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ABSTRACT 

NETWORK TRAFFIC CLUSTERING AND GEOGRAPHIC VISUALIZATION 

by Ali Hushyar 

The exploration and analysis of large databases of information are an ever-

challenging task as digital data acquisition continues to progress. The discipline of data 

mining has often been employed to extract structure and patterns from the underlying 

dataset. In addition, new research in the field of information visualization is being 

applied to the same challenge. Visual models engage the invaluable pattern processing 

abilities of the human brain which leads to new areas of insight otherwise undetected. 

This research applies the benefits of both data mining and information visualization to the 

specific problem of traffic analysis on computer networks. This is an important issue as 

it relates to the ability to understand diverse behavior on the network and provide many 

fundamental services. For example, distinct traffic classifications and associated traffic 

volumes facilitate capacity-planning initiatives. Furthermore, accurate categorization of 

network traffic can be leveraged by quality of service offerings and, at the same time, 

lend itself to efficient security analysis. In this research, an example of a data processing 

pipeline is described that incorporates both data mining and visualization techniques to 

cluster network flows and project the traffic records on a geographic display. 
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1 Introduction 

The fast and efficient categorization of network communication can help analysts 

isolate classes of traffic on the network for further investigation. One traditional traffic 

classification technique is a fixed identification method based on transport-layer fields 

such as well-known port and protocol numbers. The problem here is that many processes 

such as Peer-to-Peer (P2P) applications use dynamically negotiated port numbers. Others 

may not run on well-known port numbers at all such as the practice of running HTTP 

proxies and rogue mail-relay servers on higher-order ports. More importantly, there are 

often nested categories of traffic within a traffic class. McGregor, Hall, Lorier, and 

Brunskill describe subclasses of traffic within HTTP depending on the underlying 

purpose, for example transactional communication, bulk data transfers and tunneled 

applications [1]. Furthermore, various traffic streams utilizing different port numbers can 

exhibit the same type of behavior and in fact be operating in the same capacity such as a 

large file transfers using HTTP or FTP. 

Other methods include signature-based classification techniques applied to the 

packet payload. More and more network applications are rendering this method difficult 

if not obsolete. Traffic on the wire can be encrypted and employ other masquerading and 

obfuscation techniques such as fragmentation to make fingerprinting difficult [2]. In 

addition, signature-based detection methods can only identify those traffic types for 

which there are signatures available. 
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To get around these obstacles, one proposal is to characterize network traffic 

based on features of the transport-layer statistics irrespective of port-based identification 

or payload content. The idea here is that different applications on the network will 

exhibit different patterns of behavior which is manifested in the transport-layer statistics. 

For example, distinguishing between file transfers generated by P2P and FTP processes 

can be done because P2P connection behavior is typically long-lived and data is 

bidirectional while FTP is relatively short-lived and data transfers are unidirectional. 

There have been many clustering algorithms applied to various domains [3]. However, 

this paper will discuss a relatively new unsupervised clustering technique which at the 

time of this writing is not known to have been used to address network traffic analysis. 

This algorithm will be applied to recorded traffic statistics to provide class structure to 

the data. 

To enhance the analysis process, multi-dimensional data sets will be visually 

projected to expose hidden areas of interest and offer further insight. Many visualization 

techniques have been developed from 1-Dimensional to N-Dimensional models, and 

graph and tree based views. Petrik and Skala offer a succinct history of information 

visualization [4]. This paper will take an in-depth look into an existing 2D Treemap 

model based on an innovative layout algorithm. Treemaps are visualization structures 

that allow for the projection of large amounts of hierarchical information on a traditional 

2D display. This particular Treemap is a projection tool that provides application-

specific context to the mined dataset. It is essentially a geographic model of the Internet 

where IP addresses are organized according to their administrative domain. To illustrate 
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the power of visualization, IP addresses that engage in communication on the network are 

visually encoded based on a measure of interest such as number of outgoing connections 

or number of bytes transferred. This visual encoding is presented on a geographic 

display that highlights scope and evolution of behavior over time. This paper shows that 

the combination of clustering and visualization reveals a value-added process of analysis 

that provides additional insight into the underlying data. It was revealed through personal 

correspondence with the developers of this geographic Treemap that this tool has not 

been fully developed nor is it publicly available. As a result, part of this research 

includes the implementation of the visualization based on the description of the Treemap 

algorithm. 

The rest of this paper is organized into 4 sections. Section 2 and 3 describe the 

specific statistics used in the characterization of network traffic and explain how the 

statistics where extracted from packet header traces. Section 4 describes the reasoning 

behind choosing a new clustering method and the results of the clustering on a sample 

dataset. Section 5 introduces the geographic Treemap visualization tool, its 

implementation, and how it is used to project clustered datasets and glean additional 

knowledge. Screenshots of the Treemap implementation are provided for reference. 
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2 Determining Dimensions of Network Traffic 

To begin, a flow is defined as a channel of communication between two parties on 

a network. For the purposes of this paper, a flow will be further qualified as a bi­

directional communication channel between two endpoints. Flows are uniquely 

identified by a 5-tuple of fields taken from the TCP/IP headers of the packets. The 5-

tuple and its constituent fields are: 

(source-address, source-port, destination-address, destination-port, protocol). 

In addition to these flow fields, other flow features or dimensions are used to 

characterize the behavior of a flow. These dimensions are extracted or derived from 

packet traces. Packet traces usually contain some or all of the packet content for each 

flow on the wire from which it was collected. Each flow in the trace has been generated 

by a network process such as a web client or mail client that has engaged a server for a 

specific transaction. These dimensions are measurements that can describe an aspect of 

the flow in its entirety or an attribute of the flow in a particular direction. In [5], the 

authors have identified 249 distinct flow dimensions. These dimensions cover basic 

statistics such as packet lengths and TCP flag counts to more involved measurements 

such as variance of packet sizes and flow "modes", the time a flow spends in idle, 

interactive and bulk transmission states. The objective of characterizing network flows is 

to find a set of dimensions that are most effective in differentiating and classifying 

4 



different types of flows. In this paper, successful classification does not imply a fixed 

taxonomy but rather a subjective grouping relative to other flows in the dataset. 

With so many possible dimensions of traffic, it is expected that some dimensions 

would contribute more than others to the successful classification of a flow and it is 

possible that some dimensions actually hinder the classification process. As a result, a 

great deal of research has been conducted to identify a core set of dimensions that are 

most effective in classifying network traffic. This is even more significant in that many 

data mining programs including clustering algorithms scale poorly with high-dimensional 

data sets. Li, Yuan, and Guan identified 19 dimensions of traffic and used the supervised 

machine-learning Support Vector Machine (SVM) model to classify network traffic into 

known classes [6]. Table 2.1 shows a high-level taxonomy of traffic classes and 

examples of applications that would be categorized into those classes. 

