
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2009

Network traffic clustering and geographic
visualization
Ali Hushyar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Hushyar, Ali, "Network traffic clustering and geographic visualization" (2009). Master's Theses. 3695.
DOI: https://doi.org/10.31979/etd.r6re-8mjd
https://scholarworks.sjsu.edu/etd_theses/3695

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3695?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

NETWORK TRAFFIC CLUSTERING AND GEOGRAPHIC VISUALIZATION

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Ali Hushyar

August 2009

UMI Number: 1478604

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 1478604
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

©2009

AH Hushyar

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

NETWORK TRAFFIC CLUSTERING AND GEOGRAPHIC VISUALIZATION

by
Ali Hushyar

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Mi
Dr. Mark Stamp, Department of Computer Science

7 / /
Date

' i! f\

Prof. Jeff Smith, Department of Computer Science Date

3q>(G,1cxA

Robert Hermes, ATT Inc. Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

NETWORK TRAFFIC CLUSTERING AND GEOGRAPHIC VISUALIZATION

by Ali Hushyar

The exploration and analysis of large databases of information are an ever-

challenging task as digital data acquisition continues to progress. The discipline of data

mining has often been employed to extract structure and patterns from the underlying

dataset. In addition, new research in the field of information visualization is being

applied to the same challenge. Visual models engage the invaluable pattern processing

abilities of the human brain which leads to new areas of insight otherwise undetected.

This research applies the benefits of both data mining and information visualization to the

specific problem of traffic analysis on computer networks. This is an important issue as

it relates to the ability to understand diverse behavior on the network and provide many

fundamental services. For example, distinct traffic classifications and associated traffic

volumes facilitate capacity-planning initiatives. Furthermore, accurate categorization of

network traffic can be leveraged by quality of service offerings and, at the same time,

lend itself to efficient security analysis. In this research, an example of a data processing

pipeline is described that incorporates both data mining and visualization techniques to

cluster network flows and project the traffic records on a geographic display.

Table of Contents

1 Introduction 1
2 Determining Dimensions of Network Traffic 4
3 Extracting Dimensions from Packet Traces 8
4 Clustering Algorithms 11

4.1 K-means and K-medoids 11
4.2 Affinity Propagation 13
4.3 Affinity Propagation Implementation 16
4.4 Clustering Network Flow Records Using Affinity Propagation 17

5 Information Visualization 21
5.1 Treemaps 22
5.2 The HistoMap Layout Algorithm 25
5.3 HNMap Implementation 26

5.3.1 HNMap Backing Data 26
5.3.2 HistoMap Logic 30
5.3.3 HNMap Screenshots 34

5.4 HNMap Projection 38
Conclusion 40
References 41

v

List of Tables

TABLE 2.1

TABLE 2.2

TABLE 3.1

TABLE 4.1

TABLE 4.2

TABLE 5.1

TABLE 5.2

TABLE 5.3

TABLE 5.4

TABLE 5.5

TABLE 5.6

TABLE 5.7

TABLE 5.8

Traffic Classes and Applications

19 Dimensions of a Flow

Sample TCPTRACE Output

Affinity Propagation Code Summary

AP Results for 200 Record Dataset

HNMap Ordering

Excerpt of ISO 3166 Country Data

Excerpt of WHOIS AS Query

Excerpt of WHOIS IP Query

HNMap Database Tables

Excerpt of SQL Query Results for TreeML Data

Excerpt of TreeML File

HistoMap Layout Routine

5

6

9

17

18

24

27

28

28

29

31

32

33

vi

List of Figures

Fig. 5.1. Classical Treemap Layouts. 23

Fig. 5.2. HNMap Continents. 34

Fig. 5.3. HNMap Countries. 35

Fig. 5.4. HNMap Autonomous Systems. 36

Fig. 5.5. HNMap Prefixes. 37

Fig. 5.6. DDoS Cluster Projection. 39

vn

1 Introduction

The fast and efficient categorization of network communication can help analysts

isolate classes of traffic on the network for further investigation. One traditional traffic

classification technique is a fixed identification method based on transport-layer fields

such as well-known port and protocol numbers. The problem here is that many processes

such as Peer-to-Peer (P2P) applications use dynamically negotiated port numbers. Others

may not run on well-known port numbers at all such as the practice of running HTTP

proxies and rogue mail-relay servers on higher-order ports. More importantly, there are

often nested categories of traffic within a traffic class. McGregor, Hall, Lorier, and

Brunskill describe subclasses of traffic within HTTP depending on the underlying

purpose, for example transactional communication, bulk data transfers and tunneled

applications [1]. Furthermore, various traffic streams utilizing different port numbers can

exhibit the same type of behavior and in fact be operating in the same capacity such as a

large file transfers using HTTP or FTP.

Other methods include signature-based classification techniques applied to the

packet payload. More and more network applications are rendering this method difficult

if not obsolete. Traffic on the wire can be encrypted and employ other masquerading and

obfuscation techniques such as fragmentation to make fingerprinting difficult [2]. In

addition, signature-based detection methods can only identify those traffic types for

which there are signatures available.

1

To get around these obstacles, one proposal is to characterize network traffic

based on features of the transport-layer statistics irrespective of port-based identification

or payload content. The idea here is that different applications on the network will

exhibit different patterns of behavior which is manifested in the transport-layer statistics.

For example, distinguishing between file transfers generated by P2P and FTP processes

can be done because P2P connection behavior is typically long-lived and data is

bidirectional while FTP is relatively short-lived and data transfers are unidirectional.

There have been many clustering algorithms applied to various domains [3]. However,

this paper will discuss a relatively new unsupervised clustering technique which at the

time of this writing is not known to have been used to address network traffic analysis.

This algorithm will be applied to recorded traffic statistics to provide class structure to

the data.

To enhance the analysis process, multi-dimensional data sets will be visually

projected to expose hidden areas of interest and offer further insight. Many visualization

techniques have been developed from 1-Dimensional to N-Dimensional models, and

graph and tree based views. Petrik and Skala offer a succinct history of information

visualization [4]. This paper will take an in-depth look into an existing 2D Treemap

model based on an innovative layout algorithm. Treemaps are visualization structures

that allow for the projection of large amounts of hierarchical information on a traditional

2D display. This particular Treemap is a projection tool that provides application-

specific context to the mined dataset. It is essentially a geographic model of the Internet

where IP addresses are organized according to their administrative domain. To illustrate

2

the power of visualization, IP addresses that engage in communication on the network are

visually encoded based on a measure of interest such as number of outgoing connections

or number of bytes transferred. This visual encoding is presented on a geographic

display that highlights scope and evolution of behavior over time. This paper shows that

the combination of clustering and visualization reveals a value-added process of analysis

that provides additional insight into the underlying data. It was revealed through personal

correspondence with the developers of this geographic Treemap that this tool has not

been fully developed nor is it publicly available. As a result, part of this research

includes the implementation of the visualization based on the description of the Treemap

algorithm.

The rest of this paper is organized into 4 sections. Section 2 and 3 describe the

specific statistics used in the characterization of network traffic and explain how the

statistics where extracted from packet header traces. Section 4 describes the reasoning

behind choosing a new clustering method and the results of the clustering on a sample

dataset. Section 5 introduces the geographic Treemap visualization tool, its

implementation, and how it is used to project clustered datasets and glean additional

knowledge. Screenshots of the Treemap implementation are provided for reference.

