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ABSTRACT
CONSTRUCTION OF SYMMETRIC MATRICES WITH PRESCRIBED
SPECTRA

by Viet H. Nguyen

This thesis focuses on the idea of Inverse Eigenvalue Problem (IEP) that con-
cerns the reconstruction of symmetric matrices with specific properties from pre-
scribed spectra. The thesis begins with a brief history of IEP and its applications.
Some definitions, theorems, and lemmas are reviewed in the first chapter. Then it
introduces three inverse eigenvalue problems that involve the leading principal sub-
matrix, the rank-1 perturbation, and the symmetric sum. The goal of this thesis
is not only interested in the existence result, but it is also interested in the explicit
construction algorithms. For each problem, it provides a proof of a necessary and
sufficient condition under which the inverse eigenvalue problem has a solution. Then

an algorithm based on the proof is given. Finally, a program in Matlab is included.
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CHAPTER 1

MOTIVATION AND BACKGROUND

This chapter consists of two sections: Motivation and Background. The first
section gives a brief history of Inverse Eigenvalue Problem (IEP) and its applications.
The other section reviews some definitions, lemmas, and theorems that will be useful

for later chapters.

1.1 Motivation

While an eigenvalue problem concerns the computation of eigenvalues of a given
matrix, an inverse eigenvalue problem concerns the reconstruction of a matrix from
prescribed spectral data. The spectral data involved may consist of complete or only
partial information of eigenvalues or eigenvectors. Also, the spectral data may involve
a mixture of information about eigenvalues or eigenvectors. Furthermore, it is often
necessary, for feasibility, to restrict the construction to special classes of matrices
such as symmetric, rank-1, tridiagonal, leading principal, and so on. The objective
of an inverse eigenvalue problem is to construct a matrix that maintains a certain
specific structure as well as the given spectral property. This thesis focuses on the
construction real symmetric matrices with desired eigenvalues.

An inverse eigenvalue problem has two fundamental questions: the theoretic

issue on solvability and the practical issue on computability. Solvability concerns ob-



taining a necessary and sufficient condition under which an inverse eigenvalue problem
has a solution. Computability concerns developing a procedure by which, knowing a
priori that the given spectral data are feasible, a matrix can be constructed numeri-
cally. Both questions are difficult and challenging.

An inverse eigenvalue problem arises in a remarkable variety of applications,
such as [CGO1, pp. 1-10]
© Mathematical analysis: Inverse Sturm-Liouville problems.
© Numerical analysis: Preconditioning, Computing B-stable RK methods with real
poles, and Gaussian quadratures.
o Applied physics: Compute the electronic structure of an atom from measure energy
levels, Neutron transport theory.
o Applied mechanics and structure design: Construct a model of a (damped) mass-
spring system with prescribed natural frequencies/modes.
o System identification and control theory: State/output feedback pole assignment

problems.

1.2 Background

Let M, = M,(R) denote the set of all n x n real matrices. All matrices in this

paper are real.

Definition 1.2.1 (real symmetric matrix). A matrix A = [a;;] € M, is said to be

symmetric if A = AT. Here AT denotes the transpose of A.

Definition 1.2.2 (real orthonormal set). Let {z;} C R" be a set of vectors. {z;} is

an orthonormal set if
0 i#j
.’ET(BJ' = ’
1 i=j.
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Definition 1.2.3 (real orthogonal matrix). A matrix U € M, is said to be orthogonal
if UUT = UTU = I. Here I is the identity matrix.

Theorem 1.2.4 (diagonalization of real symmetric matrix). Let A € M, then A is
symmetric if and only if A= UAUT, for a diagonal matriz A € M,, and an orthogonal
matriz U € M,,. The diagonal entries of A are the eigenvalues of A and the columns

of U are the corresponding orthonormal eigenvectors of A.
Proof. See [HJ85, pp. 171-172]. a

Lemma 1.2.5 (dimension formulas). Given subspaces Si, Sz, S3 C R", then
(1) dim(Sy N Sy) + dim(Sy + S2) = dim Sy + dim S,.
(2) dim(S1 N S3) > dim Sy +dim S; —n.
(3) dim(S; N SN S3) > dim Sy + dim Sz + dim S3 — 2n.

Proof. See [Ax197, pp. 33-34]. o

Theorem 1.2.6 (Rayleigh-Ritz for real symmetric). Let A € M, be real symmetric
and let the eigenvalues of A be ordered as Qpaz = 01 > g 2> ... 2 Qpoy 2 Qpn = Qin.
Then

a1zTz > 2T Az > anzTz, Vz € R®

T Az T
Qmaz = @ = MAX —— = Max T Arz,
z#£0 ' T zTx=1
. T Az T
QAnin = O, = Min = min z Az

z£0 T zTz=1

Proof. See [HJ85, pp. 176-177]. w]
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Corollary 1.2.7. Let A € M, be real symmetric and let the eigenvalues of A be
ordered as a3y > ag > ... > an-1 = an and orthonormal eigenvectors uy,--- ,Un.

Consider S = span{u;,,--- ,u; } where1 <4y <ig <--- <4, <, then

a7z > 2T Az > a; 27z, Vz € S.

Theorem 1.2.8 (Cauchy’s interlacing inequalities). Let

B C

cT D
be an n x n real symmetric matriz and B be m x m (m < n). Let the eigenvalues of A
andBbeay>2 a2 ... 2an_12anand 8y >3 2 ... 2 Bm-1 2 Bm, respectively.
Then

akZﬂkZak+n—m7 k=1a---am-
Proof. See [IIM87, pp. 352-353]. ]

Theorem 1.2.9 (Lagrange interpolating polynomial). If g, 1,...,Z, are n+1 dis-
tinct numbers and f is a function whose values are given at these numbers, then there

erists a unique polynomial P(z) of degree at most n with the property that
f(zx) = P(zy), foreachk =0,1,...,n

This polynomial is given by

P(z) = f(20)Lno(@) + ... + f(zn)Lnn(@) = Y (f(@x) Lk (z)),

k=0
where

(z—zo)(z —21)... (T — Zh—1)(ZT — ZTpy1) ... (T — Z4)
(:I}k - Zo)(:l}k - 1:1) cae (.’Bk b zk_l)(xk - zk+1) e (:L‘k - a:,,)

(a: — ;)
H (-'Ek - :1:,)

1=0,i#k

Ln,k (.’l) ) =



Proof. See [BF97, pp. 107-110]. O

Lemma 1.2.10 (real symmetric rank 1 matrix). Let A € M, be an n x n real

symmetric matriz with rank(A) = 1, then

(1) A may be written in the form A = azz” where T is a unit vector in R" and

Qa 18 nmonzero.
(2) A has ezactly one nonzero eigenvalue a.
Proof.

Since A is real symmetric, by Theorem 1.2.4,

a
0
A=U Ut
0

where a # 0 and U orthogonal.

1)

0
This is equivalent to A = azz” wherez = U ) O

0)
Definition 1.2.11 (positive definite matrix). An n X n real symmetric matrix A is

said to be positive definite if z7 Az > 0 for all nonzero vectors z € R".

Notation: A > 0 means A is real symmetric and positive definite.

Definition 1.2.12 (positive semidefinite matrix). An n x n real symmetric matrix
A is said to be positive semidefinite if T Az > 0 for all vectors z € R".

Notation: A > 0 means A is real symmetric and positive semidefinite.



Lemma 1.2.13 (eigenvalues of a positive definite/semidefinite matrix). Let A be an
n x n real symmetric matriz. If A is positive definite then all eigenvalues of A are

positive. If A is positive semidefinite then all eigenvalues of A are nonnegative.

Proof. Suppose )\ is an eigenvalue of A where k =1,2,...,n. Let vy € R" be an

eigenvector corresponding to Ax. If A > 0, by Definition 1.2.11, we have
0< ’UZA’Uk = ’UZAU)C = Avak = )\klvk|2

Therefore, Ay > 0 since |vg|? > 0. Similarly, if A > 0, then A\x > 0 since vf Avy >0

(Definition 1.2.12) and |v|? > 0. O

Theorem 1.2.14 (Weyl’s inequalities). Let A, B € M,, be real symmetric matrices,

and let the eigenvalues of A, B, and A 4+ B be arranged in non-increasing order as

Omaz =01 2 Q2 2 ... 2 Qp_1 2 Op = Qin
ﬂmaz=ﬂ12,822--- Zﬂn—lzlﬁn:ﬂmin

Ymaz =N 2722 -+ 2 Tn-1 2 Yn = Ymin
Then for every pair of integers i, j such that 1 <i,j <n andi+j < n+1, we have
Yit+j-1 < o + B;
and for every pair of integers i, j such that 1 <i,5<nandi+j > n+1, we have
Yitj—n 2 0+ 0;
Proof. [IIM87, pp. 352-353]

Let Wy, Wg,- -, Un be real orthonormal eigenvectors (Definition 1.2.2) of A

with respect to {«;}, V1, Vg, -+, Un be real orthonormal eigenvectors of B with
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respect to {3;}, and W1, Wy, - , W, be real orthonormal eigenvectors of A+ B with
respect to {v;}.
Define

S = Span{u;,--- ,Wn}sodim Sy =n—i+1,

Sy = Span{7;, -+, Un}sodim So=n—j+1,

Sz = Span{W1, -+, Wiyj—1} sodim Sz =i +j — 1.
By Lemma 1.2.5, dim(S; N S2 N S3) > dim S + dim S; + dim S3 — 2n = 1.
Therefore, there exists = € (S; N Sy N S3), where T # 0 and 27z = 1. Because
T € 83, Yi+j—1 < 27(A + B)z by Corollary 1.2.7. Because 7 € S; NS, 27 Az < o4
and z7Bz < B;.
Hence, for 1 <4, <nand i+ j <n+ 1, we obtain

Yisjo1 < aT(A+ B)z = 2T Az + 2Bz < o + B;-

Similarly, define

Sy = Span{¥1,---,w;} so dim S; =i,
Sy = Span{"'y,--+,7’;} so dim S, = j,

S3 = Span{Witj-n, -+, Wy} sodim S3=2n—i—j+ 1.
Again, by Lemma 1.2.5, dim(S; N S2 N Ss) > dim S; + dim S; + dim S3 — 2n = 1.
Therefore, there exists = € (S; N S; N S3), where T # 0 and z7z = 1. In the same
way as above, for 1 < 4,5 <nandi+j > n+ 1, we obtain

Yitj-n = T (A+ B)x = zT Az + 2T Bz > o; + ;. =

Lemma 1.2.15. Let A be an nxn real symmetric matriz with A > 0. Then A = (A;)?
where A; > 0 and symmetric.

Proof.

Since A is real symmetric, there exists a real orthogonal matrix U such that

A =UDUT where D = diag(ay,as,...,a,) and a; € o(A).
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Since A > 0, each o; > 0. Therefore, VD exists and vD = (VD)T > 0.

Observe that

A=UDUT =U(DVD)UT
= UVDUTU(VD)TUT

= (UVDUT)(UVDUT)T = A, AT

where A; = UvDUT. Since UVDUT is symmetric, so is A;. Therefore, A; = AT.
This implies A = (4;)%. Since A > 0, A; > 0 and this completes the proof. O

Theorem 1.2.16 (singular value decomposition). If A € M,,, has rank k, then it
may be written in the form A = VEWT where V € M,, and W € M,, are orthogonal.
The matrizc £ = [04;] € My, has 0,5, =0 for al i # j, and 011 > 029 2 -+ 2 Ok >

Okt1ht+1 =« -+ = Ogq = 0 where ¢ = min{m,n}.
Proof. See [HJ85, pp. 414-415). O

Lemma 1.2.17. Let C be an n X n real symmetric matriz with C > 0 and C = Clc“{
where Cy € M, (ny1). Then a(CTCy) = o(CiCT) U {0}.
Proof.

Let {71,72,.--,7n} be the set of eigenvalues of C. Since C > 0, each 7; > 0.

By the singular value decomposition (Theorem 1.2.16), we may write

Jg1 0 0 0
0 o 0
C,=V 2 wT
0 0 0
0 0 o, O

where V € M,, and W € M,,,; are orthogonal, and ¢y > 02 > ... 2 0, > 0 are

singular values such that {0?,0%,...,02} = 0(CiCT) = o(C) = {m,72s-- -, Yn}



Now calculate:

o1
CiCT=Vv
0
g1
0
=V
0
/af
0
=V
\ 0
(’71
0
=V .
\ 0

0

o2

o2

Y2

o
o O O O

On

o O o ©

On

0 )

o

:qw
— N

oy

{0'1 0 0 0
WTV 0 g9 0
0 0 0
\ 0 0 o0, 0
(o 0 o 0 )
00’2 0
0 0 o,
\00--- 0)
VT

(1.1)
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and
T
( [ea] 0 0 O \ g1 0 0 0\
0 . e :
e = |v 72 “lwr| v ® ™ O |wr
0 0 0 20 . 0 0
\ 0 0 o, 0 ) 0 -~ 0 o, 0)
(0'1 o -- 0\
o1 0 0 0
0 g9 0
-W 0 0 0 (2p)] 0 WT
0 0 0
0 0 o,
0 0 o0, 0
\0 0 0)
/a‘;’ 0 0 0\
0 o2 O 0
=W 0 0o o |WT
0 0 02 0
\0 e 0 0}
(00 0 0)
0 v O 0
=Ww| : o . 0 o0 |WT (1.2)
0 .-+ 0 7 O

\0 00)

From (1.1) and (1.2), we see that o(CYC1) = o(C,CT) U {0}. ]
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Lemma 1.2.18. Let a; > ag, $1 > B, and v; > 72 be real numbers such that

maz{as + P2, 00+ B1} <m < a1 + Bu, (1.3)
ag + f2 <vo < min{ay + B2, a2 + fi}, (1.4)
Mn+v2=01+ 02+ B+ fo. (1.5)

Then (a1 + B2)(02 + B1) 2 mv2 2 (a1 + Gr) (a2 + B2).
Proof.

Let p = a1 + B2 and ¢ = ag + (1, we need to show that pg > v,v,. By (1.4), we

get 72 < pand v2 < q. Let S =71 + 2, by (1.5) we have
pHg=m+r=>~ (1.6)
By (1.3), 71 > g and v; > p. This implies that
2SPg<m (1.7)
By (1.7), we have
re<r<m)+(n<—9<7)=mL-mNn<p—9¢<n—"7)
m<gsn)+(n<-pP<-n)=M-n<q-p<n—-m)

This means

lp—gl <l -l (1.8)
This is equivalent to
P—a)? < (m—7)? (1.9)
Consider
pa = 2(4pq) = ;1(p+)* — (p — @)?] = 2[S* - (p — @)?) (1.10)
4 4 4 :

[$? = (m = 72)?] (1.11)

) -

1 1
v = 70@mm) = 7+ %) - (n— 1)’ =
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Hence, by (1.9), (1.10), and (1.11) we get pg > y172.
Similarly, let p = a3 + 5, and ¢ = az + G2, we want to show that pg < v17v.. By
(1.3), we get v < a;+06;. This forces 11 < p. By (1.4), weget 12 < oy + 32 < a3+ 0.