TABLE 2.1 Traffic Classes and Applications 

Clas-; 
BULK 

INTERACTIVE 
MAIL 

SERVICE 
WWW 

P2P 
MULTIMEDIA 

GAME 
ATTACK 
OTHERS 

Representative Applications 
ftp 

«li. reinet. rloziu 
pop3. c-mtp. imap 

XI1. due 
hrtp. ktp> 

Kn zaa. B i: torrent. Gnutel If. 
voice, video streaming 

Half-life 
worm, virus 

tcan. oetbios. orp. tip 
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One caveat in the experiments described in [6] is that the number of available 

flows in the categories MULTIMEDIA, GAME and ATTACK were two few to properly 

classify and thus were omitted from the experiments and evaluations. One assumption of 

this paper is that this set of dimensions will suffice since it has accurately identified flows 

belonging to the other 7 classes using methods described by other researchers. Adapted 

from [6], Table 2.2 shows the dimensions used to classify the data into their respective 

traffic classes. 

TABLE 2.2 19 Dimensions of a Flow 

0 
1 
T 

J 

4 
> 
6 
7 
8 
9 
10 
11 
12 
13 
14 
U 
16 
17 
IS 

ToTal-num-pk: 
Ave-pkt-len 
Pkts-seut 
Seud-avelen 
Seud-var 
Recv-aveleu 
Recv-va: 
Var-recv-size 
Duration 
Protocol 
Seud-porr 
F-ecv-port 
Pkts-rario 
Bvte-ratio 
Num-SYN 
Nmu-RST 
Num-FjS" 
Window-size 
Wmdow-va: 

Toial number of packets in the flow 
The average packer-:- size of a flow 
The number of packets sen: for the flow 
The average send packets size of a flow 
The variance of send packers' -size 
The average receive packets size of a flow 
The variance of receive packed size 
The variance of received packets' size 
The durauon of the flow 
The protocol (TCP or UDP) 
The source port of a flow 
The destination port of a flow 
The number ratio of send aud receive packets 
The bvte rario of send and receive packets 
The number of SYN packers 
The number of F£T packers (rsT) 
The number of FIN packers (fin) 
The average window size (window size) 
The variance of window size 

Li et al. further applied a "discriminator selection method" based on a modified 

sequential forward selection algorithm to identify an even more optimized set of 

dimensions that improved the classification accuracy of their SVM approach [6]. The 

final sequence consists of 9 dimensions in decreasing order of significance and is listed 
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by their index values as {11, 13, 4, 8, 14, 7, 9, 1,6}. The selection method determined 

that this set of dimensions yielded the highest rate of accuracy at 96.92%. 

In this paper, additional modifications were made to this dimension set to better 

fit the requirements and objectives of this thesis. Dimension 11 (destination port) was 

omitted to avoid identification influenced by port-based methods and dimension 9 

(protocol) was removed from consideration since the scope of this paper is restricted to 

TCP-based flows. Finally, the assumption is made that both dimensions 6 (receive 

packet size variance) and 7 (received packet size variance) refer to the same measurement 

in that no distinction is made between the set of packets sent by the destination host and 

the set of packets that were actually received by the source host. The final set consists of 

6 dimensions {13, 4, 8, 14, 1, 6}. Although a decrease in accuracy is expected from 

removing the dimensions discussed above, and although further study into the extent of 

this accuracy degradation is not within the scope of this paper, it will be shown that this 

dimension set is sufficient to aid in the general categorization and exploration of network 

traffic. 
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3 Extracting Dimensions from Packet Traces 

The core set of dimensions discussed in the previous section can be readily 

extracted and/or derived from packet traces such as those stored in the standard PCAP 

binary format. The decision was made that a laboratory-controlled set of simulated 

traffic would be generated rather than using publicly available packet traces. This was 

done to verify the results of this paper and establish proof-of-concept. Streams of flows 

were generated using the Ixia IxLoad load-testing appliance [7]. This hardware was used 

to generate Layer7 flows for various application protocols through a Layer2 switch. The 

TCPDUMP utility [8] was run on a packet capture server that sniffed all the traffic that 

entered the switch. Flows were generated for HTTP, FTP, SMTP and TELNET. This 

mixture of traffic offers a variety of network behavior from quick transactional flows to 

monolithic bulk file transfers, from randomized messaging communication to low-

bandwidth persistent transactional sessions. 

After the flows were captured in a binary packet capture format, the TCPTRACE 

utility was used to generate flow-level statistics for each session in the packet capture [9]. 

An example of the TCPTRACE output for a single flow is given in Table 3.1. The red-

highlighted statistics are organized into two columns, one for each direction of the flow. 

This output was used to calculate the 6 key dimensions. 
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TABLE 3.1 Sample TCPTRACE Output 

TCP connection 1: 
host a: 
host b: 
complete conn: 

first packet: 
last packet: 
elapsed time: 
total packets: 
filename: 

a->b: 
total packets: 
ack pkts sent: 
puce acks sent: 
sack pkts sent: 
dsack pkts sent 

10.1 
10.1 
yes 
Med 
¥ed 
0:00 
44 

.1.2:28366 

.2.2:80 

Jun 17 16:42:10 
Jun 17 16:42:11 
:01.016023 

ixiacap 

max sack blks/ack: 
unique bytes sent: 
actual data pkts: 
actual data bytes: 
rexmt data pkts 
rexmt data bytes: 
zwnd probe pkts 
zund probe bytes: 
outoforder pkts 
pushed data pkts: 
SYH/FIH pkts sent: 
req 1323 ws/ts: 
req sack: 
sacks sent: 
urgent data pkts: 
urgent data bytes: 
mss requested: 
max seym size : 
min seym size : 
avg s e p size : 

max win adv: 
min win adv: 
zero rain adv: 
avg win adv: 
initial window: 
initial window: 
ttl stream length: 
missed data: 
truncated data: 
truncated packets: 
data xmit time: 
idletime max: 
throughput: 

18 
17 
15 
0 
0 
0 

194 
1 

194 
0 
0 
0 
0 
0 
1 

1 / 1 
N/Y 

y 
0 
0 
0 

14 60 
194 
194 
193 

2896 
1448 

0 
2815 
194 

1 
194 
0 

192 
1 

0.000 
1007.1 

191 

pkts 
bytes 
bytes 
bytes 
bytes 
bytes 
bytes 
bytes 
times 
bytes 
bytes 
pkts 
bytes 
bytes 
bytes 
pkts 
sees 
ms 
Bps 

