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ABSTRACT 

CONCEPTUAL DESIGN OF A SOLAR POWER BEAMING SPACE SYSTEM 

byTuyetN. Le 

The concept of Space-Based Solar Power (SBSP) is a global solution for the 

world energy crisis. SBSP has been discussed for decades; however, there still has not 

been a single watt transmitted down from orbit. A conceptual SBSP demonstration 

design has been developed for a system that will beam 300W of power to the Earth's 

surface. This demonstration is estimated to be at 25% efficiency due to atmospheric 

losses and laser conversion losses. A 2200W laser is a modular subsystem of thelOO kg 

payload flight demonstration. All of the technologies needed for this demonstration 

already exist. The demonstration includes the following modular subsystems: the laser 

system, the acquisition, tracking, and pointing system, the safety and control system, and 

the ground segment/receiver system. The ISS demonstration is estimated to cost 

approximately 12 million dollars. Tradeoff design studies and systems engineering 

evaluations were completed in order to demonstrate the feasibility of this system. An 

Excel database was developed to help calculate some basic dynamics, creating an SBSP 

preliminary systems design tool for the demonstration. 
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Chapter 1: Introduction 

Every day the world population increases in number and puts a greater strain on 

the Earth's finite supply of resources. As fossil fuels are depleted by today's demanding 

economies and industries, the need for alternative sources of energy increases 

exponentially. For example, according to the India Planning Commission, India must 

generate 700,000 additional megawatts of power to keep pace with its frantically growing 

economy and population (Farrar, 2008). Many villages exist with limited power or no 

power at all. In order to keep pace with population expansion, India must develop new 

sources of energy to provide power to these villages and bring them in line with the more 

developed regions of the country. One solution to this looming energy crisis is to look to 

the stars. Solar power is one source of clean, virtually unlimited energy. An ideal 

solution would be to develop a method to harvest this cheap solar energy twenty four 

hours a day. One such solution is the concept of Space-Based Solar Power (SBSP). 

SBSP requires the assembly of an expansive network of solar panels in geosynchronous 

orbit about the Earth. Placed in a high orbit where solar energy is intense, these solar 

cells would gather the sun's energy almost twenty four hours a day and 365 days a year. 

Once collected by the solar panels, this endless supply of energy could be beamed down 

to ground stations all over the world, including rural, undeveloped areas in third world 

countries. 

The advantages of Space Based Solar Power are many. This method of 

harvesting clean, limitless energy reduces the need for the destruction of the environment 

for the purpose of meeting increasing energy demands. The need for development of 
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polluting coal power plants and drilling for oil would be greatly reduced or eliminated. 

An SBSP network would allow the world to detach itself from the dependence on a finite 

supply of fossil fuels. The reduction of competition for limited resources would reduce 

tension between world powers and relieve worries over energy shortages. SBSP would 

allow for global expansion and development without inciting fears over an energy supply 

that cannot keep up with increasing demand. A future powered by the sun would allow 

economies and innovation to thrive around the globe. Small villages in third world 

countries such as India would be transformed into thriving communities with higher 

living standards and significant contributions to the global economy. The United States, 

Russia, China, Japan, Canada, and the members of the European Union, are all intrigued 

by the idea of SBSP for domestic and commercial purposes. The early pioneers of SBSP 

technology will be able to assert themselves as global energy leaders for decades to 

come. 

In 2007 the National Security Space Office (NSSO) produced an Space-Based 

Solar Power study stating that the United States government should allow for and 

facilitate the development of an SBSP project to meet current environmental and energy 

challenges in order to create an energy source that is renewable and environmentally 

friendly. The NSSO called for a letter of support for SBSP to be sent from Congress to 

the Department of Defense, planning for an SBSP demonstration by 2013. Responsive to 

that request, this thesis provides a conceptual design for demonstration of a Space-Based 

Solar Power Beaming System and its financial feasibility. Chapter 2 offers basic 

background information on SBSP to enable better understanding of the conceptual design 
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of a solar power system. Chapter 3 takes a systems engineering approach to analyzing all 

the sub-systems of SBSP. Chapter 4 reviews the tradeoff studies and presents the 

preliminary SBSP demonstration. Chapter 5 contains the systems database and 

preliminary design calculations. Chapter 6 concludes the study and suggests future work. 
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Chapter 2: Background 

The sun radiates billions of terra-watts of energy to all corners of the solar system. 

Only a small portion of this energy strikes the earth's surface due to a relatively small 

surface area, night and day cycles, the atmosphere and seasonal trends. Space-based 

solar power (SBSP) involves the concept of placing solar cell collectors in a chain in 

geosynchronous earth orbit. Energy is captured using photovoltaic or solar cells and is 

beamed down to earth. The beamed down energy is captured via ground solar cells and 

converted into electricity for the grid. The placement of the SBSP platform will require 

numerous delivery and deployment flights to orbit resulting in the need to drive down the 

cost of launch services. 

This thesis proposes a SBSP demonstration to beam down power from orbit. The 

following are methodology and approaches necessary to illustrate the achievability of 

beaming down 300W of power from the International Space Station to a ground station 

on earth. Included in this thesis is a draft of the SBSP architecture that defines the 

different components of the SBSP project and systems. Orbit dynamics calculated for the 

demonstration via an Excel database. A systems design tool was generated for archive 

purposes. Finally the financial feasibility of the systems is established. The 

demonstration is designed to be modular and compatible with the International Space 

Station. The next few sections will give additional background information on the 

concept of demonstrating SBSP. Background on solar energy and sunlight are discussed 

in Section 2.1. Photovoltaic and solar cells are presented in Section 2.2. Microwave and 
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laser theories are compared in Section 2.3. GEO and LEO are explained is Section 2.4. 

Launch vehicles are noted in Section 2.5. Lastly, Section 2.6 introduces the International 

Space Station as a test bed for this SBSP demonstration. 

2.1 Solar Energy and Sunlight 

Solar energy can be harvested by using solar radiation from the sun to generate 

electrical power. Solar radiation can be captured via photovoltaic cells and converted 

directly into electricity. Photovoltaic cells can be seen on home rooftops for power 

generation or in large fields connected to the utility grid (Tanton, 2008). Photovoltaic 

cells can convert solar energy directly into electricity. Figure 2.1 shows a block diagram 

with basic solar energy conversion system. 

Photovoltaic 
Collectors 

Electricity Load 
(Grid) 

Figure 2.1: Photovoltaic cells to convert solar energy directly into electricity 

The sun emits energy as electromagnetic radiation. Outside the Earth's atmosphere, solar 

radiation is constant and intense. On Earth, sunlight is filtered through the atmosphere, 

and solar radiation can be seen during the daytime as light. When clouds block direct 

radiation, The Earth does not experience direct sunshine. Sunshine is the combination of 

bright light and heat. The World Meteorological Organization defines sunshine as direct 

irradiance from the sun measured on the ground at a minimum of 1120W-nT2(Badescu, 

2008). Table 2.1 summarizes the important characteristics of the sun. 
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Table 2.1: Characteristics of the sun 
(Reprinted with permission from William Stine at www.powerfromthesun.net) 

Present age 
Life expectancy 
Distance to Earth 

Mean 
Variation 

Mass 
Density 

Mean 
Center 

Composition 
Hydrogen 

Helium 
Oxygen 
Carbon 

Iron 
Neon 

nitrogen, silicon, magnesium, sulfur, etc. 
Solar radiation 

entire Sun 
Unit area of surface 

at 1 AU (i.e. the solar constant) 
Temperature 

Center 
Surface (photosphere) 