This forces v < p. Let S = vy + 2, by (1.5) we have
ptg=m+rn=>~ (1.12)
Since 11 < p and 2 < p, by (1.12) we obtain v > ¢q and -; > ¢q. This implies that

g<v2,m=p (1.13)

By (1.13) and the same argument, we obtain pg < 717,. a



CHAPTER 2

THE LEADING PRINCIPAL SUBMATRIX

This chapter introduces a problem that involves the leading principal submatrix.
An n x n symmetric matrix will be constructed if the prescribed spectra of this matrix
and its leading principal submatrix are given. This problem came from Sur L’equation
‘a L’aide de Lagquelle on D’etermine les In’egalit’es S’eculaires des Mouvements des
Plan’etes of A.L. Cauchy in 1841 [Caudl, pp. 174-195]. A proof is presented first.
Its sufficient part is taken from Matriz Analysis of Roger Horn and Charles Johnson
[HJ85, pp. 186-188]. Alternate proofs of the necessary part can be found in [Fis04,
pp. 118] and [Hwa04, pp. 157-159]. Then an algorithm according to this proof is

obtained. Finally, a program written in Matlab will conclude this chapter.
2.1 The Leading Principal Submatrix Problem

Given n > 2 and

1> > ... > 0po1 > Op (2.1)

G >ap>... Zan, (22)
Construct a symmetric matrix A such that

o(A) ={a1,az,...,0n_1,0,} (2.3)

o(A) ={ay,a5,..., 0y} (2.4)
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where A’ is the leading principal submatrix of A.

2.2 Solution of the Leading Principal Submatrix Problem

The necessary and sufficient condition is

eSS a> ... > >, >

2.21 Proof of Necessity

Let

be an n x n symmetric matrix (Definition 1.2.1), where A’ € M,,_;. Assume that the
spectrum of A satisfies (2.1) and (2.3), the spectrum of A" satisfies (2.2) and (2.4).
We need to prove a; > a’l > ap > a'2 > ... 20 2 a;_l > o,. In other words,
we need to show that oy > a; > agyy wherek=1,2,...,n-1.

Indeed, using Cauchy’s interlace (Theorem 1.2.8) with m = n — 1, we are done.

2.2.2 Proof of Sufficiency

Let {o;:i=1,2,...,n—1} and {a; : i = 1,2,...,n} be two sequences of real

numbers such that a; > a’l > oy > a’z > ... 2 apo 2 a;_l > a,. Let A =
diag(ay, ag,...,0,_;). This implies that {a, &y, ..., a,_;} is the set of eigenvalues

of A’. If we can prove that there exists a real number a and a vector y € R™™! such

that {ay, as,...,a,} is the set of eigenvalues of the symmetric matrix
Ay
A= € M, then we are done.
T

Yy a
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Since trA = trA' +a, we must have a = trA —trA' = 30 a; — 31 ).
Therefore, it remains to find (n — 1) real numbers y; so that ps(ax) = 0 for k =
1,2,...,n. Here pa(t) = det(t] — A) is the characteristic polynomial of A.

Assume that t # o; fori = 1,2,--- ,n — 1. Then (tI — A’) is invertible and

I 0 I [(tI — A1y

det =1=det ;
[(t] — A) T 1 0 1

and because A’ is diagonal, yT(t] — A)"ly = 7 ¢ ﬁr

Also
tI—A —y
det(tl — A) = det
—yT t—a
I O |tI—A —y | |I [(tT -A) Y]
= det <
(¢ — A) T 1 —-yT t—al |0 1
tI — A 0
= det
0 (t-a)—yT(tI-A)y

=[(t —a) — yT(tI — A) Yyldet(t] — A)

- [(t—a) —ni (y?t_la;)] :i:[:(t—a;) 25)

i=1

Define the polynomials f with degree n, and g with degree n — 1 as follows

1) =1t - ), (2:6)
o®) = [1¢t - ) 27)

i=1

By the Euclidean algorithm we must have

f(t) =g(@®)(t - ) +r(t)
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where c is a real number and r(t) is a polynomial of degree at most n — 2. By
explicit computation we find that ¢ = Y1, o — S i @; = a. Furthermore, f(a}) =

g(a;)(ay — a) +7(0og) = r(ay) for k=1,2,...,n — 1 because g(a;) = 0.

Case 1. (all a; are distinct) The polynomial r(t) is known at n — 1 points and
can be written explicitly in terms of Lagrange interpolating polynomial (Theorem
1.2.9) because the points of interpolation o}, asy,...,c,_; are distinct. Under this

assumption, g(t) has only simple roots, and the Lagrange interpolation formula for

r(t) is
RSV
0= 5 () 29
Thus,
F@ Tl S (—fle) 1
ORI R U ® ( 7(@) G- a;>)
Because f(ax) =0 for all k =1,2,...,n we must have

(ak—a)—il(_f(a;) 1 ,)>=o, k=1,2...,n

—\ g'(e) (e —o;
Notice that if oy = o; for i = k — 1 or k, then the corresponding term # has a

zero coefficient and there is no singularity at t = o4. If we can set y; = ﬁi)-)- for
t=1,2,...,n—1, then (2.5) guarantees that ps(ax) = 0 and we are done. Therefore,

we must show that %‘% <0fori=1,2,...,n—1, and it is now that the interlacing

assumption must be used. Using the definitions of f(t) and g(t) and the interlacing

assumption, we find that
n
fla)) = (1" [ o — o]
j=1
n—1
g(a) =) T ey — o
J=1,j#i

and hence f(q;) and g'(o;) always have opposite signs. Therefore, y; = ;,f—((o‘;i)—)
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Case 2. (some of the a; coincide) If, for example, oy =@y = ... = o > Oy > ...
for some k > 2, then ay = ... = oy = a;. The polynomial f(t) in (2.6) has a factor
(t — a1)(t — a;)¥1; the polynomial g(t) in (2.7) has a factor (t — oy)* and k is the
exact multiplicity of a; as a zero of g(t). Therefore, we may modify f(t),g(t), and
r(t) by dividing each by (t — a;)*~!. The modified polynomial g(t) will have o, as
a simple zero. If we proceed in this way to remove all multiple roots of g(t), the

argument can proceed as case 1, and the conclusion is the same. a

2.3 Algorithm for the Leading Principal Submatrix Problem

This algorithm has 8 steps that are based on the previous proof.

2.3.1 Input
The prescribed spectra of an n x n symmetric matrix A and its leading principal
submatrix.
2.3.2 Output

The n x n symmetric matrix A if there exists a solution.

2.3.3 Algorithm

Step 1 (Get Input). Get the prescribed spectra of an n x n symmetric matrix A and

its leading principal submatrix.

Step 2 (Check the Length). Check whether the length of the prescribed spectrum of
the symmetric matrix A is greater than the length of the prescribed spectrum of its

leading principal submatrix exactly 1. If it is not, display an error message and stop.
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Step 3 (Sort the Prescribed Spectra). Sort all prescribed spectra in a non-increasing

order.

Step 4 (Interlacing Verification). Verify whether the prescribed spectra of the sym-
metric matrix A and its leading principal submatrix satisfy the interlacing property.

If it does not, display an error message and stop.

Step 5 (Multiple Eigenvalues). Check whether the prescribed spectrum of the leading
principal submatrix has some multiple eigenvalues and remove them in pairs from the
described spectra for A" and A. For example, if ag = ag +1; remove a; and a;. This
prevents dividing by zero when we compute y;. Let the reduced spectra have m and

m — 1 elements, respectively.

Step 6 (Re-check the New Length). Again, check whether the new length of the
distinct prescribed eigenvalues of the symmetric matrix A is one greater than the
new length of the distinct prescribed eigenvalues of its leading principal submatrix.

If it is not, display an error message and stop.

Step 7 (Compute the Value a and the Vector y). Using the reduced set of o; and

a;, and the associated functions f(t) and g(t), compute the valuea = Y o; — 3 a;

and the vector y with the size [1 x (m — 1), s = ;,L((:H)l For each «; discarded, let
y; = 0.

Step 8 (Display the Output). Output the n x n symmetric matrix A where

A ,
A= Y € M, and A is the leading principal submatrix of A.

¥ a

Remark 2.3.1. For the codes of this algorithm in Matlab, see [Appendix A, pp.
57-64].
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Example 2.4.1.

Input:
o(A) ={5,3,1,-2}
o(A) = {4.7,2.2,0}.
Output:
4.7000 0 0 1.0373
4 0 2.2000 0 1.4327
0 0 0 1.7033
1.0373 1.4327 1.7033 0.1000
Example 2.4.2.
Input:
o(A) = {6,4,4,4, -3}
o(A) = {5,4,4,1}.
Output:
( 5.0000 0 0 0 1.4142 \
4.0000 0 0 0
A= 0 40000 O 0
0 0 1.0000 3.8730

\1.4142 0 0 3.8730 1.0000)
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CHAPTER 3

THE RANK-1 PERTURBATION

This chapter introduces a problem that involves a rank 1 matrix (Lemma

1.2.10). This problem came from Das asymptotische Verteilungsgestez der Eigenwert

linearer partieller Differentialgleichungen (mit einer Anwendung auf der Theorie der

Hohlraumstrahlung) of H. Weyl in 1912 [Wey12, pp. 441-479)]. The idea of the proof

of sufficiency is taken from R.C. Thompson [Tho76, pp. 69-78]. Another proof can

be found in [SA03, pp. 375-378]. Like the previous chapter, a proof is presented first

and then an algorithm based on this proof. Finally, the chapter will be concluded by

a program written in Matlab.
3.1 The Rank-1 Perturbation Problem

Given n > 2 and

Construct symmetric matrices A and B, where rank(B) = 1 such that

J(A) = {ah az,...,0,_1, an}

o(A+ B) = {7,721 Yn-1,"n}

(3.1)

(3.2)

(3.3)

(3.4)
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Without loss of generality, we assume that the rank 1 matrix B is positive
semidefinite (Definition 1.2.12) throughout this chapter. If B = 0, then the solution

is trivial, C = A+ B = A. If B < 0, we consider the negative of this rank 1 matrix.
3.2 Solution of the Rank-1 Perturbation Problem

The necessary and sufficient condition is

3.2.1 Proof of Necessity

Let A and B be n x n symmetric matrices where rank(B) = 1. Assume that
the spectrum of A satisfies (3.1) and the spectrum of A + B satisfies (3.2). We need
to show that v 2 a1 > v > a2 > ... > v, 2> ay. In other words, we need to prove
Ve 2 0k 2 Ye+1 and v, 2> ap, where k=1,2 ... n— 1.

Let o(B) = {f1,B2,...,Bn-1,8n} such that 1 > B > ... > Bn1 2> By
Since rank(B) = 1 and B > 0, by Lemma 1.2.10 and Lemma 1.2.13, we must have
br>pr=pF=... =0 =0

By the Weyl’s inequalities (Theorem 1.2.14), for every pair of integers i, j such

that 1 < 1,5 < n, we have

Yirj—1 < a; + B, for i+3<n+1 (3.5)

Yitj-n = @ + G, for i+j>2n+1 (3.6)

Wheni=kand j=n,i+j=k+n>n+1foral k=12...n,so (3.6)
implies v > aj, because 3, = 0.

Similarly, wheni=kand j=2,i+j=k+2<n+1lforallk=12,... n -1,
so (3.5) implies ax > 7x+1 because B, = 0. Hence, vy > ox > ~yx+1 where k =

1,2,...n—1and v, > a,.



22

3.2.2 Proof of Sufficiency

Let {o;:1=1,2,...,n} and {y; : i = 1,2,...,n} be two sequences of real num-
bers such that vy > a1 > 172 > a2 > ... > v > a,. Let A = diag(ay,aa,...,an),
this implies that {o, g, ..., a,} is the set of eigenvalues of A. If we can prove that
there exists a rank 1 matrix B such that o(A + B) = {71,72,---;%n—1, T} then we
are done.

First of all, if o, < 0 we shift all os by adding a number ¢ > 0 such that
a; 2 03 > ... 2 Qpo1 2 ap, > 0. Add the same ¢t to all 4js, so the interlacing
property between «/s and «s is preserved.

Since 0(A) > 0, we have A > 0. Notice that A = A; AT where 4; = AT =
diag(\/0q,...,/0s). Since B is a rank 1 matrix, by Lemma 1.2.10, we may write

B = zzT where z is a nonzero vector in R".

If such z exists then

A+ B=A+zzT = A|AT + 22T

AT T

=(A1 .’II) =(A1 .’D)(Al :v)
IET

=7

where C; = ( A z ) € M, .41, but CiCT € M, and the eigenvalues of C,CY
are 71 > Y2 = ... > Yn_1 = Yn- By Lemma 1.2.17, we have CTC; € M,,; and
o(CTC) = o(CiCT) U {0}. Furthermore, zero will be the smallest eigenvalue of
CTC because all 4/s are positive due to shifting, so the n eigenvalues of A and the

n + 1 eigenvalues of C7 C; will satisfy the interlacing condition of 2.2 in the previous

chapter.
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Finally, note that

T AT{
C’ITC'1=<A1 m) (A1 m)= T (z‘hx)
z

\ zTA, 2Tz
( A ATz

\ zTA, Tz

and z must satisfy Tz = tr(CTC,) — tr(A) = tr(Ci,CT) + {0} — tr(4) =
tr(A + B) — tr(A) = tr(B). Thus we have a leading principal submatriz problem,

which can be solved as in the previous chapter. That is, there exists y € R" so that

has eigenvalues v1,- -+ ,¥n,0.
Now we need to show z exists so that y = ATz. Indeed, if o; is not repeated,
then z; = [(AT)‘ly], = [(Al)‘ly]i = % Ifa;,= iy, then z; = 0. (]

Remark 3.2.1. Based on this proof, we derive the following lemma which is used

for the 3 x 3 matrices in the next chapter.

Lemma 3.2.2 (3 x 3 rank 1 perturbation). Let 8 > 0 and
o) 2 a2 203
M%7

suchthat vy 2 a1 222y 2azand f+oi+as+az=7+72+7.

Then there ezist two real symmetric matrices A and B, where B=z2T,0# 7 € R®
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such that

o(A) = {a1, az, as}

U(A + sz) = {71) Y2, 73}

I3, loi—7l
Hk=1,k¢g o —ou |

with A = diag(ay, a2, a3) and B = zzT. If a; is not repeated, then T; =

If i = i1, then Ty = 0.
3.3 Algorithm for the Rank-1 Perturbation Problem

This algorithm has 9 steps that are based on the previous proof.