396696 2009 
412719 2009 

b->a: 

total packets: 
ack pkts sent: 
pure acks sent: 
sack pkts sent: 
dsack pkts sent: 
max sack blks/ack: 
unique bytes sent: 
actual data pkts: 
actual data bytes: 

rexmt data pkts: 
rexmt data bytes: 
zwnd probe pkts: 
zwnd probe bytes: 
outoforder pkts: 
pushed data pkts: 
SYH/FIH pkts sent: 
req 1323 ws/ts: 
req sack: 
sacks sent: 
urgent data pkts: 
urgent data bytes: 
mss requested: 
max seym size: 
min seym size: 
avg seym size: 

max win adv: 
min win adv: 
zero win adv: 
avg win adv: 
initial window: 
initial window: 
ttl stream length: 
missed data: 
truncated data: 
truncated packets: 
data xmit time: 
idletime max: 
throughput: 

26 
26 
1 
0 
0 
0 

32939 
23 

32939 
0 
0 
0 
0 
0 
12 

1/1 
N/Y 

Y 
0 
0 
0 

1460 
1448 
1083 
1432 
2896 
2701 

0 
2709 
2896 

2 
32939 

0 
32893 

23 
0.009 
1006.5 
32420 

pkts 
bytes 
bytes 
bytes 
bytes 
bytes 

bytes 
bytes 
times 
bytes 
bytes 
pkts 
bytes 
bytes 
byte3 
pkts 
sees 
ros 
Bps 
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To explain how the dimensions were calculated, references will be made to the 

relevant statistics in Table 3.1. Dimension 13 (byte ratio of send and receive packets) 

was calculated from the "actual data bytes" count for both directions of the flow. 

Dimension 4 (send packet size variance) is the statistical variance of the packet sizes sent 

by the source. An approximation of this variance was calculated from three reference 

packet sizes, the "max segm size", "min segm size" and "avg segm size" counts in the 

first column. Dimension 8 (duration of flow) was calculated from the "elapsed time" 

statistic which was converted to milliseconds for all flows. Dimension 14 (number of 

SYN packets) is the total number of SYN packets seen in the flow in both directions. 

This was extracted from the "SIN/FIN pkts sent" count in both directions. Dimension 1 

(average packet size of flow) was calculated as a weighted mean by taking the product of 

the "total packets" and "avg segm size" statistics in each direction, adding those values, 

and then dividing by two. Finally, Dimension 6 (receive packet size variance) is the 

statistical variance of the packet sizes sent by the destination. This calculation was the 

same as Dimension 4 except that the operands are the segment size numbers from the 

destination to the source found in the second column. All dimensions were min-max 

normalized for each flow by dividing the dimension value by the range of values 

recorded for that dimension in the data set. This normalization was done so that no single 

dimension could over-influence the clustering. These normalized flow records were used 

as input to the clustering algorithm described in the next section. 
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4 Clustering Algorithms 

Clustering has been applied to many problems in data mining. Given a set of 

objects, the objective of a clustering algorithm is to identify subsets or clusters of similar 

objects. Finding the optimal number of clusters for a set of data points is considered an 

NP-Hard problem. One genre of clustering techniques is known as Partitional clustering 

and the following algorithms are taken from this category. 

4.1 K-means and K-medoids 

One of the most popular Partitional approximation algorithms for the clustering 

problem is known as K-means [10]. Given a datasetXand a predetermined number of 

clusters, k, each represented by a cluster "mean" or "center" point mi, K-means refines 

the set of cluster groups and associates each data point to one of those clusters. It does 

this by defining an objective function which includes a pair-wise similarity function such 

as n-space Euclidean distance 0(). K-means optimizes the objective function between 

every data point x to its associated cluster center (1). 

k 

K-means is an iterative algorithm that first reassigns the data points to the closest center 

and then recalculates the cluster centers for each round. The new center of a cluster is the 

mean value of the data points associated with that specific center. Alternatively, a data 

point itself can be used as the center by simply using the data point closest to the 
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calculated mean center. The idea is that K-means eventually converges to a locally 

optimal solution. 

K-medoids [11] is closely related to K-means in that it is also a Partitional 

algorithm that creates clusters by optimizing an objective function. However, K-medoids 

selects cluster center points that are actual data points, also known as "exemplars". 

Finding representative data points as centers is often called prototyping. The most 

significant difference between K-means and K-medoids is that after each round of the 

algorithm, K-medoids compares the cost of swapping a cluster center point with a 

candidate data point to determine a possibly new center point rather than taking the 

average of the data points as the new center. Andrews and Fox show that in the problem 

domain of document clustering, K-medoids is more accurate than K-means in 

determining document clusters [12]. 

One of the major downsides of both K-means and K-medoids is that the arbitrary 

initialization of cluster centers can lead to poor clustering. Also, both techniques require 

the user to provide the number of clusters to generate a priori and there is a potential that 

unbalanced cluster sizes are formed due to the initial selection of cluster centers. As a 

result, this research was focused on finding a clustering method that has the simplicity 

and efficiency of K-means, the accuracy of K-medoids, and avoids the shortcomings 

mentioned above. 
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4.2 Affinity Propagation 

This leads to a relatively new unsupervised clustering algorithm called Affinity 

Propagation (AP) developed by researchers Frey and Dueck at the University of Toronto 

[13]. Instead of considering a single candidate exemplar at a time, characteristic of 

classic K-mediods, Affinity Propagation simultaneously considers all data points as 

possible exemplars by sending messages between data points to determine the degree of 

exemplar suitability. The input parameters to AP is a data structure of similarity 

measures between every two data points in the data set. The similarity value between any 

two points is given by s(i,k) which measures how well-suited data point k is to be the 

exemplar for data point i. Similarity calculations for this algorithm are based on negative 

Euclidean distance. AP does not require the user to provide the number of target clusters 

beforehand, instead the algorithm is configured with "preferences" where each data point 

is given a self-similarity value s(k,k). This value is a weight that influences the algorithm 

as to whether or not the data point becomes an exemplar at all. Bigger preference values 

will result in a higher number of clusters while smaller values will yield a smaller 

number. The assignment of preference values is a powerful "knob" in the calibration of 

this algorithm. According to AP developers, the recommendation is to use a range of 

values from the minimum, the median, to the maximum similarity measure as the 

preference value depending on the desired number of clusters. 

