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Abstract 

According to the latest Microsoft Security Intelligence Report (SIR), worms were the 

second most prevalent information security threat detected in the first half of 2010 – the top 

threat being Trojans.  Given the prevalence and damaging effects of worms, research and 

development of worm counter strategies are garnering an increased level of attention.  However, 

it is extremely risky to test and observe worm spread behavior on a public network.  What is 

needed is a packet level worm simulator that would allow researchers to develop and test counter 

strategies against rapidly spreading worms in a controlled and isolated environment.  Jyotsna 

Krishnaswamy, a recent SJSU graduate student, successfully implemented a packet level worm 

simulator called the Wormulator.  The Wormulator was specifically designed to simulate the 

behavior of the SQL Slammer worm.  This project aims to improve the Wormulator by 

addressing some of its limitations.  The resulting implementation will be called the Improved 

Worm Simulator.   
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1 Introduction  
 

The goal of this project is to improve an existing worm simulator called the Wormulator.  

The resulting implementation will be called the Improved Worm Simulator.   

Computer worms are the second most prevalent information security threat found by anti-

malware software today – the most prevalent being Trojans [15].  Given the growth of the 

Internet and the sheer volume of critical information and money that is exchanged daily through 

the Internet, a fast spreading worm could inflict tremendous financial losses to individuals, 

businesses, and other organizations across the globe.  The effects of recent real world computer 

worms have already shown us the financial devastation that could result.  For example, the 

financial loss caused by the Conficker worm had been estimated to be as high as $9.1 billion 

[18]. 

Not only do worms put a tremendous amount of money at risk, but people‟s safety and 

personal security can be at risk as well.  Communication systems, safety and security services, 

and emergency response systems are becoming increasingly reliant on networked resources that 

are accessed via the Internet.  If any of those systems are disrupted by massive congestion or 

failures in the network, people‟s lives could be at stake.  For example, the Slammer worm in 

2003 generated enough network congestion to cause failures in the 911-emergency system in 

Bellevue, Washington [4]. 

The potential devastating effects of future computer worms has many information security 

experts, especially those affiliated with large enterprises, interested in worm research.  

Consequently, there‟s a considerable amount of money, time and effort being invested towards 
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the study of worm behavior models, worm detection methods, automated worm containment 

mechanisms, worm traffic simulations, etc [7].  Unfortunately, there are some significant 

challenges to studying worms.   

Due to the disruptive nature and potential damaging effects of worms, it is highly unethical 

to perform worm experiments on the Internet, regardless of intentions.  The disruption and 

damages caused by even an accidental release of a worm can draw severe penalties, including 

criminal prosecution.  Without the luxury of being able to use the Internet as their testing ground, 

worm researchers are forced to resort to running simulations in a relatively small isolated 

network. 

Researchers have taken one of two approaches to worm simulation.  One approach is to 

simulate worms by using mathematical models that leverage epidemiological equations used to 

describe the spread of real-world diseases [13].  Another approach is to use packet level worm 

simulations that leverage existing network simulators [17].  A recent SJSU graduate project took 

a lightweight network simulator known as the Spamulator (used to simulate spam propagation) 

and enhanced it to simulate the SQL Slammer worm.  The Spamulator enhancement is called the 

Wormulator [1].   

The purpose of this project is to make the following improvements to the Wormulator: 

1. Increase the scalability of the Wormulator from a few thousand active worm nodes to at 

least one hundred thousand active worm nodes. 

2. Improve the Wormulator‟s simulation of the Slammer worm by implementing a more 

realistic handling of network saturation, as opposed to the automatic gradual slowdown to 

a near standstill, as exhibited by Wormulator. 
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3. Implement a more realistic infection probability – the Wormulator currently implements 

a 100% infection probability. 

 

The remainder of this paper is organized as follows: 

 Section 2 Computer Worms: defines what computer worms are, explains how computer 

worms function, describes various worm propagation methods, and provides an overview 

of the SQL Slammer worm. 

 Section 3 Wormulator: describes the Wormulator architecture, gives a functional 

overview of the Wormulator, provides the implementation details of the Wormulator, and 

highlights some improvement opportunities for the Wormulator. 

 Section 4 Improved Worm Simulator: details the architecture, functional overview and 

implementation of the Improved Worm Simulator. 

 Section 5 Simulation Setup and Results: describes the simulation setup, presents the 

simulation results, and discusses the simulator‟s performance. 

 Section 6 Future Work:  discusses deficiencies that were not addressed by the Improved 

Worm Simulator and proposes future work. 

 Section 7: Conclusion 

 

2 Computer Worms 
 

Simply put, computer worms are self-propagating malware.  Malware is defined as any 

software that has malicious intent, hence the prefix “mal.”  The key difference between worms 
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and viruses is that worms actively search for and infect vulnerable machines across a network 

[22].  Once the initial computer is infected, a worm uses the network to spread itself from one 

computer to another by exploiting network security vulnerabilities in operating systems and/or 

applications on other computers.  Each newly infected node will attempt to infect all other nodes 

that it can reach.  As the number of infected nodes increase, the number of network wide 

infection attempts (scans) increase.  And as the number of network wide infection attempts 

increase, the number of newly infected nodes increases at a much faster rate, and so on.  

Leveraging the Internet‟s volume of potential victims and highly connected infrastructure has 

proven to be a highly effective method for propagating worms. 

 

2.1 Worm Propagation Methods 
 

We can characterize a worm by the method in which it propagates itself.  Some of the key 

components of a worm‟s propagation method are: 

 Transfer mechanism  

 The manner in which it selects target addresses  

 Speed 

A worm will typically use one or more transfer mechanisms to copy itself to other 

computers.  A worm may use message exchange applications such as email, Internet relay chat, 

or instant messaging.  A worm might use a network protocol such as TCP or UDP.  Or a worm 

might use inter-process communication mechanisms such as named pipes, shared memory, or 

shared folders to transfer itself to other computers. 
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One of the primary functions of a worm is to seek out potential victims to infect.  But, in 

order to infect another computer, the worm must know the target computer‟s IP address, and the 

target computer must be vulnerable to the worm‟s attack.  There are two general ways for worms 

to choose their targets.  A worm can randomly generate target addresses, or a worm can use a 

pre-generated list of known vulnerable target addresses.   