3

2 Determining Dimensions of Network Traffic

To begin, a flow is defined as a channel of communication between two parties on

a network. For the purposes of this paper, a flow will be further qualified as a bi­

directional communication channel between two endpoints. Flows are uniquely

identified by a 5-tuple of fields taken from the TCP/IP headers of the packets. The 5-

tuple and its constituent fields are:

(source-address, source-port, destination-address, destination-port, protocol).

In addition to these flow fields, other flow features or dimensions are used to

characterize the behavior of a flow. These dimensions are extracted or derived from

packet traces. Packet traces usually contain some or all of the packet content for each

flow on the wire from which it was collected. Each flow in the trace has been generated

by a network process such as a web client or mail client that has engaged a server for a

specific transaction. These dimensions are measurements that can describe an aspect of

the flow in its entirety or an attribute of the flow in a particular direction. In [5], the

authors have identified 249 distinct flow dimensions. These dimensions cover basic

statistics such as packet lengths and TCP flag counts to more involved measurements

such as variance of packet sizes and flow "modes", the time a flow spends in idle,

interactive and bulk transmission states. The objective of characterizing network flows is

to find a set of dimensions that are most effective in differentiating and classifying

4

different types of flows. In this paper, successful classification does not imply a fixed

taxonomy but rather a subjective grouping relative to other flows in the dataset.

With so many possible dimensions of traffic, it is expected that some dimensions

would contribute more than others to the successful classification of a flow and it is

possible that some dimensions actually hinder the classification process. As a result, a

great deal of research has been conducted to identify a core set of dimensions that are

most effective in classifying network traffic. This is even more significant in that many

data mining programs including clustering algorithms scale poorly with high-dimensional

data sets. Li, Yuan, and Guan identified 19 dimensions of traffic and used the supervised

machine-learning Support Vector Machine (SVM) model to classify network traffic into

known classes [6]. Table 2.1 shows a high-level taxonomy of traffic classes and

examples of applications that would be categorized into those classes.

TABLE 2.1 Traffic Classes and Applications

Clas-;
BULK

INTERACTIVE
MAIL

SERVICE
WWW

P2P
MULTIMEDIA

GAME
ATTACK
OTHERS

Representative Applications
ftp

«li. reinet. rloziu
pop3. c-mtp. imap

XI1. due
hrtp. ktp>

Kn zaa. B i: torrent. Gnutel If.
voice, video streaming

Half-life
worm, virus

tcan. oetbios. orp. tip

5

One caveat in the experiments described in [6] is that the number of available

flows in the categories MULTIMEDIA, GAME and ATTACK were two few to properly

classify and thus were omitted from the experiments and evaluations. One assumption of

this paper is that this set of dimensions will suffice since it has accurately identified flows

belonging to the other 7 classes using methods described by other researchers. Adapted

from [6], Table 2.2 shows the dimensions used to classify the data into their respective

traffic classes.

TABLE 2.2 19 Dimensions of a Flow

0
1
T

J

4
>
6
7
8
9
10
11
12
13
14
U
16
17
IS

ToTal-num-pk:
Ave-pkt-len
Pkts-seut
Seud-avelen
Seud-var
Recv-aveleu
Recv-va:
Var-recv-size
Duration
Protocol
Seud-porr
F-ecv-port
Pkts-rario
Bvte-ratio
Num-SYN
Nmu-RST
Num-FjS"
Window-size
Wmdow-va:

Toial number of packets in the flow
The average packer-:- size of a flow
The number of packets sen: for the flow
The average send packets size of a flow
The variance of send packers' -size
The average receive packets size of a flow
The variance of receive packed size
The variance of received packets' size
The durauon of the flow
The protocol (TCP or UDP)
The source port of a flow
The destination port of a flow
The number ratio of send aud receive packets
The bvte rario of send and receive packets
The number of SYN packers
The number of F£T packers (rsT)
The number of FIN packers (fin)
The average window size (window size)
The variance of window size

Li et al. further applied a "discriminator selection method" based on a modified

sequential forward selection algorithm to identify an even more optimized set of

dimensions that improved the classification accuracy of their SVM approach [6]. The

final sequence consists of 9 dimensions in decreasing order of significance and is listed

6

by their index values as {11, 13, 4, 8, 14, 7, 9, 1,6}. The selection method determined

that this set of dimensions yielded the highest rate of accuracy at 96.92%.

In this paper, additional modifications were made to this dimension set to better

fit the requirements and objectives of this thesis. Dimension 11 (destination port) was

omitted to avoid identification influenced by port-based methods and dimension 9

(protocol) was removed from consideration since the scope of this paper is restricted to

TCP-based flows. Finally, the assumption is made that both dimensions 6 (receive

packet size variance) and 7 (received packet size variance) refer to the same measurement

in that no distinction is made between the set of packets sent by the destination host and

the set of packets that were actually received by the source host. The final set consists of

6 dimensions {13, 4, 8, 14, 1, 6}. Although a decrease in accuracy is expected from

removing the dimensions discussed above, and although further study into the extent of

this accuracy degradation is not within the scope of this paper, it will be shown that this

dimension set is sufficient to aid in the general categorization and exploration of network

traffic.

7

3 Extracting Dimensions from Packet Traces

The core set of dimensions discussed in the previous section can be readily

extracted and/or derived from packet traces such as those stored in the standard PCAP

binary format. The decision was made that a laboratory-controlled set of simulated

traffic would be generated rather than using publicly available packet traces. This was

done to verify the results of this paper and establish proof-of-concept. Streams of flows

were generated using the Ixia IxLoad load-testing appliance [7]. This hardware was used

to generate Layer7 flows for various application protocols through a Layer2 switch. The

TCPDUMP utility [8] was run on a packet capture server that sniffed all the traffic that

entered the switch. Flows were generated for HTTP, FTP, SMTP and TELNET. This

mixture of traffic offers a variety of network behavior from quick transactional flows to

monolithic bulk file transfers, from randomized messaging communication to low-

bandwidth persistent transactional sessions.

After the flows were captured in a binary packet capture format, the TCPTRACE

utility was used to generate flow-level statistics for each session in the packet capture [9].

An example of the TCPTRACE output for a single flow is given in Table 3.1. The red-

highlighted statistics are organized into two columns, one for each direction of the flow.

This output was used to calculate the 6 key dimensions.

8

TABLE 3.1 Sample TCPTRACE Output

TCP connection 1:
host a:
host b:
complete conn:

first packet:
last packet:
elapsed time:
total packets:
filename:

a->b:
total packets:
ack pkts sent:
puce acks sent:
sack pkts sent:
dsack pkts sent

10.1
10.1
yes
Med
¥ed
0:00
44

.1.2:28366

.2.2:80

Jun 17 16:42:10
Jun 17 16:42:11
:01.016023

ixiacap

max sack blks/ack:
unique bytes sent:
actual data pkts:
actual data bytes:
rexmt data pkts
rexmt data bytes:
zwnd probe pkts
zund probe bytes:
outoforder pkts
pushed data pkts:
SYH/FIH pkts sent:
req 1323 ws/ts:
req sack:
sacks sent:
urgent data pkts:
urgent data bytes:
mss requested:
max seym size :
min seym size :
avg s e p size :

max win adv:
min win adv:
zero rain adv:
avg win adv:
initial window:
initial window:
ttl stream length:
missed data:
truncated data:
truncated packets:
data xmit time:
idletime max:
throughput:

18
17
15
0
0
0

194
1

194
0
0
0
0
0
1

1 / 1
N/Y

y
0
0
0

14 60
194
194
193

2896
1448

0
2815
194

1
194
0

192
1

0.000
1007.1

191

pkts
bytes
bytes
bytes
bytes
bytes
bytes
bytes
times
bytes
bytes
pkts
bytes
bytes
bytes
pkts
sees
ms
Bps

