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ABSTRACT

FERMAT NUMBERS:

HISTORICAL VIEW WITH APPLICATIONS RELATED TO FERMAT PRIMES

By Faun C. Maddux

According to Philip Davis, “One of the endlessly alluring aspects of mathematics
is that its thorniest paradoxes have a way of blooming into beautiful theories”
(Guillemets). This thesis examines some of the exciting historical developments

surrounding one of these thorny dilemmas: Fermat’s conjecture that numbers of the form

2% +1 are prime for all n e Z™™ =™ While it took almost 100 years before Euler found
a counterexample, and another sixty years for Gauss to make the discovery that ignited
interest in these numbers, serious mathematical strides resulting in beautiful theories have
been made ever since. After examining several highlights pertaining to Fermat numbers,
this paper focuses on three applications whose proofs rely heavily upon the power of
Fermat primes: Gauss’ aforementioned theorem followed by modern results due to Dr.
Florian Luca (concerning Heron triangles) and Carrie Finch and Lenny Jones (regarding

finite minimal POS groups). Lastly, the reader is offered several open problems.
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Fermat number: F, =2% +1 form=0, 1,2, ...

set of natural numbers (with or without 0), set of integers

set of positive integers, nonzero integers

set of nonnegative integers (specifically includes 0)

set or field of rational numbers, complex numbers, and real numbers
set of all elements of R that are not elements of Q

elements of Z mod n: {0, 1, ...,n—-1}

algebraic closure of the field F

a congruent to b modulo n

a 1s not congruent to b modulo # (backward slash generally indicates not )
m divides n

m maximally divides »

greatest common divisor of @ and b

the minimum value of a or b

Euler totient function (counts me N where m<n and gcd(m,n)=1)

n® Cyclotomic polynomial

coset of a (under a homomorphism)

the unique monic irreducible polynomial for which ¢ is a root over Q
Galois group of E over F (group of all Galois automorphisms of E over F)
the set of elements of E left fixed by elements of a subset S € Gal(E/F)

index of H in G (H is a subgroup of G)
index of K over L (K is a finite extension of field L)
(number of isomorphisms of K onto a subfield of L leaving L fixed)
degree of K over L (K is a finite extension of field L)
cardinality of group G (number of elements in 7)
subgroup generated by a
implies
if and only if
forward direction of if and only if ( p — ¢ for p <> g statement )
reverse direction of if and only if (¢ — p for p <> g statement )

contradiction

mapped to (under a homomorphism)
subgroup or subfield
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isomorphic to

end of proof
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CHAPTER ONE

INTRODUCTION: FERMAT’S PLACE IN HISTORY

“In most sciences, one generation tears down what another has built,
and what one has established, another undoes. In mathematics alone
each generation adds a new story to the old structure.”

Hermann Hankel

Considering developments in recorded mathematical history is an incredible
journey of wonder and awe. Unleashing fundamental truths governing the world, its
properties and laws of motion, and witnessing the seemingly impossible connections
between these truths offers adventure to the avid learner. Sadly, however, many take
these advances for granted or, even worse, as nuisances to be tolerated. For instance, is
there a beginning algebra student that fully appreciates the beauty of the abstraction they
are learning or the countless hours that went into developing the simplicity and logic of
the system he or she is being asked to use? Much deeper understanding is needed before
such an appreciation can occur. Similarly, when deep-rooted theories are being
uncovered, it has frequently taken society years to accept and understand the
consequences. Therefore, as mankind has developed the mathematical tools needed to
dissect scientific questions, not every participant has been blessed to see the culminating
crescendo of beautiful harmony that his or her contribution has had within the orchestra
of the mathematical framework being constructed. Pierre de Fermat was such a
participant, for the questions he raised have had far-reaching consequences to this day.

Thus, before going directly to current theoretical results, looking briefly at Fermat’s



2
background may increase the reader’s appreciation for the scope of Fermat’s contribution

to the small piece of the mathematical framework being examined in this thesis.

Pierre de Fermat was born into a wealthy family in Beaumont-de-Lomagne,
France, on August 17, 1601. While his father, Dominique Fermat, was a leather
merchant who held an important position akin to being mayor, his mother, Claire née de
Long, was the daughter of a prominent family (notice that “de” indicated nobility, a status
the Pierre Fermat achieved in 1631 in association with a career promotion). When Pierre
de Fermat later married Louis de Long, his cousin fourth removed, an entire upper class
family surrounded him.

Young Fermat was educated primarily at home. He spoke five different
languages and was hi ghly intelligent; however, he had a rather slow work style and was
quite modest and retiring. After his home-based education, Fermat studied law at a local
school and subsequently joined the legal profession on May 14, 1631, which was a
natural progression given the era and his family status. Although Fermat was interested
in mathematics, performing his first serious research in 1629 (restoring Apollonius’s
Plane Loci and uncovering important results with maxima and minima), this was not a
viable career option. During the first half of the Seventeenth Century, the term
mathematician referred to what one would call an astronomer today, and the study of
mathematics was not a professional discipline. Instead, those who pursued mathematics
were identified by the predecessors, or “schools,” of thought and conventions that they
followed. The reader may recall that Western mathematical study, in particular algebra

and number theory, was first revitalized with Leonardo de Pisa (Fibonacci) in the early
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Twelfth Century. Fibonacci was followed by Ferro, Tartaglia, Cardano and Ferrari, who

were succeeded by Frangois Viete (among others). Fermat followed the school of Viéte,
a school with cumbersome notation, which may have separated him from some of his
contemporaries.

Ironicall_y, those who investigated mathematics out of love and without
professional recognition during the Seventeenth Century forged the foundations for
modern mathematics. The four men who made the most cutting advances were Girard
Desargues, René Descartes, Blaise Pascal, and Pierre Fermat. Winifried Scharlau and

Hans Opolka, in From Fermat to Minkowski, gave interesting classifications for each:

Desargues was the most original, Descartes the most famous, Pascal the most ingenious,
and Fermat the most important (Scharlau, 5). While the reader may or may not agree
with the awards thus given, the author ha& to smile with Fermat’s well-deserved status.
Interestingly, many other sources indicate similar reverence for Fermat, calling him one
of the leading mathematicians of the Seventeenth Century to one of the greatest
mathematicians of all times. Even Descartes, with whom Fermat had a famous
disagreement, begrudgingly admired Fermat’s work, calling Fermat’s Four Square
Theorem_ (every natural number is the sum of four squares of natural numbers), “one of
the most beautiful (theorems) that can be found in number theory,” the proof of which
would be so difficult that he would “not even attempt to search for it” (9). While Fermat
made advances in modern calculus methods (independently of Descartes), two and three
dimensional analytic geometry, optics, quadrature and tangents of curves, and probability

(to name a few), his true love was number theory, an area of the mathematical foundation



that many of his contemporaries simply weren’t attracted to or had difficulty
understanding. Ironically, Fermat had no interest in real-life applications, yet he
produced some very applicable results, most notably in physics, and investigations of his
number theory work “has originated several new mathematical disciplines” (Ktizek, xvi),
much of which is highly applicable to modern technology.

Most of what is known about Fermat’s work comes from his correspondence with
his contemporaries. He shared his work with maxima and minima with Jean Beaugrand
(another follower of Viéte) and Etienne d'Espagnet around 1630. This led to
correspondence with Pierre de Carcavi, Marin Mersenne, Etienne Pascal, Gilles
Roberval, Bernard Frénicle de Bessy, and René Descartes. After the Descartes
controversy in which Fermat realized that Descartes’ sine law was in conflict with the
Aristotelian viewpoint that nature chooses the shortest path, Fermat lost touch with his
contemporaries due to work pressure, a Civil War and the Plague (he nearly lost his life
to the latter). During these silent years, Fermat quietly worked on number theory, finding
his true love. Then, in the 1650’s, he rejoined his colleagues, writing to mathematicians
in Paris as well. He worked on spirals and falling bodies (reporting errors in Galileo’s
calculations) and generalized Archimedes’ methods. During this time Fermat began
writing his “challenge” letters in which he would present his discoveries as challenge
problems (without giving the solutions). This led to his quick reputation as a leading
mathematician, but many were annoyed with his challenges, as they seemed impossibly
difficult. In 1654 he co-founded probability theory with Blaise Pascal (Etienne Pascal’s

son) and tried to generate a focus on number theory, but no one was interested. This



drove Fermat even deeper into his challenge letters, and the first hints of Fermat’s far-
reaching influence began to emerge. John Wallis and William Brouncker developed the
method of continued fractions in their solution to one of Fermat’s challenges. This result
was one of the first breakthroughs accomplished in connection with work done in
association with Fermat’s achievements. Other results that followed included discovery
of commutative ring theory, the first questioning of unique factorization in integral
domains, development of the theory of quadratic forms, innovation of quadratic
reciprocity, creation of class field theory, introduction of Pell’s equation, and many
deeper results in number theory, all of which emerged in connection with proofs of
Fermat’s theorems. Not surprisingly, Fermat is thus credited with founding modern
number theory. Speaking of six theorems Fermat listed as some of his most important
theorems in a letter written in 1656 to Carcavi, Scharlau noted that “it is remarkable with
what certainty he (Fermat) identified central problems in number theory. Each of these
theorems ... is the starting point for a deep and rich theory” (Scharlau, 9). However,
Fermat only published one mathematical paper (in the appendix of a colleague’s book)
and, in all of his writings, left us only one proof (O’Connor, Fermat’s Last Theorem), so
mathematicians who succeeded Fermat were left with the exciting framework of his
results without the body to support it. Fortunately, several able thinkers took up the
mantle and ran with it. One of these mathematicians who further developed Fermat’s
work, creatin‘g some of the theory mentioned above, was Leonhard Euler. Euler believed
“Fermat’s assertions were serious theorems deserving of proofs” (Cox, 8), and he spent

forty years proving and generalizing Fermat’s results. Other notable mathematicians,



beyond Fermat’s contemporaries, who were fascinated with Fermat’s results include
Christian Huygens, Isaac Barrow (teacher of Isaac Newton - K¥izek, xv), Carl Gauss,
Joseph Lagrange, and, most recently, Andrew Wiles.

As Euler discovered in 1732, not all of Fermat’s conjectures were true, yet even
this did not limit the influence of the incorrect “theorem.” In fact, the subsequent results

had rippling effects in the foundation of mathematics from number theory to geometry

and led to the theorems investigated in this thesis. The conjecture in question, that
numbers of the form 27 41 are prime for any nonnegative integer 7, was introduced in
1650. Numbers of this form, £, = 2%" +1, are called Fermat numbers in honor of Fermat.
In the numerous attempts to prove this assertion, before Euler found that 7 was

composite, a wealth of properties inherent to numbers of this type was discovered, and
numerous factorization and computational advances were made. The reader may find it
interesting, for example, that the largest computation ever performed to obtain a yes or no
answer (whether the number was or was not prime) was performed in 1999 when
checking the primality of F,, (5). This paper will not consider computational results, but
will instead look at more theoretical applications. However, before examining the

modern applications being considered in this paper, some of the more fascinating results

concerning Fermat numbers will be reviewed.



CHAPTER TWO

A QUICK SURVEY OF RESULTS ASSOCIATED WITH FERMAT NUMBERS

The body of work accomplished in association with Fermat numbers is almost
overwhelming. One could spend days, if not years, studying any single piece of the
puzzle. This section, therefore, is in no way meant to be comprehensive, but rather the
reader is offered a few highlights in order that he or she may glimpse the framework
under-girding the applications to be explored in the following chapter. The author
surveyed several sources, and the majority of the information presented here paraphrases
the results she encountered. Among the many diverse paths of study related to Fermat
numbers, one will find numerous recurrence relations, tests for compositeness and
divisibility, connections with Geometry, and modern day applications to technology.

As mentioned previously, it took many years for mathematicians to have any
interest in Fermat numbers, yet once curiosity was generated, many recurrence relations
among the numbers sprang forward. One that the author found interesting is the

following (for a proof, see Ktizek, 26):
m-1
E, =(HF;)+2 forall m>1
=0

There are two immediate consequences of the above relation. First, notice that for all

I<i<m, F|F, -2 or F,, =, 2. Inparticular, since F; =5, we know F, =, 2 for any

m> 1. However, F, =, 1 (since every Fermat number is odd), whence F, =,,.7 for any
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m>1. This results in the remarkable fact that every Fermat number (except the first) ends

in 7. The second result is Goldbach’s Theorem:
Given any two distinct Fermat numbers, the only common divisor is 1.

To see this, pick any two Fermat numbers, say F,, and F, , for some m >k >1, and let
g € N be a common divisor. Then, g| F,_, and, by the recurrence relation; we know
F, .|F,—2,whence g|F,~2. Butthen ¢|2 since g|F,, and ¢|F, -2,s0 ¢=1
(since 2 / F, for any m). Interestingly, this result provides another way to show there are
infinitely many primes.

In addition to the myriad of recurrence relations, a plethora of tests for

compositeness have been unearthed. For instance, one can prove that if an integer can be

expressed as the sum of two different non-zero squares (of integers) in two different ways
(n=a’>+b* =c* +d* with a>c>d > b>1), then the number must be composite (see

K¥izek, 7 and 49). Following this fact, notice that any Fermat number can be written as

(for m>0):
- -t -1 1 \2
27 41227 41222070 412 (277 ) 412
From this it follows that if one can find two integral squares, neither of which is 1, that

add to give any F, , then that particular Fermat number must be composite. The

calculations involved in the above, however, are often tedious and difficult, whence
further tests have been developed. Two well-known tests that give necessary and

sufficient conditions for testing whether or not a number is prime are Lucas’s Test and
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Selfridge’s Test (the latter is a refinement of the former). Both of these tests are, in turn,

used to prove Pepin’s Test:

any Fermat number is prime if and only if 32 =, -1 where m>1
y P F,

(for a proof, see Ktizek, 42). The reader may find it interesting that instead of using three
in the congruence just stated, Pepin actually used five as his base, and many other bases
including ten and certain Fermat primes have been shown to work as well; however, three
is the common base used today. Although this test is easily applied, it gives no insight
into the factors hidden within a composite Fermat number, and numerous other tests have
been developed since Pepin introduced this test in 1877.

On the flip side of testing for primality of the Fermat numbers themselves, many
mathematicians have investigated properties of the prime divisors of Fermat numbers.