If a worm randomly generates the target addresses, it can use a uniform random scanning 

method, or a local preference scanning method.  In the uniform random scanning method, a 

worm randomly and uniformly selects IP addresses from the entire range of Internet addresses.  

Uniform random scanning is highly inefficient, considering there are only a relatively small 

number of vulnerable hosts in such a large address space as the entire Internet [14] [16].  In local 

preference scanning, a worm randomly selects IP addresses, but the selection method is biased 

towards addresses that are located in local networks, such as enterprise intranets [17].  Local 

preference scanning worms tend to spread much more rapidly.  There are two reasons for this.  

Number one, the addresses from a local network address space tend to have a higher probability 

of being reachable and active.  Number two, the density of vulnerable hosts tend to be higher in a 

local network, because hosts in a local network tend to be of the same type and tend to be 

configured in the same way.   

Although a worm that uses local preference scanning can be much more efficient than a 

worm that uses uniform random scanning, they pale in comparison to a worm that uses a pre-

generated “hit list” of known vulnerable target addresses.  Such a worm is referred to as a flash 

worm, and can be orders of magnitudes faster.  Given an accurate list of known vulnerable host 

addresses, the predicted speed at which a flash worm can infect vulnerable hosts is incredible.  It 

has been shown that, given pristine conditions, a flash worm can theoretically infect over 95% 
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of a million vulnerable hosts in just over half a second [6].  However, the key to a flash worm‟s 

success is an accurate list of vulnerable host addresses.   Due to the highly complex and dynamic 

nature of the Internet, it can be quite a monumental task to procure a reliable list of valid and 

vulnerable addresses.  It is for this reason that the feasibility of flash worms is questioned by 

most experts.  However, it would be unwise to ignore the possibility of an effective flash worm.  

Researchers have proposed methods to circumvent problems that arise from the highly dynamic 

nature of the Internet [6].  

Speed is another component of a worm‟s propagation method.  One might assume that a 

worm must scan as fast as possible in order to infect as many victims as possible before it is 

detected and removed.  Interestingly enough, a slow scanning worm has a much higher chance of 

infecting more computers than a fast scanning worm [16].  A slow scanning worm can evade 

detection because the traffic that it generates appears to be normal. A fast scanning worm, on the 

other hand, can generate an unusually high number of connection attempts which can easily be 

detected and removed from an infected computer, thus limiting the spread of the worm. 

Regardless of the specific methods used to propagate a worm, the fact that worms can 

propagate on their own, have global reach, and can spread at rapid rates, makes worms one of the 

most effective and devastating forms of malware out there.   The next subsection gives an 

overview of the SQL Slammer worm.  The SQL Slammer worm is the real-world worm that the 

Improved Worm Simulator attempts to model. 

 

2.2 SQL Slammer Worm 
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Of the twenty-three worms that were released in the “wild” this past decade, SQL Slammer 

is one that has garnered a tremendous amount of attention and notoriety [12].   This is due to the 

speed that Slammer exhibited, as well as the significant damage that it inflicted, in terms of 

financial and productivity loss. 

SQL Slammer, or just Slammer, was unleashed upon the Internet on January 25, 2003 [4].  

As of the writing of this report, Slammer has the distinction of being the fastest worm in history.   

Slammer achieved its remarkable speed by simply sending 404 byte UDP packets that exploited 

buffer overflow vulnerabilities in Microsoft‟s SQL Server software [9].  By using UDP, 

Slammer did not have to wait for a response from its target – as would have been the case, if 

TCP had been used.   Instead, Slammer could continually send UDP packets as fast as the host‟s 

network bandwidth would allow.  Given a 100 Mbps network connection, Slammer could 

manage a scan rate of around 26,000 scans per second [4].  Ironically, it was Slammer‟s 

aggressive nature and incredible speed that limited its success.   

Slammer used the uniform random scanning method to select its targets.  By using the 

uniform random scanning method, Slammer achieved an initial exponential growth, doubling the 

infected population every 8.5 seconds [19].  Within a few minutes, however, the infection rate 

slowed significantly due to continual retries of already infected hosts, non-existing hosts, and 

immune hosts.  In addition to that, the scan traffic overwhelmed the global network causing 

numerous network outages and system failures, which further exacerbated the slowing of the 

infection rate [4]. 

Unfortunately, by that time, Slammer had already done significant damage.  In South Korea, 

twenty-seven million people lost their cell phone and Internet access.  In Portugal, three hundred 
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thousand people had their cable modems crash on them.  Corporate email systems around the 

globe slowed to a grinding halt.  911 emergency response teams had to resort to the use of pencil 

and paper to handle emergency calls.  Airlines had to cancel many flights due to their inability to 

process tickets [19].   

Although worms typically carry a malicious payload, Slammer showed us that worms do not 

necessarily need to have malicious payloads to cause considerable harm.  All told, the cost of 

Slammer had been estimated to be between $950 million and $1.2 billion [20].  

 

3 Wormulator 
 

The simulator implemented in this project is built upon a previous implementation of a 

worm simulator called the Wormulator.  This section gives some background on the 

Wormulator, describes the Wormulator‟s architecture, gives a functional overview of the 

Wormulator, provides some implementation details of the Wormulator, and describes some 

opportunities for improvement.    

The Wormulator is a packet level worm simulation program developed by Jyotsna 

Krishnaswamy, a former Graduate student of San Jose State University [1].  It is an extension of 

the Spamulator, a lightweight network simulator that runs on a single machine developed by 

John Aycock, Heather Crawford, and Rennie deGraaf to teach a course on spam and spyware [3].   

