
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

JavaFX as a Domain-Specific Language in Scala /
Groovy
Sadiya Hameed
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Hameed, Sadiya, "JavaFX as a Domain-Specific Language in Scala / Groovy" (2008). Master's Projects. 17.
DOI: https://doi.org/10.31979/etd.23uh-a4na
https://scholarworks.sjsu.edu/etd_projects/17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/17?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

JavaFX as a Domain-Specific Language

in

Scala / Groovy

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

By

Sadiya Hameed

May 2008

 ii

© 2008

Sadiya Hameed

ALL RIGHTS RESERVED

 iii

 APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Cay Horstmann

 Dr. Jon Pearce

 Dr. David Taylor

 APPROVED FOR THE UNIVERSITY

 iv

ABSTRACT

JAVAFX AS A DOMAIN-SPECIFIC LANGUAGE

IN SCALA / GROOVY

By Sadiya Hameed

Domain-Specific Languages (DSLs) are optimized for developing applications in a

particular domain. JavaFX is such a DSL for creating rich graphical user interfaces.One

method to create a DSL is to implement it in an existing language. This offers the

advantage that existing users of the language do not need to learn a new language to work

in the DSL. Scala and Groovy are two upcoming Java based languages which boast a

feature set that can be used to extend existing languages and facilitate DSL creation. In

this project my goal was to evaluate the ability of Scala and Groovy to be DSL hosts. To

this end, I implemented my own JavaFX like DSLs in Scala and Groovy and assessed

their capability for constructing a DSL.

 v

ACKNOWLEDGEMENTS

First of all I would like to thank Dr. Cay Horstmann for trusting me with his idea.

Without his guidance, suggestions and support this project would not have been possible.

More than an advisor he has truly been a mentor.

I would also like to extend my heartfelt appreciation to both Dr. Jon Pearce and Dr.

David Taylor for their input, suggestions and time. And also for agreeing to be on the

project committee of a completely unknown student.

On a personal note, I would like to thank my husband Umair for bearing with me

throughout the process and for all the encouragement, support and help. Especially for all

the hours you lost not playing videogames just so that I would not get tempted.

 vi

TABLE OF CONTENTS

Introduction... 1

1. Domain-Specific Languages... 2

2. JavaFX .. 2

2.1. List of Important Features.. 3

2.1.1. Incremental Dependency-Based Evaluation ... 3

2.1.2. dur Operator .. 5

2.1.3. do and do later... 6

2.2. JavaFX Progress (Interpreted vs. Compiled) ... 7

3. Host languages .. 8

3.1. Scala... 8

3.1.1. Operators as Valid Identifiers ... 8

3.1.2. Single Parameter Methods as Infix Operator.. 8

3.1.3. Methods Without Arguments.. 8

3.1.4. Properties .. 9

3.1.5. Functions and Closure... 9

3.1.6. Case Classes and Pattern Matching .. 10

3.1.7. Views .. 11

3.2. Groovy ... 12

3.2.1. Parentheses-less Methods and Named Parameters ... 12

3.2.2. Closure .. 12

3.2.3. Categories ... 13

3.2.4. DelegatingMetaClass .. 13

3.2.5. ExpandoMetaClass ... 14

4. Rich Graphical User Interface DSL.. 15

4.1. DSL in Scala .. 15

4.1.1. Incremental Dependency-Based Evaluation (Bind).. 15

4.1.1.1. Bound Property .. 15

4.1.1.2. Bound Swing Components .. 17

4.1.1.3. Bound Bean Property (An Alternate Approach to bind) 20

4.1.1.4. Bind with Expressions ... 22

4.1.2. Animate Feature.. 25

4.1.3. doOutside and doLater ... 27

4.2. DSL in Groovy... 29

4.2.1. Incremental Dependency-Based Evaluation (Bind).. 29

4.2.1.1. Bound Property .. 29

4.2.1.2. Bound Swing Components .. 30

4.2.1.3. Bind with Expressions ... 33

4.2.2. Animate Feature.. 34

4.2.3. doOutside and doLater ... 35

5. Evaluation ... 38

5.1. DSL Comparison ... 38

5.1.1. Bind... 38

5.1.1.1. Bound Property .. 38

 vii

5.1.1.2. Bound Swing Components .. 39

5.1.1.3. Bind with Expressions ... 39

5.1.2. Animate Feature.. 41

5.1.3. Concurrency Features ... 41

5.2. Comparison of Language Features .. 42

6. Conclusion .. 44

References... 46

LIST OF FIGURES

Figure 1. Screenshots of dur operator demo at 0 seconds and 6 seconds 5

Figure 2. Screenshot of Swing component binding demo .. 19

Figure 3. Screenshot of Bind with Expressions demo application 22

Figure 5 Screenshot of Animation demo at 1 second and 3 second 25

Figure 6 Screenshots from model-view binding demo. .. 31

Introduction

Domain-specific programming languages (DSLs) are designed for a particular problem

domain and promise substantial expressiveness and ease of use in their specialized area

over general-purpose programming languages. JavaFX is such a domain-specific

language aimed at speedy development of rich user interfaces for Java. The core of

JavaFX is JavaFX Script, a declarative scripting language with a high degree of

interactivity with Java classes.

It seems unfortunate that JavaFX is yet another language. The modern trend is to provide

DSLs inside a larger host language to facilitate programmers to employ their knowledge

of existing languages when using a DSL as opposed to learning a new language. The goal

of the project is to examine the feasibility of mimicking the functionalities provided by

JavaFX as a DSL in Groovy and Scala languages and to reason about the suitability of

these two languages as DSL hosts.

Scala claims to have been invented for just this purpose. “Scala provides a unique

combination of language mechanisms that make it easy to smoothly add new language

constructs in form of libraries:

• any method may be used as an infix or postfix operator, and

• closures are constructed automatically depending on the expected type (target

typing).

A joint use of both features facilitates the definition of new statements without extending

the syntax and without using macro-like meta-programming facilities.” [5]

Groovy has had practical success in providing DSLs for XML builders, ORM, etc. and its

builders claim that it is particularly well suited for writing a DSL. “Groovy provides

various features to let you easily embed DSLs in your Groovy code. e.g.

• you can create your own control structures by passing closures as the last

argument of a method call

• it is possible to add dynamic methods or properties (methods or properties which

don't really exist but that can be intercepted and acted upon) by implementing

GroovyObject or creating a custom MetaClass, etc.” [10]

The project aim was to create a rich graphical user interface (GUI) DSL in the two

languages to facilitate evaluation and comparison of their ability to be DSL hosts. To this

end, I choose the most valuable features of JavaFX that are its raisons ďêtre. This report

gives a comprehensive view of the project work. It starts with a description of the

features of JavaFX which I have implemented in my DSL. Next, it lists features of Scala

and Groovy which facilitate addition of dynamic behavior in these languages. The report

then gives a detailed description of the DSLs created in Scala and Groovy. It also details

the implementation and usage of the DSL features. In the end I have evaluated both Scala

and Groovy on their capability to be DSL hosts based on my experience with them during

the creation of the rich GUI DSLs.

 2

1. Domain-Specific Languages

Domain-specific languages (DSLs) are languages tailored to a specific application

domain. They offer substantial gains in clarity and usability over general-purpose

programming languages, in their domain of application. They can be formally defined as:

“A domain-specific language (DSL) is a programming language or executable

specification language that offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a particular problem domain.” [9]

DSL development is hard, requiring both domain knowledge and language development

expertise. According to Mernik et al., one way to design a DSL is to base it on an existing

language. Possible benefits are easier implementation and familiarity for users, but the

latter only applies if users are also programmers in the existing language. One of the

approaches to designing a DSL listed according to Mernik is to take an existing language

and extend it with new features that address domain concepts. In most applications of this

pattern, the existing language features remain available. The challenge is to integrate the

domain specific features with the rest of the language in a seamless fashion. This is the

approach I have employed in creating the JavaFX like DSL in existing languages of Scala

and Groovy.

2. JavaFX

JavaFX is a domain-specific language for content developers to create rich media and

interactive content. The core of JavaFX is JavaFX Script which is a declarative and

statically typed scripting language. It supports first-class functions, list-comprehensions,

and incremental dependency-based evaluation. It can make direct calls to Java APIs.

Since JavaFX Script is statically typed, it has the same code structuring, reuse, and

encapsulation features (such as packages, classes, inheritance, and separate compilation

and deployment units) that make it possible to create and maintain very large programs

using Java technology.

JavaFX was introduced at JavaOne 2007 and until very recently was an interpreter based

language. Currently efforts are underway to port it to a compiler and therefore the

language syntax and features are influx. The features and syntax described in this report

pertain to the interpreted version of JavaFX. Section 2.2 gives an overview of some of the

changes that have occurred so far in the compiled JavaFX version which is currently

under development.

Although the official name of the scripting language is JavaFX Script it is generally

referred to as JavaFX since it is at the core of the JavaFX family. This report also uses the

name JavaFX to refer to the scripting language.

 3

2.1. List of Important Features

Following is a list of important JavaFX features. The selection is based on the key

features of JavaFX that facilitate Graphical User Interface (GUI) development. These are

the same features that I have provided in my DSL. Since JavaFX is in its nascent stages,

it has very limited documentation. Therefore, most of the feature descriptions have been

taken from the JavaFX project website [8].

2.1.1. Incremental Dependency-Based Evaluation

JavaFX allows attribute values to be dependent on other attributes, or expressions

involving other attributes. An update in any attribute automatically updates the values of

all attributes that are directly or indirectly dependent on it. This feature can be thought of

in the same way as the automatic updating of a spreadsheet cell, that is attached to a

formula, when other cells from the formula change their value. It is especially useful for

GUI development where maintaining model and view attributes in sync usually requires

complex procedural logic.

Consider the following model-view based example where the value of the view's title is

dependent upon the model's greeting attribute.

import javafx.ui.*;

class HelloWorldModel {

 attribute greeting: String;

}

var model = HelloWorldModel {

 greeting: "Hello World"

};

Frame {

 title: bind "{model.greeting} JavaFX"

 width: 200

 content: TextField {

 value: bind model.greeting

 }

 visible: true

};

Listing 2-1 Sample JavaFX code for bind between model and view

Initially the Frame’s title and TextField’s value are set by the model's greeting

attribute. When the user updates the TextField’s value the model's greeting attribute is

automatically updated (which in turn updates the title). The next example show the

binding of a variable to an expression involving other variables.

var ItemCost = 50;

var NumberOfItems = 10;

var Total = bind ItemCost * NumberOfItems;

assert Total == 500;

Listing 2-2 Sample code for JavaFX bind with expression

 4

In the code above, whenever the value of ItemCost or NumberOfItems changes, the

Total is updated. Binding with expressions is unidirectional so a change in Total will

not reflect on the variables it is bound to.

