
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-2010

Improved Worm Simulator and Simulations
Arnold Suvatne
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Other Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Suvatne, Arnold, "Improved Worm Simulator and Simulations" (2010). Master's Projects. 10.
DOI: https://doi.org/10.31979/etd.43cs-kvv3
https://scholarworks.sjsu.edu/etd_projects/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/10?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

IMPROVED WORM SIMULATOR AND SIMULATIONS

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Arnold Suvatne

November 29, 2010

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Writing Project Titled

IMPROVED WORM SIMULATOR AND SIMULATIONS

by

Arnold Suvatne

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

__

Dr. Chris Pollett, Department of Computer Science Date

__

Dr. Teng Moh, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

Abstract

According to the latest Microsoft Security Intelligence Report (SIR), worms were the

second most prevalent information security threat detected in the first half of 2010 – the top

threat being Trojans. Given the prevalence and damaging effects of worms, research and

development of worm counter strategies are garnering an increased level of attention. However,

it is extremely risky to test and observe worm spread behavior on a public network. What is

needed is a packet level worm simulator that would allow researchers to develop and test counter

strategies against rapidly spreading worms in a controlled and isolated environment. Jyotsna

Krishnaswamy, a recent SJSU graduate student, successfully implemented a packet level worm

simulator called the Wormulator. The Wormulator was specifically designed to simulate the

behavior of the SQL Slammer worm. This project aims to improve the Wormulator by

addressing some of its limitations. The resulting implementation will be called the Improved

Worm Simulator.

Table of Contents

1 Introduction .. 1

2 Computer Worms ... 3

2.1 Worm Propagation Methods .. 4

2.2 SQL Slammer Worm .. 6

3 Wormulator... 8

3.1 Wormulator Architecture and Functional Overview .. 9

3.2 Wormulator Implementation ... 12

3.3 Opportunities for Improvement ... 15

4 Improved Worm Simulator ... 17

4.1 Improved Worm Simulator Architecture and Functional Overview ... 17

4.2 Improved Worm Simulator Implementation .. 19

5 Simulation Setup and Results ... 29

5.1 Simulation Setup ... 29

5.2 Simulation Results and Analysis .. 31

5.3 Performance ... 39

6 Future Work .. 40

7 Conclusion ... 41

References .. 42

LIST OF FIGURES

Figure 3.1-1 System Architecture of Wormulator .. 10

Figure 3.2-1 Pseudo-code for the LNS in Wormulator [1] .. 13

Figure 3.2-2 Pseudo-code of a Simulated Network Node [1] ... 14

Figure 3.2-3 Pseudo-code of the UDP Worm [1] .. 14

Figure 4.1-1 System Architecture of Improved Worm Simulator ... 18

Figure 4.2-1 Pseudo-code for the SCU (Simulation Control Unit) ... 23

Figure 4.2-2 Pseudo-code for processPackets .. 24

Figure 4.2-3 Pseudo-code for a Temporary Worm Thread ... 24

Figure 4.2-4 Pseudo-code for a Persistent Worm Thread .. 25

Figure 5.1-1 start_iws script.. 30

Figure 5.2-1 Simulation output .. 32

Figure 5.2-2 Worm Traffic Rate – 1M Hosts, 100K Vulnerable, 2M Bandwidth ... 33

Figure 5.2-3 Infected Node Count – 1M Hosts, 100K Vulnerable, 2M Bandwidth 34

Figure 5.2-4 Worm Traffic Rate – 2M Hosts, 100K Vulnerable, 3M Bandwidth ... 35

Figure 5.2-5 Infected Node Count – 2M Hosts, 100K Vulnerable, 3M Bandwidth 36

Figure 5.2-6 Worm Traffic Rate – 5M Hosts, 100K Vulnerable, 3M Bandwidth ... 37

Figure 5.2-7 Infected Node Count – 5M Hosts, 100K Vulnerable, 3M Bandwidth 38

file:///C:/Documents%20and%20Settings/asuvatne/My%20Documents/Education/CS298/ASUVATNE_CS298Report.docx%23_Toc278382743

LIST OF EQUATIONS

Equation 4.2-1 Bandwidth threshold for an iteration .. 27

Equation 4.2-2 Worm Traffic Rate .. 28

1

1 Introduction

The goal of this project is to improve an existing worm simulator called the Wormulator.

The resulting implementation will be called the Improved Worm Simulator.

Computer worms are the second most prevalent information security threat found by anti-

malware software today – the most prevalent being Trojans [15]. Given the growth of the

Internet and the sheer volume of critical information and money that is exchanged daily through

the Internet, a fast spreading worm could inflict tremendous financial losses to individuals,

businesses, and other organizations across the globe. The effects of recent real world computer

worms have already shown us the financial devastation that could result. For example, the

financial loss caused by the Conficker worm had been estimated to be as high as $9.1 billion

[18].

Not only do worms put a tremendous amount of money at risk, but people‟s safety and

personal security can be at risk as well. Communication systems, safety and security services,

and emergency response systems are becoming increasingly reliant on networked resources that

are accessed via the Internet. If any of those systems are disrupted by massive congestion or

failures in the network, people‟s lives could be at stake. For example, the Slammer worm in

2003 generated enough network congestion to cause failures in the 911-emergency system in

Bellevue, Washington [4].

The potential devastating effects of future computer worms has many information security

experts, especially those affiliated with large enterprises, interested in worm research.

Consequently, there‟s a considerable amount of money, time and effort being invested towards

2

the study of worm behavior models, worm detection methods, automated worm containment

mechanisms, worm traffic simulations, etc [7]. Unfortunately, there are some significant

challenges to studying worms.

Due to the disruptive nature and potential damaging effects of worms, it is highly unethical

to perform worm experiments on the Internet, regardless of intentions. The disruption and

damages caused by even an accidental release of a worm can draw severe penalties, including

criminal prosecution. Without the luxury of being able to use the Internet as their testing ground,

worm researchers are forced to resort to running simulations in a relatively small isolated

network.

Researchers have taken one of two approaches to worm simulation. One approach is to

simulate worms by using mathematical models that leverage epidemiological equations used to

describe the spread of real-world diseases [13]. Another approach is to use packet level worm

simulations that leverage existing network simulators [17]. A recent SJSU graduate project took

a lightweight network simulator known as the Spamulator (used to simulate spam propagation)

and enhanced it to simulate the SQL Slammer worm. The Spamulator enhancement is called the

Wormulator [1].

The purpose of this project is to make the following improvements to the Wormulator:

1. Increase the scalability of the Wormulator from a few thousand active worm nodes to at

least one hundred thousand active worm nodes.

2. Improve the Wormulator‟s simulation of the Slammer worm by implementing a more

realistic handling of network saturation, as opposed to the automatic gradual slowdown to

a near standstill, as exhibited by Wormulator.

3

3. Implement a more realistic infection probability – the Wormulator currently implements

a 100% infection probability.

The remainder of this paper is organized as follows:

 Section 2 Computer Worms: defines what computer worms are, explains how computer

worms function, describes various worm propagation methods, and provides an overview

of the SQL Slammer worm.

 Section 3 Wormulator: describes the Wormulator architecture, gives a functional

overview of the Wormulator, provides the implementation details of the Wormulator, and

highlights some improvement opportunities for the Wormulator.