The main objective of the Wormulator was to simulate the behavior of the SQL Slammer Worm 

using a virtual network of thousands of server nodes running on a single machine [1].  But, in 

order to simulate the SQL Slammer worm, the handling of User Datagram Protocol (UDP) 
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packets had to be supported.  Unfortunately, the Spamulator only supported the Transmission 

Control Protocol (TCP), thus the Spamulator had to be modified to support UDP.    In addition to 

providing support for UDP, the final version of Wormulator included these additional 

enhancements [1]:   

 Simulated network nodes are executed as threads, instead of independent processes – the 

original implementation of Wormulator used independent processes, which limited the 

scale of Wormulator to only a couple thousand nodes [1]. 

 Network traffic measurements – the number of packets in the network, measured once 

per second of simulation time. 

 Simulation of congestion in the network – signals congestion when the network traffic 

increases beyond a pre-defined bandwidth limit, and throttles the traffic rate accordingly. 

 

3.1 Wormulator Architecture and Functional Overview 
 

Depicted in Figure 3.1-1 below is the system architecture of the Wormulator.  The large 

box that encompasses everything but the “Outside World” represents a single computer, be it a 

laptop, PC, or server.  At the core of the Wormulator is the Loopback Network Simulator (LNS) 

[1].  The LNS creates and initializes all simulated network nodes, handles all of the incoming 

worm traffic, puts newly infected network nodes into worm propagation mode, keeps track of the 

traffic rate, and simulates network congestion.   

Initially, when the Wormulator is first launched, there are no simulated network nodes 

running.  A setup script called servers.pl is executed to create the simulated network nodes.  The 

number of simulated network nodes desired is configurable and defined in the setup script.  For 
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each simulated network node to be simulated a “wake up” packet is sent to the Wormulator.  For 

each “wake-up” packet received by the Wormulator, a new thread is created and that represents a 

distinct simulated network node.  Every simulated network node starts out in the uninfected state.  

They simply run in a loop listening for UDP packets. 

 

 

 

To actually begin the worm spread, the worm_spread.pl script is executed.  The 

worm_spread.pl script sends a single UDP packet to infect one of the simulated network nodes.  

That initial infected node then begins randomly generating target IP addresses and sends worm 

packets to each of the generated target addresses.  If a randomly generated target address 

matches the address of a simulated network node then a successful infection will be achieved.  

Worm setup 

and launch 

scripts 

Outside World 

Packets to non-

simulated IP 

addresses 

WORMULATOR  

Iptables 

LNS  
 Incoming packet handler 

 Traffic measurement 

 Network congestion control 

 

LibIPQ (User 

Space Packet 

Queue) 

Packets to 

simulated IP 

addresses 

Simulated 

Worm Node 

Simulated 

Worm Node 

simulated 

Server 

Client 

Program 

Initialization 

Packets to 

worm nodes 

Figure 3.1-1 System Architecture of Wormulator 
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Each newly infected worm node in turn randomly generates target IP addresses and sends worm 

packets to each the generated target address.  Each infected worm node continues sending worm 

packets indefinitely, or until the Wormulator is killed by the user.   

  A critical requirement when simulating a worm is to ensure that the worm traffic does not 

escape to the “outside world.”   Unfortunately, the Wormulator must use the network interface 

card of the local machine to send and receive packets [1].  Therefore, the network card must be 

active and connected to the network while executing the tool.  So to ensure that all worm traffic 

remains on the local machine, iptables and the libIPQ library are used to redirect worm traffic 

back to the Wormulator.  Packets destined for a simulated worm node are redirected by IP Table 

rules to a user space packet queue called the IPQ, implemented in the libIPQ library.   

Every packet that ends up on the IPQ ultimately gets handled by the packet handler 

routine in the Wormulator‟s LNS module [1].  The LNS module retrieves packets from the IPQ 

and checks the destination address of each packet to determine if a new network node gets 

infected or not.  If the packet is destined for an uninfected node then that node is marked as 

infected and gets put into worm propagation mode.   If the packet is destined for an already 

infected node then the LNS module simply marks the packet as accepted and releases it back to 

the iptables for final traversal.    Packets destined for non-simulated IP addresses are allowed to 

proceed to its destination, untouched by the Wormulator. 
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3.2 Wormulator Implementation 
 

Wormulator leverages the bulk of its implementation from the Linux version of the 

Spamulator.  Apart from the server initialization and worm launch scripts, all of the 

modifications were done in a single source code module – the lns.cpp module [1].  The core 

functionality of Wormulator lies primarily in the LNS module.  The pseudo-code for the 

Wormulator‟s LNS module is given in Figure 3.2-1.  The LNS module begins by creating a user 

datagram socket and listens for incoming UDP packets. When the LNS module receives a UDP 

packet, the destination address and port of the packet is determined.   

If the destination address and port does not match that of an already infected worm node 

then a new thread is created, and that new thread executes the worm code described in Figure 

3.2-2.  The newly created worm node thread creates a user datagram socket, sets the „server 

alive‟ flag to true, and waits for the next packet.  When a second packet is received, the worm 

node is considered infected, and the worm propagation routine is called.  The pseudo-code for 

worm propagation is given in Figure 3.2-3.  The worm is a random scanning worm that models 

the behavior of the SQL Slammer worm [1].   

The worm generates a random IP address from the pool of simulated worm node addresses 

and sends a UDP packet to that address.  It repeats this indefinitely.  If the destination address 

and port does match that of an already infected worm node, then the LNS module updates the 

network traffic count, checks for congestion, adjusts the worm scan rate appropriately, marks the 

packet as accepted, and releases the packet for final traversal through the IP Table rules.    
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Figure 3.2-1 Pseudo-code for the LNS in Wormulator [1] 
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Figure 3.2-2 Pseudo-code of a Simulated Network Node [1] 

 

 

 

Figure 3.2-3 Pseudo-code of the UDP Worm [1] 
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The network traffic count is accumulated between time ticks – each tick marks the passing 

of one second of clock time.  On every tick of the clock the network traffic count of the previous 

time period is logged, and the network traffic count is reset to zero.  The signals SIGUSR1 and 

SIGUSR2 are user defined signals used to simulate the effect of congestion in the network.  The 

SIGUSR2 signal is used to indicate a congestion free network.  From the start of the simulation 

until the point at which the network saturation threshold is reached, the SIGUSR2 signal is 

signaled at every time tick.  Each time the SIGUSR2 signal is signaled, the sleepRange is 

decreased by a certain amount, which in turn increases the rate at which each worm node sends 

packets.  Once the bandwidth saturation threshold is reached, congestion in the network is 

indicated by the SIGUSR1 signal and the sleepRange is decreased at every new instant of time.   

