View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by SJSU ScholarWorks

San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-2010

A Study on Masquerade Detection

Lin Huang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Other Computer Sciences Commons

Recommended Citation
Huang, Lin, "A Study on Masquerade Detection" (2010). Master's Projects. 9.

DOI: https://doi.org/10.31979/etd.8d27-3796
https://scholarworks.sjsu.edu/etd_projects/9

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://core.ac.uk/display/70407771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/9?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A Study on Masquer ade Detection

Lin Huang

A Project Report
Presented to
The Faculty of the Department of Computer Science
San Jose State University

submitted in partial fulfilment of requirements fine degree
MASTER OF COMPUTER SCIENCE
at the
SAN JOSE STATE UNIVERSITY

December, 2010

This report has been approved
for the Department of Computer Science
and the College of Graduate Studies by

Dr. Mark Stamp Computer Science Department Date
Dr. Robert Chun Computer Science Department Date
Dr. Teng Moh Computer Science Department Date

ACKNOWLEDGMENTS

| am indebted to my advisor, Dr. Mark Stamp, fag bonsistent guidance, support,
and encouragement throughout my master progranMank Stamp has tirelessly guided
me on how to perform meaningful research at eviy. $1e has been and will always be

an excellent role model for me.

| would like to specially thank Dr. Robert Chun dbd Teng Moh for serving on

my defense committee.

| also would like to thank my friends, Fan Yang,yae Tang, and Yue Chen.
They have made my life in San Jose enjoyable andorable. | am especially grateful to

my dear wife Xiuduan Fang for her everlasting loescouragement and support.

ABSTRACT

In modern computer systems, usernames and passharddeen by far the most
common forms of authentication. A security systehying only on password protection
is defenseless when the passwords of legitimates @ugse compromised. A masquerader

can impersonate a legitimate user by using a comigexl password.

An intrusion detection system (IDS) can provideadditional level of protection
for a security system by inspecting user behawWwoterms of detection techniques, there
are two types of IDSs: signature-based detectioth @momaly-based detection. An
anomaly-based intrusion detection technique cansistwo steps: 1) creating a normal
behavior model for legitimate users during theniragy process, 2) analyzing user

behavior against the model during the detectiocgss.

In this project, we concentrate on masquerade tieteca specific type of
anomaly-based IDS. We have first explored suitdblehniques to build a normal
behavior model for masquerade detection. After y8hgl two existing modeling
techniques, N-gram frequency and hidden Markov nso¢MMs), we have developed
a novel approach based on profile hidden Markov et®odPHMMs). Then we have
analyzed these three approaches using the claggibainlau data set. To find the best
detection results, we have also conducted serngiawialysis on the modeling parameters.
However, we have found that our proposed PHMMsatmntperform the corresponding
HMMs. We conjectured that Schonlau data set ladkedposition information required
by the PHMMSs. To verify this conjecture, we havsoafjenerated several data sets with
position information. Our experimental results shtwat when there is no sufficient

training data, the PHMMs vyield considerably bettdetection results than the

iv

corresponding HMMs since the generated positioormétion is significantly helpful for

the PHMMs.

TABLE OF CONTENTS

Page

NOMENCLATURE ...ttt s ae e e sne e s ae e e neesnnas I X
LIST OF TABLESttt ae e e ae e s n e neeenneens X
LIST OF FIGURESottt Xl
1 INTRODUGCTION. ...ttt s n e ss e s ane e nneeennas 1
1.1. Intrusion Detection SystemMS (IDS)ccvevevievieieceeseee e 1
1.1.1. Signature-based Detection and Anomaly-bBsgection.....................

1.1.2. Performance Criterial..........c.uuviiiccmeeie e 3

22 \V = S o [U= = To [N D T = o o) o 4
1.2.1. Architecture of a Masquerade Detection S§ste.........ccccevvvvvvvvnnnnnnnn.

1.2.2. Schonlau Data Set..........oooiiiiiiiiiiiiei e 5

1.3, ProjeCt ROA Mapcooiiiiiiieiieieeie ettt s 7
2. SIMPLE SUBSTITUTION CRYPTANALYSIS....eee e 10
21, Simple Substitution CIPNEScociiiieeee e 10
2.2. Breaking Simple Substitution CIPRers ... 11
3. FREQUENCY STATISTICS.... ..o 12
3.1. N-gram: Unigram, Bigram, Trigram, and N-gramccccceeververnrcenrennenn. 12
3.2, EXperimental RESUITS.......ccccoeiiieieiieseee et 16

Vi

4.1.

4.2.

4.3.

4.4,

5.1.

5.2.

3.2.1. 1-gram, 2-gram, and 3-gramcceeeeeeeiiieeeiiiiiiiii e e e e

3.2.2. N-gram Weighted by Percentage of Commandélsa..................... 17
3.2.3. N-gram with User UNIQUENESS..........coureeeuiiiiiieeee e
3.2.4. CONCIUSIONS.....oiiiiiiiiiiiiii it 20
HMM: INTRODUCTION.....coiiiiiieiie et 21
MArKOV CRAIN ... 21
Hidden Markov Model (HMM)ooioiieece e 23
IMPIEMENTALION ... ens 27
EXperimental RESUITS........cooo i e 27

44.1. The Detection Results of HMMs with 2 StateStates and 6 States.. 27

4.4.2. HMM VS. N-GFramMcooiiiiiiiiiiiiiieiieee e 28
4.4.3. CONCIUSIONS ...ttt e e nnnneas 29
PROFILE HIDDEN MARKOQOV MODEL (PHMM) ..ot 30
OVEIVIBW ..ottt b et e et n e r e n e s nn 30
Implementation DELailSccooveiieii i e 33
5.2.1. Pairwise AlIGNMENT.......ccoooieie e e e e e e e e e e e e e e e 33
5.2.2. Multiple Sequence Alignment (MSA) ... eeeeeiieeeeeeiiiiiieeeeen 37
5.2.3. Create PHMM ... 40
5.2.4. Calculate Test Data Probability and DetecResults........................ 43

Vii

53. EXperimental RESUIL ...t 45
5.3.1. Detection Results of Different SubsequenddSA................ooeeee. 45
5.3.2. PHMM vs. HMM vs. N-Gram Models.........cccoooviiiiiiiiiiiiiiiiieeee, 46
54. Generate Data Setswith Position Informationcccooeveenineinncnccnnenn 48
55. Detection Resultsof HMM vs. PHMM on Generated Data Sets.................... 49
5.5.1. CONCIUSIONS....ooiiiiiiiiiiiiiii et 51
6. CONCLUSIONSAND FUTURE WORK ...t 52
REFERENGCES......cc e 54

viii

NOMENCLATURE

IDS: Intrusion detection system.
Alert/Alarm: A signal suggesting that a system has beenlmwing attacked [1].
True Positive: A legitimate attack which triggers IDS to prodwsealarm [1].

False Positive: An event signaling IDS to produce an alarm wherattack has

been taken place [1].
True Negative: When no attack has taken place and no alarmsisd§l].

False Negative: A failure of IDS to detect an actual attack [1].

Table

TABLE I:

TABLE II:

TABLE IIl:

TABLE IV:

LIST OF TABLES

Page
An example of simple substitution lette@ppingveeiiiiiiiinenennnn. 10
N-gram examples for a command SEQUENCE wu.....cccvveervririinnnniineennn. 13
An example Substitution MatriX...........iiiiiieiiiieie e 34
Experiment Cases of Generating Multipledsiences.............ccccevvvvvvnneees 38

Figure

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Figure 6:

grams
Figure 7:

Figure 8:

Figure 9:

Figure 10:
Figure 11:

Figure 12:

LIST OF FIGURES

Page
A general architecture of masqueradectiote..............ccooeeeeeeeiiiiiiiieninns 5
Schonlau Data Set.........coooiiiiiiiiiiiii e 6
Location of the masquerades o eeeeeeeii e 7
English Letter FreqQUENCIEScccoom e 11
The detection results using 1-gram, 2ngr@nd 3-gram............cccceeeveeee 16

N-grams weighted by percentage of commasade vs. un-weighted N-

17

N-gram weighted by uniqueness vs. N-gnaeighted by command usage

VS. UN-WEIGNTEA N-QramM...ccceeiiiiiiiiiie e e e e e e e e e e ee e e eeeeeeeeeens 20
A Markov chain of a computer sharing @at...............ccccoeevveeiniennnnnnn. 21
Start and End States are added to thikdM&hain...............cccooeiieeen. 23
An HMM of a computer sharing pattern.............ooovvvveviiiiiiiiciiieneenn. 24
A geNEriC HMMouiiiiiiii e e e e e e e e e ennnnnenes 26
The detection results of HMMs with 2e$a 4 states, and 6 states......... 28