For instance, in 1878 Edouard Lucas showed that if m > 1 and p is a prime number that
divides F,,, then p = k2™ +1 for some k €N (59). This generated a lot of interest, and

these prime factors began receiving a lot of attention. Many results followed, some
opening new questions that still are not answered to this day. For example, in 1960

Sierpinski showed that there are infinitely many values for £ € N such that all the

numbers in the set { k2" +1: ne N} are composite (71), yet the smallest value of £ for
which this holds has not been found (60).

While considerable attention is still given to Fermat numbers, the discovery that
initially established interest in these numbers came in 1796 when Gauss announced the

following relationship between constructible regular n-gons and Fermat primes:
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There exists a Euclidean construction of the regular n-gon if and only if

!
n= 2’H p; where n23, i20, 120, and each p, is a distinct Fermat prime.
j=0

This theorem will be addressed in detail in the following section, yet there is something
of extreme curiosity to be said here. To begin, notice that since there are only five known
Fermat primes (/, =3, F, =5, F, =17, F, =257, and F, =65537), Gauss’s theorem

tells us there are exactly 31 known constructible n-gons with odd number of sides (if, as
is widely conjecture, these are the only Fermat primes). For instance, letting i = 0, we
have constructible regular triangles, pentagons, 15-gons, 17-gons, 51-gons, 85-gons, 255-
gons and so forth. Now, if one considers Pascal’s famous triangle, rewriting each entry
with its equivalent modulo 2, the following results:
1
11
101
1111
10001
110011
1010101

and so forth. Then, considering each row to be a number written in base 2, one obtains a

particularly interesting sequence of numbers:

1 1

11 2+1=3

101 4+0+1=5

1111 8+4+2+1=15

10001 16+0+0+0+1=17
110011 32+16+0+0+2+1=51
1010101 64+0+16+0+4+0+1=85

These numbers, with the exception of 1, are precisely the same as the number of sides of

the regular constructible n-gons (with odd number of sides)! In fact, the first thirty-two
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rows give all thirty-one such n-gons. William Watkins discovered this remarkable

connection (Ktizek, 35), although another mathematician proved it. Interestingly, there
are several other connections with Fermat numbers and Pascal’s triangle, some of which
further relate to a connection with Geometry as well.

Fermat may have been pleased with the connection between his primes and
Geometry, but his first fascinations were perfect and amicable numbers (Scharlau, 6),
thus he would have been sad to discover that a Fermat number is never perfect or part of
an amicable pair (Luca, 171). On the other hand, he loved brain-teasers (Scharlau, 6), so
he would have been delighted with the use of his numbers in generating pseudoprimes
and other technologic-specific functions. Some of the many applications that use Fermat
primes are number-theoretic transforms, fast multiplication of large numbers, analysis of
the logistic equation, hashing schemes, and pseudorandom generation (see Ktizek, 165 —
186). The reader should note that there are many interesting connections between Fermat
numbers and pseudoprimes. Recall that a composite number # is a pseudoprime (to the

base a) if there exists an a € N such n|a” —a. It follows (with some work) that all

Fermat numbers are either prime or are pseudoprime to the base 2, and Fermat may have
realized this (36 — 37). Another fun fact is that Fermat numbers were used in the first
proof of the infinitude of the pseudoprimes (133). One could say that even though
Fermat was not particularly interested in real-life applications, his challenges and
discoveries have certainly had far-reaching consequences, some with real-life relevance
(particularly in technology) and many with theoretical relevance. We shall now shift our

focus to three specific results that rely heavily on Fermat primes in their proofs.



12
CHAPTER THREE

INTERESTING APPLICATIONS WITH FERMAT PRIMES IN KEY ROLES

Before presenting the following applications, the author wishes to alert the reader
that all of the material presented herein originated from other sources. Therefore, the
author wishes to begin this exciting chapter by acknowledging the primary source from
which each application arose. The first application is the oldest and is, naturally, due to
Gauss. The author surveyed several different proofs of this theorem and has distilled the
information. Therefore, rather than giving the shortest proof possible, the author has
chosen to present several interesting approaches in the various stages of the proof. The
second application also has its roots in antiquity, yet the result under consideration is due
to the current research of Dr. Florian Luca and is found in the journal article, “Fermat
Primes and Heron Triangles with Prime Power Sides.” Finally, a modern result in finite
abelian group research presented by Carrie Finch and Lenny Jones in “A Curious
Connection Between Fermat Numbers and Finite Groups™ is examined. The author is
indebted to the above for the framework they created. Taking pieces of the puzzle thus

put in place, the author filled in missing details and supplied omitted proofs.
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Application One: Gauss’s Theorem

A. Introduction To Gauss’s Theorem

Note that there are many theorems due to Gauss, yet we are only considering his famous

constructibility theorem, so we call it simply Gauss’s Theorem.

Gauss’s Theorem: There exists a Euclidean construction (via straightedge and compass)

!
of the regular n-gon if and only if n =2’ H p; where
j=0

n23,i20,7/20, and each p, is a distinct Fermat prime.

Although one may argue that Euclidean constructions are hobby material, the
author finds this theorem very intriguing. Indeed, modern mathematicians do not spend a
lot of time with collapsible compasses, painstakingly pursuing constructibility patterns,
yet the intricate designs a student may encounter during a Geometry course still elicit a
sense of excitement as simple lines and arcs bring forth concise sketches. Meeting
significant challenges in attempting to reveal much simpler tasks than constructing a
regular 257-gon, the author felt a sense of awe upon reading this theorem, wondering
what Gauss must have encountered in his hours of study to realize such a truth. Not only
did he determine how to construct regular n-gons with a large number of sides, but he
also made the striking connection between the geometrical properties he encountered and

the numerical power of the seemingly unrelated Fermat primes.
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The author is not alone in her wonderment over this connection. Gauss’s thought

provoking theorem has been called one of the most beautiful theorems on Fermat
numbers (KfiZzek, 33) and has been proved in many varied and elegant ways over the
centuries. While the original proof due to Gauss is reported to have been over fifty pages
in length (187) chering only the forward direction (2), modern mathematical machinery
has enabled very concise proofs covering both directions (Grillet, for instance, gives a
proof only nine lines in length: Grillet, 260); however, as can be expected, these
condensed proofs are fueled by sophisticated thought inherent between the lines of the
proofs. The goal of this paper is to distill some of these thoughts into a more digestible
manner without suffering the reader to labor through fifty pages of material. Following
the line of thought found in the proofs offered in Ktizek and Grillet, we will prove

Gauss’s Theorem with the following outline (let £ be a primitive nth root of unity):

A regular n-gon is constructible <> a primitive n® root of unity, &, is constructible

«> ¢ 1s algebraic over QQ with degree a power of 2

< ¢(n)=2" for some g Z

i
< n=2T]p, where n23,i20, /20, and each p,
=0

is a distinct Fermat prime

We begin with the forward direction and subsequently offer the reverse direction;
however, in order to simplify the proof slightly for the reader, we present the first

biconditional separately as we give a brief summary of geometric constructions.
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B. Geometric Constructions and the First Biconditional

As the reader may recall, a Euclidean construction involves using only a
straightedge and compass to create various geometric objects (in a plane). Bearing in
mind constructions introduced in high school geometry, one may easily construct a
perpendicular or parallel line, an angle bisector, and numerous other interesting
combinations thereof, yet many students fail to realize that behind each construction is
the simple elegance of a finite number of intersections of lines and / or circles. This
reality is critical when viewing constructions through the eyes of algebra.

When extending geometric constructions to the realm of algebra, one says that a
number « € C (in the complex plane) is constructible if and only if one can construct a

segment of length | & | taking an arbitrary given length as a single unit. Equivalently,

a=a+bieC (a, b € R) is constructible if and only if a and b are constructible (recall

that if @ =a+bi, then |a|= W , the length of the hypotenuse of the right triangle
with legs @ and b). Seeing that if o, f € C are constructible, then o + # and o — £ are
constructible is fairly trivial (indeed, most high school students find this to be a minor
task), and noticing that @8 and a/f (if B #0) are also constructible only requires a

slightly more advanced viewpoint using similar triangles (see figure 1.1 and 1.2 — note
that the bold face letters represent the magnitudes of the corresponding complex

numbers; a represents | & |, and so forth). From this it follows easily that the set of all
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constructible numbers forms a field (indeed, they form a subfield of the complex

numbers), planting the constructible numbers firmly within the powerful arms of algebra.

B & E (N' c C
ab a
Figure 1.1. Constructing a product. Figure 1.2 Constructing a quotient.
Construct BD=1, BF=b, Construct BD =1, BF =b,
and BE = a on two sides of an and BG = a on two sides of an
angle. Construct /G || DE. angle. Construct DE || FG.
Then BG = ab by similarity. Then BE = a/b by similarity.

Before looking more closely at the algebraic properties of the constructible
numbers (this will be done in the following sections), notice that if a segment of length

cos(2z/n) is constructible, then it must be possible to construct the angle 27/n. To see
this, let cos(27/n) = a be constructible (assume a =0 so that we do not have a trivial

case); then, to construct the angle in question, make a segment AB of length @ and a
circle of radius one centered at A; subsequently, construct the perpendicular to AB at B
(call the intersection of the perpendicular with the circle point C), and the desired angle

may be easily constructed (by AB and AC) as illustrated in figure 1.3.
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A a B

Figure 1.3. Constructing the angle 27/n.

The converse is similarly true; simply consider the sides of any right triangle formed by a
perpendicular to one of the sides of the angle to obtain the two segment lengths and
construct their ratio. Thus cos(27z/#) is constructible if and only if the angle 27z /7 is

constructible.

Moving forward, if the angle 27/n is constructible, then an arbitrary circle can be
cut into » congruent arcs (by copying the 27 /s angle n times from the circle’s center,
each angle adjacent to the previous angle, and intersecting the rays with the circle, for
instance). Connecting the endpoints of these arcs gives » consecutive congruent
segments, forming a regular n-gon. Similarly, if the regular n-gon can be constructed,
one need only find the center of the n-gon to construct the angle 27/n (via two

consecutive vertices of the n-gon with the center). In other words, the angle 27/# is

constructible if and only if the regular #-gon can be constructed. Therefore, a regular »-

gon is constructible if and only if cos(2z/n) is constructible.

A similar argument can be made for sin(27/#), making the number

cos(27z/n)+isin(27z/n), a primitive n™ root of unity, constructible if and only if the
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regular n-gon is constructible. This shows the first biconditional of our proof: A regular

n-gon is constructible <> a primitive n'™ root of unity, £, is constructible. We now turn

our attention briefly to some background information needed for the forward direction of

the remaining biconditionals in the proof.

C. Background Information Needed for the Forward Direction of the Proof

Before moving to the forward direction of the remaining biconditionals in the proof

of Gauss’s Theorem, we need to establish a key theorem (theorem 1.1), which will give

us much needed information. The following theorems and other properties needed to

prove theorem 1.1 are usually studied in an undergraduate course of Algebra (for

instance, see Fraleigh).

IL

I1I.

Iv.

Freshman Theorem: In a field of characteristic p, (a+b)? =a” +b%.
Fermat’s Theorem. 1f aeZ,then a® =, a for any prime p.

(This is sometimes referred to as a corollary to Fermat’s Little Theorem.)
Polynomial factorization over a field (and a ring), including irreducible

polynomials and uniqueness, is assumed to be familiar to the reader.

The n™ Cyclotomic Polynomial: D, (x)= H (x-¢)eC[X]

¢ primitive ot
root of unity

All roots of @, (x)are primitive n™ roots of unity (by design).

Any primitive n™ root of unity is a root of @ ,(x) (also by design).
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e @ (x)is separable over C (since the primitive n™ roots of unity are
distinct and have multiplicity one).
e & (x) hasdegree ¢(n) (the number of primitive n™ roots of unity).

e @ (x) is monic with integer coefficients (easily shown by induction).

o ®@,(x)| x" -1 (it can be shown that x" 1= [ ®,(x), from which it
din

follows that x" -1=®,(x) [ ®.(x)).

din, d<n
V. Properties of n™ roots of unity are assumed to be familiar to the reader;

however, key facts are evoked in the following proof.

Theorem 1.1: @ (x)is irreducible over Q [X].

Proof: (This proof follows the ideas presented in Grillet, 241, with details added.)

Assume that @, (x) is not irreducible over @ [X]. Note that the cases for » = 1

and » = 2 are trivial, so let » >2. Recall that a polynomial factors into a product of two

polynomials of lesser degree, say m; and m,, in Q [X] if and only if it factors into a
product of two polynomials of lesser degree m; and m;in Z [X] (since Z is a UFD and
Q is a field of quotients for Z ), whence ® ,(x) is not irreducible over Z [X] if it is not
irreducible over Q[X]. Now, let g(x) € Z [X] be an irreducible factor of @, (x), and let
r(x) € Z[X] be the corresponding factor. Then @, (x) = g(x)r(x), and a moment’s

thought shows that deg g, deg » > 1 (since if either has degree one, then

@, (x)=q(x)(x—a) or ®,(x)=(x-b)r(x) witha, b € Z, and the only roots of unity in
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Z are %1, neither of which are primitive if #» >2 and, therefore, not a root of @ (x)).
Furthermore, notice that since ®,(x) is monic, the leading coefficients of ¢(x)and
r(x)are 1, and we may arrange that g(x) and »(x) are monic as well.