 Section 4 Improved Worm Simulator: details the architecture, functional overview and

implementation of the Improved Worm Simulator.

 Section 5 Simulation Setup and Results: describes the simulation setup, presents the

simulation results, and discusses the simulator‟s performance.

 Section 6 Future Work: discusses deficiencies that were not addressed by the Improved

Worm Simulator and proposes future work.

 Section 7: Conclusion

2 Computer Worms

Simply put, computer worms are self-propagating malware. Malware is defined as any

software that has malicious intent, hence the prefix “mal.” The key difference between worms

4

and viruses is that worms actively search for and infect vulnerable machines across a network

[22]. Once the initial computer is infected, a worm uses the network to spread itself from one

computer to another by exploiting network security vulnerabilities in operating systems and/or

applications on other computers. Each newly infected node will attempt to infect all other nodes

that it can reach. As the number of infected nodes increase, the number of network wide

infection attempts (scans) increase. And as the number of network wide infection attempts

increase, the number of newly infected nodes increases at a much faster rate, and so on.

Leveraging the Internet‟s volume of potential victims and highly connected infrastructure has

proven to be a highly effective method for propagating worms.

2.1 Worm Propagation Methods

We can characterize a worm by the method in which it propagates itself. Some of the key

components of a worm‟s propagation method are:

 Transfer mechanism

 The manner in which it selects target addresses

 Speed

A worm will typically use one or more transfer mechanisms to copy itself to other

computers. A worm may use message exchange applications such as email, Internet relay chat,

or instant messaging. A worm might use a network protocol such as TCP or UDP. Or a worm

might use inter-process communication mechanisms such as named pipes, shared memory, or

shared folders to transfer itself to other computers.

5

One of the primary functions of a worm is to seek out potential victims to infect. But, in

order to infect another computer, the worm must know the target computer‟s IP address, and the

target computer must be vulnerable to the worm‟s attack. There are two general ways for worms

to choose their targets. A worm can randomly generate target addresses, or a worm can use a

pre-generated list of known vulnerable target addresses.

If a worm randomly generates the target addresses, it can use a uniform random scanning

method, or a local preference scanning method. In the uniform random scanning method, a

worm randomly and uniformly selects IP addresses from the entire range of Internet addresses.

Uniform random scanning is highly inefficient, considering there are only a relatively small

number of vulnerable hosts in such a large address space as the entire Internet [14] [16]. In local

preference scanning, a worm randomly selects IP addresses, but the selection method is biased

towards addresses that are located in local networks, such as enterprise intranets [17]. Local

preference scanning worms tend to spread much more rapidly. There are two reasons for this.

Number one, the addresses from a local network address space tend to have a higher probability

of being reachable and active. Number two, the density of vulnerable hosts tend to be higher in a

local network, because hosts in a local network tend to be of the same type and tend to be

configured in the same way.

Although a worm that uses local preference scanning can be much more efficient than a

worm that uses uniform random scanning, they pale in comparison to a worm that uses a pre-

generated “hit list” of known vulnerable target addresses. Such a worm is referred to as a flash

worm, and can be orders of magnitudes faster. Given an accurate list of known vulnerable host

addresses, the predicted speed at which a flash worm can infect vulnerable hosts is incredible. It

has been shown that, given pristine conditions, a flash worm can theoretically infect over 95%

6

of a million vulnerable hosts in just over half a second [6]. However, the key to a flash worm‟s

success is an accurate list of vulnerable host addresses. Due to the highly complex and dynamic

nature of the Internet, it can be quite a monumental task to procure a reliable list of valid and

vulnerable addresses. It is for this reason that the feasibility of flash worms is questioned by

most experts. However, it would be unwise to ignore the possibility of an effective flash worm.

Researchers have proposed methods to circumvent problems that arise from the highly dynamic

nature of the Internet [6].

Speed is another component of a worm‟s propagation method. One might assume that a

worm must scan as fast as possible in order to infect as many victims as possible before it is

detected and removed. Interestingly enough, a slow scanning worm has a much higher chance of

infecting more computers than a fast scanning worm [16]. A slow scanning worm can evade

detection because the traffic that it generates appears to be normal. A fast scanning worm, on the

other hand, can generate an unusually high number of connection attempts which can easily be

detected and removed from an infected computer, thus limiting the spread of the worm.

Regardless of the specific methods used to propagate a worm, the fact that worms can

propagate on their own, have global reach, and can spread at rapid rates, makes worms one of the

most effective and devastating forms of malware out there. The next subsection gives an

overview of the SQL Slammer worm. The SQL Slammer worm is the real-world worm that the

Improved Worm Simulator attempts to model.

2.2 SQL Slammer Worm

7

Of the twenty-three worms that were released in the “wild” this past decade, SQL Slammer

is one that has garnered a tremendous amount of attention and notoriety [12]. This is due to the

speed that Slammer exhibited, as well as the significant damage that it inflicted, in terms of

financial and productivity loss.

SQL Slammer, or just Slammer, was unleashed upon the Internet on January 25, 2003 [4].

As of the writing of this report, Slammer has the distinction of being the fastest worm in history.

Slammer achieved its remarkable speed by simply sending 404 byte UDP packets that exploited

buffer overflow vulnerabilities in Microsoft‟s SQL Server software [9]. By using UDP,

Slammer did not have to wait for a response from its target – as would have been the case, if

TCP had been used. Instead, Slammer could continually send UDP packets as fast as the host‟s

network bandwidth would allow. Given a 100 Mbps network connection, Slammer could

manage a scan rate of around 26,000 scans per second [4]. Ironically, it was Slammer‟s

aggressive nature and incredible speed that limited its success.

Slammer used the uniform random scanning method to select its targets. By using the

uniform random scanning method, Slammer achieved an initial exponential growth, doubling the

infected population every 8.5 seconds [19]. Within a few minutes, however, the infection rate

slowed significantly due to continual retries of already infected hosts, non-existing hosts, and

immune hosts. In addition to that, the scan traffic overwhelmed the global network causing

numerous network outages and system failures, which further exacerbated the slowing of the

infection rate [4].

Unfortunately, by that time, Slammer had already done significant damage. In South Korea,

twenty-seven million people lost their cell phone and Internet access. In Portugal, three hundred

8

thousand people had their cable modems crash on them. Corporate email systems around the

globe slowed to a grinding halt. 911 emergency response teams had to resort to the use of pencil

and paper to handle emergency calls. Airlines had to cancel many flights due to their inability to

process tickets [19].

Although worms typically carry a malicious payload, Slammer showed us that worms do not

necessarily need to have malicious payloads to cause considerable harm. All told, the cost of

Slammer had been estimated to be between $950 million and $1.2 billion [20].

3 Wormulator

The simulator implemented in this project is built upon a previous implementation of a

worm simulator called the Wormulator. This section gives some background on the

Wormulator, describes the Wormulator‟s architecture, gives a functional overview of the

Wormulator, provides some implementation details of the Wormulator, and describes some

opportunities for improvement.

The Wormulator is a packet level worm simulation program developed by Jyotsna

Krishnaswamy, a former Graduate student of San Jose State University [1]. It is an extension of

the Spamulator, a lightweight network simulator that runs on a single machine developed by

John Aycock, Heather Crawford, and Rennie deGraaf to teach a course on spam and spyware [3].