3.3.1 Input

The prescribed spectra of two n x n symmetric matrices A and C, where C =
A + B and rank(B) = 1.
3.3.2 Output

The n X n symmetric matrix A and the rank 1 matrix B if there exists a
solution.
3.3.3 Algorithm

Step 1 (Get Input). Get the prescribed spectra of two n X n symmetric matrices A

and C, where C = A+ B and rank(B) = 1.

Step 2 (Check the Length). Check whether the lengths of two prescribed spectra are

exactly equal to each other. If it is not, display an error message and stop.

Step 3 (Sort the Prescribed Spectra). Sort all prescribed spectra in a non-increasing

order.
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Step 4 (Shifting Spectra). Shift the prescribed spectra of A and A + B (with the

same number) such that A > 0.

Step 5 (Interlacing Verification). Verify whether the prescribed spectra of the sym-

metric matrices A and A + B satisfy the interlacing condition.

Step 6 (Multiple Eigenvalues). Check whether the prescribed spectra of the matrices

A and C have some multiple eigenvalues.

Step 7 (Re-check the Length). Check whether the lengths of two spectra after re-
moving the multiple eigenvalues are exactly equal to each other. If it is not, display

an error message and stop.
Step 8 (Compute the Vector z). Compute the vector z € R™.

Step 9 (Display the Output). Output the n X n symmetric matrices A and B, where

A = diag(oy, s, ...,0n_1,0,) and B = zzT.

Remark 3.3.1. For the codes of this algorithm in Matlab, see [Appendix B, pp.
65-75).

34 Examples

Example 3.4.1.

Input:

o(A) ={5,3,1}

o(C) = {6,4,2}.



Output:

500 0.3750 0.5303 0.8385
C=A+B=1|0 3 0 |+]| 05303 0.7500 1.1859
001 0.8385 1.1859 1.8750

Example 3.4.2.

Input:
o(A) ={3,2,2,-5}
o(C) = {2.5,2,2,-6.5}.
Output:
29167 0 0 0.8122 —-0.4167 0 0 -0.8122
0 20 0 0 00 0
C=A+B= +
0 0 2 0 0 00 0
0.8122 0 0 —4.9167 —-0.8122 0 0 —1.5833



CHAPTER 4

THE SYMMETRIC SUM

This chapter introduces a problem that involves the symmetric sum. In 1912,
Hermann Weyl raised the question: what are the possible eigenvalues of a sum of two
Hermitian matrices whose eigenvalues are given? This question was later formalized
as the Horn’s conjecture on eigenvalues of sums of Hermitian matrices in 1962 [Hor62,
pp. 225-241]. This conjecture was recently proved by Allen Knutson and Terence Tao
who were awarded the Levi L. Conant Prize in 2005 for their article " Honeycombs and
Sums of Hermitian Matrices” [KT01, pp. 175-186]). Knutson and Tao introduced the
concept of ”Honeycombs” and used them to prove this conjecture. Since the concept
of ”Honeycombs” is a high level tool in mathematics, this chapter is looking for an
elementary proof to this problem. However, it seems very difficult to find an elemen-
tary proof of the general case n x n. Therefore, this chapter only considers two cases:
2 x 2 and 3 x 3. The idea of the proof is taken from Wasin So [So06]. For the general
n, the chapter introduces a special case: construct two n x n symmetric matrices from
their prescribed spectra so that their sum has an arbitrary 4 as its k** eigenvalue.
The sufficient proof of the case n x n is taken from R.C. Thompson [Tho91]. Like the

two previous chapters, the proof-algorithm-program-example format will be used.
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4.1 The Symmetric Sum Problem: 2 x 2 case

Given
(04] Z (85 (41)
B > B2 (4.2)
M 22 (4.3)

Construct symmetric matrices A and B such that

o(A) = {ay,as} (4.4)
o(C) = {71,172} (4.6)
where C = A+ B.
4.2 Solution of the Symmetric Sum Problem: 2 x 2 case

The necessary and sufficient conditions are

maz{oq + B, 02+ B} <71 < o + B, (4.7)
a2 + B2 <y < min{oy + Ba, a2 + B}, (4.8)
Nm+rve=0+ar+ b1+ B (4.9)

4.2.1 Proof of Necessity

Let A and B be 2 x 2 symmetric matrices. Assume that the spectra of A, B,
and A+ B satisfy (4.1)-(4.6). We need to show that (4.7)-(4.9) must be held. Indeed,
we obtain (4.9) because trace(A + B) = trace(A) + trace(B), and (4.7), (4.8) hold
by Weyl’s inequalities (Theorem 1.2.14).
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4.2.2 Proof of Sufficiency

Let {a; : ¢ = 1,2}, {8 : i = 1,2}, and { : i = 1,2} be three sets of real
numbers that satisfy (4.1)-(4.3) and (4.7)-(4.9). Let A = diag(a, @2). This implies

that {ai, as} is the set of eigenvalues of A. If we can prove that there exist b;’s such

that

b1 by

G(B) =0 = {ﬁl,ﬂ‘Z}

by b

and
o+ b b3
o(C)=0(A+B)=0 = {m,7%}
b3 oz + bo

then we are done.

We consider 2 possible cases:

Case 1. (one of the three sets is constant) This implies that either a; = ag, 8, = Ba,
or y; = 5. Without loss of generality, assume that 8, = 3 = 8 since if a3 = as, we
interchange the roles of A and B. Similarly, if ; = 72, we interchange the roles of C
and B by letting A' = A, B' = —C, and C¢' = —B. This yields A"+ B' = C'.

Now, we claim that it is a trivial solution with b3 = 0 and b, = b3 = 3. Indeed,

from (4.7) and (4.8), we have 4; = a; + 3, for ¢ = 1,2. Hence, the solution will be

a; O g 0 M 0
+ =3
0 as 0 g 0
Case 2. (all three sets have distinct elements) This implies that oy > aq, 51 > B,
and v > 2.

The characteristic polynomial pg(t) of B is computed as

det(tI — B) = det t=b b = (t — B)(t — Ba)-

—b3 t—by
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Compare the coefficients of ¢, yields

b1+ by = B+ B (4.10)

biby — b3 = 513, (4.11)

Similarly, the characteristic polynomial pc(t) of C = A + B is computed as

det(t] — C) = det |~ (01 +b1) b = (t = 71)(t = ).

—b3 t — (a1 + bo)

Compare the coefficients of ¢, yields

oy tar+b+by=y+7

aiag + agby + by + bibs — b3 T2 (4.12)
By (4.11) and (4.12), we get
agb; + arbs = 1172 — B1f2 — a1z (4.13)

By (4.10) and (4.13), we obtain

b = 02 = 51 — ) + a (b1 + Bo)

(4.14)
a) — (9
by — (my2 — 1B — anoa) — az(Br + ﬁ2). (4.15)
a1 — Q2
Again, by (4.11) and straight computation, we have
b3 = biby — 5152
[’71’72 — (o1 + Bi)(az + B)][(a1 + B2) (a2 + B1) — ’71’72] (4.16)

(1 — a2)?
By Lemma 1.2.18, we obtain b§ > 0 and therefore a real matrix does exist so that the

eigenvalues of A + B are 73 2 7». a
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Remark 4.2.1. Another approach, [Bha01, pp. 292-293], to this problem is to take
A= dia’g(ala (.12) and B=U diag(ﬂl,ﬂ2) UTa

cosf —sinf
where U = with 8 € R.

sinf@ cosf

Then solve for cos and sin @ in terms of a’s, 8’s, and ~’s.

4.3 Algorithm for the Symmetric Sum Problem: 2 x 2 case

This algorithm has 6 steps that are based on the previous proof.

4.3.1 Input

The prescribed spectra of 2 X 2 symmetric matrices A, B, and their sum C.

4.3.2 Output

The 2 x 2 symmetric matrices A and B if there exists a solution.

4.3.3 Algorithm

Step 1 (Get Input). Get the prescribed spectra of 2 x 2 symmetric matrices A, B,

and their sum C.

Step 2 (Check the Length). Check whether the lengths of the prescribed eigenvalues
of the symmetric matrices A, B, and C are exactly equal to 2. If one of them is not,

display an error message and stop.

Step 3 (Sort the Prescribed Spectra). Sort all prescribed spectra in a non-increasing

order.
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Step 4 (Trace and Weyl’s Inequalities Verification). Verify whether the prescribed
spectra of the symmetric matrices A, B, and C satisfy the trace property and Weyl’s

inequalities. If it does not, display an error message and stop.

Step 5 (Compute the values ). Compute the values b; of the matrix B using (4.14)-
(4.16).

Step 6 (Display the Output). Output the 2 x 2 symmetric matrices A and B, where
A = diag(ay, ap) and B = [b].

Remark 4.3.1. For the codes of this algorithm in Matlab, see [Appendix C.1, pp.
76-81).

4.4 Examples

Example 4.4.1.

Input:
o(A)={1,-1}
o(B) = {3,2}
o(C) = {3.7,1.3}.
Output:

0 2.5950 0.4909
C=A+B= +
0 -1 0.4909 2.4050

Example 4.4.2.

Input:



o(A) = {12.4, —15.7}
o(B) = {6,3.3}

o(C) = {17.5,-11.5}.

Output:
12.4000 0 5.0423 1.2917
C=A+B= +
0 —15.7000 1.2917 4.2577
4.5 The Symmetric Sum Problem: 3 x 3 case
Given

Construct symmetric matrices A and B such that

U(A) = {al7a2; 03}
O(B) = {ﬂlaﬂ?aﬁ3}

U(C) = {’71,’72,’73}

where C = A + B.
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(4.17)
(4.18)

(4.19)

(4.20)
(4.21)

(4.22)
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4.6 Solution of the Symmetric Sum Problem: 3 x 3 case

The necessary and sufficient conditions are
maz{a; + f3,a3 + P, 02 + fo} < L a1 + B, (4.23)
maz{az + B3, a3 + B2} <72 < min{oq + B2, a2 + S}, (4.24)
a3 + B3 <v3 < min{ay + B3, a3 + i, 02+ B},  (4.25)

atartoaz+b+lh+B=n+7+7s (4.26)

4.6.1 Proof of Necessity

Let A and B be 3 x 3 symmetric matrices. Assume that the spectra of A, B,
and C = A + B satisfy (4.17)-(4.22). We need to show that (4.23)-(4.26) must be
held. As the 2 x 2 case, we obtain (4.26) due to the trace property and (4.23)-(4.25)

due to Weyl’s inequalities.

4.6.2 Proof of Sufficiency

Let {a1, as, a3}, {(1, B2, O3}, and {71, 72,73} be three sets of real numbers such
that (4.17)-(4.19) and (4.23)-(4.26) are satisfied.
Let A = diag(ai, as, a3), so {ai, as, as} is the set of eigenvalues of A. If we

can prove that there exist bis such that

by bs be
o(B)=o¢ by by bs = {51, B2 B3}
be b5 bs
and
oy + by bs be
o(C)=0(A+B)=0 by op+by  bs = {m,72 1}

bs bs a3 + b3
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then we are done.

We consider 3 possible cases:

Case 1. (one of the three sets is constant) This implies that either a; = ay = ags,
81 = P = B3, or 711 = 2 = 3. Without loss of generality, assume that 8, = (G, =
(s = [ since if @y = as = a3z, we interchange the roles of A and B. Similarly, if
Y1 = 72 = 73, we interchange the roles of C' and B by letting A' = A, B' = —C, and
C' = —B. This yields A' + B' = C'.

Now, we claim that it is a trivial solution with by = b5 = bg = 0 and b; = b; =

b3 = (3. Indeed, from (4.23)-(4.25), we have

maz{o1 + f,a3+ B, 00+ 8} <m < a1+
maz{az + B,a3 + B} <y, < min{a1 + B, a2 + B}

as + B <v3 < min{ay + B,a3 + B, a2 + B}
Therefore,

ag+pB<m<a+p
v+ <rnlm+p

a3+ <v<Laz+f
This forces
Mm=a+p

T2=0p+f

v3=a3+ 0

Hence, the solution will be trivial

A = diag(ay, az, a3), B = diag(B1, B2, Bs)-
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Case 2. (one of the three sets has two distinct elements) This implies that either

a1 > Q3 = Qg or a; = Qg > 3,
B> B2 = B3 or B = B2 > [s,
Y1 > V2 =73 or T =2 > s

By interchanging the roles of A, B, and C, without loss of generality, we can assume
there are only two distinct ;. Furthermore, assume that 8; > (#, = (3 = 3 since if
Bi=0>Psand welet B = —Bthen o(B)={-fs> o=} = {6, > 6, =
Bs}.

Since C = A+B=(A+8D)+(B—-pI),let C' =C, A = A+ GI, and
B' = B — 3I. Therefore, A' + B' = C' where

a(A) = {ay, 05,05} = {1 + B, 02 + B, 3 + B},
a(B') = {6y, By, B3} = {6 — B,0,0},

o(C) = {1,727} = {1,721}
By direct checking, we see that (4.23)-(4.26) are equivalent to

I 7 7 1 ! 7 7
maz{a;, a3 + By, @} <7 < og + 6y
’ i ' . ’ ' 7
maz{ay, a3} <y < min{oy, ay + 61}
ay <73 < min{a;, a3 + B, 05}

! ’ 1 7 ! ! 4
a;taytaz+B=7+r+t

This means
M20 27 20 27 2 ag.

Since [3’1 = [ — 0B = 11— P2 >0, by Lemma 3.2.2, there exist two symmetric matrices
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A and B', and 0 # 7 € R3 such that
o(A') = {a, e, a5}
a(B') = {#,,0,0}
o(A"+ B') = {7,775}

with A" = diag(a;, ay, ag) and B’ = 227,

where z: = Hk 1101"7kl _1 jati+B—7x}
* k 1, k#i |°‘ -ak| Hk 1.k joi—a|’

Case 3. (all three sets have three distinct elements) This implies that
a > ag > a3, b > Py > Ps, andm > 72 > 7.