Now, let ¢ and y € C be roots of g(x)and r(x)respectively. Since g(x)is
monic and irreducible over Q [X], g(x)=irrqg(&). Furthermore, since
@, (x)=q(x)r(x), it follows that ¢ and y are roots of @, (x), whence they are primitive
n™ roots of unity (since all the roots of @, (x) are primitive). We know that all the n®
roots of unity form a finite (whence cyclic) multiplicative subfield of C, which is
generated by any primitive n™ root of unity, so it follows that » =& for some & > 1
where ged (&, n) = 1 (otherwise y will not be a primitive n® root of unity since &* isa
primitive n™ root of unity if and only if gcd (k, n) = 1). Choose £ and y so that £ is as
small as possible, and let p be a prime divisor of £. Since gcd (£, n)=1,and p | £, it
follows that ged (p, n) = 1, whence &7 is another primitive n" root of unity and, as such,

aroot of @, (x). Now notice that if p#k and £”is aroot of g(x), then

(e7)¥'? = £* = y shows that y is a smaller power of another primitive n® root of unity
(since k/ p < k), which contradicts the choice of £ and ¥ ; therefore, either £ = por £°
is not a root of ¢(x). In either case, we see that £” must be a root of r(x), forif k=p,

then we have £ =y (aroot of r(x)), and if £?is not a root of g(x), then it must be a

root of r(x) (since it must be a root of one or the other). Finally, since g(x)=irrg(¢)
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and ¢ is aroot of r(x”) (because £” is a root of r(x)), it follows that g(x)|r(x?) in
Z [X].
We now appeal to the powerful information that p can unlock by turning our

focus to the projection @ — @ of Z onto the field Z ,, which induces a homomorphism
F(x)> f(x)of Z[X] onto Z , [X]. (Recall that if f(x)=a,x" + a, x"" +..+a,, then
f(x)= ax"+a _x""+..+a,.) Note that since g(x)and r(x) are monic with deg g, deg
r> 1, it follows that deg 7, deg 7 > 1 (the leading coefficient is 1 € Z ,» S0 we do not
lose the leading power, and the degree stays the same). Let deg 7 = m. Then under the
induced homomorphism, 7(x)=x"+a, X" +..+a, > F(x)=x"+a,_x"" +..+a,.
Since Z , has characteristic p, we may apply the Freshman Theorem:

FOF =7?(x)=("+a, x"" +..+a,)" =x" +a?_ x""V+. .+a7
Then, by Fermat’s Theorem, we have:

F@Y =72(x) =" +d, x"" +..+a,)" =x" +a’_ x*""" + . . +a,

=Y +a, (XY v+ d@, =7 (x)

Now, since g(x)|#(x”) in Z[X], we know that g(x)| 7(x?)=7"(x)in Z ,[X], whence
g(x)and 7(x) have a common irreducible factor, h (x)e Z ,[X]. Since
g(x)r(x)=®,(x) | " -1e Z[X], it follows that F(x)7(x)| x'~1€Z ,1X1, whence
h(x)| x"-1eZ X1 (since h(x)is a common irreducible factor of 7(x)and 7(x)).

Therefore, x" — 1 has a root of multiplicity greater than one (namely any root of 42(x))
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inZ ,- However, looking at the formal derivative shows that x” — 1 does not have
multiple roots in Z , ("= 1) = nx"" # O since p does not divide n; the only root is 0,
which is not a root of x” —1). This is a contradiction, so it must be that @ (x) s

irreducible over Q [X]. E[

We have now established the following useful fact. Since @ ,(x) is monic and
irreducible over Q [X], for any given primitive n™ root of unity, £, @, (x)=irrg(e).

Furthermore, we know that [Q(g): Q] = deg(irry(£)) = deg(P,,(x)) = 4(n).

D. Forward Direction of the Proof

We are now ready to begin the forward direction in verifying Gauss’s Theorem,
proving the remaining three conditionals. For the remainder of this section, let £ be a

primitive n root of unity.
1. £ is constructible — ¢ is algebraic over Q with degree a power of 2:

Rather than encumber the reader with notation, we will proceed through this first
piece heuristically. The reader who desires more specific detail may consult an
undergraduate text for a proof.

Notice that following the arguments in section B, every rational number is

constructible. Thus if K is the smallest field containing the constructible numbers,
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then Q< K. Clearlyif ¢ € Q, the [Q(g): Q]=1=2°. However, if e K\ Q is

constructible, we must show that [Q(¢g): Q] =27 forsome geZ (g #1).

Now, if we consider the real plane, every point in the plane, (a, b), is easily
constructed if a and b are rational. To construct any other point in the plane, we must
intersect two lines, two circles, or a line and circle through our rational points, the
equations of which then have rational coefficients. The intersection of two lines with
rational coefficients gives another rational point (both coordinates in Q, a point we
already had); however, intersecting a line and a circle with rational points leads to
potential new points. If we use substitution to solve the system, as in high school
algebra, we may substitute the equation for the line into the equation for the circle,

subsequently using the quadratic formula. If the solution for one of the coordinates is

c+d-e
X =
f

with c,d,e, f € Q butve £ Q, then xe K \Q and [Q(x): Q] =2

(obviously if Je isa perfect square, then the coordinate is nothing new). The same
argument holds for the second coordinate. Lastly, if we intersect two circles, we may
condense the solution process by considering one of the circles and the line through
the points of intersection in place of the second circle, reducing this case to the one
just considered. Therefore, our intersection points will also have coordinates that are
either degree 1 (rational) or degree 2 over Q.

Continuing in this manner will yield similar results at each step. Since subsequent

square roots will only potentially increase the degree by a power of 2 (for instance
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[Q(\/\/Z ):Q]=4), it is clear that fore € K\ Q to be constructible, [Q(g): Q]=27 for

some g € Z (g #1). Therefore, if £ is constructible, then ¢ is algebraic over Q
with degree a power of 2.

Before moving on, notice that if we build our field of constructible numbers by
adjoining each new point not found in Q, then subsequent new points will only have
degree 1 or 2 over the field we have built up. In other words, if ,,0,,...,a, are the
first n constructible points we encounter that are not in Q, nor in any of the
extensions of Q with previous ¢,’s, then [Q(¢): Q] =2, [, a,): Q)] =2, and
[Qle,a,,....0,,0,): ey, ..., )] =2, whenee [Q(e,...,,): Q]=2". This
reinforces the fact that constructing a number reduces to solving a 2™ degree equation

with coefficients in an algebraic extension of Q as defined. This observation will be

useful in the reverse direction of this conditional.

€ is algebraic over Q with degree a power of 2 — ¢(n) =27 forsome g Z:

Since ¢ is algebraic over Q with degree a power of 2, we know [Q(g): Q] =27 for

some g € Z . However, we also know that [Q(¢): Q] = deg(irry(¢)) = ¢(n) (from part

C). Therefore, it follows easily that ¢(n) =27 for some ge Z.
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I
3. ¢(n)=27 forsome geZ — n=2'[]p,, where n23, 120,120, and each p, is
=0

a distinct Fermat prime:

We now appeal to the multiplicative property of the Euler totient function. Let

I
n= 2iH P je’ be the prime factorization of nin Z (with each p, a distinct odd prime

7=0
and e; 21). We know that #23 (since we began with a constructible n-gon), and

clearly />0 (since # is an integer, we can not have negative exponents) and />0
(depending on whether there are any odd prime factors in #). It remains to show that

e; =1 and that p, is a Fermat prime for 0< j </,

Since ¢(n) is multiplicative, we have:
i ! e i ! é;
p(n)=92'T1p,")=0CH][T0(r,")
j=0 j=0
Now, using the fact that ¢(p°) = p*"*(p~1) for any prime p, we have:
! I I
s(m =92 16(p,")=2"2-D[[p," (¢, =2"T]p," " (p,-D
Jj=0 J=0 j=0
Since we also have ¢(n) =27, we now have:
i-1 ! e; -1
2" Hpjj (pj _1)=2q
7=0

Since p; is odd for 0 < j </, this implies that e, <1 for 0< j </ (or we would have

an odd factor on the left hand side of the equation with no odd factors on the right
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hand side of the equation). However, ¢, 21 and ¢, <1 implies ¢, =1, whence we

have:
i ]
21, -1 =2
7=0
Now, since p; -1 is even ( p, is odd), and since there are no odd factors on the right
hand side of the equation, this implies that p, —1= 2% ,f; 21 for 0< j</. Suppose

that for some j€{0,1,...,/}, f;, =ab for some odd prime b and a e Z . Then we
would have:

p, =27 +1=2% +1= (27 +1)(2°¢ 270D 4 27 +1)
This is a contradiction ( p; is prime), so it must be that f, does not have any odd
prime factors for any j, whence £, = 2™ for some m , 20, 0<j</. Therefore, p,

is a Fermat prime, and we have finished the forward direction of the proof.
E. Background Information Needed for the Reverse Direction of the Proof
Before moving to the reverse direction of the proof, we remind the reader of four key

theorems which are usually studied in an undergraduate algebra course (and are therefore

presented here without proof). All four theorems are taken from Fraleigh.
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First Sylow Theorem: (Fraleigh, 220)

Let G be a finite group with | G |= p”"m, where n>1 and p does not divide m.
Then:

a. G contains a subgroup of order p’ foreach 1<i<n

b. Every subgroup H of G of order p’ is a normal subgroup of a subgroup of

i+l

order p™ foreach 1<i<n.

Main Theorem of Galois Theory: (468)
Let K be a finite normal extension of a field F, with Galois group Gal(K/F). Fora

field E, where F <E <K, let A(E) be the subgroup of Gal(K/F) leaving E fixed.
Then A is a one-to-one map of the set of all such intermediate fields E onto the

set of all subgroups of Gal(K/F). The following properties hold for 4:
a. A(E)=GalK/E)

b. E=Kguxs = Ku,

c. For H<Gal(K/F), A(E,)=H

d. [K:E]=|A(E)| and [E:F]={Gal(K/F): A(E)}, the number of left cosets
of A(E) in Gal(K/F).

e. Eisanormal extension of F if and only if A(E) is a normal subgroup of
Gal(K/F). When A(E) < Gal(K/F), then Gal(E:F) = Gal(m%al(m).

f. The lattice of subgroups of Gal(K/F) is the inverted lattice of intermediate

fields of K over F.
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Theorem 1.2: If F <G is a splitting field of finite degree over G, then

{F:G}=|Gal(F/G)|. (450)
Theorem 1.3: If F is a finite field or a field of characteristic zero, then every finite

extension G of F'is separable, and {G: F} =[G : F]. (455 and 457)

F. Reverse Direction of the Proof

We are now ready to begin the reverse direction in proving Gauss’s Theorem.

I
1. n= Z‘Hpj ,where n23, 120, />0, and each p, is a distinct Fermat prime
j=0

— ¢(n) =27 forsome geZ:

Let n be as given. Then, applying the Euler totient function to n gives:

] ] !
p(m)=¢Q2'T]p)=0@)[Tor)=2""C-D[]r,’(p,-D
Jj=0 Jj=0 j=0

[ !
=27T]2"" =27 where g=i-1+) 2" e Z.
=0 j=0

2. ¢(n)=279 forsome geZ —> ¢ is algebraic over Q with degree a power of 2:

Let ¢(n)=2? for some g € Z. We know that any n® root of unity is algebraic over
Q (since the roots of unity are roots of @ ,(x)e Q[X]). Furthermore, we know
[Q(e): Q] = deg(irty (&) = deg(®,(x)) = #(n) (see part C), so we have

[Q(e): Q] =27
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¢ is algebraic over Q with degree a power of 2 — & is constructible:
Now let [Q(¢g): Q] =27 for some g € Z. We shall take advantage of this information
in two ways. First notice that it is fairly straightforward to see that Q(¢) is a splitting
field of @, (x), and since [Q(g): Q] is finite, it follows by theorem 1.2 that
{Q(e):Q} = |Gal(Q(¢)/Q)|. Then, by theorem 1.3, since char(Q ) = 0, we also

know that {Q(g): Q} = [Q(g):Q]. Putting these two pieces of information together,

we have:

| Gal(Q(e)/Q)| = {Q(e): Q} =[Q(e): Q] =2"
Now, since |Gal(Q(g)/Q)| = 27, we may apply the First Sylow Theorem to see that
Gal(Q(¢)/Q) contains a subgroup of order 2’ for 1<i< g, every such subgroup
being a normal subgroup of a subgroup of order 2'*':

{0} =H, <H, «..<H_ = Gal(Q(s)/Q)
Finally, notice that since Q(¢) is a finite normal extension of Q (it is a finite

separable splitting field over Q ), we may apply the Main Theorem of Galois Theory

to see there exists a corresponding chain of subfields of Q(¢):
Q=Q,<Q,£..2Q,=Q(¢).

Now, since [Q(s): Q] =27 and [Q(#): Q1=[Q(#): Q,, [, : Q,,]..[Q;: Q], we

have [Q,: Q,,]=2 for 1<i<q. However, this is equivalent to saying that every real

positive number in Q, can be constructed with a straightedge and compass from
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elements of Q,, (1<i<¢) since each has degree 2 (recall that constructing a number

reduces to solving a 2™ degree equation with coefficients in an algebraic extension of

Q as discussed in the forward direction of this conditional). Therefore ¢ is

constructible (since £ € Q(¢)). E]

G. Tllustrations

The reader may find it interesting that while there are thirty-one known constructible
n-gons with odd number of sides, there are twenty-four constructible n-gons with number
of sides between three and 100 (n=3,4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40,
48, 51, 60, 64, 68, 80, 85, and 96), and both sets of constructible n-gons quickly begin to
resemble a circle (which 1s not surprising). Indeed, this is true even as early as the sixth
constructible n-gon (with number of sides between three and 100), the decagon, as seen

in figure 1.4.

", - /“' h
X
N
/ \ / l
X X
7

Figure 1.4. Three regular n-gons constructed with Geometer’s Sketchpad (n =6, 8, 10).
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Application Two: Heron Triangles

A. Introduction

When the author was choosing her thesis topic, she was particularly interested in
choosing a topic that united her first two loves in math: abstract algebra and number
theory. What she discovered, as seen in the prior section, was that there is also a
surprising connection between these two fields of study and geometry. In this section, we
take a look at a second case that unites these three mathematical areas in a beautiful
harmony, interweaving a very special kind of Heron triangle with the power unleashed by
Fermat primes. We begin with a brief history and review of properties of Heron triangles
(triangles with integral sides and areas) before focusing on the main theorem of this
section. Attention is also given to the classical parameterization of Pythagorean triples
for the reader who is not familiar with (or who wants a refresher about) this process as
well as specific theorems and a key lemma that serve as useful tools in our quest toward

proving the following theorem, which was discovered by Florian Luca:

Theorem 2.1: If a>=b = c are the lengths of the sides of a Heron triangle, and all three
are powers of primes, then either (a,b,c)=(5,4,3) or, for some integer

m =1 with F, a Fermat prime, (a,b,¢)=(F, . F, ., 4F, _, -1)).

m-—i
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B. Preliminary Information About Heron Triangles

Before discussing the general properties of Heron triangles, it is fitting to place
them in their historical context. Heron triangles are, naturally, named after Heron of
Alexandria who is credited with their recognition. Although no one knows for sure when
Heron lived (most scholars place his life around 70 AD based upon a reference to an
eclipse — believed to have occurred on March 13, 62 AD — in one of Heron’s books),
there is considerable agreement that Heron was an imaginative inventor and a creative

mathematician. While Heron’s books document nearly eighty ingenious inventions,

perhaps his most famous work is the formula 4 = \/s(s —a)(s—-b)(s—c) for the area of a

triangle, although the authorship has been questioned. Heron presented this formula in
the same book (Metrica) in which he gave a method, known by the Babylonians almost
2000 years earlier, for approximating square roots. The author found this interesting
since the connection suggests that Heron may have been intrigued by Babylonian
mathematics or, at the very least, that Babylonian advances were known to him. Since
the Babylonians had numerous cuneiform tablets listing integral Pythagorean triples,
could it be that Heron studied this and asked the obvious questions? Are there non-right
triangles with special properties related to the sides? If so, what properties can one
generalize? If one considers the fact that the Egyptians were fiercely reluctant to deal
with irrational numbers, it would be only natural for Heron to look for situations that
dealt with rational numbers (which, of course, can be transferred to an integral arena).