The main objective of the Wormulator was to simulate the behavior of the SQL Slammer Worm

using a virtual network of thousands of server nodes running on a single machine [1]. But, in

order to simulate the SQL Slammer worm, the handling of User Datagram Protocol (UDP)

9

packets had to be supported. Unfortunately, the Spamulator only supported the Transmission

Control Protocol (TCP), thus the Spamulator had to be modified to support UDP. In addition to

providing support for UDP, the final version of Wormulator included these additional

enhancements [1]:

 Simulated network nodes are executed as threads, instead of independent processes – the

original implementation of Wormulator used independent processes, which limited the

scale of Wormulator to only a couple thousand nodes [1].

 Network traffic measurements – the number of packets in the network, measured once

per second of simulation time.

 Simulation of congestion in the network – signals congestion when the network traffic

increases beyond a pre-defined bandwidth limit, and throttles the traffic rate accordingly.

3.1 Wormulator Architecture and Functional Overview

Depicted in Figure 3.1-1 below is the system architecture of the Wormulator. The large

box that encompasses everything but the “Outside World” represents a single computer, be it a

laptop, PC, or server. At the core of the Wormulator is the Loopback Network Simulator (LNS)

[1]. The LNS creates and initializes all simulated network nodes, handles all of the incoming

worm traffic, puts newly infected network nodes into worm propagation mode, keeps track of the

traffic rate, and simulates network congestion.

Initially, when the Wormulator is first launched, there are no simulated network nodes

running. A setup script called servers.pl is executed to create the simulated network nodes. The

number of simulated network nodes desired is configurable and defined in the setup script. For

10

each simulated network node to be simulated a “wake up” packet is sent to the Wormulator. For

each “wake-up” packet received by the Wormulator, a new thread is created and that represents a

distinct simulated network node. Every simulated network node starts out in the uninfected state.

They simply run in a loop listening for UDP packets.

To actually begin the worm spread, the worm_spread.pl script is executed. The

worm_spread.pl script sends a single UDP packet to infect one of the simulated network nodes.

That initial infected node then begins randomly generating target IP addresses and sends worm

packets to each of the generated target addresses. If a randomly generated target address

matches the address of a simulated network node then a successful infection will be achieved.

Worm setup

and launch

scripts

Outside World

Packets to non-

simulated IP

addresses

WORMULATOR

Iptables

LNS
 Incoming packet handler

 Traffic measurement

 Network congestion control

LibIPQ (User

Space Packet

Queue)

Packets to

simulated IP

addresses

Simulated

Worm Node

Simulated

Worm Node

simulated

Server

Client

Program

Initialization

Packets to

worm nodes

Figure 3.1-1 System Architecture of Wormulator

11

Each newly infected worm node in turn randomly generates target IP addresses and sends worm

packets to each the generated target address. Each infected worm node continues sending worm

packets indefinitely, or until the Wormulator is killed by the user.

 A critical requirement when simulating a worm is to ensure that the worm traffic does not

escape to the “outside world.” Unfortunately, the Wormulator must use the network interface

card of the local machine to send and receive packets [1]. Therefore, the network card must be

active and connected to the network while executing the tool. So to ensure that all worm traffic

remains on the local machine, iptables and the libIPQ library are used to redirect worm traffic

back to the Wormulator. Packets destined for a simulated worm node are redirected by IP Table

rules to a user space packet queue called the IPQ, implemented in the libIPQ library.

Every packet that ends up on the IPQ ultimately gets handled by the packet handler

routine in the Wormulator‟s LNS module [1]. The LNS module retrieves packets from the IPQ

and checks the destination address of each packet to determine if a new network node gets

infected or not. If the packet is destined for an uninfected node then that node is marked as

infected and gets put into worm propagation mode. If the packet is destined for an already

infected node then the LNS module simply marks the packet as accepted and releases it back to

the iptables for final traversal. Packets destined for non-simulated IP addresses are allowed to

proceed to its destination, untouched by the Wormulator.

12

3.2 Wormulator Implementation

Wormulator leverages the bulk of its implementation from the Linux version of the

Spamulator. Apart from the server initialization and worm launch scripts, all of the

modifications were done in a single source code module – the lns.cpp module [1]. The core

functionality of Wormulator lies primarily in the LNS module. The pseudo-code for the

Wormulator‟s LNS module is given in Figure 3.2-1. The LNS module begins by creating a user

datagram socket and listens for incoming UDP packets. When the LNS module receives a UDP

packet, the destination address and port of the packet is determined.

If the destination address and port does not match that of an already infected worm node

then a new thread is created, and that new thread executes the worm code described in Figure

3.2-2. The newly created worm node thread creates a user datagram socket, sets the „server

alive‟ flag to true, and waits for the next packet. When a second packet is received, the worm

node is considered infected, and the worm propagation routine is called. The pseudo-code for

worm propagation is given in Figure 3.2-3. The worm is a random scanning worm that models

the behavior of the SQL Slammer worm [1].

The worm generates a random IP address from the pool of simulated worm node addresses

and sends a UDP packet to that address. It repeats this indefinitely. If the destination address

and port does match that of an already infected worm node, then the LNS module updates the

network traffic count, checks for congestion, adjusts the worm scan rate appropriately, marks the

packet as accepted, and releases the packet for final traversal through the IP Table rules.

13

Figure 3.2-1 Pseudo-code for the LNS in Wormulator [1]

14

Figure 3.2-2 Pseudo-code of a Simulated Network Node [1]

Figure 3.2-3 Pseudo-code of the UDP Worm [1]

15

The network traffic count is accumulated between time ticks – each tick marks the passing

of one second of clock time. On every tick of the clock the network traffic count of the previous

time period is logged, and the network traffic count is reset to zero. The signals SIGUSR1 and

SIGUSR2 are user defined signals used to simulate the effect of congestion in the network. The

SIGUSR2 signal is used to indicate a congestion free network. From the start of the simulation

until the point at which the network saturation threshold is reached, the SIGUSR2 signal is

signaled at every time tick. Each time the SIGUSR2 signal is signaled, the sleepRange is

decreased by a certain amount, which in turn increases the rate at which each worm node sends

packets. Once the bandwidth saturation threshold is reached, congestion in the network is

indicated by the SIGUSR1 signal and the sleepRange is decreased at every new instant of time.

3.3 Opportunities for Improvement

This section describes three ways that the Wormulator can be improved. Although, there

may be many other opportunities for improvement, only the ones that will be addressed by the

Improved Worm Simulator are discussed here.

As mentioned earlier, the original implementation of the Wormulator used independent

Linux processes to represent each simulated network node. The overhead of each independent

process, in terms of memory utilization and slow context switching, severely limited the scale of

the original Wormulator. The original Wormulator was only able to scale to a few thousand

simulated worm nodes. An attempt was made to improve the scalability of the Wormulator by

converting to the use of POSIX threads instead of independent processes to represent each worm

16

node. Unfortunately, just simply converting to the use of POSIX threads did not resolve the

scalability issue. Even by running the thread based version of the simulator on a dual-core

processor machine, the simulation still had difficulties scaling beyond a few thousand nodes.

With thousands of threads running simultaneously, both processors quickly reached maximum

utilization, and the host machine quickly became unresponsive. There is clearly an opportunity

for improvement here.

