
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-2010

Online Application Monitoring Tool
Sathya Anandan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the OS and Networks Commons, and the Other Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Anandan, Sathya, "Online Application Monitoring Tool" (2010). Master's Projects. 7.
DOI: https://doi.org/10.31979/etd.wjv2-s7jb
https://scholarworks.sjsu.edu/etd_projects/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/7?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

Online Application Monitoring Tool

A Project
Presented to

The Faculty of the Department of Computer Science
San José State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science
By

Sathya Anandan
 Dec 15, 2010

ii

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

ONLINE APPLICATION MONITORING TOOL
by

Sathya Anandan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp Department of Computer Science Date

 Dr. Agustin Araya Department of Computer Science Date

Mr. Elangovan Kulandaivelu Apple Inc., Date

APPROVED FOR THE UNIVERSITY

 Associate Dean Office of Graduate Studies and Research Date

iii

ABSTRACT

In some classes, students take online tests and some types of network activity (for example trying

to find the answers in www.google.com) will be considered as cheating during the exam. It

would be useful if instructor could monitor online activities of each student to detect cheating.

The goal of this project is to develop such a tool using client/server architecture. Tool should

display the student's hostname and the website visited during unauthorized web activity.

Professor should able to see the applications opened by all students and he will have an option to

view the log files of all the students during the session and also at the end of the session. The tool

will display the student's hostname during login and logout from the network.

iv

ACKNOWLEDGEMENTS

I would like to thank my project advisor Dr. Mark Stamp for his guidance and insights

throughout the project. I would also like to thank my committee member Dr. Agustin Araya

for providing me with his valuable feedback.

I specially like to thank my husband Guna, parents, and brother for their encouragement and

motivation throughout the Masters program.

v

Table of Contents

1. Introduction ... 1

2. Monitoring Tools .. 2

2.1. Wireshark ... 2

2.1.1. Purposes of Wireshark .. 2

2.1.2. Features of Wireshark ... 3

2.1.3 Wireshark does not do the following ... 3

2.1.4 Snapshot of Wireshark ... 3

2.1.5. Remote Capture Interfaces: ... 4

2.1.6. Drawbacks of Wireshark ... 7

2.2. Kismet .. 7

2.3. Developing Our Own Tool .. 8

3. High Level Design .. 8

4. Requirements .. 10

4.1. Wireless USB Router ... 10

4.2. Student Requirements .. 10

4.3. Professor Requirements ... 11

5. Explanation of the Tools ... 12

5.1. Client Program ... 12

5.2. Server Program .. 14

5.2.1. Manual Refresh of Client Machines ... 14

5.2.1. View Applications Opened by Students ... 15

5.2.3. Black List GUI .. 16

5.2.4. White List GUI ... 17

5.2.5. Log File ... 18

5.2.9. Pop-up for Black Listed Website .. 23

5.2.10. Pop-up for Whitelisted Websites .. 24

5.2.11. Exit .. 25

6. Possible Attacks .. 26

7. Solution ... 27

7.1. Auto Refresh .. 27

8. Testing .. 29

vi

9. Conclusions and Future Work... 32

10. References ... 33

vii

List of Figures:

Figure 1: Snapshot of Wireshark packet capturing. .. 4

Figure 2: In remote machine rpcapd.exe is running. ... 5

Figure 3: Machine A gives IP address of Machine B ... 6

Figure 4: Machine B opens Google and the packet is captured in Machine A ... 7

Figure 5:General Block Diagram. ... 8

Figure 6: User Interface of the Monitoring Tool. ... 9

Figure 7: Running clients are shown in the monitoring tool. .. 14

Figure 8: Professor Viewing the Application Details of Particular Student ... 15

Figure 9: BlackList to update the header of the applications and website. ... 17

Figure 10: White List to update the header of the applications and website. ... 18

Figure 11: Log List during the session once clicked on the View log File. .. 19

Figure 12: Professor selects particular client machine. ... 20

Figure 13: Log list after the session. ... 21

Figure 14: Screenshot for the BlackList Website pop-ups .. 24

Figure 15: Screenshot for the Whitelisted Website Pop-ups .. 25

Figure 16: Pop-up to show the Student Logged In ... 28

Figure 17: Pop-up to show the Student Logged Out. .. 28

viii

List of Tables:

Table 1: Activities performed by students. .. 31

Table 2: Activities performed by professor. ... 32

1

1. Introduction

Today, in many university classes, students take some tests during class hours using their own

laptop computers. Often, it is necessary for students to have Internet access to, for example,

obtain the test paper, access test-specific online resources, and turn in the completed test. There

are many ways that students can attempt to cheat on such a test. For example, a student can visit

websites to search for answers, or a student can chat online with other students or friends to

discuss possible solutions.