Perhaps Heron did not ask these questions, but the thoughts that led Heron to his famous
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triangles could not have been too far from this, and the results of the initial investigation

have reached far into the future, landing firmly in the lap of modern math and raising
additional questions along the way. We shall now take a look at the properties of
Heron’s triangles before advancing to a modern application.

One may fecall that a Heron triangle is a triangle in which the area and all three
sides of the triangle are integers. Notice that this definition alone does not place
restrictions upon the class of the triangle. In other words, the triangle may be acute,

obtuse or right. For example, consider the three triangles in figure 2.1.

5 0
! B 50/]}\ > 8 .

3 14 64 6 15

Figure 2.1. Illustrations of right, acute, and obtuse Heron Triangles (not to scale).

One can easily verify that each triangle pictured exists (the triples corresponding to the
appropriate right triangles are Pythagorean triples) and that the triangles’ sides and areas
are all integers. Furthermore, while the first triangle is clearly a right triangle, the law of
cosines quickly reveals that the second triangle is acute (obviously both base angles are
acute since they are inside a right triangle, so only the top angle need be checked). The
third triangle is similarly seen to be obtuse. Although it is believed that Heron was
interested only in non-right triangles in his work with these very intriguing triangles, the

theorem being considered in this section clearly allows for a right triangle to occur.
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While the reader may have used the traditional formula for the area of a triangle

(A= b% ) to verify that the areas of the above triangles are indeed integers, Heron’s well

known formula for the area of a triangle is useful for obtaining further information about

the sides of a Heron triangle. Recall that 4 = \/s(s —a)(s—b)s—c), where
s=(a+b+c)/2 is the semiperimeter of the triangle. Notice that since the area is an

integer, this forces s to be an integer as well. To see this, assume that a+ b +c is odd (so
that s ¢ Z). Then either all three lengths are odd, or two are even and one is odd. A

moment’s thought shows that s —a=(b+c—-a)/2, where b+c—a is odd in either case.

Similarly a+c-b and a+b—c are odd, but this leads to:

Js(s—a)(s—b)(s—c) = /(1/16)(0dd ) & Z
whence 4 ¢ Z (—<«). Therefore,s € Z. Furthermore, it follows that a+b+c is even
with all three lengths of the sides of a Heron triangle even, or two odd and one even.
Building upon this information about the nature of the lengths of the sides of a
Heron triangle, another useful fact about the lengths emerges as a result of the area being

an integer: min(a,b,c)>3. This is easily seen as follows:

Suppose the minimum value is 1, say a=1. Then b and ¢ must have opposite
parity. If b=2k+1 and ¢=2n for some k,n e Z, then by the Triangle Inequality:
b-—a<c<b+a =2k<2n<2k+2,0rk<n<k+l (—«).
On the other hand, if the minimum value is 2, say a =2, then b and ¢ must have the same
parity. If both are odd, then b =2k+1 and ¢ =2n+1 for some k,ne Z, and we have:

b—a<c<b+a = 2k-1<2n+1<2k+3, ork<n+l<k+2
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However, this forces k+1=n+1, so k =n. Consequently, we know s =2k +2,

s—a=2k,and s—b=s-c=1, whence we have A =./(2k+2)(2k) =2 Jk(k+1) ¢ Z
since the product of two consecutive integers is not a perfect square. —>«
Similarly, if  and c are both even, then b = 2%n and ¢=2"m for some
k,nm,jeZ where k21,721, andged(2,n) = ged(2,m) =1, and we have:
b-a<c<bta = 2n-2<2m<2*n+2
2 n-1<2"'m< 2" n+1
2Mn<2"m+1<2""'n+2
However, this forces 2*'n+1=2""m+1,0r k=j and n=m. Therefore, a=2 and

b=c=2*n,whence s=2*n+1, s—a=2*n-1,and s-b=s-c=1. Thus

A=4/(2n-1)(2*n+1) = (2" n)* —1 ¢ Z since two squares cannot differ by one. —>«
Therefore, min(a,b,c)>3.

The last observation about Heron triangles, presented here with proof, is the first

that places a restriction on the class of the triangle.
Theorem 2.2: A Heron triangle is isosceles if and only if the base, ¢, is even, the altitude

to ¢ (h,) is an integer, and a, 4, and ¢/2 form a Pythagorean triple.
Proof: Let aABC be a Heron triangle with /4, the altitude to side c.
=: Let a=b. Then s=(2a+c)/2=a+(c/2)eZ implies that c/2€ Z
(since s,ae Z). Thus 2|c¢ and ¢ is even. Now, since the altitude of an

isosceles triangle is also a median, the foot of 4, divides c in half, so by
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the Pythagorean Theorem, we have a® = 2> +(c/2)* or

h?=a*~(c/2) eZ. If h,e R\Q, then A=(c/2)h, & Z (—<),s0

h e Q. However, if 4, € Q\Z, then h’ ¢ Z (—><). Therefore, h € Z,
and a, A, and ¢/2 form a Pythagorean triple.

. Now let the base, ¢, be even, the altitude to ¢ (4, ) be an integer, and

a, h,, and ¢/2 form a Pythagorean triple. We consider two different
cases for the triangle in question: whether 4 lies within or without the
triangle (notice that A, cannot be a side of the triangle, for if it were a side
of the triangle, then it would be a right triangle and 4, = b; however, it is
not possible for both (a,b,¢) and (a,b,c/2) to be right triangles).

1. Let A, lie within the triangle:

%hoo %

Figure 2.2. A triangle with altitude inside the triangle.

This case is trivial. First notice that 4, is the median (since A,

lies within the triangle and clearly bisects ¢ given that

a, h,, and ¢/2 form a Pythagorean triple). Thus 4, is
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simultaneously a median and an altitude, whence a4BC is an

isosceles triangle (a standard result from high school
geometry).

2. Let h, lie without the triangle:

|
~ O
© %

Figure 2.3. A triangle with altitude outside the triangle.

This case is far more complex. For the theorem in question to
be true, one can easily see that this case must be impossible,
but proving this is not so easy. After numerous failed attempts
to prove this result through contradiction, and without success
in locating documentation, the author of “Fermat Primes and
Heron Triangles with Prime Power Sides” (the journal article
inspiring this section) was consulted. Dr. Florian Luca was
most generous in outlining a proof, the details of which were
carefully checked by the author of this thesis; however, the
manipulations stray from the focus of this paper and may be
cumbersome to the reader. Therefore, the initial setup
followed by a general explanation of the remaining procedure

is given here in place of the finer details.
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To begin, notice that in this case b > a,c. Since A, lies

without the triangle, we can consider the two different right

triangles that are formed by %, and a4BC (see figure 2.3).

From the outer triangle we obtain:

Similarly, from the inner triangle, we have:
a=h’+(c/2)

Multiplying these two equations gives:
[(h +(c/2) 1A +(3¢/2)*] = (ab)’

Manipulating this equation yields:

A prof 2 ) yoo @)
(0/2) +1o(c/2) +9‘(c/2)4

At this point, the first of several changes of variables is used.

Letting X = i and Y =-—£b—2~, the elliptic curve
c/2 (c/2)

X*+10X%+9 =Y emerges, offering a foundation for
resolution. The answer to whether or not the triangle
configuration in question exists lies in the number of solutions

to this particular elliptic curve. In order to answer this

question, a series of changes of variables is used to transform
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the equation into a form that has been studied. In particular,

X*+10X? +9 =Y?can be written as:

U? = Z° -27(208)Z — 56(2240)
At this point, one appeals to Kraus’s existence conditions for
such an elliptic curve (see Cremona, 63). Performing the
required calculations reveals that the elliptic curve in question
has a reduced equation:

y2 =x+x-4x-4
Happily, this curve has been studied, and the Mordell Weil
group of the points on the curve is finite (it has only four

elements). In fact, all four points lead to X =0 (after tracing

back through the changes of variables), whence %, =0

(—«). Therefore, 4, cannot lie without the triangle.

Putting all of the above together, we have shown that A4BC is an isosceles triangle. E

C. Classical Parameterization of Pythagorean Triples

Since this topic is used repeatedly in this section, the author felt it necessary to
include information about the classical parameterization for the reader who is less
familiar with this well known process. (The parameterization follows the author’s class

notes, with a few details added.)
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To begin, let (a,b,c) represent the integral sides of a right triangle where

a® +b* =c? (for convenience of calculation we shall assume all values are positive,
which is also intuitively desirable since they are sides of a triangle, but in theory,
Pythagorean triples can be negative numbers as well). The triple is said to be a primitive
triple if the three have no common factor (gcd(a,b,c) =1). When we have a primitive
triple, it is also pairwise relatively prime, for if two of the numbers, say a and b, have a

common factor with gcd(a,b)=d #1, then:

dia—=d*|d
s>d’ |+ = >d|c ¢«
db—d* b (then d is a common factor of a, b, and )
From this it is easy to see that not all three can be even (not primitive), nor can exactly

two of them be even (not pairwise relatively prime). Similarly, it is not possible that a

and b are both odd, for if both are odd, then a =2k, +1 and b =2k, +1 for some
k., k, € Z", and we have:

@ +b =k +1 + 2k, +1 = 4(k> + kS +h + k) +2
Therefore, a* +5° =, 2, which implies that a® + 5 is not a perfect square (since the

remainder of any squared integer when divided by 4 is 0 or 1), but @*> +5* =¢*. —«
From this it follows that exactly one of a and b is even, whence ¢ is odd.
Without loss of generality, let @ be even and b and ¢ be odd. Then

a* =c* —b* =(c+b)c-b) with c+b and c—-b both even. Let c+b=2u and

c—b=2v forsome u,veZ". Then c=2(u+v)/2=u+v and b=2(v-u)/2=v-u.
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Since 4 > 0, it must be that v >« . Furthermore, since gcd(b,c) =1, it follows that

ged(u+v,v—u)=1, whence ged(u,v)=1. From this it follows that # and v cannot be
simultaneously even (since ged(w,v)=1) or odd (since ged(u+v,u—v)=1).

Returning to the fact that ¢+ 5 and c—b are both even, we can see that

7 2
L%) = (%QJ(C—;—QJ =uv , from which it follows that » and v are perfect squares (since

u and v are relatively prime, and their product gives a square, each of the prime factors in
the square had to come from either  or v). Let v=m* and u =n»" for some m,ne Z".

Then a similar argument to the above shows that m and » cannot be simultaneously even

or odd, and because v > u, it follows that m > »n. Putting all of this together gives:

2
a
(—2—) suwv=n'm*—>a=2mn, b=v-u=m*-r*,and c=v+u=m*+n’

Therefore, if (a,b,¢) is a primitive Pythagorean triple, then one obtains the
parameterization of two relatively prime integers m and n with m > n, exactly one of
which is odd, such that (a,b,c) = 2mn,m* —n*,m* +n*). The converse also holds,

providing a convenient method for finding Pythagorean triples. Before proceeding, it is
interesting to note that if the restrictions on m and » are not met, one still finds a
Pythagorean triple, but it will not be primitive. For example, let m=4 and n=2. Then

(a,b,c)=(16,12,20), a relative of the primitive triple (4,3,5).
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D. Some Important Theorems and a Key Lemma

Before moving to the proof of the main theorem mentioned in section A, we recall
a few important theorems from number theory (most presented without proof) and
establish a lemma that will prove to be useful. Theorems 2.3 through 2.9, along with the
definitions for quadratic residue and the Legendre symbol, were taken from Long or were
encountered during the author’s undergraduate study of number theory; hence, the reader
is assumed to be familiar with the concepts (a proof is provided for theorem 2.9 for the
less familiar reader). The author first examined Theorem 2.10, Catalan’s Conjecture, and
Lemma 2.1 when investigating the original journal article. Therefore, the author has

provided a proof for theorem 2.10 and filled in details of the proof for lemma 2.1.

Theorem 2.3: If p"|ab, and gcd(p”,a)=1,then p"|b.
Theorem 2.4: If a|c and b|c, and gcd(a,b) =1, thenab|c.

Theorem 2.5: If a = . b, then a =, b for any integer n suchthat 0 <n<m.

Theorem 2.6: If @’ =, 0, then a=, 0.
Theorem 2.7: If a* =b*c then c=k* forsome ke Z.
Quadratic Residue: If x* = , 11, where p is an odd prime and ged(p,n) =1, is solvable,

then 7 is a quadratic residue mod p.
Note that if » is not a quadratic residue, it is called a quadratic nonresidue.

Theorem 2.8: The only quadratic residues mod 4 are 0 and 1.
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Legendre Symbol:  For any odd prime p and integer » with (n, p) =1, let:

( n ) _| 1 ifnisaquadratic residue mod p }
p

[——1 if n is a quadratic nonresidue mod p

(p-1)
Euler’s Criterion:  For any odd prime p and n e Z with ged(n, p) =1, (EJ =,n " .
p

Theorem 2.9: 1f p is a prime such that p =, 3, then —1 is not a quadratic residue mod p.

Proof: Let p=,3. Then p=3+4k for some k € Z, and by Euler’s Criterion:

[%) - (_1)(p_1)/2 - (_1)(3+4k—1)/2 - (_1)2(2k+l)/2 - (_1)'5

Theorem 2.10: 1f 2" +1€ N is prime, then n=2" for some me W .

Proof: Let 2" +1e N be prime. Then n= jk for some j, ke N where
ged(k,2) =1 (in other words, all the factors of 2 are inj), and £ > 1
(otherwise we are done), and we have:

2" +1=2% 1= (27 +1)(*D 22D 42T 41) (o) [#]

Catalan’s Conjecture:  The equation a” — 5" =1 has no positive integer solutions for

n,m>1 except when a=m=3and b=n=2.

