View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by SJSU ScholarWorks

San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-2010

Online Application Monitoring Tool

Sathya Anandan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the OS and Networks Commons, and the Other Computer Sciences Commons

Recommended Citation
Anandan, Sathya, "Online Application Monitoring Tool" (2010). Master's Projects. 7.

DOI: https://doi.org/10.31979/etd.wjv2-s7jb
https://scholarworks.sjsu.edu/etd_projects/7

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://core.ac.uk/display/70407764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/7?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Online Application Monitoring Tool

A Project
Presented to
The Faculty of the Department of Computer Science
San José State University

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science
By
Sathya Anandan
Dec 15,2010

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

ONLINE APPLICATION MONITORING TOOL
by
Sathya Anandan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp Department of Computer Science Date
Dr. Agustin Araya Department of Computer Science Date
Mr. Elangovan Kulandaivelu Apple Inc., Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

In some classes, students take online tests and some types of network activity (for example trying
to find the answers in www.google.com) will be considered as cheating during the exam. It
would be useful if instructor could monitor online activities of each student to detect cheating.
The goal of this project is to develop such a tool using client/server architecture. Tool should
display the student's hostname and the website visited during unauthorized web activity.
Professor should able to see the applications opened by all students and he will have an option to
view the log files of all the students during the session and also at the end of the session. The tool

will display the student's hostname during login and logout from the network.

ACKNOWLEDGEMENTS

I would like to thank my project advisor Dr. Mark Stamp for his guidance and insights
throughout the project. I would also like to thank my committee member Dr. Agustin Araya

for providing me with his valuable feedback.

I specially like to thank my husband Guna, parents, and brother for their encouragement and

motivation throughout the Masters program.

Table of Contents

R 118 (o TG LD (oo 1 1 FO OO OO U PO POTUUUSTUPUPRP 1
2. MONTEOTING TOOIS ..vviiiriiitiiiiieeiiee ittt ettt ste e st e e ste e sbe e s sbeeesabeesabeesbaeessteesabeesnbeseesabeesssaesnseesnnsaesseesnes 2
2.1 WITESIATK ..ttt b et b e bt et b e s bt ettt be et e e eas 2
2.1.1. Purposes 0f WIreSNArKccceeruiriiieiiiiieeieeseeseesee e see e seestesaesaesteesbeeseesseeseeesteeesseesseas 2
2.1.2. Features 0f WIrEShaTKcccueiiiiiiiieeieieteee ettt ettt st s 3
2.1.3 Wireshark does not do the folloWINGcccocvriiieiiiiieie e 3
2.1.4 Snapshot Of WITEShATKcoeevveririeieiiieee et e 3
2.1.5. Remote Capture INTeITaceS: .. cccviiiriiiriieiiie ittt ettt e e sie e str e e sbe e sbe e e sbaeesateesabeesbneees 4
2.1.6. Drawbacks of WIreShark.........ccecueeieeiiiiiiieiereene et 7

B G 14T USSP UP PP PRI 7
2.3. Developing Our OWI TOOooiriiiiiiiieienieee ettt s s e 8

3. High LeVel DESIZN ..viiveeiiiiriieieiteeeees ettt st sttt sr e sr e n e s r e e e r e reeanes 8
4. REQUITEITICIIES ...cuveuverueereniieiiere st ettt st eee st sbe e ese e s e st e eb e et e e bt s st e e e ab e s ae e e e sr e e me e nesr e e sbeesa e bt sseennenresmeennenresnens 10
4.1, WITeless USB ROULETcoiuiiiiiiiiiieeieeieeieest ettt ettt et e bt saeesaee s e saeeeaneenneens 10
4.2, Student REQUITEIMENLSccecuiiiriieriieiiieeeiieesieesieeesiee e sveessieeesteeesbeesbeeessaeesssessssessnsesensssessssessnsseenns 10
4.3. Professor REQUITEIMENLSceiviiiriiiiiiiriiiieiieesiie et e sieeeesieeesieeesbeesbeeesbaeesabeesbeesnsseenasees snseeessseens 11

5. EXplanation 0f the TOOIScueoiiirieieieriece e sttt s s e 12
5.1, CHENE PrOZIAIM....otiiiiiiiieitieee ettt ettt ettt r et r e sb e e rese s e e e s r e e e e nesreeneens 12
5.2, SCIVET PrOGIAIM ..eiiuviiiiiiiiiieiiee ettt st st e sttt e sate e sbe e sttt e sateesabaessbeeesbbeesateesabaessnaseesstaesnseeensseesanes 14
5.2.1. Manual Refresh of Client MacChinescccooerveeriinerienininieie ettt 14
5.2.1. View Applications Opened by StUAENLSccceereerirrienieniiiie e eeeeee e ere e se e e sreeses 15
RN TR 51 T S 5] A2 TP 16
524, WHite LISt GUI ...c.uiiiiiiieieiieieeses ettt sttt sttt e s e s e entess e sneensenseenneneas 17
R TR 51073 s 1 OO SUURRU P PRTOR 18
5.2.9. Pop-up for Black Listed WeDSItecccviiviiriiiiieiii ettt ereeie ettt seee e sreesraeseeesnnesnseennas 23
5.2.10. Pop-up for Whitelisted WEDSILESccevvviriiiriiiiiiie ettt eieesieesies e steeseee e e sreesraesaeessnesnseennes 24

5.2 T EXIb ittt bbbt h bbbt et b eh e et bt e he et e eheehe et e nbeeae et e sbeeatan 25

6. POSSIDIE ATTACKSeiutietiitiee e ettt ettt st st sttt ettt e e be e beesheesaeenas 26
7 SOTULION ..ttt et ettt et et e e bt e bt e e bt e e bt e sae e eat e e ateeabe e bt e enbeeabeeeheeeh e e eaeeeateeateeateeteeteenne 27
T 1 AULO RETTESI ..ttt st st sttt et e be e s be e b e naas 27

B TESHIME 1o euuveeiiieeitie et ste ettt e s e st e ee st e e sate e e beeesabeesabe e e bae e st e e sabee e bt e e s eabae e beeeaabeesabeesabaeeaaeenabaeenbaeenaes 29

9. Conclusions and Future Work

10. References.....cooeeeeeveveeeeeennne.

Vi

List of Figures:

Figure 1: Snapshot of Wireshark packet capturing.ceccevereereninienenineeeeee e 4
Figure 2: In remote machine rpcapd.€Xe 1S TUNNINEZ.ecveevverrerreerierrireerienieseesee st s s eseesresreeee e sneeanes 5
Figure 3: Machine A gives IP address of Maching Bccocvvviiiiiiiiiiiineseecen e 6
Figure 4: Machine B opens Google and the packet is captured in Machine Ac.ccceveevvnineeninerceennene. 7
Figure 5:General Block DIagram.c.ceecueririeiieniiieieneneeese sttt s 8
Figure 6: User Interface of the Monitoring TOOL.ccovviirieiriiiiiiiiiieeriee st s 9
Figure 7: Running clients are shown in the monitoring tool...........cceveririeriinineenineceeee e 14
Figure 8: Professor Viewing the Application Details of Particular Studentc.coveeverineeienineeceennne 15
Figure 9: BlackList to update the header of the applications and WebSite.ccccvrvverirrviirciinrierreerieeienn 17