In the AP algorithm, each data point or "node" will take on the perspective of two 

node types simultaneously, either a simple data point looking for its exemplar or a 

potential exemplar looking to find its data points. Given the input similarities and 
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preferences to the algorithm, two message types are exchanged between the data points. 

The first message is sent when a node is looking for its exemplar. It is called the 

"responsibility" message which is sent from data point / to data point k (2). 

r(j,k) <—- s(j,k) - .max {a(j,k ) - s(i.k)} (2) 
l. r. I L -L I. 

J\ S . I . A ,• A 

Equation 2 expresses how suitable data point k is to be the exemplar for data point / with 

respect to other potential candidate exemplars. Responsibility considers the similarity 

between the two points in the first term and subtracts the maximum similarity that point i 

may have with any other data point A:' in the second term. a(i,k) is the second message 

type and will be described shortly. Upon initialization though, a(i,k) = 0 for all data 

points and is not part of the first round of "responsibility" calculations. If i-k, then r(k,k) 

expresses a "self responsibility" which measures the value of A: as an exemplar itself. 

This value is calculated from k's preference, s(k,k), which is an input parameter to the 

algorithm minus the second term which expresses whether k is better suited to remain a 

data point assigned to a different exemplar. 

The second message is sent when a potential exemplar node is looking for its data 

points. It is called the "availability" message which is sent from a data point k to data 

point i (3). 

aiij<) <- - mirK 0,r(A\ A-) • Y j max{(),r(7 ,£)}> ^ 

Equation 3 expresses how suitable data point k is to be an exemplar for data point i with 

respect to how other data points view it as an exemplar. Availability considers the "self 
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responsibility" of the data point k in the first term and adds any positive feedback from 

the other data points as to &'s suitability as an exemplar in the second term. lfi=k, then 

a(k,k) expresses a "self availability" (4). 

a{k\k) *- Y^ max{0,r(/',A-)} (4) 

Equation 4 measures how effective data point k will be as an exemplar given the positive 

feedback from other data points. 

At each iteration of the algorithm, AP "sends" these two messages between each 

pair of nodes and combines the values oia(i,k) + r(i,k) for each node i. This process 

ultimately converges to a set of suitable exemplars by specifying a certain number of 

maximum iterations or halting the process when the sum of the calculation above does 

not change for a configurable number of rounds. At this point, for each /, the index of k 

that corresponds to the maximum value ofa(i,k) + r(i,k) is either an exemplar ifk-i, or 

otherwise identifies an exemplar k for a data point i. 

15 



4.3 Affinity Propagation Implementation 

Source code for Affinity Propagation is not provided by the developers though 

they do offer MATLAB functions that implement the algorithm along with 

Windows/Linux C binaries [14]. They also provide an online Web interface to the 

algorithm where users can upload data to be processed by AP. For this thesis, the 

decision was made to integrate both the data mining aspect with the visualization 

component and choose a single implementation platform. As a result, the AP algorithm 

was coded using Java and the logic was applied to the flow records previously described 

in Section 3. 

The constructor to Class AffinityPropagation takes the parameters shown in Table 

4.1. It also shows the main routine called iterateQ which first updates responsibilities, 

then updates availabilities, and finally combines both responsibilities and availabilities. 

The main FOR loop continues this process until either the maximum number of iterations 

has been reached or the stop criteria, which determines change between the values at each 

round, is met. Independent verification of the correctness of the AP Java implementation 

was attained by comparing the results of the program with the online AP interface using 

the example data sets provided. 
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TABLE 4.1 Affinity Propagation Code Summary 

* Bpararn numPoints: initialise two-dimensional array 

* Bparain nurnCandidates: initialize two-dimensional array 

* 6sitn: two-dimensional matrix of similarity measures 

* BmaxRounds: maximum number of iterations 

* BstopCriterion: number of consecutive rounds with no change in cluster assignment 

* BdampingFactor: number in range (0,1) to prevent oscillation of message values 

AffinityPropagation(int numPoints, int nurnCandidates, BigDecimal[][] sim, 

int maxRounds, int stopCriterion, double dampingFactor) ( 

public void iterated ( 

System.out.print In("Starting AP...."); 

for(int round = 1; ((round <= this.maxRounds) ii (this.stopCount <= this.stopCriterion)); round++) { 

calculateResponsibilities(); 

System.out.println("\nFinished calculating Responsibilities for round " + round); 

calculateAvailabilities(); 

System.out.println("Finished calculating Availabilities for round " + round); 

combineCalculations(); 

System.out.println("Finished combining calculations for round " + round); 

this.totalIterations++; 

> 

110 resolveReflections(); 

111 createReport | ) ; 

n: ) 

4.4 Clustering Network Flow Records Using Affinity Propagation 

To show that AP properly clusters network flows, the algorithm was presented 

with a set of 200 normalized records each consisting of the 6 key flow dimensions. 

These records reflect a mixture of application protocols including HTTP, SMTP, FTP and 

TELNET. The output of the algorithm is a summary section describing the algorithm 

findings and a complete breakdown of cluster assignments. The latter is an array of size 
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200 with the value at each cell indicating the cluster to which the flow with the 

corresponding array index belongs to. In Table 4.2, the output has been arranged in a 

spreadsheet and color-coded to show the cluster assignments. The first number in the cell 

is the flow record number and the second number is the cluster center which corresponds 

to another flow record. This second number represents the data point that has been 

identified as the best prototype/center for that cluster. 

TABLE 4.2 AP Results for 200 Record Dataset 
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When AP was first run on the data set, the algorithm finished with 41 different 

clusters for a dataset of 200 records. This ratio of clusters to records did not efficiently 

summarize the flows. The program was subsequently tuned by choosing preference 

values for the data points to be the smallest calculated similarity measure as 

recommended by the developers of AP. Lower preference values result in a smaller 

number of clusters. As a result, the recalibrated AP algorithm summarized the records 

into 5 separate classes. Table 4.2 shows that AP identified clusters (58, 133 and 174) for 

HTTP port 80, SMTP port 25 and Telnet port 23 respectively. In addition AP 

distinguished the FTP data channel (cluster 144) apart from the control channel. Though 

not shown, the FTP control channel was assigned to the TELNET group which makes 

sense since both traffic types have similar persistent, low-bandwidth traffic 

characteristics. Furthermore, AP created cluster 152 which groups flows initiated by an 

SMTP server process back to a mail client. This was ideal behavior since this type of 

traffic is inherently different from the rest of the SMTP flows in the dataset. 