Chromosphere 
Corona 

Rate of mass loss 

4.5 x 109 years 
10 x 10y years 

1.496 x 10" m=1.000AU 
1.016735 to 0.98329 AU 
1.987x10™ kg 

14.1 kg/m3 

1,600 kg/m' 

73.46% 
24.85% 
0.77% 
0.29% 
0.16% 
0.12% 
<0.1% 

3.83 x 1026W 
6.33xl0vW/m2 

1,367 W/m2 

15,000,000 K 
6,050 K 
4,300-50,000 K 
800,000-3,000,000 K 
4.1xl0ykg/s 

The intensity of the sun is approximately 6.33 x 10 W/rrT and the average Earth-

sun distance is 1.496 x 1011 m or 1.0 AU. The solar constant is the amount of energy 

received at the top of the Earth's atmosphere. The currently accepted value for the solar 

constant isIsc = l36l(w/m2) = 136l(kW/m2) (Stine & Geyer, 2001). Figure 2.2 shows 

the US annual average solar energy received by a latitude-tilt photovoltaic cell. 
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PV Solar Radiat ion Annual 
(Flat Plate, Facing South, Lat i tude Tilt) i^^s™;"«?™xt?ls^^»'!S?s^*SEB 

£-!<«'•? -vus^- v io j r , dlijt 

KWhftn2fttay 

8.5 - 9.0 
8.0-8.5 
7.5 - 8.0 
7.0 - 7.5 
6.8 - 7.0 
8.0-S.S 
5.5 -S.Q 
5.0-S.S 
4.5 - 5.0 
4.0-4.5 
3.5-4,0 
3.0-3,5 
2.5- 3.0 

^ 8 2.0-3.5 

Figure 2.2: US Annual Average Solar Energy 
(Courtesy of NASA) 

Solar energy received is between 2.0 and 9.0 (kWh/m /day), taking the average value of 

solar energy received at 5.5 (kWh/m2/day), then multiplying by 1 day/24 hours to get 

0.299 (kW/m2). The solar constant at the top of Earth's atmosphere is 1.367 (kWh/m2). 

Equation 1 calculated 17% as the average solar constant captured on earth. 

0.229 (kWs 
m 

1.367 (kW/\ 
= 0.168 = 17% (1) 

As solar radiation passes through the Earth's atmosphere, it is absorbed, reflected, 

scattered, and transmitted directly. On a cloudy or foggy day the direct component of 

solar irradiance is essentially zero, and there are no shadows. The scattered component 

of solar irradiance is how we see shade. If there were no scattering component of solar 

irradiance, the sky would appear black as at night and stars would be visible throughout 
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the day. The amount of this scattering light depends on the amount of water and dust in 

the atmosphere and the altitude of the observer above sea level (Stine & Geyer, 2001). 

Many other complexities are involved when trying to collect energy from the sun on 

Earth; the problem becomes simpler if solar energy is collected in orbit and then 

transmitted to earth. 

2.2 Photovoltaic/Solar Cells 

Sunlight is converted into electricity via the photoelectric effect with the use of 

photovoltaic cells also known as solar cells. Small packets of energy called photons in 

sunlight strike a photovoltaic cell filled with charge carriers, such as electrons. Photons 

may either be absorbed, reflected, or pass through the cell. In the case of absorption, the 

energy is passed to an electron in the cell. If the photon has sufficient energy, then the 

electron's energy level to the conduction level will be raised and it will move, thus 

creating an electrical current. In order to induce an electric field in the photovoltaic cell 

and increase electron flow, cells are made of two separate semiconductors, a p-type 

material and an n-type material. N-type materials are composed mainly of electrons, and 

p-type materials are composed of holes (charge carriers that combine with electrons). 

Semiconductors can be "doped" in order to create excess electrons or to create "holes" in 

the outer electron layers of the atoms, thus increasing current flow. Even though both 

materials are electrically neutral, n-type material has excess electrons and p-type material 

has excess holes. Sandwiching these together forms the p/n junction and creates an 

electric field. This electric field contributes to the movement of electrons during the 

photovoltaic effect (Lenardic, 2008). 
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Photovoltaic theory states that when light, in the form of photons, strike 

photosensitive material with an energy value higher than the band gap of semiconductor 

material of the solar cell, electrons are excited and begin to move. The built-in electric 

potential of the solar cell creates a current flow. Voltage and current create power. The 

amount of solar power collected is affected by the Beta angle, the angle between the 

orbital plane and the light of the Sun, which can be seen in equation 2 (Lenardic, 2008). 

sin (/?) = sin (/)cos (S) sin [6 - 0S) + cos (/) sin (S) (2) 

Where: / is the inclination of the orbit 

5 is the declination of the orbit 

6 is the right ascension of the orbit 

0S is the right ascension of the Sun 

Beta is the angle between the orbit plane and the vector from the Sun shown in Figure 
2.3. 

SOLAR 
VECTOR 

SHADOW 

ta Angle 
/ 
ORBIT PLANE 

, POLAR ORBIT, 
VECTOR LAUNCHED AT 

< VECTOR L Q C A L N Q O N 

OR MIDNIGHT 
B= 0 

N \ 
SOLAR. 
VECTOR 

POLAR ORBIT, 
LAUNCHED AT 
LOCAL DAWN 
OR DUSK 
B = SO 

Figure 2.3: Beta Angle from the Sun 
(Reprinted with permission from Tim Kelly at K&K Associates 

http://www.tak2000.com) 
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A solar cell model consists of a diode and current source connected in parallel. Solar 

radiation is directly proportional to the current source. A diode represents the p-n 

junction of a solar cell. A diode is a device that either allows or prevents current flow 

between the p and n type material depending on the voltage applied at each end. 

Equation 3 represents the ideal solar cell model. 

i=ir„-i, r v ^ 
m-VT ftfV-r 

J 

Where: IPh is photocurrent (A) 

(3) 

_o o 

Is is reverse saturation current (A) (approximately 10" /m ) 

V is diode voltage (V) 

VT is thermal voltage (see Equation 4 below) 
VT = 25.7 mV at 25°C, m assuming diode ideality factor = 1 (4) 

Thermal voltage VT can be calculated with Equation 5. 