396696 2009
412719 2009

b->a:

total packets:
ack pkts sent:
pure acks sent:
sack pkts sent:
dsack pkts sent:
max sack blks/ack:
unique bytes sent:
actual data pkts:
actual data bytes:

rexmt data pkts:
rexmt data bytes:
zwnd probe pkts:
zwnd probe bytes:
outoforder pkts:
pushed data pkts:
SYH/FIH pkts sent:
req 1323 ws/ts:
req sack:
sacks sent:
urgent data pkts:
urgent data bytes:
mss requested:
max seym size:
min seym size:
avg seym size:

max win adv:
min win adv:
zero win adv:
avg win adv:
initial window:
initial window:
ttl stream length:
missed data:
truncated data:
truncated packets:
data xmit time:
idletime max:
throughput:

26
26
1
0
0
0

32939
23

32939
0
0
0
0
0
12

1/1
N/Y

Y
0
0
0

1460
1448
1083
1432
2896
2701

0
2709
2896

2
32939

0
32893

23
0.009
1006.5
32420

pkts
bytes
bytes
bytes
bytes
bytes

bytes
bytes
times
bytes
bytes
pkts
bytes
bytes
byte3
pkts
sees
ros
Bps

9

To explain how the dimensions were calculated, references will be made to the

relevant statistics in Table 3.1. Dimension 13 (byte ratio of send and receive packets)

was calculated from the "actual data bytes" count for both directions of the flow.

Dimension 4 (send packet size variance) is the statistical variance of the packet sizes sent

by the source. An approximation of this variance was calculated from three reference

packet sizes, the "max segm size", "min segm size" and "avg segm size" counts in the

first column. Dimension 8 (duration of flow) was calculated from the "elapsed time"

statistic which was converted to milliseconds for all flows. Dimension 14 (number of

SYN packets) is the total number of SYN packets seen in the flow in both directions.

This was extracted from the "SIN/FIN pkts sent" count in both directions. Dimension 1

(average packet size of flow) was calculated as a weighted mean by taking the product of

the "total packets" and "avg segm size" statistics in each direction, adding those values,

and then dividing by two. Finally, Dimension 6 (receive packet size variance) is the

statistical variance of the packet sizes sent by the destination. This calculation was the

same as Dimension 4 except that the operands are the segment size numbers from the

destination to the source found in the second column. All dimensions were min-max

normalized for each flow by dividing the dimension value by the range of values

recorded for that dimension in the data set. This normalization was done so that no single

dimension could over-influence the clustering. These normalized flow records were used

as input to the clustering algorithm described in the next section.

10

4 Clustering Algorithms

Clustering has been applied to many problems in data mining. Given a set of

objects, the objective of a clustering algorithm is to identify subsets or clusters of similar

objects. Finding the optimal number of clusters for a set of data points is considered an

NP-Hard problem. One genre of clustering techniques is known as Partitional clustering

and the following algorithms are taken from this category.

4.1 K-means and K-medoids

One of the most popular Partitional approximation algorithms for the clustering

problem is known as K-means [10]. Given a datasetXand a predetermined number of

clusters, k, each represented by a cluster "mean" or "center" point mi, K-means refines

the set of cluster groups and associates each data point to one of those clusters. It does

this by defining an objective function which includes a pair-wise similarity function such

as n-space Euclidean distance 0(). K-means optimizes the objective function between

every data point x to its associated cluster center (1).

k

K-means is an iterative algorithm that first reassigns the data points to the closest center

and then recalculates the cluster centers for each round. The new center of a cluster is the

mean value of the data points associated with that specific center. Alternatively, a data

point itself can be used as the center by simply using the data point closest to the

11

calculated mean center. The idea is that K-means eventually converges to a locally

optimal solution.

K-medoids [11] is closely related to K-means in that it is also a Partitional

algorithm that creates clusters by optimizing an objective function. However, K-medoids

selects cluster center points that are actual data points, also known as "exemplars".

Finding representative data points as centers is often called prototyping. The most

significant difference between K-means and K-medoids is that after each round of the

algorithm, K-medoids compares the cost of swapping a cluster center point with a

candidate data point to determine a possibly new center point rather than taking the

average of the data points as the new center. Andrews and Fox show that in the problem

domain of document clustering, K-medoids is more accurate than K-means in

determining document clusters [12].

One of the major downsides of both K-means and K-medoids is that the arbitrary

initialization of cluster centers can lead to poor clustering. Also, both techniques require

the user to provide the number of clusters to generate a priori and there is a potential that

unbalanced cluster sizes are formed due to the initial selection of cluster centers. As a

result, this research was focused on finding a clustering method that has the simplicity

and efficiency of K-means, the accuracy of K-medoids, and avoids the shortcomings

mentioned above.

12

4.2 Affinity Propagation

This leads to a relatively new unsupervised clustering algorithm called Affinity

Propagation (AP) developed by researchers Frey and Dueck at the University of Toronto

[13]. Instead of considering a single candidate exemplar at a time, characteristic of

classic K-mediods, Affinity Propagation simultaneously considers all data points as

possible exemplars by sending messages between data points to determine the degree of

exemplar suitability. The input parameters to AP is a data structure of similarity

measures between every two data points in the data set. The similarity value between any

two points is given by s(i,k) which measures how well-suited data point k is to be the

exemplar for data point i. Similarity calculations for this algorithm are based on negative

Euclidean distance. AP does not require the user to provide the number of target clusters

beforehand, instead the algorithm is configured with "preferences" where each data point

is given a self-similarity value s(k,k). This value is a weight that influences the algorithm

as to whether or not the data point becomes an exemplar at all. Bigger preference values

will result in a higher number of clusters while smaller values will yield a smaller

number. The assignment of preference values is a powerful "knob" in the calibration of

this algorithm. According to AP developers, the recommendation is to use a range of

values from the minimum, the median, to the maximum similarity measure as the

preference value depending on the desired number of clusters.

In the AP algorithm, each data point or "node" will take on the perspective of two

node types simultaneously, either a simple data point looking for its exemplar or a

potential exemplar looking to find its data points. Given the input similarities and

13

preferences to the algorithm, two message types are exchanged between the data points.

The first message is sent when a node is looking for its exemplar. It is called the

"responsibility" message which is sent from data point / to data point k (2).

r(j,k) <—- s(j,k) - .max {a(j,k) - s(i.k)} (2)
l. r. I L -L I.

J\ S . I . A ,• A

Equation 2 expresses how suitable data point k is to be the exemplar for data point / with

respect to other potential candidate exemplars. Responsibility considers the similarity

between the two points in the first term and subtracts the maximum similarity that point i

may have with any other data point A:' in the second term. a(i,k) is the second message

type and will be described shortly. Upon initialization though, a(i,k) = 0 for all data

points and is not part of the first round of "responsibility" calculations. If i-k, then r(k,k)

expresses a "self responsibility" which measures the value of A: as an exemplar itself.

This value is calculated from k's preference, s(k,k), which is an input parameter to the

algorithm minus the second term which expresses whether k is better suited to remain a

data point assigned to a different exemplar.

The second message is sent when a potential exemplar node is looking for its data

points. It is called the "availability" message which is sent from a data point k to data

point i (3).

aiij<) <- - mirK 0,r(A\ A-) • Y j max{(),r(7 ,£)}> ^

Equation 3 expresses how suitable data point k is to be an exemplar for data point i with

respect to how other data points view it as an exemplar. Availability considers the "self

14

responsibility" of the data point k in the first term and adds any positive feedback from

the other data points as to &'s suitability as an exemplar in the second term. lfi=k, then

a(k,k) expresses a "self availability" (4).

a{k\k) *- Y^ max{0,r(/',A-)} (4)

Equation 4 measures how effective data point k will be as an exemplar given the positive

feedback from other data points.

