Listing 9 states that when the button or hyperlink component on

pg_vi ew_i t em j sp is activated, the application will navigate from the

pg_vi ew_item j sp pagetothe pg_search.jsp page if the outcome referenced
by the button component’s tag is success_f eedback.

3.2 Java Persistence Architecture

The Java Persistence Architecture is a key piece of the Java EE platform and provides an
ease-of-use abstraction on top of JDBC so that the user code can be isolated from
database, vendor peculiarities and optimizations. It can also be described as an ORM
(object-to-relational mapping) engine, which means that a user can map Java objects to
relational entities in a database through well-defined metadata annotations. In additional
to object mappings, JPA also provides a query language that is very SQL-like but is
tailored to work with Java objects rather than a relational schema. The primary features
of the architecture are:

* POJOs
Entities are defined as “Plain Old Java classes” and not components.

* Support for enriched domain modeling such as inheritance, polymorphism etc.

34

» Standardized object/relational mapping

* Using annotations and/or XML

* Support for pluggable persistence providers
» JPQL-Java Persistence Query Language

3.2.1 Entities

Entities, in the Java Persistence specification, are plain old Java objects (POJOs). These
entities are created using the new operator, in exactly the same manner in which an
ordinary class is created. Unlike the past J2EE specifications standards, the entity objects
don’t have to implement any required interfaces. The container contract is abstracted out
by means of annotations, special markers which are recognized by the container to
manage the entity objects. Entities can also be serializable and they can be used as
detached objects in the web tier of an application. This precludes the need for defining
data transfer objects to transfer data between the web tier and the service layer. An
example of an entity is given below:

@ntity
public class LearningQbject inplenents Serializable {

@d
private Long id;

@d
private Long version

//collection of feedbacks received for this | esson
private Col |l ecti on<LessonFeedback> feedbacks;

publ i c Learni ngObject () {

}

@neToMany(cascade={ CascadeType. ALL})

publ i c Coll ecti on<LessonFeedback> get Feedbacks() {
return feedbacks;

}

}

Each entity object has a persistence identity, which maps to a primary key in the
database. A primary key can correspond to a simple type. This is represented by the
following annotations:

* @d - This will be a single field/property in an entity class
* (@=ner at edVal ue — The persistent identity can be generated automatically

Relationships can exist between entities. A relationship is modeled between entities to
reflect the relational model of the various tables in the database schema. There are four
types of cardinality: one-to-one, one-to-many, many-to-one, and many-to-many. In
addition to this, each relationship can be either unidirectional or bidirectional. The

35

relationship metadata is again expressed in terms of annotations. Here is an example of a
one-to-many bi-directional relationship:

@ntity

public class LessonPropertyVal ue i nplenments Serializable {
@d
private Long id;
protected LessonProperty property;
@mbanyToOne
public LessonProperty getProperty() {return property;}
public void setProperty(LessonProperty property) {

this.property = property;

}
}
@ntity
public class LessonProperty inplenents Serializable {
@d
private Long id;
private List<LessonPropertyVal ue> val ues =
new Arrayli st <LessonPropertyVal ue>();
@neToMany(mappedBy="property”)
public List<LessonPropertyVal ue> getPropertyVal ues() {
return val ues;
}
public voi d addPropertyVal ue(LessonPropertyVal ue val ue) {
get PropertyVal ues() . add(val ue);
val ue. set Property(this);
}
}

The relationship that is modeled between entities LessonPr operty and
LessonPropert yVal ue conforms to the One-to-Many Bidirectional relationship. A
one-to-many bidirectional relationship occurs when one entity bean maintains a
collection-based relationship property with another entity bean, and each entity bean
referenced in the collection maintains a single reference back to its aggregating bean.
From the above example the entity LessonPr oper ty is the aggregation bean and
maintains a collection based relationship property with the entity
LessonPropertyVal ue. This is modeled by the relationship metadata annotation
@neToMany and @vany ToOne.

3.2.2 Object Relational (OR) Mapping

Entity beans represent data in the database and these beans have to model the relationship
that exists between the data that they represent. The process of mapping persistent object
state to database and mapping of relationships to other entities is known as Object
Relational Mapping (ORM). The metadata for the mapping can be expressed as
annotations or XML. These annotations can be categorized as given below:

= Logical Mapping — Used to define the object model (e.g., @neToMany,
@d, @ransient)

36

= Physical Mapping — Used to map the object’s persistent state to database tables
and columns (e.g., @abl e, @Col um)

The ORM metadata in annotations can model a simple basic relational mapping or model
a complex relationship between entities.

3.2.2.1 Basic Mapping

A simple mapping provides direct mapping of fields/properties of an entity to database
columns. It maps any of the common simple Java types such as primitives, Date,
Serializable, byte[] etc to its corresponding SQL types. It defaults to the type deemed
most appropriate if no mapping annotation is present. It is used in conjunction with the
@Column annotation type. An example of a basic mapping is given below —

@ntity

public class LessonFeedback inplenents Serializable {

@d
private Long id;
private String comments;

@col um(nane="comrent s", nul | abl e=tr ue)
public String get Coments() {

return conments;
}

}

It uses the following annotations-
@Column
This annotation maps the entity beans property to a database column name.

@ld

Every entity bean that maps to a relational table must have an identity. The primary key
is the identity of a given entity bean and it must be unique. This annotation identifies one
or more properties of the entity bean that make up the primary key of the mapped table.

This class physical mapping to a table is given below:

37

Class LessonFeedback

PK |id

comments «
feedback

used
studentFeedback
modified

Table LessonFeedback

id

feedback
modified
student_feedback
used

comments

3.2.2.2 Relationship Mapping

The ORM metadata in annotations support relationship with single entity or multiplicity.
The single entity relationship is supported by @/anyToOne and @neToOne
annotations, while relationship with multiplicity are supported by @neToMany and
@any ToMany annotations. Every bidirectional relationship has an owning and inverse
side. The owning side specifies the physical mapping with these annotations

= @oi nCol umm — It specifies the foreign key column. If this column is omitted
then the primary key of the target entity is taken as the foreign key.

= @oi nTabl e —Joins between entities can be done through an association table.
It decouples the physical relationship mappings from the entity tables.

A one-to-many unidirectional relationship between entities Lear ni ngQbj ect and
LessonFeedback is given below:

38

LeamingObject

PK |id
PK | version id LessonFeedback
PK |id
language
;:.:)lntent feedback
e modified
level
h_tag keyword comments
searg —tag_key student_feedback
duration -
, used
target_audience
installation_help _text
description
create_date

JPA Join Table

PK | annotation _id
PK | version_id
PK |id

The JPA provider generates the schema from the entity bean definitions. The relationship
between the two entities is modeled as given below:

@ntity

@ dd ass(bj ect Key. cl ass)

public class LearningQoject inplenments Serializable {
@d
private Long id;
//collection of feedbacks received for this | esson
private Col |l ecti on<LessonFeedback> feedbacks;
@neToMany(cascade={ CascadeType. ALL})
public Collection<LessonFeedback> get Feedback() ({

return feedbacks;

public voi d set Feedback(
Col | ecti on<LessonFeedback> feedbacks) {
t hi s. f eedbacks = feedbacks;
}
}
@ntity
public class LessonFeedback inplenments Serializable {
//this is the unqgiue key of the feedback for the
/11 earning resource

@d
private Long id;

39

The one-to-many relationship is declared using the @neToMany annotation. The
multiplicity in the relationship is represented by defining a relationship property that can
point to many entity beans and annotating it with the @neToMany. The data type is
typicallyaj ava. util . Col | ecti on object that contains a homogenous group of
entity object references.