VT=— (5) 

Where: k is the Boltzmann constant = 1.38 xlO"23 (J/K) 

T is temperature in degrees Kelvin (K) 

q is the charge of an electron = 1.6xl0"19 (A) 

There is a specific type of solar cell called "thin-film cell". Thin-film cells are 

approximately four-one-hundred-thousandths of an inch thick. The advantages of thin-

film solar cells include their light weight and fewer required materials for fabrication, 

which reduce the cost per solar cell. Table 2.2 compares the different solar cell types 

available, along with their thickness, efficiency, colors, and features (Lenardic, 2008). 
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Table 2.2: Overview of Solar Cell Materials 
(Reprinted with permission from Denis Lenardic at www.pvresources.com) 

Material 
Monocrystalline 
Si solar cells 

Polycrystalline 
Si solar cells 

Polycrystalline 
transparent Si 
solar cells 

EFG 

Polycrystalline 
ribbon Si solar 
cells 

Thickness 
0.3 mm 

0.3 mm 

0.3 mm 

0.28 mm 

0.3 mm 

Efficiency 
15 - 18 % 

13 - 15 % 

10% 

14% 

12% 

Colors 
Dark blue, 
black with AR 
coating, grey 
without AR 
coating 

Blue with AR 
coating, silver-
grey without 
AR coating 

Blue with AR 
coating, silver-
grey without 
AR coating 

Blue, with AR 
coating 

Blue, with AR 
coating, silver-
grey without 
AR coating 

Features 
Lengthy 
production 
procedure; wafer 
sawing 
necessary. Best 
researched solar 
cell material -
highest 
power/area ratio. 
Wafer sawing 
necessary. Most 
important 
production 
procedure at 
least for the next 
ten years. 
Lower efficiency 
than 
monocrystalline 
solar cells. 
Attractive solar 
cells for different 
BIPV 
applications. 
Limited use of 
this production 
procedure Very 
fast crystal 
growth, no wafer 
sawing necessary 
Limited use of 
this production 
procedure, no 
wafer sawing 
necessary. 
Decrease in 
production costs 
expected in the 
future. 
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Apex 
(polycrystaline 
Si) solar cells 

Monocrystaline 
dendritic web Si 
solar cells 

Amorphous 
silicon 

Cadmium 
Telluride (CdTe) 

Copper-Indium-
Diselenide (CIS) 

Hybrid silicon 
(HIT) solar cell 

0.03 to 0.1 mm 
+ ceramic 
substrate 

0.13 mmincl 
contacts 

0.0001 m m + 1 
to 3 mm 
substrate 

0.008 mm + 3 
mm glass 
substrate 

0.003 mm + 3 
mm glass 
substrate 

0.02 mm 

9,5% 

13% 

5 - 8 % 

6 - 9 % 
(module) 

7.5 - 9.5 % 
(module) 

18% 

Blue, with AR 
coating, silver-
grey without 
AR coating 

Blue, with AR 
coating 

Red-blue, Black 

Dark green, 
Black 

Black 

Dark blue, 
black 

Production 
procedure used 
only by one 
producer, no 
wafer sawing, 
production in 
form of band 
possible. 
Significant 
decrease in 
production costs 
expected in the 
future. 

Limited use of 
this production 
procedure, no 
wafer sawing, 
production in 
form of band 
possible. 
Lower efficiency, 
shorter life span. 
No sawing 
necessary, 
possible 
production in the 
form of band. 
Poisonous raw 
materials, 
significant 
decrease in 
production costs 
expected in the 
future. 
Limited Indium 
supply in nature. 
Significant 
decrease in 
production costs 
Limited use of 
this production 
procedure, higher 
efficiency, better 
temperature 
coefficient and 
lower thickness. 
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2.3 Microwave Transmission/Laser Beam 

Microwaves are electromagnetic waves with wavelengths ranging from 1 mm to 

1 m, or frequencies between 0.3 GHz and 300 GHz. Microwave power transmissions 

(MPT) are the use of microwaves to transmit power through outer space or the 

atmosphere wirelessly. Microwaves are coherent and polarized in contrast to visible 

waves (apart from lasers). They obey the laws of optics and can be transmitted, absorbed 

or reflected depending on the type of material. A rectenna is a rectifying antenna that is 

used to directly convert microwave energy into DC electricity. In principle, the rectenna 

is capable of very high conversion efficiencies - over 90% in optimal circumstances. A 

rectenna can be used to capture transmitted microwaves (Hill, 2000). 

A loss to the oscillating electric field is related to the absorption of microwaves 

material's complex permittivity £ in equation 6. 

£ = £0(£'-i£") (6) 

Where: £0 is the permittivity of free space (e0 = 8.86 x 10"12 F/m) 

£ 'is the relative dielectric constant 

£ "is the effective relative dielectric loss factor. 

Commonly used to describe the losses is the loss tangent (tan 8) in equation 7. 

tan<? = — = r (7) 
£ 2ftf£Q£ 

Where: a is the total effective conductivity (S/m) caused by ionic conduction and 

displacement currents 

/ is the frequency 
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The power absorbed per unit volume is described by equation 8. 

p = o-|£|2 = 2xfe0£ tan S\E\2 

Where: |£"| is the magnitude of the internal electric field (V/m) 

Figure 2.4 shows the electromagnetic spectrum. Laser is infrared (IR) and 

microwave wavelength is to the right of IR (Electromagnetic Radiation, 2009). 

H I " Hi-- in-

H> " V.\ 

*~ Increasing Fft-sjuenty (v) 
!M lit" ;n' i>i' n- in" viH.'i 

CV IS Mscwwavc 

-
I l > ' 

FM 

i 

AM 

1 1 
i 

;," in iii-

IntR'asini Wave 

lxHi£ rajto wave* 

n' )'-• 

len.Blh {}.) —• 

K> III 

V JMbk ^[xttmni 

j __ i_ j . i I. 

-KH* .HKJ fNXi 

IncmiKi i i ; W.HvcltTj.'lh K i ui ism 

Ttsrj 

Figure 2.4: Electromagnetic Spectrum with Visible Light Highlighted 
(Courtesy of NASA from wikipedia.org) 

Laser is an acronym for Light Amplification by Stimulated Emission of 

Radiation. A laser is a device that emits light (electromagnetic radiation) through a 

process called stimulated emission. In optics, stimulated emission is the process by 

which an electron, agitated by a photon having the correct energy, may drop to a lower 

energy level resulting in the creation of another photon. Electromagnetic radiation takes 

the form of self-propagating waves in a vacuum or in matter. Infrared radiation (IR) is 

electromagnetic radiation whose wavelength is longer than that of visible light, but 
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shorter than that of terahertz radiation and microwaves. Infrared radiation has 

wavelengths between about 750 nm and 1 mm, spanning three orders of magnitude. The 

color of light is determined by its frequency or wavelength. The shorter wavelengths are 

the ultraviolet and the longer wavelengths are the infrared. The smallest particle of light 

energy is described by quantum mechanics as a photon. The energy of a photon is shown 

in equation 9. 

E = hv (9) 

Where: v is the frequency 

h is Planck's constant 

The wavelength of light is related to the frequency as shown in equation 10. 

A = - (10) 
v 

Where: X is the wavelength of light 

c is the velocity of light in vacuum (300m/s2) 

Table 2.3 shows the various types of material currently used for lasing and the 

wavelengths that are emitted by that type of laser. Note that certain materials and gases 

are capable of emitting more than one wavelength. The wavelength of the light emitted 

in this case is dependent on the optical configuration of the laser. 
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Table 2.3: Common Lasers and Their Wavelengths 

(Reprinted with permission from Josee Sansoucy at www.mcgill.ca) 
LaswType 

Exctiuer Gas Lasers 

Gas Lasers 

Sslid Sate Lasers 

Dye Lasers 
Ssiaicofwioctor Lasers 

Fiber lasers 

Acrir« Medium 
Argon Flwride 
Krypton Fluoride 
Xenon CM©ri<Je 
Xenon HoorUk 
>Slrog£n 
Helium Cadmium 
Argon 
Krypton 
EeUimlfem 
Cartxm Dioxide 
Doubled Xd:YAG 
NfcYAG 
Rnfey 
Tt:$apphire 
EhodaiH!»6G 
Galium Arsenide (GaAs) 
InGnAlP 
GkUAs 
InGaAsP 
Er. doped optical fiber 

Wavelength* am 
195 mn 
248 ma 
3©Swa 
351 ran 
331 nsa 

325 ran,, 442 om 
48Sffla;514tim 

fijlrua 
633 n s 

lOttiOOnat 
332 ma 
1.064 itm 
694 nsi 

"00-3.100 am 
570-650 tua 

S50 am, 90S tun 
670 ran 

~50-9»fsm 
llOO-IiOOnci 

1550 tan 

Laser light has three unique characteristics, which make it different than ordinary light. It 

is monochromatic, directional, and coherent. Monochromatic consists of one single color 

or wavelength. Even through some lasers can generate more than one wavelength, the 

light is extremely pure and consists of a very narrow spectral range. Directional means 

that the beam is well collimated and travels over long distances with very little spread. 