Figure 13:

Figure 14:

The detection results of the HMM vs.queiness weighted N-Grams..... 29
Xi

Figure 15: The architecture of masquerade deteasarg a PHMM....................... 31

Figure 16: Global alignment and local alignment 6. 3
Figure 17: AN eXample MSA ...t e 37
Figure 18: The architecture of a PHMMcooovviiiiiiiiiiiiiie e 40
Figure 19: Determing MSA SEAtEScemmmmmeeeeeeeeeeeeeeeeeeeerii e eeeeeeeas 41
Figure 20: The state transition structure of a PHMM...............cciiiiiiiiiiieieeeeeee, 43
Figure 21: The recursion equation of the forwagbathm for a PHMM................ 44

Figure 22: The detection results of PHMMs with eliint number of subsequences in

MSA 46

Figure 23: The detection results of PHMM models e HMM model vs. the

uniqueness weighted 3-Gram MOAEl........... e a7

Figure 24: The detection results of the HMM and Bi#¢MM on our generated data

VS. SCNONIAU ALA SOL . .eeeeeee e 50

Figure 25: The detection results of the HMMs arel HMMs on our generated data

set with reduced traiNiNg AAta e eeeeeeermirrr e e e e eeeeeereeeeeeeeneeeeerrr———- 51

Xii

1. Introduction

1.1.Intrusion Detection Systems (IDS)

In modern computer systems, usernames and passharddeen by far the most
common forms of authentication. A security systehying only on password protection
is defenseless when the passwords of legitimates @uge compromised. A masquerader

can impersonate a legitimate user by using a comigexl password.

To detect this issue of masquerading user, Intru§letection Systems (IDSs)
have been proposed to provide an additional priotedbr the system by inspecting user
behavior [2]. The basic approach used by an IDI® imonitor ongoing activities within
the system and to look for malicious or unusualavedrs. Once the IDS concludes a
harmful activity has occurred, further actions bartaken to intervene, such as raising an
alarm or blocking the user’s session. From thepgsstsve of detection techniques, there
are two general detection techniques used by IB&mature-based detection (also

known as misuse detection) and anomaly-based detect

1.1.1. Signature-based Detection and Anomaly-based Detection

Signature-based detection systems depend on preuleéel patterns that
represent misuse. Such a pattern should summémzdistinctive characteristics of an
attack, often referred to as the signature of aacht In the detection phase, the IDS

records and inspects user activities, and thensldok events that match a predefined

pattern. If a match is found, the detection systaises an intrusion alarm. As a result, a
signature-based system is very accurate for datektiown attacks. Moreover, with the

information associated with the signature, the iD&ble to give a concrete description
of the threat when raising an alarm [2]. Howevessignature-based detection system
cannot detect unknown attacks. Without the sigeatwf new attacks, the IDS knows

nothing about such an attack. There is always dddgeen the time when a new attack
is found in the wild and the integration of itsrsagure into the IDS database. Therefore,

it is crucial for the signature database to beioonusly updated to include new attacks.

Anomaly-based detection systems model user behataordetermine the
characteristics of a user’s normal behavior [2].riDy the detection phase, anomaly-
based systems record and analyze user activit@<@ampare this against their normal
behavior model. A deviation from the establishedhadweor model is considered an
anomaly, or an indication of a possible attacke®fa threshold value is used to define
how much deviation will be required before an ankyma considered an intrusion.
Anomaly-based detection systems can detect bothvikramd unknown attacks, provided

that the attacker’s behavior is significantly diéfat from that of the normal user.

One major challenge of the anomaly-based appra&thmodel normal behavior.
To construct such a model, we must extract disthetracteristics of user behavior. We
should also collect a sufficient amount of userdwabr data for training purposes. Of
course, the user behavior data must be collectddruwonditions where no intrusion is in
progress [2]. A threshold value is needed to irtdicAow much deviation will be
considered as an intrusion. Selecting a threshaldevpresents a tradeoff between the

false position rate and the false negative rate.

2

User behavior will almost certainly change over éinWithout an updating
mechanism, an established behavior model will becatnsolete, resulting in a large
number of false positives. To overcome this problemost anomaly-based IDSs will
update to a new “normal” so that the model can ataghanges. While this approach
deals with the normal user’s changing behavior lgrmob it also leaves a potential
security loophole. An intruder can cheat an ID® ibélieving he is a legitimate user by

acting like a normal user and only gradually chagdiis behavior [2].

1.1.2. PerformanceCriteria

In most anomaly-based IDSs, there is a mechanisscooe test data, and a
threshold value is set to determine whether a ppéckata is more likely from an original
user or an intrusion user. For example, given estiwld value, if an input is evaluated to
have a score higher than the threshold, this implitbe categorized as normal data;

otherwise, it will be treated as intrusion data.

The threshold value has a significant oppositecefte the false positive (false
alarm) rate and the false negative (miss targét) thwe increase the threshold to catch
more intrusion data, the false negative rate weltlshe; however, the false positive rate
will increase since more normal data will be catexgml as intrusion data. Conversely, if
we lower the threshold, the false negative ratéingrease but the false positive rate will
decrease. Therefore, the threshold value prese¢rageoff between the false positive rate
and false negative rate, since neither high fabsitipe rate nor high false negative rate is

desirable. High false negative rate leaves mangusians uncaught, making IDSs
3

useless. High false positive rate, on the othedhfiloods IDSs with a large amount of
false alarms, eventually causing administratorigtore true intrusion alarms along with

false alarms.

To better compare the performance amongst differi@btusion detection
techniques, we use the Receiver Operating Chaistater(ROC) curve [10] and scatter
charts to analyze masquerade detection results. RBE€ chart shows the overall
detection results for all users, which is usefuttompare false positive rates and false
negative rates as the threshold value changes.s¢aier charts show the detection

results of all individual users.

1.2. Masquer ade Detection

In this project, we have studied masquerade detgeci specific case of anomaly-
based IDS in the UNIX command environment. Notd¢ W@ use masquerade detection
and intrusion detection interchangeably in thisorepA masquerader in computer
intrusion detection is a person who uses othensprder account [3]. The fundamental
assumption of masquerade detection is that eacthasehis unique characteristics when
invoking command sequences. Hence an intrusionlylilkecurs when there is a

significant difference from a user’s previous cloégastics.

1.2.1. Architectureof a Masquerade Detection System

Figure 1: shows a general architecture of a masgeedetection system. The

essential part is to model user normal behavioce®3uch a model is constructed, it is

4

relatively easy to evaluate test data. A good moghlst preserve the distinct
characteristics of each user but ignore triviabrnfation. In masquerade detection, users’
historical commands are collected and stored, and then usegging commands are

examined based on their historidala.

Normal behaviors Model

Users’
profiles

Users'
Historical

Profile
» Training

Command

data Model
Update
. new
Users Masquerade command
ongoing ™ detachion sequence
commands to profiles
(optional)

Legitimated
users

Block
suspicious
activities

Masquerade
users
Raise
alarms

Figure 1: A general architecture of masquerade detection

1.2.2. Schonlau Data Set

Dr. Schonlau has collected masquerading user a@atéhé training and testing
purposes for masquerade detection [8]. Figurduktiates the structure of Schonlau data
set. This data set consists of 50 data files, dagér user. In each file, there are 15,000
commands (collected using the UNIX audit tool, 4&8]). The first 5000 commands are

from an original user and these commands are ietkrtd serve as training data. The

following 10,000 commands are seeded with a masgeeruser's commands, and they
are intended to serve as test data. The test datde viewed as 100 command blocks,

with 100 commands in each block.

__

User 1 User 2| [User 3| User 50

T T T ===

Training Data: | J

B2

100 blocks, {

100 cmds / block + + + 1

e & T
: Test Data: }:Bl + + !

__

Figure 2: Schonlau Data Set

Schonlau data set contains a map file for the iocatof the masqueraded blocks.
Figure 3: demonstrates the structure of the map Tihe map file contains 100 rows and
50 columns. Each column corresponds to one usdreaoh row corresponds to a test
block. The entries of the map file are set to either 1. The value of O indicates the
commands on the corresponding block are not conted by a masquerader, and the

value of 1 indicates they are contaminated.

The training data provided by Schonlau data setados only normal behaviors
but no intrusion behavior. This is sufficient foasguerade detection since it is a specific

case of anomaly-based techniques, which do notreegignature of intrusion behaviors.

|User1 | |User2 |

B1 0: commands in the
<0 of ==—m=== 0
B2 | 0 0 block come from the
B3| <1 original user.
1 0 0
1 0 1: commands in the

block come from

masquerader

BLo0] <

I
(@)

Figure 3: Location of the masquerades

1.3.Project Road Map

This project is focused on different masqueradeed®n techniques with
Schonlau data set as the primary source of traiamtest data. The goal of this project
is to gain an insight on the detection results iieent models and to propose a novel

model of masquerade detection.