Interpreter based JavaFX has two kinds of methods, functions and operations. It allows

binding to work with both of them. Functions fall in the purely functional aspect of

JavaFX. The body of a function may only contain variable declarations and a return

statement. Conditional operations or loops are not allowed inside the body of a function.

Functions are designed to be used with binding. Because functions incrementally update

their results whenever either their arguments or referenced variables change, binding to a

function works just as well as binding to a single attribute. Operations, on the other hand

are more like methods of Java. They can contain any statement such as conditionals or

loops etc. Unlike a function, changes to local variables inside an operation do not trigger

incremental evaluation. Incremental evaluation is not performed inside the body of an

operation except for expressions explicitly prefixed by bind [8].

In the compiled version of JavaFX, its creators are doing away with methods and

introducing concept of bound vs non-bound functions. The bound functions are preceded

by the bound keyword [17]. The two concepts and their details are still being worked out.

Binding with functions is not a part of my DSL.

 5

2.1.2. dur Operator

The dur operator (dur stands for duration) allows you set a variable to an entire range of

values over the span of time. When assigning any value with an array of possible values

with the dur operator, JavaFX will create a background thread which will assign the

range of values into the variable. By binding the location, size, or transformation of a

graphical element, this can create a smooth animation.

The documentation for the dur operator is sparse and the JavaFX Language Reference

(for the interpreter or the compiler) does not have any mention of the dur operator as yet.

The demo below has been taken from the weblog of JavaFX’s creator Chris Oliver. [11]

import javafx.ui.*;

import javafx.ui.canvas.*;

Rect {

 fill: purple

 height: 50

 width: 50

 var x = 0

 var y = 0

 x: bind x

 y: bind y

 onMouseClicked: operation(e) {

 for (i in [0..100] dur 3000){

 x = i;

 }

 for (i in [0..100] dur 3000) {

 y = i;

 }

 }

}

Listing 2-3 Animated rectangle demo for JavaFX dur operator

In the above application, a rectangle moves a 100 pixels to the right in three seconds and

then a 100 pixels down in another 3 seconds. The animation starts on a mouse click.

Figure 1. Screenshots of dur operator demo at 0 seconds and 6 seconds

 6

2.1.3. do and do later

To understand the do and do later features of JavaFX, a little background on threads

and Swing is required. Since Swing is not thread safe so all updates to the UI components

should be done within the Event dispatch thread (EDT). EDT is a background thread that

handles all the GUI related events like redrawing components or I/O events on the user

interface. On the other hand if a task takes a long time, it should be done in a separate

thread. If an extensive task is handled in the EDT the UI will become non-responsive

until the task is finished. If your application needs to update the UI it can hand off that

task to the EDT by calling the invokeLater method in the EventQueue class. This

method puts the task in the EDT queue and returns. The task is then executed

asynchronously. [12]

Normally all JavaFX code executes in the EDT, but with the do feature JavaFX allows an

easy way for programmers to execute a portion of their code in a separate thread by

placing it inside the body of a do statement. Sun’s tutorial [16] mentions the following

example where the reading from a URL is done inside the do statement and the GUI

events continue to be processed during the read.

import java.net.URL;

import java.lang.*;

import java.io.*;

//executes in the AWT event dispatch thread (EDT)

var result = new StringBuffer();

do {

 //executes simultaneously in the background thread

 var url = new URL("http://www.foo.com/abc.txt");

 var is = url.openStream();

 var reader = new BufferedReader(new InputStreamReader(is));

 var line;

 while (true) {

 line = reader.readLine();

 if (line == null) {

 break;

 }

 result.append(line);

 result.append("\n");

 }

}

// now back in the EDT

System.out.println("result = {result}");

Listing 2-4 Sample code for usage of JavaFX do statement

The do statement has another form called the doLater which allows for asynchronous

execution of tasks in the EDT. It is similar to the functionality provided by

java.awt.EventQueue.invokeLater()discussed above.

 7

2.2. JavaFX Progress (Interpreted vs. Compiled)

JavaFX is being converted from being interpreted to being compiled and in the process

some changes to features and syntax are taking place. Below are a few of the changes that

affect the features discussed in this report.

1. The compiled syntax merges the concept of function and operation into function.

Functions are no longer restricted and have the same capabilities as the old operation

concept. The working of bind on the new function concept is still being worked out.

Interpreted:
class Foo{

 function times2(x) { return x * 2; }

 operation print(s) { System.out.println(s); }

}

Compiled:
class Foo {

 function times2(x) { return x * 2; }

 function print(s) { System.out.println(s); }

}

2. Bi-directional binding needs to be explicitly declared using the “with inverse” syntax.

Otherwise unidirectional binding is assumed.

Interpreted:
TextField {

 value: bind model.firstName

}

Compiled:
TextField {

 value: bind model.firstName with inverse

}

3. In the interpreted version the initial value of an attribute was set outside of the class

body. Attribute initial values are now set as part of the declaration, as in Java.

Interpreted:

class Foo {

 attribute bar: Boolean;

}

attribute Foo.bar = true;

Compiled:
class Foo {

 attribute bar: Boolean = true;

}

 8

3. Host languages

3.1. Scala

Scala fuses object-oriented and functional programming in a statically typed language

that runs over the Java Virtual Machine. Scala programs resemble Java programs in many

ways and they can seamlessly interact with code written in Java. Scala is designed to be

extensible and provides mechanisms to add new language constructs. Below is a list of

Scala features that I have used for the creation of my DSL.

3.1.1. Operators as Valid Identifiers

Scala treats operator names as ordinary identifiers. An identifier is either a sequence of

letters and digits starting with a letter, or a sequence of operator characters. The

precedence of a user-defined infix operator is based on the first character of the operator

name. For those operators whose first character is an operator in Java, the precedence is

the same as in Java [14].

3.1.2. Single Parameter Methods as Infix Operator

Any method which takes a single parameter can be used as an infix operator in Scala.

This is good for syntactic sugar which is important for DSL creation. Below is an

example class given in the Scala tour. [5]

class MyBool(x: Boolean){

 def AND(that: MyBool): MyBool = if (x) that else this

 def OR(that: MyBool): MyBool = if (x) this else that

 def negate: MyBool = new MyBool(!x)

}

Now, we can use AND, OR and negate as infix or postfix operators.

def NOT(x: MyBool) = x negate;

def XOR(x: MyBool, y: MyBool) = (x OR y) AND NOT(x AND y);

3.1.3. Methods Without Arguments

Scala allows methods without arguments to be declared and called without the

parentheses as opposed to methods with zero arguments that require parentheses in both

cases. The Scala Tutorial [15] shows how accessors in a class can be declared and used in

this way.

class Complex(real: double, imaginary: double){

 def re = real //re and im are methods without arguments

 def im = imaginary

 override def toString() = "" + re +(if(im < 0) "" else "+")+ im + "i"

}

 9

3.1.4. Properties

For every definition of a variable var x: T in a class, Scala defines setter and getter

methods. Every mention of the name x in an expression is then interpreted as a call to the

parameterless method x. Every assignment x = e is interpreted as a method invocation

x_=(e). This treatment of variable accesses as method calls makes it possible to define

properties (in the C# sense [18]) in Scala. For instance, the following class Celsius

defines a property degree which can be set only to values greater or equal than -273. [14]

class Celsius {

 private var d: Double = 0

 def degree: Double = d

 def degree_=(x: Double): unit = if (x >= -273) d = x

}

Now degree can be used as if it was declared as a variable.

val c = new Celsius;

c.degree = c.degree - 1;

3.1.5. Functions and Closure

1. A closure is a "code block" or a method pointer that is executed at a later point. Scala

allows closures as shown in the following example where foo is a closure.

 val div = {(x:Double, y:Double) => println(x/y) }

 div(22,7);

2. Scala allows anonymous, curried, nested and higher order functions.

 //define anonymous function and call it

 println(((x:Double, y:Double) => x / y)(22,7));

 //nested inner functions can access outer's locals and arguments

 def outerFunction(str: String) = {

 def innerFunction() = {

 println(str);

 }

 innerFunction();

 }

3. Functions can be used as arguments to functions. For example a function forall is

defined to be true if the predicate passed holds true for all elements of the passed

array. Then the expression forall(row, 0 ==)) tests whether row consists only of

zeros. Here, the == method of the number 0 is passed as argument. This illustrates

that methods can themselves be used as values in Scala. [14]

4. Functions are objects with apply methods so the function call foo(x) is actually

foo.apply(x). Special syntax exists for function applications appearing on the left-

hand side of an assignment; these are interpreted as applications of an update

 10

method. So, a(i) being the array element at index i, the assignment a(i) = a(i) +

1 is interpreted as a.update(i, a.apply(i) + 1). [14]

3.1.6. Case Classes and Pattern Matching

Case classes are regular classes which export their constructor parameters and provide a

recursive decomposition mechanism via pattern matching. The Scala Tour gives a really

nice example of representing untyped lambda calculus using case classes. It is very

similar to the way I have used case classes to implement bind with expressions in Scala

as discussed in Section 4.1.1.4. The example creates an abstract super class Term and

three concrete case classes Var, Fun, and App.

abstract class Term

case class Var(name: String) extends Term

case class Fun(arg: String, body: Term) extends Term

case class App(f: Term, v: Term) extends Term

Construction of case class instances does not require the new keyword. So for the above

example we can create a Term by the following syntax.

Fun("x", Fun("y", App(Var("x"), Var("y"))))

Case classes implicitly come with methods like equals, which implements structural

equality, and toString which prints the entire expression tree based on the way it was

constructed as shown in the example below. The == operator calls the equals method.

val x1 = Fun("x", Fun("y", App(Var("x"), Var("y"))))

val y1 = Var("y")

val y2 = Var("y")

println(x1) //prints Fun(x,Fun(y,App(Var(x),Var(y))))

println(y1 == y2) //prints true

Case classes allow the use of pattern matching to decompose data structures. The

following object defines a pretty printer function for the lambda calculus representation.

object TermTest extends Application {

 def print(term: Term): Unit = term match {

 case Var(n) =>

 Console.print(n)

 case Fun(x, b) =>

 Console.print("^" + x + ".") print(b)

 case App(f, v) =>

 Console.print("(") print(f)

 Console.print(" ") print(v)

 Console.print(")")

 }

}

 11

The function print is expressed as a pattern matching statement starting with the match

keyword and consisting of sequences of case Pattern => Body clauses similar to

Java’s switch statement.