There is no easy way for a professor to detect such cheating. When a professor approaches a

cheating student, the student can easily close a window to hide unauthorized activity. A professor

could randomly spot-check student laptops during the test, but this is likely to be disruptive and

might miss many cases of cheating.

In this paper, we propose a solution for detecting cheating under such a scenario. We have

developed a tool that alerts the professor whenever a student visits a forbidden website or

performs other unauthorized online activity. Using our tool, the professor can specify a black list

and/or a white list. In the black list, the professor will have a list of websites that students should

not visit during the exam. In contrast, the white list contains website addresses that the students

are specifically allowed to visit during the exam. For example, students might be allowed to

access the computer science department website to download the test and to upload their

solutions, but Google might be strictly off limits. The tool monitors the students’ machines and

gives the professor a warning message when the student is trying to perform some unauthorized

activity. A warning is also provided if a student disconnects from the wireless access point,

which prevents someone from simply using a different access point for cheating. The tool also

displays all the applications and websites accessed by the students.

Next, we discuss Wireshark [2.1] and Kismet [2.2], which are two online monitoring tools. We

mention some of the problems inherent in attempting to use these tools in classroom monitoring.

Then we discuss the design, development, and implementation of our new tool. Then we discuss

2

some experimental results obtained when testing the tool in a classroom setting. Finally, we

explore possible weaknesses in our approach by considering specific attacks that can be

performed by students. Finally, we consider potential future work that might further improve our

online monitoring tool.

2. Monitoring Tools

2.1. Wireshark

Wireshark is a network packet analyzer which will seek to capture network packets and will

display the packets in detail, such as packet number, protocol name, source address, and

destination address [1]. In past decades, these kinds of tools were very expensive but nowadays

the Wireshark is available as an open source [1].

By using the IP address of student computers, an instructor can monitor the online activity

through a Wireless Access Point (WAP). For the students to access the internet, the wireless

network should be connected to a wired network via a WAP [2].

Our assumption is that students and the instructor will be connected to the internet through the

same WAP [4]. Each student will have a different IP address for their system [4]. Wireshark

must be installed on the instructor’s computer and he must know the IP addresses of each

student’s computer. The instructor can then filter the IP addresses of his students’ computers in

the monitored IP traffic using Wireshark and find out whether they are cheating or not based on

the IP traffic[2].

2.1.1. Purposes of Wireshark

Wireshark is used for various purposes by engineers, developers, and network administrators.

Some examples of Wireshark use are as follows.

• Troubleshoot network problems by network administrators.

• Observe security problems by network security engineers.

• Debug protocol implementations by developers.

• Study network protocol internals by individuals.

3

2.1.2. Features of Wireshark

Features provided by Wireshark are as follows.

• Live network packet has been captured from the network interface.

• Each and every packet has been displayed with the detailed protocol information.

• Packets that have been captured can be saved and opened later. Filter packets

based on specific criteria. For example, filter packets based on the protocol.

• Colorize the packet display based on filters.

2.1.3 Wireshark does not do the following

• Wireshark is not an Intrusion Detection System [1]. For example, if someone

changes network activity or do something to the network which they are not allowed to

do, then Wirehsark will not give any alert message.

• Wireshark does not manipulate things over the network. For example, it does not

send packets over the network.

2.1.4 Snapshot of Wireshark

A snapshot of Wireshark Live Packet Capturing is shown in Figure1.

4

Figure 1: Snapshot of Wireshark packet capturing.

2.1.5. Remote Capture Interfaces:

Wireshark can capture remote packet data [1]. One of the major requirements for the remote

capture interface is that the target machine Remote Capture Protocol (rcapd.exe) service must be

running. Remote Capture Protocol must be started from the control panel [1].

For example, suppose there are three machines, Machine A, Machine B, Machine C. All three A,

B, and C are connected to the same network. Machine A will have Wireshark running and

Machine B will have WinPcap and rpcapd.exe files running, as shown in Figure 2. The machines

have the following IP addresses.