The original project idea was inspired by the samt between simple
substitution cryptanalysis and masquerade detectiBoth techniques process
observations and try to reveal their underlyinghtrdn simple substitution cryptanalysis,
the observations are cipher texts and the trugtais texts. In masquerade detection, the
observations are test data, and the truth is whétleetrue identities behind the test data
are masquerade users. Simple substitution cryptsisdias been studied long before the
intrusion detection, even before the first computes invented. Due to the similarity
between the two techniques, it is reasonable tdyagpmple substitution cryptanalysis

techniques to masquerade detection. Specificallg, ake interested in the normal

behavior modeling techniques and the evaluatiormtions used by simple substitution

cryptanalysis. In Section 2, we present an ovenaésimple substitution cryptanalysis.

We have reviewed literatures to learn techniquesd us simple substitution
cryptanalysis, including n-gram frequencies [13,1dHuble letter, short word patterns,
observing syntactic and semantic, relaxation algovs [19], hidden Markov models
(HMMs), genetic algorithms, and dictionary [20,¥Ye have analyzed the feasibility of
applying these techniques to masquerade detecatfoand that not all these techniques
can be applied. For example, double letter pattewery useful during word guessing,
but the same pattern is not commonly seen in usemtand sequences. Language
semantic is also used to attack simple substitutiphers. However, it is hard to apply
such information to masquerade detection sinceetlaee no apparent corresponding
semantic for user command sequences. In this grejechave used n-gram frequencies

and HMMs to solve masquerade detection.

N-gram frequency statistics is the most fundamen&hnique to simple
substitution cryptanalysis. It has been appliedmasquerade detection by treating a
command in masquerade detection as a letter isithple substitution cipher [13, 14].
Intuitively, if a user uses one command frequentyy, it is likely for the user to use this
command in the near future. Furthermore, if a @s@cutes a group of commands in a
certain order, it is also likely for the user tan@n this behavior pattern. Thus, it is
reasonable to construct a model using the currehtiviors and to detect whether the
future behaviors fit the trained model. Sectione3atibes our work on n-gram frequency

statistics for masquerade detection.

HMMs are widely used to uncover hidden states bgly@mg a sequence of
observations in many areas, such as speech reoognihachine translation, and
cryptanalysis. Two HMMs have been studied on Schonlata set [8] but no sensitive
analysis was presented on the key parameters diitiids. We have implemented our
own configurable HMM and conducted sensitive analgs the parameters such as the
number of states. Section 4 provides a detailecrgg®n of applying HMMs to

masquerade detection.

An important goal of this project is to design aveloapproach for masquerade
detection. To our knowledge, there was no studysang profile hidden Markov models
(PHMMSs) for masquerade detection. PHMMs are commarsied in bioinformatics to
effectively find out whether protein sequences alesely related. Unlike HMMs,
PHMMs make an explicit use of position informati&j. In the context of masquerade
detection, the position represents the order inclvida user performs tasks. If a user
usually performs tasks in a certain order, PHMMg iina able to take advantage of this
position information. Thus, it is reasonable toidet that PHMMs may perform well on
masquerade detection. We have designed and implechétHMMs for masquerade

detection, and conducted analysis on experimeasailts (see Section 5).

After analyzing the detection results, we have tbdihat the PHMMs do not
perform as well as the HMMs. We conjectured thavas due to the fact that Schonlau
data set lacks session starting and ending infeomatequired by the PHMMSs.
Therefore, we have designed and implemented a midglenerate user data with

position information. We have found that when thisr@o sufficient training data, the

PHMMs considerably outperform the corresponding H8/8ihce the generated position

information is significantly helpful for the PHMMs.

2. Simple Substitution Cryptanalysis

2.1. Simple Substitution Cipher

Simple substitution cipher is one of the oldestheip systems. In a simple
substitution cipher, each letter of the plaintexisubstituted by another letter. Usually,
there is a one-to-one mapping between the letterthe plaintext and the ciphertext.
TABLE I: shows an example of simple substitutiottde mapping, where the plaintext
letters are represented in lower case and the ntgttdetters in upper case, following the

convention [2].

TABLE I: AN EXAMPLE OF SIMPLE SUBSTITUTION LETTER MAPPING
Plaintext | alb |C|d|e|f|g[H]|i |J|k[l (mn|Olp|qg|r |s|t|ulv|WX]|y|z

ciphertext| ZP|B|Y|J | RIGIK|F|L [X|Q|N|WV|D|HMC|U|T|O|I |AIE|S

Using this letter mapping, the plaintext messagesofrpl esubsti t uti onci pher
is encrypted into the ciphertext of CFNDQJ CTPCUFUTUFVWBFDKJ M

by substituting each letter in the plaintext rowthwihe corresponding letter in the

ciphertext row.

To decode the ciphertext message, we can revezgardlcess by replacing each letter in

the ciphertext row with the corresponding lettetha plaintext. For example,
the ciphertext messagé Z\WWNZQEPZCJ YFWUMT CFVWYJ UJ BUFVW

will be deciphered as anonal ybasedi nt rusi ondet ect i on.

10

2.2.Breaking Simple Substitution Ciphers

As shown in TABLE I:, every permutation of the Zitérs can serve as a simple
substitution key. Therefore, the simple substitutims a large key space of 26! &%
since there are 26! permutations in total. Howeesen with such a huge key space,
simple substitution is not sufficiently securec#in be relatively easy to manually break
such a ciphertext by analyzing the letter frequesi@ind guessing the common words [2].
For example, the attacker can use English leteuiencies as shown in Figure 4: [2].
The nine most frequent letters in English are EAT,O, I, N, S, H, and R. After
calculating and sorting the letter frequencieshia tiphertext message, an attacker can
come up with pretty good guessing by substitutihg most frequent letter in the
ciphertext with “E”, the second most frequent letigth “T”, and so on. This approach
provides a good start point even if the letter tieacies in the cipthertext may not exactly
match the English letter frequencies. In additiam,attacker can adjust the mapping by
analyzing the pattern of the letters to guess soomemon words. For examplbappy

andhello have the same letter pattern of ABCCD.

English Letter Frequency

14.00%
12.00% A
10.00% -

B.a
8.00% - 7.51%
GEES 6.75%
GEET 5.000833%

6.00% 1| |- ——— 4 - —— ——

4.00% 1| |-~ [4~

. a1 i 2.
2.23%, 0204 o 4
2.00% 1| [2=9% -1 4t - F--=-=-- - 225 JE - 1 O s I . AT
|:| H yal |:| 0‘|9:8|% D
0.15% |:| 0.10% 0.15% 0.07%
0.00%
f [e] h i j k I m n o r

letters

Figure 4: English Letter Frequencies

11

The above process is a manual schema to breakessupktitution ciphers. This
manual process requires an attacker to have soowldaige of English to evaluate how
sensible a half-broken ciphertext is. To automhagehreaking process, a grading method
is needed for such an evaluation. To accomplis thsk, a decipher system can use
much statistics information of the English languagiech as the letter frequency counts,
bigram frequencies, the most frequent used womts English grammars. If the grading
method is efficient, the decipher system can grilgladjust the key mapping to improve
the score of the intermediate deciphered text. &y, the decipher system will output
a candidate list of plaintexts with high scoresefehis a good chance that the original

plaintext is amongst the candidate list.

3. Frequency Statistics

3.1. N-gram: Unigram, Bigram, Trigram, and N-gram

Most grading algorithms for simple substitution ipbers are based on N-gram
frequencies. An N-gram is a subsequence of n ifeoms a given sequence [13]. An N-
gram frequency is the number of the occurrencamoN-gram unit. The 1-gram, 2-gram,
and 3-gram are often referred to as unigram, bigram trigram, respectively. In the
example of Section 2.2, the key mapping guessithgsed the English letter frequencies,
which is an instant of unigram. Bigram frequency Eriglish letters is used in [6].
TABLE II: shows various n-gram units generated frili@ command sequencesh“xrdb

mkpts env csh csh sh csh kill”.