TopLink, which is the default JPA provider in the glassfish container, implements a one-
to-many relationship with a join table mapping. This is an association table that maintains
two columns of foreign keys pointing to both the Lear ni ngQObj ect and
LesssonFeedback records. The join table shown in the above figure is an association
table, which is generated by the TopLink to implement the @nheToMany relationship
annotation.

3.2.3 Query

The Java Persistence query language (JPQL) is used to define searches against persistent
entities independent of the mechanism used to store those entities.. JPQL always
references the properties and relationships of the entity beans rather than the underlying
tables and columns these objects are mapped to. When a JPQL query is executed, the
entity manager uses the information provided through annotations and translates it to a
native SQL query. This generated query is then executed through a JDBC driver in the
targeted database. As such, JPQL is "portable", and not constrained to any particular data
store. It is an extension of the Enterprise JavaBeans query language, EJB QL, adding
operations such as bulk deletes and updates, join operations, aggregates, projections, and
sub queries.

Java Persistence has a query interface to execute JPQL and native SQL queries. This API
gives methods for paging result set and passing java parameters to the query.

Ent i t yManager is the factory for creating queries. Listing 4 shows how to retrieve a
collection of Lear ni ngQObj ect s from the CollabX repository. The factory method
createQuery() of EntityManager is invoked to create a dynamic query to
retrieve a collection of Lear ni ngQbj ect instances. Listing 10 shows an example of a
dynamic query creation in CollabX and retrieving the result set:

/1 Retrieve a collection
Query gq = em createQuery(
"SELECT | from Lear ni ngQbj ect as |
WHERE |.title LIKE :title
AND | . keywords LIKE : keywords
ORDER BY | .creationTi nme");

g.setParaneter("title", "Exercise 7.1");
g. set Par anet er ("keywords", "factoring integer");
Col I ection departnments = g.getResultList();

Listing 10. Query for retrieving a collection of LearningObjects

40

Here is an example below that shows how to retrieve a single instance of LearningObject.

/1 Retrieve a single instance

Query q = em creat eQuery(
"SELECT | from Learni ngQbj ect as |
WHERE | .id = :lessoned");
g. set Paraneter ("l essoned", 1234);
//get the result
Lear ni ngCbj ect o = g.getSingleResult();

Listing 11. Query for retrieving a single instance of LearningObject

3.3 Web-Tier Programming Model - JSF, EJB 3.0 and JPA

The Java EE platform supports greatly simplified programming model for enterprise web
applications. Java EE components are configured and deployed using annotations instead
of bulky XML descriptors which needed to be packaged as part of the deployment
archive. Annotations can be used to write specification and behavior of the components
directly in the code. In the Java EE platform, dependency injection can be used for
transparent creation and lookup of the resources to automatically insert references to
other required components or resources using annotations.

Browser

Persistent
Storage

Application Data

Figure 23 Web-Tier programming model

41

A logical diagram of the web programming model is given in Figure 23. A typical web
request is first intercepted at Java Server Faces layer. The request data is then marshaled
to the JSF page’s backing bean through value binding expressions which wires the Ul
components to properties of the backing bean.

A JSF managed bean as shown in Listing 12 can make calls to EJBs by declaring a field
of that EJB’s type and annotating that field as a reference to a @EJB. The container will
process the @EJB annotation during the deployment of the web application. It will look
for an EJB reference that implements the business interface type as its local or remote
interface. If more than one EJB uses the same business interface, it throws a deployment
exception.

public class Learni ngObj ect MB {

@JB
private RepositoryServiceRenote repository;

public void dispatch() throws Exception{

/lsave the upl oaded content in the database
Properties netadata = new Properties();
net adat a. set Property("title", this.getCurrentLQ().getTitle());
net adat a. set Property("| anguage", getCurrentLQ).getLanguage());
net adat a. set Property("description",

get Current LQ() . get Description());
net adat a. set Property("hel p_text",

getCurrent LQ().getHel p_text());

net adat a. set Property("keywords", getCurrentLQ).getKeyword());

net adat a. set Property("audi ence", getCurrentLQ().getAudi ence());

net adat a. set Property("duration",
Integer.toString(getCurrentLQ().getDuration()));

net adat a. set Property("level", getCurrentLQ).getLevel ());

net adat a. set Property("context", "");

/1 get the properties
int suffixlndex = 1;
for (LOBProperty p : this.getCurrentLQ().getProperties()) {
//check for null
net adat a. set Property("property_nane. "+suf fi xl ndex,
Util.checkNull (p.getName(), "undefined"));

net adat a. set Property("property_val ue. " +suf fi xl ndex,
Util.checkNull (p.getVal ue(), "undefined"));
suf fi xI ndex++;

//call the nethod
reposi tory. creat eXthj ect (nmet adata, this.getCurrentUpload());

Listing 12. Managed Bean with injected EJB reference

42

The injected remote EJB reference is a stateless session bean. Stateless session beans as
the name suggests doesn’t hold the client conversation state. As soon as it is finished
servicing a method invocation it can be swapped to service request from another client.
Since it doesn’t maintain any client state, there is no overhead in swapping stateless
session beans across multiple client invocations. Stateless session beans are also a prime
candidate for implementation a fagade pattern. This facade interface is shown in Listing
13. It centralizes requests to the domain and aggregates multiple calls to the
EntityManager.

@5t at el ess
public class RepositoryServi ceBean inplements RepositoryServiceRenote {

@er si st enceCont ext (uni t Nane = "col | abx")
private EntityManager em

public | ong createXObject(Properties netadata, byte[] content);
publ i ¢ PageData findLearni ngObj ect(long oid,|ong version)
publ i ¢ PageData findLearni ngObj ect(long oid,|ong version,
bool ean | oad);
publ i ¢ List<PageDat a> search(Properties netadata)
public void addAnnotation(long oid, |ong version, Feedback critique);
public voi d addMet adat a(l ong oid, | ong version, List<String> keywords,
Map<Stri ng, Li st <Obj ect >> net adat a) ;
public voi d addMet adat a(l ong oi d, | ong versi on,
Map<Stri ng, Li st <Obj ect >> net adat a) ;

o

Listing 13. Stateless session bean facade interface

An Enti t yManager is injected into an EJB by using the

@ avax. per si st ence. Per si st enceCont ext annotation as shown in Listing 14.
This annotation allows the EJB container to inject an Ent i t yManager reference into
the EJB. This is the most preferred method as the EJB container has full control over the
life cycle of the underlying persistence context of the Ent i t yManager . The
application developer doesn’t need to write any additional life cycle code to handle the
cleanup of the Ent i t yManager instance.

@5t at el ess
public class RepositoryServi ceBean inplements RepositoryServiceRenote {
@er si st enceCont ext (uni t Nane = "col | abx")

private EntityManager em

Listing 14. EntityManager injection in a EJB
Enti t yManager is the primary interface to persistence runtime and manages the state
of the entities that are attached to it as shown in Listing 15.

Lear ni ngQbj ect exerci se = new Learni ngQbj ect () ;
//set the version
exerci se. set Ver si on(Ver si on. gener at eVersi on());

43

exercise.setTitl e(netadata.getProperty("title",""));

exer ci se. set Cont ext (met adat a. get Property("context", ""));
exerci se. set Creati onTi ne(Cal endar. getlnstance().getTinme());
em per si st (exerci se);

//find an entity
oj ect Key key = new bj ect Key(0i d, version);
Lear ni ngCbj ect | ob = em find(Learni ngbj ect . cl ass, key);

Listing 15. Usage of EntityManager API

When an entity is attached to an Ent i t yManager , the manager tracks state changes to
the entity and synchronizes those changes to the database whenever the entity manager
decides to flush its state.