Machine A IP address 192.168.0.100

Machine B with WinPcap and rpcapd.exe IP address 192.168.0.101

Machine C IP address 192.168.0.102

5

Gateway for all three machines 192.168.0.1

Now Machine A will give the IP address in the remote interface of Machine B in which

rpcapd.exe is running, as shown in Figure 3.

Machine B opens www.google.com then, in Machine A, the Wireshark captures the packets and

the snapshot is shown in Figure 4. Once Machine A has been connected to the network using one

remote machine it can see all the machines connected to the same network. Machine C opens

www.google.com and the packet is captured by Machine A, as shown in Figure 5.

Figure 2: In remote machine rpcapd.exe is running.

6

Figure 3: Machine A gives IP address of Machine B

7

Figure 4: Machine B opens Google and the packet is captured in Machine A

2.1.6. Drawbacks of Wireshark

Wireshark captures the network packets and will display them, but it does have the following

disadvantages:

• Wireshark is an open source tool, so it is hard to implement and integrate with our

own plug-in.

• Wireshark is not user-friendly in our application because it is difficult to keep

track of the activity of every student.

2.2. Kismet

Kismet is a 802.11 (802.11a, 802.11b, 802.11g, 802.11n) wireless detector, packet sniffer, and

Intrusion Detection System. Kismet can be used to work with any wireless card [5].

For layer 2 and layer 3 attacks Kismet provides stateful and stateless IDs. An advantage of

Kismet is that it costs nothing. Disadvantages of Kismet include an interface that is not user

friendly [15] and difficult to implement and integrate with our own plug-in.

8

2.3. Developing Our Own Tool

We have developed an online monitoring tool using client/server architecture [6] in Java. The

goal of this tool is to identify cheating students in a manner that is easily managed by the

professor.

3. High Level Design

A general block diagram describing the activities performed by students, professor, and tool is

shown in the below figure.

Figure 5:General Block Diagram.

Our tool will have separate programs for the students and the professor. Students will install the

client-side program (for example batch program) and they will execute the program after they are

connected to the network [9]. The program invokes the remote machines. The monitoring tool is

installed in the instructor’s machine. Once the instructor is connected to the network, he will

9

execute the tool. The instructor will be able to see student machines that are connected to the

network with their host name. When connecting to the network for the first time, students will

need to supply the instructor with the host name for identification. The user interface of the tool

is shown in the Figure 6.

Figure 6: User Interface of the Monitoring Tool.

Our tool will have a user interface with the client running (student’s host name) connected to a

particular class SSID supplied by the professor. The professor can view the applications running

on each individual student’s machine. The professor has the option to add or update the black

listed websites and white listed website.

The professor can view student activities from earlier in the session using the View Log File.

The View Log File displays the student hostnames and the professor can access a given student’s

activity by clicking on their hostname. There is a Refresh option which allows the instructor to

refresh and see current activity, for instance, if someone has entered into the network or if

someone has left the network.

10

The professor can select either black listed or white listed sites. When the tool is started it will

have “Blacklisted” selected by default. If any student visits a black listed website a pop-up will

open in the professor’s machine with the student’s name and the black listed website name. If the

instructor selects the “Whitelisted” option then a pop-up will open in the instructor’s machine

with the student’s name and the non-white listed website name..

A log file will be created for each session showing the student’s network activity, and it will be

saved in the professor’s machine. If the instructor wants to see all network activity of a particular

student after the session is over, then he can view the log file at any time [18].

4. Requirements

4.1. Wireless USB Router

The client and server machines need to be connected to the same gateway. In order to connect to

the same gateway, we are using a wireless USB router [7] called Windy31. We plug the

Windy31 into the professor’s machine, which is connected to the internet. We create an SSID

[20] and password for our wireless USB router and ask the students to connect to the same SSID

using the provided password [16].

4.2. Student Requirements

In order to run the tool successfully students should have the following requirements.

Requirement 1:

Students should have Windows OS.

Requirement 2:

Students will need to connect to the SSID which was given by the professor. Once they are

connected, they should type the “Net View” [8] command in their command prompt. Students

should be able to see the host name of their computer and other computers that are connected to

the network.