Another opportunity for improvement is in the manner in which Wormulator simulates the

behavior of the worm once the network bandwidth saturation threshold is reached. Upon

reaching the network bandwidth saturation threshold, Wormulator automatically and

precipitously throttles down the rate at which each worm node sends worm packets. Recall that

this is achieved by increasing the sleepRange at every time tick. Unfortunately, this throttling

down continues indefinitely, resulting in a precipitous decline in the network traffic, and before

long the simulation slows to a virtual standstill. A more accurate representation of actual worm

behavior is for the network traffic to level out at the saturation point.

The final opportunity for improvement is in how Wormulator handles infection

probability. Wormulator assumes that every randomly generated address is a vulnerable address.

In other words, every worm packet sent by a worm node has a 100% success rate of infecting its

target, assuming that the target is not already infected. This is inaccurate. First, the target

address may not even be a valid address. Second, the host that‟s associated with the target

address may be disconnected or inactive. And finally, the host associated with the target address

may not have the specific software or configuration that is vulnerable to the worm attack.

17

4 Improved Worm Simulator

The Improved Worm Simulator is a Linux based packet level simulator that improves upon

the Wormulator described in Section 3. This section describes the architecture, functional

overview, and implementation of the Improved Worm Simulator.

4.1 Improved Worm Simulator Architecture and Functional Overview

The first improvement objective for the Improved Worm Simulator was to scale the

simulation to at least 100,000 active worm nodes. One potential solution would have been to

implement a distributed simulation using multiple physical interconnected machines, similar to

the distributed worm simulation design in [17]. However, due to limited resources and funding,

this was not feasible for this project. One of the beneficial features of both the Spamulator and

the Wormulator was their ability run on a single physical machine. The authors of the

Spamulator indicated that this was an important goal, since a great number of researchers have

limited resources and funding [3]. Since the Improved Worm Simulator project was likewise

limited in resources and funding, it was decided that the Improved Worm Simulator would be

designed to run on a single machine as well. In order to accomplish this, some fundamental

changes had to be made to the architecture and functionality of the original simulator.

The system architecture of the Improved Worm Simulator is depicted in Figure 4.1-1.

Once again, the large box that encompasses everything but the “Outside World” represents a

single computer, be it a laptop, PC, or server. The bulk of the Improved Worm Simulator‟s

functionality is contained in a central control unit called the Simulation Control Unit (SCU).

18

The SCU‟s role is analogous to the Wormulator‟s LNS module, but the functionality differs

substantially. A brief summary of the functionality and responsibilities of the SCU is provided

in the box representing the SCU, in Figure 4.1-1.

Figure 4.1-1 System Architecture of Improved Worm Simulator

Also depicted in the architectural diagram, Figure 4.1-1, are a set of 1,000 persistent

simulated worm node threads and a set of temporary simulated worm node threads. The

Improved Worm Simulator

Worm launch

script

Outside World

Packets to and from
non-simulated IP

addresses

IP Tables

SCU
• Creates 1000 persistent worker threads to represent simulated worm nodes
• Empties IPQ and counts number of packets sent by worm nodes
• Determines if destination address is vulnerable or not, if yes increment
infected count
• Based on infected count, determines how many iterations to have 1000
worker threads send 100 packets each
• Creates temp worker threads when # infected not evenly divisible by 1000
• Signals network congestion to tell threads to throttle down send rate

LibIPQ (User Space

Packet Queue)

Worm packets to random IP addresses

within simulation address range

1000 persistent

simulated worm nodes

Single worm packet to

initiate worm spread

Temp Simulated
Worm Node (temp
worker thread)

Temp Simulated
Worm Node (temp
worker thread)

Temp Simulated
Worm Node (temp
worker thread)

Simulated Worm
Node (worker thread)Simulated Worm

Node (worker thread)Simulated Worm
Node (worker thread)Simulated Worm

Node (worker thread)Simulated Worm
Node (worker thread)

Temp simulated worm nodes; created
as needed when # infected not evenly

divisible by 1000

Condition signals, and mutexes to
coordinate sending and counting of

packets

19

difference between a persistent worm node thread and a temporary one will be explained later in

Section 4.2, the implementation section. These persistent and temporary simulated worm node

threads represent network nodes that have been infected. Their primary role is to send worm

packets to randomly generated target addresses. Red dotted arrows are used to show the path of

the worm packets through the system.

A key addition to the system is a set of thread based condition signals and mutual

exclusion control variables. These condition signals and mutual exclusion control variables are

critical to the complex thread synchronization needs of the Improved Worm Simulator. The

implementation section will describe how these condition signals and mutual exclusion variables

are used.

The iptables and the libIPQ library are used in the exact same way as it was in the

Wormulator – to redirect worm traffic back to the simulator, thereby preventing worm packets

from reaching the “outside world.” The worm setup script, servers.pl, is no longer needed. All

of the setup and configuration is done by the simulation startup script, start_iws, or hardcoded in

the Improved Worm Simulator.

4.2 Improved Worm Simulator Implementation

Just as the Wormulator leveraged the bulk of the Spamulator for its implementation, the

Improved Worm Simulator leverages the bulk of the Wormulator for its implementation. A

majority of the changes were made to the core module – the lns.cpp module. Some changes

were made to the configuration and setup as well.

20

Recall that having more than a few thousand threads running concurrently on a single

machine was prohibitive. Despite the fact that the Linux machine used for this project was

equipped with a dual-core processor, both memory and processor resources were quickly

exhausted, rendering the simulation and the Linux machine unresponsive. Through

experimentation, it was discovered that running 1,000 concurrent threads was manageable.

Given this constraint, the scalability problem was reduced to: how can we simulate 100,000

active worm nodes running a maximum of 1,000 concurrent threads at any given time? The

solution: implement a cycle based simulation, where every simulated active worm node is

allowed to complete a specified set of activities at each time cycle before moving on to the next

time cycle.

In the Improved Worm Simulator, each simulated active worm node sends 100 UDP

packets during each time cycle – each packet destined to a randomly generated address. This

means that all simulated active worm nodes would be allotted time to send 100 packets before

the simulation moves on to the next time cycle. If this is done in a sequential fashion with

100,000 active worm nodes, the simulation timescale factor would be 100,000 to 1. In other

words, it would take 100,000 seconds, or 27 hours and 46 minutes, to simulate 1 second of real

time. Obviously, this timescale factor is not practical.

To reduce the timescale factor down to a more reasonable 100 to 1, the Improved Worm

Simulator takes advantage of concurrent threads. During each time cycle, the Improved Worm

Simulator simulates active worm nodes in groups of up to 1,000 concurrent threads at a time

until all active worm nodes have been represented for the current cycle. For example, if there are

3,500 active worm nodes, then in a single time cycle there would be 3 iterations running 1,000

21

concurrent threads and 1 iteration running 500 concurrent threads. This essentially simulates

having all 3,500 active worm nodes concurrently sending 100 packets each.

The Improved Worm Simulator is designed to scale to any number of active worm nodes.