Observe that if any of v = a; + 8; for 4,35,k = 1,2, 3, then it reduces to the

2 x 2 case. For example, suppose that v, = as + (1, then the solution will be

Qo 0 o5} 0 Y2 0
+
0 C

!

where o(A") = {a1, a3}, 0(B') = {Bs, B3}, and o(C") = {m, 73}
Thus, assume that v, # a; + 8; for ¢,5,k = 1,2,3. Then the necessary and

sufficient conditions become

maz{oy + 3,03+ 1,00 + B2} <m < oy + B
maz{og + O3, 03 + B2} <72 < min{a; + B2, a2 + 1}
ag + O3 <v3 < min{ai + O3, a3 + B1, a2 + F2}

ajtazt+as+B+B+B=11+7+7s

Let Y zix; = 2122 + 173 + 2223 and [[(z: + ) = (21 + y1) (22 + v2) (T3 + y3).
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The characteristic polynomial pg(t) of B is computed as

t—b —by —bg
det(t] - B) =det | —b, t—b, —bs | =(t=B)(t—Pa)(t—fs).
-bg —bs t—bs

Compare the coefficients of t, yields

by +ba+b3 =01+ 5+ G5 (4.27)
Z bzb_—, - bz - bg - b2 = Z ,Biﬁj (428)
bi1bobs — blbg - bgbg - b3bi + 2bsbsbg = B16205. (4.29)

Similarly, the characteristic polynomial pc(t) of C = A + B is computed as

t— (a1 + b1) —b4 —bs
det(t] — C) = det —by t — (g + by) —bs
—be —bs t — (o3 + bs)

=t —71){t =)t — 7).
Compare the coefficients of ¢, yields

art+oast+ag+bi+b+bi=m+7+7s
(b1 + a1)(b2 + 02) + (b2 + 2)(b3 + 3)
+(bs+og)(br+ o) — B3 —BE—bE =D wv (4.30)
(b1 + o1)(b2 + az)(bs + az) — (b1 + a1)b3

— (b2 + a2)b} — (b3 + a3)b} + 2babsbe = 1 Y27s- (4.31)
By (4.28) and (4.30), we get

(a2 + a3)b1 + (al + a3)b2 + al + aZ)b3 Z YiYi — z ﬂzﬂ] Z Q0 (4 32)
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From (4.27) and (4.32), we need by, be, b3 which satisfy the following linear system:

by
1 1 1 B+ B2+ B
- ' ’ (4.33)
az+as ar+oaz ar+ap , Sy — 2 BB — Y asoy
3
The identities (4.29) and (4.31) imply
asb] + onb? + obd = [ J(bi + ) — bubabs + B1BaBs — 1727s (4.34)

From (4.28) and (4.34), we need by, bs, bg which satisfy the following linear system:

b2
1 1 1 b;b; — .3

.- 5 by~ X )
as a; a 2 T1(b: + a;) — bibabs + £152083 — V1v2Y3

6

Observe that the linear systems (4.33) and (4.35) are always consistent, with

b1, b, in term of b3 and b2, b2 in term of b2, since all o; are distinct:

[k — (1 + a3) Y Bi — (ag — a3)bs]

b = o (4.36)
ST Y Pl wsn
o —la— a(lzlJr_(: )— a2)b] (4.38)
B == a3fai’ Ea;; 2)b6] (4.39)

where
k=Y - BBi— > oo
q= H(bi + a;) = bibobs + 51823 — M12Ys
p= Zbibj = BB

From (4.36)-(4.39), we see that b3 and b2 are free variables. With the help of

Matlab, we may find a very close approximate solution. m|
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Remark 4.6.1. In order to be sure there are real values of all b;, we have to know
that there is a real value for b3 which allows b2 to be chosen positive, but small enough
that b2 and b2 are positive (see next section). We have not succeeded in proving this
with algebra only, although it must be true because it has been proved with powerful
analytic methods that such A and B do exist [KT01].

4.7 Experimental Results of the Symmetric Sum Problem: 3 x 3 case

Since b3 and b? are free, there exists a question: How to choose them? Before

answering this question, let’s try to simplify (4.36)-(4.39). Let

’

a, = Q; — O3
/
ﬂizﬂi—ﬂ3

Y, =i — a3 — Pa.
If all o, all 3;, and all 7; respectively are distinct, and if no a; + ; = &, then
@ >0y >a3=0,0 > 0> P =0, andy, > > > 0.

The necessary and sufficient conditions become

maz{a, By, oy + B} <71 < oy + B (4.40)
maz{ay, By} <7, < min{a + By, ag + Oy} (4.41)
0 <73 < min{ay, By, ap + o} (4.42)

o t+op+ B+ =1+ Tt (4.43)



and
b, = b= a6 + ) — aiy
(ag — ay)
_ (0408, + B) + ajbs — ]
(g — ap)
b, = —lE— (B + By) — aiby]
(o — &)
(k= 03B, + ) — alt]
(g — )

y2 = —la—oap+ (o] — 0g)bf]
o)
_[oap— (g — )88 — g

v
where, because ;3 = 0:

k= v - Bify — oy

g = (by + ) (by + 3)bs — bibybs — My2m3

p=7_ bib— Bifa.
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(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
(4.49)

(4.50)

Notice k is determined, and b; and b; can be calculated for any choice of b3. Then p

and ¢ can be calculated.

Since a; > 0, by (4.46) b2 > 0 if and only if [a;p — (o] — ay)b — q] > 0, if and only if

0p—q

: = > b2
(@, — 02) ¥

Similarly, by (4.47) b2 > 0 if and only if

L s

Qs
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This implies

4 p—g
0< b2 < mzn{—,, —,'—,—} (451)
° oy (g — )
Therefore, if b3 can be chosen so that ¢ and «;p — q are positive, and we then choose
b2 € (0, min{<, (—QM—)}), then b2 > 0 and b2 > 0. So there will be real solutions for
Gy \&y—ay

all b; if such by exists.

Define
f=ap—g
From (4.44)-(4.50), we can express ¢ and f as functions of bs:

g = —(0y + ap)b3 + (ay05 + k)b — Y1727

f= @—fw{(a;f’(a; — 2082

+ (ay[(oq + an)k — (B + Bo)(af + a)] + () — ap)*[eq (B + B5) — k — apaey])bs

! ’ / /

+ ay[oq () + By) — Kk — (B, + By)] + (o — a)*(mv2ys — a3 81 3) }-

Observe that q and f are quadratic functions in b3 with the coefficients of b2
negative. Therefore, the graphs of ¢ and f are concave down. If the graph of q or f
is below the z-axis, then there is no b3 so that b > 0. Hence, no real solution exists.

Thus, a solution may exist if the vertices of both graphs q and f are above the

z-axis. If ¢ and f satisfy this condition, then we have two possible cases:

Case 1. (their graphs meet each other) Let v be the intersection point of these graphs.
Then v can be above, on, or below the z-axis. If v is on or below, there is no solution.
That is, even though both graphs ¢ and f are positive for some values of b3, since v
is on or below the z-axis, this means there are some bjs so that either ¢ > 0 or f > 0,

but there is no value of b3 such that ¢ > 0 and f > 0.
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If v is above the z-axis, this means there is at least one value of b3 such that
g > 0 and f > 0. In this case, a solution exists. Since g is a function of b3, solve g,
we will have an interval [l,71] in which ¢ > 0. Similarly, since f is a function of b3,
solve f, we will have an interval [ly, 7] in which f > 0. Let [I,7] = [l1,m] [l2, 2]

Notice that the point v € [I,7].

Case 2. (their graphs do not meet each other) In this case, one graph must be below
the other since both graphs are concave down and have no intersection. By our
assumption, the vertices of both graphs ¢ and f are above the z-axis. This means
there exist two intervals, one is contained in the other, such that ¢ and f are positive.
In this case, a solution exists. Let [I, 7] be the intersection of these intervals. In other
words, let [[,r] be the smaller one.

To obtain the closest solution, we calculate the zeros of ¢ and f, then calculate
I and 7. Then start b3 at [ and compute k, p, g, b1, and bs. Now, we compute b2 and b2.
Since b2 € (O,min{fyz—, ﬁ}), it guarantees that b2 > 0 and b2 > 0. Anytime we
get b2 and b%, we compute the temporary eigenvalues of B and find the error where
error = abs(temporary eigenvalue of B — corresponding actual eigenvalue of B). If
the error = 0 (exact solution), then we are done. Otherwise, we save the values of
b; with the smallest error and repeat the above steps until b3 = r. For each time, we
increase bs with a random number € (0, 535 if the length of the interval [I, 7] is small.
Otherwise, we increase bs with (r — ) times a random number € (0, ﬁ) Of course,
we will get a better solution if we increase b3 with a very small number which varies

inversely as the running time.

In conclusion, the solution is exact if one of the three sets has a single element,
or one of the three sets has two distinct elements, or all three sets have three distinct

elements but vy = a;+ §; for 4, j,k = 1,2,3. Otherwise, we will have an approximate
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but very close solution.

Example 4.7.1.

Input:
o(A) = {4,0,-1}
o(B) = {2,1,-2}
o(C) = {4.5,2, -2.5}.
Output:
00 O 2.0000 O 0
C=A+B=}]04 0 |+ 0 02500 1.2990
0 0 -1 0 1.2990 —1.2500
Example 4.7.2.
Input:
o(A) = {12.4,3.3,-15.7}
o(B) = {6.8, -3.4,-5.1}
o(C) = {16.9,1, —19.6}.
Output:
12.4000 0 0 2.2337 55613  0.0066
A= 0 3.3000 0 ,B=] 55613 —0.0814 1.0288
0 0 —15.7000 0.0066 1.0288 —3.8523

where the elapsed time is less than forty seconds.

Remark 4.7.3. The solution and the elapsed time may slightly vary with the same

spectra since the values b3 and b2 are free.
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4.8 Algorithm for the Symmetric Sum Problem: 3 x 3 case

This algorithm has 12 steps that are based on the previous proof.

4.8.1 Input

The prescribed spectra of 3 x 3 symmetric matrices A, B, and their sum C.

4.8.2 Output

The 3 x 3 symmetric matrices A and B if there exists a solution.

4.8.3 Algorithm

Step 1 (Get Input). Get the prescribed spectra of 3 x 3 symmetric matrices A, B,

and their sum C.

Step 2 (Check the Length). Check whether the lengths of the prescribed eigenvalues
of the symmetric matrices A, B, and C are exactly equal to 3. If one of them is not,

display an error message and stop.

Step 3 (Sort the Prescribed Spectra). Sort all prescribed spectra in a non-increasing

order.

Step 4 (Trace and Weyl’s Inequalities Verification). Verify whether the prescribed
spectra of the symmetric matrices A, B, and C are satisfy the trace property and

Weyl’s inequalities. If not, display an error message and stop.

If one of the three sets has a single element, then the solution is exact and triv-
ial: diag(A) + diag(B) = diag(C).
If one of the three sets has two distinct elements, then the solution is also exact,

(Step 5)-(Step 9).
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Step 5 (Identify the Set). Determine which set has two distinct eigenvalues in detail.

Step 6 (Shifting Spectra of A and C). Shift the prescribed spectra of A and A + B

(with the same number) such that A > 0.

Step 7 (Multiple Eigenvalues). Check whether the prescribed spectra of the matrices

A and C have some multiple eigenvalues.

Step 8 (Re-check the Length). Check whether the lengths of two prescribed spectra
of A and C after removing the multiple eigenvalues are exactly equal to each other.
If it is not, display an error message and stop.
Step 9 (Compute the Vector z). Compute the vector z € R3.

The final case is all three sets have three distinct elements. If there is one v =
@; + 3;, then it reduces to the 2 x 2 case. Therefore, the solution is exact (Step 10).
Step 10 (Spectra Verification). Check whether the prescribed spectra of A, B and C
satisfy v, = a; + f3;.

Otherwise, the solution is an approximation.
Step 11 (Compute the values b;). Compute the values b; of the matrix B.

The following output is for the last two cases, when each set has at least two
elements.
Step 12 (Display the Output). Output the 3 x 3 symmetric matrices A and B, where
A = diag(a, a9, a3) and B = [by].
Remark 4.8.1. For the codes of this algorithm in Matlab, see [Appendix C.2, pp.
81-103].

In the last section, we construct two n x n symmetric matrices A and B with
given spectra such that their sum C = A + B has ~; as its eigenvalue. The sufficient
proof is taken from R.C. Thompson [Tho91].
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4.9 The Symmetric Sum Problem: n x n case

Given n > 2 and

A >0 > ... 2 Opoy > Qy (4.52)
Br2P2>... 20Bn12pn (4.53)
and an arbitrary number 7, where k =1,2,--- ,n.
Construct two symmetric matrices A and B such that
o(A) ={a1,as,...,an_1,an} (4.54)
(4.55)

U(B) = {ﬂh /62; e ,511—17,811.}
and ~; is the k** eigenvalue of the matrix sum, A + B.

4.10 Solution of the Symmetric Sum Problem: Case n x n

The necessary and sufficient conditions are

max ««

i+ 6; <y < min o + 55
irj=kdn Bi < m itj=k+1 Pi

4.10.1 Proof of Necessity
Let A and B be n x n symmetric matrices. Assume that the spectra of A and

B satisfy (4.52)-(4.55) and ~; is the k™ eigenvalue of A + B. We need to show that

Yw<La;+pB;fori+j=k+1,and w20+ 6 fori+j=k+n.
Since 7 is the k" eigenvalue of A+ B, by Weyl’s inequalities (Theorem 1.2.14),

for every pair of integers 4, j such that 1 <i,7 < n, we have

Yirj-1 < ai + B, i+j<n+1 (4.56)
Yitj-n = a; + B, i+72n+1 (4.57)
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Whenk =i+j—1,i+j=k+1foral k=1,2...n. So (4.56) implies
wla+pBjfori+ji=k+1<n+1
Similarly, when k =i+ j—n,i+j=k+nforall k =1,2,...n. So (4.57)

implies v > a5+ B fori+j=k+n>n+1.

4.10.2 Proof of Sufficiency

Let {o; : 4 = 1,2,...,n} and {B; : ¢ = 1,2,...,n} be two sequences of real

numbers such that

Q12032 ... 2 Qp ) 2 Qp,

ﬁ1_>_,322 Zﬁn—lz,gn

Let v, be an arbitrary number such that v, < a; + 8; for i +j = k+ 1, and
vk 2 a;+5; for i+j = k+n. We need to show that there exist two symmetric matrices
A and B where {ay,a2,...,0,} and {f1, B2, ..., 0,} are the sets of eigenvalues of A
and B respectively, and 7 is the k** eigenvalue of A + B.

Consider 3 cases:

Case 1. (k = 1) From the 2 x 2 case, there exist two 2 X 2 symmetric matrices A;

and B, such that

O'(Al) = {al,an}
U(Bl) = {ﬁlaﬂn}

O'(Cl) = {717’7}

where C7 = A; + By, 7; is the larger eigenvalue of Cy, and v = a3 + o, + 51 + Bn — M1

This is possible since 74 < a3 + 61, 71 2 @1 + Bn, and v 2 an + 5.
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Let A= A; & diag(as,...,an-1) and B = By & diag(fBy-1,-..,02). If we can

show that ~; is the largest eigenvalue of C', then we are done. Indeed,

Ay B,

(85) )Bn—l

Qn-1 /32

Hence, v1 2 maz{as+LOn-1,* ,an_1+ P2} duetoy; > a;+06; fori+j=1+n.