3.1.7. Views

The Scala Overview [14] defines views as implicit conversions between types used to

add new functionality to an existing type. It gives the following example of a Generic list

to Set conversion. Notice that the Set is declared as a trait. Traits are similar to

interfaces in Java, except they can have partial implementation.

abstract class GenList[T] {

 def isEmpty: boolean

 def head: T

 def tail: GenList[T]

 def prepend[S >: T](x: S): GenList[S]

}

trait Set[T] {

 def include(x: T): Set[T]

 def contains(x: T): boolean

}

A view from class GenList to class Set is introduced by the following method definition.

implicit def listToSet[T](xs: GenList[T]): Set[T] =

 new Set[T] {

 def include(x: T): Set[T] = xs prepend x

 def contains(x: T): boolean =

 !xs.isEmpty && (xs.head == x || (xs.tail contains x))

 }

Hence, if xs is a GenList[T], then listToSet(xs) would return a Set[T]. The only

difference with respect to a normal method definition is the implicit modifier. This

modifier causes them to be inserted automatically as implicit conversions. Say e is an

expression of type T. A view is implicitly applied to e in one of two possible situations:

1. when the expected type of e is not (a supertype of) T, or

2. when a member selected from e is not a member of T.

For instance, assume a value xs of type GenList[T] which is used in the following two

lines.

val s: Set[T] = xs;

xs contains x

The compiler would insert applications of the view defined above into these lines as

follows:

val s: Set[T] = listToSet(xs);

listToSet(xs) contains x

 12

3.2. Groovy

Groovy is a dynamic language for the Java Virtual machine and allows integration with

Java objects and libraries. It provides many meta-programming features that can be

useful for creating DSLs. This report discusses only those features of Groovy that I have

used in my DSL creation.

Groovy supports metaobject protocol (MOP). MOP is an interpreter of the semantics of a

program that is open and extensible. It determines what a program means and what its

behavior is, and it is extensible in that a programmer can alter program behavior by

extending parts of the MOP. The MOP may manifest as a set of classes and methods that

allow a program to inspect the state of the supporting system and alter its behavior.[3]

Groovy is currently an evolving language. Many of the dynamic features have been

added to the language very recently and are only available under the developer version of

the language. It has sparse documentation available and most of the information on its

feature descriptions below, has been taken from its online User Guide. [10]

3.2.1. Parentheses-less Methods and Named Parameters

Method calls in Groovy can omit the parentheses if there is at least one parameter and no

ambiguity. For example, the statement println("Hello world") can be written as
println "Hello world".

It is also possible to omit parentheses when using named arguments which makes for

nicer DSLs.

search key: k, tree: bTree

pacman.move from: [1,4], to: [1,10]

3.2.2. Closure

Groovy provides support for closures. As an example lets look at defining action listeners

inline through closures.

//Add a property Change Listener to myProperty

myProperty.propertyChange = { e -> println "property changed";}

The closure is passed to the method on the listener interface (propertyChange), and not

the interface itself (PropertyChangeListener).

In Groovy, if a closure takes a single argument, it can be omitted in the definition and

simple referred to as it.

def clos = { println it }

clos("hello world") //prints "hello world"

 13

In Groovy, when defining closures, this refers to the enclosing class, delegate refers to

the enclosing object, which is either the same as this or a surrounding closure, and can

be changed.

3.2.3. Categories

Categories are used to add new methods and properties to an existing class. To add a

method to a class T we define a new class. Then we add a static method to it whose first

parameter is of type T. To use this method we have to pass this class to the use keyword.

Here is a simple example from the Groovy User Guide. [10]

class StringCategory {

 static String lower(String string) {

 return string.toLowerCase()

 }

}

use (StringCategory) {

 print "TeSt".lower() //prints "test"

}

Listing 3-1 Categories demo for adding methods to String class and its usage

3.2.4. DelegatingMetaClass

Each Groovy object has a meta class which intercepts calls to the object and can be used

to add behavior to the object. It is possible to replace a meta class to adjust the default

behavior of a class using DelegatingMetaClass. One way to replace a meta class using

DelegatingMetaClass is the package name convention solution and this is the solution I

have used in my DSL. A description of the how to use this solution to replace a meta

class is given below.

Package Name Convention Solution
Any class can have a custom meta class loaded at startup time by placing the meta class

into a well known package with a well known name.

groovy.runtime.metaclass.[YOURPACKAGE].[YOURCLASS]MetaClass

The following example from the Groovy user guide [10] shows how we can change the

behavior of the String class. First we define the custom meta class.

package groovy.runtime.metaclass.java.lang

class StringMetaClass extends groovy.lang.DelegatingMetaClass{

 StringMetaClass(MetaClass delegate){

 super(delegate); //delegate contains the String instance

 }

 public Object invokeMethod(Object obj,

 String methodName,

 14

 Object[] args){

 return "changed ${super.invokeMethod(obj, methodName, args)}"

 }

}

class DelegatingMetaClassPackageImpliedTest extends GroovyTestCase{

 void testReplaceMetaClass(){

 assertEquals "changed hello world", "hello world".toString()

 }

}

Listing 3-2 Modifying a String class method using DelegatingMetaClass

Notice that the actual code to use the enhanced features is very simple. There are no extra

imports or any mention of the meta class. The mere package and name of the class tells

the groovy runtime to use the custom meta class.

3.2.5. ExpandoMetaClass

The other way to augment an object’s meta class in Groovy is by using the

ExpandoMetaClass. It can dynamically add properties, methods, constructors and even

static methods etc. to existing classes. Every class in Groovy has a metaClass property

that can be used to get the ExpandoMetaClass instance. An example from the Groovy

user guide [10] is given below which shows how to augment the behavior of the String

class and add a method called swapCase to it.

String.metaClass.swapCase = {->

 def sb = new StringBuffer()

 delegate.each {

 sb << (Character.isUpperCase(it as char) ?

 Character.toLowerCase(it as char) :

 Character.toUpperCase(it as char))

 }

 sb.toString()

}

Listing 3-3 Adding new methods to String class using ExpandoMetaClass

To add a static method foo to the class Object we would use the syntax

Object.metaClass.'static'.foo << {...}. To add a constructor to the String class

we would say String.metaClass.constructor << {...} and so on.

By default the functionality added to the metaClass of a parent class does not get

inherited by the derived classes when using ExpandoMetaClass. To enable this

inheritance we need to call ExpandoMetaClass.enableGlobally() before the

application starts, such as in the main method or servlet bootstrap. [10]

 15

4. Rich Graphical User Interface DSL

To evaluate the ability of Scala and Groovy to be DSL hosts, I created a small JavaFX

like DSL for rich graphical user interface (GUI) creation. The features of JavaFX roughly

fall into the following 3 categories:

1. Manipulating and querying arrays:

These are already well handled in Scala by features such as sequence comprehensions

[5]. In Groovy, DSLs already exist to provide this kind of functionality. One such

sample DSL is Quaere. [19]

2. Reactive programming:

This includes features of JavaFX such as bind, triggers and inverse attributes. I am

covering bind and inverse attributes in my DSL under incremental dependency-based

evaluation. Triggers are a replacement of Java’s class constructors and attribute

setters and therefore the trigger functionality is already available in my host

languages.

3. control structures for threading:

Thread utility features will be provided by in my DSL.

Based on the above categories, my DSL provides features that facilitate GUI

development such as dynamic updates of properties based on other properties, thread

utilities and an operator that aids in creating animations.

4.1. DSL in Scala

The DSL created in Scala was accomplished using the Implicit conversion (views)

feature of Scala. For details on Scala views please consult Section 3.1.7.

4.1.1. Incremental Dependency-Based Evaluation (Bind)

The bind feature of the DSL is similar to JavaFX bind discussed in Section 2.1.1

4.1.1.1. Bound Property

I created a new type of property called BoundProp. It is a generic class and can be

declared with any type. It provides the ability to update a property automatically based on

the value of another property. To understand how bound properties can be used let us first

consider a trivial example.

import boundUtilities.BoundProp;

class Person(str: String){ //class declaration and constructor

 var name = new BoundProp[String];

 name := str;

}

object BindTester {

 16

 def main(args: Array[String]) : Unit = {

 val user = new Person("Voltaire");

 var name = new BoundProp[String];

 //bi-directional binding between user.name and name

 name bind user.name;

 println(name); //prints "Voltaire"

 user.name := "Homer";

 println(name); //prints "Homer"

 }

}

Listing 4-1 Bi-directional binding of two properties

In the above example the variable name is bi-directionally bound to user.name and one

gets automatically updated whenever the value of the other changes.

A property change event needs to be fired when the value of a BoundProp is updated in

order to notify other properties bound to it. For this reason I created the := method that is

used to assign a value to the BoundProp. Scala does not allow overloading the = operator,

so I had to use a different assignment operator. The := operator sets the new value of the

BoundProp and also fires the property change notifications. The above example uses the

:= operator to assign the new value to user.name. Given below is an excerpt from the

BoundProp class that shows the implementation of bind.

class BoundProp[T] extends PropertyChangeSupport with

PropertyChangeListener {

 var value: T = _;

 //bi-directional binding done between “this” and “other”

 def bind(other: BoundProp[T]){

 this.addPropertyChangeListener(other);

 other.addPropertyChangeListener(this);

 if(other.value != null){

 this := other.value;

 }

 }

 //update "this" on change notification from a property bound to it

 def propertyChange(evt: PropertyChangeEvent){
 //using "this :=" rather than "this =" so that its property

 //change event is fired notifying other properties bound to it

 if(!(evt.getNewValue().asInstanceOf[T]).equals(value)){
 this := evt.getNewValue().asInstanceOf[T];

 }

 }

 //overloaded operator for assignment with RHS value of type T

 def :=(newValue : T): BoundProp[T] = {

 val oldValue = value;

 value = newValue;

 firePropertyChange("value", oldValue, newValue);

 17

 this;

 }

 //overloaded assignment operator with RHS of type BoundProp[T]

 def :=(newProperty : BoundProp[T]): BoundProp[T] = {

 val oldValue = value;

 value = newProperty.value;

 firePropertyChange("value", oldValue, value);

 this;

 }

 ...