For example, you could scale the simulation to 1,000,000 active worm nodes. However, the time

scale factor would then be 1,000 to 1 – a little over 17 ½ minutes to simulate 1 second of real

time. This is much better than the 100,000 to 1 timescale factor, but it would take a little over

83 hours to simulate 5 minutes of worm activity. The default configuration for the Improved

Worm Simulator scales the simulation to 100,000 active worm nodes; that works out to be 100

iterations of running 1,000 concurrent threads during each time cycle – a time scale factor of 100

to 1. At a timescale factor of 100 to 1, it would take a little over 8 hours to simulate 5 minutes of

traffic – not ideal, but feasible. This timescale factor is certainly reasonable for simulating fast

spreading worms, since you would typically only have to simulate less than a minute of real

time.

Note, that scaling to 100,000 active worm nodes does not mean that there are only 100,000

possible addresses in the target address range. It simply means that only 100,000 of the possible

target addresses are vulnerable to the worm attack. The number of possible addresses that can be

randomly generated is dependent on how many possible unique addresses there are in the

simulation‟s configured target address range. For example, if the configured target address range

is any address between 10.1.0.0 to 10.20.200.250, then the number of possible target addresses is

(20 x 200 x 250) = 1,000,000. Given this address range and a 10% infection probability, the

simulator can simulate 1,000,000 network nodes, with 100,000 nodes being vulnerable to

infection. Incidentally, the infection probability is one of the improvements made in the

Improved Worm Simulator. However, instead of aiming for a particular probability percentage,

22

the code is adjusted to maintain 100,000 maximum infections. The infection probability is

therefore dependent on the size of the target address range. If the size of the target address range

is 2,000,000 then the infection probability is 5%. If the size of the target address range is

5,000,000 then the infection probability is 2%.

When the Improved Worm Simulator is started, the SCU immediately creates 1,000

persistent worm threads. This is done to avoid having to create 1,000 worm threads multiple

times during each time cycle. These 1,000 worm threads will persist throughout the entire

simulation. Each of these 1,000 persistent worm threads begins execution by waiting on a signal

to send packets. The worm spread at this point has not begun yet.

To begin the worm spread, the worm_spread.pl script is run. The worm spread script

sends a single UDP worm packet destined for address 10.0.0.0. This packet gets redirected to the

IPQ by the IP Table rules. The SCU retrieves this initial packet from the IPQ and sets the

infected node count to 1. The SCU then creates a temporary worm thread. This temporary

worm thread sends 100 UDP worm packets to randomly generated addresses selected from the

configured target address range, and then exits. Pseudo-code for the SCU, the SCU‟s packet

processing routine, the temporary worm thread, and the persistent worm thread are given in

Figures 4.2-1, 4.2-2, 4.2-3, and 4.2-4 respectively.

23

Define Global Variables:

 MAXTHREADS = 1000, InfectedNodeCount = 0

 WormTrafficRate = 0, maxPackets = 0

Create MAXTHREADS # of persistent worm threads

Wait for initial packet to arrive in IPQ

Get initial packet P from IPQ

 P destination is address Ad, port Pd

InfectedNodeCount = 1

Loop Forever:

 IterationCount = InfectedNodeCount / MAXTHREADS

 TempCount = InfectedNodeCount mod MAXTHREADS

 For 1 to IterationCount: // run 1,000 persistent worm threads/iteration

 Record send packets start time

 Set sendPackets condition to 1

 Broadcast sendPackets condition

 Wait on condition to process packets

 Call processPackets

 End For

 maxPackets = TempCount * PACKETS_TO_SEND

 If TempCount > 0:

 Record send packets start time

 End If

 For 1 to TempCount: // run temp worm threads

 Create temp worm thread

 End For

 If TempCount > 0:

 Wait on condition to process packets

 Call processPackets

 End If

 Calculate WormTrafficRate

 Output WormTrafficRate and InfectedNodeCount

 Reset WormTrafficRate

End Loop

Figure 4.2-1 Pseudo-code for the SCU (Simulation Control Unit)

24

Set processPackets condition to 0

Loop until IPQ empty:

 Get packet P from IPQ

 P destination is address Ad, port Pd

 If Ad of packet P is vulnerable and not already infected:

 Store (Ad, Pd, P’d) in infected list L

 InfectedNodeCount = InfectedNodecount + 1

 End If

 Mark P accepted

 Release P

End Loop

Figure 4.2-2 Pseudo-code for processPackets

Global Variables:

 PACKETS_TO_SEND = 100, SLEEPRANGE = 1000

 maxPackets = TempCount * PACKETS_TO_SEND

Create UDP socket

For 1 to PACKETS_TO_SEND

 Generate random target address Ad, and port Pd from specified range

 Send packet P to target address

 Sleep SLEEPRANGE microseconds

End For

packetsSent = packetsSent + PACKETS_TO_SEND

If packetsSent = maxPackets

 Record send packets end time

 Set processPackets condition to 1

 Signal processPackets condition

End If

Figure 4.2-3 Pseudo-code for a Temporary Worm Thread

25

Global Variables:

 PACKETS_TO_SEND = 100, SLEEPRANGE = 1000

 MAXPACKETS = MAXTHREADS * PACKETS_TO_SEND

 threadsDone = 1

Loop Forever:

 Wait on condition to send packets

 Create UDP socket

 For 1 to PACKETS_TO_SEND:

 Generate random target address Ad, and port Pd from specified range

 Send packet P to target address

 Sleep SLEEPRANGE microseconds

 End For

 Close UDP socket

 packetsSent = packetsSent + PACKETS_TO_SEND

 If packetsSent = MAXPACKETS:

 Record send packets end time

 Set sendPackets condition to 0

 Set sendPacketsDone condition to 1

 Broadcast sendPacketsDone condition

 Continue to top of loop

 End If

 Wait on condition sendPacketsDone

 threadsDone = threadsDone + 1

 If threadsDone = MAXTHREADS:

 Set threadsDone = 1

 Set sendPacketsDone condition to 0

 Set processPackets condition to 1

 Signal processPackets condition

 End If

End Loop

Figure 4.2-4 Pseudo-code for a Persistent Worm Thread

The 100 UDP worm packets sent by the initial worm node are redirected to the IPQ by the

IP Table rules. The SCU retrieves each packet from the IPQ and determines if the destination

26

address is vulnerable to the infection. If yes, then the address is added to the infected address

list, the infected node count is incremented by 1, the packet is marked as accepted, and it is

released to traverse the rest of the IP Table rules. If no, the address is not added to the infected

address list, the infected node count remains the same, the packet is marked as accepted, and it is

released to traverse the rest of the IP Table rules.

 After all of the incoming worm packets are processed, it is likely that the infected node

count has increased. The number of infected nodes will remain under 1,000 in the early time

cycles. While the infected node count remains under 1,000, the SCU creates and executes as

many temporary worm threads as there are infected nodes. Once the infected node count

exceeds 1,000, then the persistent worm threads are used for every increment of 1000 infected

nodes. For example, if the total number of infected nodes is 26,860, then during each time cycle

there would be 26 iterations where 1,000 persistent worm threads will send 100 packets each.

That accounts for 26,000 infected nodes. If the total number of infected nodes is not equally

divisible by 1,000, then temporary worm threads are created to represent the excess number

beyond the last increment of 1,000. In this case, there are 860 infected nodes that remain, so

during each time cycle an additional 860 temporary worm threads are created and run

concurrently. Those 860 temporary worm threads will send 100 packets each and exit.