Case 2. (k = n) Similarly, from the 2 x 2 case, there exist two 2 x 2 symmetric

matrices A; and B; such that

G(Al) = {ala an}
o(B1) = {1, bn}

U(Cl) = {7,771.}

where C; = A, + By, 7, is the smaller eigenvalue of Cy, and v = a;+ayn+ 81+ Bn — Tn.
This is possible since v, < a1 + B, o < an + B1, and v, 2 oy + Gn.

Let A = A; & diag(as,...,a,—1) and B = By ® diag(Bn-1,-.-,F2). If we can

show that ~, is the smallest eigenvalue of C, then we are done. Indeed,

A1 Bl

Q9 Br-1

Qn—-1 ﬁ2

Hence, v, < min{az+0n-1, -+ ,an_1+0F2} duetoy, < a;+p; fori+j =n+1.

Case 3. (2 < k < n—1) Again from the 2 x 2 case, there exist two 2 x 2 symmetric
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matrices A; and B; such that
o(A1) = {ax, an}
U(Bl) = {:317:371}

a(C1) = {7}

where C; = A; + Bi, 7 is the larger eigenvalue of Cy, and v > vy=ax + an + 01 +
Brn — k- This is possible since v < ag + By, Yk = ag + Bn, and ¢ > an + G1.

Observe that only the last condition may be false. Consider 2 subcases:

Subcase 1. (1 > a,+ (1) Let A = diag(o,...,ax_1) ® A; & diag(ags1,- -, 0n-1)
and B = diag(fBk, ..., B2) ® B1 ® diag(Bn-1,-- -, Pk+1). If we can show that ~y, is the

kth eigenvalue of C, then we are done. Indeed,

(Otl \ (ﬂk )

Ok—1 ﬁz

Qg1 Bn-1

\ an1 )\ Ben )

Since y; < min{as+ Bk, - ,ak-1+02} due to vy < o+ fori+j = k+1, the
first direct summand of C' = A+ B is satisfied. Observe that there are k — 1 elements
in the first direct summand. Similarly, vx > maz{ak+1 + Bn-1,- -+, @n-1+ Br+1} due
to v« > o4 + B; for i + j = k + n, the trailing direct summand of C = A+ B is
also satisfied. Finally, we have a 2 x 2 block Cy with 7 as its larger eigenvalue since

7k27=ak+an+,51+ﬂn—7k~
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Subcase 2. (v < an + (1) Let A = diag(ag, ...,ar_1) & A1 & diag{an_1,...,
ar) and B = diag(Bg-1,...,02) ® B1 ® diag(Br+1,- - -, Pn) such that
o(A;) = {1, an}
o(B1) = {Bv, Bi}
o(C1) = {7, %}

where Cy = A; + By and v = o3 + an + 61 + Bk — 7. If we can show that ~; is the

kth eigenvalue of C, then we are done. Indeed,

( az \ ( Br-1 \

Qg3 Be
A1 + Bl

Qn—1 ﬂk+1

\ w ) \ Bn

Since vz < min{ags+ Bx-1, - , -1+ P2} due toyx < a;+ B fori+j =k +1,

the first direct summand of C = A + B is satisfied. Observe that there are k — 2
elements in the first direct summand. Similarly, vx > maz{an_1+ Bx+1, - , @k + Bn}
due to vx > o; + B; for i + 7 = k + n, the trailing direct summand of C = A+ B
is also satisfied. Finally, we have a 2 x 2 block C; with v as its smaller eigenvalue
since yx < an + f1 and v < a1 + B imply 1 < v = a1 + an + B1 + Bk — -

In short, for 2 < k < n — 1, we check the condition v, > a, + £, and according
to this, we set up A, B, the block A,, and the block Bj;.

4.11 Algorithm for the Symmetric Sum Problem: n x n case

This algorithm has 9 steps that are based on the previous proof.
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4.11.1 Input

The prescribed spectra of two n X n symmetric matrices A and B, and an

arbitrary value which is to be an eigenvalue of C = A + B.

4.11.2 Output

The n x n symmetric matrices A and B and the kt* subscript of the arbitrary

eigenvalue of C if there exists a solution.

4.11.3 Algorithm

Step 1 (Get Input). Get the prescribed spectra of two n X n symmetric matrices A

and B, and an arbitrary eigenvalue of C where C = A + B.

Step 2 (Check the Length). Check whether the lengths of two prescribed spectra of
A and B are exactly equal to each other. If it is not, display an error message and

stop.

Step 3 (Sort the Prescribed Spectra). Sort all prescribed spectra in a non-increasing

order.

Step 4 (Weyl’s Inequalities Verification). Verify whether the prescribed spectra of
the symmetric matrices A and B, and the arbitrary eigenvalue of C satisfy the Weyl’s

inequalities. If it does not, display an error message and stop.

Step 5 (Determine Possible k* Subscript(s)). Since the arbitrary eigenvalue of C

satisfy the Weyl’s inequalities, determine its possible k** subscript(s).

Step 6 (Choose a k** Subscript). In case, the arbitrary eigenvalue of C may satisfy

more than one k** subscript, ask the user choose his/her favorite k** subscript.
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Step 7 (Compute the Eigenvalues of Block C;). Based on the chosen kt* subscript,
we get the corresponding blocks A; and B;. Compute the eigenvalues of block Cy
where C; = A; + B;.

Step 8 (Weyl’s Inequalities Verification for Block C). Verify whether the spectra
of the symmetric matrices A; and Bj, and C; satisfy the Weyl’s inequalities. If it
does not, display an error message and ask the user re-choose another possible kt*

subscript. Repeat it until the block C; satisfies Weyl's inequalities.

Step 9 (Display the Output). Display two n x n symmetric matrices A and B and

the k" subscript of the arbitrary eigenvalue of C.

Remark 4.11.1. For the codes of this algorithm in Matlab, see [Appendix C.3, pp.
103-118].

4.12 Examples

Example 4.12.1.

Input:
o(A) =1{5,3,1}
o(B) = {6,4,2}
o(C)={.,.,4.5}.
Output:
500 3.5625 1.9516 0

C=A+B=| 010 |+| 19516 4.4375 0
0 0 3 0 0 4.0000
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Example 4.12.2.

Input:
o(A) = {3,2,2, -5}
o(B) = {2.5,2,2,—6.5}
a(C)=1{,.,23,.}.
Output:
300 O 2.0000 0 0 0
20 O 0 2.0000 0 0
C=A+B= +
002 O 0 0 —1.8371 4.4971
0 00 -5 0 0 4.4971 —-2.1629
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APPENDIX A

THE CODES OF THE LEADING PRINCIPAL SUBMATRIX
PROBLEM

There are 8 functions in this program.
The main.m function gets the spectra of an n X n symmetric matrix A and
its leading principal submatrix B. It will display the matrix A if there exists a

solution.

Al main.m

function [] = main()
reply = ’y’;
vhile (reply == ’y’)
[A_eig, B_eig] = get_spectra;
if (check_length(A_eig, B_eig))
if (isempty(B_eig))
A= A_eig; A
disp(’The matrix B is empty.’);
else
[A_spec, B_spec] = descend_sort(A_eig, B_eig);

if (interlacing_verify(A_spec, B_spec))



[newA, newB, pointerB] = eig_coincide(A_spec, B_spec);

if (check_newlength(newA, newB))

n = length(B_spec);
y = compute_y(newA, newB, pointerB, n);
a = sum(A_spec) - sum(B_spec);
A = zeros(1l,n+1);
for i=1:n
A(i) = B_spec(i);
end
A(n+1) = a;
A = diag(A);
for j=1:n

A(j,n+1)

y(i);

A(n+1,3) = y(3);
end
A
eigh = eig(A)
end
else
disp(’Hence, there is no solution.’);
end
end
end
reply = input(’\nDo you want more? y/m: ’,’s’);

if isempty(reply)

reply = ’y’;
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end

end
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The get_spectra.m function gets the spectra of an n x n symmetric matrix A

and its leading principal submatrix B.

A.2 get_spectra.m

function[A_spec, B_spec] = get_spectra() %%
A = input(’\nEnter A spectrum: ’,’s’);
A_spec = str2num(A); %%

B = input(’\nEnter B spectrum: ’,’s’);

B_spec = str2num(B);

The check_length.m function checks whether the number of the eigenvalues of

the n X n symmetric matrix A is one greater than the number of the eigenvalues of

its leading principal submatrix B.

A3 check_length.m

function answer = check_length(A_spec, B_spec)
answer = 0;
if (length(A_spec) - length(B_spec) == 1)

answer = 1;

elseif (length(A_spec) 0 | length(B_spec) == 0)

if (length(A_spec) == 0)

disp(’You did not enter any eigenvalue of the matrix A.’);

end

if (length(B_spec) == 0)
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disp(’You did not enter any eigenvalue of the submatrix B.’);
end
else
disp(’Number of the e-values of A must be one greater than ’);
disp(’number of the e-values of its leading principal submatrix.’);

end

The descend_sort.m function sorts the spectra of the matrix A and its leading

principal submatrix B in a decreasing order.

Ad descend_sort.m

function{A_spec, B_spec] = descend_sort(A_spec, B_spec) %%

A_spec = -1.%x sort(-1 .* A_spec);

B_spec = -1.% sort(-1 .* B_spec);

The interlacing_verify.m function verifies whether the spectra of the matrix A

and its leading principal submatrix B satisfy the interlacing property.

A5 interlacing_verify.m

function flag = interlacing verify(A_spec, B_spec)
flag = 1; %
n = length(B_spec); i = 1;
while (i <= n)
if ((A_spec(i) < B_spec(i)) | (B_spec(i) < A_spec(i+1)))
flag = 0;
disp(’The spectra do not satisfy the interlacing property.’);

return;
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end
i = i+1;

end

The etgenvalue_coincide.m function checks whether the spectrum of the leading

principal submatrix B has some coincide eigenvalues.

A.6 eigenvalue_coincide.m

function [newA, newB, pointerB] = eig_coincide(A_spec, B_spec) %%
n = length(B_spec); i=1; j=1;
while (i <= n)

newB(j) = B_spec(i);

pointerB(j) = 1;

while((i < n) & (B_spec(i) == B_spec(i+1)))

pointerB(j) = pointerB(j)+1;

i= i+1;
end
i = i+1;
J =3+

end
m = length(pointerB); newA(1l) = A_spec(1); u=2; k=1; h=1;
while (h <= m)
if (pointerB(h) > 1)
k = k + pointerB(h);
else

k = k+i;
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end

newA(u) = A_spec(k);
h = h+l;

u = utl;

end

The check_newlength.m function checks whether the number of the eigenvalues
of the matrix A is one greater than the number of the eigenvalues of its leading

principal submatrix B.

AT check_newlength.m

function answer = check_newlength(A_spec, B_spec)
answer = 1;
if((length(A_spec) - length(B_spec)) = 1)
answer = 0;
disp(’Something wrong in the function eig_coincide.’);
disp(’Number of the e-values of A must be one greater than ’);
disp(’number of the e-values of its leading principal submatrix.’);

end

The compute_vector_y.m function computes the vector y.

A.8 compute_vector_y.m

function [Y] = compute_y(newA, newB, pointerB, q)

n = length(newB);

y = zeros(1l,n);

for i=1:n



F = zeros(1,n+1);
g = zeros(1,n-1);
for j=1i:n+1

F(j) = abs(newB(i) - newA(j));

end
P=1;
for k=1:n
if (k "= i)
g(p) = abs(newB(i) - newB(k));
P = P*l;
end
end
F_of_beta_i = ((-1)."(n-i+1)) .*prod(F);
g_of_beta_i = ((-1)."(n-i)).*prod(g);

if (pointerB(i) > 1)
g_of_beta_i = g_of_beta_i .* pointerB(i);
end
y(i) = sqrt(- F_of_beta_i ./ g_of_beta_i);
end
r=1;
for s=1:n
Y(r) = y(s8);
if (pointerB(s) > 1)
t =1;
while(t < pointerB(s))

r = 1+l;



Y(r) = y(s);
t = t+i;
end
end
r = r+i;
end
Y=Y,
if (length(Y) "= @)
disp(’The vector y is wrong!’);
Y = zeros(1i,9);

end
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APPENDIX B

THE CODES OF THE RANK-1 PERTURBATION PROBLEM

There are 10 functions in this program.
The main.m function gets the spectra of two n x n matrices: A and C, where
C = A+ B and B is an n X n rank-1 matrix. It will display the matrices A and B if

there exists a solution.

B.1 main.m

function [] = main()
reply = ’'y’; answer = 0O;
while (reply == ’y’)
[A_spectrum, C_spectrum] = get_spectra;
if (check_length(A_spectrum, C_spectrum))
[A_spec, C_spec] = descend_sort(A_spectrum, C_spectrum);
bool = Weyl_verify(A_spec, C_spec);
if (bool)
if (sum(A_spec) == sum(C_spec))
A = diag(A_spec)
disp(’The rank-1 B is a zero matrix.’);

elseif (length(A_spec) == 1)



A = diag(A_spec)
B = sum(C_spec) - sum(A_spec)
else

[A_newspec, C_newspec, negB] = shift_spectra(A_spec,
C_spec);
if (interlacing_verify(A_newspec, C_newspec))
[newC, newA, pointerA] = eig_coincide(C_newspec,
A_newspec);

if (check_newlength(newC, newA))

n = length(A_newspec);
x = compute_x(newC, newA, pointerA, n);
if (negB == 0)
A = diag(A_spec)
B = x*x’
eigB = eig(B)
eighB = eig(A+B)
else
C = diag(C_spec);
B = -x*x’
A=C-8B
eigB = eig(B)
eigh = eig(a)
end
end

end

end
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else
disp(’Hence, there is no solution.’);
end
end
reply = input(’\nDo you want more? y/mn: ’,’s’);
if isempty(reply)
reply = ’y’;
end

end

The get_spectra.m function gets the spectra of the matrices A and C = A +
B.

B.2 get_spectra.m

function[A_spec, C_spec] = get_spectra() %%
A = input(’\nEnter A spectrum: ’,’s’);
A_spec = str2num(A); %%

C = input(’\nEnter C spectrum: ’,’s’);

C_spec = str2num(C);

The check_length.m function checks whether the spectra of the matrices A and

C have the same length.

B.3 check_length.m

function answer = check_length(A_spec, C_spec)
answer = 0;

if (length(A_spec)~=0 & length(C_spec) =0 &
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length(A_spec)==length(C_spec))
answer = 1;
else

if (isempty(A_spec))

disp(’You did not enter any eigenvalue of the matrix A.’);
end
if (isempty(C_spec))

disp(’You did not enter any eigenvalue of the matrix C.’);
end
if (length(A_spec) “= length(C_spec))

disp(’The matrices A and C do not have the same length.’);
end

end

The descend_sort.m function sorts the spectra of the matrices A and C in a

decreasing order.