}

Listing 4-2 Bind implementation in BoundProp class

4.1.1.2. Bound Swing Components

In the last section I considered a trivial case (Listing 4-1) to show the usage and working

of the bind operator on properties. The real value of bind operator can be seen in the

context of the model-view-controller pattern. Here the bind operator is used to bind the

view (user interface) of an application to the model (data) of the application. Consider the

following example where a model’s author attribute is bound to a Swing component.

import boundUtilities.BoundJComboBox._;

class Author(n: String) {

 var name = n;

 var books: String = _;

}

class Model{

 var author = new BoundProp[String];

}

object View {

 def main(args: Array[String]) : Unit = {

 ...

 val model = new Model;

 val author1 = new Author("Jane Austen");

 val author2 = new Author("Charlotte Bronte");

 val authors: Array[Object] = Array(author1.name, author2.name);

 val authorList = new JComboBox(authors);

 //Implicitly converting model.author from BoundProp[String]

 //to BoundProp[Object]

 authorList.selectedItem bind model.author;

 model.author := "Charlotte Bronte";

 ...
}

Listing 4-3 Binding of model’s attribute to view’s component

In the example the view is automatically updated on changes in the model’s data. The

selectedItem property of the authorList is bound to the author attribute of the model

 18

class using the bind operator. This creates a bi-directional binding between the two and

change in one is reflected immediately in the other. It eliminates the boilerplate of writing

listeners for notification of updates in Swing components and the corresponding code to

update the attributes of the model. Notice the special syntax of import statement at the

top, this is the statement that makes available my DSL’s bind feature to the user. More

detail of how bind is implemented in Swing components and how this special import

statement works is given at the end of this section.

The rich GUI DSL also allows binding between two Swing components. I can take the

above example and extend it to include binding between the authorList combo box and

a list.

import boundUtilities.BoundJComboBox._;

import boundUtilities.BoundJList._;

class Author(n: String) {

 var name = n;

 var books: String = _;

}

class Model{

 var author = new BoundProp[String];

}

object BindTester {

 def main(args: Array[String]) : Unit = {

 ...

 val model = new Model;

 val author1 = new Author("Jane Austen");

 author1.books = "Pride and Prejudice, Emma, Persuasion";

 val author2 = new Author("Charlotte Bronte");

 author2.books = "Jane Eyre, Shirley, Villette, The Professor";

 val authors: Array[Object] = Array(author1.name, author2.name);

 val books: Array[Object] = Array(author1.books, author2.books);

 val authorList = new JComboBox(authors);

 val booksList = new JList(books);

 authorList.selectedItem bind model.author;

 authorList.selectedIndex bind booksList.selectedIndex;

 model.author := "Charlotte Bronte";

 ...

}

Listing 4-4 Binding of two Swing components

When the author is selected from the combo box, the selected item in the booksList

updates to show the books by that author. This binding is bi-directional. Therefore,

changing books in the list selection will update the author name in the combo box as

well. Below is a screenshot of the demo application.

 19

Figure 2. Screenshot of Swing component binding demo

The bind feature is added to existing Swing components by creating extension classes

that contain the added functionality. JavaFX also, has its custom UI classes created on top

of Swing components to provide extra functionality. The code for my BoundJTextField,

an extension class to JTextField is given below.

package boundUtilities;

import java.beans._;

import javax.swing.JTextField;

import java.awt.event._;

class BoundJTextField(textField: JTextField){

 var text = internalBind(); //text internally bound to textField's

 //text property

 //bi-directionally bind textfield's text to local variable text

 private def internalBind(): BoundProp[String] = {

 var temp = new BoundProp[String];

 //Update text whenever the textField’s text property changes

 textField.addActionListener(new ActionListener{

 def actionPerformed(e:ActionEvent): Unit = {

 temp := textField.getText();

 }

 });

 //Update textField’s text property when local text changes

 temp.addPropertyChangeListener(new PropertyChangeListener{

 def propertyChange(evt: PropertyChangeEvent){

 if(!textField.getText().equals(evt.getNewValue())){

 textField.setText(evt.getNewValue().asInstanceOf[String]);

 }

 }

 });

 return temp;

 }

}

//companion object

object BoundJTextField {

 implicit def JTextField2BoundJTextField(tf: JTextField) =

 new BoundJTextField(tf)

}

Listing 4-5 Bind implementation for JTextField’s companion class

 20

The class BoundJTextField has an attribute text of type BoundProp[String]. This is

the attribute that users bind to when they call bind on a JTextField’s text property.

Internally, it takes care of bi-directional updates between the JTextField’s text property

and itself. To use the views feature of Scala, I created a companion object

BoundJTextField with the same name as my class, as shown above, and declared a

method for implicit conversion from JTextField to my BoundJTextField. Now I can

use the special import syntax with the “_” to allow implicit conversion of JTextField to

BoundJTextField. The user can now use the bind feature as if it was a part of

JTextField, as shown below.

object BindTester {

 def main(args: Array[String]) : Unit = {

 import boundUtilities.BoundJTextField._;

 {

 val field1 = new JTextField;

 val field2 = new JTextField;

 //implicitly converting field1 and field2 to BoundJTextField

 field1.text bind field2.text;

 }

 }

}

Listing 4-6 Binding of two text fields in the DSL in Scala

The above example also shows how we can limit the scope of the implicit conversion by

adding the import statement only around the code that needs it. For details on views and

companion objects in Scala, see section 3.1.7.

4.1.1.3. Bound Bean Property (An Alternate Approach to bind)

In the above approaches, I created custom extension classes for every class whose

properties were to support bind. Another approach that I tried for adding bind

functionality was by using bound properties of JavaBeans. This was to be a generic

approach to create a bound property from any property of any class.

Beans are reusable components that follow strict naming conventions. For example,

properties need to have their accessor and mutator methods begin with get and set

respectively. Based on these naming conventions, a java.beans.Introspector can

create a java.beans.BeanInfo object for a given class. Then we can use reflection to

search for features, such as properties and methods, provided by the class. If the class has

bound properties, they can be used to notify interested listeners of updates to the property

value. A bound property must implement two mechanisms: [13]

1. Whenever the value of the property changes, the bean must send a PropertyChange

event to all registered listeners. This change can occur when the set method is called

or when the user interface changes the value of the property.

 21

2. To enable interested listeners to register themselves, the bean has to implement the

following two methods:

 void addPropertyChangeListener(PropertyChangeListener listener)

 void removePropertyChangeListener(PropertyChangeListener listener)

I created a BoundBeanProp class that accepts an Object and the attribute of that object

that is to be bound. Then I extract the property descriptor for that field using

Introspection and Reflection. In the bind method of the property, I extract the

eventSetDescriptor for the propertyChange event, using which I add listeners that

would notify me when value of the property (corresponding to the above field) change.

Consider the following example where we want to bi-directionally update the value of a

JTextField’s text property with modelData.

val field1 = new JTextField;

var modelData = new BoundProp[String];

var field1Text = new BoundBeanProp[String](field1, "text");

//bi-directional binding between textfield's text property & modelData

field1Text bind modelData;

field1.setText("Duke"); //value of modelData updated to "Duke"

Listing 4-7 Sample code for BoundBeanProp’s bind usage

In the bind method of the BoundBeanProp class the specified field’s listeners are added to

the other property and vice versa. So in the above example the call to bind adds two

listeners. One, on field1.text to update the modelData value and the other on the

modelData to update the value of field1.text. Since I had a propertyDescriptor to

the selected field (text in my example), I could read and write to the field by using

getReadMethod and getWriteMethod on the propertyDescriptor and invoking the

resulting methods.

The problem I encountered with the above approach was that for most Swing

components, such as the JTextField component from the above example, property

change events were not fired properly. So, in the above example, changing the value of

field1.text property by calling the setText method fires a property change event

(updating the modelData), but changing its value from the UI does not fire any property

change events and hence has no effect on modelData.

The above problem shows one reason why having native bound properties in Java would

have been a good idea. They would ensure that developers of classes like the Swing

components would not have to manually keep track of and fire property change events,

for all possible scenarios of updates to the component properties. Work is being done to

alleviate this issue in Java. For reference consult [20] and [21].

One approach to solving the above problem in BoundBeanProp was to create custom

extension classes from Swing components and adding fire property change events on

updates. A sample implementation of a custom class for above example is given here.

 22

class TextField extends JTextField {

 class TextFieldDocumentListener extends DocumentListener {

 def insertUpdate(e : DocumentEvent) : Unit = {

 firePropertyChange("text", null, getText());

 }

 def removeUpdate(e : DocumentEvent) : Unit = {

 firePropertyChange("text", null, getText());

 }

 }

 getDocument().addDocumentListener(new TextFieldDocumentListener());

}

Listing 4-8 Custom TextField class for use with BoundBeanProp

However, using DocumentListener’s update methods resulted in notifications being

fired on every key press in the text field. This makes the resulting code slower. Besides,

creating a custom class for each component beats the purpose of using bound properties

of JavaBeans, which was to create a single generic class to add the bind functionality.

4.1.1.4. Bind with Expressions

Many times we need a property whose value depends not directly on other properties but

an expression involving those properties. To provide this facility in my DSL, I created the

bind with expressions feature. Consider the following sample application to clarify the

use of this feature.

Figure 3. Screenshot of Bind with Expressions demo application

The demo application provides the simple functionality of converting temperature from

degree Celsius to degree Fahrenheit. The user enters a temperature in the Celsius text box

and the Fahrenheit text box is automatically updated to show the corresponding

temperature in degree Fahrenheit. The following is the application code segment that

shows how the value of Fahrenheit textbox gets updated.

import utils.Term._;

import boundUtilities.BoundPropDouble;

import boundUtilities.BoundJFormattedTextField._;

object temperatureConverter {

 def main(args: Array[String]) : Unit = {

 ...

 val celsiusField = new JFormattedTextField;

 val fahrenheitField = new JFormattedTextField;

 fahrenheitField.setEditable(false);

 var Celsius = new BoundPropDouble;

 23

 var Fahrenheit = new BoundPropDouble;

 Fahrenheit bind (Celsius * 1.8) + 32.0; //unidirectional bind

 Celsius := 45;

 celsiusField.value bind Celsius;

 fahrenheitField.value bind Fahrenheit;

 ...

 }

}

Listing 4-9 Code excerpt from bind with expressions demo application

Here we have two JFormattedTextField objects which following the model-view

Pattern are bound to the Celsius and Fahrenheit properties respectively. The bind on

these fields is provided by implementing a BoundJFormattedTextField class in the

same way as other Swing Components in Section 4.1.1.2. What is different here is that

Fahrenheit property, besides being bound to a field, is also bound to an expression

containing another property. Notice that bind with expressions is a unidirectional bind.