Recall that in the Wormulator, the LNS module was responsible for handling all incoming

worm packets, examining each packet to determine if new nodes have been infected, keeping

track of the worm traffic rate, and simulating network congestion. It must do all of this while

running concurrently with all of the other worm threads. This meant that the LNS module was

competing with thousands of threads for processing time. As a result, the LNS module was

running only a fraction of one percent of the time. With so little time to perform its

27

responsibilities, the LNS could not possibly monitor the worm traffic rate accurately, nor could it

remove the packets from the IPQ quick enough to avoid overflow. To resolve this issue, the

Improved Worm Simulator alternates the sending and receiving of packets on a per iteration

basis.

At the start of each iteration, all of the worm packets for that iteration are sent. While the

packets are being sent, the SCU waits on a condition signal. After the last packets are sent, the

worm thread that sent the last packet sends a signal to the SCU to wake up and process all of the

packets in the IPQ. Upon receiving the process packets signal, the SCU wakes up and begins

processing the packets in the IPQ. It examines each packet and determines if any new nodes are

infected based on the destination address of each sent packet.

The SCU also determines the current iteration‟s bandwidth threshold, which is the cut-off

point for accepting new packets sent during the iteration. The bandwidth threshold for an

iteration is calculated using the following equation:

Equation 4.2-1 Bandwidth threshold for an iteration

The first part of the equation determines how many packets per second are allotted to each

iteration in the time cycle. To determine the number of packets allotted for a particular iteration,

you have to multiply the packets per second rate by the number of seconds it took to complete

the iteration. For example, if the NETWORK_BANDWIDTH is 2,000,000 packets per second,

28

and the number of iterations for the current cycle is 100, and the duration for the current iteration

is 2500 milliseconds (2.5 seconds), then the iteration‟s bandwidth threshold is 50,000 packets.

Implementing congestion control at the iteration level distributes the bandwidth limitation across

all active worm nodes. This approach achieves a more realistic behavior than cutting a time

cycle short once the bandwidth is exceeded.

After all of the packets are processed, the SCU then broadcasts a signal to inform all of

the persistent worm threads to send the next batch of packets, thus beginning the next iteration.

If needed, the last iteration might be handled by temporary worm threads, as explained earlier.

The completion of the last iteration marks the end of the time cycle. At the end of each time

cycle, the following metrics are recorded by the SCU:

 Worm Traffic Rate

 Elapsed simulated real time

 Infected Node Count

The worm traffic rate is calculated using the following equation:

Equation 4.2-2 Worm Traffic Rate

Note that the denominator is not the total simulation time to complete a time cycle, rather it‟s the

average of all the iteration times during a time cycle. This is because all iterations in a time

29

cycle are considered to be running parallel to one another, along the same time line. For

example, if there are a hundred iterations in a time cycle, and each iteration takes 2 seconds to

complete, then the total simulation time to complete the time cycle is 200 seconds, but the

elapsed simulated real time for the time cycle is only 2 seconds. The elapsed simulated real

times will be used as the horizontal axis values in our simulation results given in the next section.

The infected node counts are recorded at the end of each time cycle for the same reason that the

worm traffic rates are recorded at the end of each time cycle.

5 Simulation Setup and Results

This section describes the simulation setup and presents some simulation results along with

some analysis.

5.1 Simulation Setup

The current version of the Improved Worm Simulator was successfully built and ran on an

Intel based PC running the Ubuntu Linux operating system, version 10.10. To build and install

the Improved Worm Simulator, the source code should be unzipped to a user home directory

(e.g. /home/arnold) and then steps 1 through 3 of the INSTALL file should be followed. There

will be some build errors on the first few build attempts. A couple of the errors have to do with

some missing libraries, as explained in the INSTALL file. Other build errors result from having

invalid directory paths hardcoded in the lns.cpp source file.

Steps 4 and 5 of the INSTALL file and some other system configurations are handled by

the start_iws script. The start_iws script is shown in Figure 5.1-1. Line 3 increases the

maximum number of threads that can be created in the system. Lines 4-8 increase the sizes of

30

the ip_queue, socket receive buffer, and socket send buffer. The default size settings are not

sufficient to handle the number of packets that are sent and received during each iteration. Line

21 clears any previous iptables rules. Line 24 sets an iptables rule that redirects all UDP packets

destined for addresses between 10.0.0.0 and 10.255.255.255 to a user space queue – in this case,

the IPQ. With this address range, the simulation could simulate up to 16,581,375 potential

target addresses. Incidentally, this specific range was chosen because addresses with 10 as the

first octet are local private addresses, thus reducing the chance that worm packets actually reach

a real public address outside the private network. Line 25 sets an iptables rule that redirects UDP

packets destined for the localhost‟s loopback address to the IPQ. Finally, line 29 executes the

simulator.

Figure 5.1-1 start_iws script

31

The following are configurable simulation settings that involve modifying the lns.cpp

source file:

 NETWORK_BANDWIDTH – maximum simulation bandwidth in packets per second.

 RANGE2, RANGE3, RANGE4 – max values for the second, third, and fourth octets

respectively in the randomly generated target addresses.

 LOWPORT, HIGHPORT – establishes the vulnerable port range, a kludge way to

implement infection probability.

 MAXTHREADS – number of persistent worm threads to create at startup.

 PACKETS_TO_SEND – number of packets that each worm thread sends during each

time cycle.

 SLEEP_RANGE – number of microseconds to sleep between packets. This is to

simulate some sense of path delay.

For the simulator to run properly, the network interface card on the host machine must be

enabled and connected. This is perfectly safe, since the worm packets never get beyond the

network interface card – they are looped back. To start the simulator, the start_iws script must

be run. At this point, the simulator outputs a few messages and then waits for the initial worm

packet. To actually begin the worm spread the worm_spread.pl script must be run. CTRL-C is

used to terminate the simulation.

5.2 Simulation Results and Analysis

Before the results are presented, the output of the simulations must be explained. Figure

5.2-1 shows a sample of the output generated by a simulation run. Lines with 5 comma

separated values represent the worm traffic and timing metrics for a particular iteration. The first

32

value is the current cycle number. The second value is the current iteration number and the total

iterations for the current cycle, separated by a colon. The third value is the elapsed “real” time

for that iteration, measured in milliseconds. The fourth value is the total number of packets sent

during that iteration. The last value is the total number of packets that were accepted during that

iteration. If the last value is less than the fourth value, this indicates that the bandwidth threshold

was exceeded and congestion control measures were taken. Each line that starts with “Infected

Node Count” represents the total number of nodes that have been infected thus far.

.

.

12, 70:74, 2546, 100000, 100000

12, 71:74, 2467, 100000, 98681

12, 72:74, 2486, 100000, 99441

12, 73:74, 2470, 100000, 98801

12, 74:74, 1075, 25300, 25300

Infected Node Count 93786

13, 1:94, 2479, 100000, 76850

13, 2:94, 2442, 100000, 75703

13, 3:94, 2457, 100000, 76168

13, 4:94, 2424, 100000, 75145

13, 5:94, 2427, 100000, 75238

13, 6:94, 2485, 100000, 77036

13, 7:94, 2501, 100000, 77532

13, 8:94, 2406, 100000, 74587

13, 9:94, 2518, 100000, 78059

.

.

Figure 5.2-1 Simulation output

To facilitate the charting of the results, the simulation output is also collected in two files

located in the /home/user/Files directory. One file is named traffic.csv, which contains the

traffic metrics. The other file is named inc.txt, which contains the infected node count data.