B.4 descend_sort.m

function[A_spec, C_spec] = descend_sort(A_spectrum, C_spectrum)

A_spec = -1 .* sort(-1 .* A_spectrum); %%

1]

C_spec = -1 .* sort(-1 .* C_spectrum);

The Weyl_verify.m function verifies whether the spectra of the matrices A, B,
and C = A + B satisfy Weyl’s inequalities.

B.5 Weyl_verify.m

function flag = Weyl_verify(A_spec, C_spec)



flag = 1; %4
n =length(A_spec);
if (sum(C_spec) > sum(A_spec))
beta_1l = sum(C_spec) - sum(A_spec);
MAX = max(A_spec(1), (A_spec(n) + beta_1));
if ((MAX > C_spec(1)) | (C_spec(1) > (A_spec(1) + beta_1)))
flag = 0;
else
i=2
while (j <= n)
MIN = min(A_spec(j-1), (A_spec(j) + beta_1));
if ((A_spec(j) > C_spec(j)) | (C_spec(j) > MIN))
flag = 0O;
break;
end
jo= 3+
end
end
else
beta_n = sum(C_spec) - sum(A_spec);
MIN = min((A_spec(1) + beta_n), A_spec(n));
if ((A_spec(n) + beta_n) > C_spec(n) | (C_spec(n) > MIN))
flag = O;
else
j=1

while (j < m)
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MAX = max((A_spec(j) + beta_n), A_spec(j+1));
if ((MAX > C_spec(j)) | (C_spec(j) > A_spec(j)))

flag = 0;
break;
end
Jo= 3+
end
end

end
if (flag == 0)
disp(’The spectra do not satisfy the inequalities of Weyl.’);

end

The interlacing_verify.m function verifies whether the spectra of the matrices

A and C satisfy the interlacing property.

B.6 interlacing_verify.m

function flag = interlacing verify(A_spec, C_spec)
flag = 1; %%
n = length(A_spec); i = 1,
wvhile (i <= n)
if ((A_spec(i) > C_spec(i)) | (A_spec(i) < C_spec(i+1)))
flag = O;
disp(’The spectra do not satisfy the interlacing property.’);
return;

end
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i = i+1;

end

The shift_spectra.m function shifts the spectra of the matrices A and C such

that their eigenvalues are positive.

B.7 shift_spectra.m

function [A_newspec, C_newspec, negB] = shift_spectra(A_spec,C_spec)
negB = 0; n = length(A_spec);

if (sum(C_spec) < sum(A_spec))

negB = 1;

tempA = zeros(n);

tempC = zeros(n);

for i=i:n
tempA(i) = A_spec(i);
tempC(i) = C_spec(i);

end

for i=1:n

temp = A_spec(i);

A_spec(i) = C_spec(i);

C_spec(i) = temp;
end

end

if (A_spec(n) <= 0)

for i=1:n

A_newspec(i) = A_spec(i) - A_spec(n) + 1;
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C_newspec(i) = C_spec(i) - A_spec(n) + 1;

end
else
for i=1:n
A_newspec(i) = A_spec(i);
C_newspec(i) = C_spec(i);
end
end
C_newspec(n+l) = 0;
if(negB "= 0)
for i=1:n
A_spec(i) = tempA(i);
C_spec(i) = tempC(i);
end

end

The eig_coincide.m function checks whether the spectrum of the leading prin-

cipal submatrix A has some coincide eigenvalues.

B.8 eig_coincide.m

function [newC, newA, pointerA] = eig_coincide(C_spec, A_spec) %%
n = length(A_spec); i=1; j=1;
while (i <= n)

newA(j) = A_spec(i);

pointerA(j) = 1;

while((i < n) & (A_spec(i) == A_spec(i+1)))
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pointerA(j) = pointerA(j)+1;
i = i+1;
end
i=3i+1; j = j+i;
end
m = length(pointerA); newC(1) = C_spec(1); u=2; k=1; h=1;
while (h <= m)
if (pointerA(h) > 1)
k = k + pointerA(h);
else
k = k+1;
end
newC(u) = C_spec(k);
h = h+1;
u = u+l;

end

The check_newlength.m function checks whether the number of the eigenvalues
of the matrix A is one greater than the number of the eigenvalues of its leading

principal submatrix B.

B.9 check _newlength.m

function answer = check_newlength(A_spec, B_spec)
answer = 1;
if ((length(A_spec) - length(B_spec)) ~= 1)

answer = 0;



disp(’Something wrong in the function eig_coincide.’);

disp(’Number of the e-values of A must be one greater than ’);
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disp(’number of the e-values of its leading principal submatrix.’);

end

The compute_z.m function computes the vector .

B.10 compute_x.m

function [X] = compute_x(newC, newA, pointerA, q)
n = length(newd);
x = zeros(1,n); F=1; g = 1;
for i=1:n
for j=1:n
F = F .x abs(newA(i) - newC(j));
if(j "= 1)
g = g .* abs(newA(i) - newA(j));
end
end
x(i) = sqrt(F ./ g);
F=1;
g=1;
end
r=1;
for s=1:n
X(r) = x(8);

if (pointerA(s) > 1)



t = 1;

while(t < pointerA(s))

r = r+i;
X(r) = 0;
t = t+i;
end
end
r = r+l;
end
X=X;

if (length(X) ~= q)
disp(’The vector x is wrong!’);

end
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APPENDIX C

THE CODES OF THE SYMMETRIC SUM PROBLEM

C.1 2 x 2 case

There are 7 functions in this program.

The main.m function gets the spectra of three 2 x 2 matrices: A, B, and

C = A+ B. It will display the matrices A and B if there exists a solution.

C.1.1 main.m

function [J = main()
reply = 'y’;
vhile (reply == ’y’)
[A_eig, B_eig, C_eig] = get_spectra;
if (check_length(A_eig, B_eig, C_eig))
[A_spec, B_spec, C_spec] = descend_sort(A_eig, B_eig, C_eig);
if (trace_verify(A_spec, B_spec, C_spec) &
Weyl_verify(A_spec, B_spec, C_spec))
if ((A_spec(1) == A_spec(2)) | (B_spec(1l) == B_spec(2)))
A = diag(A_spec); A
B = diag(B_spec); B

else
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A = diag(A_spec); A
[b1, b2, b3] = compute_b(A_spec, B_spec, C_spec);

B = [bl b3;b3 b2]; B

eigB = eig(B)

eigC = eig(A+B)
end
else
disp(’Hence, there is no solution.’);
end
end
reply = input(’\nDo you want more? y/n: ’,’s’);
if isempty(reply)
reply = ’y’;
end

end

The get_spectra.m function gets the spectra of the matrices A, B, and C.

C.1.2 get_spectra.m

function[A_spec, B_spec, C_spec] = get_spectra() %k
A = input(’\nEnter A spectrum: ’,’s’);

A_spec = str2num(A); %%

B = input(’\nEnter B spectrum: ’,’s’);

B_spec = str2num(B); %%

C = input(’\nEnter C spectrum: ’,’s’);

C_spec = str2num(C);



The check_length.m function checks whether each spectrum has 2 elements.

C.1.3 check_length.m

function answer = check_length(A_spec, B_spec, C_spec)
answer = 0;
if (length(A_spec)==2 & length(B_spec)==2 & length(C_spec)==2)
answer = 1;
else
if (length(A_spec) == 0)
disp(’You did not enter any eigenvalue of the matrix A.’);
else
if (length(A_spec) "= 2)
disp(’Number of eigenvalues of the matrix A is not 2.’);
end
end
if (length(B_spec) == 0)
disp(’You did not enter any eigenvalue of the matrix B.’);
else
if (length(B_spec) “= 2)
disp(’Number of eigenvalues of the matrix B is not 2.’);
end
end
if (length(C_spec) == 0)
disp(’You did not enter any eigenvalue of the matrix C.’);
else

if (length(C_spec) ~= 2)

78



79

disp(’Number of eigenvalues of the matrix C is not 2.’);
end
end

end

The descend_sort.m function sorts the spectra of the matrices A, B, and C in

a decreasing order.

C.1.4 descend_sort.m

function[A_spec,B_spec,C_spec] = descend_sort(A_spec,B_spec,C_spec)

A_spec = -1x(sort(-1*A_spec));
B_spec = -1x(sort(-1*B_spec)); %
C_spec = -1*(sort(-1*C_spec));

The trace_verify.m function verifies whether the spectra of the matrices A, B,
and C satisfy the trace property.
C.1.5 trace_verify.m

function flagl = trace_verify(A_spec, B_spec, C_spec)

flagl = 1; %%

a = A_spec(1)+A_spec(2)+B_spec(1)+B_spec(2); %%
b = C_spec(1)+C_spec(2);

a = num2str(a);

b = num2str(b);

if ("strcmp(a,b))
flagl = 0;

disp(’The spectra do not satisfy the trace property.’);



end
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The Weyl_verify.m function verifies whether the spectra of the matrices A, B,

and C satisfy Weyl’s inequalities.

C.1.6 Weyl_verify.m

function flag = Weyl_verify(A_spec, B_spec, C_spec)
flag = 1;

if ((A_spec(1l) + B_spec(2)) < (A_spec(2) + B_spec(1)))

min = A_spec(l) + B_spec(2);

max = A_spec(2) + B_spec(1);
else

max = A_spec(1l) + B_spec(2);

min = A_spec(2) + B_spec(1);

end

if ((max > C_spec(1)) | (C_spec(1) > (A_spec(1) + B_spec(1))))
flag = O;
disp(’GAMMA(1) does not satisfy the inequalities of Weyl.’);
disp(’GAMMA(1) should be in the interval: ’);
sprintf(’ [Ug, %gl.’, max, (A_spec(1l) + B_spec(1)))

end

if (((A_spec(2) + B_spec(2)) > C_spec(2)) | (C_spec(2) > min))
flag = 0;
disp(’GAMMA(2) does not satisfy the inequalities of Weyl.’);
disp(’GAMMA(2) should be in the interval: ’);

sprintf (’ [%g, %gl.’, (A_spec(2) + B_spec(2)), min)
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end

The compute_b.m function computes the values of b;.

C.1.7 compute_b.m

function [bi, b2, b3] = compute_b(A_spec, B_spec, C_spec) %%

bl = (A_spec(1).*(B_spec(1)+B_spec(2))-(C_spec(1).*C_spec(2))+
(B_spec(1) .*B_spec(2))+(A_spec(1) .*A_spec(2)))./
(A_spec(1)-A_spec(2));

b2 = ((C_spec(1).*C_spec(2))-(B_spec(1l).*B_spec(2))-(A_spec(1).*
A_spec(2))-A_spec(2) .*(B_spec(1)+B_spec(2)))./(A_spec(1)-
A_spec(2));

b3 = sqrt(bl.*b2 - (B_spec(l).*B_spec(2)));

C.2 3 X 3 case

There are 13 functions in this program.
The main.m function gets the spectra of three 3 x 3 matrices: A, B, and

C = A+ B. It will display the matrices A and B if there exists a solution.

C.2.1 main.m

function [] = main()
tic
reply = ’y’;
vhile(reply == ’y’)
[A_eig, B_eig, C_eigl] = get_spectra;

if (check_length(A_eig, B_eig, C_eig))
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[A_spec, B_spec, C_spec] = descend_sort(A_eig, B_eig, C_eig);
if (trace_verify(A_spec, B_spec, C_spec) &

Weyl_verify(A_spec, B_spec, C_spec))

if ((A_spec(1) == A_spec(3)) | (B_spec(1) == B_spec(3)) |

(C_spec(1)

C_spec(3)))
A

diag(A_spec); A

B = diag(B_spec); B

elseif ((A_spec(1) == A_spec(2))|(A_spec(2) == A_spec(3))]|

(B_spec(1)

B_spec(2)) | (B_spec(2) B_spec(3)) 1|

(C_spec(1) == C_spec(2))|(C_spec(2) == C_spec(3)))
[A_exch, C_exch, values, answer]= identify(A_spec,

B_spec, C_spec);

[A_newspec, C_newspec] = shift_spectra_A(A_exch, C_exch);

[newC, newA, pointerA] = eig_coincide(C_newspec,

A_newspec) ;

if (check_newlength(newC, newA))

n = length(A_newspec);

x = compute_x(newC, newA, pointerA, n);

switch answer

case 1
C = diag(A_exch) - values(1l)*eye(3);
A = -(x*x’) - values(1l)x*eye(3)
B=C-A
eigh = eig(A)
eigB = eig(B)

eigAB = eig(A+B)



disp(’Case: the first two eigenvalues of A
are equal.’);
case 2

B

diag(B_spec)
A

x*x’ + values(1)*eye(3)

eigh = eig(A)

eigB = eig(B)
eighB = eig(A+B)
disp(’Case: the last two eigenvalues of A

are equal.’);

case 3
C = diag(A_exch) - values(2)*eye(3);
B = -(x*x’) - values(2)*eye(3)
A=C-B
eigh = eig(4)
eigB = eig(B)

eighB = eig(A+B)
disp(’Case: the first two eigenvalues of B
are equal.’);

case 4

A = diag(A_spec)

B

x*x’ + values(2)*eye(3)

eigh = eig(a)

eigB = eig(B)
eighB = eig(A+B)

disp(’Case: the last two eigenvalues of B
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are equal.’);

case b
B = diag(B_spec)
C = —-(x*x’) - values(3)*eye(3);
A=C-B
eigh = eig(a)
eigB = eig(B)

eighB = eig(A+B)
disp(’Case: the first two eigenvalues of C
are equal.’);
otherwise

A

-diag(A_exch) + values(3)*eye(3)
C

x*x’ + values(3)*eye(3);

B=C-A

eigh = eig(A)

eigB = eig(B)
eighB = eig(A+B)
disp(’Case: the last two eigenvalues of C
are equal.’);
end
end
else
(A, B, answ] = gamma_verify(A_spec, B_spec, C_spec);
if (answ)

A

B



end

eigB = eig(B)
eighB = eig(A+B)

else
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[b1,b2,b3,b4,b5,b6,flag] = compute_bi(A_spec, B_spec,

B = [bl b4 b6; b4 b2 b5; b6 bS5 b3];
B = B + B_spec(3).*eye(3);
A = diag(A_spec); A
if(flag)
disp(’The matrix B is an approximation.’);
end
B
eiB = eig(B)

eiAB = eig(A+B)
end
end
else
disp(’Hence, there is no solution.’);
end
end
reply = input(’\nDo you want more? y/m: ’,’s’);
if isempty(reply)
reply = ’y’;
end

toc

C_spec);
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The get_spectra.m function gets the spectra of the matrices A, B, and C.