The entity manager manages the attached entities through a persistence context. The
persistence context represents a collection of entities, whose persistence state is tracked
by the entity manager for changes and updates. These changes are then flushed to the
database. In a given persistence context, for each persistence identity there is a unique
persistence instance. Once a persistence context is closed, all managed entities within that
context become detached and are no longer managed by the entity manager. Once an
object is detached from the persistence context, any state changes to this object instance
will be not flushed to the database.

3.3.1 Entity Management

The state of the entity as it flows though the various tiers of an enterprise web application
is shown in Figure 24.

JSF Managed
Bean

Session Bean

Detached
entities

managed EntityManager

Managed
Entities

Database

Figure 24 Entity Detach and merge

44

An entity can be created with the new() operator like any other ordinary POJO class. In
this state entity is not yet managed or persistent. Code Listing 16 shows the relevant code
for creating an instance of Lear ni ngQbj ect entity.

Lear ni ngQbj ect exerci se = new Learni ngQbj ect () ;

//set the version
exer ci se. set Ver si on(Ver si on. gener at eVersi on());

exercise.setTitl e(netadata. getProperty("title",""));

exer ci se. set Cont ext (net adat a. get Property("context™, ""));

exerci se. set Creati onTi ne(Cal endar. getl nstance().getTinme());
exerci se. set Descri pti on(met adat a. get Property("description",""));

/1 get the duration
String duration = metadata. getProperty("duration”, "0");
exerci se. set Durati on(l nteger. parselnt(duration));

Listing 16. Creating a New Entity

An entity is persisted in the database by invoking Ent i t yManager . per si st ()
method as shown in Listing 17. Once an entity is persisted in the database, it is managed
by the EntityManager till the end of the Per si st enceCont ext . If the entity has any
relationships with other entities, these entities may also be created in the database if the
appropriate cascade policies are mentioned in the relationship annotation.

@ntity

@ dd ass(bj ect Key. cl ass)

@equenceCener at or (name="VERSI ONKEY_SEQUENCE" , sequenceNanme="VERSI ONKEY _
SEQUENCE")

public class LearningQoject inplenments Serializable {

@d

private Long id;

/lcollection of properties

@neToMany(cascade={ CascadeType. ALL})

private Col |l ecti on<LessonProperty> properties;

}

@5t at el ess
public class RepositoryServi ceBean inpl enents RepositoryServiceRenote {

@Per si st enceCont ext (uni t Name = "col | abx")
private EntityManager em

public |ong createXObject(Properties netadata, byte[] content)({

try {
Lear ni ngObj ect exercise = new Lear ni ngtoj ect () ;

//set the version
exerci se. set Ver si on(Ver si on. gener ateVersi on());
//check if the HashMap cont ai ns
[/ pairs of property_nanme.x and property_val ue. x
for(String propertyNane : netadata.stringPropertyNames()) {
if (propertyNane.startsWth("property_nanme")) {
/1 get the actual property nanme and val ues
String[] property = Uil.getProperty(propertyNane,
net adat a) ;

45

properties. add(new LessonProperty
(property[O], property[1],true));
}

if (properties.size() >0) {
exerci se. set Met adat a(properties);

//set the content
exerci se. set Xcont ent (content);
em per si st (exerci se);
return exercise.getld();
} catch (RuntimeException ex) ({

}

Listing 17. Persisting Entities

Entities become detached and unmanaged when the persistence context or the transaction
scope ends as shown in Figure 24. However, in the detached state, these detached entities
can be serialized and sent over the wire to different tiers of the application. Each of these
tiers can make changes to the state of the entity. The Java Persistence framework does
allow to merge state changes made to a detached entity back into the persistence
repository using the entity manager’s mer ge() method as shown in Listing 18.

public void addAnnotation(long oid, |ong version,
Feedback critique) {
long id = -1;
try {
//formthe conposite key
oj ect Key key = new bj ect Key(o0i d, version);
Lear ni ngObj ect | ob = em find(Learni ngQoj ect. cl ass, key);

//add the feedback

Met adat aAnnot ati on m = new Met adat aAnnotation();

m set Comment s(critique. get Comments());

m set Feedback(criti que. get Feedback());

m set St udent Feedback(criti que. get St udent Feedback());
m set Modi fied(critique.isMdified());

m set Used(critique.isUsed());

| ob. get Annot ation().add(n);
em nerge(l ob);
}cat ch(Runti meException rte) {
Logger . get Logger (get C ass() . get Package() . get Name())

.log(Level . SEVERE, "", rte);
throw rte;

}

return ;

Listing 18. Merging Entities

46

The most important thing to remember here is that detached entities which had been
serialized to the web tier of an enterprise web application needs to be merged into the
current persistence context to be managed by the EntityManager. And, if the entity is
involved in bi-directional relationships, relationships need to be updated both on the
owning side and dependent side.

47

4. Solution Implementation
4.1 CollabX Repository Overview

The solution proposes a central repository to which lessons created by different
instructors can be uploaded. Each lesson uploaded to the repository is tagged with
metadata data elements, which are a subset of definitions derived from the IEEE LOM
specifications [1].

It addresses a set of use-cases, which are often valid for users of a shared repository,
specifically

Search (Advanced Search)

An end user would like to search for a particular lesson contained in the
repository. Each lesson in the repository is tagged with keywords, which is used
to identify and retrieve the lesson.

Download

An end user can download a lesson from the repository. The format supports
Labrat and a generic zipped version of the resources that make up the lesson.

Upload

An end user can upload a zipped file containing resources that make up the
lesson. The resources contained in the zipped archive could be any valid file
arranged in any hierarchical layout.

Fork (a variant of an existing lesson)

An end user can fork a variant from an already existing lesson in the repository.
During the upload process, a user can indicate that the lesson is a variant of an
existing lesson. This relationship will be maintained in the repository and a user
can search for lessons which are derived from a particular type of lesson.

Critique

An end user can search for a lesson and leave feedback about the quality of the
lesson. This information will again be tagged with that particular lesson with an
Annot at i on data element, which will be used as a search parameter while
searching for a lesson in the repository.

Categorize

An end user can categorize a lesson by changing properties associated with the
lesson. These properties may include Text Book Name, Chapter Name, Section
Name, level of difficulty, context etc.

48

This shared repository implementation introduces collaborative features like "Fork",
"Critique" and "Categorize", which is lacking in other similar repositories. This shared
repository henceforward will be named as CollabX.

4.2 Integration with External Systems

CollabX is built on the premise of a shareable and collaboration platform across global
communities. These individual communities might be using a set of grading systems that
evaluates a student’s submission based on pre-defined set of configuration attributes that
is not inter-operable with each other. CollabX tries to bring a common ground in defining
a consistent vocabulary in developing courseware for Computer Science students. This
common vocabulary takes the shape of a set of metadata definitions that describes a
Computer Science assignment in CollabX. This very set of definitions is then used to
export an assignment to a target system such as Web-CAT or Labrat by using a plug-in
architecture.