At each iteration of the algorithm, AP "sends" these two messages between each

pair of nodes and combines the values oia(i,k) + r(i,k) for each node i. This process

ultimately converges to a set of suitable exemplars by specifying a certain number of

maximum iterations or halting the process when the sum of the calculation above does

not change for a configurable number of rounds. At this point, for each /, the index of k

that corresponds to the maximum value ofa(i,k) + r(i,k) is either an exemplar ifk-i, or

otherwise identifies an exemplar k for a data point i.

15

4.3 Affinity Propagation Implementation

Source code for Affinity Propagation is not provided by the developers though

they do offer MATLAB functions that implement the algorithm along with

Windows/Linux C binaries [14]. They also provide an online Web interface to the

algorithm where users can upload data to be processed by AP. For this thesis, the

decision was made to integrate both the data mining aspect with the visualization

component and choose a single implementation platform. As a result, the AP algorithm

was coded using Java and the logic was applied to the flow records previously described

in Section 3.

The constructor to Class AffinityPropagation takes the parameters shown in Table

4.1. It also shows the main routine called iterateQ which first updates responsibilities,

then updates availabilities, and finally combines both responsibilities and availabilities.

The main FOR loop continues this process until either the maximum number of iterations

has been reached or the stop criteria, which determines change between the values at each

round, is met. Independent verification of the correctness of the AP Java implementation

was attained by comparing the results of the program with the online AP interface using

the example data sets provided.

16

TABLE 4.1 Affinity Propagation Code Summary

* Bpararn numPoints: initialise two-dimensional array

* Bparain nurnCandidates: initialize two-dimensional array

* 6sitn: two-dimensional matrix of similarity measures

* BmaxRounds: maximum number of iterations

* BstopCriterion: number of consecutive rounds with no change in cluster assignment

* BdampingFactor: number in range (0,1) to prevent oscillation of message values

AffinityPropagation(int numPoints, int nurnCandidates, BigDecimal[][] sim,

int maxRounds, int stopCriterion, double dampingFactor) (

public void iterated (

System.out.print In("Starting AP....");

for(int round = 1; ((round <= this.maxRounds) ii (this.stopCount <= this.stopCriterion)); round++) {

calculateResponsibilities();

System.out.println("\nFinished calculating Responsibilities for round " + round);

calculateAvailabilities();

System.out.println("Finished calculating Availabilities for round " + round);

combineCalculations();

System.out.println("Finished combining calculations for round " + round);

this.totalIterations++;

>

110 resolveReflections();

111 createReport |) ;

n:)

4.4 Clustering Network Flow Records Using Affinity Propagation

To show that AP properly clusters network flows, the algorithm was presented

with a set of 200 normalized records each consisting of the 6 key flow dimensions.

These records reflect a mixture of application protocols including HTTP, SMTP, FTP and

TELNET. The output of the algorithm is a summary section describing the algorithm

findings and a complete breakdown of cluster assignments. The latter is an array of size

17

200 with the value at each cell indicating the cluster to which the flow with the

corresponding array index belongs to. In Table 4.2, the output has been arranged in a

spreadsheet and color-coded to show the cluster assignments. The first number in the cell

is the flow record number and the second number is the cluster center which corresponds

to another flow record. This second number represents the data point that has been

identified as the best prototype/center for that cluster.

TABLE 4.2 AP Results for 200 Record Dataset

Numb er o
Netsimila.
Sum of po
Sum o f e »
Number o
1158
2|58
3158
4158
5|58
6158
7158
8|58

19158
10158
11|58
12158
13158
14|58
15|58
16158
17158
18|58
19158
20158

:Conn—
58

133
144

fidentifiec
rity:-12J0
Lnt-to-exei
smplar p n
f iteration.
21158
22158
23|58
24!58
251133
26J58
27)58
28158
291133
301133
311133
32I58
33158
34158
35|58
36I58
37158
38)58
39|58
40158

Sowce
10.1.1.6:28423
10.1.1,3:28498
10.

I clusters:
21999
nplar sim
sferences:
5:51

41158
42|58
43|58
44|133
451133
46|133
47|58
48|58
49I58
501133
51|133
521133
531133
541133
55|133
561133
571133
58|58
59|58
60I58

5

ilarity: -4 J
-7J950000

61158
62158
63|58
64158
65158
66158
67|58
68158
69158
70]133
71(133
72J133
73]133
741133
75J58
76J58
77I58
7*1174
791174
80)133

Destitution
10.1.2.8:80
10.1.2.11:25
10.1.1.2:28 509

ByteR

171999

811133
821174
83|133
841133
851133
861133
871133
88|58
89I58
90|58
91|58
92I58
93|58
94|58
95|58
96|58
97I58
98158
99|58
1001133

ilio
5.62E-09
4.42E-05

1.000 B0000G

1011133
1021133
1031133
104|133
1051174
10GI133
107|58
108158
109158
1101174
111|133
1121133
1131174
1141133
115|133
1161133
1171133
1181133
119|58
120158

Sen.IPklV.il
1.32E-06

0.886710421

121158
122158
123)58
124)58
125158
126158
127)58
128)58
129158
130158
1311133
1321133
1331133
1341133
1351133
1361174
1371174
1381133
139158
140)58

Dilution
0.013307711
0.396945857

141158
1421133
1431174
1441144
1451133
1461174
1471174
1481133
1491133
1501174
1511174
1521152
1531133
1541133
1551133
156158
157158
158|58
159|58
160158

SYN
1
1

i'H i N 'tit bui'i ' i i hitl I'HiiMi

Rec\

161158
162158
163158
164|58
165158
166158
1671133
168^58
1691133
1701133
1711133
1721133
1731133
1741174
1751144
176J58
177158
178J58
1791133
1801174

PktV.n
0.087865786

6.28E44
0

1811174
1821152
1831174
1841144
1851174
1861174
1871133
1881133
1891133
190|133
1911174
1921144
1931133
194J58
195|58
196158
197158
198|58
199|58
200158

AvtjPktSize
1.007132921
0.236830659

uwAim
174I10.1.1.238S38110.1.2.13:23 I 3J0E-O7J 3.$<i4>SI 0.0044510191 1j 8.78E4MI 0.008023621

18

http://Sen.IPklV.il

When AP was first run on the data set, the algorithm finished with 41 different

clusters for a dataset of 200 records. This ratio of clusters to records did not efficiently

summarize the flows. The program was subsequently tuned by choosing preference

values for the data points to be the smallest calculated similarity measure as

recommended by the developers of AP. Lower preference values result in a smaller

number of clusters. As a result, the recalibrated AP algorithm summarized the records

into 5 separate classes. Table 4.2 shows that AP identified clusters (58, 133 and 174) for

HTTP port 80, SMTP port 25 and Telnet port 23 respectively. In addition AP

distinguished the FTP data channel (cluster 144) apart from the control channel. Though

not shown, the FTP control channel was assigned to the TELNET group which makes

sense since both traffic types have similar persistent, low-bandwidth traffic

characteristics. Furthermore, AP created cluster 152 which groups flows initiated by an

SMTP server process back to a mail client. This was ideal behavior since this type of

traffic is inherently different from the rest of the SMTP flows in the dataset.