The following steps should be followed by the students to enable file sharing:

1. Turn off Windows Firewall during class hours.

11

2. If antivirus software prevents sharing, it will need to be turned off during class time. For

example, turn off the Firewall in MacAfee Antivirus.

3. In Network Places turn on the option of file sharing within the network.

4. The WorkGroup of your computer has to be MSHOME. To verify this, right click on My

Computer and click on Properties. If the WorkGroup is not MSHOME then edit the WorkGroup.

Also make sure your computer name is in your name or is otherwise easily identifiable as yours.

5. Now type the “Net View” command at the command prompt.

Requirement 3

Students should have Java installed on their machine.

Requirement 4

Students should run the program given to them by the professor.

4.3. Professor Requirements

The professor should follow the requirements given below in order to run the tool in his machine

and monitor the student machines.

Requirement 1

Professor should be running Windows OS.

Requirement 2

The professor will connect to the internet using Windy31 and create the SSID and password to

give to the students.

Requirement 3

Type the “Net View” command and make sure you can see your host name and all student host

names. The steps below should be followed to ensure that students and professor are connected

to the same WorkGroup and to enable file sharing.

1. Windows Firewall will need to be disabled during class hours.

2. If antivirus software is preventing the option of sharing to the network, please it turn it off

during class time. For example, turn off the Firwall in MacAfee Antivirus.

3. In the Network and Sharing Center “turn on” the option of file sharing within the network

[14].

4. WorkGroup has to be MSHOME. To verify this, right click on My Computer and click on

Properties. If the WorkGroup is not MSHOME then edit the WorkGroup [14]. Also make sure

your computer name is in your name or is easily identifiable as belonging to you.

12

5. Type the “Net View” command in the command prompt.

Requirement 4

The professor should have Java installed in the machine.

Requirement 5

The professor should have Microsoft Office 2007 installed in the machine.

Requirement 6

Run the server side program.

5. Explanation of the Tools

5.1. Client Program

In order to get the applications running on the client machines we use the getApplication method

to retrieve the information. We use tasklist.exe to get the running processes of the client

machine. This getApplication method retrieves a list of all the applications and their header

names running on the student’s machine. It keeps all the header names in an array list and returns

to the caller of this method whenever needed.

13

We also create the RMI registry in the main method by using createRegistry with port no 1099

and bind with the client class. So when a student executes the client program, everything will be

done in an instant.

In order to make client class remote class, client program implements the following.

14

5.2. Server Program

In server program, we have to see all the client machines that are connected to the network. To

do this we use the “Net View” command to retrieve a list of all computers connected to the

gateway.

In order to get the list of client machines that executes the client program we use Naming.lookup

method to get the remote object of the client machine. If a client machine is connected to the

same gateway and running RMI, it will be stored in the clientList array. If the client machines

are connected to the same gateway but not running the RMI, nothing will be stored.

Once we get the client list, all client machines will be listed in our tool.

Figure 7: Running clients are shown in the monitoring tool.

5.2.1. Manual Refresh of Client Machines

In our tool we have the Refresh command button, which is used to refresh the clients running.

This is the manual refresh, which is used by the professor when he wants to see the updated

client list.

15

5.2.1. View Applications Opened by Students

If a professor wants to see what applications are opened by a particular student then, once the

client list has been created, he can double click on the particular client machine’s name. In order

to get the applications running from the particular client machine, we use getApplication with

one parameter. This method is called when the professor double clicks on the particular student

machine’s name. When we pass the host name, this method gets the list of all application headers

running in that particular machine.

Figure 8: Professor Viewing the Application Details of Particular Student

16

Application Running will have all the applications and websites running and Website Running

will show only the websites that are running. When a professor is viewing the applications

opened by a student, it should refresh each time. For example every 10 seconds the Application

Running must be refreshed otherwise it would still be showing the same applications as when

professor clicked on the particular client (student) machine name. The listRefresh() method is

used to automaticly refresh the applications. We call getItem method of clientList to get the

client (student) name selected by the professor. We use the getApplication method to get the list

of application names running in the selected client, in order to pass in the parameter. The

following code is used to auto refresh the applications running on the selected client (student)

machine.

5.2.3. Black List GUI

In our tool we use the Blacklist command button to update the black list. Once we click on the

Blacklist command button the small frame will be invoked, as shown in Figure 9.

17

Figure 9: BlackList to update the header of the applications and website.