CollabX supports plugins for Web-CAT, Labrat and a generic zipped format. The plugin
interface is given below —

package com repository. plugin;

/**

* This is an interface which defines the contract for exporting a

* exercise in the repository into an external fornat
*

* @ut hor Sonyajit Jena
*/
public interface Plugin {

public void export(byte[] |esson) throws Exception;
public void export(byte[] |esson, Fil eEventListener |istener)

t hrows Exception;
/**

* Asinple getter to return the identifier of the exported
* | esson fromthe repository
* @eturn - String - an identifier
*/
public String getExportld()
}

This interface exports a lesson to the target system by taking the contents (byte []) of
the persisted lesson in the repository and transforming the same to a deployable unit of
the target system. It uses the metadata definitions that were tagged with the lesson to
build a deployment archive with associated property definitions that matches the target
system’s requirements.

4.2.1 Web-CAT Interoperability

Course developers or instructors can develop courses in Web-CAT and publish them to
their students. Web-CAT automatically grades submitted assignments against an

49

instructor provided solution. Typically, the instructor solution is executed through a fest
harness, which is a collection of test cases provided by the instructor. These test cases
compare the output of a student’s submitted assignment with the expected output of the
solution provided by the instructor.

While creating an assignment in Web-CAT, an instructor can provide reference test cases
in the form of a JUnit test case. These instructors provided test cases are executed by a
JavaTddPl ugi n when a student submits a solution for the assignment. The

configuration of this plug-in is done as part of the overall set-up of the assignment in
Web-CAT as shown in Fig 25.

Configure Plug-in

Step 1

Pick the course Plug-in: JavaTddPlugin

Step 2 For: FactoringIntegersZ: FactoringIntegersZ
Pick the assignment

b Reusable Configuration Options
Step 3

Edit assignment properties
Side step: Configure plug-in

4

This plug-in supports additional option settings that can be placed in a named configuration profile
that is shared among several assignments.

Reusable opt\on set: Factoring of Integers: Factoring of Integers config ~ = | new

Assignment-Specific Options

m::e deszcriptions

JUnit Reference Test Class(es): S1sU/admin/ExP7_10/webcatbin/ExP7_10_29_TestCase.java &
| Browse.. J [Use Default]

A Java source file (or directory of source files) containing JUnit tests to run against student
code to assess completeness of problem coverage. If you select a single Java file, it must
contain a JUnit test class dedared in the default package. If you select a directory, it
should contain JUnit test classes arranged in subdirectories according to their Java package
declarations. If you make no selection, an empty set of instructor reference tests will be
used instead.

Supplemental Classes for Assignment: S1SU/admin/ExP7_10/classes.jar [Browse. | [useDefaur |
A jar file (or a directory of class files in subdirs reflecting their package structure, or a
directory of multiple jar files) containing precompiled classes to add to the classpath when
compiling and running submissions for this assignment. If you want to apply the same jar
settings to many assignments, use the "Supplemental Classes" setting in the "Reusable
Configuration Options" section instead. If you have multiple jars to provide, place them all
in the same directory in your Web-CAT file space and then select the whole directory.

Data Files for Student: SISU/admin/ExP7_10/webcatdata ‘il Browse.. | [UssDefaut |
A file (or a directory of files) to place in the student's current working directory when
running his/her tests and when running reference tests. The file you select (or the entire
contents of the directory you select) will be copied into the current working directory during
grading so that student-written and instructor-written test cases can read and/or write to
the file(s). The default is to copy no files.

[<Back | [Next= | [cancel | [Apptyal | [Finish

Figure 25 JavaTDDPlugin Configuration

An assignment created in Web-CAT should have adequate artifacts to configure the
parameters of JavaTDDPlugin as shown in Table 4.

Configuration Parameter Value Description

Parameter
JUnit Reference SJSU/admin/ExP7 10/web | A Java source file (or directory of

50

Test Class(es) catbin/ExP7 10 29 TestC | source files) containing JUnit tests to
ase.java run against student code to assess
completeness of problem coverage. If
a single Java file is selected, it must
contain a JUnit test class declared in
the default package. If a directory is
selected, it should contain JUnit test
classes arranged in subdirectories
according to their Java package

declarations.
Supplemental SJSU/admin/ExP7 10/clas | A jar file (or a directory of class files
Classes for ses.jar in subdirs reflecting their package
Assignment structure, or a directory of multiple

jar files) containing precompiled
classes to add to the classpath when
compiling and running submissions
for this assignment.

Data Files for SJSU/admin/ExP7 10/web | A file (or a directory of files) to place
Student catdata in the student's current working
directory when running his/her tests
and when running reference tests. The
file selected (or the entire contents of
the selected directory) will be copied
into the current working directory
during grading so that student-written
and instructor-written test cases can
read and/or write to the file(s). The
default is to copy no files.

Table4 . JavaTDDPlugin Configuration parameters

Each parameter value shown in Table 4 is a relative path to the resource from the root
folder of the assignment. When a submitted assignment is being graded, the
JavaTDDPl ugi n reads these configuration values to fetch the various resources from
the respective file paths.

Since Web-CAT has support for executing JUnit test cases, the interoperability between

CollabX and Web-CAT was done at a JUnit test case level. This interoperability support
is only applicable for assignments whose content layout confirms to the Labrat format as
show in Section 1.1 of Chapter 1. Each exported assignment from CollabX repository is

tagged with a dynamically generated JUnit test case.

The Web-CAT plug-in of CollabX will generate two test methods —
t est Mai nCl assW t hl nput s andt est Wt hCapt ur edQut put .

51

4.2.1.1 Method t est Mai nCl assW t hl nput s

During export of an assignment to a Web-CAT grading system, the plug-in reads the
Labrat metadata file check. pr operti es and contents of directories to generate the
code for this test function. It uses the following rules:

It reads the value of the property t est . t est - i nput s to determine if the main

class of the submitted assignment needs to be loaded dynamically by the java

classloader. A value “true” indicates that the main class of the assignment needs
to be tested with instructor’s reference test data. The code generated will read the

property mai ncl ass, dynamically load and invoke the java class.

It scans the student and grader directories for instructor reference test data looking

for files with names having patterns like test*.in or test*.out. The code is

generated to make the program read data from the input test files and compare the

program’s output with instructor provided expected output data.

public void testMindassWthlnputs() throws Exception {

//the input files are assuned to be

//test.in and the output is test.out
Properties properties = null;

PrintStreamWthHi story saveCQut put Stream = nul | ;
try {

//read the check.properties file
properties = this.readProperties("check. properties");
//check with check.properties if the Main class
/1 of the assignment needs to be tested with supplied inputs
bool ean test Mai nd ass =
bool eanProperty("test.test-inputs", properties,true);

if (testMainClass == false) {

//force a success eval uation

assert True(test Mai nC ass == fal se);

return;

//set the input streamof the test case
Input Streamin = getd ass().getd assLoader ()
. get ResourceAsStream("testl1l.in");
System setIn(in);
saveQut put Stream = this. systenQut ();
[/call the main class
String nmainCl ass = stringProperty("nainclass", properties,null);

if (minCass == null) {
assert True(nmai nC ass == nul |);
return;

}

/1'invoke

t hi s. i nvokeMai nCl ass(nmai nd ass) ;

}cat ch(Exception e) {

Systemout. println("Exception: Message " + e.getMessage());
t hrow e;

52

/levaluate the results
/1 get the ConpareTask
Conmpar eTask ct = new Conpar eTask();

try {
//set the paraneters

//this configuration is for knowi ng the conparison

//mode to test the output conparison

String out put ConpareTokenType = stringProperty("test.token",

properties,"line");

ct. set Token(out put Conpar eTokenType) ;