Frey and Dueck state that Affinity Propagation finds clusters with lower error

rates than other methods and that the running-time of AP is a fraction of that of other

techniques [13]. That being the case, it is evident that computing the responsibilities and

availabilities for an N-by-N similarity matrix is memory and CPU intensive for large N.

The developers claim that AP can cluster up to 23 K data points in a few hours using a

modern single-core computer. The AP implementation for this research could handle

10% of that load over the same time period. I attribute this performance degradation to a

couple factors. First, Java was used for speed of development and proof-of-concept

19

prototyping. Coding techniques that optimize performance for numerical vector

computations would give a faster running time. For example, Java objects

(multidimensional array of BigDecimal) were employed instead of C++ numerical

vectors (valarray), and the AP calculations operated on pair-wise objects instead of entire

vectors. The implementation also ran on a mid-range level laptop with limited resources

with respect to CPU and RAM. In addition, it is also possible that using the latest

compilers would generate more efficient Java byte-code that would rival the speed of

native machine code generated from languages such as C/C++.

Assuming we can attain the maximum performance from the given software and

hardware, the fact remains that most databases of network flows are exceedingly large,

hundreds of thousands if not millions of flows over the course of a day or week. Scaling

this solution for large input sizes would require modifications to the algorithm which

have been proposed by Frey and Dueck. For example, AP can be modified to operate on

a smaller subset of similarities. This can be done by randomly selecting pair-wise data

points that send messages at each iteration or omitting similarities altogether for selected

data point pairs beforehand. Andrews and Fox recommend a scalable hybrid K-means /

Affinity Propagation clustering solution that leverages bisecting K-means for top-level

clustering that creates balanced groups of data points and then applies AP to each group

for the final clustering [12]. Finally, application-specific sampling strategies can also be

applied to the original datasets. For example, network flows grouped by flow masks

could be treated as duplicate entries and omitted from processing [15]. This type of

compression can be applied at many levels at the cost of some precision and accuracy. In

20

this thesis, manageable data set sizes were used to prove out the AP clustering algorithm.

Performance enhancements are left as future work.

5 Information Visualization

After clustering large databases of flow records and exploring the clusters to

understand the nature of the different traffic classes on the network, visualization models

can be applied to give users a different perspective on the same dataset. For a Network

Operations Center (NOC) analyst, there is a need to access and make sense of vast

amounts of network log information. A network analyst is often presented with large

amounts of data from hundreds if not thousands of managed hosts and network elements

such as routers and firewalls describing the types of connections that have established

over the network. Fundamentally, a network analyst should be able to project data using

different techniques and to discern structure, patterns and achieve a higher-level of

understanding from the visual transformations. Furthermore, the analyst would have

controls to explore the data and the ability to modulate the resolution of the presented

information. Fundamentally though, the focus is on using the right visualization tools

and the right times. Agutter and Bermudez state "there is a need for tools that augment

human ability to draw insight from abundant or complex data, in order to make decisions:

faster, more accurately, with less cognitive effort, and with less training [16]."

21

5.1 Treemaps

One visualization model that makes efficient use of 2-dimensional display spaces

and has the ability to project large amounts of information is a Treemap. Treemaps were

invented by Ben Shneiderman [17] to project hierarchical data. Conventional tree layouts

depict both tree nodes and the edges between the nodes which make inefficient use of the

display space. Alternatively, Treemaps are space-filling structures that operate on

rectangles and embed child nodes within parent nodes so that the area of each rectangle

on the display is related to the size of the node itself. Treemaps have been used to

display many types of data from file system hierarchies where the size of the rectangle at

each level is the size of the directory on disk to sports statistics and stock-market data.

The layout of a Treemap is determined by recursively subdividing rectangles starting

from the "root" rectangle using one of many different layout algorithms.

The most basic layout algorithm is called Slice-and-Dice. The idea here is to

stack child rectangles either vertically or horizontally within a parent rectangle and then

alternate the arrangement at each subsequent level of the tree. This algorithm makes no

layout decisions based on the underlying data and has often produced skinny rectangles

with poor aspect ratios. Treemap developers followed with the Squarified layout

algorithm which creates more visually appealing rectangles with aspect ratios closer to 1.

One of the limitations with Squarified is that node order is still not considered when the

layout is computed. As a result, the Ordered Treemap algorithm was developed to

achieve balanced node shapes and at the same time preserve order. A variant of Ordered

Treemap will be discussed in detail shortly. Figure 5.1 shows how data would be

22

presented using three different Treemap layout algorithms. Shading is employed to show

order. Only Ordered Treemap maintains order from top-to-bottom and left-to-right.

Slice- nn d-Dice S qualified Ordered

Fig. 5.1. Classical treemap layouts.

Although shading is used as an indication of order in Fig. 5.1, typically, shading or

coloring of leaf nodes in a Treemap represents the magnitude of a measure of interest.

For example, a Treemap depicting the structure of a file system might use color intensity

to describe the number of file accesses over a specific time period.

Mansmann, Keim, North, Rexroad, and Sheleheda have extended the concept of

the Ordered Treemap and have devised an altogether new model to depict a geographic

map of the Internet [18]. Geographic visualization is a powerful method to project data.

The result is what is called a Hierarchical Network Map (HNMap) that attempts to

display IP prefixes as geo-entities positioned relative to each other. This concept portrays

IP prefixes as having an inherent hierarchical structure. They can be grouped according

to 4 levels of classification: Continent -> Country -> Autonomous System (AS) -> IP

Prefix. Each of these categories corresponds to different levels in the Treemap layout.

Similar to traditional Treemaps, the size of each node is directly proportional to the

number of leaf items for that branch. In an HNMap, the size of each node is based on the

23

number of IP prefixes. Depending on the measure of interest, such as number of flows or

number of packets, nodes will be assigned a color intensity based on the magnitude of the

measured feature.

One important objective of an HNMap is to preserve neighborhoods of similar

nodes. Therefore, the layout algorithm must define an ordering for each level. The first

two levels are Continent and Country. The attributes used to order these geo-entities

relative to one another are average latitude and longitude coordinates. Autonomous

System nodes are ordered according to the median IP address in the range of addresses

for that AS. The authors recognized that simple ordering based on AS numbers did not

yield any interesting patterns when data was projected via HNMap. IP prefixes are

ordered according to the median address as well. A summary is given in Table 5.1.

TABLE 5.1 HNMap Ordering

Level Ordering Data Dimensionality
Continent Average coordinate of each continent 2
Country Average coordinate of each country 2
AS Median IP address of contained prefixes 1
Prefix Median IP address 1

Traditional Treemaps use a single layout algorithm for all nodes, however, HNMap uses

different types of nodes and thus requires different layout methods for each type.

Mansmann et al. derived a geographic layout algorithm called HistoMap which is based

on the Ordered Treemap algorithm. HistoMap is used for the Continent and Country

levels. AS entities are rendered using a modified 1-Dimensional version of HistoMap.

Finally, IP prefixes are rendered by the popular Strip Treemap [19] layout algorithm.

24

Strip is a linear layout algorithm that divides the display area into strips or rows and

assigns nodes to each strip while at the same time optimizing the average aspect ratio of

the rectangles in the strip. This is a simple algorithm that terminates when all the nodes

have been processed.

5.2 The HistoMap Layout Algorithm

The logic of HistoMap is explained in [18]. To layout a collection of nodes or

elements, HistoMap selects a pivot from the list such as the middle element. The list is

split into two sections where elements on one side of the pivot are less than the pivot and

elements on the other side are greater than the pivot. The idea is that the display area into

which these elements are to be embedded can be split either vertically or horizontally.

For a vertical split, a pivot is selected and the elements are ordered based on latitude.