We can add the websites or the application name that the students are not supposed to open to the

black list. Once we have given the list we can update it. When we click on the Update command

button we call the method named createInsertQuery and hide the current GUI.

.

5.2.4. White List GUI

In our tool we also have the white list command button to update the white list. Once we click

on the white list command button the small frame will be invoked as shown in the Figure.

18

Figure 10: White List to update the header of the applications and website.

We can give the website or application names on the list which the students are allowed to open.

Once we have given the list then we can update it. When we click on the Update command

button we call the method named createInsertQuery and hide the current GUI in the same

manner as the black list command button.

5.2.5. Log File

The log file will show every activity performed by each student. The professor will have the

option to view the log files during class time while running the tool or after the class. If the

professor wants to view the log file during the session he can do so by clicking View Log Files

and the following code will be executed.

19

A small window will be opened which displays all the client (student) machines that are

connected to the network, as shown in figure 11.

Figure 11: Log List during the session once clicked on the View log File.

20

If the professor clicks on a particular machine then the following code will be called to display

the activities performed by that student, as shown in figure 12.

Figure 12: Professor selects particular client machine.

When a professor is looking into the log file he has an option to refresh and update the tool. The

following code will be executed in order to update the tool.

21

To exit the log file the professor clicks on the Exit command button, at which point the following

code will be executed and the log view GUI will be hidden.

If the professor wants to see a particular student’s log file after the session has ended, he can still

do so. While the tool is running it will create a folder called students_log in C drive. This folder

will have a separate text file for each client, with their host name, which is shown in the Running

Client when the tool is running.

Figure 13: Log list after the session.

22

Each text file will record all the activities performed by a particular client (student) with the date

and time.

5.2.8. Database

5.2.8.1. Database Connectivity

For our tool we are using Microsoft Access for the database where our black list and white list

will be saved. The following getconnection() method is used for getting the database

connectivity.

5.2.8.2. Commit the Database

We use comitIT(), which is commit method to do the commit operation in the database. After

every query we have to call commit method to ensure all changes have been done.

5.2.8.3. Terminate Database Connectivity

In order to close the connectivity we use the following method closeIT().

23

5.2.9. Pop-up for Black Listed Website

If a professor has instructed students not to open certain websites, and if they open those

websites, then the professor should receive a notification with the student host name and website

address. By default we start our tool with the Blacklist radio button selected.

Once the client (student) machines are connected to our tool, it will check for the header’s name,

which is in the black list in the each client machine and is displayed in Running Clients. If it

matches with the list, then it will open the pop-up. At the same time, if three client (student)

machines open black listed websites, then the pop-up will be shown for all three machines.

If Blacklist is selected then the following code is used for getting the connection with the

database and fetch method is called with the select query.

The following code is used to show the pop-up whenever a client (student) opens a black listed

website.

24

Figure 14: Screenshot for the BlackList Website pop-ups

5.2.10. Pop-up for Whitelisted Websites

If a professor has instructed students that they can open certain websites and if they open

websites other than those permitted, the professor will receive a notification containing the

student host name and website address. Once the client (student) machines are connected to our

tool, it will check for the header name, which is in the white list in the each client machine. This

is displayed in Running Clients. If it doesn’t match with the white list then, it display the pop-

up. Even if three students access websites other than the white list, the professor will get three

pop-ups with the student host names and website addresses.

When the white list is selected the following code is used for establishing connection with the

database, and fetch method is called with select query.

25

The following code is used to show a pop-up whenever a client (student) opens a website other

than those on the white list.

Figure 15: Screenshot for the Whitelisted Website Pop-ups

5.2.11. Exit

When a professor is done with the tool, then he clicks on the Exit command button to close it.

The following code is used for the Exit command button.

26

6. Possible Attacks

There are some ways by which students can still cheat the tool. Possible attacks are given below.

1. Because students have to connect to the same network where the professor will give the SSID,

a student could disconnect from the SSID given by the professor and connect to a different SSID,

look for the answer, and then connect to the same SSID that was given by the professor.

For example, suppose the professor gave the SSID “TEST” to the students. Students connect to

the “TEST” SSID and run the client-side program. The professor would be able to see the

student’s host name in the tool. Students can then disconnect from the “TEST” SSID and connect

to a different SSID.

2. The tool is getting the applications or websites which are running from the task manager. If

the student changes the name of the application, then the task manager will also have the same

name that was given by the student.