12

TABLE Il: N-GRAM EXAMPLES FOR A COMMAND SEQUENCE

Command sh xrdb mkpts env csh csh sh csh kill
sequence

unigram Sh, xrdb, mkpts, env, csh, csh, sh, csh, kill

bigram sh xrdb, xrdb mkpts, mkptsenv, env csh, csh csh, csh sh, shcsh,
csh Kill

trigram sh xrdb mkpts, xrdb mkptsenv, mkptsenv csh, env csh csh,
csh csh sh, csh shcsh, shcshkill

4-gram sh xrdb mkptsenv, xrdb mkptsenv csh, mkptsenv csh csh, env
csh csh sh, csh csh sh csh, csh sh csh kill

To grade a command sequence by using N-gram fregegerwe need to slice the
command sequence into N-gram subsequences. Tgkantrifor example, the command
sequence in TABLE II: will be sliced into the tregn items of “sh xrdb mkpts”, “xrdb

mkpts env”, ..., and “sh csh kill".

To compute the grading score, we have construgtedrequency lookup tables:
the profile lookup table and the command-sequeno&ulp table. The profile lookup
table stores the frequency counts of users’ pffies., training data). The command-
sequence lookup table contains the frequency coafntse command sequences to be
evaluated. We use a simple evaluation functionacutate the score for a command

sequence:
K
SZZ(fui_fci)z (3.1)
i=1

wheref; is the normalized frequency count of tite N-gram item in the command-

sequence lookup tabld,, is the normalized frequency count in the profdelup table

13

corresponding to thd_, and k is the total number of items in the command-seqgeien

ci?

lookup table.

We have tested the unigram, bigram, and trigramuiacies. Both f; and f

are normalized to 100. For example, if the trainogfa for a user contains 5,000
commands, the frequency counts will be divided Bytd be normalized to 100. In this
scoring model, a lower score indicates a higheilaiity between the training data and

test data.

We have calculated the metrics of false negatitesrand false positive rates for
1-gram, 2-gram and 3-gram. The false negative metasures the percentage of actual
intrusion uncaught by the IDS. The false positiae rmeasures the percentage of normal
activities that have been recognized as intrusiSese. Section 3.2.1 for the experimental

results.

To improve the detection results, we add weiglotscommands since each
command is not equally important to every user.N&ee measured the command weight
from two perspectives: 1) the frequency percentdge command used by each user, 2)

the uniqueness of a command to a user.

In terms of the frequency percentage of a commaed by each user, we first
count the frequency of a particular command usedlbysers, and then calculate the
percentage usage of that command for each usarcéimmand is used extensively by
one user, we assign a higher weight of the comnatitat user. Intuitively, we have

~Feiyj

Wcivj =
I Faie

(3.2)

14

whereCi represents thgeh N-gram command sequence in the test ddjtaepresents the

user;j. WCin Is the weight ofCi for userj. FCin Is the frequency count @i in the

training data of usey. FCiG Is the frequency count d@i in the training data of all

users.

Regarding to the unigqueness of a command to a fisecommand is only used
by a particular user, then this command is uniguia¢ user. Thus this command should
be granted a higher weight. On the other handpantand used by all users indicates that
this is a general command. Since this commandesafew characteristics of the user, it
should be granted a lower weight. To calculateuthigueness, we have

Wej = E (3.3)

where Ci represents théth N-gram command sequence in the test dW& is the

unigueness o€i, M is the number of all users, atﬁjbi is the number of users who

have usedi.

These two weighted equations are the simplest wagempute the significance
of an N-gram to a user. More sophisticated calmrathave been presented in [13] and
[14]. We have experimented with the weighted scledefined on equation (3.2) and

(3.3) for N-gram detection (see Sections 3.2.238d for the detection results).

15

3.2. Experimental Results

3.21. 1-gram, 2-gram, and 3-gram

Figure 5. shows the detection results using 1l-gr&igram, and 3-gram
frequencies. The x axis are the logarithmic valokg$alse positive rates since we are
more interested in the detection performance orativer end of false positive rates, such
as less than 5 percent. For convenience, in tipigrtewe denote the region with false
positive rates less than 5 percent as the usefut.zA high false positive rate is not
practical even though it may be associated with flage negative rates. From Figure 5:,
we see that the false negative rates in the uzefu¢ are too high (greater than 70%) to

put these n-grams into any practical use.

100

B 0 = @
g

BO

70

60

50

B € = -+ B O @ 3

1D< Useful Zone >

0.1 1 5 10 20 50 100
False Positive Rate (%)

B - b =

Figure 5. The detection results using 1-gram, 2-gram, ancaig

16

3.2.2. N-gram Weighted by Percentage of Command Usage

Figure 6: shows the detection results of addingo#reentage of command usage
statistics (defined by (3.2)) to the N-gram modelsGram, 2-Gram, and 3-Gram
represent the results of un-weighted N-Gram, wh#&ramCG, 2-GramCG, and 3-
GramCG represent the results of weighted N-GrawmHfigure 6:, we see that weighted

N-grams significantly outperform the un-weightedsiens.

W 1 Gram
W 2-Gram
W 3-Sram

B 1-GramCP
B z-SramCP
B 3-GramCP

f € = - MG 3

D - B =

ol — -
[] 1 5 10 20 50 100
False Positive Rata (96

Figure 6: N-grams weighted by percentage of command usagewseighted N-

grams

Note that in the weighted N-Grams, there are soreasawith undefined false
negative rates when these rates are smaller thma #weshold values. For example, the
region of false positive rates between 0.1% andslbtank for 1-GramCG, and so is the

region between 0.1% and 5 % for 3-GramCG. Sincevilleencounter similar situations

17

later when we analyze other models, it is worthevhd investigate why there are such

blank areas, and what can be done to eliminatechrce these areas.

To better understand this problem, let us lookhat test data scores from a
different perspective. Figure 7: shows the tesa dabres for User 9. A green diamond
represents a normal command block, and a red cepiesents a masqueraded command
block. The x axis represents the block ids forkfe test command blocks, and the y axis
is the evaluation score for each block. As showgufé 7:, numerous normal and
masqueraded command blocks have been evaluaté@ teatne minimum score of 50,
which eventually results in blank areas. The dethreason goes as follows. During the
process of analyzing false positive rates and faéggtive rates, we gradually change the
threshold values to compute these two rates. I§etehe threshold value to the minimum
score, the IDS will treat every command block asmad data, and therefore, the false
negative rate will be 100%. Note that 100% falsgatige rate is discarded since it
carries no useful information. When we slightly rieese the threshold value, all these
blocks with the same minimum score will be excludedding to a dramatic change of
false positive rates and false negative rates asdlting in the blank areas as shown in

Figure 6..

We have proposed a fine-tuning approach to elireimatreduce the blank areas.
Specifically, we fine tune the evaluation functiem that different command blocks will
be evaluated to different score values. Uniqueasltan avoid the dramatic change of
false positive rates and false negative rates wihesshold is adjusted. The drawback of
this method is that there is no universal solution fine tuning and thus it is time

consuming to perform such a task.

18

ug

Morma

Figure 7: An example of detection results for User 9

3.2.3. N-gram with User Uniqueness

Figure 8: shows the results of adding the uniqueii@sfined by (3.3)) to the N-
gram. 1-Gram and 3-Gram represent the results -ofaighted N-Gram; 1-GramCG and
3-GramCG represent the results of command usagghteel N-Gram; and 1-GramTF, 3-
GramTF represent the results of uniqgueness weight&tam. From Figure 8:, we see

that the detection results of the uniqueness wetgN-Gram outperform those of the two

previous methods.

19

B W - @M

B ' Gram

B 1-GramCP
W 1 -Grambinig
B 2-GramUnig
H 3 Grambnig

B € o - BW@m T 3

-

100

False Positive Rate {%)

Figure 8: N-gram weighted by uniqueness vs. N-gram weighteddmnmand

usage vs. un-weighted N-gram

3.2.4. Conclusions

We have implemented the N-gram models for masqeedsdection. We have
also analyzed the effects of weighting two factdis:the frequency percentage of a
command used by each user, 2) the uniquenessashmand to a user. The experimental
results show that the false negative rates for mtedy N-gram drop significantly while
the false positive rates are comparable to thosettie un-weighted versions. In

particular, the uniqueness weighted N-Gram yidhdstiest performance.

20

4. HMM: Introduction

4.1.Markov Chain

A Markov chain is a random process of generatisgguence of states using state
transition statistics. In a classical Markov chalme property of the next state depends
only on the current state. This model is also kn@asra first order Markov chain. There
are also higher order Markov chains, in which thapprty of the next state depends not
only on the current state but also on previougstdn this report, we are focused on first

order Markov chains.