NOTE: This conjecture is still open, but the case with m even has been proved by

V.A. Lebesgue (Luca, 47).
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Lemma 2.1 Assume that a, b, and c are lengths of the sides of a Heron triangle such that

p®|la for some positive integer o and some prime p where p=2 or
p=,3.If p=2, then p*"|ged((6* -c*),44), and if p=, 3, then

Pl ged((b” - %), 4).

Proof: (The author has followed Luca’s proof with significant details added.)
Let a, b, and ¢ be lengths of the sides of a Heron triangle, and let p be a prime
such that p” ||a for some positive integer . We have two cases to consider.
Case 1: Let p=2. (This case is similar to case two, and is omitted in the original article,
but is included here for sake of completeness). From Heron’s formula, we know
that 4% =s(s—a)(s—b)(s—c), so using the fact that s =(a+b+c¢)/2, it follows
that we have:

_a+b+c.—a+b+c'a——b+c.a+b-—c
2 2 2 2

A2

164% = (a+b+c)~a+b+cXa—b+c)a+b-c)
(44) =(=a* + B> +2ch+c*)a* —b* +2ch~C*)
(44) = -a* +2a°b* +2a°c* - b* + 277 - ¢*
(44)° =2a*(b* +c*)-a* - (b* - *)
Now, since p* =2%|la, we know 2°* || &°. Furthermore, since a is even, we

know b and ¢ have the same parity, whence 5 +c? will be even. Therefore, we
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know 2% [ 24%(h* +¢?). In addition, 2°* || a* = 2%V | a*, so the equation
above becomes:

"(bz - )2 =@ (4A)2

If 2% | (8% - ), then 2°* |44 since 0=y., (44)" implies 0=, 44

2%
by Theorem 2.6. But then 2** is a common divisor of »* —c* and 44, whence

2| ged((h* —c?),44). So we have only to consider the case when
22 [(8* - ¢*) to finish the proof.
Assume that 2" / (b*—c?). Then 2° ”(b2 —c?) for some nonnegative
0 € Z where 6 <, and we have:
(44) = ot —~(B* =Y = (44) = —(b* - *)?* + 2V, for some k € Z
= (44) =—(b* = *)? +229 (22D
and
2°|(* = c*) > b* - =2°k, for some k, € Z.
Putting these together, we obtain:
(44 =—~(2°k,)* + 220 (22D ) =22 (22 O) ~k,2)

44

2
which shows that 2%° | (44)?, whence 2° | (44) and (7] =k’ for k,eZ
2

where k7 =22k ~k? (we know 2“9k —k? is a perfect square by
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)

22V
Theorem 2.7) . Similarly, since 2° ”(b2 -c?), we know (b ¢ J =k’
2

Therefore, if ~(b° - ¢*)* = ., (44)’, then we have:

B2 _c? 2 44V
_(—-—-2—-5———-} 522(‘”1‘5) (?) —>——k22 _=_22(m1~5) k32

Now, in the finite ring Z ., every element that is relatively prime to 2***" has
a multiplicative inverse, and since ged(2,4,)=1, we know £, £ @y 0 (whence
k2 # 50 0 and, subsequently, k,2 £ 2 0), so we have:

= K27 = (k™Y
We know that & >1 (by hypothesis), so 2? < 2***Y and the above congruence

can be reduced to ~1=, (k,k,™)* (by Theorem 2.5), which is a contradiction (the

only quadratic residues mod 4 are 0 and 1 — Theorem 2.8). Therefore, it must be

that 2" | (® - ¢*), which we have already seen leads to 2" | gcd((6* —c*),44) .
Case 2: Let p=,3. (Note that gcd(p®,4)=1.) As in case one, Heron’s formula gives us
(44) =2a*(b* + ) —a* —(b* = *)*. Now, since p®||a, we know p**||a?, so
the equation above implies:
~(b* =) = 0 (44)°
If p*|(b*~c?), then p®| 4 (since 0= ,, (44)” implies 0 = . 44 as before,

whence, by Theorem 2.3, 0 =, 4 since gcd(p®,4)=1). Butthen p“ isa
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common divisor of 5* —c” and 4, whence p*|ged((h* - c?), 4). So we have
only to consider the case when p* [(b* ~c*) to finish the proof.

Assume that p® / (b*=c?). Then p° H(b2 ~c?) for some nonnegative
6 € Z where 6 <, and we have:

(44 =, (6 Y — (44 =~(5> =)’ + p*k, for some k, < Z

— (44 =—(b* =) + p* (p** k)

and

r° ”(b2 ~-c?) > b*~c* = p°k, forsome k, € Z.
Putting these together, we obtain:

(44)° ==(p°ky)* + p (p** k) = p* (P*“ Ok - ;")

44

2
which shows that p*° | (44)*, whence p° | (44) and (—;j =k for k, e Z
p

where p*“ Pk k> =k’ (we know p** Pk —k,’ is a perfect square by

8
)24

e

2 2\?
Theorem 2.7) . Similarly, since p° ”(1’)2 -c?), we know (b ¢ J =k’

Therefore, if ~(b* —¢*)? = 20 (4A4)*, then we have:

2 2
b? - c? 44
Vd
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Now, in the finite field Z , every nonzero element has a multiplicative inverse,

and since gecd(p,k,) =1, we know £, 7_4 »0 (whence k,’ £ »0 and, subsequently,
k2 £ ,0), so we have:

~1=, k’k,” = (k;k,™)* ¢ (-1 is not a quadratic residue since p=,3)
Therefore, it must be that p® | (b* —c*) whence (44)° = 0,80 p”| 4. Now, as

before, p® is a common divisor of 5> —c® and 4, and p* | ged((b* - c?), 4). [#]
We are now equipped to prove the main theorem of this section.
E. Proving the Main Theorem
Recall that the primary theorem being considered in this section is the following:
Theorem 2.1: If a > b > ¢ are the lengths of the sides of a Heron triangle, and all three

are powers of primes, then either (a,b,c) =(5,4,3) or, for some integer

m =1 with F, a Fermat prime, (a,b,¢)=(F, . F,,4F,_ -1)).

The author has followed Luca’s approach in proving this theorem, yet some reorganizing

has been done in order to fill significant gaps found in the original proof.
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Let a,b, and ¢ (without ordering initially) be lengths of the sides of a Heron

triangle such that all three are powers of primes. Then there are two cases

we must consider: isosceles and non-isosceles triangles.

Let the triangle be isosceles, so let a =b (we can do so without loss of
generality since we can rename the vertices if need be). Then note that ¢

must be even (since either all are even or two are odd and one is even).
Thus we can designate a = p® = b and c = 2* for some o, e Z*. Note
that # 22 (since min(a,b,c)=3). Now, since the triangle is isosceles, we
have (with 4, being the altitude to side c):

@ =hP+(c/2f > p**=h>+2°¢D

At this point we consider whether p=2 orp > 2.

p=2:1f p=2,then p** = h’ +2*#7 becomes:
22a — h 2 +22(/3—1) - h 2 — 22a _22(ﬂ—1)
But this implies that 2a >2(8-1), so @ +1> £, and we have:

hCZ = 22(ﬂ—1)(22(a—-ﬂ+1) _ 1)

/ 2
Therefore 224 | h 2, whence 2¥™ | h, and (}20/2 ﬁ_l) =k? for some

k € Z , and we have:

Y a 2 2 A-11 1 M- R+1) )
D[ = p P4 22PN | 5PN S P 4] e
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(The difference of two distinct squares is strictly greater than 1.)

Therefore, p must be odd.

p>2: Notice that since p is odd, gcd(a, 4,,c/2) = ged(p®,h,,2° ") =1,

whence (a,h,,c/2) is a primitive Pythagorean triple, and we may
apply the classical parameterization of such triples:

pr=mr+nt, h =m’ —-n?, and 277 = 2mn
for some m,ne Z with m>n and gcd(m,n) =1, exactly one of
which is odd. But then we have:

28 = 2mm > m=2F? n=1
whence:

pr=mr+nt > p*=2"P2 4115 B>2 (since p>2)
Nowlet w=2(f~-2)>1 (since f>2). Thenif o >1, we have:

p*=2"+1withp,2,a,we Z, min(er,w)>1, and w even
However, this is not possible if o >1 because this is a case of
Catalan’s equation with w even, which Lebesque proved impossible
(Luca, 47). Therefore, o =1 and we have p=2%#? 11, which we
know must be a Fermat prime (theorem 2.10). Furthermore, we
know 2(B8-1)>1 (since f>2),s0 p=2*#2 41 is a Fermat prime
for some m >1, and it follows that we have:

AB-2)=2"— f-2=2"" - f=2""42
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and:

e=20 =272 20227 41-1)=4(F,_ -1)
Therefore, if the triangle is isosceles, with a = b, we have shown

that (a,b,c)=(F,,F,,4(F,_ -1)).

Case 2: Let the triangle be non-isosceles. Then at least one of g, b, or ¢ is even, so
let c=2" be even (we can do so without loss of generality), and let
a=p® and b= g’ for some o, S Z"* and some primes p,qgeZ*. Now, p

and g must have the same parity.

Both even: If both are even, then p=g =2, and «, £, and y must all be
distinct (since non-isosceles). Without loss of generality, let y > >« .
Then by the Triangle Inequality, we have:
b-a<c<b+a—>2°-2%<2" <2/ 42"
272 ~1) <27 <2725 +1)
=207 1< 27 < 2P 4]
— 1< =2 <]
—0<27* =2 <1 (since y—a>fB-a>0)
D2 2P e T e (277%2F % e Z)

Therefore, p and ¢ must both be odd primes.
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Both odd: 1et p and g be odd primes. Then notice that since ¢=2", 2”|c,

and since the prime involved is 2, we have (by lemma 2.1):
27" |a* b and 27" | 44
which leads to:
271 44-52.27|2:24—>¢c=2"|24
and:
2c=2""a* -b* =(a+b)a-b)
Now, if 2|a+b and 2| a—b, then we can factor all of the factors of 2 from
each. Let 2”|a+band 2" |a—b for some m,ne Z with m,n=1. Then:
a+b=2"k and
a-b=2"k, for some k,k, € Z where gcd(2,k)=gecd(2,k,)=1)
Now, by adding we obtain:
2a=2"k+2"k,—> a=2""k+2"k, = p*
Since a is 0dd, exactly one of 2"k, and 2"k, is odd and one is even:
2™k odd and 2"k, even - m=1n>1
2"k evenand 2"k, odd »>m>1n=1
Now, it follows that: (recall gcd(2,£,) = ged(2,k,)=1)
m=1: 2c=2""|(2k)2"ky) > c=2" |K(2"k,) > c=2"|2"k,=a~b

n=1: 2c=2"1(2"k)2k,) > c=2" |(2"k)k, >c=2" [2"k =a+b
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Case 3:
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Therefore, if 2¢|(a+b)(a —-b), then either ¢|a+b or ¢c|a—b. Notice that

c /a - b (since by the Triangle inequality, 0 < \a - bl <), so it must be that

c|a+b. This observation enables us to examine the nature of @ and b.

Since a and b are both odd, we know that either both are congruent to 1
modulo 4, both are congruent to 3 modulo 4, or exactly one is congruent to 1

modulo 4. Since y >2 and c|a+b, the first two cases are easily

eliminated.

Let a=,1and b=,1. Then we have a = p® =1+4k, and b=q” =1+4k,
for some k,k, € Z, and it follows that:
c=2|a+b=2+4(k +k,)—> 201+ 2(k +k,)) =2k,

for some &, € Z. But this is not possible since y > 2.

Let a=, 3 and b =, 3 (this case is similar to above). Then we have
a=p®=3+4k and b=q” =3+4k, for some k ,k, € Z , whence:
c=2"|a+b=6+4(k +k,)>203+2k +k,))=2"k,

for some &, € Z. But, again, this is not possible since y = 2.

Therefore, it must be that exactly one of a and b is congruent to 1 modulo 4.

Without loss of generality, let a=, 1 and b=, 3. Notice, then, that
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b=q” =, 3 implies that g =, 3 since if ¢ =, 1, then g =1+4k, for some

k, € Z, and we have:
g’ =(1+4k)* =1+[ﬂ(4kl)+(fj(4kl)2+...+(4k1)/’ =, 1 ¢

Furthermore, § must be odd since if S is even, then S =2k, for some

k, € Z , and we have:
2k
g’ = (3+4k)* =3% +( 12J32"2“‘(4k1)+...+(4k1)2"2 =, 15«

b, and since ¢ =, 3, we know b=¢” | 4

Now, since b =g*, we have ¢” |

(by lemma 2.1), whence 5]24. We have already seen that ¢|24, so since

ged(b,c)=1, clearly bc|2A. Therefore, it follows that %é >1 (since
c

2A4=bck for some ke Z with k£ >1). Putting this together with the fact
that 4= (besin 9% , Where @ is the angle opposite side a, we see that

sin@ 21, whence sind =1 and 8 = /2, forcing (a,b,c) tobe a
Pythagorean triple. Thus we have:
a*=b*+c* - p** =q2ﬂ +2%
Furthermore, this triple is a primitive Pythagorean triple since
ged(a,b,c) =1, whence we may appeal to the standard parameterization of

all such triples yet again; we know there exists m,ne Z , with m >n and

ged(m, n) =1, exactly one of which is odd, such that:
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pP=m*+n?, g’ =m*~n*, and 27 = 2mn
But then:

2" =2mn—->m=2""andn=1 (since gcd(m,n)=1and m>n)
and:

g? =m*=n* > q¢f =m* -1=(m+1)(m-1)
Since ged(m+1,m—1)=1 (consecutive odd integers), and their product is a

power of a prime, it must be that m—1=1 (since m+1#1), whence m=2.

Therefore:

g’ =m*-1=3—>¢g=3and =1
Furthermore:

m=2"—22=2">5y=2
and:

pr=m+n’=22+1=5>p=5Sanda=1

Finally, we have shown (a,b,¢) = (p%,q%,2")=(5,4,3). [#|
Application Three: Finite Minimal POS Groups
A. Introduction

During a typical undergraduate abstract algebra course, the revelation that the

order of various entities (an element, a coset, and a subgroup for example) divides the
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order of the group (when the group is finite) tempts many students to conclude that the

converse is also true; if a number divides the order of the group, then there must be an
entity of that particular order within the group. While this is false in general, finite
abelian groups frequently cooperate as desired, making them very intuition friendly. In
this section, we define a different type of subset (perfect order subsets) whose order
divides the order of the group and investigate resulting properties of finite abelian groups
that contain theses special subsets. The culminating theorem due to Finch and Jones,
whose proof enlists the aid of Fermat primes, classifies all finite abelian groups satisfying
our given conditions. While the reader should be familiar with cyclic groups and Sylow
p-subgroups, we begin with a short review of key ideas from these topics before setting
the stage with new definitions. Immediate consequences presented by Finch and Jones
are then examined, followed by crucial facts used in proving the culminating theorem.
The author has followed the approach presented in the original journal article, supplying

additional information, proofs, and examples for the reader.