//set the source

String result = saveQutput Stream get Hi story();

StringReader sourcel = new StringReader(result);

/ /I source2 which is pre-canned

Reader source2 = new | nput StreanReader (get O ass. get assLoader ()
. get ResourceAsStream("test1.out"));

ct.set Sourcel(sourcel);

ct. set Source2(source?2);

/l eval uate the out put

assert True(ct. conpareQut put () == true);

}finally {

}
}

4.2.1.2 Method testMainClass WithInputs

This test function is a wrapper around Horstmann style tester classes, which is included
in any assignment that confirms to the Labrat format. Horstmann style tester classes are
Java classes having a naming pattern like * (T| t) est er\\ . j ava$. Ifthere are any
instructor provided Horstmann style tester classes, it will call that tester program with the
appropriate inputs and compare the program output with the instructor provided expected
output. The comparison task reads the t est . t oken and t est . t ol er ance metadata
properties from check. properti es file to determine the type of comparison to
make and the level of tolerance to use before flagging the result as an error:

= test.token

This property indicates the type of comparison to use while comparing the
program’s output with the instructor’s reference expected output. The valid values
arel i ne, word, nunber or regul ar expression.

= test.tol erance

This property holds the value for the level of tolerance to use while comparing
numbers.

The captured output of a Horstmann style tester class has the following format as given
below:

true

Expected: true
2

Expected: 2

53

true
Expected: true

2

Expected: 2
true

Expected: true
3

Expected: 3
true

Expected: true
5

Expected: 5
fal se

Expected: false

The code is generated to compare each output line with the line having the "Expected"
token.

public void testWthCapturedQutput() throws Exception {

//check if there are any tester classes in any of the
//directories, we need to attach the System out and check the
/l expected pattern

PrintStreamWthHi story saveCQut put Stream =t hi s. syst enQut ()
/lcall the any * tester class present in the student or grader
/ldirectory

Fact or Gener at or Tester. mai n(nul |) ;

/lall program done. Parse the output
//get the print history
String result = saveQut put Stream get Hi story();

/lcreate the conpare task object

Conpar eTask ct = new ConpareTask();

//get this from check. properties

ct.set Token(" nunber");

/1 get the tokens

StringReader reader = new StringReader(result);
Li st<String> alltokens = ct.get Tokens(reader);

/I nothing to conpare
assert Not Sane(al | t okens. si ze(), 0);
Listlterator<String> iter = alltokens.listlterator();

bool ean equal s = true;
while (iter.hasNext()) {
/] sourcel
String tokenl = iter.next();
String token2 = iter.next();
equal s &= ct.conpare(tokenl, token2);

assert True(equal s == true);

}

The file naming convention of this generated test case is given below —

54

<title of the assignnment>_<random nunber>_Test Case. | ava

Figure 26 shows the layout of the exported assignment when it is deployed in Web-CAT.
The Web-CAT plug-in adds two new directories: webcat bi n and webcat dat a.

Edit Your Configuration Files

Step 1

PR C e Any file modifications made on this page will cause all pending changes to be applied. All file actions w

take effect immediately.
Step 2

Pick the assignment
Step 3 _Séect| =43 admin aa
Edit assignment properties SE_LCCII SR ExP7_10 @ﬂ
Side step: Edit your configuration files Ty @classes.jar on
_Select | B3 description a
¢ ~Bindex.html o
_Seleet | E-3 grader 2a
~[Echeck.properties Han
_Seleat | ! ~[E)EactorGeneratorTest.java =an
_Seleet | = META-INF aa
OMANIFEST.MF oa
Lselect | B+ solution L]
Select ~[El FactorGenerator.java Han
_Selet | ~E)FactorPrinter.java =k v
_Select | B+ student Qo
¢ ~Blcheck.properties Soa
_seect | FactorGenerator.java =k
_elect | ‘ ElFactorGeneratorTester.java Hwa
BElsupplemental-instructions.html Eo@
Otestt.in k]
[testi.out oo
_Select | =3 webcatbin L]
~ElExP7 10 29 TestCase.java =k
_Sekeet | =3 webcatdata ga
Blcheck.properties Han
Utest1.in an
[Ttest1.out wn

Figure 26 Layout of the exported assignment in Web-CAT

These new directories contains the following artifacts -
= webcatbin

This directory contains the generated JUnit test case for the exported assignment.
This makes it easier to integrate with Web-CAT, since once can easily identify the
folder and configure the test case to be a "Instructor reference test case"

= webcat dat a

This directory contains all the test data files whose names match the patterns
test*.inandtest*. out.

As shown in Figure 26, file Exp7_10_29_ Test Case. j ava has been configured to
be the instructor reference test case for assignment titled “ExP7 10”. The folder
“webcatdata” has been configured as the test data file that needs to be copied over when
Web-CAT is executing the instructor reference test in a temporary staging area. When a
student submits a solution for an assignment, Web-CAT executes this reference test and
the result is made available to the student.

55

4.2.2 Labrat Interoperability

An assignment confirming to the Labrat directory layout format is saved in the file
system as shown in Figure 27. This is in addition to being persisted in the repository.

Exercise 7.10 Factoring of integers was successfully
uploaded to repository

Path

Path c:\javallabrat\exercises\3ovobxouzaxbadikifjahs)

-

Figure 27 Labrat Interoperability

4.2.3 Labrat Feature Extension

Prior to these feature inclusions, an instructor had to prepare the lesson in the Labrat
format and copy to the root of the repository. The web-interface was enhanced so that a
zipped lesson in Labrat format would be uploaded to the repository. It also supported
generation of the metadata of the uploaded lesson, if check.properties file was not
included in the zipped file.

4.3 CollabX Solution Use Cases

4.3.1 Use Case — Upload

The table below enumerates a set of activities for uploading alesson to the repository-

User action System response

User enters the title and selects the zipped archive to | System uploads the zipped archive in to a temporary

upload staging area. It reads the contents and tags metadata
information to the contents. It then displays the
properties page.

56

User enters the values for properties Text Book
Name, Chapter, Section, Language, Installation Help
Text, description, level of difficulty, Duration,

System associates these properties with the lesson
and saves it to the repository. It then displays the
page to associate search keyword with the lesson.

Target Audience and any other additional properties
that the use might think deem correct.

User enters the search keywords. System saves the keywords for the lesson. It then
displays to the user a result screen which has the
contents of the zipped archive, properties and tagged
search keywords. This marks the end of the upload

process.

Table5. Use-Case of uploading alesson to the repository
Main —® Upload Screen
View Upload
Result screen
A 4
P rty P
PRI ‘ Tag Search
Keywords
Page

Figure 28 Flow Diagram of Uploading a Lesson to Repository

4.3.1.1 User Interface

This section has a set screen shots to illustrate the use case given above. Figure 29 shows
the page for uploading a zipped archive into the repository. The user has to select the
zipped archive in the file system. During the upload process, the application scans the
zipped content and tag metadata information with the contents wherever appropriate. It
then stages the uploaded zipped archive in a temporary storage area to gather additional
information about the uploaded content before saving it into the repository. This
additional information is gathered from the user through a wizard like interface as shown
in Figure 30.

57

Repository

Assignment Upload

Upload Exercize |

|| Browse... m . Jé“lll.\,.__ir a1

Is thizs fork of an existing assignment?

Figure 29 Screen shot — Repository Upload

Figure 30 shows the Properties page where the user has to add some contextual
information to the uploaded lesson. This helps in describing the lesson and its usefulness
in various environments of study as wells as the targeted audience.