0.4

Figure 9: A Markov chain of a computer sharing pattern

Figure 9: shows an example of a Markov chain fepomputer sharing pattern. It
is assumed that there is only one computer availabtl this computer is shared by three
users, Userl, User2, and User3. The usage ofdmpuater is slotted into 15 minutes per
unit. Once a user gets the right to use the compsite/he can use it exclusively for a
slot of 15 minutes. When the current slot times auhew user will be selected for the

next time slot. We call one unit time being usedahyser a state, which is represented as

21

a circle in the graph. Thus, there are three statése system, determined by the user

(i.e., Userl, User2, and User3).

Assume that we observe the pattern how the usese sihie computer. For
example, if Userl is using the computer in the enirtimeslot, the probability of User2
will use the computer on the next timeslot is 30%is relationship is represented as an
arrow from Userl to User2, and the probability ealu3 is associated with the arrow in
Figure 9:. In this example, the transition probi&pifrom the current state to the next
state depends only on the current state, regardledse previous states. The transition

probability of a Markov chain is formally defined fb]:

=P(X, 0 =X X =X, X, =X,,...,. X, =X,) =P(X,, =X| X, =X, 4.1
axnxn_'_:L (nl | 1 11 /N2 2) (1 |) ()

where x, LI a countable state set S ands<theith observed state in a Markov chain.

An N*N state transition matrix, denoted Asis used to describe the transition
probabilities amongst all states, where N is theloer of states. For example, the state

transition matrixA for Figure 9: is

05 03 02
A=/04 02 04

03 03 04
Consider the probability for a given state sequence_,,...,x, 0on a specified Markov
chain. This probability is determined by the stadesl the associated state transition
probability matrix [5]:

P(X) =P & X g0e%)
=P 06 [Xqore0X) PGy [X000000%) - P(X)

—p (Xn | Xn_l)P(Xn—l | Xn—z)"'P(X2 | Xl)P(Xl)
22

The “start” and “end” states can be added to a Blaithain to model both ends of an

observation sequence. Figure 10: shows such anpeam

— —03— — Y Yoz
e Liserd ser?
Dskjh fa- 04 AL I~
7 \:i\ — .
\ / |

Figure 10: Start and End States are added to the Markov Chain.

4.2.Hidden Markov Model (HMM)
In a regular Markov Model, states are directlyblisito the observer. However, in
an HMM, states are not directly visible. Insteadlydhe output, dependent on the states,

is visible [11].

To demonstrate a HMM, we modify the previous exam@uppose we would
like to track if a user, say Userl, is using thenpater during a period of time. Assume
that the users remotely log in to the computer wrdcannot be sure who is using the
computer (e.g., the user id may be compromisedjrdak the usage history of Userl, we

only consider two states, “Userl” and “not User$”shown in Figure 11:. The “Userl”

23

state means that Userl is using the computer, aotl Userl” means another user is

using the computer. The state transition, denoye8, lzan be summarized as:

{0.2 0.8}
A= (4.3)
04 06

Hidden

Observable

Send Browse Do C D Java
Email News Programming Programming

Figure 11: An HMM of a computer sharing pattern

Although we cannot directly see who is in fronttieé computer, we can observe
the command sequences issued by the user. In xhmpde, the commands are the
observations. Suppose that we can characterizasebehavior patterns by analyzing
the user history command sequences. For examplehave knowledge of what
commands each user usually uses and the frequéregch command being used. As
shown in Figure 11:, an arrow with a probabilitylue is used to represent the
relationship between a state and an observatianeXxample, the probability of Userl to

issue a send email command is 20%. An N*M obsesuatnatrix is used to represented

24

the probabilities of all observations issued byestawhere N is the number of states and
M, the number of observation symbols. The obsesmathatrix, denoted b¥3, in the

Figure 11:can be summarized as:

(4.4)

02 04 01 03
01 03 05 01

To establish an HMM, we need one more mairixo indicate the initial state

distribution. The initial state distribution in tikégure 11: is

m=[06 04] (4.5)
Once we have the state transition probability meaii observation matriB, and
the initial state distribution matrix, we are ready to define an HMM. Before we show

the definition of an HMM, let us first look at tii@lowing notation [12].
Let

T = the length of the observation sequence

Q={0» q, . . ., .} = the states of the Markov process

vV={0,1,...,M-1} = set of possible obsenats

N = |Q| = the number of states in the model

M = |V| = the number of observation symbols

A = the state transition probabilities

B = the observation probability matrix

7 = the initial state distribution

0 =(Q,0, ...,Q.) = observation sequence.

25

The observations are denoted by {0, 1, ... ,M,-add QV fori=0, 1, ..., T-1.
Figure 12: illustrates a generic HMM [12]. The Mavkprocess is determined by
the initial state distribution matrixz, and the state transition matri, This process is
hidden, and we can only observe the observatiouese®. The observations are
determined by the state transition matAxand the observation probability matri,An
HMM can be defined byA, B, andn, and M, N implied by the matrices, i.e.,

A= (AB,n) [12].

Markov process: Xo— = X,—>X,— ... —— X,

Observations: (9, O, (@

Figure 12: A generic HMM

An HMM can be used to solve three types of problEias
Problem 1: Determine the likelihood of an obsergedquence O. In this

problem, the input is an HMM = AB 7 and O; and the output is P¢D).

Problem 2: Reveal the hidden state sequence biMi. Here, the input
is the same as Probleml, i.e., an HMM A KB 77 and O; but the desirable output is to

find an optimal state sequence.

Problem 3: Train an HMM to best fit the observasio The input is a
given observation sequence O and the values ofdVNaThe output is to find the model

A = (A,B,7) maximizing the probability of O.

26

4.3. Implementation

In this project, we have constructed an HMM using training data (Problem 3),
and then used the created model to compute thénbloel of the test data (Problem 1). A
high probability score indicates similar charadics between the training data and the
test data, and thus the test data will be recognase normal data. A low probability
score, on the other hand, indicates significarfedéhce between the training data and the
test data, and therefore the test data will begeieed as intrusion data. Once we get the
probability scores, we can compute false positigges and false negative rates by

gradually varying the threshold value.

4.4. Experimental Results

4.4.1. TheDetection Resultsof HMMswith 2 States, 4 States and 6 States

When we build an HMM from the training data, thenther of states is the
parameter we can change. Since we cannot directiw khow many states an underlying
model of the training command sequence has, we trareed HMMs with 2 states, 4
states and 6 states. Figure 13: shows that these tHMMs yield almost the same
detection results in the lower false positive ragion. The model with 2 states performs
slightly better than the other two. Naturally, iretfollowing sections when we compare

HMMs with other models, we use the results of tidNHwith 2 states.

27

80

70
n
a8

&0
g 4 states . Hmm25
a 50 B Hmmas
t B Hmmées
[40
v
a 30

20
r 2 States
2 10
| 6 States
8 0

0.1 1 5 10 20 50 100

False Positive Rate {%)

Figure 13: The detection results of HMMs with 2 states, 4estaand 6 states.

442. HMM vs. N-Gram

Figure 14: shows the detection results of the HM#/ those of the uniqueness
weighted N-Grams. In the region of false positiates between 0.1% and 1%, the HMM
has a similar detection result as the uniquenegghwesl 1-Gram. But the HMM performs
better than the uniqueness weighted N-Grams inregeon between 1% and 5%. As
discussed in Section 3.2.3, the uniqueness weidiit€dams yield best results provided
by the N-Gram models. Thus, the HMM model outpen®ithe N-Gram models in the

useful zone.

28

n

a

q W -

2 B ' -GramUnig
B 2 GramUnig

T B 3 GramUnig

i

Ul

8

r

a

t

a

0.1 1 5 10 200 B0 100
False Positive Rate (%)

Figure 14: The detection results of the HMM vs. uniquenesgtteid N-Grams

4.4.3. Conclusions

We have implemented an HMM for masquerade detecWid& have conducted
sensitivity analysis on the number of states feri#MM and conclude that the number of
states has no significant effect on the detectesults. We have also compared the
detection results of the HMM with those of the wegess weighted N-Grams, the best
results provided by the N-Gram models. We concltiteg the HMM vyields better

detection results than the N-Gram models.

29

5. ProfileHidden Markov Model (PHM M)

5.1. Overview
A PHMM is a specific type of an HMM that adds ardiidnal dimension of
position in the original HMM. Specifically, a PHMNbnsists of a sequence of positions

(or more precisely, states), and there is an HMbbeisited with each position.

A typical way of constructing a PHMM is to generaemultiple sequence
alignment (MSA) from training data, and then tolduhe PHMM upon the MSA [15]. It
takes several steps to obtain the MSA from trairibghmand sequences, and several
more steps to build the PHMM on the MSA (see Figlbe for the architecture of

masquerade detection using a PHMM).