Coherent means that all individual waves of light are moving precisely together in phase 

strongest of the light waves (Aldrich, 2008). 

2.4 Geostationary Orbit (GEO)ZLower Earth Orbit (LEO) 

A geosynchronous orbit directly above the Earth's equator is the Geostationary 

orbit (GEO). The GEO period is equal to the Earth's rotational period and has an orbital 
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eccentricity of approximately zero. On earth, geostationary objects appear motionless in 

the sky, making the GEO an orbit of great interest to operators of communications and 

weather satellites. Due to the constant 0° latitude and circularity of geostationary orbits, 

satellites in GEO differ in location by longitude only. 

A Geosynchronous Transfer Orbit or Geostationary Transfer Orbit (GTO) is the 

Hohmann transfer orbit around the Earth between lower Earth orbit (LEO) and 

geosynchronous orbit (GEO). Figure 2.5 shows that a Hohmann transfer orbit is an 

ellipse where the perigee is a point on a LEO and the apogee has the same distance from 

the Earth as the GEO (Hohmann Transfer Orbit, 2009). 

Figure 2.5: Hohmann Transfer Orbit 

(Courtesy of NASA from wikipedia.org) 

Heavy Lift Launch Vehicles are the only rockets capable of moving heavier satellites into 

geostationary or geosynchronous orbits. After a typical launch the inclination of the LEO 

is determined by the latitude of the launch site and the direction of launch. The GTO 

typically inherits the same inclination. The inclination must be reduced to zero to obtain 

a geostationary orbit. Most of the delta-v (AV) for this inclination change is done at the 

GEO distance because that requires less energy than at LEO. This is because the required 
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AV for a given inclination change A/ is directly proportional to orbit velocity V which is 

lowest in its apogee. The required AV for an inclination change in either the ascending or 

descending orbital node of the orbit is calculated from equation 11: 

AV = 2Vsin — 
2 

For a typical GTO with a semi-major axis of 24,582 km, the perigee velocity of a GTO is 

9.88 km/s while the apogee velocity is at 1.64 km/s. Therefore it is most efficient to 

change inclination at GEO. However, note that in actual operation, the inclination 

change is combined with the orbital circularization burn, and considerably less AV is 

required than the above calculation would imply. For a small-scaled Space-Based Solar 

demonstration, it will only be operating in a LEO orbit, which is where the ISS is 

orbiting. However, for SBSP full-scale operation, we will need to consider GTO and 

GEO. Many recent SBSP studies suggested GEO as an operational orbit to house the 

large solar panels. As stated above Hohmann transfer should be the method used to 

transfer a payload from LEO through GTO to GEO (Hohmann Transfer Orbit, 2009). 

2.5 Launch Vehicles 

A launch vehicle is a rocket used to carry a payload from the earth's surface into 

outer space. There are two types of launch vehicles. Expendable launch vehicles are 

designed for one-time use. They usually separate from their payload, and may break up 

during atmospheric reentry. Reusable launch vehicles, on the other hand, are designed to 

be recovered intact and used again for subsequent launches (Launch Vehicle, 2009). A 

trade-off study was conducted to compare expendable vs. reusable launch vehicles. More 
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differences between them and cost analysis of the various systems is discussed later in 

this paper. 

2.6 International Space Station (ISS) 

The International Space Station (ISS) is a research facility currently being 

assembled in outer space in LEO orbit. The space station is a joint project among the 

space agencies of the United States (NASA), Russia (RKA), Japan (JAXA), Canada 

(CSA) and eleven European countries (ESA). Assembly began in 1998, and as of July 

2008 the station is approximately 85% complete. The source of electrical power for the 

ISS is the sun: light is converted into electricity through the use of solar arrays. Before 

the Space Shuttle mission STS-97, (November 30, 2000) the only power source was the 

Russian solar panels attached to the Zarya and Zvezda modules: the Russian segment of 

the station uses 28 volts DC. In the remainder of the station, electricity is provided by the 

solar arrays attached to the truss at a voltage ranging from 130 to 180 volts DC. The 

power is then stabilized and distributed at 160 volts DC, before finally being converted to 

the user-required 124 volts DC. The high-voltage distribution line allows for smaller 

power lines, reducing weight. Power can be shared between the two segments of the 

station using converters, and this feature is essential because of the cancellation of the 

Russian Science Power Platform. Russian segment will depend on the US built solar 

arrays for future power supplies. 

Figure 2.6 shows the ISS in 2001, showing the solar panels on Zarya and Zvezda. 
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Figure 2.6: The ISS in 2001, Showing the Solar Panels on Zarya and Zvezda 

(Courtesy of NASA from wikipedia.org) 

The solar array normally tracks the sun to maximize the amount of solar power. The 

array is about 375 m2 (450 yd2) in area and 58 meters (190 ft) long. In the fully-complete 

configuration, the solar arrays track the Sun in each orbit by rotating the alpha gimbal; 

while the beta gimbal adjusts for the angle of the Sun from the orbital plane (International 

Space Station, 2009). 

2.7 Summary of Background 

Some background information on solar energy and sunlight, photovoltaic and 

solar cells, microwaves vs. laser, geostationary orbit (GEO) and lower Earth orbit (LEO), 

launch vehicles, and the International Space Station (ISS) should provide a better 

understanding of Space-Based Solar Power. The Sun radiates solar energy, and 

photovoltaic cells make it possible to convert solar energy into electricity. The two 

methods of transmitting solar power are microwave transmission and laser beaming. 

Ideally SBSP should be brought to GEO for operation, and a demonstration will be 
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performed in LEO. There are two types of launch vehicles, expendable vs. reusable, 

which can take payload into orbit. Launch vehicles are a major constraint for space 

access. A cost analysis of affordable Launch vehicles will be discussed later in this 

paper. The International Space Station National Laboratory is a great test bed for this 

type of technology demonstration. This thesis proposes a conceptual design of an solar 

power beaming space system demonstration that fits well with the goals and capabilities 

of the Space Station. The next chapter presents the systems engineering of the SBSP 

demonstration 
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Chapter 3: Systems Engineering 

Lowering cost to space access and supporting infrastructure is the first step to 

enabling a viable system of Space-Based Solar Power (SBSP). The concept of SBSP 

consists of an assembly of large arrays of connected solar panels in high Earth orbit. The 

arrays collect solar energy and then convert it to electricity and transmit it wirelessly to 

an earth-based ground station via laser or microwave transmission. Once this energy is 

beamed down to earth, it can then be plugged into the existing energy grid and distributed 

as electrical power to customers. 

Solar Power Satellites (SPS) have been studied for over thirty years by NASA and 

the Department of Energy. In the 1970's SPS was studied using then-current 

technologies that showed technical feasibility. NASA looked into Space Solar Power 

from 1999 to 2001. As the time the National Research Council found the program to have 

a solid foundation but it required significant funding increases. The cost was too high. 