58

Repository

Properties

Titla [Exercise 7.10 Factoring of integers |

Installation Help Text|_ =
Level

Shnl)imk
[easy
Smtfm'y

Moderately Difficult
Difcutt

Duraﬁmt[‘ig
Target Audience

Freshmen

—

59

Iil Easy
Somewhat Easy
Moderately Difficult

Difficult

Duration |1[J

Target Audience

i
Junior
Sophomare
—

Other Properties

Property Na.melTe}d Book |

o \"aLuelBig Java volume 2 | | More Properties. ..

Allow others to search for this assignment 7

Figure 30 Screen shot — Properties Page

In the above screen shot, a user could also enter additional properties that may further
describe the uploaded lesson for any special circumstances. They could also tag search
keywords for a lesson that could be used in identifying the lesson in the repository as
shown in Figure 31.

Repository
it Vit
Kéywird Tag|integer factoring| | | More Keyword Tags... |
Step 2
Annotation
Step 3

Figure 31 Screen shot — Repository upload

60

Figure 32 shows the result of a successful upload for a zipped archived lesson into the
repository. At this point, the contents of the zipped archive along with the metadata
information have been persisted in the repository.

Repository

Exercise 7.10 Factoring of integers was successfully
uploaded to repository

Path

Contents

Properties

_Aitl Properties

Figure 32 View uploaded assignment

61

4.3.2 Use Case — Search

This use case assists users of CollabX in searching for an assignment that has been
persisted in the repository. The user interface exposes a set of search filters for targeted
search of an assignment. Table 5 shows the various search filters that are enabled in the
user interface —

Search Filter Description

Title Search based on title of the assignment. An assignment whose title
starts with the search term is a match.

Keywords Search is based on the “keywords” that was tagged with the
assignment. This search filter finds keywords of an assignment that
contains this term.

Property Name | Search is based on the user-defined properties that were associated
with this assignment. This search filter will search for property names
of an assignment which contains this term

Property Value | A value entered for this filter will search for property values that
contains this term.

Tableb6. Search Filters

None of the search filters mentioned in Table 6 is mandatory. The default value is a wild-
card search (%) for each of the above search terms. Listing 19 shows an example of a
search query generated from the values entered for the search filters.

SELECT | from LearningObject as | JON |.nmetadata m
WHERE |.title LIKE ' Exercise 7.10 Factoring%

AND | . keywords LIKE ‘% nteger factorial %
OR (m propertyNane = ' Text Book' AND
EXI STS (

SELECT val from m propertyVal ues val
VWHERE val . propertyVal ue LIKE ' %Bi g Java vol une 2%

)
ORDER BY | .creationTi me

Listing 19. Generated EJB QL from Search Filters

The table below enumerates a set of activities to search for an assignment in CollabX.

User action System response

User inputs the data based on which the search will System displays the search results matching the filter
be executed. The search filters are title, keywords criteria.

and property names and values. These are the

properties which are tagged with the assignment

62

when it was uploaded into the shared repository.

User selects one of the assignments that is displayed

in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

Table 7. Use Case - Search

4.3.2.1 User Interface

Main

Search Page with

filters

Search Results

View Lesson
Details

Figure 33 UI Flow Diagram of Search

This section has a set screen shots to illustrate the use case given above. Figure 34 shows
the user interface for searching an assignment in the repository. It has the search filters as
discussed in Table 6. If an assignment has multiple user-defined properties, these can be
made part of the search filter by clicking on the “More Properties...” button. On clicking
this button, another set of property name and value will be prompted to the user.

63

Repository

[[Search | [Reset | [Cancel |

Figure 34 Search User Interface

Figure 35 shows the results for searching by the title of an assignment which starts with
“Exercise 7.10”. Each search result displays the title and a brief description of the
assignment.

Repository

Search Result

Figure 35 Search Results

64

4.3.3 Use Case — Fork

This use case assists instructors in uploading a variant of a programming assignment that
they may have downloaded and later modified it to suite their needs. A programming
assignment fork helps the instructor in filling in the gaps in metadata definition of the
altered programming assignment. They can choose to retain all of the original metadata
definition and add new ones to reflect the contents of the altered assignment. Prior to
forking an assignment, an instructor has to search for the original assignment and mark it
as the parent from which the current assignment was created. CollabX will then load the
metadata definition of the original assignment and associate that with the current
assignment that is being uploaded to the shared repository.

The table below enumerates a set of activities to upload a forked assignment into

CollabX.

User action

System response

User enters the title and selects the zipped archive to
upload. The checkbox is marked to denote that the
assignment that is being uploaded is a forked
assignment from an existing one in CollabX.

System uploads the zipped archive in to a temporary
staging area. It parses the contents and then redirects
to a search page.

User inputs the data based on which the search will
be executed. The search filters are title, keywords
and property names and values. These are the
properties which are tagged with the assignment whe
it was uploaded into the shared repository.

System displays the search results matching the filter
criteria.

User selects one of the assignments that is displayed
in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

User marks this assignment as the parent of the
forked assignment that is being uploaded to the
repository.

System shows an editable properties page which the
user can edit metadata of the assignment.

User edits the values for properties Text Book Name,
Chapter, Section, Language, Installation Help Text,
description, level of difficulty, Duration, Target
Audience. The end user can also delete or add
additional properties that can aptly describe the
modified assignment.

System associates these properties with the lesson
and saves it to the repository. It then displays the
page to associate search keyword with the lesson.

User can edit the tagged keywords for the
assignment. These keywords are used as one of
search filters to find an assignment.

System saves the keywords for the lesson. It then
displays to the user a result screen which has the
contents of the zipped archive, properties and tagged
search keywords. This marks the end of the upload
process of a forked assignment.

65

4.3.3.1 User Interface

Main > Upload with Fork
Screen
L View Upload
Result screen
Search Page Edit Property : /
with filters Page |, EditTag
Search

Keywords
f Page

View Lesson
Details

This section has a set screen shots to illustrate the use case given above. Figure 36 shows
the page for uploading a zipped archive into the repository.

Repository
Assignment Upload Step 1
Upload Exercise|C:\pr0jects\sample exermﬂ Browse... | Assignment Upload

Is this fork of an existing assignment?

ween 2
Annotation
Step 3

Figure 36 Screen shot — Repository Upload

66

The user has to locate the zipped archive in the file system and mark the checkbox
denoting that the assignment being uploaded is a fork of an existing assignment in the
repository. During the upload process, the application scans the zipped content and tag
metadata information with the contents wherever appropriate. It then stages the uploaded
zipped archive in a temporary storage area to gather additional information about the
uploaded content; specifically the user has to provide the details of the original
assignment by searching and selecting it. This additional information is gathered from the
user through a search interface as shown in Figure 37.

Repository

L) Ui || poymiond [l citione]l cotopmic

Step 1
Assignment Upload
Title (Starts With)| |
ik |
: Step 2
‘lir'wlv?i@n'e | | Annotation
Property Value | | Step 3
| Mare Properties. .. |
Done
| Search | | Reset | | Cancel |

Figure 37 CollabX search interface

The user has to input the search filter criteria to narrow down the search for the original
assignment. The search results are show in the Figure 38.

67

Repository

Search Result

Figure 38 Search results page

Each search result shows the title of the assignment and a brief description about it. The
original assignment from which the forked assignment has been derived can be selected
by clicking on the title of the assignment.

Figure 39 given below shows the editable properties page of the selected assignment
where the user can add, delete or edit the metadata definition.