Here, we outline the steps of constructing a PHMM rhasquerade detection

(detailed procedure is described in the followiegt®ns):

1. Write a module to find the optimal pairwise aligmteefor two given command
sequences:

1.1. Generate a substitution matrix to provide the nfatcdmatch scores when
aligning two symbols.

1.2. Define a gap penalty function to measure the cbaligning a symbol with
a gap.

1.3. Given the substation matrix and the gap penaltgtian for score
calculation, use the dynamic programming algoritbrfind the optimal

local/global pairwise alignments with the highestre.

30

User o / Command

training iy
g / Subsequences
Substitution
Matrix
m i
Pairwise
Penalty alignment
function |
Pairwise irwi
Alignment araé::frﬁs
Score matrix §
Minimum Multiple
Spanning - Seguence
Tree Alignment

L

Emission State transition
States prabability probability
Matrix matrix

User
test data ™ PHMM
False Positive! False Positive rate .
. . Evaluation
False negative False negative rate
Scores
Rates analyzer
Chart Analysis
Generator | Charts

Figure 15: The architecture of masquerade detection usingMN@H

31

2. Generate the MSA from the training command sequer®eecifically, for each
training command sequence, perform the followingrapons:

2.1. Divide the command sequence into n subsequences.

2.2. Find the pairwise alignments for all possible painsongst the command
sequence and record their alignment scores in arsedgre matrix.

2.3. Generate a minimum spanning tree from the scorexmBtesignate one
of the sequences with the highest pairwise alignreeore as the root of
the tree.

2.4. Add subsequences to the MSA following the ordet tiay are added to
the minimum spanning tree.

3. Construct the PHMM using the obtained MSA.

3.1. Determine the state for each position in the MSA.

3.2. Calculate the emission probabilities for the states

3.3. Calculate the transition probabilities for the stat

4. Given a PHMM, calculate the probability for testaland analyze the detection
results:

4.1. Use the forward algorithm to score the test data.

4.2. Compute false positive rates and false negaties ffatr different
threshold values.

4.3. Process the results and generate the charts

32

5.2.Implementation Details

5.2.1. Pairwise Alignment

When analyzing sequences, one of the most basis isi$o find out whether two

sequences are related [5]. Usually this task igldd/into two steps:

1. Aligning the two sequences (this is often referi@ds pairwise alignment),
2. Determining whether the two sequences are relageskd on the alignment
results.

There are two types of pairwise alignments, lotighanent and global alignment.
Dynamic programming technique is the most commaiskyd method to find a pairwise
alignment, since it guarantees to find the optimahtch. Before using dynamic
programming, we need to define a scoring modelampute the alignment score (or
cost). Usually this is done by defining substitatimoatrices and gap penalty functions [5].
Substitution matrices are used to score the matchnaismatch of two symbols. Gap
penalty functions are used to measure the penaitg §ymbol in one sequence to match

to a gap in the other sequence.

5.2.1.1. Substitution Matrix

The basics idea of the dynamic programming algorite to perform command
alignment by maximizing the alignment score. Therefwe need a method to penalize a
mismatch when the two aligning commands are nattidal. A simple approach is to

33

treat all the mismatches as equally bad and thenameput a constant penalty for these
mismatches. However, in reality, the effects ofmasgches are often different and thus
variable penalty should be considered. A typicay weaimplement variable penalty is to

use an n*n substitution matrix S, where n is theber of the distinct commands used by
the user. This matrix defines the scores of alkjlds pairs for a command to align to any

other commands.

TABLE Ill: shows an example substitution matrix &skbd on Schonlau data set.
A typical user in this data set uses 70 to 140rdistommands. To simplify the example,
we only consider 5 commands, say “send Email”, ¥#8e news”, “play Game”, “C
programming”, and “Java programming”. These 5 comisaare abbreviated as E, B G,

C, and J, respectively.

TABLE Ill: AN EXAMPLE SUBSTITUTION MATRIX

E B G C J

E 9 5 4 2 2

B 4 8 -5 3 3

G 44 9 -5 44

cC 2 2 -5 10 7

J 2 2 5 7 10

In TABLE llI;, the elements on the diagonal repmsenatches, and therefore

have higher scores. The other elements represesthatches, and thus have lower
scores. Amongst the mismatches, we consider “C rpnogning” and “Java
programming” as closely related. Therefore, sulnstiy “C programming” with “Java
programming” receives small penalty with a highrscof 7. In contrast, playing game is
not closely related with programming and thus stlistg “C programming” with “play

Game” gets a high penalty with a low score of -5.

34

It should be noted that it is complicated to ohjexty define the relationship between any
two UNIX commands. There are thousands of UNIX ca@ands and to our knowledge
there is no such study on the correlation amongsincands. Intuitively, each command
has different significance for different user. Téfere, we have proposed to use the

command significance to define the mismatch scores.

5.2.1.2. Gap Penalty

To generate a pairwise alignment, it is indispelestd have gaps unless the two
given sequences are already optimally aligned. Blebesides the match or mismatch,
we should consider an additional case of alignimgramand in one sequence to a gap in
the other sequence. A natural question is how veelldhpenalize the gaps. Intuitively,
we should take in account the number of gaps aedeifigth of each gap subsequence.
There are two schemes for calculating the costczstsal with an open gap [11]: linear

score,

f(9)=-god,

and affine score,

f(g9) =-d-(g-De,

whereg is the length of the gajg, is gap open penalty, amis gap extension penalty.
The linear score schema is a specific case of fiireeascore scheme witd = e. To

penalize a new gap more than extending an existimggy we can givel a higher value

35

than e. Therefore, we have used the affine score for gapalties in masquerade

detection where some gaps in the sequences camtbdang.

5.2.1.3. Global Alignment and L ocal Alignment

There are two types of pairwise alignments to ma&enalignment scores: global
alignment and local alignment. Global alignmentgraéi every symbol while local
alignment can align only the middle subsequencdifgarding the beginning and ending
subsequences with negative scores. Figure 16:thstsequences and the corresponding

global and local alignments.

Sequence 1 CBCBJILIIJEUJE
Sequence 2 GCBJIIIJJEG
Global _CBCBJILIIJEUJE _
I Fer e
GC__BJI_IIJ_JEG
Local CBJILTITI

Figure 16: Global alignment and local alignment

Compared with local alignment, global alignment laasadvantage of lossless
information because every symbol is kept. Howegkabal alignment may introduce too
many gaps into the alignment, resulting in a lelsaracterized alignment. Therefore,
global alignment is suitable when two sequencessarglar and have roughly equal

lengths [17]. On the other hand, local alignmerd ha advantage of finding the most

36

common characterized subsequence when there gndicant difference between the
overall characteristics of the two sequences. Hewesome significant information may
be lost since local alignment may ignore the bagigrand ending portions of the two

sequences.

We have conducted some experiments on Schonlaungadata and found that
the command sequences have a low-degree simikeityTherefore, we have used the
local alignment to extract common features from thening data to generate the

pairwise alignment.

5.2.2. Multiple Sequence Alignment (M SA)

As the name suggests, an MSA is an alignment ofipiellsequences (See Figure
17: for an example of an MSA). A PHMM is construttesed on an MSA. This section

describes the procedure of generating an MSA frochoB8lau training data.

c BIB
_CBCBB _G
CB__ _B_G
ITI_GGB _ _
IIG B GG

Figure 17: An example MSA

5.2.2.1. Preprocess Training Data to Get Multiple Sequences.

37

Schonlau training data provides a long list of 5@0hmands for each user. To
generate an MSA, we first need to obtain multigguences from this long list of raw
data. We can divide the long list into multiple sences by selecting some suitable
dividing points. Intuitively, there is a tradeofietween the sequence length and the
number of sequences. On one hand, too many seguetitgenerate numerous gaps in
the alignments. On the other hand, if there arg arfew relatively long sequences, then
each state in the constructed PHMM has too few sygnto generate useful emission
probabilities. We have generated 6 different midtgequences based on the combination
of the number of sequence and the length of theesexg as listed in TABLE IV:. These

experimental results are provided and analyzeceoti@ 5.3.1

TABLE IV: EXPERIMENT CASES OFGENERATING MULTIPLE SEQUENCES

Case Numbef Number of Sequente Length of Sequence
1 4 1250
2 5 1000
3 8 625
4 10 500
5 20 250
6 50 100

5.2.2.2. Generate Pairwise Alignments

After obtaining multiple command sequences, we ngedierform pairwise
alignments for all possible pairs. We use the ladainment algorithm, substitution
matrix, and penalty function defined in Section .b.2In total, there are n*(n-1)

alignments, where n is the number of command semseWe also save the alignment

38

score of all the pairwise alignments in an n*n samiatrix. The values on the diagonal of

the score matrix are not used since we do not teealign a sequence to itself.