Frey and Dueck state that Affinity Propagation finds clusters with lower error 

rates than other methods and that the running-time of AP is a fraction of that of other 

techniques [13]. That being the case, it is evident that computing the responsibilities and 

availabilities for an N-by-N similarity matrix is memory and CPU intensive for large N. 

The developers claim that AP can cluster up to 23 K data points in a few hours using a 

modern single-core computer. The AP implementation for this research could handle 

10% of that load over the same time period. I attribute this performance degradation to a 

couple factors. First, Java was used for speed of development and proof-of-concept 
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prototyping. Coding techniques that optimize performance for numerical vector 

computations would give a faster running time. For example, Java objects 

(multidimensional array of BigDecimal) were employed instead of C++ numerical 

vectors (valarray), and the AP calculations operated on pair-wise objects instead of entire 

vectors. The implementation also ran on a mid-range level laptop with limited resources 

with respect to CPU and RAM. In addition, it is also possible that using the latest 

compilers would generate more efficient Java byte-code that would rival the speed of 

native machine code generated from languages such as C/C++. 

Assuming we can attain the maximum performance from the given software and 

hardware, the fact remains that most databases of network flows are exceedingly large, 

hundreds of thousands if not millions of flows over the course of a day or week. Scaling 

this solution for large input sizes would require modifications to the algorithm which 

have been proposed by Frey and Dueck. For example, AP can be modified to operate on 

a smaller subset of similarities. This can be done by randomly selecting pair-wise data 

points that send messages at each iteration or omitting similarities altogether for selected 

data point pairs beforehand. Andrews and Fox recommend a scalable hybrid K-means / 

Affinity Propagation clustering solution that leverages bisecting K-means for top-level 

clustering that creates balanced groups of data points and then applies AP to each group 

for the final clustering [12]. Finally, application-specific sampling strategies can also be 

applied to the original datasets. For example, network flows grouped by flow masks 

could be treated as duplicate entries and omitted from processing [15]. This type of 

compression can be applied at many levels at the cost of some precision and accuracy. In 
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this thesis, manageable data set sizes were used to prove out the AP clustering algorithm. 

Performance enhancements are left as future work. 

5 Information Visualization 

After clustering large databases of flow records and exploring the clusters to 

understand the nature of the different traffic classes on the network, visualization models 

can be applied to give users a different perspective on the same dataset. For a Network 

Operations Center (NOC) analyst, there is a need to access and make sense of vast 

amounts of network log information. A network analyst is often presented with large 

amounts of data from hundreds if not thousands of managed hosts and network elements 

such as routers and firewalls describing the types of connections that have established 

over the network. Fundamentally, a network analyst should be able to project data using 

different techniques and to discern structure, patterns and achieve a higher-level of 

understanding from the visual transformations. Furthermore, the analyst would have 

controls to explore the data and the ability to modulate the resolution of the presented 

information. Fundamentally though, the focus is on using the right visualization tools 

and the right times. Agutter and Bermudez state "there is a need for tools that augment 

human ability to draw insight from abundant or complex data, in order to make decisions: 

faster, more accurately, with less cognitive effort, and with less training [16]." 
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5.1 Treemaps 

One visualization model that makes efficient use of 2-dimensional display spaces 

and has the ability to project large amounts of information is a Treemap. Treemaps were 

invented by Ben Shneiderman [17] to project hierarchical data. Conventional tree layouts 

depict both tree nodes and the edges between the nodes which make inefficient use of the 

display space. Alternatively, Treemaps are space-filling structures that operate on 

rectangles and embed child nodes within parent nodes so that the area of each rectangle 

on the display is related to the size of the node itself. Treemaps have been used to 

display many types of data from file system hierarchies where the size of the rectangle at 

each level is the size of the directory on disk to sports statistics and stock-market data. 

The layout of a Treemap is determined by recursively subdividing rectangles starting 

from the "root" rectangle using one of many different layout algorithms. 

The most basic layout algorithm is called Slice-and-Dice. The idea here is to 

stack child rectangles either vertically or horizontally within a parent rectangle and then 

alternate the arrangement at each subsequent level of the tree. This algorithm makes no 

layout decisions based on the underlying data and has often produced skinny rectangles 

with poor aspect ratios. Treemap developers followed with the Squarified layout 

algorithm which creates more visually appealing rectangles with aspect ratios closer to 1. 

One of the limitations with Squarified is that node order is still not considered when the 

layout is computed. As a result, the Ordered Treemap algorithm was developed to 

achieve balanced node shapes and at the same time preserve order. A variant of Ordered 

Treemap will be discussed in detail shortly. Figure 5.1 shows how data would be 
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presented using three different Treemap layout algorithms. Shading is employed to show 

order. Only Ordered Treemap maintains order from top-to-bottom and left-to-right. 

Slice- nn d-Dice S qualified Ordered 

Fig. 5.1. Classical treemap layouts. 

Although shading is used as an indication of order in Fig. 5.1, typically, shading or 

coloring of leaf nodes in a Treemap represents the magnitude of a measure of interest. 

For example, a Treemap depicting the structure of a file system might use color intensity 

to describe the number of file accesses over a specific time period. 

Mansmann, Keim, North, Rexroad, and Sheleheda have extended the concept of 

the Ordered Treemap and have devised an altogether new model to depict a geographic 

map of the Internet [18]. Geographic visualization is a powerful method to project data. 

The result is what is called a Hierarchical Network Map (HNMap) that attempts to 

display IP prefixes as geo-entities positioned relative to each other. This concept portrays 

IP prefixes as having an inherent hierarchical structure. They can be grouped according 

to 4 levels of classification: Continent -> Country -> Autonomous System (AS) -> IP 

Prefix. Each of these categories corresponds to different levels in the Treemap layout. 

Similar to traditional Treemaps, the size of each node is directly proportional to the 

number of leaf items for that branch. In an HNMap, the size of each node is based on the 
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number of IP prefixes. Depending on the measure of interest, such as number of flows or 

number of packets, nodes will be assigned a color intensity based on the magnitude of the 

measured feature. 

One important objective of an HNMap is to preserve neighborhoods of similar 

nodes. Therefore, the layout algorithm must define an ordering for each level. The first 

two levels are Continent and Country. The attributes used to order these geo-entities 

relative to one another are average latitude and longitude coordinates. Autonomous 

System nodes are ordered according to the median IP address in the range of addresses 

for that AS. The authors recognized that simple ordering based on AS numbers did not 

yield any interesting patterns when data was projected via HNMap. IP prefixes are 

ordered according to the median address as well. A summary is given in Table 5.1. 