B. Reviewing Key Ideas

Since we will be dealing exclusively with finite abelian groups, let G always be a

finite abelian group. In addition, to make dealing with repeated factors less cumbersome,
let (Z, )t be the Cartesian product of ¢ factors of Z,. We now give a brief list of key

ideas from undergraduate algebra (see, for instance, I'raleigh).
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Every finitely generated abelian group, G, is isomorphic to a direct product

of cyclic groups. If G is finite, then we know there are no factors of Z , so

G=Z (X Z oy XX Z (o where each p, is prime (not necessarily
2 r

distinct), and the factorization is unique (up to the order of the factors).
The order of an element in a finite group must divide the order of the group.

m

Theorderof aeZ  is ————
ged(m, a)

, the number of elements in (a).

The order of (a,,0,,...,a,) € Z,, xZ,, x---xZ, is the least common

multiple of the respective orders of each a;.

If a generates a finite cyclic group G, where |G| = n, then d” also generates G
provided ged(r,n)=1.

The number of elements of a given order in a cyclic group is the same as the
number of generators for the subgroup of that order (recall that each such

subgroup is unique). For example, the number of elements of order 4 in Z,
is2((2) ={2,4,6,0} = (6)). Therefore, the number of elements of order
PPinZ,is ¢(p*)=p" (p-1).

Consequently, for any prime p, there are p - 1 elements of orderpin Z , .

If G is a finite group such that |G| = p"m where n21 and p }' m,then G
contains a subgroup of order p’ for each 1<i < n, and every subgroup of

order p' is a normal subgroup of a subgroup of order p™*' where 1<i<n-1.
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C. Setting the Stage: New Ideas and Definitions

Now that we have reviewed the order properties for elements and subgroups of
finite abelian groups, we are ready to put the ideas to use in a new way. To begin,
consider all the elements that have the same order in a given group. Placing these
elements (of the same order) into a set, called an order subset, introduces the first
restriction for the groups we want to work with (note that we will only consider
nonempty subsets). We wish to look only at groups where the cardinalities of all the
order subsets divide the order of the group. Such groups will be said to have perfect

order subsets. For instance, if we look at Z,, there are two order subsets: {0} and {1, 2}
(the elements of order one and three). However, while |{0}| = 1 divides | Z, |=3, |{1, 2}|

= 2 does not divide 3, so while this group has order subsets, it does not have perfect order

subsets (similarly, any Z , for an odd prime p will not have perfect order subsets). On

the other hand, consider G =Z, xZ,x Z,. Notice that |G| =24. Since Z,, Z,, and Z,

have elements of order 1, 2, 3 and 4, there are elements of order 1,2, 3,4,6,and 12in G
as table 1 illustrates. Clearly 1, 2, 3, 4, 6, and 8 all divide 24, so G has perfect order
subsets (notice that while 12(24, the:e is not an order subset with 12 elements, whence
having perfect order subsets does not imply that there is an order subset for every divisor
of the order of the group, even though we are in an abelian group). Notice that the
property of having perfect order subsets is not necessarily passed on to subgroups (since

(0}x{0}xZ, =Z,<G).
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Table 1. Number of elements of given orders in G =Z, xZ, x Z,.

Element Order | Number of Elements Elements
1 1 (0,0,0)
2 3 (0,2,0), {1,0,0), (1,2,0)
3 2 (0,0,1), (0,0,2)
4 4 ((0,1,0), (0,3,0), (2,1,0), (2,3,0)
] 6 (0,2,1), (0,2,2), (1,0,1), (1,0,2), (1,2,1), (1,2,2)
(0,1,1), (0,1,2), (0,3,1), (0,3,2), (1,1,1), (1,1,2), (1,3,1),
12 8 (1.3.2)

Before moving to the immediate consequences for groups with perfect order

subsets, we give one more example in order to illustrate the counting arguments a little
more clearly. Let H =(Z, )2 xZ,. Clearly, | H |=36, and elements of H are triples

where the first two elements have order 1 or 2 and the third element has order 1, 3 or 9 in

their respective groups. Considering Z, , the number of elements of order 1, 3, and 9 are

1,2 and 6 respectively (using ¢(p®)). Therelore, il we wish (o consider how many

elements there are of order eighteen in A (for a more complex example), we must have an
element of order one or two in the first two positions followed by an element of order
nine in the third position (as long as the first two elements do not have order one
simultaneously). Since there are two choices for the first two positions and six choices
for the third position, excluding the case where both of the first two elements have order
one, there are 2(2)(6) — 1(1)(6) = 24 — 6 = 18 elements of order eighteen. Performing

similar calculations shows that the number of elements of order 1, 2, 3,6, 9,and 18 in H
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are 1, 3,2, 6, 6, and 18 respectively, each of which divide |H|, whence H has perfect

order subsets.

D. Immediate Consequences

Now that we have shown that finite abelian groups with perfect order subsets
exist, we will restrict our examination to the consequences of our definitions on these
groups. Accordingly, let G be a finite abelian group with perfect order subsets from now
on. Keeping in mind that our main (culminating) goal is to classify all finite abelian
groups with perfect order subsets, we begin our investigation by looking at |G| and the
number of elements of a given order in G, subsequently inspecting any ability to expand
or contract our group. The reader is advised that all of the observations, lemmas and
theorems in this section are found in the original article; the author has renamed the
theorems, added details to the proofs, and provided examples to illustrate the ideas.

As a first observation, notice that if p is any prime divisor of |G|, then p—1 must

divide |G|. To see this, let G=Z , xZ , x---xZ , xZ, where p [ m. Then for

x=(x},X,,...,%,,%,) € G to have order p, each x;, 1<i <r, must have order at most p in

its respective group (with the identity in the last spot). Since there is one element of

order one and there are p—1elements of order p in each Zpa, , there are p choices for

cach x;. Howcver, we cannot Ict cach x; havce order onc, so there arc p” ~1 clements of

order p in G. Since G has perfect order subsets, this shows that



61
p=1=(p-)p"" + p? +---+1) divides |G|, whence p-1 divides |G|. From this it

follows that if G has perfect order subsets, then |G| must be even.

We now turn our attention to the number of elements of a given order within G.

i
To begin, we consider (Zp,, ) and then build onto this.

Lemma 3.1: Leta, b and ¢ be positive integers with < a, and let G = (ZP,, )t for a

prime p. Then the number of elements in G of order pb is (") (p' -1).

Proof: Let G be as described, and let x =(x,,x,,...,x,) € G. If the order of x is p’, then

the order of each x;, 1<i<t,is 1, p, pz, .., Or pb with the order of at least one x;
being p”. Counting such elements systematically, we count all the tuples whose
first occurrence of an element of order p’ is in the first spot. We then count the
tuples whose first occurrence of an element of order p° is in the second spot, and
so forth. Continuing in this manner will exhaust all possible arrangements for
elements of order p° without over counting the tuples. To make this process

easier, note that the number of elements of order pb in Zp,, is

d(p")=p"(p-1)= p* - p** (see part C). Furthermore, the number of choices
for each of the x; with order less than or equal to p° is 1+¢(p)+d(p*) +...+ #(p°)

(the number of elements for each successive order in Zpa ). This leads to

1+(p=-D+(P* = p)+..+(p" = p")+(p* = p*") = p* choices. Similarly, there
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are p” elements of order 7/, 0< j<b (1+4(p)+d(p*)+..+d(p"") = p™). We

are now ready to begin counting.

For the first arrangement, there are ¢(p”) choices for the first position
with p® choices for each of the following 7 — 1 positions, whence there are
(PP (p")™" elements with the order of the first entry being p® and the remaining
orders less than or equal to p°. Moving on, we let x; be an element of order
strictly less than pb and x; be an element of order pb , followed by elements of

order 7/, 0< j<b. This gives p®" choices for the first position, ¢(p’) choices
for the second position, and p® choices for the remaining ¢ — 2 positions (as

before). Thus there are p*'¢(p*)(p®) ™ elements in this configuration.

Continuing in this manner and summing the results, we obtain the number of

elements in G of the desired order, pb:
s(" NP+ PPN D)+ (P (P NP+ (P T (P
Now, looking at the exponents of p in the first and 7 — 1¥ terms, we see that
t-Db=0-DO+1-)=(0-D)(r-1)++-1 and
B-D(t=-2)+b=(bt—t-2b+2)+b=bt—t-b+2=(b-1)(t-1)+1
(with similar calculations for exponents of p in between), so we have:
s )P+ PP NP+ (PN (P (")
=P )P (P P+t p D)

=p"(p-1)(p" )" [ﬁij
p-1

= ("™ (P -1) [#]
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t
Lemma 3.2: Let a and ¢ be positive integers and p be prime. Let G = (Zp,, ) x M and

G= (pr )t x M such that p does not divide [M|. If d is the order of an

elementin G, and p*' | d, then Gand G both contain the same number

of elements of order d.

Proof: Let G and G be as described, and let x = (x,%,)€ G where X € (me )t and

x, € M . Since p does not divide |M]|, p does not divide the order of x;, so the
order of x is the product of the orders of x; and x,. If dis the order of x, and
p*' | d, then we know d = p’m for some 0 <b <a+1, where p’ is the order of

x; and m is the order of x;. Then, by Lemma 3.1, the number of elements of order

t
pin (pr, ) is (") (p' -1) , but this is the same as the number of elements of

t
order p° in (Zp,, ) , whence it follows that there are the same number of elements

of order din Gand G . E]

Since groups satisfying the conditions of lemma 3.2 share elements of the same
order, a natural question arises. May we use this information to expand a group known to
have perfect order subsets and preserve the property of having perfect order subsets? The

answer is yes, we may do so by increasing the exponent on the primes.
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t
Expansion Theorem: Let a and ¢ be positive integers, p be prime, G = (Zp,, ) x M and

Proof:

G= (Zp,,+l )t x M such that p does not divide |M|. If G has perfect order subsets,

then G has perfect order subsets.

Let G and G be as described, and let x = (x,x,) € G where X € (me )t ,

x, € M, and the order of x is d. If p**! / d , then lemma 3.2 clearly shows that

the order subset determined by x divides | G | (since it’s order divides |G| which in

a+l

turn divides | G ). Now, if p*'|d , then the order of x; is p**' (it can not have
order greater than this), so d = p**'m where m is the order of x;. By lemma 3.1
there are (p“V ™Y (p' -1) = p“(p’ -1) choices for x;. Thus, if there are n
elements of order m in G , then there are p*(p’ —Dn elements of order d in G.
Since there are (p”") (p' —1)n elements of order p“m in G, and G has perfect
order subsets, we know & = (p*") (p' ~1)n divides |G|. Furthermore,
P'IGHGI, 50 p'k=p'(p*"Y(p' ~Dn=p™(p' ~Dn divides | G|

(alb—ap'|bp').

Before proceeding, we pause to illustrate this theorem. Let G =(Z, )4 XxZyxLs,

which has perfect order subsets as illustrated in table 2 (using established counting

procedures).



65

Table 2. Number of elements of given orders in G =(Z, )4 XZy X L.

Element | Individual Orders Number of Eiements
Order | (within the triple) (within G)
1 1, 1,1 1
2 2,1,1 24-1=15
3 1,31 2
5 1,1,5 4
6 2.3 1 (2*-1(2)=30
10 2.1.5 (2* -1)(4)=60
15 1,3,5 2(4)=8
30 2,35 (2*-D(2)4) =120

Clearly 1, 2, 4, 8, 15, 30, 60 and 120 all divide |G| = 240. Now, according to the

expansion theorem, we may increase the exponent on any of the primes. Thus,

G, =(2, )4 x Z4 x Z4 also has perfect order subsets. To verify this, note that there are

2*~1=15 elements of order 2 in (Z, )4 , 2 elements of order 3 and 6 elements of order 9

in Z,, and 4 elements of order 5 in Z,. Putting this together, we obtain elements of

order 1,2,3,5,6,9, 10, 15, 18, 30, 45 and 90. The number of elements of these orders

divides the order of our group, as is seen in table 3 since 1, 2, 4, 6, 8, 15, 24, 30, 60, 90,
120, and 360 all divide | G, |= 720 (let the elements of (Z, )! be represented by a single

place holder to simplify expressions; the reader should be able to separate the cases

involved).
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Table 3. Number of elements of given orders in G, = (22 )4 X Ly X L.

Etement | Individual Orders Number of Elements
Order | (within the tuple) (within G)

1 1,1,1 1
2 1or2,1,1 15
3 1,35 2
5 1,1,5 4
6 1or2 31 15(2) =30
) 1,91 6
10 10r2,1,5 15(4) = 60
15 1,35 2(4)=8
18 1o0r2,91 15(8) = 90
30 10r2,3,5 15(2)(4) = 120
45 1,95 6(4)=24
90 10r2,35 15(6)(4) = 360

Similar computations reveal groups such as G, =(Z,)' x Z, x Z,;, G, =(Z, )" xZyx Zs,
and G, =(Z, )4 x Zy % Zy,s also have perfect order subsets, which leads to another natural

question. Given a group suchas G, =(Z, )4 x Zy % Ly, , can we reduce it to a group such

as G that also has perfect order subsets and, if so, is there a minimal such group? In other
words, is there a subgroup that also has perfect order subsets and, if there is more than
one, is there a minimal such subgroup? Again, the answer is yes, but we look at special
subgroups that arise by excluding factors (in a special way) or by decreasing the exponent

on the prime(s). The details are given in the following theorems.
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t
Exclusion Theorem: 1If G = ZZp,,1 X Zpa2 X+eeX Zpt,s_l x(Zpas ) x M has perfect order

subsets, where 0 < g, <g, <---<a_, <a,are integers, and p is a prime such that p

A t
does not divide M|, then G = (Zp,,s ) x M also has perfect order subsets.