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

White List to update the header of the applications and website.ccocvveevinereenenerceennenne, 18
Log List during the session once clicked on the View log File........cccccocenirieiininciinenecnne 19
Professor selects particular client MaChine..........ccvevverveiiiiiiiieeie e e 20
Log list after the SESSION.eecviririeieieeieeteeee et s 21
Screenshot for the BlackList WebSIte pOP-UPS......eecerereerinireerinieniesee st 24
Screenshot for the Whitelisted Website POP-UPS ..ocvvvcvieviireiieeree et 25
Pop-up to show the Student Logged Inccceeveiirieiiiiereeeeee e 28
Pop-up to show the Student Logged Out........cccooerieiiiieiiiinieeeeeeee e 28

Vil

List of Tables:

Table 1: Activities performed by StUAENLS.ccereeriririerere e 31
Table 2: Activities performed DY PrOfESSOT.ccvrveririireeririeeees e 32

viii

1. Introduction

Today, in many university classes, students take some tests during class hours using their own
laptop computers. Often, it is necessary for students to have Internet access to, for example,
obtain the test paper, access test-specific online resources, and turn in the completed test. There
are many ways that students can attempt to cheat on such a test. For example, a student can visit
websites to search for answers, or a student can chat online with other students or friends to

discuss possible solutions.

There is no easy way for a professor to detect such cheating. When a professor approaches a
cheating student, the student can easily close a window to hide unauthorized activity. A professor
could randomly spot-check student laptops during the test, but this is likely to be disruptive and

might miss many cases of cheating.

In this paper, we propose a solution for detecting cheating under such a scenario. We have
developed a tool that alerts the professor whenever a student visits a forbidden website or
performs other unauthorized online activity. Using our tool, the professor can specify a black list
and/or a white list. In the black list, the professor will have a list of websites that students should
not visit during the exam. In contrast, the white list contains website addresses that the students
are specifically allowed to visit during the exam. For example, students might be allowed to
access the computer science department website to download the test and to upload their
solutions, but Google might be strictly off limits. The tool monitors the students’ machines and
gives the professor a warning message when the student is trying to perform some unauthorized
activity. A warning is also provided if a student disconnects from the wireless access point,
which prevents someone from simply using a different access point for cheating. The tool also

displays all the applications and websites accessed by the students.

Next, we discuss Wireshark [2.1] and Kismet [2.2], which are two online monitoring tools. We
mention some of the problems inherent in attempting to use these tools in classroom monitoring.

Then we discuss the design, development, and implementation of our new tool. Then we discuss

some experimental results obtained when testing the tool in a classroom setting. Finally, we
explore possible weaknesses in our approach by considering specific attacks that can be
performed by students. Finally, we consider potential future work that might further improve our

online monitoring tool.

2. Monitoring Tools

2.1. Wireshark

Wireshark is a network packet analyzer which will seek to capture network packets and will
display the packets in detail, such as packet number, protocol name, source address, and
destination address [1]. In past decades, these kinds of tools were very expensive but nowadays

the Wireshark is available as an open source [1].

By using the IP address of student computers, an instructor can monitor the online activity
through a Wireless Access Point (WAP). For the students to access the internet, the wireless

network should be connected to a wired network via a WAP [2].

Our assumption is that students and the instructor will be connected to the internet through the
same WAP [4]. Each student will have a different IP address for their system [4]. Wireshark
must be installed on the instructor’s computer and he must know the IP addresses of each
student’s computer. The instructor can then filter the IP addresses of his students’ computers in
the monitored IP traffic using Wireshark and find out whether they are cheating or not based on

the IP traffic[2].

2.1.1. Purposes of Wireshark
Wireshark is used for various purposes by engineers, developers, and network administrators.

Some examples of Wireshark use are as follows.

o Troubleshoot network problems by network administrators.
o Observe security problems by network security engineers.
J Debug protocol implementations by developers.

J Study network protocol internals by individuals.

2

2.1.2. Features of Wireshark

Features provided by Wireshark are as follows.

o Live network packet has been captured from the network interface.
o Each and every packet has been displayed with the detailed protocol information.
o Packets that have been captured can be saved and opened later. Filter packets

based on specific criteria. For example, filter packets based on the protocol.

o Colorize the packet display based on filters.

2.1.3 Wireshark does not do the following
o Wireshark is not an Intrusion Detection System [1]. For example, if someone
changes network activity or do something to the network which they are not allowed to
do, then Wirehsark will not give any alert message.
o Wireshark does not manipulate things over the network. For example, it does not

send packets over the network.

2.1.4 Snapshot of Wireshark
A snapshot of Wireshark Live Packet Capturing is shown in Figurel.

I ot -
Bl EIR Wew Go Coptoe Sukze Sniktic Tdephory Tooks Hep

BEHMN EOQEPE SevaTI B el BB % B

(512 = Epmmin. Chay Apply
Mo, - |T-me Soagiie |Dcn-1||-:m Fratocal | Tl A
12 9, B0E138 192.108.0.1 139, 235255150 S5LF HOTIFY * HTTP/1.1 J
13 % B116%% 192.188.0.1 139,235,253, 130 5500 WOTIFY * WTTR/1.1
14 5 B14337 192.108.0.1 135,235 155 100 SELF HOTIFY * HTTR/1.1
15 % ELE141 192.168.0.1 135,215,253, 130 G50R ROTIFY * WTTR/1.1
16 % 575484 192,188.0.1 135,235, 255, 250 GEDF HOTIFY * WTTP/1.1
17 12, 343323 HonHalPr_060;99;48 Broadcast HRP who has 192,168,0,17 Tell 192.168.0.100
18 10, 348078 [-Link_5d;5d;97 HorHmPT_00:99:48 ARP 192,108.0.1 1= at 00;lc; FIJ 5d;5d; 97
19 11,120211 192.168.0.100 152, 168, 0,1 [H5 Standard query & wew.google. com
20 11, 704078 192.168.0.1 157, 168, 0, 100 5 Standard query response CHEME wew. |.google.com & 74,125.19.103 4 T4.125.19.99 & 74,125.19.104 & T4
21 11, $3307@ 192,168, 0.100 74,133,159, 103 TLP 56921 * http E‘r'H] Geqel Win=AlOZ Len=l M55=1400 W5=2
22 11, ¥339L 74,123.19.103 197, 168, 0, 109 TP heep = 56921 4CK] Geqel Ackel WineSTZ0 Lens] M55=1430 Woa0
23 11, 553514 192.188.0.100 74,133,19,103 TCR 56921 » http ﬂcld Gagel Akl Win=17160 Len=0
24 11, 357007 192,108, 0.100 74,1331, 103 HTTF GET / HTTF/1.1
25 11, M35 74,123.19.103 157, 168, 0, 100 TCR heep = 56921 [40K] Seqel sckeSA7 Winaf912 Lensd
2f 11, 807158 74,123.19.103 157, 168, 0, 100 HTTF HTTR/1.1 302 Found {test/heel)
TGN SN RN WT T AchkeiRAl L g