 

3.3 Opportunities for Improvement  
 

This section describes three ways that the Wormulator can be improved.  Although, there 

may be many other opportunities for improvement, only the ones that will be addressed by the 

Improved Worm Simulator are discussed here.    

As mentioned earlier, the original implementation of the Wormulator used independent 

Linux processes to represent each simulated network node.  The overhead of each independent 

process, in terms of memory utilization and slow context switching, severely limited the scale of 

the original Wormulator.  The original Wormulator was only able to scale to a few thousand 

simulated worm nodes.  An attempt was made to improve the scalability of the Wormulator by 

converting to the use of POSIX threads instead of independent processes to represent each worm 
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node.  Unfortunately, just simply converting to the use of POSIX threads did not resolve the 

scalability issue.  Even by running the thread based version of the simulator on a dual-core 

processor machine, the simulation still had difficulties scaling beyond a few thousand nodes.  

With thousands of threads running simultaneously, both processors quickly reached maximum 

utilization, and the host machine quickly became unresponsive.  There is clearly an opportunity 

for improvement here. 

Another opportunity for improvement is in the manner in which Wormulator simulates the 

behavior of the worm once the network bandwidth saturation threshold is reached.  Upon 

reaching the network bandwidth saturation threshold, Wormulator automatically and 

precipitously throttles down the rate at which each worm node sends worm packets.   Recall that 

this is achieved by increasing the sleepRange at every time tick.  Unfortunately, this throttling 

down continues indefinitely, resulting in a precipitous decline in the network traffic, and before 

long the simulation slows to a virtual standstill.   A more accurate representation of actual worm 

behavior is for the network traffic to level out at the saturation point.  

The final opportunity for improvement is in how Wormulator handles infection 

probability.  Wormulator assumes that every randomly generated address is a vulnerable address.  

In other words, every worm packet sent by a worm node has a 100% success rate of infecting its 

target, assuming that the target is not already infected.  This is inaccurate.  First, the target 

address may not even be a valid address.  Second, the host that‟s associated with the target 

address may be disconnected or inactive.  And finally, the host associated with the target address 

may not have the specific software or configuration that is vulnerable to the worm attack.    
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4 Improved Worm Simulator 
 

The Improved Worm Simulator is a Linux based packet level simulator that improves upon 

the Wormulator described in Section 3.  This section describes the architecture, functional 

overview, and implementation of the Improved Worm Simulator.   

 

4.1 Improved Worm Simulator Architecture and Functional Overview   
 

The first improvement objective for the Improved Worm Simulator was to scale the 

simulation to at least 100,000 active worm nodes.   One potential solution would have been to 

implement a distributed simulation using multiple physical interconnected machines, similar to 

the distributed worm simulation design in [17].  However, due to limited resources and funding, 

this was not feasible for this project.  One of the beneficial features of both the Spamulator and 

the Wormulator was their ability run on a single physical machine.   The authors of the 

Spamulator indicated that this was an important goal, since a great number of researchers have 

limited resources and funding [3].   Since the Improved Worm Simulator project was likewise 

limited in resources and funding, it was decided that the Improved Worm Simulator would be 

designed to run on a single machine as well.  In order to accomplish this, some fundamental 

changes had to be made to the architecture and functionality of the original simulator.   

The system architecture of the Improved Worm Simulator is depicted in Figure 4.1-1.    

Once again, the large box that encompasses everything but the “Outside World” represents a 

single computer, be it a laptop, PC, or server.  The bulk of the Improved Worm Simulator‟s 

functionality is contained in a central control unit called the Simulation Control Unit (SCU).   
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The SCU‟s role is analogous to the Wormulator‟s LNS module, but the functionality differs 

substantially.  A brief summary of the functionality and responsibilities of the SCU is provided 

in the box representing the SCU, in Figure 4.1-1.    

 

 

Figure 4.1-1 System Architecture of Improved Worm Simulator 
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difference between a persistent worm node thread and a temporary one will be explained later in 

Section 4.2, the implementation section.  These persistent and temporary simulated worm node 

threads represent network nodes that have been infected.   Their primary role is to send worm 

packets to randomly generated target addresses.  Red dotted arrows are used to show the path of 

the worm packets through the system.   

A key addition to the system is a set of thread based condition signals and mutual 

exclusion control variables.  These condition signals and mutual exclusion control variables are 

critical to the complex thread synchronization needs of the Improved Worm Simulator.   The 

implementation section will describe how these condition signals and mutual exclusion variables 

are used.   

The iptables and the libIPQ library are used in the exact same way as it was in the 

Wormulator – to redirect worm traffic back to the simulator, thereby preventing worm packets 

from reaching the “outside world.”  The worm setup script, servers.pl, is no longer needed.  All 

of the setup and configuration is done by the simulation startup script, start_iws, or hardcoded in 

the Improved Worm Simulator. 

 

4.2 Improved Worm Simulator Implementation 
 

Just as the Wormulator leveraged the bulk of the Spamulator for its implementation, the 

Improved Worm Simulator leverages the bulk of the Wormulator for its implementation.  A 

majority of the changes were made to the core module – the lns.cpp module.  Some changes 

were made to the configuration and setup as well.   
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Recall that having more than a few thousand threads running concurrently on a single 

machine was prohibitive.  Despite the fact that the Linux machine used for this project was 

equipped with a dual-core processor, both memory and processor resources were quickly 

exhausted, rendering the simulation and the Linux machine unresponsive.   Through 

experimentation, it was discovered that running 1,000 concurrent threads was manageable.  

Given this constraint, the scalability problem was reduced to:  how can we simulate 100,000 

active worm nodes running a maximum of 1,000 concurrent threads at any given time?   The 

solution:  implement a cycle based simulation, where every simulated active worm node is 

allowed to complete a specified set of activities at each time cycle before moving on to the next 

time cycle.  