This is because the value of properties in an expression cannot always be uniquely

determined when the value of the left hand side changes. For example, in a case like

sum bind number1 + number2 the value of number1 and number2 cannot be uniquely

resolved when the value of sum changes.

To enable bind with expressions, I needed to store the entire unevaluated expression so

that every time the properties in the expression got updated I could recalculate the value

of the expression and update the value of the left hand side. In order to do this, I created a

Term class which can store and evaluate an expression tree. So, in the above example the

expression (Celsius * 1.8) + 32.0 is implicitly converted to an object of type Term

as shown in Figure 4. Expression tree for (Celsius * 1.8) + 32.0.

Figure 4. Expression tree for (Celsius * 1.8) + 32.0

 24

The Term class consists of case classes Num, Var, Add and Mul. These represent terms of

type number (e.g. 34, 6 etc.), variables (e.g. x, num etc.), addition of two terms (e.g.

x+3, a+b, 2+5 etc.) and multiplication of two terms (e.g. num*2, 3*6, a*b etc.)

respectively. For evaluation of the Term I use pattern matching. For more information on

Scala’s case classes and pattern matching refer to Section 3.1.7. The Term class overloads

+ and * operators so that addition or multiplication of two Terms results in a Term.

If you look at above example (Listing 4-8) you will notice that I use BoundPropDouble

instead of the generic BoundProp class with type Double. The reason is that, properties

declared as BoundProp (with any type) will not allow + and * operations on them since

there is no way to ensure that all types with which BoundProp can be declared will

always provide + and * methods.

The excerpt from the Term class implementation is given below. Also shown are the

definitions of the case classes and the implicit conversion.

abstract class Term extends PropertyChangeListener {

 var bProperty = new BoundPropDouble;

 def +(r:Term) : Term = {

 var myTerm: Term = new Add(this, r);

 this.bProperty.addPropertyChangeListener(myTerm);

 r.bProperty.addPropertyChangeListener(myTerm);

 return myTerm;

 }

 def propertyChange(evt: PropertyChangeEvent){

 bProperty := eval;

 }

 def eval(): Double = this match {

 case Num(m) =>

 m;

 case Var(m) =>

 m.value;

 case Add(l: Term, r: Term) =>

 bProperty := l.eval + r.eval;

 bProperty.value;

 case Mul(l: Term, r: Term) =>

 bProperty := l.eval * r.eval;

 bProperty.value;

 }

 ...

}

object Term {

 implicit def Double2Term(d : Double) = new Num(d);

}

case class Num(n: Double) extends Term{

 bProperty := n;

 25

}

case class Var(v: BoundPropDouble) extends Term{

 bProperty := v;

}

case class Add(l: Term, r: Term) extends Term{

 bProperty := eval;

}

case class Mul(l: Term, r: Term) extends Term{

 bProperty := eval;

}
Listing 4-10 Excerpt from Term class implementation for bind with expressions

If you look at the code for the + method you will notice that each Term of type Add is a

listener to updates in its left and right values. In an expression like a + (b + c), b + c

evaluates to Term of type Add and this Term has property change listeners attached to both

b and c. Then, a and this Add type Term combine to form another Term which has

listeners attached to a and the previous Term (b + c). So, a change in the value of b

triggers the PropertyChange in Term (b + c) and it value gets re-evaluated. This

change in value of Term (b + c) in turn triggers a change in Term a + (b + c) and

that also gets re-evaluated. This is how property change events propagate up in the

expression tree.

The bind to Term was implemented along the same pattern as bind to Swing components

where the binding is actually done to a local variable (bProperty) which is internally

bound to the final value of the expression.

4.1.2. Animate Feature

For my DSL, I created a feature to facilitate animation which mimicks the functionality

provided by the JavaFX dur operator discussed in Section 2.1.2. The animate feature is

available on bound properties. It accepts an array of values and a time parameter in

milliseconds. Based on these two parameters it updates the value of the property to the

array of values over the span of time. The animate feature creates a background thread

which assigns the range of values from the array into the bound property. To show the

power of the animate feature lets consider a small animation demo. The demo uses the

animate feature to update the panel background color from yellow to blue to red between

a 3 second interval.

Figure 5 Screenshot of Animation demo at 1 second and 3 second

 26

The code to animate the panel’s background color is given below. Notice how just a

single statement handles the entire animation task.

import boundUtilities.BoundProp;

import boundUtilities.BoundJPanel._;

object animationTester {

 def main(args: Array[String]) : Unit = {
 ...

 val colors = Array(Color.YELLOW, Color.BLUE, Color.RED)

 val panel = new JPanel

 panel.backGround animate (colors, 3000)

 ...

 }

}

Listing 4-11 Code excerpt from animation demo

The panel is implicitly converted to a JBoundPanel which is implemented the same way

as other Bound Swing Components described in Section 4.1.1.2. This implicit conversion

allows features of my DSL, like bind and animate, to be called on the JPanel objects.

The implementation of animate is given below. The first parameter of is of type Seq

which is the parent class of all sequence type classes in Scala. This enables the animate

feature to accept all types of sequence objects such as Array, List, Range etc.

class BoundProp[T] extends PropertyChangeSupport with

PropertyChangeListener {

 ...

 def animate(seq: Seq[T], millisecs: Long) = {

 val internal = this;

 var t = new Thread(new Runnable(){

 def run = {

 for (i <- 0 to seq.length-1) {

 internal := seq(i);

 Thread.sleep(millisecs/(seq.length));

 }

 }

 });

 t.start();

 }

}

Listing 4-12 Implementation of animate feature in the BoundProp class

Scala’s Range class provides some nice syntactic sugar for the animate feature. It lets you

specify the start value, end value and a step value for the sequence and generates the

entire sequence. So instead of writing

countDown animate (Array(10,9,8,7,6,5,4,3,2,1,0), 10000);

we can use the much nicer Range syntax to do animation in the DSL.

countDown animate (10 to 0 by -1, 10000);

 27

4.1.3. doOutside and doLater

The next set of features I implemented for my DSL were related to concurrency which is

important when creating rich GUIs. The doOutside feature provides the same

functionality as JavaFX’s do statement discussed in Section 2.1.3. It allows you to

execute a portion of code in a separate thread outside of the current thread. To illustrate

its use, let us consider how we could rewrite the animate code (Listing 4-11) given

above in Section 4.1.2.

def animate(seq: Seq[T], millisecs: Long) = {

 val internal = this;

 doOutside{

 for (i <- 0 to arr.length-1) {

 internal := arr(i);

 Thread.sleep(millisecs/(seq.length));

 }

 }

}

Listing 4-13 Usage of doOutside in animate feature implementation

We can see how the doOutside feature allowed us to remove the boiler plate code of

creating a new thread, creating its inner class and starting the thread. So, we can just

write the code that we want to execute in the new thread and let the DSL worry about all

the inner details of thread creation and running.

The doLater feature provides the same functionality as JavaFX’s do later statement

discussed in Section 2.1.3 or the java.awt.EventQueue.invokeLater. You can use it

to asynchronously execute a section of your code in the EDT. Lets consider a small

example, inspired from Core Java [12], which creates a new thread and also uses

java.awt.EventQueue.invokeLater. Then we will look at the same code using

doOutside and doLater features of the DSL. The demo just creates a JComboBox and

keeps updating the items in it, by either adding a new random value or deleting an

existing value.

object ThreadTester {

 def main(args: Array[String]): Unit = {

 ...

 val combo = new JComboBox();

 var t = new Thread(new Runnable(){

 def run = {

 var generator = new Random();

 while (true){

 EventQueue.invokeLater(new Runnable(){

 def run(){

 var i = Math.abs(generator.nextInt());

 if (i % 2 == 0) combo.insertItemAt(i, 0);

 else if (combo.getItemCount() > 0)

 combo.removeItemAt(i % combo.getItemCount());

 }

 28

 });

 Thread.sleep(10000);

 }

 }

 });

 ...

 }

}

Listing 4-14 Original code from ThreadTester application

We can rewrite the above code in a much more succinct manner by using the doOutside

and doLater features of the DSL as shown below.

import boundUtilities.ExtendedObject._;

object ThreadTester {

 def main(args: Array[String]): Unit = {

 ...
 val combo = new JComboBox();

 doOutside{

 var generator = new Random();

 while (true){

 doLater{

 var i = Math.abs(generator.nextInt());

 if (i % 2 == 0) combo.insertItemAt(i, 0);

 else if (combo.getItemCount() > 0)

 combo.removeItemAt(i % combo.getItemCount());

 }

 Thread.sleep(10000);

 }

 }

 ...

 }

}

Listing 4-15 Rewrite of ThreadTester using DSL features of doOutside and doLater

The implementation of the doLater and doOutside features of the DSL is given below.

They are methods in an extension to Object class and take closures as parameters,

executing them asynchronously or synchronously. To use these methods, add import

boundUtilities.ExtendedObject._; statement to the code.

import java.awt.EventQueue;

object ExtendedObject {

 def doLater(func: =>Unit): Unit = {

 EventQueue.invokeLater(new Runnable(){

 def run = {

 func

 }

 });

 }

 def doOutside (func: =>Unit): Unit = {

 var t = new Thread(new Runnable(){

 def run = {

 29

 func

 }

 });

 t.start();

 }

}
Listing 4-16 Implementation of doLater and doOutside features

4.2. DSL in Groovy

To evaluate Groovy’s dynamic features I created the same rich graphical user interface

DSL in Groovy as I had done in Scala. I used Groovy’s meta class augmenting

capabilities to implement the new features.

4.2.1. Incremental Dependency-Based Evaluation (Bind)

One of the features implemented in the DSL was the bind feature which resembles the

JavaFX bind feature. For details on the working of bind please consult Section 2.1.1.

4.2.1.1. Bound Property

I created a BoundProp class whose objects can use the bind feature to automatically

update their value based on other BoundProp objects. It is a generic class that can be

initialized to any type. The following is a trivial example that shows how the bind feature

is used to bi-directionally bind two String type properties. The class Book has a

BoundProp title of type String and we are binding title property of book1 to title

property of book2.

import bComponents.BoundProp;

class Book {

 BoundProp<String> title = new BoundProp<String>(this);

}

class BindTester {

 static void main(args) {
 Book book1 = new Book();
 Book book2 = new Book();

 book1.title.bind book2.title;

 book1.title.set("Alice in Wonderland");

 assert (book2.title.value == "Alice in Wonderland");

}

Listing 4-17 Bidirectional binding of two String type BoundProp objects

Groovy supports invocation of methods without parentheses when we only have a single

parameter, so we can call the bind method on book1.title without the parentheses.