E Frame 1 (42 byTes on wire, 47 byles captured)
7 Ethernet 11, Sro; HorHadPr_80:99:48 (Dc00:T6:00:99:48), Dat: Brosdoast CFFaFFaffaffafraff)
7 Addrass RESoluTion ProTofo] (Fadust)
Harchare Type: Ethermet (Owdool)
Frotolol Type: IF (OwdEid)
Harcasre 31ze;
protocol iz 4
Cpooche s regeest (w00l)
[25 gratuitows: Falsa]
Sencer WAL address: HomHaiPr_68:99:48 (Oc:00:T6:00:99:48)
ndir IF addregs: 19016850, 100 (192, 168, 01007
Target WAC scdresss Q0700700000 ;00500 (003 00:00:00:00:00)
Tar et IF address: 190.168.0.1 [192.188.0.1)

FEE 1T TF 7T 1T T7 17 0 00 10 O o5 dF GE OB G0 G0 (vi00r . WEHio

oo GE 005 M OO Qe B0 TEEE MR DR L. " vH.d

2000 00 00 00 00 00 00 <0 &8 00 QL

150 Fibs “Chlssrathyha ppDatalocalTamp.. | Packets: 217 Disleyedi 217 Marked 0 Drogpedi Profils Defak

Figure 1: Snapshot of Wireshark packet capturing.

2.1.5. Remote Capture Interfaces:
Wireshark can capture remote packet data [1]. One of the major requirements for the remote
capture interface is that the target machine Remote Capture Protocol (rcapd.exe) service must be

running. Remote Capture Protocol must be started from the control panel [1].

For example, suppose there are three machines, Machine A, Machine B, Machine C. All three A,
B, and C are connected to the same network. Machine A will have Wireshark running and
Machine B will have WinPcap and rpcapd.exe files running, as shown in Figure 2. The machines
have the following IP addresses.

Machine A TP address 192.168.0.100

Machine B with WinPcap and rpcapd.exe IP address 192.168.0.101

Machine C IP address 192.168.0.102

Gateway for all three machines 192.168.0.1

Now Machine A will give the IP address in the remote interface of Machine B in which

rpcapd.exe is running, as shown in Figure 3.

Machine B opens www.google.com then, in Machine A, the Wireshark captures the packets and
the snapshot is shown in Figure 4. Once Machine A has been connected to the network using one
remote machine it can see all the machines connected to the same network. Machine C opens

www.google.com and the packet is captured by Machine A, as shown in Figure 5.

Program Files\WinPcap\rpcapd.exe

CTIRL + C to stop the zerver...

Figure 2: In remote machine rpcapd.exe is running.

hwl reshark:

Capture Options.

-Zapkure

[
Interface: [Remote. .. w | | Blustooth PAN Driver: \DevicsiNPF_{BCEZ2D0E-8617-(= |

IP address:
Limk=layer he
Capkture
|:| Capkture
[] Limit eac

|ga|:-ture Filk:

-iZ_apture File(s

File: |_

Wireshark: Remote I... [:|@|E|

Host: | 192.168.0.101

Wireless Settings

Remote Settings

-Authenticakion =I2E ~ megabytels)

(2 mull authentication

=]

&) Password authentication

Display Options
Username: | sakthwa |

o : : ;
B cvnnrdl | A | Update list of packets in real time

[use multi
i Butomatic scrolling in live capture
MNexkTile L (] 4 J ’ Cancel J
Mk File : | | Hide capture info dialog
Rimg=bufFer wikly = fFiles
i = -Marne Resalution
Stop capture-after |1 Filetsh

Skop Capture ...

[... after
[] ... after
] ... after

Enable MAC name resolution

| i aclketls :
: FHCKELLS] [] Enable network name resolukion
| 1 megabyteis)

| | Minuteis)

Enable transport name resolukion

Skark] [Cancel

Figure 3: Machine A gives IP address of Machine B

e Wrtitled) - Witeshark

fe (& B @ (xbee Adm Joeo Tahew Iobo
BUBON BEEXCE GevaTL ER QQQE WERK B

e * Egeee., Oex Ry
M. e S Ceitnation o
e e T P ™ i PP - L Lt sttt W1 8§ ot i =
al 13,3770 T304 e 198 1680.100 ToP [meosegeent of 3 resssesblod poul
3 13T 190,168, 0,100 T H3.106 TeP haw oy hetp [ACK] SeqeBh6 Ad=2672 Win<lTIE0 Len=(
ErRER i LA 102,168,010 T [vep- segrent of & redssestled Fou)
M .38 T30 162,168, 0,100 HTF HITR/LL 200 o (1ent/heel)
3 B30T 142, 168,0.10 TLIA 103,106 TP b s hetp [A00] SeqeS66 AcksSEEd WinelTIRD Lenal
36 18440338 167,168,000 632510815 il Sgurce-ports W00 hestination port: cndiaieh?
ERBI. Lt R R 192, 168.0.1 DHS. Standard quéry & clisssslopglein
38 e80T 160068, 0. 50 TLLNE, 106 HTE T fsiv=dgsewbhpdacmionsda=17130, 18167, 13200, 13361, 13760, Shes Matsuphin ZlLy
W T 151601 192,168, 0. 100 bKs Standard query response O ifemcs.Tootogte.com TS 10156 A P25 1010
4 1. TR TR AL 116000 KR HTTRALLE 204 Mo Coetew
41 860 18.168.0.00 74.125.10.138 T ums o hep [d] SeqeD win<lASE Len=d MESSLAG0
QT 119,138 192.168.0.10 TP herp s i [a, ACK] Segel w1 wineST20 LeneD MsS<L3D
43 4. T8 192, 168.6.100 12519138 T U5 > fiitp [a0x] Seqedl kcksl WirelT1H0 LensD
44 78T 150.168.0.10 F.125.15.138 ETF GET foenerate I TR
45 1. TR TH5:19.138 197,168, 0.101 TE bttp s s [Ace] Seqel ACkeALS winhTES Lanad
45 14, TEaLA0 LB ELAL 192 1680.100 WP TRLL 0 Mo Conter
47 e EMS0 1801680, T2.10203. 106 TP haoo ep [ace] SeqeldTE AckeSA00 Wins1583d Lensd
AR N BRSROA 187 148 0 1A TN AT e imos hren) GancBTA ackaldT wincI TN fand

§ Frame 1 (50 bynes on wire, 60 bytes captured)

7 Ethernet 10, Sroy G-Link_58:28:0 (00:19:5h:58:2ef), [sm: Intelor favaliic (M0udisdeciaiadilc)
§ Trterret Provocel, Sror 111,754, 167,080 (115, 754,160 188, msns 100.7168.0, 100 (192, 16800.100)

her Datagram Protecol, Sec Port: T30 (27130), Dst Port: S0B44 (S0B44)

s Data {18 byaes)

Figure 4: Machine B opens Google and the packet is captured in Machine A

2.1.6. Drawbacks of Wireshark
Wireshark captures the network packets and will display them, but it does have the following
disadvantages:
. Wireshark is an open source tool, so it is hard to implement and integrate with our
own plug-in.
. Wireshark is not user-friendly in our application because it is difficult to keep

track of the activity of every student.