In the Improved Worm Simulator, each simulated active worm node sends 100 UDP 

packets during each time cycle – each packet destined to a randomly generated address.  This 

means that all simulated active worm nodes would be allotted time to send 100 packets before 

the simulation moves on to the next time cycle.  If this is done in a sequential fashion with 

100,000 active worm nodes, the simulation timescale factor would be 100,000 to 1.  In other 

words, it would take 100,000 seconds, or 27 hours and 46 minutes, to simulate 1 second of real 

time.  Obviously, this timescale factor is not practical.   

To reduce the timescale factor down to a more reasonable 100 to 1, the Improved Worm 

Simulator takes advantage of concurrent threads.  During each time cycle, the Improved Worm 

Simulator simulates active worm nodes in groups of up to 1,000 concurrent threads at a time 

until all active worm nodes have been represented for the current cycle.  For example, if there are 

3,500 active worm nodes, then in a single time cycle there would be 3 iterations running 1,000 
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concurrent threads and 1 iteration running 500 concurrent threads.  This essentially simulates 

having all 3,500 active worm nodes concurrently sending 100 packets each.   

The Improved Worm Simulator is designed to scale to any number of active worm nodes.  

For example, you could scale the simulation to 1,000,000 active worm nodes.  However, the time 

scale factor would then be 1,000 to 1 – a little over 17 ½ minutes to simulate 1 second of real 

time.   This is much better than the 100,000 to 1 timescale factor, but it would take a little over 

83 hours to simulate 5 minutes of worm activity.  The default configuration for the Improved 

Worm Simulator scales the simulation to 100,000 active worm nodes; that works out to be 100 

iterations of running 1,000 concurrent threads during each time cycle – a time scale factor of 100 

to 1.  At a timescale factor of 100 to 1, it would take a little over 8 hours to simulate 5 minutes of 

traffic – not ideal, but feasible.   This timescale factor is certainly reasonable for simulating fast 

spreading worms, since you would typically only have to simulate less than a minute of real 

time. 

Note, that scaling to 100,000 active worm nodes does not mean that there are only 100,000 

possible addresses in the target address range.  It simply means that only 100,000 of the possible 

target addresses are vulnerable to the worm attack.  The number of possible addresses that can be 

randomly generated is dependent on how many possible unique addresses there are in the 

simulation‟s configured target address range.  For example, if the configured target address range 

is any address between 10.1.0.0 to 10.20.200.250, then the number of possible target addresses is 

(20 x 200 x 250) = 1,000,000.   Given this address range and a 10% infection probability, the 

simulator can simulate 1,000,000 network nodes, with 100,000 nodes being vulnerable to 

infection.  Incidentally, the infection probability is one of the improvements made in the 

Improved Worm Simulator.  However, instead of aiming for a particular probability percentage, 
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the code is adjusted to maintain 100,000 maximum infections.  The infection probability is 

therefore dependent on the size of the target address range.  If the size of the target address range 

is 2,000,000 then the infection probability is 5%.  If the size of the target address range is 

5,000,000 then the infection probability is 2%. 

When the Improved Worm Simulator is started, the SCU immediately creates 1,000 

persistent worm threads.  This is done to avoid having to create 1,000 worm threads multiple 

times during each time cycle.  These 1,000 worm threads will persist throughout the entire 

simulation.   Each of these 1,000 persistent worm threads begins execution by waiting on a signal 

to send packets.    The worm spread at this point has not begun yet.    

To begin the worm spread, the worm_spread.pl script is run.  The worm spread script 

sends a single UDP worm packet destined for address 10.0.0.0.  This packet gets redirected to the 

IPQ by the IP Table rules.  The SCU retrieves this initial packet from the IPQ and sets the 

infected node count to 1.  The SCU then creates a temporary worm thread.  This temporary 

worm thread sends 100 UDP worm packets to randomly generated addresses selected from the 

configured target address range, and then exits.  Pseudo-code for the SCU, the SCU‟s packet 

processing routine, the temporary worm thread, and the persistent worm thread are given in 

Figures 4.2-1, 4.2-2, 4.2-3, and 4.2-4 respectively. 
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Define Global Variables: 

  MAXTHREADS = 1000, InfectedNodeCount = 0 

  WormTrafficRate = 0, maxPackets = 0 

   

Create MAXTHREADS # of persistent worm threads 

 

Wait for initial packet to arrive in IPQ 

Get initial packet P from IPQ 

 P destination is address Ad, port Pd 

 

InfectedNodeCount = 1 

 

Loop Forever: 

  IterationCount = InfectedNodeCount / MAXTHREADS 

  TempCount = InfectedNodeCount mod MAXTHREADS 

 

  For 1 to IterationCount: // run 1,000 persistent worm threads/iteration 

    Record send packets start time 

    Set sendPackets condition to 1 

    Broadcast sendPackets condition 

    Wait on condition to process packets 

    Call processPackets 

  End For 

   

  maxPackets = TempCount * PACKETS_TO_SEND 

   

  If TempCount > 0: 

    Record send packets start time 

  End If 

  

  For 1 to TempCount: // run temp worm threads 

    Create temp worm thread  

  End For 

 

  If TempCount > 0: 

    Wait on condition to process packets 

    Call processPackets 

  End If 

 

  Calculate WormTrafficRate 

  Output WormTrafficRate and InfectedNodeCount 

  Reset WormTrafficRate 

End Loop 

 

 

Figure 4.2-1 Pseudo-code for the SCU (Simulation Control Unit) 
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Set processPackets condition to 0 

 

Loop until IPQ empty: 

 

  Get packet P from IPQ 

 P destination is address Ad, port Pd 

 

  If Ad of packet P is vulnerable and not already infected: 

    Store (Ad, Pd, P’d) in infected list L 

    InfectedNodeCount = InfectedNodecount + 1 

  End If 

 

  Mark P accepted 

  Release P 

 

End Loop 

 

 

Figure 4.2-2 Pseudo-code for processPackets 

 

 

Global Variables: 