All funding for Space Solar Power was canceled after September 2001, and no Research 

and Development work has been done by NASA since. The two main factors are the cost 

program delivered watt of the solar power components, and the cost per delivered watt of 

getting those components to their final destination in space. The cost of components is 

the first problem; current prices for solar electric power systems are about $2.50 per peak 

Watt. The day/night cycle, non-deal Sun angles, weathering, and cloud cover reduce 

power output enough to make the final cost per average watt $10 or more. In space you 

can get peak power constantly whereas on earth, compensation is required due to loss in 
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transfer. Component costs are potentially much closer to wholesale utility requirements 

for space solar power than they are for terrestrial solar power. The other cost of concern 

is delivery to orbit. Typical communications satellite solar panels have a mass per kW of 

about 20 kg; therefore, a current launch cost at $10,000/kg is $200/W. In order to bring 

that number down, improvements in both mass per kW and cheaper access to space are 

required. Component and launch will not be the only costs. Improved robotics and 

computational capabilities will also make SBSP cheaper (Aldrich, 2008). 

Peter Glaser first wrote about Solar Power Satellites in 1968. William Brown 

proved the potential of wireless power transmission about that time, and solar power from 

space was an important part of physicist Gerard O'Neill's inspiring call to space in his 

1977 book "The High Frontier". Organizations such as the Space Studies Institute and 

the National Space Society (NSS) continue to see space solar power as part of their vision 

of a space-faring future. In the following section I will discuss systems engineering 

design for the conceptual solar power beaming space system (Smith, 2003). 

Systems engineering is a methodical, disciplined approach for the design, 

technical management, operations, and retirement of a system. A "system" is a construct 

or collection of different elements that together produce results not obtainable by the 

elements alone. Systems engineering is the art and science of developing an operable 

system capable of meeting requirements within often opposed constraints (National 

Aeronautics and Space Administration, 2007). 
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3.1 Functional Flow Block Diagrams (FFBDs) 

There are many techniques to perform functional analysis. Some of the more popular 

include: 

(1) Functional Flow Block Diagrams (FFBDs) to depict task sequences and 

relationships, 

(2) N2 dia grams (or N x N interaction matrix) to identify interactions or interfaces 

between major factors from a systems perspective, and 

(3) Timeline Analyses (TLAs) to depict the time sequence of time-critical functions. 

The primary functional analysis technique is the functional flow block diagram (FFBD). 

The purpose of the FFBD is to indicate the sequential relationship of all functions that 

must be accomplished by a system. When completed, these diagrams show the entire 

network of actions that lead to the fulfillment of a function (National Aeronautics and 

Space Administration, 2007). 
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Figure 3.1: SBSP Demonstration Functional Flow Block Diagrams 

The functional flow block diagram shown in figure 3.1 illustrates that the ISS provides 

power and communications to an Instrument Bus. The Instrument Bus manages power to 

Safety and Control, Laser, and ATP. Instrument Bus alerts Safety and Control if Laser is 

clear for Ground Station. Safety and Control controls turn on and shut off power for 

Laser. The ATP system works along side with Safety and Control to control and point 

Laser towards Ground Station. Ground Station provides pointing information and safety 

signal to ATP. Laser provides power to Ground Station. 

3.2 N-squared Diagram 

The N-squared (N2 or N2) diagram is used to develop system interfaces. The 

system components are placed on the diagonal; the remainder of the squares in the N x N 

25 



matrix represents the interface inputs and outputs. Where a blank appears, there is no 

interface between the respective components. The N2 diagram can be taken down into 

successively lower levels to the component functional levels. In addition to defining the 

interfaces, the N2 diagram also pinpoints areas where conflicts could arise in interfaces, 

and highlights input and output dependency assumptions and requirements (National 

Aeronautics and Space Administration, 2007). 
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Figure 3.2: SBSP Demonstration N Diagram 

Figure 3.2 shows the International Space Station (ISS) collects solar energy from the Sun. 

The ISS is connected to the Instrument Bus via electrical and mechanical interfaces. The 
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ISS houses the Instrument Bus and provides the instrument bus with power and 

communications. Launch Vehicles deliver the Instrument Bus to the ISS and it is 

interfaced via supplied services. A Laser system beams down power to Ground stations 

and therefore, is communicating with Ground Station via an electrical interface. 

Acquisition, Tracking, and Pointing System help to track safety signals from Ground 

Stations, which alerts the Safety and Control System if the link is impeded. The ATP 

System supports tracking and pointing of the laser toward the Ground Station. The 

Safety and Control System has a laser curtain component to protect against objects 

potentially flying through the laser. ATP as well as Safety and Control System interface 

with Instrument Bus and Ground Station via electrical interface. 

The Ground Station feedback is linked to the ISS via electrical interface. Ground 

Station signals to Safety and Control System to assure laser path to Ground is unimpeded. 

Ground Station also has a communication component which assists with the pointing and 

tracking of the laser. Instrument Bus is interfaced with Laser System via electrical and 

mechanical Interfaces. The Instrument Bus manages power to Safety and Control 

System, manages power to communications to the ATP System, and manages power to 

the laser system via electrical interface. 

3.3 Product Breakdown Structure (PBS) 

The top-level requirements and expectations are initially assessed to understand the 

technical problem to be solved and establish the design boundary. This boundary is 

typically established by performing the following activities: 
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(1) Defining constraints that the design must adhere to or how the system will be 

used. The constraints are typically not able to be changed based on tradeoff 

analyses. 

(2) Identifying those elements that are already under design control and cannot be 

changed. This helps establish those areas where further trades will be 

performed to narrow potential design solutions. 

(3) Establishing physical and functional interfaces (e.g., mechanical, electrical, 

thermal, and human) with which the system must interact. 

(4) Defining functional and behavioral expectations for the range of anticipated 

uses of the system as identified in the ConOps. The ConOps describes how 

the system will be operated and the possible use-case scenarios. 

A complete set of the project requirements includes the functional needs requirements, 

performance requirements, and interface requirements. For space projects, these 

requirements are decomposed and allocated down to design elements through the PBS 

(National Aeronautics and Space Administration, 2007). 

The SBSP Demonstration "A" in figure 3.3 below was broken down into three sub­

systems: 

• A1. Space 

• A2.Safety and Control 

• A3.Ground Station 
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Figure 3.3: SBSP Demonstration "A" Product Breakdown Structure 

Each of the Space, Safety & Control, and Ground Station sub-systems will then be 

broken down furthermore into individual sub-systems. 

A11. 
LASER System 

A111. 
Lasing Material 

A113. 
Optical Cavity 

I 

A112. 
Pump Source 

A114. 
Pointing 

A115. 
Cooling 

Figure 3 4: SBSP Demonstration "All" Laser System 

For example A1.Space subsystem is Laser System Al 1 as seen in figure 3.4. Laser 

system was broken down into its individuals sub-systems: 

• Al 11 .Lasing material 

• Al 12.Pump Source 
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• All3.Optical Cavity 

• A114.Pointing 

• A115.Cooling 

Laser as a system requires all its sub-systems in order to be functional. Likewise, figure 

3.4 illustrate A12., the Acquisition, Tracking, Pointing (ATP) System. This was broken 

down to: 

• A121.Tracking 

• A122. Acquisition 

• A123.Pointing 

• A124.Isolation and Stabilization 

A123.Pointing as a sub-system can also be broken down to it individual sub-system. 