68

Repository

Edit Properties Step 1

TitLe|Exe rcise 7.10 Factoring of integers |

Language | en US | Step 2

Write a program that ask3 the user -+ :
for an integer and then prints out
all ‘its Tactors in increasing SteP 3'.

order. For example, when the user
enters 150, the program should Done
print

Description !
Use a class FactorGenerator with a =
constructor FactorGenerator |(int
numberToFactor) and methods
nextFactor and hasMoreFactors .

Installation Help Text i

Level

Slam Dunk

Eazy

Somewhat Easy

Moderately Difficult

Difficult

Duratior1|m |

Figure 39 Edit assignment

In the above screen shot, a user could also enter additional properties or edit the existing
ones that may further help in describing the altered assignment. They could also tag
search keywords for a lesson that could be used in identifying the lesson in the repository
as shown in Figure 40 below.

A user could edit the existing keywords list that may help in searching for the lesson in
the shared repository. The keywords are delimited by a semi-colon (;).

69

Repository

lint:eqe.:: factoring: i o
Keyword Tag

Figure 40 Edit Search Keyword Page

Figure 41 shows the result of a successful upload for a zipped archived lesson into the
repository. At this point, the contents of the zipped archive along with the metadata
information have been persisted in the repository.

Repository

Exercise 7.10 Factoring of integers was successfully
forked and saved to repository

Path

Contents

Additional Properties

Figure 41 A Successful Save Page

70

4.3.4 Use Case — Download

This use case assists instructors, course developers and researchers in downloading an
assignment from the CollabX repository. A user has to search for an assignment before
being able to download it. The download options that are available are shown in Figure
42,

1. Generic zipped format

The selected assignment will be downloaded as a zip file. The entire contents of
the same will be included in the archive. This option is useful in making offline
changes to it and then uploading it as a fork of the original assignment.

2. Web-CAT format

This option will export the selected assignment as a deployable archive in Web-
CAT.

Choose Download Option

Generic Zipped format
Download Format

Web-CAT format

Done Export

Figure 42 Download Options

Table 8 enumerates a set of activities to download an assignment from the repository.

User action System response

User clicks on the Download tab. System redirects to the search page.

User inputs the data based on which the search will System displays the search results matching the filter

be executed. . criteria.
User selects one of the assignments that are System displays the details of the assignment, which
displayed in the search results page. includes its contents, metadata definitions, keywords

tagged for search and user defined properties.
A download button is displayed in this page.

User clicks on the download button System displays a page showing the details of the
assignment selected and the download options as
shown in Figure 46.
User selects one of the formats. System downloads the assignment in that format.
Table 8. Use Case - Download

71

4.3.4.1 User Interface

View Lesson
Details

This section consists of a set of screen shots to illustrate the use case for downloading an
assignment from the CollabX repository. As stated in Table 8, user has to search and
select an assignment for download. Figure 43 shows an assignment that has been

Main > Download
‘L/ A
Search Page Download
with filters Options |y Save
download

selected for download. It has the following details:

= Properties

It shows the properties that have been set for the specific assignment. The
following properties are displayed — Title, Language, Description, Installation

Help Text, Level, Duration, Target Audience.

72

View Object

e

Properties

Contents

Additional Properties

Text Book
Chapter
Searchable: Yes

[Done | [Cruaue | [Categore | [owrioad

Figure 43 Details of a Selected Assignment

Contents
It shows the contents of the selected assignment
Additional Properties

It shows any additional user-defined metadata information that has been tagged
with the assignment.

Keywords

It displays the specific words that help in searching for an assignment.

73

s [s | s |t ||t |

Download Step 1

iﬁiie Exercise 7.10 Factoring of integers Assignment Upload
iﬂescription“"ﬁte a program that asks the user for an integer and then prints out all its
‘factors in increasing order. For example, when the user enters 150, the program should
I;u'in{

Step 2
Tagged Keywords A
Ki ds
eyWar: . Step 3
Keyword integer factoring;
Choose Download Option i

Generic Zipped format
‘Web-CAT format

Download Format

Figure 44 Download Assignment

A user can decide to download the assignment based on the information displayed above;
the selected assignment can be downloaded by clicking on the Download button. Figure
44 shows the screen for downloading an assignment from the CollabX repository. User
selects the zipped or Web-CAT format and click on the Export button. The Browser will
then prompt to save the downloaded archive in the file system.

4.3.5 Use Case — Critique

This use case helps instructors, course developers and researchers in providing feedback
for an assignment. These feedback comments are then persisted in the repository and
made available to other users.

Table 9 enumerates a set of activities to provide feedback for an assignment in the
repository.

User action System response

User clicks on the Critique tab. System redirects to the search page.

User inputs the data based on which the search will System displays the search results matching the filter
be executed. . criteria.

74

User selects one of the assignments that are

displayed in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

A Critique button is displayed in this page.

User clicks on the Critique button

System displays a page showing a feedback
questionnaire to the user.

User fills up the questionnaire and Clicks on the

Save button

System saves the feedback for the assignment in the
repository.

Table9.

4.3.5.1 User Interface

Use Case - Critique

Main > Critique
‘L/ A
Search Page Critique
with filters Assignment | Save
Feedback

View Lesson
Details

This section consists of a set of screen shots to illustrate the use-case for providing
feedback for an assignment in the CollabX repository. As stated in Table 9, user has to
search and select an assignment for providing feedback. Figure 45 shows feedback user
interface for an assignment. User has to provide the following feedback:

* Did they like the assignment?

= Did their students like it?

= Did they modify it?

= Any other comments about the assignment.

75

Search | Upload [Download H Critique ” Categorize
Usage Feedback Exercise 7.10 Factoring of integers Step 1
Version 1209239435213
Assignment Upload

Did you like it?

[id not bke it at all Liked it very much Step <

: p Annotation

Did vour students like it?

Did not like it at all Liked it very much Step 3

Did you modify it? Done

Comments o

Figure 45 Feedback for a selected assignment

4.3.6 Use Case — Categorize

This use case helps instructors, course developers and researchers in categorizing an
assignment. During the upload process, an assignment is assigned a specific set of
properties and metadata definitions that best describes it. This categorization is persisted
in the repository along with the contents of the assignment. But as more and more users,
start using this assignment for their needs there might be a need to add more metadata
definition to accurately describe the assignment. This might be based on its usage in

various research and academic fields.

Table 10 enumerates a set of activities to categorize an assignment in the repository.

User action

System response

User clicks on the Categorize tab.

System redirects to the search page.

User inputs the data based on which the search will
be executed.

System displays the search results matching the filter
criteria.

User selects one of the assignments that are
displayed in the search results page.

System displays the details of the assignment, which
includes its contents, metadata definitions, keywords
tagged for search and user defined properties.

76

A Critique button is displayed in this page.

User clicks on the Categorize button

System displays a page to the user with edit controls
to add, edit or remove properties.

Save button.

User re-categorizes the assignment and clicks on the

System saves the categorization of the assignment in
the repository.

Table 10.

4.3.6.1 User Interface

Main

Use Case - Categorize

.

—

Search Page
with filters

3 :

> Categorize

Categorize

Properties —p SaYe .
Categorization

View Lesson
Details

This section consists of a set of screen shots to illustrate the use-case for categorizing an
assignment in the CollabX repository. As stated in Table 10, user has to search and select
an assignment for categorization. Figure 46 shows the user interface for categorizing a

selected assignment.