  PACKETS_TO_SEND = 100, SLEEPRANGE = 1000 

  maxPackets = TempCount * PACKETS_TO_SEND 

 

Create UDP socket 

 

For 1 to PACKETS_TO_SEND 

  Generate random target address Ad, and port Pd from specified range 

  Send packet P to target address 

  Sleep SLEEPRANGE microseconds 

End For 

 

packetsSent = packetsSent + PACKETS_TO_SEND 

 

If packetsSent = maxPackets 

  Record send packets end time 

  Set processPackets condition to 1 

  Signal processPackets condition 

End If 

 

 

 

Figure 4.2-3 Pseudo-code for a Temporary Worm Thread 
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Global Variables: 

  PACKETS_TO_SEND = 100, SLEEPRANGE = 1000 

  MAXPACKETS = MAXTHREADS * PACKETS_TO_SEND 

  threadsDone = 1 

 

 

Loop Forever: 

  Wait on condition to send packets 

  Create UDP socket 

   

  For 1 to PACKETS_TO_SEND: 

    Generate random target address Ad, and port Pd from specified range 

    Send packet P to target address 

    Sleep SLEEPRANGE microseconds 

  End For 

 

  Close UDP socket 

 

  packetsSent = packetsSent + PACKETS_TO_SEND 

 

  If packetsSent = MAXPACKETS: 

    Record send packets end time 

    Set sendPackets condition to 0 

    Set sendPacketsDone condition to 1 

    Broadcast sendPacketsDone condition 

    Continue to top of loop 

  End If   

 

  Wait on condition sendPacketsDone 

  threadsDone = threadsDone + 1 

 

  If threadsDone = MAXTHREADS: 

    Set threadsDone = 1 

    Set sendPacketsDone condition to 0 

    Set processPackets condition to 1 

    Signal processPackets condition 

  End If 

 

End Loop 

 

 

 

Figure 4.2-4 Pseudo-code for a Persistent Worm Thread 

 

The 100 UDP worm packets sent by the initial worm node are redirected to the IPQ by the 

IP Table rules.  The SCU retrieves each packet from the IPQ and determines if the destination 
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address is vulnerable to the infection.  If yes, then the address is added to the infected address 

list, the infected node count is incremented by 1, the packet is marked as accepted, and it is 

released to traverse the rest of the IP Table rules.  If no, the address is not added to the infected 

address list, the infected node count remains the same, the packet is marked as accepted, and it is 

released to traverse the rest of the IP Table rules.   

 After all of the incoming worm packets are processed, it is likely that the infected node 

count has increased.  The number of infected nodes will remain under 1,000 in the early time 

cycles.  While the infected node count remains under 1,000, the SCU creates and executes as 

many temporary worm threads as there are infected nodes.  Once the infected node count 

exceeds 1,000, then the persistent worm threads are used for every increment of 1000 infected 

nodes.  For example, if the total number of infected nodes is 26,860, then during each time cycle 

there would be 26 iterations where 1,000 persistent worm threads will send 100 packets each.  

That accounts for 26,000 infected nodes.  If the total number of infected nodes is not equally 

divisible by 1,000, then temporary worm threads are created to represent the excess number 

beyond the last increment of 1,000.  In this case, there are 860 infected nodes that remain, so 

during each time cycle an additional 860 temporary worm threads are created and run 

concurrently.  Those 860 temporary worm threads will send 100 packets each and exit. 

Recall that in the Wormulator, the LNS module was responsible for handling all incoming 

worm packets, examining each packet to determine if new nodes have been infected, keeping 

track of the worm traffic rate, and simulating network congestion.  It must do all of this while 

running concurrently with all of the other worm threads.   This meant that the LNS module was 

competing with thousands of threads for processing time.  As a result, the LNS module was 

running only a fraction of one percent of the time.  With so little time to perform its 
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responsibilities, the LNS could not possibly monitor the worm traffic rate accurately, nor could it 

remove the packets from the IPQ quick enough to avoid overflow.  To resolve this issue, the 

Improved Worm Simulator alternates the sending and receiving of packets on a per iteration 

basis.   

At the start of each iteration, all of the worm packets for that iteration are sent.  While the 

packets are being sent, the SCU waits on a condition signal.  After the last packets are sent, the 

worm thread that sent the last packet sends a signal to the SCU to wake up and process all of the 

packets in the IPQ.  Upon receiving the process packets signal, the SCU wakes up and begins 

processing the packets in the IPQ.  It examines each packet and determines if any new nodes are 

infected based on the destination address of each sent packet.   

The SCU also determines the current iteration‟s bandwidth threshold, which is the cut-off 

point for accepting new packets sent during the iteration.  The bandwidth threshold for an 

iteration is calculated using the following equation: 

 

                                       

                             
    

                                             

     
 

Equation 4.2-1 Bandwidth threshold for an iteration 

 

The first part of the equation determines how many packets per second are allotted to each 

iteration in the time cycle.   To determine the number of packets allotted for a particular iteration, 

you have to multiply the packets per second rate by the number of seconds it took to complete 

the iteration.  For example, if the NETWORK_BANDWIDTH is 2,000,000 packets per second, 
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and the number of iterations for the current cycle is 100, and the duration for the current iteration 

is 2500 milliseconds (2.5 seconds), then the iteration‟s bandwidth threshold is 50,000 packets. 

Implementing congestion control at the iteration level distributes the bandwidth limitation across 

all active worm nodes.  This approach achieves a more realistic behavior than cutting a time 

cycle short once the bandwidth is exceeded.   

After all of the packets are processed, the SCU then broadcasts a signal to inform all of 

the persistent worm threads to send the next batch of packets, thus beginning the next iteration.  

If needed, the last iteration might be handled by temporary worm threads, as explained earlier.  