2.2. Kismet

Kismet is a 802.11 (802.11a, 802.11b, 802.11g, 802.11n) wireless detector, packet sniffer, and
Intrusion Detection System. Kismet can be used to work with any wireless card [5].

For layer 2 and layer 3 attacks Kismet provides stateful and stateless IDs. An advantage of
Kismet is that it costs nothing. Disadvantages of Kismet include an interface that is not user

friendly [15] and difficult to implement and integrate with our own plug-in.

2.3. Developing Our Own Tool
We have developed an online monitoring tool using client/server architecture [6] in Java. The
goal of this tool is to identify cheating students in a manner that is easily managed by the

professor.

3. High Level Design
A general block diagram describing the activities performed by students, professor, and tool is

shown in the below figure.

Professor Machine
Prof Professorupdates Professorupdates
rotessor the Black listed the white listed
connects to SSID . .
4 Run th website and selects website and
and Kun the the Black list selected the white
Client side . . .
option. list option.
Student 4
Student 1 Student 2 Student 3 et
has opened has Logged
has Logged has opened)
. the website Out.
In the website
/ [N\

r ¥

Hostname: Student 2 Hostname: Student 3

Hostname: Student 1 Hostname: Student 4

Student 4 disconnects
form the SSID which
professor gave and

Student 1 connects to
the SSID which was
given by the professor

Student 2 opens the
Black listed website.

Student 3 opens the
White listed website.
and run the client side goes to the different

program. network to find the

ANSWer.

Figure 5:General Block Diagram.

Our tool will have separate programs for the students and the professor. Students will install the
client-side program (for example batch program) and they will execute the program after they are
connected to the network [9]. The program invokes the remote machines. The monitoring tool is

installed in the instructor’s machine. Once the instructor is connected to the network, he will

execute the tool. The instructor will be able to see student machines that are connected to the
network with their host name. When connecting to the network for the first time, students will
need to supply the instructor with the host name for identification. The user interface of the tool

is shown in the Figure 6.

Application Monitoring System

Optiong
Running clignts Applications Running Wehsites Running
Refresh ‘ Log Wiew ‘
f+ Blacklist " Whitelist
Black List ‘ White List ‘ Exit

Figure 6: User Interface of the Monitoring Tool.

Our tool will have a user interface with the client running (student’s host name) connected to a
particular class SSID supplied by the professor. The professor can view the applications running
on each individual student’s machine. The professor has the option to add or update the black

listed websites and white listed website.

The professor can view student activities from earlier in the session using the View Log File.
The View Log File displays the student hostnames and the professor can access a given student’s
activity by clicking on their hostname. There is a Refresh option which allows the instructor to
refresh and see current activity, for instance, if someone has entered into the network or if

someone has left the network.

The professor can select either black listed or white listed sites. When the tool is started it will
have “Blacklisted” selected by default. If any student visits a black listed website a pop-up will
open in the professor’s machine with the student’s name and the black listed website name. If the
instructor selects the “Whitelisted” option then a pop-up will open in the instructor’s machine

with the student’s name and the non-white listed website name..

A log file will be created for each session showing the student’s network activity, and it will be
saved in the professor’s machine. If the instructor wants to see all network activity of a particular

student after the session is over, then he can view the log file at any time [18].

4. Requirements

4.1. Wireless USB Router

The client and server machines need to be connected to the same gateway. In order to connect to
the same gateway, we are using a wireless USB router [7] called Windy31. We plug the
Windy31 into the professor’s machine, which is connected to the internet. We create an SSID
[20] and password for our wireless USB router and ask the students to connect to the same SSID

using the provided password [16].

4.2. Student Requirements

In order to run the tool successfully students should have the following requirements.
Requirement 1:

Students should have Windows OS.

Requirement 2:

Students will need to connect to the SSID which was given by the professor. Once they are
connected, they should type the “Net View” [8] command in their command prompt. Students
should be able to see the host name of their computer and other computers that are connected to

the network.

The following steps should be followed by the students to enable file sharing:

1. Turn off Windows Firewall during class hours.

10

2. If antivirus software prevents sharing, it will need to be turned off during class time. For
example, turn off the Firewall in MacAfee Antivirus.

3. In Network Places turn on the option of file sharing within the network.

4. The WorkGroup of your computer has to be MSHOME. To verify this, right click on My
Computer and click on Properties. If the WorkGroup is not MSHOME then edit the WorkGroup.
Also make sure your computer name is in your name or is otherwise easily identifiable as yours.
5. Now type the “Net View” command at the command prompt.

Requirement 3

Students should have Java installed on their machine.

Requirement 4

Students should run the program given to them by the professor.

4.3. Professor Requirements

The professor should follow the requirements given below in order to run the tool in his machine
and monitor the student machines.

Requirement 1

Professor should be running Windows OS.

Requirement 2

The professor will connect to the internet using Windy31 and create the SSID and password to
give to the students.

Requirement 3

Type the “Net View” command and make sure you can see your host name and all student host
names. The steps below should be followed to ensure that students and professor are connected
to the same WorkGroup and to enable file sharing.

1. Windows Firewall will need to be disabled during class hours.

2. If antivirus software is preventing the option of sharing to the network, please it turn it off
during class time. For example, turn off the Firwall in MacAfee Antivirus.

3. In the Network and Sharing Center “turn on” the option of file sharing within the network
[14].

4. WorkGroup has to be MSHOME. To verify this, right click on My Computer and click on
Properties. If the WorkGroup is not MSHOME then edit the WorkGroup [14]. Also make sure

your computer name is in your name or is easily identifiable as belonging to you.

11

5. Type the “Net View” command in the command prompt.

Requirement 4

The professor should have Java installed in the machine.

Requirement 5

The professor should have Microsoft Office 2007 installed in the machine.
Requirement 6

Run the server side program.

5. Explanation of the Tools

5.1. Client Program

In order to get the applications running on the client machines we use the getApplication method
to retrieve the information. We use tasklist.exe to get the running processes of the client
machine. This getApplication method retrieves a list of all the applications and their header
names running on the student’s machine. It keeps all the header names in an array list and returns

to the caller of this method whenever needed.