A A t
Proof: Let G and G be as described, and let x =(x,,x,)e G where x € (Z,,a, ) . As

before, the order of x is p’m for some 0<b<a, (¢ is the order of x; and m is
the order x;). Now, if n = p°k is the number of elements of order m in M, then by

lemma 3.1, the number of elements of order p°m in G is (P (' -)pk,
which we must show divides | G|. In order to show (p*™Y (p' -1)pk divides

l G |, we will show that (p?") (p' -1)p°k divides | G | for some d = b, from
which our conclusion easily follows by transitivity. Now, there are no elements

of order p* in Zpa,_ for 1<i<s-1, so an element of order p*m in G must have

an element of order p® in the s-th position. Since 1,p% ..., p®* all have p* as

a common multiple, there are p* choices for the first entry, p® choices for the
second entry, and so forth, followed by elements of order p* in (Zp,,, )l and
elements of order m in M. By lemma 3.1, there are (p*™")'(p’ 1) elements of
order p* in (Zp"’ )t , 50 we have p®p% ... p™ (p%™Y (p' —1)p°k elements of

order p*m in G. Notice that since p®™ @™ "% (p' _1)k divides |G|, we
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must have —t+¢ <0, or ¢ <¢ (otherwise we will have too many factors of p).

Furthermore, (p’ —1)k must divide |M|. Finally, since |G |= p®™%* "% |G|, we

have:
pip® - p™i(p® -l Y{(p' -1)p°k divides |G| implies
P (p Y (P )Pk divides | Gl= pe |G

From which it follows that (p*™)(p’ =1)p°k divides | G|. Since b<a,, it
follows that (p*Y (p'-1)p°k also divides | G|. Thus G also has perfect order

subsets. E]

Notice that the converse of this theorem is not necessarily true. For instance,

Z, x {0} has perfect order subsets (the number of elements of order 1, 4, and 8 are 1, 2,
and 4 respectively), but neither Z, x Zg x {0} nor Z, xZ, x Zy x {0} has perfect order

subsets (there are 3 elements and 7 elements of order 2 respectively, neither of which

divide the orders of the groups). Lest the reader think this only happens for groups with

M ={0}, notice that while H = Z, x (Z2 )2 has perfect order subsets (as seen in part C),

H, =Z,xZyx(Z, )2 does not (there are 8 elements of order 3).
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Reduction Theorem: 1f G = (Zpa )t x M has perfect order subsets and p is a prime such

that p does not divide [M], then G= (Z p)t x M also has perfect order subsets.

(The proof of this theorem is similar to that for the previous theorem.)

Putting these facts together, we see that if we are given a group with perfect order
subsets, we may exclude factors with lesser powers of repeated primes, and we may
decrease the powers of the remaining primes involved all the way to one (so we have a
group with Sylow p-subgroups that are square-free). In addition, the order of any group

with perfect order subsets must be even, whence we always have at least one factor of
Z,. Therefore, we define a minimal POS group as a group G = (Z2 )t x M such that G
has perfect order subsets, [A/] is odd and square-free, and that no group Gz ( Z, )’ x M,
where M isa proper subgroup of M, has perfect order subsets. For example, we saw in
part C that G = Z, xZ, xZ, and H =(Z,)’ x Z, have perfect order subsets. By the
exclusion and reduction theorems, it follows that G, =Z, xZ, and G, =Z, xZ, have
perfect order subsets; however, G, is not minimal since Z, x {0} = Z, also has perfect
order subsets (while {0} is a trivial subgroup of Z,, it is still a proper subgroup).

Therefore, Z, is the minimal POS group that we seek inside G. Lest the reader think we

can always reduce to Z, , consider H =(Z,)’ x Z,, which is not minimal. Notice that

there is a subgroup of Z, that is isomorphic to Z,, and (Z, )2 x Z, has perfect order
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subsets; however, (Z, )2 x {0} does not have perfect order subsets, whence (Z, )2 xZ, is a

minimal POS group. Notice that H also has a subgroup isomorphic to Z,, which is a

POS group, yet this is not a minimal POS group corresponding to A since neither the

exclusion nor the reduction theorem allows us to exclude a factor of Z, (reducing H to

G;). In other words, one must use care when reducing a given POS group.

The astute reader may now be thinking that due to the restrictions we have put in
place, is it possible to list all the minimal POS groups? Once more the answer is yes, up
to isomorphism, and we are now ready to classify all the minimal POS groups; however,

to aid the reader, we give two crucial facts before stating the culminating theorem.

E. Crucial Facts Used in the Proof of the Culminating Theorem

The following theorem and lemma play key roles in the proof of the main theorem
to follow. They are presented here to ease the proof of the theorem. While theorem 3.1

was not proved in the original article, lemma 3.3 was (details have been added by author).

Theorem 3.1: 1f p is an odd prime such that p|¢, then 27 —1]2" 1.

Proof: If p=t, then the result is clear. Let p<¢. Thensince p|¢, we know ¢ = pk for

some k € Z*, from which it follows that 27 —1|2° -1 since:

2 —1=2% —1=(27) -1=27 - D[2*)" +(27)* 2 +...+(2°)+1]. [%]
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Lemma 3.3: Ifpisaprime, aeZ*, and q is a prime divisor of 2°° -1, then p|g-1.

Proof: Let p be a prime, a € Z*, and ¢ a prime divisor of 27" —1. Then 27" = 1,

q
from which it follows that 27" is the identity element of the group (Z g ).
Therefore, ord(zq),.Z =d|p®,or p®=dk forsome keZ". Thus d = p°
and k = p® where o+ f=a,so p(p®*?")=d — p|d. Now, the order
of an element in a finite group divides the order of the group (Lagrange’s

Theorem), so we know d divides | (Z q)* |, or d|g—1, whence we have

pld and d|q-1 implies p|g—-1. [#]

F. Proving The Main Theorem

We are now ready to classify all minimal POS groups (for finite abelian groups).

Before doing so, however, the reader should take a moment to reflect upon the potential

consequences of creating a minimal POS group. For instance, if we start with (Z2 )’ ,
where ¢ is a known value, and we wish to attach cyclic groups (of odd order) to (Z2 )' in

order to make G =(Z,) x H a minimal POS group, where the order of H is odd and

square free, then 2° —1 must divide the order of G (since there are 2' —1 elements of
order 2 in G) whence 2' —1 must divide the order of H (since 2’ —1 is odd).

Furthermore, for each prime p dividing 2’ ~1, our group must contain a Sylow p-



72
subgroup of that order. However, if we attach a cyclic group of order p, then we

introduce elements of order p—1, which in turn must divide the order of G (to ensure G

is still a POS group). This requirement might force us to add more cyclic groups. For
instance if we start with (Z,)’ and attach Z, , then we will be required to attach Z, as

well so that we can have an element of order 6. For higher values of ¢, this process might
lead to non-desirable conditions, such as requiring factors which lead to groups with

Sylow p-subgroups which are not square free (violating our search for a minimal POS
group). For instance, if we begin with (Z,)’, then we must attach Z,,, , opening the door

to elements of order 9 (since 9|126 ). We must then attach Z,, causing the order of H to

have a power of a prime, which we wish to avoid (since we will then have a Sylow 9-

subgroup). Although the situation seems hopelessly complex, there are a finite number

of values of ¢ that will work nicely within our constraints, which the following theorem

due to Finch and Jones spells out.

Theorem 3.2: Let G be a finite abelian group of even order whose Sylow p-subgroup is a
cyclic group of order p for each prime p dividing the order of G. If Gis a

minimal POS group, then G is isomorphic to one of the following groups:

a Z,

b (Z,) <z,

¢ (Z,)xZ,xZ,

d (2,)'xZ,xZ,

e. (z, )5 X Loy X Lg% Ly,
b (Zz)ng3xZ5le7
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g (Z,) XZyxZx Ly, x Ly,
ho (z, )17 X Loy X Log X Loy X Loy X Loz,
i (2, )32 XLy X Lg% Doy % Lonsy X Ligs sy

Proof: (The original proof has been reorganized and important details have been added.)
We will prove the theorem in two stages: verifying that the above are minimal
POS groups and showing that these are the only nine such groups.

L Verifying:

To begin, Z, has already been shown to be a minimal POS group (group
b was mentioned to be minimal in part D, but it was not proved, so we will
consider it as needing to be verified). As it turns out, we can split the
remaining eight groups into two sets corresponding to the verification process
involved in showing the group in question is a minimal POS group (there are
two main concepts involved, one for each set). Coincidentally, there are four
groups within each of these sets. We shall show one of the groups in each set
is a minimal POS group, leaving the remaining verifications to the reader.
Before doing so, however, we note that the reader should be familiar with
finding the order of an element, as well as the number of elements of a given
order, at this point. For sake of completeness, we include a column in our

tables verifying the divisibility check, although this is a trivial process.



The first set we consider is 4=1{b, f,g,h}. From this set, we will show

that group £, (Z, )8 xZyx Ly x Z,,, is a minimal POS group. Notice that

| f1=65280. Table 4 then shows that fis a POS group.

Table 4. Number of elements of given orders in (Z, )8 XLy x Lgx Ly,

Element | Relevant Orders Number of Elements Divisibility Check
Order | (within the tuple) | (within the group in question) | (product is 65280)
1 1 1 1(65280)
2 2 2% —1=255 255(256)
3 3 2 2(32640)
5 5 4 4(16320)
6 2,3 (2°-1(2)=510 510(128)
10 2.5 (2° -1)(4)=1020 1020(64)
15 3,5 2(4)=8 8(8160)
17 17 16 16(4080)
30 23,5 (2° -1)(2)(4) = 2040 2040(32)
34 2,17 (2° -1)(16) = 4080 4080(16)
51 3,17 2(16) =32 32(2040)
85 517 4(16) = 64 64(1020)
102 2,3, 17 (2° -1)(2)(16) = 8160 8160(8)
170 2, 5,17 (2° -1)(4)(16) =16320 16320(4)
255 3,5 17 2(4)(16) =128 128(510)
510 2,3,5,17 (2° ~1)(2)(4)(16) = 32640 32640(2)

74
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We must now verify that fis a minimal POS group. This is fairly

straightforward. Notice that 2° —1=255=3(5)(17). Since it is essential for
28 —1 to divide | G| (since there are 2° ~1 elements of order 2, and we want

G to be a POS group), every prime that divides 2° —11is required to be present
in |G| (in order to make | G| divisible by 255). Hence, we may not leave ofl
any of the odd cyclic groups without disrupting the POS quality of our group,
and f'is a minimal POS group.

The second set we consider is B ={c,d,e,i}. From this set we consider
group e, (Z, ) x Z, x Z; x Zy,, which has order 14880. Table 5 then shows
that e is a POS group. Verifying that e is a minimal POS group is a little
trickier in this case since 2° —1=31 is prime. On the surface it looks as
though We could reduce the group to (Z, )5 x Z,,, but a moment’s thought
shows that Z,, introduces elements of order 30. In order for 30 to divide | G|,
we must have all the primes that divide 30 involved in | G|. We are missing 3
and 5, hence we must include Z, and Z,, bringing us back to the original

group. All of the groups in this set have this “capturing” quality, as is easily

checked.
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Table 5. Number of elements of given orders in (Z, )5 X Loy X Lig X Ly, .

Element | Relevant Orders Number of Elements Divisibility Check
Order | (within the tuple) | (within the group in question) | (product is 14880)
1 1 1 1(14880)
2 2 2°-1=31 31(480)
3 3 2 2(7440)
5 5 4 4(3720)
6 2,3 (2°-1)(2)=62 62(240)
10 2,5 (2°-1)(4) =124 124(120)
15 3,5 2(4)=8 8(1860)
30 2,3,5 (2° -1)(2)(4) =248 248(60)
31 31 30 30(496)
62 2 31 (2°-1)(30)=930 930(16)
93 3, 31 2(30)=60 60(248)
155 5, 31 4(30)=120 120(124)
186 2,3, 31 (2 -1)(2)30)=1860 | " 1g50(8)
310 2, 5, 31 (2° - 1)(4)(30) = 3720 3720(4)
465 3, 5, 31 2(4)(30) =240 240(62)
930 2,3, 5, 31 (2° —1)(2)(4)(30) = 7440 7440(2)

Isolating the minimal POS groups:

Now that we have described typical verifications that each of the nine
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groups on the list is a minimal POS group, we switch our focus to finding all

such minimal POS groups. Let G be a finite abelian minimal POS group of
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even order whose Sylow p-subgroup is a cyclic group of order p for each

prime p dividing the order of G. Then G =(Z, )' x H where the order of H is

odd (by definition of minimal POS group) and square free (since each Sylow
p-subgroup is cyclic of order p). Furthermore, 7 >1 since G is of even order;

however, ¢ =1 leads to Z,, so we consider #>1. As the comments preceding

the theorem indicate, t determines the order of A, and H in turn heavily
influences the value we can use for #. As we shall see, this interdependence
forces ¢ to be a power of a single prime.

Before we can see this result, we need to establish a few useful facts.

Recall that 2" —1 (the number of elements of order 2) divides | H |, whence

2 —1 is square free (since | H | is square free). Now il pis anodd prime such
that p|r, then 22 -1|2' —1 (by Theorem 3.1), whence 27 —1 is square free
(since 2’ -1 is square free). Furthermore, 27 —1 is prime since ifg, and g,
are two distinct primes dividing 2 ~1, then p|q, -1 and p|gq, -1 (by
Lemma 3.3), whence p*|(g, —1)(g, —1). However, (g, —1)(g, —1)is the
number of elements of order ¢,g, in G, so p* divides | G|, and since p is odd,
it follows that p® divides | H |. —« Therefore 27 ~1 is a square-free prime
such that 27 —1 divides | G|, from which it follows that there are 27 —2

elements of order 27 —1 in G (by the hypothesis of the theorem). The final

observation we make here is that since p is odd, p =2k +1 for some ke Z,
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and 27 =, 2" = (2°)*2 =, 2, whence 3|27 ~2. We are now ready to see
that # must be a power of a single prime.

Assume that ¢ is not a power of a single prime. Let p, and p, be two
distinct odd primes dividing . Then it follows that 3|2# -2 and 3|27 -2,
whence 9 |. (27 -2)(2% —-2). Since (27 —2)(2* - 2) is the number of
elements of order (27 —1)(2”* —1), this shows that 9 divides |G|, hence | H | ,
a contradiction. Similarly, if 2 and an odd prime p divide #, then ¢ = 2k for
some k € Z , whence 2' = (2%)" =, 1, and we have 3|2' —1 and 3|27 -2
leading to 9|(2' —1)(2? —2), the number of elements of order 2(27 -1) in G,

again contradicting the square free property of H. Therefore f must be a
power of a single prime. We are now ready to narrow the focus even more,
isolating which primes can play in the game with ¢, and it is at this point the

friendly Fermat primes lend a hand.