• A1231.Gimbal 

A124.Isolation and Stabilization can also be broken down to individual sub-system 

• A1241.Gyros 

30 



A12. 
ATP System 

A121. 
Tracking 

A123. 
Pointing 

A1231. 
Gimbal? 

A122, 
Acquisition 

A124 
Isolation and 
Stabilization 

A1241. 
Gyros? 

Figure 3 5: SBSP Demonstration "A12" ATP System 

In addition, figure 3.6 shows A13.Instrument Bus System broken into three sub-systems: 

• A131 .Power Management 

• A132.Command and Control 

• A133.Communications 

31 



Ir 

A132. 
Command and 

Control 

I 

A1321. 
Bus Safety 

A133. 
Communications*1 

A13. 
istrument B us 

A131. 
Power Management 

I 

A1311. 
Solar Panels* 

I 

A1312. 
Battery Backups* 

Figure 3.6: SBSP Demonstration "A13" Instrument Bus 

A131.Power Management was then broken into two individual sub-systems: 

• A1311.Solar Panels 

• A1312.Battery Backups. 

A132.Command and Control was broken down to 

• A1321.Bus Safety 

The completed Product Breakdown Structure can be seen in figure 3.7. A2.Safety and 

Control and A3.Ground Station systems can also be seen broken down to their individual 

sub-systems in figure 12. In addition, Bl.Launch Vehicle is the SBSP system constraint, 

where Bl 1 is Payload and B12 is Launch Vehicle Environment. 
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Figure 3.7: SBSP Demonstration Completed Product Breakdown Structure 
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Chapter 4: Tradeoffs Studies 

The following sections will analyze the tradeoffs studies for expendable vs. 

reusable launch vehicles, microwave vs. laser, and present the preliminary SBSP 

demonstration. In addition section 4.3 will explain the reasoning behind the down select 

of LEO for demonstration, GEO for operation, and Thin Film Solar Cells. 

4.1 Launch Vehicles (Expandable vs. Reusable) Cost Analysis 

There are about twenty countries with advanced-launch capabilities. Only a few 

out of those twenty countries have developed reusable launch vehicles. My launch 

vehicles tradeoff study in Appendices I and II shows that reusable launch vehicles cost 

less than expendable launch vehicles. For example, I compared the Russian Proton, the 

Chinese Long March, and the United State, SpaceX Falcon 9 Normal/Heavy launch 

vehicles below (Wertz, Eonomic Model of Reusable vs. Expendable Launch Vehicles, 

2000). 

Table 4.1: Compare existing expendable vs. Reusable launch vehicles cost 

Launch Vehicle 

Proton 
Long March 

Falcon 9 Normal 
Falcon 9 Heavy 

Country 

Russia 
China 
USA 
USA 

LV Type 

Expendable 
Expendable 

Reusable 
Reusable 

Launch 
Cost 

$85 Million 
$60 Million 
$35 Million 
$78 Million 

Payload to Orbit 

4,600 kg to GTO 
5,200 kg to GTO 
4,900 kg to GTO 
12,000 kg to GTO 

Cost per kg 

$18,350 
$11,500 
$10,500 
$8,200 

Table 4.1 compares existing launch vehicles cost for both expendable and reusable. 

Launch cost for the Russia Proton expendable vehicles is highest at $85 million. Launch 

cost for Falcon 9 Normal reusable vehicles is lowest at $35 Million. A payload capacity 
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to orbit for Proton is lowest at 4,600 kg to GTO whereas Falcon 9 Heavy payload to orbit 

is 12,200 kg to GTO. The costs per kg are higher for expendable than reusable launch 

vehicles: Proton at $18,350 per kg, Long March at $11,500 per kg. Falcon 9 Normal at 

$10,500 per kg, and Falcon 9 Heavy at $8,200 per kg. Therefore, for low cost access to 

space, reusable launch vehicles are the way to go. 

4.2 Microwave vs. Laser 

One of the major challenges of Space-Based Solar Power is not having an actual 

on-orbit demonstration of watts beamed down from orbit to measure the losses. This 

thesis proposes a demonstration of a 1200W laser system on the International Space 

Station. The reason for laser beaming over microwave transmitting is because laser 

transmission allows for components that are practical to use. 
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4.3 SBSP Demonstration 
The demonstration shown in figure 4.1 is the SBSP design architecture. 

50% est. 
laser system 
conversion 
efficiency 

P P O - 1 2 0 0 W 
out of laser 

50% 
estimated 
atmospheric 
loss 

50% 
efficiency 
assumed for 
photovoltaics 
on ground 

PP, - 600 W 

Pointing Control 
Device Gimbal or 

S/C attitude control 

Laser & Mirror 
Aperture 

Acquisition-
Tracking- Pointing 

System 

Figure 4.1: SBSP Demonstration Concept 

This is an attached payload demonstration on the International Space Station (ISS). A 

satellite mass payload of approximately 100kg payload including: a pointing control 

device (perhaps a gimbal or spacecraft attitude control), a laser with mirror aperture, and 

an acquisition, tracking, pointing (ATP) system. The ground station receiver on earth 

will be approximately 10 meters in diameter of photovoltaic including ground support 
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systems. The demonstration concept is to either be attached to the U.S FRAM or Japan 

JEM. It is being assumed that the ISS provides electrical power and many of the 

spacecraft functions. The demonstration will required approximately 2500W from the 

ISS, allow 100W to support systems, and 2400W for laser system. With a prediction of 

50% estimated laser system conversion efficiency 2400W to laser will be reduced to 

1200W out of laser. Another 50% estimated atmospheric loss will reduce power to 

600W and finally an anticipated 50% efficiency assumed for photovoltaic on the ground. 

The laser power demonstration is 300W on the ground (Grady, 2008). 

Figure 4.2 shows the receiver sizing from sunsats in GEO with PV/microwave 

and PV/laser. Microwave beam diffraction is limited by X ~ 0.12m, Dx = \km; therefore, 

the diameter spot is dspoJ =2{XlDl) = h, where h for microwave is 40,000 km. The 

calculated receiver size is then 10km. 

Figure 4.2: SBSP Demonstration Microwave vs. Laser 
(Reprinted with permission from Eric Hoffert from 

www. s spi. gatech .edu/s sp_fundable_demo_hoffert.ppt) 
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Laser beam is diffraction limited by X ~ 0. ljum, Dx = 0.8m; therefore, if diameter spot is 

d-spot =2(X/Dl) = h, where h for laser is 40,000 km. The PV arrays with or without solar 

concentrators with direct sun-pumper laser and the laser receiver size is 100m. (Hoffert & 

Hoffert, 2008). 

Figure 4.3 shows the SBSP demonstration estimated value for the laser beam 

ground spot. 

I 
d_spot = 2.44(Lambda/D)h 

Lambda=1.00E-06m 
D=0.8 m 

i "I 

H = 358km at Apogee 

H = 348km at Perige 

d_spot = 1.06m 

d_spat= 1.09m 
Figure 4.3: Laser Beam Ground Spot 

The d_spot was calculated for the International Space Station orbit at apogee and perigee. 