12

public ArrayList getApplication()
d
ArravList al=new ArravList();
try {
Process p = Runtime _getRuntime() exec("tasklist exe v /FO LIST");
BufferedR eader in= new BufferedR eader(new InputStreamR eader(p_getlnputStream{)));
String str = in readLine();
while (str!=null} {
if (str_starts With("Window Title:"))
{
String appName = str_substring(13)_trim{);
ifilappName equals("™N/A"))
al add(appName);
h
str = in readLine();
}
} catch (IOException e) {
e printStack Trace();
h
retarn al;

}

We also create the RMI registry in the main method by using createRegistry with port no 1099

and bind with the client class. So when a student executes the client program, everything will be

done in an instant.

public static void main (String[] args) throws Exception

{
// Bind the remote object's stub in the registry
Eegistry registry = LocateRegistry createRegistry(1099);
Svstem. out println(” Started....");
registry_bind("Client"_new Client());
h

In order to make client class remote class, client program implements the following.

public interface [Client extends java rmi Remote

{
public ArrayList getApplication() throws java rmi RemoteException;

}

13

5.2. Server Program
In server program, we have to see all the client machines that are connected to the network. To
do this we use the “Net View” command to retrieve a list of all computers connected to the

gateway.

Process p=r.exec("net view");

In order to get the list of client machines that executes the client program we use Naming.lookup
method to get the remote object of the client machine. If a client machine is connected to the
same gateway and running RMI, it will be stored in the clientList array. If the client machines
are connected to the same gateway but not running the RMI, nothing will be stored.
ié]ient=f[C]iEnt}h_amjng.laal-cup("rmj;-’_-""+511*!-".-"C]ient"};
clientlist add(str);

Once we get the client list, all client machines will be listed in our tool.

Application Monitoring System E”§| [‘S__<|
Options

Running clients Applications Running Wehsites Running
SATHYA-PC

Refresh Log View
* Blacklist " whitelist
Black List White List Exit

EE

Figure 7: Running clients are shown in the monitoring tool.

5.2.1. Manual Refresh of Client Machines
In our tool we have the Refresh command button, which is used to refresh the clients running.
This is the manual refresh, which is used by the professor when he wants to see the updated

client list.

14

5.2.1. View Applications Opened by Students

If a professor wants to see what applications are opened by a particular student then, once the
client list has been created, he can double click on the particular client machine’s name. In order
to get the applications running from the particular client machine, we use getApplication with
one parameter. This method is called when the professor double clicks on the particular student
machine’s name. When we pass the host name, this method gets the list of all application headers

running in that particular machine.

public ArrayList getApplication{String s) throws Exception{
clientlist removeAll(clientlist);
clientl ist=getClients();
try{
iClient=(1Client)Naming lookup("rmi//"+s+"/Client");
clientApplicationList=iClient getApplication();
bList=mull; }
catch(Exception €)
{ e printStackTrace();}
return clientApplicationl ist; }

Application Monitoring System

Options

Running clients Applications Running YWebsites Running

SATHY AP FinalRepart! - Micrasoft Ward Grnail - Inbow (1) - sathiguna@omail.com - ¥y

SATHYA-HP Google Talk
Grnail - Inbow (1) - sathiguna@gmail.com - ¥y
copy of Repart pdf - Adobe Reader
janani- Paint

Reftesh | Log Wiew | ¢ | ¥ { | ¥

* Blacklist " whitelist

Black List | ‘White List | Exit |

Figure 8: Professor Viewing the Application Details of Particular Student

15

Application Running will have all the applications and websites running and Website Running
will show only the websites that are running. When a professor is viewing the applications
opened by a student, it should refresh each time. For example every 10 seconds the Application
Running must be refreshed otherwise it would still be showing the same applications as when
professor clicked on the particular client (student) machine name. The listRefresh() method is
used to automaticly refresh the applications. We call getltem method of clientList to get the
client (student) name selected by the professor. We use the getApplication method to get the list
of application names running in the selected client, in order to pass in the parameter. The
following code is used to auto refresh the applications running on the selected client (student)

machine.

public void listRefresh(){

try {
String s=clientlist getltem(clientlist getSelectedlndex());
clientApplicationlist remove All(clientApplicationlist);
applicationlist removeAll);
websiteList remove All();
clientApplicationl ist=server. getApplication(s);
for (int § = 0; j<clientApplicationList size(); j++){
apps=clientApplicationList_get(}) toString();
applicationlist add(apps);
websiteList add(apps); }
catch{Exception)
{ e printStackTrace(); } }

5.2.3. Black List GUI
In our tool we use the Blacklist command button to update the black list. Once we click on the

Blacklist command button the small frame will be invoked, as shown in Figure 9.

16

Blackl ist

Wiewihodify the BlackList

google-

wahoo

Wilikipedia

LIpdate

Figure 9: BlackList to update the header of the applications and website.

We can add the websites or the application name that the students are not supposed to open to the
black list. Once we have given the list we can update it. When we click on the Update command

button we call the method named createlnsertQuery and hide the current GUI.

public void actionPerformed(ActionEvent asl){
Object ob=ael getSource();

try {
if{ ob==add){
createlnsertQuerv();
this_setVisible(false); }
H
catch (Exception ex) {}

¥

5.2.4. White List GUI

In our tool we also have the white list command button to update the white list. Once we click

on the white list command button the small frame will be invoked as shown in the Figure.

17

WhiteL ist

Yiewshodify the WhitelList

Department of Computer Science

Llpdate

Figure 10: White List to update the header of the applications and website.

We can give the website or application names on the list which the students are allowed to open.
Once we have given the list then we can update it. When we click on the Update command
button we call the method named createlnsertQuery and hide the current GUI in the same

manner as the black list command button.

5.2.5. Log File

The log file will show every activity performed by each student. The professor will have the
option to view the log files during class time while running the tool or after the class. If the
professor wants to view the log file during the session he can do so by clicking View Log Files

and the following code will be executed.

18

public void loadLogList(){
try{
File folder = new File("c/students log™);
File[] listOfFiles = folder listFiles();
clientl ogList removeAll();
logList removeAll();
for (int i = 0; i < listOfFiles length; i++) {
if (listOfFiles[i] isFile())
{ String s=listOfFiles[i] getMName();
chentloglist.add(s); }
else if (listOfFiles[i] isDirectory())
{System_out_println{"Directory " + listOfFiles[i] getName());} } }
catch(Exception)
{Svstem_out_println ("Error getting file name"); } }

A small window will be opened which displays all the client (student) machines that are

connected to the network, as shown in figure 11.

Application Monitoring System

Options

Log List

Running clients

ATH AP Clignts Log
SATHYAPC bt
AT B

Refrash |

Black List

Refrash Exit

Figure 11: Log List during the session once clicked on the View log File.