5.2.2.3. Generate MSA

We have implemented two different approaches tegga an MSA based on the
pairwise alignments. The first approach is to alldhee pairwise alignments into the
MSA. In this approach, if there are n sequences, MSA will contain n*(n-1)

alignments.

Instead of adding all the pairwise alignments itht®e MSA at the beginning, the
second approach is to gradually merge each sequetac¢he MSA. One solution for
determining the order of adding the sequences éoMBA is to generate a minimum
spanning tree from the score matrix. The sequenttethe highest pairwise alignment
score is designated as the root of the minimumrspgrtree. Once we have the spanning
tree, we can add sequences to the MSA in the determined by the spanning tree. We

have used Prim’s algorithm to generate the mininspanning tree.

39

5.2.3. Create PHMM

5.2.3.1. Determine M SA States

Figure 18: shows the architecture of a PHMM. A PHM3h be viewed as adding
a position dimension into a standard HMM. At eadsifion, there are three kinds of
states: match, insert, and delete states. In Fig@rethe match, insert, and delete states
are represented by squares, diamonds, and ciraspgectively. These three states

correspond to the states in a standard HMM.

Ciar’O
)

Figure 18: The architecture of a PHMM

Each symbol (e.g., commands in this project) iRHMM belongs to either a
match state or an insert state. A gap in a matte s¢presents a deletion sate. To create a
PHMM, we need to find out which columns (or posigp in the MSA form the match
and insert states [15]. Columns with more symbb&ntgaps are considered as match
states; otherwise, insert states [5]. Figure 1@wshan example of how to determine

states for an MSA. While a match state consis@nbf one column (e.g. M1, M2...), an

40

insert state can contain multiple columns becaosedntiguous insert states are merged

(e.g. 12).

Define the states of MSA

Match———C|[][| B|[T][E]

Ci|B C B G
Delete——>1— -1

ClBf| _ |1G

Insert HIH = © € ==
T EErGe (Bl

Column States: pm1 M2 2 M3 13 M4

Figure 19: Determine MSA states

5.2.3.2. Calculate State Emission Probabilities

Each symbol in the MSA represents an emission.rAfte states are determined
in the MSA, we can compute the state emission fitibes. For example, in Figure 19:,
we can compute the probability of match state iy counting the frequency for each

symbol:
e (B)=0/4,¢,,(C)=2/4,¢,,(G)=0/4, e,,(1)=2/4.

To overcome the over-fitting problem, a common apph is to use “add-one

rule” to eliminate the zero probabilities [5]. Aftepplying the add-one rule, we have
en(B)=1/(4+4)=1/8, ¢,,(C)=(2+1)/(4+4)=3/8,

6, (G)=1/(4+4)=1/8, e,,(1)= (2+1)/(4+4) = 3/8.
41

Similarly, the emission probabilities for the insgtate } are calculated as:

e,(B) = (2+1)/(6+4) = 3/10, e,(C) = (L+ 1) /(6+4) = 2/10,

e,(G) = (3+1)/(6+4) = 4/10, e, (1) = (0+1) /(6 +4) = 1/10.

Given an MSA, we compute the probabilities forraktch and insert states and
store the results in an emission matExMatrix E corresponds to the Matrig in the
standard HMM, with the difference that Matrix is position dependent. For an MSA
with n match states, the matrix consists the probabilities &, ,e,, ... €,,, and the

insert states o§,, €, ... ,. For those insert states not presented on the [#8éh as,ql

and k,), we assign each symbol with equal emission fitiba For example,

e,(B)=1/4, e,(C)=1/4, e,(G)=1/4, e,(1)=1/4.

5.2.3.3. Calculate State Transition Probabilities

The state transition probability matriin a PHMM corresponds to the one in a
standard HMM, with the difference that transitiomlpabilities in PHMM are position-
dependent. The matriA contains all the transition probabilities from thegin state
(denoted by N to the end state (denoted by,). As shown in Figure 20: [5]A

contains the information associated with all theas.

42

Figure 20: The state transition structure of a PHMM

The transition probability from state m to state denoted by, can be

computed by dividing the total number of transiidinom state m to any state by the
number of transitions from state m to state n Thle add-one rule should also be applied
by adding 1 for match, insert, and delete states.example, the probabilities for the

states transferring from match statesave

Ay, = B+D)/(4+3) =417, ayp, =A+D/(4+3)=2/7, 8,,,=0+1)/(4+3)=1/7.

5.2.4. Calculate Test Data Probability and Detection Results

5.2.4.1. Forward Algorithm

43

Given a PHMM, we can use the forward algorithm tiiciently calculate the
occurrence probability of an observation. Figure @bvides the recurrence equation for

the forward algorithm [5]:

em. (x;)
FJ.M(i) = log M, (X +log [am,_,m, €Xp (Iﬂpfl(i —1))
+ay;_m; €XPp (F;'I—l(i - 1)) Tap;_m; €Xp (F:I'D—l(i - 1))];
) 61.(X‘) .
Fi(i) = log— ~ +log[aw,, exp (F'(i — 1))

+ ayy; exp (F)(i — 1)) +ap,;, exp (FP(—)]
FPG) = log[aw._p,exp(FL,()+ay, i, exp(Fj_, ()
+ap;_,p, €Xp (Ff'l)—l(i))] :

Figure 21: The recursion equation of the forward algorithmdd?HMM
Each notation of the above equation is describémibe
i: the position in the observation sequence

j: the state position

Fi“" (i) : the probability of subsequenog, x,..., X on up to match staje
X : theith observation symbol
&y; (%) : the emission probability of observing symbglon match state M

g, : the probability of observing symba] in a random model

44

The base case of the recursi6fl' (6) initialized to O.F/(i) andF](i) are the

probability of the subsequence &f, X ,..., X on up to insert and delete stgte

respectively.

We use the above forward algorithm to score anrghien sequence against a
PHMM. Given a PHMM withqg match states, the final score of an observatiguesgce

with p symbols is defined as [15]:

Score = 10g(@yquqe1 EXPF," (P)) + g EXPE, (P)) + Bogquq:1 €XPE, (P))) (5.1)
We can use this equation to score the test daiastghe constructed PHMM and save

the scores on the file.

5.3. Experimental Result

5.3.1. Detection Results of Different Subsequencein MSA

As discussed in Section 5.2.2.1, the training deted to be divided into multiple
sequences. We have experimented with several eliffevalues of the number of
sequences, ranging from 4 to 50. Figure 22: shdwsekperimental results. While the
PHMM with 5 sequences in MSA vyields the lowestdaiegative rates in the useful zone,

the overall detection results for these valuesatdrifer significantly.

45

F 100

a
| 90
5
& 80
[
0
n
2
. L B FPhmm4Suh
B Phmm5Sub
a 50
. | B Phmmi0Sub
. 40| B Phmm505ub
v |
o 90
i
20
il
2 4o
1
0.1 1 5 10 20 50 100

Faise Positive Rate (%)

Figure 22: The detection results of PHMMs with different numbé&subsequences

in MSA

5.3.2. PHMM vs. HMM vs. N-Gram Modds

Figure 23: compares the detection results of PHMMS those of the HMM and
uniqueness weighted N-Gram Models. In the usefakzohe results of PHMM models
are close to those of uniqueness weighted 3-Gragembut not as good as those of the

HMM.

46

F 1004

| 9
=
a B0

T
n
-]
q 607 B 2 -Gramiinig

B Phmm5Sub
a 50
W Fhmmi10Sub

t
" il W HM
i
v
e 3

201
r
24 10
t
e gl -]

0.1 1 5 10 20 50 100

Falsa Positive Rata {%)

Figure 23: The detection results of PHMM models vs. the HMMdealovs. the

uniqueness weighted 3-Gram model

The reasons that the PHMM models do not yield bekt¢ection results than the
HMM are multiple-fold. First, in Schonlau data s#tere is no session beginning and
ending information available on both the trainingtad and the test data. A PHMM
extensively relies on position information, andghuis undesirable for the data to lack
the session position information. Without positiorfformation, the PHMM would
eventually degrade to HMM. Second, during the psecef creating an MSA, some
information is omitted by local alignment operasoihird, unlike protein sequences [5]
or metamorphic viruses [15] where the evolved segeg are in fact from a common
source, user command sequences do not have swrhraon source. Users might act on
similarly as they previously do but the commandsiésl by them are not a modification

of a common command sequence. We conjecturedhbdirst reason had a major effect

47

on the poor performance of PHMMs. To confirm thasjecture, we have generated data

sets with position information in the following ser.