The completion of the last iteration marks the end of the time cycle.  At the end of each time 

cycle, the following metrics are recorded by the SCU: 

 Worm Traffic Rate 

 Elapsed simulated real time 

 Infected Node Count 

 

The worm traffic rate is calculated using the following equation: 

 

                                              

                                                       
    

                 

      
 

Equation 4.2-2 Worm Traffic Rate 

 

Note that the denominator is not the total simulation time to complete a time cycle, rather it‟s the 

average of all the iteration times during a time cycle.   This is because all iterations in a time 
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cycle are considered to be running parallel to one another, along the same time line.  For 

example, if there are a hundred iterations in a time cycle, and each iteration takes 2 seconds to 

complete, then the total simulation time to complete the time cycle is 200 seconds, but the 

elapsed simulated real time for the time cycle is only 2 seconds.  The elapsed simulated real 

times will be used as the horizontal axis values in our simulation results given in the next section.  

The infected node counts are recorded at the end of each time cycle for the same reason that the 

worm traffic rates are recorded at the end of each time cycle. 

5 Simulation Setup and Results 
 

This section describes the simulation setup and presents some simulation results along with 

some analysis. 

5.1 Simulation Setup 
 

The current version of the Improved Worm Simulator was successfully built and ran on an 

Intel based PC running the Ubuntu Linux operating system, version 10.10.  To build and install 

the Improved Worm Simulator, the source code should be unzipped to a user home directory 

(e.g. /home/arnold) and then steps 1 through 3 of the INSTALL file should be followed.  There 

will be some build errors on the first few build attempts.  A couple of the errors have to do with 

some missing libraries, as explained in the INSTALL file.  Other build errors result from having 

invalid directory paths hardcoded in the lns.cpp source file.   

Steps 4 and 5 of the INSTALL file and some other system configurations are handled by 

the start_iws script.  The start_iws script is shown in Figure 5.1-1.   Line 3 increases the 

maximum number of threads that can be created in the system.  Lines 4-8 increase the sizes of 
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the ip_queue, socket receive buffer, and socket send buffer.  The default size settings are not 

sufficient to handle the number of packets that are sent and received during each iteration.  Line 

21 clears any previous iptables rules.   Line 24 sets an iptables rule that redirects all UDP packets 

destined for addresses between 10.0.0.0 and 10.255.255.255 to a user space queue – in this case, 

the IPQ.   With this address range, the simulation could simulate up to 16,581,375 potential 

target addresses.  Incidentally, this specific range was chosen because addresses with 10 as the 

first octet are local private addresses, thus reducing the chance that worm packets actually reach 

a real public address outside the private network.  Line 25 sets an iptables rule that redirects UDP 

packets destined for the localhost‟s loopback address to the IPQ.  Finally, line 29 executes the 

simulator. 

 

Figure 5.1-1 start_iws script 



31 
 

The following are configurable simulation settings that involve modifying the lns.cpp 

source file: 

 NETWORK_BANDWIDTH – maximum simulation bandwidth in packets per second.   

 RANGE2, RANGE3, RANGE4 – max values for the second, third, and fourth octets 

respectively in the randomly generated target addresses. 

 LOWPORT, HIGHPORT – establishes the vulnerable port range, a kludge way to 

implement infection probability.   

 MAXTHREADS – number of persistent worm threads to create at startup. 

 PACKETS_TO_SEND – number of packets that each worm thread sends during each 

time cycle. 

 SLEEP_RANGE – number of microseconds to sleep between packets.  This is to 

simulate some sense of path delay. 

 

For the simulator to run properly, the network interface card on the host machine must be 

enabled and connected.  This is perfectly safe, since the worm packets never get beyond the 

network interface card – they are looped back.  To start the simulator, the start_iws script must 

be run.  At this point, the simulator outputs a few messages and then waits for the initial worm 

packet.  To actually begin the worm spread the worm_spread.pl script must be run.   CTRL-C is 

used to terminate the simulation. 

  

5.2 Simulation Results and Analysis 
 

Before the results are presented, the output of the simulations must be explained.   Figure 

5.2-1 shows a sample of the output generated by a simulation run.   Lines with 5 comma 

separated values represent the worm traffic and timing metrics for a particular iteration.  The first 
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value is the current cycle number.  The second value is the current iteration number and the total 

iterations for the current cycle, separated by a colon.  The third value is the elapsed “real” time 

for that iteration, measured in milliseconds.  The fourth value is the total number of packets sent 

during that iteration.  The last value is the total number of packets that were accepted during that 

iteration.  If the last value is less than the fourth value, this indicates that the bandwidth threshold 

was exceeded and congestion control measures were taken.   Each line that starts with “Infected 

Node Count” represents the total number of nodes that have been infected thus far. 

. 

. 

12, 70:74, 2546, 100000, 100000 

12, 71:74, 2467, 100000, 98681 

12, 72:74, 2486, 100000, 99441 

12, 73:74, 2470, 100000, 98801 

12, 74:74, 1075, 25300, 25300 

 

Infected Node Count 93786 

 

13, 1:94, 2479, 100000, 76850 

13, 2:94, 2442, 100000, 75703 

13, 3:94, 2457, 100000, 76168 

13, 4:94, 2424, 100000, 75145 

13, 5:94, 2427, 100000, 75238 

13, 6:94, 2485, 100000, 77036 

13, 7:94, 2501, 100000, 77532 

13, 8:94, 2406, 100000, 74587 

13, 9:94, 2518, 100000, 78059 

. 

. 

 

Figure 5.2-1  Simulation output 

 

To facilitate the charting of the results, the simulation output is also collected in two files 

located in the /home/user/Files directory.   One file is named traffic.csv, which contains the 

traffic metrics.  The other file is named inc.txt, which contains the infected node count data.   
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To demonstrate the Improved Worm Simulator‟s capability to correctly model the behavior 

of a uniform random scanning worm like the SQL Slammer worm, the results of three different 

simulation runs are presented here.  Each simulation is run with a different network size and 

bandwidth limit combination.  The number of vulnerable hosts is approximately the same in each 

simulation – around 100,000. 

Two charts are associated with each simulation run.  The first chart plots the worm traffic 

rate in packets per second against the elapsed time in seconds.  The second chart plots the 

infected node count against the elapsed time in seconds.   There are a total of 6 charts, 2 for each 

simulation. 