33

To demonstrate the Improved Worm Simulator‟s capability to correctly model the behavior

of a uniform random scanning worm like the SQL Slammer worm, the results of three different

simulation runs are presented here. Each simulation is run with a different network size and

bandwidth limit combination. The number of vulnerable hosts is approximately the same in each

simulation – around 100,000.

Two charts are associated with each simulation run. The first chart plots the worm traffic

rate in packets per second against the elapsed time in seconds. The second chart plots the

infected node count against the elapsed time in seconds. There are a total of 6 charts, 2 for each

simulation.

Figure 5.2-2 Worm Traffic Rate – 1M Hosts, 100K Vulnerable, 2M Bandwidth

0

500000

1000000

1500000

2000000

2500000

0 5 10 15 20

Tr
af

fi
c

R
at

e
(p

ac
ke

ts
 p

er
 s

e
co

n
d

)

Elapsed Time (seconds)

Worm Traffic Rate
network size = 1,000,048 hosts

max vulnerable = 100,049 hosts
bandwidth limit = 2,000,000 pps

34

Figure 5.2-3 Infected Node Count – 1M Hosts, 100K Vulnerable, 2M Bandwidth

The results of the first simulation run are shown in Figures 5.2-2 and 5.2-3. This first

simulation is configured with a network size of 1 million potential target hosts, with

approximately 100,000 of them being vulnerable to the attack. The bandwidth limit for this

simulation is set at 2 million packets per second, which is equivalent to what a 7200-NPE-G2

Cisco router can handle [21].

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 5 10 15 20

In
fe

ct
ed

 N
o

d
e

 C
o

u
n

t

Elapsed Time (seconds)

Infected Node Count
network size = 1,000,048 hosts

max vulnerable = 100,049 hosts
bandwidth limit = 2,000,000 pps

35

Both the worm traffic rate and the infected node count plots exhibit the classic logistic

form of the SQL Slammer worm, where the rate stays relatively low in the early stages and then

grows exponentially for a period of time before leveling off at the bandwidth limit.

Figure 5.2-4 Worm Traffic Rate – 2M Hosts, 100K Vulnerable, 3M Bandwidth

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 5 10 15 20 25

Tr
af

fi
c

R
at

e
 (

p
ac

ke
ts

 p
e

r
se

co
n

d
)

Elapsed Time (seconds)

Worm Traffic Rate
network size = 2,012,868 hosts

max vulnerable = 100,049 hosts
bandwidth limit = 3,000,000 pps

36

Figure 5.2-5 Infected Node Count – 2M Hosts, 100K Vulnerable, 3M Bandwidth

The second simulation‟s results are shown in Figures 5.2-4 and 5.2-5. For this simulation

the network size is increased to a little over 2 million potential target hosts, and the bandwidth

limit is increased to 3 million packets per second. With the network size doubled, the infection

probability is essentially halved. This results in slower growth in both the worm traffic rate and

infected node count. The slower growth in the worm traffic rate is hard to distinguish because of

the scale of the vertical axis in Figure 5.2-4. The difference can really be seen in the infected

node count growth. In the first simulation, at close to the 12 second mark, the infected node

count is already at its max of 100,000. Whereas in the second simulation, the infected node

count is only 45,000 at around the 12 second mark.

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25

In
fe

ct
ed

 N
o

d
e

C
o

u
n

t

Elapsed Time (seconds)

Infected Node Count
network size = 2,012,868 hosts

max vulnerable = 100,049 hosts
bandwidth limit = 3,000,000 pps

37

Figure 5.2-6 Worm Traffic Rate – 5M Hosts, 100K Vulnerable, 3M Bandwidth

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 5 10 15 20 25 30 35

Tr
af

fi
c

R
at

e
(p

ac
ke

ts
 p

er
 s

e
co

n
d

)

Elapsed Time (seconds)

Worm Traffic Rate
network size = 5,032,170 hosts

max vulnerable = 100,101 hosts
bandwidth limit = 3,000,000 pps

38

Figure 5.2-7 Infected Node Count – 5M Hosts, 100K Vulnerable, 3M Bandwidth

The third simulation‟s results are shown in Figures 5.2-6 and 5.2-7. For this simulation

the network size is increased to a little over 5 million potential target hosts, and the bandwidth

limit is kept at 3 million packets per second. With a network size of little over 5,000,000 hosts

and only 100,000 vulnerable hosts, the infection probability is only 2%. Compared to simulation

2, simulation 3 takes nearly twice as much time for the worm traffic to reach maximum

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30 35

In
fe

ct
ed

 N
o

d
e

C
o

u
n

t

Elapsed Time (seconds)

Infected Node Count
network size = 5,032,170 hosts

max vulnerable = 100,101 hosts
bandwidth limit = 3,000,000 pps

39

bandwidth. Simulation 3 takes more than double the time as simulation 2 to reach maximum

infection rate.

 In all three simulations the worm spread is extremely fast – as evidenced by the very short

total elapsed time in each simulation. There are a couple of reasons for this. Number one, the

simulated target address range is extremely small compared to the entire Internet address range

used by the real SQL Slammer worm. Number two, varying path delays, bottlenecks, varying

network bandwidths, and other network limitations are not taken into account in the simulation.

5.3 Performance

The simulations were run on a machine equipped with a 3.73 GHz dual-core processor and

2 GB of physical memory. Running 1,000 concurrent threads on this machine consumed a max

of 400 MB of physical memory and fluctuated between 30-78% processor utilization. With

these performance metrics, the simulation slows the computer a little during peak processor

usage; otherwise the computer had no problems performing other typical tasks while the

simulation was running.

The simulation timescale factor turned out to be closer to 140 to 1, instead of the

theoretical 100 to 1 timescale factor mentioned in the implementation section. For example,

simulation 1 took 46 minutes to simulate 20 seconds. The 100 to 1 timescale factor suggested

earlier did not account for the time it would take for the SCU to examine all of the packets on the

IPQ during the dequeuing phase of each iteration.

40

6 Future Work

The Improved Worm Simulator can be used as a foundation for further work in resource

limited packet level worm simulation. Several improvements are suggested here. The Improved

Worm Simulator can technically simulate large scale networks with millions of potential targets,

but it is still not practical to simulate more than a couple hundred thousand active worm nodes.

An obvious improvement would be to distribute the simulation workload across many physical

hosts. However, to keep in line with the affordability and accessibility goals mentioned earlier, it

is suggested that the number of physical hosts be limited to 3 to 5 physical hosts.

The Improved Worm Simulator is flexible and scalable, but it also simplifies many aspects

of a real network. It does not account for things such as network topology, path delays, and

varying bandwidths across the network. These network characteristics can be stored in a local

database, where it can be quickly queried and used to simulate a more realistic network.

Another thing that the Improved Worm Simulator does not account for is competing network

traffic. For this, a separate physical host can be dedicated to send packets representing

competing network traffic.

 Another improvement that can be made is to make the simulation more portable.

Currently, the Improved Worm Simulator is implemented for the Linux platform only. Although

the simulator is written entirely in C++, the simulator has a high dependency on the use of the

libipq library, which is implemented for the Linux kernel only. Because of this high

dependency on the libipq library, making the Improved Worm Simulator portable might be a

substantial undertaking. However, it would definitely be worth considering.