Now when the set is called for book1.title, the title property of book2 automatically

gets updated to reflect the change. The implementation of bind in the BoundProp class is

given below.

 30

package bComponents

import java.beans.*;

class BoundProp<T> extends PropertyChangeSupport implements

PropertyChangeListener {

 T value;

 def BoundProp(Object source){

 super(source);

 value = new T();

 }

 //bi-directional binding done between this and other

 def bind(BoundProp<T> other){

 this.addPropertyChangeListener(other);

 other.addPropertyChangeListener(this);

 }

 void propertyChange(PropertyChangeEvent evt){

 if(!evt.getNewValue().equals(value)){

 this.set(evt.getNewValue())

 }

 }

 BoundProp<T> set(T newValue){

 T oldValue = value;

 value = (T)newValue; //hack to fix problem with Groovy generics

 firePropertyChange("value", oldValue, newValue);

 this;

 }

 ...

}

Listing 4-18 Implementation of bind in BoundProp class

The bind method assigns listeners between both the properties. On update of a property’s

value I needed to fire the property change event. To do this, I had to create an assignment

mechanism that handled this. Groovy only allows operator overloading on a limited set of

operators and assignment operator (=) is not one of them. Groovy does not allow

operators as valid identifiers for method names so I could not use the Scala (:=) syntax

either. Therefore I created the set method on BoundProp. When we use this method to

change the value of a property, the other properties that directly or indirectly depend on it

get notified and can update their values accordingly. The generics in Groovy are

somewhat recent and error prone, therefore I had to include some hacks like type casting

(value = (T)newValue;) in cases where for some reason the Groovy generics failed to

act as expected.

4.2.1.2. Bound Swing Components

As mentioned in Section 4.1.1.2, the real use of bind is in case of applications based on

the model-view-controller pattern, where the data from the backend (model) is used to

populate the user interface (view). To keep the model and view in sync we can use

 31

binding between model’s properties and view’s components. Consider the following

example where two text fields are bi-directionally bound to a single property title. This

means that the text field’s are also indirectly bound to each other.

import javax.swing.*;

import bComponents.BoundProp;

class Model{

 BoundProp<String> title = new BoundProp<String>(this);

}

class BindTester {

 static void main(args) {

 ...

 JTextField field1 = new JTextField("Default");

 JTextField field2 = new JTextField("Default");

 Model model = new Model();

 field1.property.text.bind model.title;

 field2.property.text.bind model.title

 //Issue: ActionListener not getting invoked on setText

 //Does get invoked on UI input

 field1.text("Les Miserables");

 ...

 }

}

Listing 4-19 Indirect binding of two text field’s

The screen shots from the sample application are given below.

Figure 6 Screenshots from model-view binding demo.

The first screen shows the application when it starts. We can see that although the value

of field1 was updated before the application starts, it has not effected the value of

field2. The problem is that the setText method of JTextField does not fire a property

change event. Once again, if Java had native bound properties built in to it, this would not

have happened. The next screen shows the value of both text fields when field2 is

updated through the user interface. The updated value of field1 confirms that the

problem is only when the text field is set using the setText method. The automatic

update works in all other scenarios like setting the value of model.title, or updates to

either text field through the user interface.

 32

The DSL also allows binding of two Swing components directly, so in the above example

we could have also written the following, to bi-directionally bind the two text fields to

each other.

field1.property.text.bind field2.property.text

First of all, note that we use the regular JTextField class. There are no extra imports

required to provide bind functionality to it. The bind is added to the JTextField by

using DelegatingMetaClass and the package name convention solution given in Section

3.2.4.

Every time any property is accessed on the JTextField, the getProperty method is

intercepted by my DelegatingMetaClass. If the name of the property is “property” I

return my class BoundJTextField’s object but for all other properties the call is

forwarded to the regular JTextField class. The BoundJTextField has a BoundProp

text of type String. This property is internally bound to the JTextField’s text

property. Any component or property binding to the JTextField is actually bound to this

local text property which in turn updates the JTextField’s text property. The added

property call on a field when binding, gives rise to more verbose syntax but is necessary

to keep the normal operations of a JTextField intact. Otherwise, we could rig the

JTextField to return BoundJTextField’s text property on field1.text call. In this

case the bind would work but many other normal operations which expect a String and

not a BoundProp<String> would get affected. The implementation of my

DelegatingMetaClass for JTextField and the BoundJTextField is given below.

package groovy.runtime.metaclass.javax.swing;

import groovy.lang.*;

import bComponents.BoundJTextField;

class JTextFieldMetaClass extends DelegatingMetaClass{

 JTextFieldMetaClass(MetaClass metaclass){

 super(metaclass);

 }

 public Object getProperty(Object object, String propName){

 //If "property" then return a BoundJTextField object

 if(propName == "property"){

 new BoundJTextField(object);

 }

 //for all other properties, forward to JTextField

 else{

 super.getProperty(object, propName);

 }

 }

}

Listing 4-20 The DelegatingMetaClass that intercepts the getProperty methods on
JTextField

 33

package bComponents

import javax.swing.*;

import java.awt.*;

class BoundJTextField {

 JTextField component;

 BoundProp<String> text;

 public BoundJTextField(JTextField c){

 component = c;

 text = new BoundProp<String>(this);

 internalBind();

 }

 BoundProp<String> getText(){ text; }

 void internalBind(){

 component.actionPerformed = { e -> text.set(component.getText()) };

 text.propertyChange = { e ->

 if(!component.getText().equals(e.getNewValue())){

 component.setText(e.getNewValue());

 }

 };

 }

}

Listing 4-21 The BoundJTextField class that implements the bind feature

4.2.1.3. Bind with Expressions

For the bind with expressions feature, I did some research to try to come up with a

solution better than what we ended up employing in Scala for the DSL, but at the time

Groovy like Scala did not provide any feature that would automatically enable the

handling of the unevaluated expression. For bind with expression we needed the

unevaluated expression that could be reevaluated every time one of the properties that

made up the expression changed. The aim was to find something like the macros

available in LISP and Scheme but Groovy does not seem to have that capability. Since

the Term class implementation that we did for the DSL in Scala did not employ any

dynamic feature of the language to aid in its creation, I decided that redoing it in Groovy

would not give me any advantage on evaluating the nature of Groovy as a DSL Host. I

have therefore not implemented Bind with Expressions in Groovy.

In May 2008 the latest version of Groovy (1.6-beta-1) was released. It comes with a new

feature called AST Transformations. According to the announcement by the Groovy

creators on the mailing list:

“When the Groovy compiler compiles Groovy scripts and classes, at some point in the

process, the source code will end up being represented in memory in the form of a

Concrete Syntax Tree, then transformed into an Abstract Syntax Tree. The purpose of

AST Transformations is to let developers hook into the compilation process to be able to

modify the AST before it is turned into bytecode that will be run by the JVM.”

 34

This new feature seems promising for the implementation of my bind with expressions

feature.

One currently available implementation of this AST Transformation is the @Bindable

annotation that generates a java.beans.PropertyChangeSupport object, the

corresponding methods to add listeners, and a setter that uses the property change

support. This gives us a bound JavaBeans property without the boilerplate code.

4.2.2. Animate Feature

The next feature I implemented for my DSL was the animate feature which was built to

facilitate the creation of animations. It was based on the JavaFX’s dur operator which I

discussed in Section 2.1.2. It takes an list of values and assigns them to a property over

the specified amount of time. Below is an excerpt from a demo animation application

which uses animate. The application animates the background color of a rectangle,

changing it to a range of different colors over a period of 5 seconds.

import bComponents.BoundProp;

import javax.swing.*

import java.awt.*

class animationTester {

 static void main(args){

 ...

 def colors = [Color.YELLOW, Color.BLUE, Color.GREEN, Color.RED]

 JPanel panel = new JPanel();

 panel.property.background.animate(colors, 5000)

 ...

 }

}

Listing 4-22 Excerpt from demo application animating the background of a rectangle using
the animate feature

Notice that we need a single line of code to animate the background color. We do not

need any special import statements but we do need the more verbose panel.property

syntax for the same reason as discussed in Section 4.2.1.2. The panel gets the animate

in the same way as discussed for components in the previous Section on Bound Swing

Components. The panel has a local property background which is of type

BoundProp<Color>. It is internally bound to the background property of the JPanel

class which is of type Color. The animate feature is then implemented just once inside

the BoundProp class and is available to properties as well as Swing components. The

implementation of animate in BoundProp is given below.

package bComponents

import java.beans.*;

class BoundProp<T> extends PropertyChangeSupport implements

PropertyChangeListener {

 35

 ...

 def animate(Collection<T> coll, Long milliSecs){

 Closure func = {

 for (i in 0..coll.size-1) {

 set(coll[i]); //set value in BoundProp

 int tempSleep = milliSecs/(coll.size);

 Thread.sleep(tempSleep);

 }

 };

 new Thread(func).start();

 }

}

Listing 4-23 Implementation of animate feature in BoundProp class

4.2.3. doOutside and doLater

Another pair of features I implemented in the DSL in Groovy was the thread related

doOutside and doLater. They provided the same functionality as JavaFX’s do and

dolater discussed in Section 2.1.3 or the thread features in our DSL in Scala from

Section 4.1.3.

I explored three different approaches to creating the doOutside and doLater features in

Groovy.

The first approach was using Groovy’s categories (Section 3.2.3). I created a

ThreadUtilCategory class which has doOutside and doLater as static methods. To use

the features we just need to put the ThreadUtilCategory class in the use statement as

given below.

use(ThreadUtilCategory){

 doLater{

 println("This will run in the EDT");

 }

 doOutside{

 println("This will run in a new Thread");

 }

}

Listing 4-24 Usage of the ThreadUtilCategory in the DSL in Groovy

The advantage is that since we are not trying to extend the Object class this approach is

more scalable. The features are only available within the scope of the use statement and

do not affect anything outside. The implementation of the ThreadUtilCategory is given

below.

import javax.swing.*;

class ThreadUtilCategory {

 static def doLater(Object obj, Closure func) {

 SwingUtilities.invokeLater(func);

 }

 static void doOutside(Object obj, Closure func){

 new Thread(func).start(); //Closure implements Runnable

 }

 36

}

Listing 4-25 Implementation of the Thread Utility Category in Groovy

Notice that the Closure class in Groovy implements the Runnable interface and can

therefore be passed directly in the Thread constructor.