Elements smaller than or equal to the pivot latitude would be placed into the lower

rectangular area. Elements greater than the pivot latitude are placed into the upper

rectangular area. This is done since latitude values get increasingly smaller as you

descend from North to South. For a horizontal split, a pivot is selected and the elements

are ordered based on the longitude coordinate. Elements smaller than or equal to the

pivot longitude would be placed into the left rectangular area. Elements greater than the

pivot longitude are placed into the right rectangular area. This is done since longitude

values get increasingly bigger as you traverse from left to right. In the HistoMap

algorithm, both splits are calculated and the qualities of both are compared to determine

the better split. Quality is based on the average aspect ratio of the two constituent

25

rectangles for a given horizontal or vertical split. The aspect ratio of a split is given

below (5).

aspect ^ratio = —) ; — — - (M

N y mmiwjji;)

Nis the total number of rectangles in the split and i is the index over the rectangles. For

HistoMap, N is equal to 2. The HistoMap algorithm is called recursively for each

rectangle in a split until there is one element remaining at which time the rectangle is

placed in its final position in the display area.

This method works nicely for laying out Continent and Country nodes. These

entities assume positions on the display that distinguish geographic regions. A slight

modification is required for Autonomous Systems in that the same ordering data (median

IP address) is used for calculating both the vertical and horizontal splits. The result is AS

entities that are ordered within countries such that entities placed in the top left corner of

a rectangle have numerically smaller median IP prefixes than entities in the bottom right

of the rectangle.

5.3 HNMap Implementation

5.3.1 HNMap Backing Data

At the time of this research, no publicly available code or implementation was

found for HNMap. As a result, one product of this research is an implementation of

HNMap using the description of the algorithm in [18]. To engineer an HNMap

26

implementation, the backing data for the levels of the hierarchy were needed. The

appropriate data was acquired from many different resources. First, both continent and

country names and their associated ISO 3166-1 codes where obtained from the ISO

documentation. An excerpt of this data is given in Table 5.2.

TABLE 5.2 Excerpt of ISO 3166 Country Data

cc
AS
EU
EU
AF
OC
EU
AF
NA
AN
NA

A2
AF
AX
AL
DZ
AS
AD
AO
AI
AQ
AG

A3
AFG
ALA
ALB
DZA
ASH
AND
AGO
AIA
ATA
ATG

N
004
248
008
012
016
020
024
650
010
028

Name
Afghanistan, Islamic Republic of
Aland Islands
Albania, Republic of
Algeria, People's Democratic Republic of
American Samoa
Andorra, Principality of
Angola, Republic of
Anguilla
Antarctica (the territory South of 60 deg S)
Antigua and Barbuda

Next, each of the 5 regional registries publishes a record of the AS and IP prefix records

under their respective domains and includes the countries to which they are assigned.

The 5 registries are ARIN, RIPE, AFRINIC, APNIC and LACNIC and these databases

are available via FTP from:

ftp. arin. net/pub/stats/arin/delegated-arin-latest
ftp.ripe.net/ripe/stats/delegated-ripencc-latest
ftp.afrinic.net/pub/stats/afrinic/delegated-afrinic-latest
ftp.apnic.net/pub/stats/apnic/delegated-apnic-latest
ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-latest

To determine the AS name associated with an AS number, bulk queries were issued to

WHOIS servers. The result is a file with supplemental information about each AS in the

query. An excerpt of the file is shown in Table 5.3.

27

ftp://ftp.ripe.net/ripe/stats/delegated-ripencc-latest
ftp://ftp.afrinic.net/pub/stats/afrinic/delegated-afrinic-latest
ftp://ftp.apnic.net/pub/stats/apnic/delegated-apnic-latest
ftp://ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-latest

TABLE 5.3 Excerpt of WHOIS AS Query

AS
1
2
3
4
5

A2
US
US
US
US
US

Regis t ry
a r i n
a r i n
a r m
a r i n
a r i n

Date
2001-09-20
1991-01-10

1984-02-22
1984-02-02

Name
LVLT-1 - Level 3 Communications, Inc .
DCN-AS - Univers i ty of Delaware
HIT-GATEWAYS - Massachusetts I n s t i t u t e of Technology
ISI-AS - Univers i ty of Southern C a l i f o r n i a
SYMBOLICS - Symbolics, Inc .

Next, to determine the AS to which each IP prefix is assigned, a similar bulk query,

containing each IP prefix in the registry domain, was issued to WHOIS. The result is a

file with supplemental information about each prefix. An excerpt is given in Table 5.3.

TABLE 5.4 Excerpt of WHOIS IP Query

AS
7018

33631

71
1B89

714

First IP

12,0.0.0

13.0.0.0

15.0.0.0

16.0.0.0

17.0.0.0

IP Prefix

12.0.0.0/9

13.0.0.0/16

15.0.0.0/8

16.0.0.0/12

17.0.0.0/9

A2
US
US
US
US
US

Registry

arin

arin

arin

arin

arin

Date

1983-08-23

1986-04-25

1989-05-18

1990-04-16

AS Name

ATT-INTERNET4 - ATST ItforldNet Services

PARC-ASK - Palo Alto Research Center Incorporated

HP-INTEMT-AS Hetrlett-Packard Company

HP-EUR0PE-AS Hewlett-Packard Company

APPLE-EMC-BIEERING - Apple Computer, Inc.

Finally, the average latitude and longitude coordinates for each geographic entity were

obtained from Maxmind, Ltd [20]. All of this data was organized and stored in a

relational database. The necessary code was written to parse the data files and issue

update queries to a backend MySQL database. There are 8 tables, 2 for each level of the

hierarchy. Each level has its own table describing each of its nodes as well as a table

28

holding the sort or ordering criteria for those nodes. The database tables and their

associated fields are listed in Table 5.5.

TABLE 5.5 HNMap Database Tables

CREATE TABLE continent_table (
code VARCHAR(IO) PRIMARY KEY,
name VARCHAR(100),
latitude VARCHAR(10),
longitude VARCHAR(10)
) ;

CREATE TABLE oountry_table (
code VARCHAR(10) PRIMARY KEY,
code3 VARCHAR(10),
name VARCHAR(100) ,
pcode VARCHAR(10),
latitude VARCHAR(10) , |
longitude VARCHAR(10)

) ;

CREATE TABLE as table (
asnum VARCHAR(10) PRIMARY KEY,
registry VARCHAR(10),
name VARCHAR(100) ,
pcode VARCHAR(10),
process VARCHAR(2)

) ;

CREATE TABLE prefixtahle (
ipaddress VARCHAR(20) PRIMARY KEY,
registry VARCHAR(IO),
prefix VARCHAR(20),
asnum VARCHAR(10)
) ;

CREATE TABLE cont±nejit_sor t_ta»le (
code VARCHAR(10) PRIMARY KEY,
sort VARCHAR(50)
) ;

CREATE TABLE country_sort_table (
code VARCHAR(10) PRIMARY KEY,
sort VARCHAR(50)
) ;

CREATE TABLE as_sort_tal)le (
code VARCHAR(10) PRIMARY KEY,
sort VARCHAR(50)
) ;

29

5.3.2 HistoMap Logic

With all the data properly stored in a SQL database, coding of the HNMap

visualization began. The Java implementation of HNMap uses a 3rd party visualization

API called Prefuse [21]. Prefuse is a visualization framework for Java based on the Java

2D graphics library and provides the needed data structures for database tables and trees,

as well as facilitates the visual encoding and rendering of data.

To get the IP hierarchy into the program, a TreeML XML file of the hierarchy

was generated. TreeML is an XML format for representing the nodes and edges of a tree.