19

If the professor clicks on a particular machine then the following code will be called to display
the activities performed by that student, as shown in figure 12.

public void actionPerformed(ActionEvent as2){

Object ob2=ae getSource();

logList remove All();

iflob2==clientL.ogList){

try{File fl=new File("c\'sudents_log'\"+clientl oglist getSelectedltem());
FileReader fr=new FileReader(fl);
BufferedReader br=new BufferedReader(fr);
String s=null;

do { s=br readLine();
logList add(s); }

while(s!=mull); }

catch(Exception e){} } }

B Application Monitoring System
Cptions

LLog List

Running clierts Clignts Log

SATHYA-RC b Thu Mov 18 09:31:28 PST 2010 FinalReport! - MicrosoftWard A
SATHYA-XP SATHYA-XF tt Thu Mov 18 09:31:29 PET 2010 Google Talk il
Thu Moy 18 09:31:28 PET 2010 Grall - Inbok - sathigunagarme -
Thu Mow 18 09:42:35 PET 2010 FinalReport! - Microsoft Word

Thu Movw 18 09:42:37 PET 2010 Google Talk =
Thu Moy 18 09:42:37 PET 2010 Gmail - Inbox - sathigunag@gms
Thu Moy 18 10:0313 PET 2010 Gmail - Inbox (1) - sathiguna@c
Thu Moy 18 10:10:03 PET 2010 Untitled - Paint

Thu Mov 18 101049 PET 2010 copy of Report.pdf- Adobe Rea

Thu Mov1810:11:46 PET 2010 janani- Paint
Thir ke 412841017 AT PET 040 rarw nf Ronnd - ddicrncnft Wined _V_

Refrash

Refresh Exit

Black List

Figure 12: Professor selects particular client machine.

When a professor is looking into the log file he has an option to refresh and update the tool. The

following code will be executed in order to update the tool.

else if{ob2==refreshlLog)
{ this loadlogList(}); }

20

To exit the log file the professor clicks on the Exit command button, at which point the following
code will be executed and the log view GUI will be hidden.

else if{ob2==¢xitl.og)
{ this_setVisible(false); }

If the professor wants to see a particular student’s log file after the session has ended, he can still
do so. While the tool is running it will create a folder called students log in C drive. This folder
will have a separate text file for each client, with their host name, which is shown in the Running

Client when the tool is running.

iClient=(ICkent)Naming lookup("rmi-//"+chentList get(m)+"/Client");
fonew File("C-\students_log!\"+chientList get(m). toString(H+" txt"):

Tools s (=[]
Tooik: Heip

|,Q: pSearch || Folders v @Folder Syne

address |@ Ci\students_log

= Marme Size Type
File and Folder Tasks E=j SATHYA-XP bxt 1 KB Text Document

=| SATHYA-PC.bxk 3KE TextD d
(27 Make a new Folder & % ext Documen

< Tk s I SATHYA-PC.txt - Notepad =3

el Share this Folder File Edit Farmat “iew Help

Thu Mow 18 059:31:29 PST 2010 Finalreportl - Mmicroscoft word

Thu Mow 18 09:31:29 PST 2010 Google Talk

Thu Mow 18 09:31:29 PST 2010 Gmail - Inbox - sathiguna®gmail.com

- Windows Internet Explorer

X : Thu Mow 18 05:42:35 PST 2010 Finalreportl - microscoft word

s Thu Mov 18 09:42:37 PST 2010 Google Talk

(£} My Documents Thu Mow 18 09:42:37 PST 2010 Gmail - Inbox - sathiguna@gmail. com
- windows Internet Explorer

=) Shared Dacumerts Thu Mow 18 10:03:13 PST 2010 omail - Inbox (1) -

i MyComputer sathiguna@gmail. com - windows Internet Explorer

= Thu Mow 18 10:10:03 PST 2010 untitled - paint

&J 1y Metwork Places :10:49 psT 2010 copy of Report.pdf - adobe reader

146 PST 2010 janani - Paint

147 PST 2010 copy of Report - Microsoft word

121 PST 2010 oops! Internet Explorer could not

windows Internet Explorer

131 PST 2010 wikipedia - windows Internet

Other Places

Details

students_log

File: Folder :20:45 PST 2010 wikipedia, the free encyclopedia -
Date Modified: Today, i Explorer
Mavember 18, 2010, 9:31 AM Thu Mow 18 10:24:00 pPST 2010 Department of Computer Science San
Jose State University - windows Internet Explorer
Thu Mow 18 10:28:04 PST 2010 Gmail - Inbox (23 -
sathiguna@gmail.com - windows Internet Explorer
Thu Mow 18 10:35:51 PST 2010 Gmail - Inbox (30 -

Figure 13: Log list after the session.

21

Each text file will record all the activities performed by a particular client (student) with the date
and time.

fout=new FileWriter(f true);

fout write(new Date() toString()+" "+clientApplicationlist. get(i) toString)+"r'n");

5.2.8. Database

5.2.8.1. Database Connectivity
For our tool we are using Microsoft Access for the database where our black list and white list
will be saved. The following getconnection() method is used for getting the database

connectivity.

public void getCon() throws SQLException
{
try {
Class forName("sun.jdbc.odbc. JdbcOdbeDriver™);
con=DriverManager getConnection(" jdbc-odbelist");
st=con_createStatement();

h
catch (Exception ex)
{Svstem out println (" Connection Exception: " +ex); }

5.2.8.2. Commit the Database
We use comitIT(), which is commit method to do the commit operation in the database. After

every query we have to call commit method to ensure all changes have been done.

public void comitlt() throws Exception
{ con.commit(); }

5.2.8.3. Terminate Database Connectivity
In order to close the connectivity we use the following method closelT().

public void closelt() throws Exception
{ con.close(); }

22

5.2.9. Pop-up for Black Listed Website
If a professor has instructed students not to open certain websites, and if they open those
websites, then the professor should receive a notification with the student host name and website

address. By default we start our tool with the Blacklist radio button selected.

Once the client (student) machines are connected to our tool, it will check for the header’s name,
which is in the black list in the each client machine and is displayed in Running Clients. If it
matches with the list, then it will open the pop-up. At the same time, if three client (student)
machines open black listed websites, then the pop-up will be shown for all three machines.

If Blacklist is selected then the following code is used for getting the connection with the

database and fetch method is called with the select query.

public static void getDB() throws Exception

i
DBEWebList dbcon=new DBEWebList();
dbcon.getCon();
dbweb=dbcon fetch{"select * from blacklisted");
h
The following code is used to show the pop-up whenever a client (student) opens a black listed
website.
ififlag==0)

{
if{ (clientApplicationl st get(i).toString() toL owerCase().contains(bList[0] toLowerCase()))||

(chentApplicationlist get(i). toString().toL owerCase().contains(bList[1] toLowerCase()))|
(clientApplicationListget(i).toString().toLowerCase().contains(bList[2] toLowerCase()))||
(clientApplicationlist get(i). toString().toLowerCase().contains(bList[3] toLowerCase()))|
(chentApplicationlist get(i).toString() toL owerCase().contains(bList[4] toLowerCase()}))
{
msg=clientl ist get(m) +" has opened "+ clientApplicationList get(i) toString(+"!!";
showAlert(msg);
h

23

2 Application Monitoring System
Options

;__@___snm'mxp has opened Google - Mozilla Firefox!!