Clearly if t is a power of 2, then ¢ =2° for some a>1. On the other hand,
if ¢ is a power of an.odd prime, then # must be a Fermat prime. To see this, let
t = p“ with p an odd prime and a > 2 (we shall see that this is not possible,
forcing @ = 1). Recall that 22 —1|2' —1, so we now have 27 1|2 —1.
Furthermore, since 2' —1=2”" —1 is square free, and 27 —1% 27" -1, we
know there exists another odd prime ¢ # 27 —1 such that ¢| 27" —1. Now, by

Lemma 3.3, it follows that p|g~1. Furthermere, 2° =, 2 for any odd prime,
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so we have p|g-1 and p|2? -2, whence p’|(q—1)(27 -2), the number of

elements of order ¢(2” ~1)in G, whence p* divides | H | (—><). Therefore,
a<1,butsince a>1, we have a=1, whence ¢ = p. Notice that
2277 ~1)=27 -2 divides | G| implies that 277 -1 divides | G|, allowing us
to perform an identical analysis of p—1 that we applied to ¢ in the previous
paragraph. In short, p—1 must be a power of a single prime, and since p-1
is even, that prime must be 2. This shows that if ¢ is a power of an odd prime,
then 7 = p where p—1=2%, or t =2° +1. As seen in previous sections, the
only primes of this form are Fermat primes (see theorem 2.10).

We have now narrowed the form of 7to £ =2, or t =2% +1 (a Fermat

prime) where 2" ~1 divides | G|, with a >1 in either case. If t =27, then
2'~1=2% -1 divides | G|, and if r =2 +1, then 2" ~1=2% —1, where

b =27, divides | G|, both of which are of the form 2%" —1. One final

observation will now allow us to restrict the values for ¢ one last time. Notice

m-1
that 2% -1=T](2* +1):

n=0

This is clearly true for m=1: 2> ~1=2+1=3. Suppose it is true for

& k-l n
m=k. Then 2* —-1=]](2* +1), and we have:
=0

n

2 12207 1=(2 )2 ~1=(2% +1)(2” -1
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=(ﬁ(22" +1))(22* +1)=1‘k](22" +1)

n=0 n=0

Therefore the formula is true by induction on m.

m-1 m-1
Now, since 2% ~1=[](2" +1)=]]F,, we see that F;|2*" —1 when m26.
n=0 n=0

We argue that m > 6 is not possible. One of the prime factors of £ is
6700417, whence 6700417 F;, F;|2* ~1, and 2% —1“ G| imply 6700417
divides | G|. Therefore G has elements of order 6700417 (by hypothesis).

Furthermore, 3|2 —1 and 3|6700416, whence 9|6700416(2>" 1), the
number of elements of order 2(6700417) in G, forcing 9 to divide | H | yet
again. —<« Therefore, m <S5, giving us the key to unlock the exact values
for ¢.

Considering ¢ =2 >1 with a <5 first (recall we used a =m inthe
formula), we see that ¢ € {2,4,8,16,32}. On the other hand, if £ =2% +1, we
must exercise a little caution in unraveling the value for ¢ since we used a
small change of variable, m =5 =2?, whence 2° <5, The only values that
will work for a in this inequality are 0, 1, and 2, from which it follows that

t €{3,5,17}. Putting this together with the trivial case in the beginning of the
proof, we have ¢ €{1,2,3,4,5,8,16,17,32}.
Finally, recall that the minimal POS groups associated with these values

for + must have Sylow p-subgroups of order p for each prime p such that
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p|2' -1 and that p—1 must divide | G|. Introducing the requirement that

| H | be square free then forces the existence of exactly one minimal POS

group for each value of ¢ that meets these requirements. We have just shown

the only values of 7 that will cooperate, and each value corresponds to one of

the nine groups already verified minimal POS groups. E]
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CHAPTER FOUR

CONCLUDING COMMENTS AND OPEN PROBLEMS

As we have seen, Fermat unwittingly changed the course of mathematical history,
although he was not blessed to witness the beautiful harmony that his contribution has
had within the orchestra of the mathematical framework being constructed. In light of
the fact that Fermat did not publish his work but rather pursued mathematics purely for
love of the subject, the author feels confident that Fermat did not fully comprehend the
vital role that he was playing. To put Fermat’s role in perspective, the author notes two
significant details: work with prime numbers and advances in algebra and number theory
had both been neglected for a significant period of time prior to Fermat’s birth. The
ancient Greeks had completed extensive work with prime numbers, yet after Eratosthenes
introduced his famous prime number sieve in 200 B.C., the world entered a period of
silence known as the Dark Ages. This silence was shattered with Fermat’s enlightened
work (O’Connor, Prime Numbers, 1). Similarly, the reader may be aware that Fibonacci
broke a 1000 year stagnation in development in western mathematics, yet it was not for
approximately another 300 years that Frangois Viete introduced the notation with letters
that Fermat was to follow (Scharlau, 5). The author wonders whether Fermat realized
that when he took up this mantle that he would uncover mathematical concepts that were
so radically new and important that he would one day be seen as a forerunner in the
development of what is now known as modern mathematics. Added to the fact that
Fermat was a pioneer in a new mathematical world, Fermat’s brilliance was met with stiff

jealousy and wounded pride when Fermat carelessly ridiculed Descartes’ work with the
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law of refraction. In the ensuing controversy that swept the community, Descartes

unleashed bitter attacks upon Fermat in an effort to destroy Fermat’s reputation.
Although the battle ended on a sociable note, Descartes continued to assault Fermat’s
reputation. Due to Descartes’ prominence, these attacks severely damaged Fermat’s
reputation (O’Connor, Pierre de Fermat, 3). Certainly, as Fermat suffered these character
attacks, and as he later found himself without any colleagues interested in his beloved
number theory, he more than likely did not fathom that his responding challenges and
raised questions would have far-reaching consequences more than 400 years later.

Today the world is blessed with deep and beautiful theories as a result of Fermat’s effort,
and the groundwork that Fermat began continues to challenge mathematicians. This gives
cause for one to stop and ponder his or her contribution, for the story is far from over. As
one question resolves, another one raises its head, and intricate and exciting connections
emerge. This paper has illustrated relations between Fermat primes and Geometry as
well as Finite Group Theory. How many more connections remain to be discovered?
How many seemingly unrelated questions provide the keys to unlocking fundamental
truths? We have already seen that the smallest value for £ € N such that all the numbers
inthe set { k2" +1: ne N} are composite remains to be found. Will its discovery help
solve any riddles? For instance, will this help to show if there exists an odd £ >3 such
that infinitely many Fermat numbers have a prime factor £2" +1 for some # (that is, for
any fixed £ and varying n)? With these thought-provoking questions, the author wishes
to alert the reader that there exist many open questions pertaining to Fermat numbers,

Fermat primes and composite factorizations, primes in general, and other areas of
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investigation involving connections with Fermat primes, each of which may provide the

next crucial discovery.

Perhaps the issue which is foremost in the minds of many is the very old question
of whether the five known Fermat primes comprise all of the Fermat primes. In the
relentless quest to answer this problem over the last several centuries, mathematicians the
world over have joined forces to unlock any piece of the puzzle that may give further
insight. Several heuristic arguments that the number of Fermat primes is finite have been

offered, but the reader is cautioned that these arguments are probabilistic and rely upon

random behavior. Since any Fermat number, say F, = 27" +1, can be written in base two

as 10000...01 (a one followed by 2™ —1 zeroes and a concluding one), the Fermat
numbers are highly non-random. As more progress is being made in establishing further
composite Fermat numbers, however, it seems likely that the number of Fermat primes is
finite, but this remains as a tantalizing quéstion.

Perhaps one way to answer this question is to look into the prime divisors of the

composite Fermat numbers. It has been shown that any prime divisor of a Fermat

M1

number, F, , musthave the form k2" +1 for some k e N (K¥iZek, 38), but these primes

seem scarce and difficult to find. Nevertheless, the search has consumed men across the
globe for several centuries now. According to one website, between 1640 and 2003,
seventy-one men from over sixteen different countries have contributed to the growing
list of prime divisors (Morelli)! Interestingly, the top three most frequently mentioned
countries are the United States of America, Russia, and France (although not all of the

contributors’ nationalities are listed). The majority of these contributions have occurred
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since 1925 (only eleven contributors between 1640 and 1924). This illustrates a key

shift: since the advent of the computer and the mobility of information offered by the
Internet, the pursuit in this direction has intensified. If the reader searches the Internet,
for example, he or she will find numerous websites that list known factorizations and key
discoveries. It is therefore generally known that prior to 1925, only sixteen factors of
Fermat primes had been found. Since computers have offered assistance, however, over
234 new factors have been found, giving us a total of more than 250 currently known
factors (numbers vary depending on the website). Lest the reader think that interest
might begin to lag in this area, the author notes that during the course of writing this
thesis, new factors have been discovered, the most recent of which occurred less than a
month prior to completion of this paper. Curtis Cooper found that 27-2%” +1 divides

Feoos 00 August 30, 2005. Notice that the index for this Fermat number ends in the year
of discovery, a small curiosity to the author. New prime factors which divide £, F .,

Feoore » a0d Fogpo, have also been discovered recently (since February, 2005) by Vasily

Danilov, Maximilian Pacher, and Michael Eton (respectively; the last two by Eton). The
most current reported total found by the author was 257 known prime factors with 224
known composite Fermat numbers as of August 30, 2005 (Keller). According to Ivars
Peterson, author of “Cracking Fermat Numbers,” part of the excitement in this search is
“the race to set the record for the largest Fermat number known to be composite,” the

largest of which is currently F, ., (as of 2003). To give the reader an idea of the size of

this number, the discoverer, John Cosgrove, noted that “to write out its decimal value — at



86
four digits per square inch in the horizontal and vertical directions — would require a

sheet of paper with side length exceeding 10*%** light years” (Peterson). The incredible
size of this composite Fermat number is something to ponder!

Another question, which brings us back to Earth for the time being, shifts focus
from the prime divisors themselves to the number of divisors involved in the complete
factorization of a composite Fermat number. In particular, once a Fermat number is
known to be composite, does the number of its prime factors necessarily have to be
greater than the number of prime factors of any of the previous composite Fermat
numbers? For instance, table 6 lists the number of prime factors of the first thirteen
Fermat numbers. Is the resulting sequence of the number of prime factors a

nondecreasing sequence?

Table 6. The number of prime factors for the first thirteen Fermat numbers.

Fermat Numbers |Number of Prime Factors
ko - £, 1
Fs -1y 2
Iy 3
Fi 4
Fyy 5
by, 27

The answer to this question remains a difficult one since only the first twelve Fermat

numbers have been completely factored into a product of primes. Thus, the complete
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factorizations of the remaining Fermat numbers leaves a lot of playing room for anyone

who wishes to explore open problems. Another related quest is finding the smallest

prime factor for 7, F,,, F,,,and F,, (Kfizek, 159). Interestingly, the known prime

factorizations of Fermat numbers are all square free, which leads to a further question of
whether all Fermat numbers are square free.

Switching focus slightly to general primes, there are numerous open questions
that are similar in nature and whose answers may, therefore, shed light on Fermat
factorizations. For instance, if p is a prime, is 2?7 —1 always square free? Furthermore,
are there infinitely many primes of the form »" +1, n!+1,and/ or n'-1 (O’Connor,
“Prime Numbers™”)? While an underlying connection is not very clear to the author, the
similarities to the open questions concerning primes and Fermat numbers are appealing.

As a last observation, the reader is reminded that there are other areas of
investigation involving connections with Fermat numbers, each of which have resulting
open questions. For instance, Finch and Jones offer several open questions relating to
their article on finite minimal POS groups, which we present here. The only known

example of a minimal POS group containing a cyclic subgroup of odd order is
(Z,)" xZyx Zs % (Zy, )’ % Zpy x Loy This leads to the natural question: are there only

finitely many such groups? Furthermore, if G is known to have perfect order subsets, and
p is an odd prime that divides |G|, is it true that three will divide |G|? Finally, since the
primary focus to date has been on abelian groups, non-abelian groups provide fertile

research ground.
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In the introduction to this thesis, the author mentioned that research has also

uncovered many interesting connections between Fermat numbers and Pascal’s triangle.
We can find many open questions here as well. For instance, one of the connections
between the Fermat numbers and Pascal’s triangle appears when ¢ = 3 in the following
proposition (see Ktizek, 90 — 91):

If c is any fixed integer greater than 2, and £ > 1 is any integer not divisible by

any prime less than or equal to ¢* —c¢~1, then k is a prime number if and only if

n( " )forallnsuchthatLSnS—k—.
k—cn

c+1 c

Now, notice that if we let X, = {n € Z" such that n

n k k
forall ——<n<—3, then
k-cn c+1 c

the previous proposition fails to give any information about members of X, that are

divisible by primes smaller than ¢* ~c~—1. Furthermore, while the exact structure of
these sets has been studied for ¢ =4, §, 6, nothing is known about the structure when
¢ >7(93). In addition, it has been shown that K; = {1, 4, 25, all primes, 2¢: ¢ >3 is a
Fermat prime}. However, is it true that 2g, where g > 3 is a Fermat prime, will belong to
K. for infinitely many values of ¢? If not, what about those ¢’s divisible by three (93)?
The answers to these questions and many more may unlock further connections between
Pascal’s triangle and Fermat numbers.

While the above questions are more number theoretic in nature, recall that
exciting connections exist between Fermat numbers and Geometry as well. Similar to

Gauss’s theorem, it has been shown that if 7, F|,F,,F;, and F, are the only Fermat
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primes, and 2" +1 is prime, then for n#1, there exists a regular polyhedron whose
number of faces is n+4 (163). Inserting “vertices” for “faces” or “number of sides” in
these two theorems does not change the truth of the theorems, so a natural question
arises. Do these two theorems have a deeper governing principle, or do they hold simply
because of the restricted set of numbers (164)? Similarly, is there a general theory that

would lead to a definitive answer about whether or not £ is the largest Fermat prime?

The author wonders whether, if such a principle for one question exists and is revealed,
would it be related to the underlying theory of the other.

Just as the highlights of the numerous results found during the course of the
author’s research were not comprehensively listed in this thesis, the open questions
presented herein represent only a small portion of the unanswered questions available for
exploration. The reader is invited to ponder the role that he or she may play in the further
development of the mathematical framework, whether that be merely contemplating the
ideas thus shared, investigating further areas of connection not presented herein, or by

asking more questions still.
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