Prefuse has built-in support for TreeML and automatically converts well-formed TreeML

documents into Prefuse Tree data structures for Java. The first step was to query the

backend database system for all IP prefixes including the data relevant to its hierarchy.

The following SQL join query cross-references the 4 tables for continent, country, AS

and prefix and returns a "path" for each prefix in the system:

SELE C T c ont i n e n t t ab le .c o de,cont i n e n t t able.name,
country_table.code,country_table.name,
as_table.asnum, as_table.name,
prefixtable.ipaddress,prefix_table.prefix

FROM continent_table,country_table,as_table,prefix_table
WHERE continenttable.code=country_table.pcode AMD

country_table.code=as_table.pcode AHD
as_table.asnum=pre£ixtable.asnum

ORDER BY continent table.code,country table.code,as table.asnum

30

The number of prefixes in the system exceeds 60K. An excerpt of the output is presented

in Table 5.6 which shows a small number of prefixes in Africa.

TABLE 5.6 Excerpt of SQL Query Results for TreeML Data

I cc
I AF

| AF

I AF

| AF

| AF

| AF

Continent Name

Africa

Africa

Africa

Africa

Africa

Africa

A2

ZA

ZA
ZA
ZA

ZA
ZA

Country Name

South Africa

South Africa

South Africa

South Africa

South Africa

South Africa

AS

2018

2018

21739

22355

22355

22386

AS Name

TENET-1

TENET-1

TSOL

FR0GF00T

FR0GF00T

SAFB

IP Address

198.51.66.0

198.54.65.0

196.202.248.0

196.1.56.0

41.206.192.0

196.29.240.0

IP Prefix |

198.54.66.0/24 |

198.54.65.0/24 |

196.202.248.0/22 |

196.1.56.0/21 |

41.206.192.0/19 |

196.29.240.0/20 |

The result set of this query was converted into an XML file following the TreeML

format. A small excerpt of the beginning of such as file is shown in Table 5.7 which

shows the root node, "World", continent "Africa", country "Angola", autonomous system

"11259" and prefix "41.223.156.0/22."

31

TABLE 5.7 Excerpt of TreeML File

<?xml version="1.0" encoding="UTF-8" ?>
<t ree>
- <dGclarations>

o t t r i b u t e D e c l name="code" t ype="S t r i ng " / >
o t t r i b u t e D e c l name="name" t ype="S t r i ng " / >
•o t t r i bu teDec l name="sor t " t ype="S t r i ng " / >
<at t r ibuteDecl name="pa th " t ype="S t r (ng" / >

</declarat ions>
- <branch>

<at t r ibu te name="code" va lue="Wor ld" / >
<at t r ibu te name="name" va lue="Wor ld" / >
o t t r i b u t e name="sor t " va lue="N/A" / >
<at t r ibu te name="sor t " value="" / >

- <branch>
<at t r ibu te name="code" va lue - "AF" / >
<a t t r ibu te name="name" va lue="Af r ica" / >
o t t r i b u t e narne="sort" v a l u e = " 2 . 1 9 8 5 , 1 7 . 3 9 7 1 " / >
o t t r i b u t e name="pa th " va lue="Af r ica" / >

- <cbranch>
<a t t r ibu te name="cade" value="AGO" / >
<a t t r ibu te name="name" va lue="Ango la" / >
o t t r i b u t e narne="sort" v a l u e = " - 1 2 . 5 0 0 0 , 1 8 . 5 0 0 0 " / >
<a t t r ibu te narne="path" va lue="Af r ica - > A n g o l a " / >

- <branch>
<at t r ibu te name="code" va !ue="11259" / >
<a t t r ibu te name="name" value="ANGOLATELECOM" />
o t t r i b u t e name="sor t " v a l u e = " 4 1 . 2 2 3 . 1 5 8 . 0 " / >
o t t r i b u t e name="pa th " va lue="Af r ica - > A n g o l a - > A S 1 1 2 5 9 (ANGOLATELECOM)'1 / >

- <leaf>
<a t t r ibu te name="code" va l ue= "41 .223 .156 .0 " / >
o t t r i b u t e name="name" v a l u e = " 4 1 . 2 2 3 . 1 5 6 . 0 / 2 2 " />
o t t r i b u t e name="sor t " v a l u e = " 4 1 . 2 2 3 . 1 5 6 . 0 " / >
o t t r i b u t e natne="path" va lue="Af r ica - > A n g o l a - > A S 1 1 2 5 9 (ANGOLATELECOM) - > 4 1 . 2 2 3 . 1 5 6 . 0 / 2 2 " / >

</ leaf>
</branch>

After loading the HNMap data into the Prefuse built-in Tree data structure, the

implementation of HistoMap was engineered to operate on this data structure and the

rendering was achieved by leveraging the Prefuse visualization API. The code sample

below shows the process of splitting the elements in line 466, and making a recursive call

for each split in lines 475-476. The recursion ends when the size of the element list is 1

at which time the "else" segment is executed which draws the rectangle on the display.

32

TABLE 5.8 HistoMap Layout Routine

4 5 R - / * *

4 59 * Compute the HistoHap layout.

4 60 */

461- private void layoutHistoMap2D(ArrayList p, Rectangle2D r, boolean is2D) {

4 62

463 if (p.size () > 1) {

4 64

465 //Split the nodes vertically and horizontally, return best quality

466 ArrayList partitions = splitRect(p, r, is2D);

4 67

458 ArrayList plList = (ArrayList)partitions.get(0);

459 Rectangle2D plRec = (Rectangle2D)partitions.get(1);

4 70

47 1 ArrayList p2List = (ArrayList)partitions.get(2);

Rectangle2D p2Rec = (Rectangle2D)partitions.get(3);

174 //Recurse on each rectangle

layoutHistoMap2D(plList, plRec, is2D);

j layoutHistoHap2D(p2List, p2Rec, is2D);
? } else {

' //Layout node on the display

j Nodeltem node = (Nodeltem)p.get(0);

setXfnode, (Visuallteiti) node . getParent () , r.getX(J);

setY(node, (Visuallteiti) node . getParent () , r.getY(J);

i node.setBounds(r.getX(), r.getYf), r.getWidth() , r.getHeight());

33

5.3.3 HNMap Screenshots

Fig. 5.2 shows the first level of the HNMap, depicting Continent rectangles

outlined in yellow, their sizes based on number of IP addresses, and their positions on the

map. Six continents are shown including North America (NA), Europe (EU), Africa

(AF), Asia (AS), South America (SA), and Oceania (OC).

Fig. 5.2. HNMap continents.

34

Fig. 5.3 shows the first 2 levels of the map down to the constituent countries for

each continent. Again, the layout of both continents and countries depends on both their

ordering and the type of split made (horizontal or vertical). The left half of the figure

shows North America which is comprised of three countries, Canada, USA and Mexico,

stacked from North to South in that order. This implies that a vertical split was

calculated for that iteration of the algorithm. USA is highlighted in blue and the path to

this node is displayed in the lower right-hand corner as "North America -> United States

of America."

Fig. 5.3. HNMap countries.

35

Fig. 5.3 shows the top 3 levels of the map down to the individual autonomous

systems for each country. Easily noticeable and highlighted in blue is the biggest AS in

the United States. The path for that AS is shown in the lower right-hand corner as "North

America -» United States of America -» AS27064 (DNIC-ASBLK-27032-27159 - D)."

Fig. 5.4. HNMap autonomous systems.