As a safety factor the d_spot be multiplied by 10 meters on the ground. 
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4.4 Demonstration on LEO and Operational on GEO 

The International Space Station (ISS) is the perfect test bed for this technology, a 

small scaled SBSP demonstration using 2400W. The launch cost for lower Earth orbit 

(LEO) is cheaper then GEO on the SpaceX Falcon 9. A payload of 100kg can be 

delivered to the ISS for a couple of million dollars in launch costs. A demonstration in 

LEO is workable for a small-scale experiment however for a full-scale SBSP mission, 

GEO would be better for operational. 

4.5 Thin-Films Solar Cells 

Thin-film PV panels are strongest where traditional crystalline silicon PV panels 

are weakest and are cheapest. The crystalline silicon fabrication process of forming a rod 

of pure silicon and sawing it into wafers is inherently expensive. Thin-films are usually 

deposited, not sawed, and they use a fraction of the material used in crystalline panels. In 

recent years, the energy market has begun to understand their potential, and growth rate 

of thin-films made out of Cadmium Telluride (CdTe) and Cadmium Indium Gallium 

Diselenide (CIGS) has exploded (Knight, 2008). The next chapter discusses the systems 

databases. 
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Chapter 5: Systems Database 

The systems database was written as an input output Excel program. The 

objective of the database is to create a systems design tool for a specific space based solar 

power system. The N2 Diagram is used as a cover sheet for the design tool, Figure 5.1. 

Solar Power 
J, 

Instrument Bus 

(m,T,W) 

Manages power to 
Laser System 

Laser System 

Points the Laser to 
the Ground Station 

Provides the 
enable for the 
Laser to fire if 

nothing is 
impeding the 

safety laser curtain 

Manages power 
and comm. To ATP 
System/Manages 
power to Saftey 

and Control 
System 

Tracks Safety 
Signal from 

Ground Station, 
alerts Safety and 
Control if link is 

broken 
(A) 

ATP 
System/Safety and 

Control System 

Comm. To assist 
with the pointing 

and tracking/ 
Signal to assure 

Laser path to 
Ground Station is 

umimpeded 

Beams Watts to 
Ground Station 

(W,£) 

Tracks the Ground 
Station and points the 
laser towards it/ Laser 

curtain to protect 
against object 

potentially flying 
through laser 

Ground Station -> Watts 

Figure 5.1: N2 Diagram 
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The N2 diagram demonstrates four important sub-systems: Instrument Bus, Laser 

System, ATP/Safety and Control System, and Ground Station. These systems work 

together from top to bottom and vice versa; the diagram should be read clockwise. Also 

included in the diagram are each sub-systems constraint variables. The database that 

follows the N2 Diagram is the Instrument Bus calculation (see Table 5.1). 

Table 5.1: Instrument Bus Electromagnetic Spectrum 
Electromagnetic 
Spectrum 
Payload 
Temperature 
(Absolute) = T 
Wavelength = X 
Frequency 

Spectral Irradiance 
= E A 
Total radiant 
emittance = W b 
Wavelength of 
peak emittance = 
A_max 

input 

612.8680292 
1.07E-06 
1.00E+05 

[(2rrhcA2)/(AA5)] *[l/(eA(ch/kTA)-1)] 

aTA4 

2,898/T 

Units 

K 
M 
Hz 

Equations 

9-2 Pg 256 

9-3 Pg 256 

9-4 Pg 257 

output 

339.7180 

83281.20 

8000.00 

4.7286 

units 

C 

W/mA2/n 

W/mA2 

Jim 

The electromagnetic spectrum of the payload temperature (in absolute value) can be 

calculated from equation 12 

Wh=oT* 
W 

m 
^T = 

8000 

5.67051x10-* 

Where: Stefan-Boltzmann' s Law is a = 5.67051 x 10~8 [w • nf2 • /T4 

Equation 13 is the spectral energy distribution of a blackbody is given by Planck's Law: 

lithe1 1 
Ei 

I5
 e^

ax-\ 
Where: X is the wavelength 

34x h is the Planck's constant (6.626075x10^)W*s 
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T is the Absolute temperature K 

c is the speed of light (2.99 x 108) m/s 

k is the Boltzmann's constant (1.380658 x 10~ZJ)W*s/K 

Equation 14 solves for the wavelength of peak emittance. 

2,989 

-23-, 

I max rp 
(14) 

For this specific SBSP demonstration on the International Space Station, the laser 

payload temperature profile is 612.87 °K or 339.72 °C and its wavelength is 1.07E-06. 

The spectral irradiance outputted 83,281.20W/m2/|i. The radiant emittance is 8,000W/m2 

and the wavelength of peak emittance 4.728587 \xm (Bate, Mueller, & White, 1971). 

A code was written to design the laser optic system. The systems database 

accepts inputs for the variables from equations 15-16. The three options for the inputs 

are: (1) the variables can be inputted directly, (2) the variables can be calculated, and (3) 

the default variables are from Southampton Photonic Laser data (see Table 5.2). 

Table 5.2: Laser System 
Constants 

Earth Radius 

Orbit Apogee Altitude 

Parking Orbit Altitude 

PJaser = (1400/R_sl,auA2)*£jas*TT*R_arrayA2 

Power-beam Laser 

Solar array radius 
Efficiency of sunlight conversion to a collimated EM radiation 
beam 
Separation between the Sun and the solar-pumped laser power 
station 

2.44*A_laser/DJas-tran = D_receiver/DJas-rec,max 

Laser wavelength 

Diameter of the Laser-transmitting optics 

Separation between the laser power station and the receiver 

Sail receiver 

P laser 

R_array 

e las 

R_sl,au 

K laser 

D las-tran 

DJas-rec, max 

D_receiver 

Input 

358000 

output 

6371000 

405696000 

100000 

800 

2.42521818 

0.075 

1 

1.07E-06 

0.75 

358000 

1.246221867 

unit 

m 

m 

m 

W 

m 

Au 

m 

m 

m 

m 
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The size of the power system can be estimated using equation 15 

P -ifOO 2 , , 
1laser ~ „ 2 iz,lasJt,Iyarray Vr J 

^sl.au 

This equation, Rarray is the radius of a disc-shaped solar array, in meters. The efficiency 

of the power system converting sunlight to laser power is £ias and the separation between 

the sun and laser power station is Rsi,au, in Astronomical Units. The l,400Wm2 is the 

solar irradiance on an object 1AU from the Sun. The size of the laser optics can 

calculated with the relationship in equation 16. 

2 - 4 4 ^ , . _ 2Rsail 

las-tran las-ship,msa 

The laser wavelength is given by A,iaser and the diameter of the laser transmitting optics, 

Dias-tran, both in meters. The maximum separation between laser power station and the 

payload is Dias.ship,max, in meters. The radius of the solar sail is given by Rsaii, in meters 

(Bate, Mueller, & White, 1971). 

The Acquisition, Tracking, and Pointing & Safety System assume an ISS payload 

and ellipse orbit altitude. The value used for Earth radius is 6378.14 km and the Earth 

gravitational constant is 398,600.5 km3/sec2, see Table 5.3. 

Table 5.3: Classic Orbit Elements 
Classic Orbit Elements input output elements output units 

Semi-major axis = a 
Inclination = i 

Eccentricity = e 
Perigee altitude = H 

Apogee altitude = Ha 

(rA+rP)/2 
51.6428 
(rA/a)-l 
348.00 
358.00 

.... 

.... 

.... 