TABLE 5.1 HNMap Ordering 

Level Ordering Data Dimensionality 
Continent Average coordinate of each continent 2 
Country Average coordinate of each country 2 
AS Median IP address of contained prefixes 1 
Prefix Median IP address 1 

Traditional Treemaps use a single layout algorithm for all nodes, however, HNMap uses 

different types of nodes and thus requires different layout methods for each type. 

Mansmann et al. derived a geographic layout algorithm called HistoMap which is based 

on the Ordered Treemap algorithm. HistoMap is used for the Continent and Country 

levels. AS entities are rendered using a modified 1-Dimensional version of HistoMap. 

Finally, IP prefixes are rendered by the popular Strip Treemap [19] layout algorithm. 
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Strip is a linear layout algorithm that divides the display area into strips or rows and 

assigns nodes to each strip while at the same time optimizing the average aspect ratio of 

the rectangles in the strip. This is a simple algorithm that terminates when all the nodes 

have been processed. 

5.2 The HistoMap Layout Algorithm 

The logic of HistoMap is explained in [18]. To layout a collection of nodes or 

elements, HistoMap selects a pivot from the list such as the middle element. The list is 

split into two sections where elements on one side of the pivot are less than the pivot and 

elements on the other side are greater than the pivot. The idea is that the display area into 

which these elements are to be embedded can be split either vertically or horizontally. 

For a vertical split, a pivot is selected and the elements are ordered based on latitude. 

Elements smaller than or equal to the pivot latitude would be placed into the lower 

rectangular area. Elements greater than the pivot latitude are placed into the upper 

rectangular area. This is done since latitude values get increasingly smaller as you 

descend from North to South. For a horizontal split, a pivot is selected and the elements 

are ordered based on the longitude coordinate. Elements smaller than or equal to the 

pivot longitude would be placed into the left rectangular area. Elements greater than the 

pivot longitude are placed into the right rectangular area. This is done since longitude 

values get increasingly bigger as you traverse from left to right. In the HistoMap 

algorithm, both splits are calculated and the qualities of both are compared to determine 

the better split. Quality is based on the average aspect ratio of the two constituent 
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rectangles for a given horizontal or vertical split. The aspect ratio of a split is given 

below (5). 

aspect ^ratio = — ) ; — — - (M 

N y mmiwjji;) 

Nis the total number of rectangles in the split and i is the index over the rectangles. For 

HistoMap, N is equal to 2. The HistoMap algorithm is called recursively for each 

rectangle in a split until there is one element remaining at which time the rectangle is 

placed in its final position in the display area. 

This method works nicely for laying out Continent and Country nodes. These 

entities assume positions on the display that distinguish geographic regions. A slight 

modification is required for Autonomous Systems in that the same ordering data (median 

IP address) is used for calculating both the vertical and horizontal splits. The result is AS 

entities that are ordered within countries such that entities placed in the top left corner of 

a rectangle have numerically smaller median IP prefixes than entities in the bottom right 

of the rectangle. 

5.3 HNMap Implementation 

5.3.1 HNMap Backing Data 

At the time of this research, no publicly available code or implementation was 

found for HNMap. As a result, one product of this research is an implementation of 

HNMap using the description of the algorithm in [18]. To engineer an HNMap 
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implementation, the backing data for the levels of the hierarchy were needed. The 

appropriate data was acquired from many different resources. First, both continent and 

country names and their associated ISO 3166-1 codes where obtained from the ISO 

documentation. An excerpt of this data is given in Table 5.2. 

TABLE 5.2 Excerpt of ISO 3166 Country Data 

cc 
AS 
EU 
EU 
AF 
OC 
EU 
AF 
NA 
AN 
NA 

A2 
AF 
AX 
AL 
DZ 
AS 
AD 
AO 
AI 
AQ 
AG 

A3 
AFG 
ALA 
ALB 
DZA 
ASH 
AND 
AGO 
AIA 
ATA 
ATG 

N 
004 
248 
008 
012 
016 
020 
024 
650 
010 
028 

Name 
Afghanistan, Islamic Republic of 
Aland Islands 
Albania, Republic of 
Algeria, People's Democratic Republic of 
American Samoa 
Andorra, Principality of 
Angola, Republic of 
Anguilla 
Antarctica (the territory South of 60 deg S) 
Antigua and Barbuda 

Next, each of the 5 regional registries publishes a record of the AS and IP prefix records 

under their respective domains and includes the countries to which they are assigned. 

The 5 registries are ARIN, RIPE, AFRINIC, APNIC and LACNIC and these databases 

are available via FTP from: 

ftp. arin. net/pub/stats/arin/delegated-arin-latest 
ftp.ripe.net/ripe/stats/delegated-ripencc-latest 
ftp.afrinic.net/pub/stats/afrinic/delegated-afrinic-latest 
ftp.apnic.net/pub/stats/apnic/delegated-apnic-latest 
ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-latest 

To determine the AS name associated with an AS number, bulk queries were issued to 

WHOIS servers. The result is a file with supplemental information about each AS in the 

query. An excerpt of the file is shown in Table 5.3. 
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TABLE 5.3 Excerpt of WHOIS AS Query 

AS 
1 
2 
3 
4 
5 

A2 
US 
US 
US 
US 
US 

Regis t ry 
a r i n 
a r i n 
a r m 
a r i n 
a r i n 

Date 
2001-09-20 
1991-01-10 

1984-02-22 
1984-02-02 

Name 
LVLT-1 - Level 3 Communications, Inc . 
DCN-AS - Univers i ty of Delaware 
HIT-GATEWAYS - Massachusetts I n s t i t u t e of Technology 
ISI-AS - Univers i ty of Southern C a l i f o r n i a 
SYMBOLICS - Symbolics, Inc . 

Next, to determine the AS to which each IP prefix is assigned, a similar bulk query, 

containing each IP prefix in the registry domain, was issued to WHOIS. The result is a 

file with supplemental information about each prefix. An excerpt is given in Table 5.3. 

TABLE 5.4 Excerpt of WHOIS IP Query 

AS 
7018 

33631 

71 
1B89 

714 

First IP 

12,0.0.0 

13.0.0.0 

15.0.0.0 

16.0.0.0 

17.0.0.0 

IP Prefix 

12.0.0.0/9 

13.0.0.0/16 

15.0.0.0/8 

16.0.0.0/12 

17.0.0.0/9 

A2 
US 
US 
US 
US 
US 

Registry 

arin 

arin 

arin 

arin 

arin 

Date 

1983-08-23 

1986-04-25 

1989-05-18 

1990-04-16 

AS Name 

ATT-INTERNET4 - ATST ItforldNet Services 

PARC-ASK - Palo Alto Research Center Incorporated 

HP-INTEMT-AS Hetrlett-Packard Company 

HP-EUR0PE-AS Hewlett-Packard Company 

APPLE-EMC-BIEERING - Apple Computer, Inc. 