 

Figure 5.2-2 Worm Traffic Rate – 1M Hosts, 100K Vulnerable, 2M Bandwidth 
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Figure 5.2-3 Infected Node Count – 1M Hosts, 100K Vulnerable, 2M Bandwidth 

 

The results of the first simulation run are shown in Figures 5.2-2 and 5.2-3.  This first 

simulation is configured with a network size of 1 million potential target hosts, with 

approximately 100,000 of them being vulnerable to the attack.  The bandwidth limit for this 

simulation is set at 2 million packets per second, which is equivalent to what a 7200-NPE-G2 

Cisco router can handle [21].   

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 5 10 15 20

In
fe

ct
ed

 N
o

d
e

 C
o

u
n

t

Elapsed Time (seconds)

Infected Node Count
network size = 1,000,048 hosts

max vulnerable  = 100,049 hosts
bandwidth limit = 2,000,000 pps



35 
 

Both the worm traffic rate and the infected node count plots exhibit the classic logistic 

form of the SQL Slammer worm, where the rate stays relatively low in the early stages and then 

grows exponentially for a period of time before leveling off at the bandwidth limit.   

 

 

Figure 5.2-4 Worm Traffic Rate – 2M Hosts, 100K Vulnerable, 3M Bandwidth 
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Figure 5.2-5 Infected Node Count – 2M Hosts, 100K Vulnerable, 3M Bandwidth 

 

The second simulation‟s results are shown in Figures 5.2-4 and 5.2-5.   For this simulation 

the network size is increased to a little over 2 million potential target hosts, and the bandwidth 

limit is increased to 3 million packets per second.  With the network size doubled, the infection 

probability is essentially halved.  This results in slower growth in both the worm traffic rate and 

infected node count.  The slower growth in the worm traffic rate is hard to distinguish because of 

the scale of the vertical axis in Figure 5.2-4.  The difference can really be seen in the infected 

node count growth.  In the first simulation, at close to the 12 second mark, the infected node 

count is already at its max of 100,000.  Whereas in the second simulation, the infected node 

count is only 45,000 at around the 12 second mark. 
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Figure 5.2-6 Worm Traffic Rate – 5M Hosts, 100K Vulnerable, 3M Bandwidth 
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Figure 5.2-7 Infected Node Count – 5M Hosts, 100K Vulnerable, 3M Bandwidth 
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bandwidth.  Simulation 3 takes more than double the time as simulation 2 to reach maximum 

infection rate.  

 In all three simulations the worm spread is extremely fast – as evidenced by the very short 

total elapsed time in each simulation.  There are a couple of reasons for this.  Number one, the 

simulated target address range is extremely small compared to the entire Internet address range 

used by the real SQL Slammer worm.  Number two, varying path delays, bottlenecks, varying 

network bandwidths, and other network limitations are not taken into account in the simulation.  

 

5.3 Performance 
 

The simulations were run on a machine equipped with a 3.73 GHz dual-core processor and 

2 GB of physical memory.  Running 1,000 concurrent threads on this machine consumed a max 

of 400 MB of physical memory and fluctuated between 30-78% processor utilization.  With 

these performance metrics, the simulation slows the computer a little during peak processor 

usage; otherwise the computer had no problems performing other typical tasks while the 

simulation was running.   

The simulation timescale factor turned out to be closer to 140 to 1, instead of the 

theoretical 100 to 1 timescale factor mentioned in the implementation section.  For example, 

simulation 1 took 46 minutes to simulate 20 seconds.   The 100 to 1 timescale factor suggested 

earlier did not account for the time it would take for the SCU to examine all of the packets on the 

IPQ during the dequeuing phase of each iteration.   
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6 Future Work 
 

The Improved Worm Simulator can be used as a foundation for further work in resource 

limited packet level worm simulation.   Several improvements are suggested here.  The Improved 

Worm Simulator can technically simulate large scale networks with millions of potential targets, 

but it is still not practical to simulate more than a couple hundred thousand active worm nodes.  

An obvious improvement would be to distribute the simulation workload across many physical 

hosts.  However, to keep in line with the affordability and accessibility goals mentioned earlier, it 

is suggested that the number of physical hosts be limited to 3 to 5 physical hosts.    

The Improved Worm Simulator is flexible and scalable, but it also simplifies many aspects 

of a real network.  It does not account for things such as network topology, path delays, and 

varying bandwidths across the network.  These network characteristics can be stored in a local 

database, where it can be quickly queried and used to simulate a more realistic network.   

Another thing that the Improved Worm Simulator does not account for is competing network 

traffic.  For this, a separate physical host can be dedicated to send packets representing 

competing network traffic.   

 Another improvement that can be made is to make the simulation more portable.   

Currently, the Improved Worm Simulator is implemented for the Linux platform only.  Although 

the simulator is written entirely in C++, the simulator has a high dependency on the use of the 

libipq library, which is implemented for the Linux kernel only.   Because of this high 

dependency on the libipq library, making the Improved Worm Simulator portable might be a 

substantial undertaking.  However, it would definitely be worth considering. 
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7 Conclusion 
 

Attempting to implement a worm simulator that can be run on a single machine proved to be 

a challenge given the complexities of multi-thread programming and the limited memory and 

processor resources.  However, the implementation of the Improved Worm Simulator was a 

success.  The simulation results showed that the Improved Worm Simulator is able to scale to at 

least 100,000 active worm nodes, and that it correctly models the behavior of the SQL Slammer 

worm.   

The Improved Worm Simulator is highly configurable and scalable.  The scalability, 

however, is really dependent upon the patience and time constraints of the user.   If the user can 

tolerate hours or even days of simulation time, then the Improved Worm Simulator can scale to 

hundreds of thousands of infected nodes – perhaps even a million.  If the user cannot afford long 

simulation times, then the Improved Worm Simulator can still manage a reasonable scale of at 

least 100,000 infected nodes.   

In its current form, the Improved Worm Simulator can easily be used for instructional 

purposes.  Students can experiment with various configurations and observe the resulting 

changes in worm behavior.   Students can also modify the code to model other types of worms.  

The Improved Worm Simulator can be used as a research tool as well.  Researchers can use the 

current framework to implement and test various defensive strategies against various worm 

spread models. 
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