The second approach I tried was using the DelegatingMetaClass of Groovy. The idea

was to augment the meta class of the Object class and add the functionality there. The

meta class intercepts all static methods on Object. If the name of the method matches the

name of my features then the meta class executes the required thread procedures. All

other static methods are passed on to the Object class for regular execution. The

implementation of the meta class is given below.

import javax.swing.SwingUtilities;

class ObjectMetaClass extends DelegatingMetaClass{

 ObjectMetaClass(MetaClass metaclass){

 super(metaclass);

 }

 public Object invokeStaticMethod(Object a_object,

 String a_methodName,

 Object[] a_arguments){

 if(a_methodName == "doLater"){

 SwingUtilities.invokeLater((Closure)a_arguments[0]);

 }

 else if(a_methodName == "doOutside"){

 new Thread((Closure)a_arguments[0]).start();

 }

 else{

 super.invokeStaticMethod(a_object, a_methodName, a_arguments);

 }

 }

}
Listing 4-26 Implementation of the DelegatingMetaClass for Object with doOutside

and doLater functionality

The usage of the meta class is shown below. Notice how we need to call the features on

the Object class. This is because DelegatingMetaClass does not implement inheritance

so the features are only available to the Object class.

Object.doLater{

 println("I am running in the EDT");

}

Object.doLater{

 println("I am running in new Thread");

}

Listing 4-27 Usage syntax of doOutside and doLater implemented in Object meta class

The third approach I tried was to use the ExpandoMetaClass (Section 3.2.5) since it

allows the added functionality to be inherited by using its enableGlobally() method.

 37

Object.metaClass.'static'.doLater << {SwingUtilities.invokeLater(it);}

ExpandoMetaClass.enableGlobally();

doLater {

 println("I should run in the EDT ");

}

Listing 4-28 doLater with ExpandoMetaClass

But the above code does not work and it still requires a call to Object.doLater to run

the method. It does not work with String.doLater or this.doLater syntax but

surprisingly works for "some string".doLater.

 38

5. Evaluation

To evaluate the ability of Scala and Groovy to be DSL hosts, I will compare the DSLs

created in them based on their features. Then I will compare Scala and Groovy based on

their capabilities to allow existing language functionality to be augmented.

5.1. DSL Comparison

5.1.1. Bind

First I will compare the two DSLs based on the different types of incremental

dependency-based evaluation features that I have implemented.

5.1.1.1. Bound Property

For bi-directional binding of properties the syntax in the two DSLs as well as the original

JavaFX syntax is given below where foo and bar are two properties being bound to each

other.

JavaFX syntax: foo bind bar

DSL in Scala: foo bind bar

DSL in Groovy: foo.bind bar

Since clarity and expressiveness is an important requirement for a DSL, the syntax of

usage becomes important. Scala syntax looks more like a DSL as compared to Groovy’s

because it allows methods to be used as infix operators. Both languages allow single

parameter methods to be used without parentheses which makes for better DSL syntax.

The two DSL syntax are pretty much the same as JavaFX syntax for bind except we have

to declare the two properties to be instances of class BoundProp. The proper syntax to set

the value of a property that is bound is given below.

JavaFX syntax: bar = "new value"
DSL in Scala: bar:= "new value"
DSL in Groovy: bar.set "new value"

Neither language allowed the overloading of assignment operator (=). One trick in

Groovy would have been to intercept the assignment call and include the extra

functionality there, but Groovy did not allow the interception of the assignment function

call. As Scala allows creating your own operators, I was still able to achieve a nice

assignment syntax. But in case of Groovy, since it does not allow operators as valid

identifiers, the syntax for assignment looks like a regular function call. Also as discussed

in Section 4.1.1.1 I encountered problems with Groovy generics while implementing the

BoundProp class.

 39

5.1.1.2. Bound Swing Components

Lets now look at the bi-directional bind of Swing components and compare their syntax.

The variables field1 and field2 refer to JTextField objects and they are being bound

on their text property.

JavaFX syntax: field1.text bind field2.text
DSL in Scala: field1.text bind field2.text
DSL in Groovy: field1.property.text.bind field2.property.text

The syntax for binding in Groovy is very verbose and compromises clarity. The Scala

syntax is succinct and clearly shows that we are binding the text property of field1 to

the text property of field2.

For Scala we needed to include the import boundUtilities.BoundJTextField._;

statement for usage of bind functionality on JTextField and then the declaration of text

field would be the same as in JavaFX. For Groovy we did not need any additional

statements and just having the DSL package in the class path automatically adds the bind

functionality to JTextField. Also in Scala, to avoid the problem of too many implicit

conversions available in a scope as discussed in Section 5.2, we can limit the scope of the

implicit conversion in this context by importing just in the required scope as shown

below.

def main(args: Array[String]) : Unit = {
 ...
 import boundUtilities.BoundJTextField._;
 {
 val field1 = new JTextField;
 val field2 = new JTextField;
 //implicitly converting field1 and field2 to BoundJTextField
 field1.text bind field2.text;
 }
 ...
}

One problem I faced with the Swing component binding for the DSLs was that I had to

write code for every single property of every single Swing component that I wanted to

bind. My approach to create a generic code for binding of any property using JavaBeans

bound property failed due to the lack inbuilt native bound properties in Java. Another

issue I faced due to lack of native bound properties in Java was discussed in Section

4.2.1.2 where field1.setText(“new value”) did not result in any property change

events being fired. For this reason changes to the text property through setText method

did not update other properties dependent on it.

5.1.1.3. Bind with Expressions

For binding a property to an expression involving other properties the syntax in JavaFX

and my DSL is given below. The only difference is that the properties bar and foo need

to be declared as BoundProp in case of the DSL.

 40

JavaFX syntax: bar bind foo + 10
DSL in Scala: bar bind foo + 10

Neither Scala nor Groovy at the time provided a built in feature to handle the unevaluated

expression tree. I was looking for a functionality like LISP macros to store unevaluated

expressions. But the latest version of Groovy has the new AST Transformations feature

which might be helpful in creating expression trees. There is also a GUI library that is

being developed in Scala called Scales / ScalaFX [22]. It promises to provide JavaFX like

functionality for reducing boilerplate code. But it is still its early stages and there is no

documentation available on what functionalities it will provide.

The expression handling mechanism for my DSL in Scala was created by manually

implementing a Term class and its subclasses as described in Section 4.1.1.4 on bind with

expressions. The advantage Scala provided in implementing the expression mechanism

was due to its case class and pattern matching functionality as discussed in Section 3.1.6.

Since Groovy did not provide any special mechanism to implement expressions, it was

felt that implementing the functionality in Groovy would not help in its evaluation as a

DSL host.

Moreover, as mentioned in the bind with expressions Section of the DSL in Scala, I had

to create a BoundPropDouble class to use in Term class implementation since I could not

add multiplication and addition methods to the generic BoundProp class as there was no

way to ensure that all types of BoundProp would support these functionalities. It would

be really useful if Scala generics provided specifying method constraints. Then we could

say something like the following:

class BoundProp[T]

 where T implements

 T + (T,T),

 T * (T,T)

{ ... }

Another solution would have been to have an interface for mathematical operation such

as addition, multiplication etc. and have all the numeric classes such as Int, Double etc.

implement it. But in the absence of any such features, I had to create a separate

BoundPropDouble class that extends from BoundProp[Double] and provides + and *

methods.

In the end, it was not possible to emulate the full power of bind from within a host

language. The bind feature in my DSLs, unlike JavaFX bind, cannot handle expressions

that call functions or have branches in them. For these, JavaFX can do magic at the

compiler level that was beyond the power of my host languages to replicate. But

upcoming features like Groovy’s AST Tranformations which allow hooking into the

compilation process to modify the Abstract Syntax Tree, might prove helpful in this area.

 41

5.1.2. Animate Feature

Next, let us look at the syntax for the animation feature discussed in Section 2.1.2 of

JavaFX.

JavaFX syntax: foo = [0..10] dur 3000
DSL in Scala: foo animate (0 to 10, 3000)
DSL in Groovy: foo.animate([1,2,3,4,5,6,7,8,9,10], 3000)

I named the operator animate instead of dur in my DSLs as I felt that it provided a better

explanation of the operator’s function. I have also changed the syntax of the animation

feature from being called on the Collection (as in JavaFX) to a feature on the bound

property. The original syntax of our DSL (given above) used bind to update the property

(foo) based on the values returned by the animate operator.

Old syntax: foo bind ([0 to 10] animate 1000)

I felt that it was a better idea for my DSL to call the animation feature on the bound

property and pass the collection and time as parameters instead of calling animate with

bind.

The Groovy syntax is slightly longer since we have to specify the entire list of values.

Groovy does support the Range syntax [1,2,..10] but instead of generating

1,2,3,4,5,6,7,8,9,10 it generates 1,2, [3,4,5,6,7,8,9,10] due to which foo gets assigned the

value 1 and 2 correctly but the third value assigned to it is [3,4,5,6,7,8,9,10] instead of 3.

Therefore, I could not use it in the animate call. The Scala Range class only supports

integers and it would be nice if they provided the same functionality for other numeric

classes.

The animate feature in my DSLs accepts all kinds of collections. The Groovy syntax does

not require any extra imports but for Scala we need the special import statement to

include the bound companion class of the Swing component we want to animate.

5.1.3. Concurrency Features

The next set of features for the DSL were the concurrency related do and do later as

discussed in Section 2.1.3 of JavaFX. A comparison of syntax for do later feature is

given below. The syntax for do follows the same pattern.

JavaFX syntax:
do later{
 //some task
}

DSL in Scala:
doLater{
 //some task
}

 42

DSL in Groovy:
use(ThreadUtilCategory){ //or Object.doLater
 doLater{ ... }
}

Once again Groovy did not provide the functionality to create a simple control statement.

We either have to include the use statement or call Object.doLater as discussed in

Section 4.2.3 of the DSL in Groovy. Scala requires import

boundUtilities.ExtendedObject._; to include the extra concurrency functionality.

5.2. Comparison of Language Features

In this part I will discuss Scala’s views/implicit conversion and Groovy’s meta

programming facilities. Then a comparison of features that help create a more DSL like

syntax follows. In the end I present a few comparisons based on my experience of

working with the two languages.