Running clignts

SATHYA-XP has opened Google - Mozilla Firefox!!
B o Wikipedia, the free encyel

SATHYA-XP

SATHYA-PC has opened Kismet (software) - Wikipedia, the free encyc... Iz|

SATHYA-PC has opened Kismet (software) - Wikipedia, the free encyclopedia - Win...

Lm
Log !

= ! 72/ T : J

Refrash |

|3

* Blacklist " Whitelist

Black List | White List | Exit I

Figure 14: Screenshot for the BlackList Website pop-ups

5.2.10. Pop-up for Whitelisted Websites

If a professor has instructed students that they can open certain websites and if they open
websites other than those permitted, the professor will receive a notification containing the
student host name and website address. Once the client (student) machines are connected to our
tool, it will check for the header name, which is in the white list in the each client machine. This
is displayed in Running Clients. If it doesn’t match with the white list then, it display the pop-
up. Even if three students access websites other than the white list, the professor will get three

pop-ups with the student host names and website addresses.

When the white list is selected the following code is used for establishing connection with the

database, and fetch method is called with select query.

public static void getDB() throws Exception

{
DBWebList dbcon3=new DBWebList();
dbcon3 getCon();
dbweb=dbcon3 fetch("select * from whitelisted™);
dbcon3 closelt();
¥

24

The following code is used to show a pop-up whenever a client (student) opens a website other

than those on the white list.

if{(chentApplicationl ist get(1) toString() toL owerCase().contains(bList[0] toLowerCase()))||
(chentApplicationlist get(i).toString (). toL owerCase(). contains(bList[1].toLowerCase()))||
(clientApplicationlist get(i).toString() toLowerCase().contains(bList[2] toLowerCase(}))||
(chentApplicationl ist get(i) toString(). toL owerCase().contains(bList[3] toLowerCase()))||
(clientApplicationlist get(i) toString() toLowerCase() contains(bList[4] toLowerCase())))

i
else
i
msg=clientlist get(m) +" has opened "+ clientApplicationList get(i) toString()+"!!";
showAlert(msg);
3

B2 Application Monitoring System
Options

Running clients _;S_ATHY.I.-PC has opened Gmail - Inbox (2) - sathiguna@gmail.com - Wi... |z|

jnunag@omail.corm - Wy
SATHYA-KP
SATHYA-PC has opened Gmail - Inbox (2) - sathiguna@gmail.com - Windows Intern...

SATHYA-XP has opened Google - Mozilla Firefox!!

SATHYA-XP has opened Google - Mozilla Firefox®!

Refresh | Log Wi

" Blacklist & yhitelist

Black List I White List Exit |

|

Figure 15: Screenshot for the Whitelisted Website Pop-ups

5.2.11. Exit

When a professor is done with the tool, then he clicks on the Exit command button to close it.

The following code is used for the Exit command button.

25

iflob=—=commandExit || ob==exit){
try
{ Server fout.close(); }
catch(Exception €){ }
System exit(0); }

6. Possible Attacks
There are some ways by which students can still cheat the tool. Possible attacks are given below.

1. Because students have to connect to the same network where the professor will give the SSID,
a student could disconnect from the SSID given by the professor and connect to a different SSID,

look for the answer, and then connect to the same SSID that was given by the professor.

For example, suppose the professor gave the SSID “TEST” to the students. Students connect to
the “TEST” SSID and run the client-side program. The professor would be able to see the
student’s host name in the tool. Students can then disconnect from the “TEST” SSID and connect

to a different SSID.

2. The tool is getting the applications or websites which are running from the task manager. If
the student changes the name of the application, then the task manager will also have the same

name that was given by the student.

For example, a student has changed the name of “Internet Explorer” to some other name, such as

“FAKE,” then the task manager will also have the same name.

3. If a student has two wireless cards in the laptop, then he can connect one wireless card to the

SSID given by the professor and another one to any other network, and find the answers.

Suppose the professor gave the SSID of “TEST” to the students. If Student8 has two wireless
cards in his laptop, he can connect to “TEST” and run the client-side program. The professor
continues to see the Student8 host name on the tool. By using another wireless card, the student

can then connect to a different network and find the answers.

26

7. Solution

7.1. Auto Refresh

One of the solutions for the attack when a student leaves the SSID given by the professor is to

auto refresh the client (student) machines. Whenever students connect to the SSID given by the

professor, the professor will be notified. For example, hostname has logged in. If any client goes

off, the professor will be notified. For example, hostname has logged out.

We call getltem method of clientList to get the currently connected client names. The clients,

that are already connected and shown in Running Clients will be placed in an array list. Once we

refresh, we put them in a separate array list. We compare both the array lists to check for new

client machines or if any client machine is missing. If there is a new client machine, then there

will be a pop-up showing “logged in.” If any client is missing then there will be a pop-up

showing “logged out.” The following code is used for client auto refresh.

try{
clientArrayList removeAll{clientArrayList);
clientArravList=server getClients();
for(int =0; j<listContent size();j++){
if{ !{clientArrayList. contains(listContent get{7))1}{
String msgl 1 1=listContent get{{)+" has logged Out";
PopDialog pd=new PopDialog(frl false msg111);} }
for(int =0; j<chentArrayList size();j++){
ifi I (listContent contains{clientArravList get())))}{
String msgl 1 2=clientArravList get(j)+" has logged In";
PopDialog pd=new PopDialog(frl false msgl112);} }
clientlist removeAll();
catch{Exception e){System_out println{e);
e printStackTrace(); } }

27

4] lppll.l:.ll:lhiu Musduicry 1_'11.1-

Oypioe
Aunning ity Mplcione Ryring Wettiien Rumning
BATHIR-FC urhHat - Fant ' T
Diocunisnt] - M satiord
B SATHYA2L hes ingped In
ERTVIPT s lsggedin
O
Aenesh | Loge. |
Bkt whistisl
Bkl | it List | Ewi

Figure 16: Pop-up to show the Student Logged In

Application Monitoring System

COptions

Running clients Applications Running Wehsites Running

untitled - Paint
Document! - MicrogoftVWord

SATHYA-PC has logged Out

SATHYA-PC has logged Out

Refresh | Log Wie

Black List | Wihite Li Exit |

Figure 17: Pop-up to show the Student Logged Out.

While doing auto refresh, we have to change the NegativeCacheTime to one second. The server
will be holding the NegativeCacheTime for some minutes by default [10]. We need to refresh

very frequently, so we add the NegativeCacheTime as one second in the system registry.