C.2.2 get_spectra.m

function[A_spec, B_spec, C_spec] = get_spectra() %%
A = input(’\nEnter A spectrum: ’,’s’);

A_spec = str2num(A); %%

B = input(’\nEnter B spectrum: ’,’s’);

B_spec = str2num(B); %%

C = input(’\nEnter C spectrum: ’,’s’);

C_spec = str2num(C);

The check_length.m function checks whether each spectrum has 3 elements.

C.2.3 check_length.m

function answer = check_length(A_spec, B_spec, C_spec)
answer = 0;
if (length(A_spec)==3 & length(B_spec)==3 & length(C_spec)==3)
answer = 1;
else
if (length(A_spec) == 0)
disp(’You did not enter any eigenvalue of the matrix A.’);
else
if (length(A_spec) ~= 3)
disp(’Number of eigenvalues of the matrix A is not 3.’);
end

end
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if (length(B_spec) == 0)
disp(’You did not enter any eigenvalue of the matrix B.’);
else
if (length(B_spec) "= 3)
disp(’Number of eigenvalues of the matrix B is not 3.°’);
end
end
if (length(C_spec) == 0)
disp(’You did not enter any eigenvalue of the matrix C.’);
else
if (length(C_spec) "= 3)
disp(’Number of eigenvalues of the matrix C is not 3.’);
end
end

end

The descend_sort.m function sorts the spectra of the matrices A, B, and C in

a decreasing order.

C.2.4 descend _sort.m

function{A_spec, B_spec, C_spec] = descend_sort(A_spec, B_spec,

C_spec)
A_spec = -1x(sort(-1*A_spec)); %%
B_spec = -1x(sort(-1*B_spec));
C_spec = -1x(sort(-1*C_spec));

The trace_verify.m function verifies whether the spectra of the matrices A, B,
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and C satisfy the trace property.

C.2.5 trace_verify.m

function flagl = trace_verify(A_spec, B_spec, C_spec)

flagl = 1; %

a = sum(A_spec) + sum(B_spec);
b = sum(C_spec);

a = num2str(a); %%

b = num2str(b);

if (“strcmp(a,b))
flagl = 0;
disp(’The spectra do not satisfy the trace property.’);

end

The Weyl_verify.m function verifies whether the spectra of the matrices A, B,

and C satisfy Weyl’s inequalities.

C.2.6 Weyl_verify.m

function flag = Weyl_verify(A_spec, B_spec, C_spec)
flag = 1;
if ((A_spec(1) + B_spec(2)) < (A_spec(2) + B_spec(1)))
min = A_spec(l) + B_spec(2);
else
min = A_spec(2) + B_spec(1);
end

if ((A_spec(2) + B_spec(3)) < (A_spec(3) + B_spec(2)))
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max = A_spec(3) + B_spec(2);
else

max = A_spec(2) + B_spec(3);
end

for i=1:3

temp(i) = A_spec(i) + B_spec(4-i);
end
temp = -1 .* sort(-1.*temp); mymax = temp(l); mymin = temp(3);
if ((mymax > C_spec(1)) | (C_spec(1) > (A_spec(1) + B_spec(1))))
flag = 0;
disp(’GAMMA(1) does not satisfy the inequalities of Weyl!’);
disp(’GAMMA(1) should be in the interval: ’);
sprintf(’ [%g, %gl.’, mymax, (A_spec(1l) + B_spec(1)))
end
if ((max > C_spec(2)) | (C_spec(2) > min))
flag = 0;
disp(’GAMMA(2) does not satisfy the inequalities of Weyl!’);
disp(’GAMMA(2) should be in the interval: ’);
sprintf(’ [%g, %g].’, max, min)
end
if (((A_spec(3) + B_spec(3)) > C_spec(3)) | (C_spec(3) > mymin))
flag = 0;
disp(’GAMMA(3) does not satisfy the inequalities of Weyl!’);
disp(’GAMMA(3) should be in the interval: ’);
sprintf(’ [%g, %gl.’, (A_spec(3) + B_spec(3)), mymin)

end
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The identify.m function checks whether one of the three spectra has two distinct

elements.

C.2.7 identify.m

function [A_exch, C_exch, values, answer] = identify(A_spec, B_spec,
C_spec)

answer = 0; A2 = 0; B2 = 0; C2 = 0; values = zeros(3);

if ((A_spec(1) == A_spec(2))|(A_spec(2) == A_spec(3)))

if (A_spec(1) == A_spec(2))

A_exchanged -1 * A_spec;

A_exchanged = -1*(sort(-1*A_exchanged));

values(1) = A_exchanged(2);

for i=1:3
A_exch(i) = C_spec(i) + A_exchanged(2);
C_exch(i) = B_spec(i);

end

answer = 1;

else

answer = 2;

for i=1:3
A_exch(i) = B_spec(i) + A_spec(2);
C_exch(i) = C_spec(i);

end

values (1) = A_spec(2);
end

elseif ((B_spec(1) == B_spec(2))|(B_spec(2) == B_spec(3)))



if (B_spec(1) == B_spec(2))

B_exchanged = -1 * B_spec;

B_exchanged = -1*(sort(-1*B_exchanged)) ;

values(2) = B_exchanged(2);

for i=1:3
A_exch(i) = C_spec(i) + B_exchanged(2);
C_exch(i) = A_spec(i);

end

answer = 3;

else

answer = 4;

for i=1:3
A_exch(i) = A_spec(i) + B_spec(2);
C_exch(i) = C_spec(i);

end

values(2) = B_spec(2);
end
else
if (C_spec(1) == C_spec(2))

C_exchanged = -1 * C_spec;

C_exchanged = -1*(sort(-1*#C_exchanged));

values(3) = C_exchanged(2);

A_exchanged = -1 * A_spec;
A_exchanged = -1*(sort(-1*A_exchanged));
for i=1:3

A_exch(i) = B_spec(i) + C_exchanged(2);
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C_exch(i) = A_exchanged(i);

end

answer = 5;
else

answer = 6;

A_exchanged = -1 * A_spec;

A_exchanged = -1*(sort(-1*A_exchanged));
for i=1:3
A_exch(i) = A_exchanged(i) + C_spec(2);
C_exch(i) = B_spec(i);

end
values(3) = C_spec(2);
end

end

The shift_spectra_A.m function shifts the spectra of the matrices A and C such

that their eigenvalues are positive.

C.2.8 shift_spectra_A.m

function [A_newspec, C_newspec] = shift_spectra_A(A_exch, C_exch) %%
n = length(A_exch);
if (A_exch(n) <= 0)

for i=1:n

A_newspec(i) = A_exch(i) - A_exch(n) + 1;

C_newspec(i) C_exch(i) - A_exch(n) + 1;

end
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else
for i=1:n
A_newspec(i) = A_exch(i);
C_newspec(i) = C_exch(i);
end
end

C_newspec(n+l) = 0;

The eig.coincide.m function checks whether the spectrum of the leading prin-

cipal submatrix A has some coincide eigenvalues.

C.2.9 eig_coincide.m

function [newC, newA, pointerA] = eig_coincide(C_spec, A_spec) %%
n = length(A_spec); i=1; j=1;
while (i <= n)

newA(j) = A_spec(i);

pointerA(j) = 1;

wvhile((i < n) & (A_spec(i) == A_spec(i+1)))

pointerA(j) = pointerA(j)+1;

i=1i+1;
end
i = i+1;
J o= J+1

end
m = length(pointerA); newC(1) = C_spec(1); u=2; k=1; h = 1;

while (h <= m)
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if (pointerA(h) > 1)

k

k + pointerA(h);
else
k = k+1;
end
newC(u) = C_spec(k);
h = h+i;
u = u+l;

end

The check_newlength.m function checks whether the number of the eigenvalues
of the matrix C is one greater than the number of the eigenvalues of its leading

principal submatrix A.

C.2.10 check_newlength.m

function answer = check_newlength(C_spec, A_spec)
answer = 1;
if ((length(C_spec) - length(A_spec)) ~= 1)
answer = 0;
disp(’Something wrong in the function eig_coincide.’);
disp(’Number of the e-values of C must be one greater than ’);
disp(’number of the e-values of its leading principal submatrix.’);

end

The compute_z.m function computes the vector z.



C.2.11 compute_xX.m

function [X] = compute_x(newC, newA, pointerA, q)
n = length(newA);
x = zeros(l,n); F=1; g=1;
for i=1:n
for j=1:n
F =F .x abs(newA(i) - newC(j));
if(j "= i)
g =g .* abs(newA(i) - newA(j));
end
end

x(1) = sqrt(F ./ g);

F=1;
g=1;

end

r=1;

for s=1:n
X(r) = x(s);

if (pointerA(s) > 1)
t =1;

while(t < pointerA(s))

r = r+i;
X(r) = 0;
t = t+1;

end



end
r = r+l;
end
X =X;
if(length(X) ~= q)
disp(’The vector x is wrong.’);

end

The gamma_verify.m function verifies whether v = o; + 5;.

C.2.12 gamma_verify.m

function [A, B, answ] = gamma_verify(A_spec, B_spec, C_spec) %%
A = eye(3); B = eye(3); answ = 0; flagl = O;
for i=1:3
for j=1:3
if (C_spec(1) == A_spec(i) + B_spec(j))

flagl = 1;
A_index = i;
B_index = j;
C_index = 1;
break;

end

if (C_spec(2) == A_spec(i) + B_spec(j))

flagl = 1;

"
(=0

A_index

B_index

"
Lt
.



C_index = 2;
break;
end

if(C_spec(3) == A_spec(i) + B_spec(j))

flagl = 1;
A_index = i;
B_index = j;
C_index = 3;
break;
end
end
end

if (flagl==1)

answ = 1;

A_s = zeros(2);
B_s = zeros(2);
C_s = zeros(2);
v=1;

for k=1:3

if(A_index "= k)
A_s(v) = A_spec(k);
v = v+l;
end
end
v =1;

for k=1:3
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b1

b2

b3

-
"

oo
"

end

C.

fun

if(B_index ~= k)
B_s(v) = B_spec(k);
v = v+l;
end
end
v=1;
for k=1:3
if(C_index "= k)
C_s(v) = C_spec(k);
v = v+l
end

end

(A_s(1) .x(B_s(1)+B_s(2))-(C_s(1) .*C_s(2))+(B_s(1) .*B_s(2) )+
(A_s(1).*A_s(2)))./(A_s(1)-A_s(2)); Wi
((C_s(1) .*C_s(2))-(B_s(1) .*B_s(2))-(A_s(1) .*A_s(2))-A_s(2) .*

(B_s(1)+B_s(2)))./(A_s(1)-A_s(2));
sqrt(bl.*b2 - (B_s(1).*B_s(2))); %%

[A_spec(A_index),0,0;0,A_s(1),0; 0,0,A_s(2)]; %%
[B_spec(B_index),0,0; 0,b1,b3; 0,b3,b2];

The compute_bi.m function computes the values of b;.

2.13 compute_bi.m

ction [b1,b2,b3,b4,b5,b6, flag] = compute_bi(A_spec, B_spec,

C_spec)
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syms b3 b6

flag = 1; G = zeros(5);

for i=1:3

A_s(i) = A_spec(i) - A_spec(3);

B_s(i) = B_spec(i) - B_spec(3);

C_s(i) = C_spec(i) - A_spec(3) - B_spec(3);
end

det_C = prod(C_s);

alter_A = A_s(1).*A_s(2); %A
alter_B = B_s(1).*B_s(2); %%
alter_C = C_s(1).*C_s(2) + C_s(1).*C_s(3) + C_s(2).*C_s(3); %k

k = alter_C - alter_B - alter_A; %%

b1

(A_s(1) .*(B_s(1)+B_s(2)) + A_s(2).*b3 - k)./(A_s(1)-A_s(2)); %%

b2

(k - A_s(2).*(B_s(1)+B_s(2)) - A_s(1).*b3)./(A_s(1)-A_s(2));
det_bb = bl.*b2.*b3;

alter_bb = bl.*b2 + bl.*b3 + b2.*b3; %

p = alter_bb - alter_B; %%

q = (bi+A_s(1)).*(b2+A_s(2)) .¥b3 - det_bb - det_C; %i

bd_sq = (A_s(1).*p - (A_s(1)-A_s(2)).*(b6)"2 - q)./A_s(1); %h
b5_sq = (q - A_s(2).*(b6)"2)./A_s(1);

Q =q./A_s(2); %W

L = solve(Q,b3);

L = double(L); %%

F= (A_s(1).%p - @)./(A_s(1)-A_s(2));
R = solve(F,b3); %k

R = double(R);
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if(min(L) < min(R))

1 = min(R);
else

1 = min(L);
end

if (max(L) < max(R))
r = max(L);

else
r = max(R);

end

1

double(1);

r = double(r);

err = abs(B_s(1));

b3 =1; %%

bl

(]

b2

Q_value = double(eval(Q));

F_value = double(eval(F)); %%

g

g

solve(g,b6);

ans = 1; %%

while(ans "= 0 & b3 <= r)
if(Q_value > 0 & F_value > 0)
if (Q_value < F_value)

m = _value;

(k - A_s(2).*(B_s(1)+B_s(2)) - A_s(1).*b3)./(A_s(1)-A_s(2));

simplify(expand(g));
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(A_s(1).*(B_s(1)+B_s(2)) + A_s(2).*b3 - k)./(A_s(1)-A_s(2)); %%

eval(det_bb - bl*b5_sq - b2*(b6)~2 - b3*b4_sq+2*b4_sq*b5_sq*b6) ;
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else
m = F_value;
end
for i=1:5
v = double(G(i));
if(isreal(w) & w > 0 & w < m)
b6 = double(G(i));
bd_sq = eval((A_s(1).*p - (A_s(1)-A_s(2)).*
(b6)°2 - q)./A_s(1));
bS_sq = eval((q - A_s(2).*(b6)"2)./A_s(1));
if (isreal(b4_sq)&isreal(b5_sq) & b4_sq >= 0 & b5_sq >= 0)

b4

sqrt(b4_sq);

b5 = sqrt(b5_sq);

B = [bl b4 b6; b4 b2 b5; b6 bS5 b3];

eigenB = eig(B);

if (eigenB(1) == B_s(1) & eigenB(2) == B_s(2))
disp(’The matrix B is an exact solution.’);
ans = 0;
flag = 0;
break;

else

if (abs(eigenB(1)-B_s(1)) <= err &
abs (eigenB(2)-B_s(2)) <= err)

my_bl = bl;

my_b2 = b2;

my_b3

b3;
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my_b4 = b4;
my_bbd = b5;
my_b6 = b6;

err = min(abs(eigenB(1)-B_s(1)),
abs (eigenB(2)-B_s(2)));
end
end
end
end
end
end
if ((r-1) < 5)
b3 = b3 + rand(1)./100;
else

b3 = b3 + (r-1)*rand(1)./100;

end
bt = (A_s(1) .*(B_s(1)+B_s(2)) + A_s(2).*b3 - k)./(A_s(1)-A_s(2));
b2 = (k - A_s(2).*(B_s(1)+B_s(2)) - A_s(1).*b3)./(A_s(1)-A_s(2));

Q_value = double(eval(Q));

F_value = double(eval(F));

syms b6

bd_sq = (A_s(1).*p - (A_s(1)-A_s(2)).*(b6)"2 - q)./A_s(1);
b5_sq = (q - A_s(2).%(b6)~2)./A_s(1);

g = eval(det_bb - bil*b5_sq - b2*(b6) "2 - b3*bd_sq + 2*b4d_sq*b5_sq*b6) ;
g = simplify(expand(g));
G = solve(g,b6);
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end

if(ans "= 0)
bl = my_bi;
b2 = my_b2;
b3 = my_b3;
b4 = my_b4;
b5 = my_b5;
b6 = my_b6;

end

if((bl "= 0 & abs(b1l) < 1./1000000) |
(b2 "= 0 & abs(b2) < 1./1000000) |
(b3 "= 0 & abs(b3) < 1./1000000) |
(b4 "= 0 & abs(b4) < 1./1000000) |
(b5 "= 0 & abs(b5) < 1./1000000) |
(b6 "= 0 & abs(b6) < 1./1000000))
disp(’Note: "*" means 0.’);

end

C.3 n X n case

There are 9 functions in this program.
The main.m function gets the spectra of two n x n matrices: A and B, and an
arbitrary eigenvalue of the matrix C = A + B. It will display the matrices A and B

if there exists a solution.