36

Fig. 5.5 shows the IP prefixes for AS 22047 in the country of Chile. Prefixes are

ordered linearly and laid out in rows or strips. The highlighted node is prefix

"200.86.32.0." Although it is difficult to make out in the figure below, the path in the

lower right hand corner is "South America -> Chile -» AS22047 (VTR BANDA

ANCHA S.A.) -> 200.86.32.0/20."

Fig. 5.5. HNMap prefixes.

37

5.4 HNMap Projection

After traffic records have been clustered and investigated, the flows can be

projected onto an HNMap with respect to a measure of interest to get a better

understanding of the distribution of the behavior. For example, a cluster identified as

potential Distributed Denial of Service (DDoS) traffic can be visualized by coloring the

HNMap prefix nodes based on the number of outgoing flows found in the cluster. In

addition, animating HNMap or taking snapshots of HNMap over time allows the user to

observe sharp increases in flow counts over the time period. This provides additional

confirmation of the DDoS behavior. Furthermore, the mapping of these data will identify

the origins of the BotNet perpetrating the malicious behavior such as the infected prefixes

and autonomous systems. This information can be used by service providers to deploy

measures at network access points to mitigate and possibly thwart the attack. Fig. 5.6

shows such a scenario of a simulated DDoS attack centered in Asia, specifically from the

countries of China, Korea and Japan. Three chronological snapshots are taken showing

the increase in intensity of the cluster behavior. Prefix nodes are colored according to the

magnitude of originating flows in increasing severity from blue, white, pink, and red

depending on the intensity of the measure. In publications that do not support color, the

three images shown are in increasing order of intensity from top to bottom.

38

1 • • "

* ^ ~ _:'•_ •

KOR JPN AUS
• • • ™^^^^^ ™ • • • • M

™"™i^™ _ • M H M a B i ^ H ^ ^ ^ ^ M ^ ^ ^ ^ M l ^ ^ ^ ^ ^ ^ H

1 B^B ^ ^ ™
^ _ • • • 1 1 B M ^ ^ ^ fW

• A U •'•: T J W " • • : _m m ; - — — _ :

Fig. 5.6. DDoS cluster projection.

39

Conclusion

Both data mining and information visualization are beneficial to identifying

structure and extracting meaning from databases of information. Progress is continual in

each discipline, and this research focused on new developments in the areas of clustering

and Treemap layout algorithms when applied to the problem of network traffic

classification. Clustering algorithms will improve in their accuracy, runtime and

scalability, while visualization models can be adapted to project application-specific

structure in innovative ways. Taken separately, however, neither approach alone will

offer the full range of analysis discussed in this paper. While clustering provides general

groupings of network flows based on abstract numerical dimensions, HNMap allows the

user to visualize these structures in an application-specific context. Conversely, HNMap

provides a visual encoding for network communication attributes; however, only the

accurate grouping of network flows provides a context in which to understand and

explore the projection. It is clear that both data mining and information visualization

should be used together as investigative tools for network traffic analysis.

40

References

[I] A. McGregor and M. Hall and P. Lorier and J. Brunskill, "Flow Clustering Using \
Machine Learning Techniques," Passive and Active Network Measurement, vol.
3015, no. 5, pp. 205-214, April 2004.

[2] J. Erman and M. Arlitt and A. Mahanti, "Traffic Classification Using Clustering
Algorithms," Proc. SIGCOMM Workshop on Mining Nework Data, pp. 281-186,
Sept 2006.

[3] D. Hand and H. Mannila and P. Smyth, Principles of Data Mining, Cambridge, MA:
The Massachusetts Institute of Technology, 2001.

[4] S. Petrik and V. Skala. (2009, April 16). Introduction to Information Visualization
Supplementary Material [Online]. Available:
http://herakles.zcu.cz/seminars/docs%5Cinfovis%5Cinfovis.pdf

[5] A. W. Moore and D. Zuev, "Discriminators for Use in Flow-based Classification,"
Department of Computer Science, Queen Mary, University of London, Technical
Report RR-05-13, 2005.

[6] Z. Li and R. Yuan and X. Guan, "Accurate Classification of the Internet Traffic
Based on the SVM Method," ICC, pp. 1373-1378, June 2007.

[7] Ixia Technical Writers. (2009). Ixia IxLoad 4.0 EA SP1 User Guide [Online].
Available: http://www.ixiacom.com

[8] Tcpdump software. (2009). Tcpdump/Libpcap (Version 4.0.0) [Online]. Available:
http://www.tcpdump.org/

[9] R. Bejtlich, The Tao of Network Security Monitoring, Boston, MA: Addison-Wesley,
2005.

[10] N. Alldrin and A. Smith and D. Turnbull. (2003). Clustering with EM and K-Means
[Online]. Available: http://cseweb.ucsd.edu/~atsmith/projectl_253.pdf

[II] A. Reynolds and G. Richards and V. Rayward-Smith, "The Application of K-
medoids and PAM to the Clustering of Rules," Lecture Notes in Computer Science,
vol. 3177, pp. 173-178, Oct 2004.

41

http://herakles.zcu.cz/seminars/docs%5Cinfovis%5Cinfovis.pdf
http://www.ixiacom.com
http://www.tcpdump.org/
http://cseweb.ucsd.edu/~atsmith/projectl_253.pdf

[12] N. Andrews and E. Fox, "Clustering for Data Reduction: A Divide and Conquer
Aproach," Computer Science, Virginia Tech, Technical Report TR-07-36, 2007.

[13] B. Frey and D. Dueck, "Clustering By Passing Messages Between Data Point,"
Science, vol. 315, pp. 972-976, Feb 2007. Available:
http://www.psi.toronto.edu/affinitypropagation/FreyDueckScience07.pdf

[14] Affinity Propagation Software. (2009). Affinity Propagation [Online]. Available:
http ://www.psi.toronto. edu/affinitypropagation/

[15] F. Dressier and G. Munz, "Flexible Flow Aggregation for Adaptive Network
Monitoring," Proc. 2006 31st IEEE Conference on Volume, pp. 702-709, 2006.

[16] J. Agutter and J. Bermudez, "Information visualization design: The growing
Challenges of a data saturated world," AIA Report on University Research,
pp. 61-75,2005.

[17] B. Shneiderman. (2008, June 18). Treemaps for space-constrained visualization of
hierarchies [Online]. Available: http://www.cs.umd.edu/hcil/treemap-history/

[18] F. Mansmann and D.A. Keim and S.C North and B. Rexroad and D. Sheleheda,
"Visual Analysis of Network Traffic for Resource Planning, Interactive Monitoring,
And Interpretation of Security Threats," IEEE Trans. On Visualization and
Computer Graphics, pp. 1105-1112, 2007.

[19] B. Bederson and B. Shneiderman and M. Wattenberg, "Ordered and Quantum
Treemaps: Making Effective Use of 2D Space to Display Hierarchies, " ATM Trans.
On Graphics, pp. 833-854, 2002.

[20] Maxmind, Ltd. (2009). Average Latitude and Longitude for Countries [Online].
Available: http://www.maxmind.com/app/country_latlon

[21] Prefuse Information Visualization Toolkit. (2007). Prefuse Beta Release (Version
2007.10.21) [Online]. Available: http://prefuse.org/

42

http://www.psi.toronto.edu/affinitypropagation/FreyDueckScience07.pdf
http://www.psi.toronto
http://www.cs.umd.edu/hcil/treemap-history/
http://www.maxmind.com/app/country_latlon
http://prefuse.org/

	San Jose State University
	SJSU ScholarWorks
	2009

	Network traffic clustering and geographic visualization
	Ali Hushyar
	Recommended Citation

	ProQuest Dissertations