It was surprising that the DSL in Groovy turned out to have more issues than the one in

Scala. Surprising because when I initially compared Scala and Groovy on their features

that allow language extensions, Groovy seemed much more promising with its very rich

meta programming feature set. Scala only had views/implicit conversion but Groovy

provided multiple ways of enhancing or modifying an existing class. Groovy had

categories, and ExpandoMetaClass and DelegatingMetaClass which allowed not only

to add new methods but also intercept calls to existing methods and even allowed

addition of methods at run time using method missing functionality. Groovy has also had

practical success with creating DSLs such as GORM [23] and builders[10]. But in the

end for my specific DSL Scala provided better syntax than I could achieve in Groovy.

One thing worth mentioning here is that Scala’s implicit conversion feature can lead to

issues when scaled. It is easy to keep track of implicit conversions in a limited scope but

as the scope gets bigger and we have multiple implicit conversions available it gets

harder to keep track of which conversion is being applied at which point. During the

creation of DSL in Scala I encountered the following issue. Consider the code

class Bar(o: Object){ //class declaration and constructor

 //...
}

class Foo extends Bar{

 //...

}

Class Foo should not be allowed to extend from Bar without passing anything to the

parent Bar which only provides a single, one parameter, constructor. What happens is

that Scala applies an implicit conversion to convert a parameter-less class Bar to Bar()

with an empty parameter list and then converts the parameter list to a single tuple

parameter Bar(()) so Bar gets created with a Scala.Unit or () as a parameter. I believe

 43

that Scala needs to provide an easy way to track implicit conversions to see which

conversions are being applied to which statement in the code.

Besides the major language extension providing features there were many small features

in Scala that allowed for better DSL creation than Groovy. Some of these helped provide

better DSL syntax in Scala and others were general issues I encountered with Groovy that

were not faced in Scala. Below is an overview of some of those features.

Table 1. Comparison of some features enabling better DSLs in Scala versus Groovy

Scala Groovy

Operators as valid identifiers Not allowed

Methods as infix operators Not allowed

Parentheses less method Allowed

Good generics support Problems in generics

Supports inner classes Does not allow inner classes

Lastly, Scala provides much better documentation and has many documents ranging from

tutorials by example and language references to details on how a certain feature works. I

found that documentation on Groovy was sparse and it was hard to understand the

working of certain features. I could not find a good comparison of ExpandoMetaClass

and DelegatingMetaClass and which class was better suited for use in which scenario.

The Scala mailing list was also very active and quickly provided good responses which

were not only from users but also from the developers of Scala. My experience with

Groovy’s mailing list was that most responses were from users and did not always solve

the issue in question. Scala also had a very helpful IRC channel available as compared to

Groovy’s IRC presence. The IDE support is also better in Scala despite the fact that

Scala’s Eclipse plugin is an experiment on creating a plugin Scala. These issues, though

not directly indicative of the worth of a language for DSL creation, certainly influence a

developer. They have an effect on how much a developer can achieve in the language and

how smooth the development effort will be.

 44

6. Conclusion

In this project, I set out to evaluate and compare the dynamic features of Scala and

Groovy and assess their ability to be DSL hosts. To achieve this I created JavaFX like

DSLs for rich user interface application development in each of the two languages. The

DSLs had powerful features like bind and others which allowed easier syntax for

common operation in the DSL domain and less boiler plate code.

The results of the project were surprising compared to original expectations. Groovy with

its MOP based rich feature set for DSL creation did not perform as well as Scala. With

Groovy’s MOP we could add new methods, replace or augment existing methods and

even create new methods at runtime that were missing when the method call was made. It

also allowed interception of calls to properties. For all these reasons MOP seemed very

flexible for creating DSLs. One negative aspect of MOP is the lack of compile-time type

checking. Scala does not support MOPs but its implicit conversion/views feature enabled

us to create our DSL and provided compile-time type checking too. Scala also provided a

few other features such as allowing operators to be valid identifiers, and methods to be

used as infix operators etc. which enabled better DSL syntax than Groovy.

When comparing the languages on ease of use, Scala again fares better due to a good IDE

and a very helpful support network. I also encountered more bugs in Groovy as compared

to Scala during the development of the DSLs, though bugs at this stage are natural in

developing languages.

The lack of inbuilt properties in Java was an issue I faced on more than one occasion

during the DSL development. The hope is that a future version of Java will have support

for native bound properties allowing a generic solution for creating bound properties for

our DSLs.

Nonetheless I believe Groovy has many powerful features that would allow it to be a

good DSL host. My DSL was just one particular case and not indicative of all types of

features a DSL might require. Groovy has had practical success in DSLs requiring nested

structures like XML, ANT and others. Groovy is still in its early stages and I think some

of the issues that I faced like problems with generics etc. will be resolved soon. With the

much wider interest in Groovy the documentation situation might also get better. With

the IDE’s of both languages becoming better everyday, developing in them should also

get easier.

Interestingly, during the course of my project, another project has started from the

Groovy team called the SwingBuilder which has many of the same features as my DSL

but the project is much more extensive and is creating a declarative syntax for user

interface creation. It will be interesting to see the results of that project.

My implementation of bind with expressions revealed that in some cases the bind feature

cannot be easily dealt with in a DSL created in a host language. In those cases a new

language that has access to the compiler has more power. It shows a good reason why

 45

Sun created JavaFX as a new language as compared to implementing it inside a host

language.

The project work was challenging since all three languages I used were recent and

evolving with highly fluid feature sets. Many times I had to download the latest source

code for the language and build it myself just so I could run some feature I was using in

my DSL that was still in its testing phase. It was normal for a prototype like the

interpreter based JavaFX to be changing so rapidly, but chasing a moving target came

with its own set of challenges. Some of the features available in the interpreted JavaFX

that I implemented in my DSL were “dumbed down” to accommodate them in the

compiled JavaFX version. An example is the automatic bi-directional binding that is now

unidirectional by default and requires further specification in the compiler version of

JavaFX to make it bi-directional. The Integrated Development Environments (IDEs) for

the languages were also in their nascent stages, posing further challenges. Since the

languages were new, there were not many existing samples of DSLs in the languages.

Therefore, the project involved a lot of innovate utilization of the language features.

In the end the project provides a useful comparison that shows how a language requires

some simple features in addition to language extension features like meta programming,

to be a good DSL host. It also highlights some issue areas in both languages that if

resolved would make development in these languages much smoother. But the results are

promising in that all the features of JavaFX selected were implementable in our DSL

albeit a few syntax changes. This proves that instead of creating a DSL from scratch, it

will be worth while to look into these languages for all DSL needs in the future.

 46

References

[1] Henry, K. 2006. A crash overview of groovy. Crossroads, 12, 3, ACM Press, May

2006.

[2] JavaFX. Sun Microsystems. (Accessed September 2007).

http://www.sun.com/software/javafx/index.jsp

[3] Kiczales, G., des Rivières, J., and Bobrow, D. G. 1991. The Art of the Metaobject

Protocol. MIT Press, 1991.

[4] Mernik, M., Heering, J., and Sloane, A. M. 2005. When and how to develop

domain-specific languages. ACM Computing Surveys (CSUR) 37, 4 (Dec. 2005),

316-344.

[5] Odersky et al. 2007. A Tour of the Scala Programming Language. Programming

methods laboratory EPFL, May 2007. Available from

http://www.scalalang.org/docu/files/ScalaTour.pdf

[6] Odersky, M. and Zenger, M. 2005. Scalable component abstractions. In Proceedings

of the 20th Annual ACM SIGPLAN Conference on Object Oriented Programming,

Systems, Languages, and Applications (San Diego, CA, USA, October 16 - 20,

2005). OOPSLA '05. ACM, New York, NY, 41-57.

[7] Odersky, M. 2006. The Scala experiment: can we provide better language support

for component systems?. In Conference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Charleston, South

Carolina, USA, January 11 - 13, 2006). POPL '06. ACM, New York, NY, 166-167.

[8] The JavaFX Script Programming Language. (Accessed September 2007).

https://openjfx.dev.java.net/JavaFX_Programming_Language.html

[9] van Deursen, A., Klint, P., and Visser, J. 2000. Domain-specific languages: an

annotated bibliography. SIGPLAN Not. 35, 6 (Jun. 2000), 26-36.

[10] Groovy, An agile dynamic language for the Java Platform. (Accessed November

2007). http://groovy.codehaus.org

[11] Chris Oliver’s Weblog. (Accessed April 26, 2008).

http://blogs.sun.com/chrisoliver/entry/programming_animations_in_fx

[12] Horstmann, C. and Cornell, G. (2007). Core Java: Volume I – Fundamentals 8
th

Edition. Santa Clara: Prentice Hall.

[13] Horstmann, C. and Cornell, G. (2008). Core Java: Volume II – Advanced Features

8
th

 Edition. Santa Clara: Prentice Hall.

 47

[14] Odersky, M. 2006. An Overview of the Scala Programming Language, Second

Edition. Programming methods laboratory EPFL, Switzerland. Available from

http://www.scala-lang.org/docu/files/ScalaOverview.pdf

[15] Schinz, M., Haller, P. 2007. A Scala Tutorial for Java Programmers, Version 1.2.

Programming methods laboratory EPFL, Switzerland. Available from

http://www.scala-lang.org/docu/files/ScalaTutorial.pdf

[16] Learning JavaFX Script, Part 1. (Accessed April 26, 2008).

http://java.sun.com/developer/technicalArticles/scripting/javafxpart1/

[17] The JavaFX Script Programming Language Reference. (Accessed May 13, 2008).

http://openjfx.java.sun.com/current-build/doc/binding.html

[18] Richter, J. (2006). CLR VIA C# 2
nd

 Edition. Redmond: Microsoft Press.

[19] Quaere Home. (Accessed May 20, 2008). http://quaere.codehaus.org/

[20] Kijaro Project Home. (Accessed May 20, 2008). https://kijaro.dev.java.net/

[21] Property Specification, 3
rd

 Draft. (Accessed May 20, 2008).

http://docs.google.com/View?docid=dfhbvdfw_1f7mzf2

[22] Scales Project Home. (Accessed May 20, 2008). http://tools.assembla.com/scales

[23] Grails Object Relational Mapping (GORM). (Accessed May 20, 2008).

http://grails.org/gorm

	San Jose State University
	SJSU ScholarWorks
	2008

	JavaFX as a Domain-Specific Language in Scala / Groovy
	Sadiya Hameed
	Recommended Citation

	Microsoft Word - CS298 Final Report v6.doc