For example, a student has changed the name of “Internet Explorer” to some other name, such as

“FAKE,” then the task manager will also have the same name.

3. If a student has two wireless cards in the laptop, then he can connect one wireless card to the

SSID given by the professor and another one to any other network, and find the answers.

Suppose the professor gave the SSID of “TEST” to the students. If Student8 has two wireless

cards in his laptop, he can connect to “TEST” and run the client-side program. The professor

continues to see the Student8 host name on the tool. By using another wireless card, the student

can then connect to a different network and find the answers.

27

7. Solution

7.1. Auto Refresh

One of the solutions for the attack when a student leaves the SSID given by the professor is to

auto refresh the client (student) machines. Whenever students connect to the SSID given by the

professor, the professor will be notified. For example, hostname has logged in. If any client goes

off, the professor will be notified. For example, hostname has logged out.

We call getItem method of clientList to get the currently connected client names. The clients,

that are already connected and shown in Running Clients will be placed in an array list. Once we

refresh, we put them in a separate array list. We compare both the array lists to check for new

client machines or if any client machine is missing. If there is a new client machine, then there

will be a pop-up showing “logged in.” If any client is missing then there will be a pop-up

showing “logged out.” The following code is used for client auto refresh.

28

Figure 16: Pop-up to show the Student Logged In

Figure 17: Pop-up to show the Student Logged Out.

While doing auto refresh, we have to change the NegativeCacheTime to one second. The server

will be holding the NegativeCacheTime for some minutes by default [10]. We need to refresh

very frequently, so we add the NegativeCacheTime as one second in the system registry.

29

Steps to change or add the NegativeCacheTime is as follows:

1.Goto start menu, click on run, and type regedit. [11]

2.Once the Registory Editory is opened then goto

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSetServices\Dnscache\Parameters [12].

3.If the NegativeCacheTime is not there, then build a new DWORD as NegativeCacheTime.

4. Then change the value to 1 sec. [13]

The above steps are used to increase system speed when the client machine logs in or logs off.

8. Testing

We did the testing in one class to find out the efficiency of the tool. Testing of the major features

is described below.

Viewing List of Student Computers in the Command Prompt

The professor provides the SSID and the other requirements to the students to connect to the

network and gives the “Net View” command in the command prompt. The list of students who

are connected to the SSID is shown.

Executing the Tool

Students start the client-side program and the professor starts the server-side program. The tool

is opened in the professor’s machine with the clients running. A pop-up will appear showing the

student host names of any who started the client late.

Updating the Black List and White List

The professor clicks on the black list, and once the pop-up is shown, he updates the list. He

updates the white list in the same manner.

30

Select the List

Pop-ups will be shown on the professors’ screen based upon which list is selected.

View the Log File

The professor clicks on the log file and on the particular student’s host name. This displays all

the activities performed by the student.

The below table shows the activities performed by students and the corresponding system result.

No. Students Activities Online Monitoring

Tool Response

Pass/Fail

1. Students connect to the

SSID which was given

by the professor and

run the client side

program

 Pass

2. Student (Hostname:

Student5) came late to

the class, connects to

the SSID and runs the

client-side program.

Should show the pop-

up that, “Student5

logged in. “

Pass

3. Student9 opens a black

listed website

There should be a pop-

up that “Student9 has

opened the website

name.”

Pass

4. Student2 disconnected

from the SSID which

was given by the

professor and

connected to a different

SSID.

There should be a pop-

up that, “Student2

Logged Out.”

Pass

31

5. Student7 opened the

website other than from

the white listed.

There should be a pop-

up that, “Student7

opened the website

name’.

Pass

6. Student1 Closed the

client-side program.

There should be a pop-

up that, “Student1

Logged Out.”

Pass

Table 1: Activities performed by students.

The Table below shows the activities performed by the professor and the corresponding system

response.

No Professor Activities Online Monitoring

Tool Response

Pass/Fail

1. Professor runs the

server-side program.

Tool should open with

the Blacklist option

selected.

It should have the list

of the Clients Running,

which was started

before starting the

server program.

Pass

2. Professor clicks on the

Blacklist button.

Small window should

open to enter the

website header name.

Pass

3. Professor clicks update

on the small window.

The list should be

saved in the tool.