77

Repository

Categorize

Properties

|| | o .. : - In ST = t :':-

More Values. ..

Figure 46 Categorization of Assignment
In this page, user can perform the following for re-categorization of the assignment-

= Add additional properties to the assignment by clicking on “More Properties...”
button.

* Add multiple values to a property by clicking on the “More Values...” button.
= Deleting a property
= Deleting one of the existing values for a property.

= Edit the list of keywords for the assignment

78

5 Conclusion

This present study focused on the problem of isolated repositories of programming
exercises. These repositories exist within their own eco-system and can hardly
collaborate with the global communities of computer science researchers, course
developers and instructors. Lack of a common vocabulary and inconsistent terminologies
used across the existing systems, inevitably leads to re-inventing the wheel. Without
knowledge of other people’s work, these exercises developed in isolation get lost due to
lack of collaboration, feedback and insights.

This project attempts to develop a platform for collaboration of programming exercises
among Computer Science instructors, researchers and course developers. The central
point to this platform is the definition and persistence of the metadata in a repository that
describes a programming exercise [1]. There are existing systems like Marmoset [7] and
Web-CAT which supports submission and automatic grading of exercises, but these
exercises are specifically developed for these systems in a proprietary format. As with
any other proprietary technology, the exercises developed for these systems are pinned to
these platforms. The collaboration platform proposed in this study is shown in Figure 47.

il

i
Proprietary Definitions

Home grown automatic submission and grading tool O

ﬁ % Computer Science Researcher
Author 1 < E ®

\

Internet

Repository of Assignments

Metadata

O

I

Instructor

Figure 47 Repository of assignments used by different stakeholders

79

It has a repository, which is a place holder for programming exercises and its metadata
definition. This persisted metadata will be introspected by the platform to collaborate and
share a programming exercise among researchers and instructors.

The basic step in sharing a learning resource is to tag it with a metadata definition. This
metadata definition is based on the IEEE LOM specification [1]. This specification
leverages the power of XML to describe a learning object in several categories as shown
in Table 11.

General category groups the general information that
describes the learning object as a whole.

Meta-Metadata category groups information about the metadata
instance itself

Technical category groups the technical requirements and
technical characteristics of the learning
object.

Educational category groups the educational and pedagogic

characteristics of the learning object.

Rights category groups the intellectual property rights and
conditions of use for the learning object.

Relation category groups features that define the relationship
between the learning object and other
related learning objects

Annotation category provides comments on the educational use
of the learning object and provides
information on when and by whom the
comments were created

Classification category describes this learning object in relation to
a particular classification system.

Table11 . |EEE LOM Categories

80

Repository

Assignment Upload Step 1

—r—— | Browse.. Assignment Upload

Is this fork of an existing assienment?

i

Figure 48 CollabX user interface

A programming exercise that is submitted to this repository is modeled in the form of a
Learning Object (LO) [6] with its associated metadata. The metadata residing in the LO
is persisted in the database [4] along with its content. Each LO can also be searched,
critiqued, annotated and rated [8] according to its usefulness as shown in Figure 48. A
feedback rating system and metadata definitions will enhance re-usability of the
programming exercise ([2], [3]) and inter-operability with third party grading and
submission systems [5].

81

@ntity

@rabl e(name="X_OBJECTS")

public class LearningOoject inplenments

Serializable {
@d
private Long id;
@neToMany(mappedBy="10")
//collection of properties
private Col |l ecti on<Met adat aProperty>
net adat a;

}

@ntity

@abl e(name="X_OBJECT_PROPERTY")

public class MetadataProperty inplenments
Serializable {

//this is the unique key of the
/lannotation for the |earning resource
@d

private Long id;

@manyToOne
Lear ni ngObj ect 1 0;

Figure 49 O/R Mapping

X_OBJECTS

ID

X OBJECT PROPERTY

ID

X_OBJECTS
D

The prototype is 3-tier application built on Java EE platform. This platform has support
for Java Server Faces, EJB 3.0 and JPA. The persistence layer is modeled as a set of
lightweight domain objects called entities as shown in Figure 49. These entities have
physical as well as relationship mapping defined by the JPA specification. JPA provider
translates the physical and relationship mappings into a set of tables with referential
constraints mimicking the relationships in the target database as shown in Figure 54.

This research study and implementation has the following achievements-

» The definition and persistence of the metadata in a repository that describes a
programming exercise. The metadata definition was loosely modeled from IEEE

Learning Object Metadata (LOM).

= In arelatively short course of time, built a prototype which can manage the
lifecycle of an exercise in a shareable repository. Lifecycle of an exercise includes

fork, feedback, critique and export.

= This implementation has collaborative features such as "Fork", "Critique" and
"Categorize", which is unavailable in similar repositories.

= Integration with external systems such as Web-CAT and Labrat.

82

References

[1]. Draft Standard for Learning Object Metadata Sponsored by the Learning Technology
Standards Committee of the IEEE.

[2]. Barbara P. Heath, David J. McArthur, Marilyn K. McClelland, Ronald J. Vetter. Metadata

lessons from the iLumna digital library. Communications of the ACM
Volume 48, Issue 7 (July 2005)

[3]. Reusable Learning Object Strategy: Designing and Developing Learning Objects for Multiple
Learning Approaches. A Cisco Systems white paper.

[4]. Filip Neven, Erik Duval, LU Leuven. Reusable Learning Objects: a Survey of LOM-Based
Repositories. Proceedings of the tenth ACM international conference on Multimedia,
Juan-les-Pins, France

[5]. Michael T. Helmick. Interface based Programming Assignments and Automatic Grading of
Java Programs. Proceedings of the 12th annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE'07)

[6]. Longzhuang Li, Hongchi Shi, Yi Shang, Su-Shing Chen. Open Learning Objects For Data
Structure Course. Journal of Computing Sciences in Colleges archive
Volume 18, Issue 4

[7]. Jaime Spacco, David Hovemeyer, William Pugh, Jeff Hollingsworth, Nelson Padua-Perez,
and Fawzi Emad. Experiences with marmoset: Designing and using an advanced submission
and testing system for programming courses. /TiCSE '06: Proceedings of the 11th annual
conference on Innovation and technology in computer science education. ACM Press, 2006.

[8]. Xavier Ochoa, Erik Duval. Use of contextualized attention metadata for ranking and
recommending learning objects. Conference on Information and Knowledge
Management. Proceedings of the Ist international workshop on Contextualized
attention metadata: collecting, managing and exploiting of rich usage information

[9]. Stephen H. Edwards, Manuel A. Pérez-Quifiones. Experiences using test-driven development
with an automated grader. Journal of Computing Sciences in Colleges archive Volume 22,
Issue 3 (January 2007)

83

[10]. Stephen H. Edwards, Manuel A. Pérez-Quifiones. Web-CAT: automatically grading
programming assignments. Proceedings of the 13th annual conference on Innovation and
technology in computer science education.

[11]. Ruby on Rails Project, http://www.rubyonrails.org

[12]. Web-CAT assignment interchange format. http://web-cat.org/assignment-packaging/

[13]. WG6 - Developing a Common Format for Sharing Assignments.
http://www.iticse08.fi.upm.es/ WG6.htm. ITiCSE 2008 The 13th Annual Conference on
Innovation and Technology in Computer Science Education

84

	San Jose State University
	SJSU ScholarWorks
	2008

	Authoring and Sharing of Programming Exercises
	Somyajit Jena
	Recommended Citation

	Microsoft Word - 48D21FB0-46F0-28C140.doc