5.4. Generate Data Setswith Position I nformation

In order to stimulate user command sequences wghkiagn beginning and ending
information, we have designed and implemented & ceamand sequence generator.
For each user in Schonlau data set, we use a Markain to generate a training

command sequence and “normal” command blocks trdtda.

Firstly, to build such a Markov chain, we constract initial state distribution
matrix, denoted byz , and a state transition probability matrix, dedotey A. To
calculate matrixz , we first count the number of distinct commandshi@ user training
command sequence. Let n denote this number. Tleecr@ate an array sized n to store
the frequencies of these commands. For matrix Ackeate an n*n matrix to represent

all possible transitions amongst the n distinct c@nds.

Secondly, we generate a “real-looking” user commseqglience based on and
A. 71is used to generate the first command, and A isl usegenerate the following
commands. In our implementation, we sort the mattixn the order of command
frequencies. Only the first m most frequently usssmmands are selected as the
candidates of the first command, where m is a gondible parameter of the command

generator.

Finally, we randomly generate masquerade commaquesee blocks. We have
taken a block-based algorithm used by Schonlaugctwhandomly selects a block from

Schonlau data set for the other users [8].

48

5.5. Detection Resultsof HMM vs. PHMM on Generated Data Sets

Recall that Schonlau training data consist of 5,60hmands and that the test
data consist of 10,000 commands divided into 1@@Kd. We have generated the same
sized training data and test data. Then we usewh@e generated set to construct a
HMM and a PHMM. As shown in Figure 24:, the deteatresults of HMM (the black
line) and PHMM (the light blue line) on our genedtdata set yields much better
performance than those of the HMM on Schonlau datdthe red line). We can exclude
the effect of masqueraded data, since we have agedethe masqueraded data in the
same way as Schonlau has. But we generate thengasiata using a Markov chain.
Naturally, our training data is a better sourcetfer HMM and the PHMM than Schonlau
training data. In addition, since we have only sid the most frequently used
commands as the candidates for the first commamdgenerated training data contains

stronger characteristics than Schonlau does.

2

& & - @
£
/
-
/

W HmmCurDs
Il PhmmCurDs

2 = - MW@ ® 2

D - B s

Falze Positive Rate (%)

49

Figure 24: The detection results of the HMM and the PHMM on generated data
vs. Schonlau data set

However, the HMM still slightly outperforms the PHMon our data set. We
conjectured that our training data well representser behavior patterns and thus the
position information did not provide a significaadvantage for a PHMM. To verify this
conjecture, we have reduced our training data tosbthe importance of the position
information. Figure 25: shows the detection resotsHMM and PHMM when the
training data sets are reduced from 5,000 comm&mnd®0 and 200 commands. Under
such circumstances, the PHMMs significantly outperf the corresponding HMMs. In
particular, the less the training data availabhe better the PHMM performs than the
HMM. As shown in Figure 25, the performance gaintted PHMM with 200 training
commands over the corresponding HMM is significaritigher than the gain of the
PHMM with 400 commands. This is because the pasitiormation plays a significant

role in a PHMM when the training data does notisigfhtly characterize user behavior.

n W

a W HmmEekl
a B Phmmakl
a B Hmmab!
1 W Phmmdbl
i B Hmme2tl
v B Phmm2kl
e

/—‘—

D - B oS

0.1 1 B 10 20 50 100
False Positive Raie {%)

50

Figure 25: The detection results of the HMMs and the PHMM®angenerated

data set with reduced training data

5.5.1. Conclusions

We have implemented the PHMMs for masquerade detectWe have
established the substitution matrix and the penélityction, and created pairwise
alignments using dynamic programming algorithm. Wéwe also constructed an MSA
from the training data, and built PHMMs using trengrated MSA. Then, we have used

established PHMMs to score the test data.

We have compared the detection results of the PHMMs those of the HMMs
and the uniqueness weighted N-Gram models usingrikmin data set. We have found
that the PHMMs does not yield better performanaa tthe HMMs since Schonlau data

set lack position information required for the PHNEIM

To overcome the limitation of Schonlau data set, ave designed and
implemented a user command sequence generator asMgrkov chain. The newly
generated data characterize user behavior welttargdthe position information does not
boost the performance of the PHMMs. Therefore, axelreduced the training data size
to magnify the importance of the position informati We conclude that when there is no
sufficient training data, the PHMMs significantlytperform the corresponding HMMs

since the position information complements thefingent training data.

51

6. Conclusonsand Future Work

In this project, we have studied several modelsni@squerade detection. We
have implemented the N-Gram models using N-Gramuigacy statistics. We have also
added weights of global statistics, such as commeadje percentage and uniqueness,
into the N-Gram model. After comparing the detattresults of un-weighted N-Gram
model with the weighted models, we have conclutiatl adding the global statistics into

the model yields a positive affect.

We have also implemented the HMMs for masqueradectien, and have
conducted the sensitivity analysis on the numberstd#tes in the HMMs. The

experimental results show that the impact of thalmer of states is minor.

Finally, we have designed and implemented the PHM&Mgovel approach for
masquerade detection. We have compared the deteesalts of the PHMMs with those
of the HMMs and the uniqueness weighted N-Gram nsodéhe experimental results
show that the PHMMs do not perform as well as tiMs$ on Schonlau data set. We
have analyzed the reasons and conjectured thasitpwmarily caused by the lack of the

session starting and ending information requiretheyPHMMSs.

To overcome the limitation of Schonlau data set,hage generated a data set
with the session starting and ending informatiore Néve found that since our generated
data well represents user behavior, adding sessaoting information does not provide a
performance boost for the PHMMs. However, when ggrce the training data size, the
additional position information is significantly lpéul and thus the PHMMs yields much

better detection results than the corresponding MM

52

At present we have not studied the updated algostbn Schonlau data set. In
other words, once the HMMs or PHMMs are construateahg the training data, these
models are not updated per users’ new behavioherQ@tudies on the same data set have
yielded better detection results by dynamically atpdy user profiles [3]. Therefore,
future research can be conducted to study how medormance gain can be obtained

by exploring the updated algorithms.

53

10.

11.

12.

13.

14.

15.

REFERENCES

M. Whitmanl, H. Mattord. Principles of Informatid®ecurity. Canada: Thomson, 2009. Pages 290 & 301

Mark Stamp, Information security: principles andgiice, Wiley 2005

M Schonlau, W DuMouchel, Computer Intrusion: DetegtMasquerades.

TF-IDF, http://en.wikipedia.org/wiki/Tf—idf

Durbin, B. Eddy, S. Krogh, A., Mitchison, G., Bigical Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge Universitgd2r Cambridge (1998)

Thomas Jacobsen, A Fast method for the Cryptasatyssubstitution Ciphers, 1995

Edwin Olson, Robust Dictionary Attack of Short Sim@ubstitution Ciphers.

M Schonlau, Masquerading User Ddi#tp://www.schonlau.net/intrusion.html

Greenberg Data Sdtttp://pages.cpsc.ucalgary.ca/~saul/wiki/pmwiki fRResources/DataSets

Receiver Operating Characteristics (ROC) curve,
http://en.wikipedia.org/wiki/Receiver operating_chzeristic

Hidden Markov Modelhttp://en.wikipedia.org/wiki/Hidden Markov_model

Mark Stamp, A Revealing Introduction to Hidden kar Models,
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

D. Geng, T. Odaka, An N-Gram and STF-IDF modeini@squerade detection in a UNIX environment,
Springer 2010

M Latendresse, Masquerade Detection via Custont&zadhmars, Springer, Berlin 2005

S. Attaluri, S. McGhee, M. Stamp, Profile Hiddemfdov Models and metamorphic virus detection,
www.cs.sjsu.edu/faculty/stamp/students/Srilatha98B2port.pd

16.

17.

18.

19.

20.

Intrusion Detection Systems - INTRODUCTION, DETHON METHODOLOGIES
http://encyclopedia.jrank.org/articles/pages/664lision-Detection-Systems.html

Sequence Alignmeniattp://en.wikipedia.org/wiki/Sequence_alignment

The GNU Accounting Utilitieshttp://www.gnu.org/software/acct/

S. Peleg and A. Rosenfeld, “Breaking substitutigmers using a relaxation algorithm,” Commun. ACM|.
22, no. 11, pp. 598-605, 1979.

R. Spillman, M. Janssen, B. Nelson, and M. Keptigse of a genetic algorithm in the cryptanalysis of
simple substitution ciphers,” Cryptologia, vol. Xyho. 1, pp. 31-44, 1993

55

	San Jose State University
	SJSU ScholarWorks
	Fall 12-2010

	A Study on Masquerade Detection
	Lin Huang
	Recommended Citation

	