28

Steps to change or add the NegativeCacheTime is as follows:

1.Goto start menu, click on run, and type regedit. [11]

2.0nce the Registory Editory is opened then goto
HKEY LOCAL MACHINE\SYSTEM\CurrentControlSetServices\Dnscache\Parameters [12].

3.If the NegativeCacheTime is not there, then build a new DWORD as NegativeCacheTime.

4. Then change the value to 1 sec. [13]

The above steps are used to increase system speed when the client machine logs in or logs off.

8. Testing
We did the testing in one class to find out the efficiency of the tool. Testing of the major features

1s described below.

Viewing List of Student Computers in the Command Prompt

The professor provides the SSID and the other requirements to the students to connect to the
network and gives the “Net View” command in the command prompt. The list of students who

are connected to the SSID 1s shown.
Executing the Tool

Students start the client-side program and the professor starts the server-side program. The tool
is opened in the professor’s machine with the clients running. A pop-up will appear showing the

student host names of any who started the client late.
Updating the Black List and White List

The professor clicks on the black list, and once the pop-up is shown, he updates the list. He

updates the white list in the same manner.

29

Select the List

Pop-ups will be shown on the professors’ screen based upon which list is selected.

View the Log File

The professor clicks on the log file and on the particular student’s host name. This displays all

the activities performed by the student.

The below table shows the activities performed by students and the corresponding system result.

No.

Students Activities

Online Monitoring

Tool Response

Pass/Fail

Students connect to the
SSID which was given
by the professor and
client side

run the

program

Pass

Student (Hostname:
Student5) came late to
the class, connects to
the SSID and runs the

client-side program.

Should show the pop-
up that, “Student5

logged in.

Pass

Student9 opens a black

listed website

There should be a pop-
up that “Student9 has
website

opened the

name.”

Pass

Student2 disconnected
from the SSID which
by the

was given

professor and
connected to a different

SSID.

There should be a pop-
up that, “Student2

Logged Out.”

Pass

30

The Table below shows the activities performed by the professor and the corresponding system

response.

5. Student7 opened the | There should be a pop- | Pass
website other than from | up that, “Student?
the white listed. opened the website
name’.
6. Student] Closed the | There should be a pop- | Pass

client-side program.

up that, “Studentl

Logged Out.”

Table 1: Activities performed by students.

No Professor Activities Online Monitoring | Pass/Fail
Tool Response
1. Professor runs the | Tool should open with | Pass
server-side program. the Blacklist option
selected.
It should have the list
of the Clients Running,
which was started
before starting the
server program.
2. Professor clicks on the | Small window should | Pass
Blacklist button. open to enter the
website header name.
3. Professor clicks update | The list should be | Pass
on the small window. saved in the tool.
4. Professor double clicks | In the Applications | Pass

on the Student5 on the

Clients Running.

Running it should show
the applications and
websites opened by the

student.

31

Professor clicks on the

View Log button.

Window must have
opened with the list of

students connected.

Pass

Professor clicks on a

particular student file.

It will show all the
details from the

student.

Pass

Professor clicks on the

Whitelist button.

Small Window show
open to enter the
header name of the

website address.

Pass

Professor clicks on the
update button from the
list.

The list should be

saved in the tool.

Pass

Professor clicks on the

refresh button.

Tool will refresh and
give you the updated

Clients Running.

Pass

10.

Once the class is over
the professor can see
the Log File from the
C:\Student Log.

There should be
separate NotePad with

each student name.

Pass

11.

Professor clicks on the
particular student

name.

It should display all the
activities performed by
the student during the

test.

Pass

Table 2: Activities performed by professor.

9. Conclusions and Future Work

The goal of this project is to catch students when they try to cheat during computer testing. So by
using the Blacklist and Whitelist buttons, professor can determine for students are cheating
during the exam. The professor can also see what a particular student is doing during the entire

class by using the log file during or after the session.

32

Our tool only works for the Microsoft Windows Operating System. We should develop a tool
that will work for all operating systems, such as Linux and Mac OS [19].

There should be a tool that can retrieve information from highly protected client (student)

machines.

We should be able to get the information without asking the students to execute the programs.
Basically, students shouldn’t have any knowledge that the professor is monitoring their online

activities, or how that monitoring is being carried out.

The tool should work if the student is connected to the network without requiring the student to

connect to a specific gateway.

10. References

[1] Ulf Lamping, Richard Sharpe, Ed Warnicke, (2004-2008). Wireshark User's Guide 31757 for
Wireshark 1.2.

[2] Gerald Combs, Lead Developer, Wireshark Director, CACE technologies, (2009).
Introduction to Wireshark

http://media-2.cacetech.com/video/wireshark/introduction-to-wireshark/

[3] R. Philip, (2007). Securing wireless networks from ARP cache poisoning.
http://www.cs.sjsu.edu/faculty/stamp/students/Roney298report.pdf

[4] Larry L Peterson, and Bruce S. Davie, (2007). Computer Networks A System
Approach.USA:Morgan Kaufmann Publication.

[5] Kismet Documentation.

http://www .kismetwireless.net/documentation.shtml

[6] Client Server Architecture
http://www.utdallas.edu/~chung/SA/2client.pdf
[7] Windy 31

http://www.synetusa.com/

[8] Windows Product Documentation: Net View

33

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-

us/net view.mspx?mir=true

[9] Remote Method Invocation:
http://java.sun.com/developer/onlineTraining/rmi/RMILhtml
[10] Clear Windows DNS cache

http://www.tech-recipes.com/rx/233/clear windows dns cache/

[11] Beginners Guides: The Registry: Backups, Repairs, and Protection

http://www.pcstats.com/articleview.cfm?articleID=263

[12] How to make your windows run super fast
http://www.ihackintosh.com/2009/03/how-to-make-your-windows-run-superfast/]

[13] How to flush DNS

http://www.tech-fag.com/how-to-flush-dns.html

[14] Sharing files in the network

http://www.howtogeek.com/howto/windows-7/share-files-and-printers-between-windows-7-and-

xp/

[15] Focus on Security.An Overview of Non-Commercial Software for Network Administration.
http://uccsc2009.ucdavis.edu/preso/Nomural CCSC09.ppt

[16] Portable Wireless USB Router : Diglnfo

http://www.youtube.com/watch?v=JQ4qZ9Dgqg31

[17] Mark Stamp, (2009). Information Security Principles and Practice, exam questions and
answer.

[18] Larry L Peterson, and Bruce S. Davie, (2007). Computer Networks A System
Approach.USA:Morgan Kaufmann Publication.

[19] Mac OS

http://www.apple.com/macosx/

[20] Service Set Identifier.

http://compnetworking.about.com/cs/wireless/g/bldef ssid.htm

34

	San Jose State University
	SJSU ScholarWorks
	Fall 12-2010

	Online Application Monitoring Tool
	Sathya Anandan
	Recommended Citation

	Microsoft Word - Sathya_Anandan_CS298_Report