Finally, the average latitude and longitude coordinates for each geographic entity were 

obtained from Maxmind, Ltd [20]. All of this data was organized and stored in a 

relational database. The necessary code was written to parse the data files and issue 

update queries to a backend MySQL database. There are 8 tables, 2 for each level of the 

hierarchy. Each level has its own table describing each of its nodes as well as a table 
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holding the sort or ordering criteria for those nodes. The database tables and their 

associated fields are listed in Table 5.5. 

TABLE 5.5 HNMap Database Tables 

CREATE TABLE continent_table ( 
code VARCHAR(IO) PRIMARY KEY, 
name VARCHAR(100), 
latitude VARCHAR(10), 
longitude VARCHAR(10) 
) ; 

CREATE TABLE oountry_table ( 
code VARCHAR(10) PRIMARY KEY, 
code3 VARCHAR(10), 
name VARCHAR(100) , 
pcode VARCHAR(10), 
latitude VARCHAR(10) , | 
longitude VARCHAR(10) 

) ; 

CREATE TABLE as table ( 
asnum VARCHAR(10) PRIMARY KEY, 
registry VARCHAR(10), 
name VARCHAR(100) , 
pcode VARCHAR(10), 
process VARCHAR(2) 

) ; 

CREATE TABLE prefixtahle ( 
ipaddress VARCHAR(20) PRIMARY KEY, 
registry VARCHAR(IO), 
prefix VARCHAR(20), 
asnum VARCHAR(10) 
) ; 

CREATE TABLE cont±nejit_sor t_ta»le ( 
code VARCHAR(10) PRIMARY KEY, 
sort VARCHAR(50) 
) ; 

CREATE TABLE country_sort_table ( 
code VARCHAR(10) PRIMARY KEY, 
sort VARCHAR(50) 
) ; 

CREATE TABLE as_sort_tal)le ( 
code VARCHAR(10) PRIMARY KEY, 
sort VARCHAR(50) 
) ; 
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5.3.2 HistoMap Logic 

With all the data properly stored in a SQL database, coding of the HNMap 

visualization began. The Java implementation of HNMap uses a 3rd party visualization 

API called Prefuse [21]. Prefuse is a visualization framework for Java based on the Java 

2D graphics library and provides the needed data structures for database tables and trees, 

as well as facilitates the visual encoding and rendering of data. 

To get the IP hierarchy into the program, a TreeML XML file of the hierarchy 

was generated. TreeML is an XML format for representing the nodes and edges of a tree. 

Prefuse has built-in support for TreeML and automatically converts well-formed TreeML 

documents into Prefuse Tree data structures for Java. The first step was to query the 

backend database system for all IP prefixes including the data relevant to its hierarchy. 

The following SQL join query cross-references the 4 tables for continent, country, AS 

and prefix and returns a "path" for each prefix in the system: 

SELE C T c ont i n e n t t ab le .c o de,cont i n e n t t able.name, 
country_table.code,country_table.name, 
as_table.asnum, as_table.name, 
prefixtable.ipaddress,prefix_table.prefix 

FROM continent_table,country_table,as_table,prefix_table 
WHERE continenttable.code=country_table.pcode AMD 

country_table.code=as_table.pcode AHD 
as_table.asnum=pre£ixtable.asnum 

ORDER BY continent table.code,country table.code,as table.asnum 

30 



The number of prefixes in the system exceeds 60K. An excerpt of the output is presented 

in Table 5.6 which shows a small number of prefixes in Africa. 

TABLE 5.6 Excerpt of SQL Query Results for TreeML Data 

I cc 
I AF 

| AF 

I AF 

| AF 

| AF 

| AF 

Continent Name 

Africa 

Africa 

Africa 

Africa 

Africa 

Africa 

A2 

ZA 

ZA 
ZA 
ZA 

ZA 
ZA 

Country Name 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

AS 

2018 

2018 

21739 

22355 

22355 

22386 

AS Name 

TENET-1 

TENET-1 

TSOL 

FR0GF00T 

FR0GF00T 

SAFB 

IP Address 

198.51.66.0 

198.54.65.0 

196.202.248.0 

196.1.56.0 

41.206.192.0 

196.29.240.0 

IP Prefix | 

198.54.66.0/24 | 

198.54.65.0/24 | 

196.202.248.0/22 | 

196.1.56.0/21 | 

41.206.192.0/19 | 

196.29.240.0/20 | 

The result set of this query was converted into an XML file following the TreeML 

format. A small excerpt of the beginning of such as file is shown in Table 5.7 which 

shows the root node, "World", continent "Africa", country "Angola", autonomous system 

"11259" and prefix "41.223.156.0/22." 
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TABLE 5.7 Excerpt of TreeML File 

<?xml version="1.0" encoding="UTF-8" ?> 
<t ree> 
- <dGclarations> 

o t t r i b u t e D e c l name="code" t ype="S t r i ng " / > 
o t t r i b u t e D e c l name="name" t ype="S t r i ng " / > 
•o t t r i bu teDec l name="sor t " t ype="S t r i ng " / > 
<at t r ibuteDecl name="pa th " t ype="S t r (ng" / > 

</declarat ions> 
- <branch> 

<at t r ibu te name="code" va lue="Wor ld" / > 
<at t r ibu te name="name" va lue="Wor ld" / > 
o t t r i b u t e name="sor t " va lue="N/A" / > 
<at t r ibu te name="sor t " value="" / > 

- <branch> 
<at t r ibu te name="code" va lue - "AF" / > 
<a t t r ibu te name="name" va lue="Af r ica" / > 
o t t r i b u t e narne="sort" v a l u e = " 2 . 1 9 8 5 , 1 7 . 3 9 7 1 " / > 
o t t r i b u t e name="pa th " va lue="Af r ica" / > 

- <cbranch> 
<a t t r ibu te name="cade" value="AGO" / > 
<a t t r ibu te name="name" va lue="Ango la" / > 
o t t r i b u t e narne="sort" v a l u e = " - 1 2 . 5 0 0 0 , 1 8 . 5 0 0 0 " / > 
<a t t r ibu te narne="path" va lue="Af r ica - > A n g o l a " / > 