C.3.1 main.m

function [J = main()
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reply = ’y’;
wvhile (reply == ’y’)
[A_spectrum, B_spectrum, gammal = get_spectra;
if (check_length(A_spectrum, B_spectrum, gamma))
[A_spec, B_spec] = descend_sort(A_spectrum, B_spectrum);
[bool, K] = Weyl_verify(A_spec, B_spec, gamma);
if (bool & K)
n = length(A_spec);
if ((A_spec(1) == A_spec(n)) | (B_spec(1) == B_spec(n)))
A

diag(A_spec); A
B

diag(B_spec); B

k_subscript_of_gamma = K

eigh = eig(A)

eigB = eig(B)
eighB = eig(A+B)

else

A_temp = zeros(l,n);

B_temp = zeros(1,n);
switch (K)
case {1,n}
Bl = compute_B1i(A_spec(1),A_spec(n), B_spec(1),

B_spec(n), gamma);

for i=2:n-1

A_temp(i+1) = A_spec(i);

B_temp(i+1) = B_spec(n+1-i);

end
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A_temp(1) = A_spec(1);
A_temp(2) = A_spec(n);
B_temp(1) = B1(1,1);
B_temp(2) = B1(2,2);

B = diag(B_temp);

B(1,2) = B1(1,2);

B(2,1)

B1(1,2);
A = diag(A_temp)
B

k_subscript_of_gamma = K

eigh = eig(A)

eigB = eig(B)
eighB = eig(A+B)
otherwise
if (gamma >= (A_spec(n)+B_spec(1)))
Bi = compute_B1(A_spec(K),A_spec(n), B_spec(l),

B_spec(n), gamma);

for i=1:K-1
A_temp(i) = A_spec(i);
B_temp(i) = B_spec(K+1-i);
end
for j=K+2:n
A_temp(j) = A_spec(j-1);
B_temp(j) = B_spec(n+K+1-j);
end

A_temp(K) = A_spec(K);
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A_temp(K+1) = A_spec(n);
B_temp(K) = B1(1,1);
B_temp (K+1) = B1(2,2);

B = diag(B_temp);

B(K,K+1)

B1(1,2);

B(K+1,K) = B1(1,2);
A = diag(A_temp)
B

k_subscript_of_gamma = K

eigh = eig(A)

eigB = eig(B)
eighB = eig(A+B)
else

Bl = compute_B1(A_spec(1),A_spec(n), B_spec(1),

B_spec(K), gamma);

for i=1:K-2
A_temp(i) = A_spec(i+l);
B_temp(i) = B_spec(K-i);
end
for j=K+1l:n
A_temp(j) = A_spec(n+K-j);
B_temp(j) = B_spec(j);
end

A_temp(K-1) = A_spec(1);
A_temp(K) = A_spec(n);
B_temp(K-1) = B1(1,1);



end

end
end

else

disp(’Hence, there is no solution.’);

end

end

reply = input(’\nDo you want more? y/m: ’,’s’);

if isempty(reply)
reply = ’y’;
end

end

B_temp(K) = B1(2,2);
B = diag(B_temp);

B(K-1,K) = B1(1,2);

B(K,K—l)

B1(1,2);
A = diag(A_temp)
B

k_subscript_of_gamma

eigh = eig(A)

eigB = eig(B)

eigAB = eig(A+B)
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The get_spectra.m function gets the spectra of the matrices A and B, and an

arbitrary eigenvalue of the matrix C = A + B.
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C.3.2 get_spectra.m

function[A_spec, B_spec, gamma_k] = get_spectra() %%

A = input(’\nEnter A spectrum: ’,’s’);

A_spec = str2num(A); %%

B = input(’\nEnter B spectrum: ’,’s’);

B_spec = str2num(B); %%

C = input(’\nEnter "GAMMA(k)", an arbitrary eigenvalue of C: ’,’s’);

gamma_k = str2num(C);

The check_length.m function checks whether the spectra of the matrices A and

B have the same length. It also verifies whether only one 4y is input.

C.3.3 check_length.m

function answer = check_length(A_spec, B_spec, gamma_k)
answer = 0;
if (length(A_spec) "= 0 & length(B_spec) "= 0 & length(gamma_k) == 1
& length(A_spec) == length(B_spec))
answer = 1;
else
if (isempty(A_spec))
disp(’You did not enter any eigenvalue of the matrix A.’);
end
if (isempty(B_spec))
disp(’You did not enter any eigenvalue of the matrix B.’);
end

if (length(gamma_k) "= 1)
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disp(’Please enter one eigenvalue of matrix C.’);
end
if (length(A_spec) ~= length(B_spec))

disp(’The matrices A and B do not have the same length.’);
end

end

The descend_sort.m function sorts the spectra of the matrices A and B in a

decreasing order.

C.3.4 descend_sort.m

function[A_spec, B_spec] = descend_sort(A_spectrum, B_spectrum)
A_spec = -1 .* sort(-1 .* A_spectrum); %%

B_spec = -1 .* sort(-1 .* B_spectrum);

The Weyl_verify.m function verifies whether the arbitrary eigenvalue of the

matrix C = A + B satisfies Weyl’s inequalities.

C.3.5 Weyl_verify.m

function [flag, k_index] = Weyl_verify(A_spectrum, B_spectrum,
gamma_k)
flag = 1; k_index = 0; sorry = Inf; k_indices = [1; %4
n = length(A_spectrum); %%
if (gamma_k > (A_spectrum(1l) + B_spectrum(1)) | gamma_k <
(A_spectrum(n) + B_spectrum(n)))
flag = 0;

disp(’GAMMA (k) does not satisfy the inequalities of Weyl.’);



disp(’GAMMA(k) should be in the interval: ’);
sprintf (’ [%g, %gl.’, (A_spectrum(n) + B_spectrum(n)),
(A_spectrum(1) + B_spectrum(1)))

sorry = 0;

else

temp = zeros(i,n);
for i=1:n
temp(i) = A_spectrum(i) + B_spectrum(n+1i-i);
end
if (gamma_k >= max(temp))
k_indices = 1;
end
if (gamma_k <= min(temp) & n > 1)

if (isempty(k_indices))

k_indices = n;
else
k_indices = [k_indices, n];
end
end
for k=2:n-1
a = Inf;
b = -Inf;
for j=1:k

templ = A_spectrum(j) + B_spectrum(k+1-j);
if (a > templ)

a = templ;

110
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end
end
for p=1l:n-k+i
temp2 = A_spectrum(p+k-1) + B_spectrum(n+i-p);
if (b < temp2)
b = temp2;
end
end
if (gamma_k <= a & gamma_k >= b)
if (isempty(k_indices))
k_indices = k;

else

k_indices = [k_indices, k];
end
end
end
end
if (“isempty(k_indices))
sorry = 0;
k_index = k_subscript_verify(A_spectrum, B_spectrum, k_indices,
gamma_k) ;
end
if (k_index == 0 & sorry == Inf)
disp(’GAMMA(k) does not satisfy the inequalities of Weyl.’);

end
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The choose_k_indez.m function asks the users for choosing their desired k**

subscript of the eigenvalue .

C.3.6 choose_k_index.m

function k_index = choose_k_index(k_indices, subscripts_size) %%

again = 1; flag3 i,
if (subscripts_size < 1)
k_index =0;
else
disp(’The possible k_subscript(s) of the eigenvalue GAMMA(k): ’);

for i=1:subscripts_size

subscripts(i) = k_indices(i);

end

subscripts

temp = input(’\nChoose your desired k_subscript
(by the above value(s)): ’,’s’);

temp = str2num(temp);

while (again)

i= 1;

while (i <= subscripts_size & flag3)
if (temp == k_indices(i))

flag3 = 0;

end
i = i+1;

end

if (flag3)
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disp(’You did not choose any k_subscript in the list: ’);
for i=1:subscripts_size

subscripts(i) = k_indices(i);

end
subscripts
temp = input(’\nPlease, choose your desired
k_subscript again: ’,’s’);
temp = str2num(temp);
else

k_index = temp;
again = 0;
end
end

end

The k_subscript_verify.m function verifies whether the eigenvalue ~ gives a real
solution when calculating the 2 x 2 matrix B;. Notice that all k subscripts in the list
k_indices satisfy Weyl’s inequalities. However, some (or all) of them may not give a

real solution.

C.3.7 k_subscript_verify.m

function k_index = k_subscript_verify(A_spectrum, B_spectrum,
k_indices, gamma_k)

k_index = 0; subscripts_size = 0; %%

n = length(A_spectrum);

if (length(k_indices) > 1)
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flagBl = 1;
subscripts_size = length(k_indices);
k_index = choose_k_index(k_indices, subscripts_size);
vhile (flagBl & k_index > 1 & k_index < n)
if ((A_spectrum(1l) == A_spectrum(n)) | (B_spectrum(l) ==
B_spectrum(n)))
flagBl = 0;
else
if (gamma_k >= (A_spectrum(n) + B_spectrum(1)))
if (Bi_Weyl_verify(A_spectrum(k_index), A_spectrum(n),
B_spectrum(1l), B_spectrum(n), gamma_k))
flagBl = 0;
else
disp(’Your chosen subscript of gamma satisfies the
inequalities of Weyl, but it does not satisfy
when computing the 2x2 matrix B1.’);
temp_index = k_indices(subscripts_size);
i=1; stop = 1;
while (i < subscripts_size & stop)
if (kx_index == k_indices(i))
k_indices(i) = temp_index;
k_indices(subscripts_size) = k_index;
stop = O;
end
1= i+1;

end



115

subscripts_size = subscripts_size-i;
if (subscripts_size > 0)

disp(’Please re-choose another subscript.’);

end

k_index = choose_k_index(k_indices, subscripts_size);

end

else

if (Bi_Weyl_verify(A_spectrum(1l), A_spectrum(k_index),
B_spectrum(1), B_spectrum(n), gamma_k))
flagBi = 0;

else

disp(’Your chosen subscript of gamma satisfies the
inequalities of Weyl, but it does not satisfy
when computing the 2x2 matrix B1.’);
temp_index = k_indices(subscripts_size);
i=1; stop = 1;
while (i < subscripts_size & stop)
if (k_index == k_indices(i))
k_indices(i) = temp_index;
k_indices(subscripts_size) = k_index;
stop = 0;
end
1= i+1;
end
subscripts_size = subscripts_size-1;

if (subscripts_size > 0)
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disp(’Please re-choose another subscript.’);
end
k_index = choose_k_index(k_indices, subscripts_size);
end
end
end
end
else
if ((A_spectrum(1) == A_spectrum(n)) | (B_spectrum(1l) ==
B_spectrum(n)))
k_index = k_indices;
else
if (gamma_k >= (A_spectrum(n) + B_spectrum(1)))
if (Bl_Weyl_verify(A_spectrum(k_indices), A_spectrum(n),
B_spectrum(1), B_spectrum(n), gamma_k))
k_index = k_indices;
else
disp(’This eigenvalue of C satisfies the inequalities
of Weyl, but it does not satisfy when computing
the 2x2 matrix B1l.’);
end
else
if (Bi_Weyl_verify(A_spectrum(1i), A_spectrum(k_indices),
B_spectrum(1), B_spectrum(n), gamma_k))
k_index = k_indices;

else
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disp(’This eigenvalue of C satisfies the inequalities
of Weyl, but it does not satisfy when computing
the 2x2 matrix B1.’);
end
end
end

end

The compute_B1.m function computes the 2 X 2 matrix Bj.

C.3.8 compute Bl.m

function [B1] = compute_Bi(alpha_1,alpha_n, beta_l, beta_n, gamma_ 1)
if (alpha_1 "= alpha_n)

gamma_n = (alpha_l+alpha_n+beta_i+beta_n) - gamma_1;

bil = (alpha_1.*(beta_l+beta_n) - gamma_1.*gamma n + alpha_1.*
alpha_n + beta_1.*beta_n)./(alpha_1i-alpha_n);
b22 = (-alpha_n.*(beta_l+beta_n) + gamma_ 1.*gamma_n - alpha_1.=*
alpha_n - beta_1.*beta_n)./(alpha_1i-alpha_n);
b12 = sqrt(b1l1.*b22 - beta_1.*beta_n);
Bl = [bil b12; b12 b22];
else
Bl = [beta_1 0; O beta_n];
end

if((b11 "= 0 & abs(bll) < 1./1000000) |
(b12 "= 0 & abs(b12) < 1./1000000) |

(b22 "= 0 & abs(b22) < 1./1000000))
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disp(’Note: "*" means 0.’);

end

The B1_Weyl_verify.m function verifies whether the spectra of the 2 x 2 matrices
A, By, and C; = A, + B satisfy Weyl’s inequalities.

C.3.9 B1_Weyl_verify.m

function flag2 = Bi_Weyl_verify(alpha_i, alpha_k, beta_1, beta_n,
gamma_k)
flag2 = 0;

if ((alpha_i+beta_n) <= (alpha_k+beta_1))

min = alpha_1 + beta_n;

max = alpha_k + beta_1;
else

max = alpha_1 + beta_n;

min = alpha_k + beta_1;
end

if (((max <= gamma_k) & (gamma_k <= alpha_i+beta_1)) |
((alpha_k+beta_n <= gamma_k) & (gamma_k <= min)))
flag2 = 1;

end
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