Pass

4. Professor double clicks

on the Student5 on the

Clients Running.

In the Applications

Running it should show

the applications and

websites opened by the

student.

Pass

32

5. Professor clicks on the

View Log button.

Window must have

opened with the list of

students connected.

Pass

6. Professor clicks on a

particular student file.

It will show all the

details from the

student.

Pass

7. Professor clicks on the

Whitelist button.

Small Window show

open to enter the

header name of the

website address.

Pass

8. Professor clicks on the

update button from the

list.

The list should be

saved in the tool.

Pass

9. Professor clicks on the

refresh button.

Tool will refresh and

give you the updated

Clients Running.

Pass

10. Once the class is over

the professor can see

the Log File from the

C:\Student_Log.

There should be

separate NotePad with

each student name.

Pass

11. Professor clicks on the

particular student

name.

It should display all the

activities performed by

the student during the

test.

Pass

Table 2: Activities performed by professor.

9. Conclusions and Future Work

The goal of this project is to catch students when they try to cheat during computer testing. So by

using the Blacklist and Whitelist buttons, professor can determine for students are cheating

during the exam. The professor can also see what a particular student is doing during the entire

class by using the log file during or after the session.

33

Our tool only works for the Microsoft Windows Operating System. We should develop a tool

that will work for all operating systems, such as Linux and Mac OS [19].

There should be a tool that can retrieve information from highly protected client (student)

machines.

We should be able to get the information without asking the students to execute the programs.

Basically, students shouldn’t have any knowledge that the professor is monitoring their online

activities, or how that monitoring is being carried out.

The tool should work if the student is connected to the network without requiring the student to

connect to a specific gateway.

10. References

[1] Ulf Lamping, Richard Sharpe, Ed Warnicke, (2004-2008). Wireshark User's Guide 31757 for

Wireshark 1.2.

[2] Gerald Combs, Lead Developer, Wireshark Director, CACE technologies, (2009).

Introduction to Wireshark

http://media-2.cacetech.com/video/wireshark/introduction-to-wireshark/

[3] R. Philip, (2007). Securing wireless networks from ARP cache poisoning.

http://www.cs.sjsu.edu/faculty/stamp/students/Roney298report.pdf

[4] Larry L Peterson, and Bruce S. Davie, (2007). Computer Networks A System

Approach.USA:Morgan Kaufmann Publication.

[5] Kismet Documentation.

http://www.kismetwireless.net/documentation.shtml

[6] Client Server Architecture

 http://www.utdallas.edu/~chung/SA/2client.pdf

[7] Windy 31

http://www.synetusa.com/

[8] Windows Product Documentation: Net View

34

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-

us/net_view.mspx?mfr=true

[9] Remote Method Invocation:

 http://java.sun.com/developer/onlineTraining/rmi/RMI.html

[10] Clear Windows DNS cache

http://www.tech-recipes.com/rx/233/clear_windows_dns_cache/

[11] Beginners Guides: The Registry: Backups, Repairs, and Protection

http://www.pcstats.com/articleview.cfm?articleID=263

[12] How to make your windows run super fast

http://www.ihackintosh.com/2009/03/how-to-make-your-windows-run-superfast/]

[13] How to flush DNS

http://www.tech-faq.com/how-to-flush-dns.html

[14] Sharing files in the network

http://www.howtogeek.com/howto/windows-7/share-files-and-printers-between-windows-7-and-

xp/

[15] Focus on Security.An Overview of Non-Commercial Software for Network Administration.

http://uccsc2009.ucdavis.edu/preso/NomuraUCCSC09.ppt

[16] Portable Wireless USB Router : DigInfo

http://www.youtube.com/watch?v=JQ4qZ9Dgq3I

[17] Mark Stamp, (2009). Information Security Principles and Practice, exam questions and

answer.

[18] Larry L Peterson, and Bruce S. Davie, (2007). Computer Networks A System

Approach.USA:Morgan Kaufmann Publication.

[19] Mac OS

http://www.apple.com/macosx/

[20] Service Set Identifier.

http://compnetworking.about.com/cs/wireless/g/bldef_ssid.htm

	San Jose State University
	SJSU ScholarWorks
	Fall 12-2010

	Online Application Monitoring Tool
	Sathya Anandan
	Recommended Citation

	Microsoft Word - Sathya_Anandan_CS298_Report