- <branch> 
<at t r ibu te name="code" va !ue="11259" / > 
<a t t r ibu te name="name" value="ANGOLATELECOM" /> 
o t t r i b u t e name="sor t " v a l u e = " 4 1 . 2 2 3 . 1 5 8 . 0 " / > 
o t t r i b u t e name="pa th " va lue="Af r ica - > A n g o l a - > A S 1 1 2 5 9 (ANGOLATELECOM)'1 / > 

- <leaf> 
<a t t r ibu te name="code" va l ue= "41 .223 .156 .0 " / > 
o t t r i b u t e name="name" v a l u e = " 4 1 . 2 2 3 . 1 5 6 . 0 / 2 2 " /> 
o t t r i b u t e name="sor t " v a l u e = " 4 1 . 2 2 3 . 1 5 6 . 0 " / > 
o t t r i b u t e natne="path" va lue="Af r ica - > A n g o l a - > A S 1 1 2 5 9 (ANGOLATELECOM) - > 4 1 . 2 2 3 . 1 5 6 . 0 / 2 2 " / > 

</ leaf> 
</branch> 

After loading the HNMap data into the Prefuse built-in Tree data structure, the 

implementation of HistoMap was engineered to operate on this data structure and the 

rendering was achieved by leveraging the Prefuse visualization API. The code sample 

below shows the process of splitting the elements in line 466, and making a recursive call 

for each split in lines 475-476. The recursion ends when the size of the element list is 1 

at which time the "else" segment is executed which draws the rectangle on the display. 
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TABLE 5.8 HistoMap Layout Routine 

4 5 R - / * * 

4 59 * Compute the HistoHap layout. 

4 60 */ 

461- private void layoutHistoMap2D(ArrayList p, Rectangle2D r, boolean is2D) { 

4 62 

463 if (p.size () > 1) { 

4 64 

465 //Split the nodes vertically and horizontally, return best quality 

466 ArrayList partitions = splitRect(p, r, is2D); 

4 67 

458 ArrayList plList = (ArrayList)partitions.get(0); 

459 Rectangle2D plRec = (Rectangle2D)partitions.get(1); 

4 70 

47 1 ArrayList p2List = (ArrayList)partitions.get(2); 

Rectangle2D p2Rec = (Rectangle2D)partitions.get(3); 

174 //Recurse on each rectangle 

layoutHistoMap2D(plList, plRec, is2D); 

j layoutHistoHap2D(p2List, p2Rec, is2D); 
? } else { 

' //Layout node on the display 

j Nodeltem node = (Nodeltem)p.get(0); 

setXfnode, (Visuallteiti) node . getParent () , r.getX(J); 

setY(node, (Visuallteiti) node . getParent () , r.getY(J); 

i node.setBounds(r.getX(), r.getYf), r.getWidth() , r.getHeight()); 
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5.3.3 HNMap Screenshots 

Fig. 5.2 shows the first level of the HNMap, depicting Continent rectangles 

outlined in yellow, their sizes based on number of IP addresses, and their positions on the 

map. Six continents are shown including North America (NA), Europe (EU), Africa 

(AF), Asia (AS), South America (SA), and Oceania (OC). 

Fig. 5.2. HNMap continents. 
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Fig. 5.3 shows the first 2 levels of the map down to the constituent countries for 

each continent. Again, the layout of both continents and countries depends on both their 

ordering and the type of split made (horizontal or vertical). The left half of the figure 

shows North America which is comprised of three countries, Canada, USA and Mexico, 

stacked from North to South in that order. This implies that a vertical split was 

calculated for that iteration of the algorithm. USA is highlighted in blue and the path to 

this node is displayed in the lower right-hand corner as "North America -> United States 

of America." 

Fig. 5.3. HNMap countries. 
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Fig. 5.3 shows the top 3 levels of the map down to the individual autonomous 

systems for each country. Easily noticeable and highlighted in blue is the biggest AS in 

the United States. The path for that AS is shown in the lower right-hand corner as "North 

America -» United States of America -» AS27064 (DNIC-ASBLK-27032-27159 - D)." 

Fig. 5.4. HNMap autonomous systems. 
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Fig. 5.5 shows the IP prefixes for AS 22047 in the country of Chile. Prefixes are 

ordered linearly and laid out in rows or strips. The highlighted node is prefix 

"200.86.32.0." Although it is difficult to make out in the figure below, the path in the 

lower right hand corner is "South America -> Chile -» AS22047 (VTR BANDA 

ANCHA S.A.) -> 200.86.32.0/20." 

Fig. 5.5. HNMap prefixes. 
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5.4 HNMap Projection 

After traffic records have been clustered and investigated, the flows can be 

projected onto an HNMap with respect to a measure of interest to get a better 

understanding of the distribution of the behavior. For example, a cluster identified as 

potential Distributed Denial of Service (DDoS) traffic can be visualized by coloring the 

HNMap prefix nodes based on the number of outgoing flows found in the cluster. In 

addition, animating HNMap or taking snapshots of HNMap over time allows the user to 

observe sharp increases in flow counts over the time period. This provides additional 

confirmation of the DDoS behavior. Furthermore, the mapping of these data will identify 

the origins of the BotNet perpetrating the malicious behavior such as the infected prefixes 

and autonomous systems. This information can be used by service providers to deploy 

measures at network access points to mitigate and possibly thwart the attack. Fig. 5.6 

shows such a scenario of a simulated DDoS attack centered in Asia, specifically from the 

countries of China, Korea and Japan. Three chronological snapshots are taken showing 

the increase in intensity of the cluster behavior. Prefix nodes are colored according to the 

magnitude of originating flows in increasing severity from blue, white, pink, and red 

depending on the intensity of the measure. In publications that do not support color, the 

three images shown are in increasing order of intensity from top to bottom. 
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Fig. 5.6. DDoS cluster projection. 
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Conclusion 

Both data mining and information visualization are beneficial to identifying 

structure and extracting meaning from databases of information. Progress is continual in 

each discipline, and this research focused on new developments in the areas of clustering 

and Treemap layout algorithms when applied to the problem of network traffic 

classification. Clustering algorithms will improve in their accuracy, runtime and 

scalability, while visualization models can be adapted to project application-specific 

structure in innovative ways. Taken separately, however, neither approach alone will 

offer the full range of analysis discussed in this paper. While clustering provides general 

groupings of network flows based on abstract numerical dimensions, HNMap allows the 

user to visualize these structures in an application-specific context. Conversely, HNMap 

provides a visual encoding for network communication attributes; however, only the 

accurate grouping of network flows provides a context in which to understand and 

explore the projection. It is clear that both data mining and information visualization 

should be used together as investigative tools for network traffic analysis. 
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