41

7 Conclusion

Attempting to implement a worm simulator that can be run on a single machine proved to be

a challenge given the complexities of multi-thread programming and the limited memory and

processor resources. However, the implementation of the Improved Worm Simulator was a

success. The simulation results showed that the Improved Worm Simulator is able to scale to at

least 100,000 active worm nodes, and that it correctly models the behavior of the SQL Slammer

worm.

The Improved Worm Simulator is highly configurable and scalable. The scalability,

however, is really dependent upon the patience and time constraints of the user. If the user can

tolerate hours or even days of simulation time, then the Improved Worm Simulator can scale to

hundreds of thousands of infected nodes – perhaps even a million. If the user cannot afford long

simulation times, then the Improved Worm Simulator can still manage a reasonable scale of at

least 100,000 infected nodes.

In its current form, the Improved Worm Simulator can easily be used for instructional

purposes. Students can experiment with various configurations and observe the resulting

changes in worm behavior. Students can also modify the code to model other types of worms.

The Improved Worm Simulator can be used as a research tool as well. Researchers can use the

current framework to implement and test various defensive strategies against various worm

spread models.

42

References

[1] Jyotsna Krishnaswamy, “Wormulator : Simulator for Rapidly Spreading Malware,”

Computer Science Graduate Writing Project, San Jose State University, 2009

[2] Mark Stamp, “Information Security Principles and Practice,” Hoboken, NJ: Wiley, 2006.

[3] John Aycock, Heather Crawford, Rennie deGraaf, “Spamulator: The Internet on a

Laptop,” in Proceedings of the 13th Annual Conference on Innovation and Technology in

Computer Science Education, Madrid, Spain, 2008, pp. 142-147.

[4] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, Nicholas

Weaver, “Inside the Slammer Worm,” IEEE Security and Privacy, v. 1, n. 4, pp. 33 – 39,

2003.

[5] John Markoff, “Worm Infects Millions of Computers Worldwide,” Feb 2009. [Online].

URL: http://www.nytimes.com/2009/01/23/technology/internet/23worm.html. (Accessed:

Jan 26, 2010)

[6] Stuart Staniford, David Moore, Vern Paxson, Nicholas Weaver, “The Top Speed of Flash

Worms,” in Proceedings of the 2004 ACM workshop on Rapid Malcode, Washington

DC, USA, n.2, 2004, pp. 33 - 42.

[7] Article featured in Malware and Hardware Security magazine, 02 November 2009.

[Online]. URL: http://www.infosecurity-magazine.com/view/4934/information-

securitythreats-in-h1-2009-malware-and-rogue-security-software/. (Accessed: Jan 26,

2010)

[8] Article featured in Network World magazine, 30 October 2009. [Online]. URL:

http://www.networkworld.com/news/2009/103009-after-one-year-conficker-infects.html.

(Accessed: Feb 13, 2010)

http://www.networkworld.com/news/2009/103009-after-one-year-conficker-infects.html

43

[9] CERT advisory CA-2003-04, "MS-SQL server worm," [Online]. URL:

http://www.cert.org/advisories/CA-2003-04.html. (Accessed: Jan. 26 2010)

[10] Robert Beverly, Arthur Berger, Young Hyun, K. Claffy, “Understanding the efficacy of

deployed internet source address validation filtering,” in IMC '09: Proceedings of the 9th

ACM SIGCOMM conference on Internet measurement conference,” Chicago, Illinois,

USA, November 2009, Pages: 356-369.

[11] Miad Faezipour, Mehrdad Nourani, Rina Panigrahy, “A hardware platform for efficient

worm outbreak detection,” Transactions on Design Automation of Electronic Systems

(TODAES), Volume 14, Issue 4, August 2009.

[12] Wikipedia The Free Encyclopedia, “Timeline of computer viruses and worms.”

Wikipedia, [Online]. URL:

http://en.wikipedia.org/wiki/Timeline_of_notable_computer_viruses_and_worms .

(Accessed: Feb 13, 2010)

[13] Cynthia Wong , Stan Bielski , Jonathan M. McCune , Chenxi Wang, “A study of mass-

mailing worms,” In Proceedings of the 2004 ACM workshop on Rapid malcode, October

29-29, 2004

[14] Yi Tang, Xiangning Dong, “Anting: An Adaptive Scanning Method for Computer

Worms,” In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web

Intelligence (WI '06). IEEE Computer Society, Washington, DC, USA, Pages: 926-932

[15] Microsoft Security Intelligence Report Volume 9 (January through June 2010),

[Online]. URL: http://www.microsoft.com/security/sir/keyfindings/default.aspx .

(Accessed: Nov 20, 2010)

http://www.cert.org/advisories/CA-2003-04.html
http://en.wikipedia.org/wiki/Timeline_of_notable_computer_viruses_and_worms
http://www.microsoft.com/security/sir/keyfindings/default.aspx

44

[16] Duc T. Ha, Hung Q. Ngo., “On the trade-off between speed and resiliency of

flashworms and similar malcodes,” In Proceedings of the 2007 ACM workshop on

Recurring malcode (WORM '07). ACM, New York, NY, USA, Pages: 23-30

[17] Songjie Wei, Jelena Mirkovic, Martin Swany, “Distributed Worm Simulation with a

Realistic Internet Model,” In Proceedings of the 19th Workshop on Principles of

Advanced and Distributed Simulation (PADS '05). IEEE Computer Society,

Washington, DC, USA, Pages: 71-79

[18] Dancho Danchev, “Conficker's estimated economic cost? $9.1 billion,” 23 April

2009. [Online]. URL: http://www.zdnet.com/blog/security/confickers-estimated-

economic-cost-91-billion/3207. (Accessed: October 20, 2010)

[19] Paul Boutin, “Slammed,” July 2003. [Online]. URL:

http://www.wired.com/wired/archive/11.07/slammer.html. (Accessed: January 26, 2010)

[20] Robert Lemos, “Counting the cost of Slammer,” [Online]. URL:

http://news.cnet.com/Counting-the-cost-of-Slammer/2100-1001_3-982955.html.

(Accessed: January 26, 2010)

[21] Cisco Systems, “Portable Product Sheets – Routing Performance,” [Online]. URL:

http://www.cisco.com/web/partners/downloads/765/tools/quickreference/route

rperformance.pdf. (Accessed: October 26, 2010)

[22] John Aycock, “Computer Viruses and Malware,” Advances in Information Security,

volume 22, Springer-Verlag, 2006.

http://www.zdnet.com/blog/security/confickers-estimated-economic-cost-91-billion/3207
http://www.zdnet.com/blog/security/confickers-estimated-economic-cost-91-billion/3207
http://www.wired.com/wired/archive/11.07/slammer.html
http://news.cnet.com/Counting-the-cost-of-Slammer/2100-1001_3-982955.html
http://www.cisco.com/web/partners/downloads/765/tools/quickreference/routerperformance.pdf
http://www.cisco.com/web/partners/downloads/765/tools/quickreference/routerperformance.pdf

	San Jose State University
	SJSU ScholarWorks
	Fall 12-2010

	Improved Worm Simulator and Simulations
	Arnold Suvatne
	Recommended Citation

	tmp.1292886576.pdf.r9E3B