Radius Perigee = rP 
radius Apogee = rA 

6731.14 
51.6428 

0.000742816 
6726.14 
6736.14 

km 
deg 

km 
km 
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Equations 17-21 are the classic orbit elements: 

-H _{rA~rP) 
a =-2e 2 

Where: a the Semi-major axis is describes the size of the ellipse 

e = \e\ = \-
(r \ 

JL 

[a J 

fr } 'A 

\a J 
- 1 

(17) 

(18) 

Where: e the Eccentricity is describes the shape of the ellipse 

v h j 
l = CO$ 

Where: / the Inclination of the angle between the angular momentum vector and the unit 

vector in the Z-direction 

(19) 

Where: rp is the radius of perigee 

Where: rA is the radius of apogee 

rp =a(l-e) 

rA=a(l + e) 

(20) 

(21) 

The semi-major axis is 6731.14 km, inclination is 51.64 deg, eccentricity is 0.000742816, 

perigee altitude is 6726.14 km, and apogee altitude is 6736.14 km. 

The basic orbit dynamics, the orbit period, orbit revolutions per earth day, orbit 

energy, average orbit angular velocity, average ground velocity, and satellite velocity at 

perigee and apogee are calculated in Table 5.4 (Wertz, Space Mission Geometry, 2004). 

Table 5.4: Basic Orbit Dynamics 
Basic Dynamics 

Orbit period = P 

Orbit revolutions per Earth day 

Orbit energy =e 

Average orbit angular velocity = n 

Average ground velocity = Vg 

Satellite velocity (at perigee) = V_P 

Satellite velocity (at apogee) = V_A 

Input 

a'pKa^/mu)^-!^) 

(# of min per day)/orbit period 

[-] mu/2a 

(mu/aA3)A(1/2) 

2*pi*R E/P 

(E+mu/rP)*2)A(1/2) 

(t+mu/rA)*2)^-\/2) 

•Table 6-2, Pg 137 

*Eqn6-4, Pg 134 

*Eqn 6-13, Pg 139 

*Eqn5-32, Pq 116 

*Eqn6-4, Pg 134 

*Eqn6-4, Pg 134 

output 

91.59940099 

15.72062682 

-29.60869184 

0.001143236 

7.291720816 

7.70 

7.68956915 

min 

revs/day 

kmA2/secA2 

rad/sec 

km/sec 

km/sec 

km/sec 
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The Basic Orbit Dynamics are shown in equations 22-27 

P = 2n 
V ^ 
v/O 

f _ A 
= 84.489 

\**J 

min = 0.00016587a/2 min, a in km (22) 

Where: P is the Orbit period 
V2 M M 
2 r (2a) 

Where: s is the total specific mechanical energy or mechanical energy per unit mass for 

the system and is the sum of the kinetic energy per unit mass and potential energy per 

unit mass. (Orbit energy) 

~deg 

(23) 

< H^ 

\a ) 
= 36,173.585a / 2 

deg 

sec 
:8,681,660.4a rev 

day 

n = 3.1252977 x l O V / 2 

day 

(24) 

Where: n is the mean motion or average angular velocity 

V =2TC^- < 7.905 
* P 

km 

sec 
(25) 

Where: Vg is the ground tracking velocity 

Equation 26 is the Velocity at perigee 

V V T/ 
2 r 

2.Si 
y2 

V rP J 

Equation 27 is the Velocity at apogee 

yA = 
V rA J 

(26) 

(27) 

In summary, the orbit period is found to be 91.599 min, orbit revolution per Earth 

day is 15.72 revs/day, orbit energy is - 29.60 km2/sec2, average orbit angular velocity is 

0.001143 rad/sec, average ground velocity is 7.2917 km/sec. Satellite velocity (at 

perigee) is 7.70 km/sec, and satellite velocity (at apogee) is 7.6895 km/sec. 
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The minimum elevation angle and maximum nadir is calculated in Table 5.5. 

Table 5.5: Orbit Geometry 
Orbit Geometry 
Minimum elevation angle 
= angle e 

Maximum nadir angle = n 

input 
* minimum angles for 
IR payload 

asin[cos e)(sin p)] 

*Eqn 5-26 pg. 113 

*Eqn5-26pg. 113 

output 

0.35 

1.10 

units 

rad 

rad 

ouput 

20.00 

63.0086 

units 

deg 

deg 

The Orbit Geometry, where e is the Grazing angle or spacecraft elevation angle measured 

at the target between the spacecraft and the local horizontal.The Minimum angles for IR 

payload are 20 degrees which is 0.35 radians. Where t| is the Nadir angle measured at the 

spacecraft from the sub-satellite point to the target and sin TJ = cos e sin p. The general 

coverage characteristics at perigee and the general coverage characteristics at apogee is 

shown Table 5.6 and Table 5.7. 

Table 5.6; General Coverage Characteristics 
General Coverage 
Characteristics (at 
Perigee) 
Earth angular 
radius = p 
Maximum Earth 
central angle = 
A0 
Range to 
horizon = 
D max 

Swath width for 
overlapping 
equatorial 
coverage = S 

Swath width = X 

Swath width 
Maximum field 
of view 
Slant range to 
edge of swath = 
D 

where K A = 
Instantaneous 
access area = 
IAA 
Area access rate 
= AAR 

input 

asin(R_E/R_E+H) 

90-p 

R_E*tan(X0) 

[-](sinA-
I)(sin24.8)(sin55) 

2*(90-X.-T|) 

2 times maximum 
nadir angle 

R_E(sinX/sinr|) 

2.56E+08 

K_A(l-cosX.) 

(2*K_A*sinX)/P 

*Eqn 5-16 Pg 111 

*Eqn5-17Pg 111 

*Eqn5-18Pgl l l 

Eqn 9-30 Pg 293 

Eqn 5-27 Pg 113 

Eqn 5-28 Pg 113 

kmA2 

Eqn 7-6 Pg 167 

Eqn 7-10 Pg 169 

output 

1.247714772 

0.323081555 

2135.483421 

0.315095461 

0.24404708 

1556.566444 

2.199413873 

871.2552651 

1900580.479 

1.13E+04 

Units 

Rad 

Rad 

Km 

Rad 

Rad 

Km 

Rad 

Km 

kmA2 

kmA2/sec 

ouput 

71.489 

18.511 

18.054 

13.98 

126.02 

units 

deg 

deg 

deg 

deg 

deg 
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General Coverage 
Characteristics (at 
Apogee) 
Earth angular 
radius = p 
Maximum nadir 
angle = q 
Maximum Earth 
central angle = 
10 
Range to 
horizon = 
D max 

Swath width for 
overlapping 
equatorial 
coverage 

Swath width = A 

Swath width 
Maximum field 
of view 
Slant range to 
edge of swath = 
D 

Instantaneous 
access area = 
IAA 
Area access rate 
= AAR 

Table 5.7: General Coverage 

input 

asin(R_E/R_E+H) 

asin[cos £)(sin p)] 

90-p 

RJE*tan(M)) 

[-](sinA-
I)(sin24.8)(sin55) 

2*(90-X-T|) 

2 times maximum 
nadir angle 

R_E(sin)7sinr|) 

K_A(l-cosX) 

(2*K_A*sinX.)/P 

*Eqn 5-16 Pq 111 

*Eqn 5-26 pg. 113 

*Eqn 5-17 Pg 111 

*Eqn5-18Pgl l l 

Eqn 9-30 Pg 293 

Eqn 5-27 Pg 113 

Eqn 5-28 Pg 113 

Eqn 7-6 Pg 167 

Eqn 7-10 Pg 169 

Characteristics 

output 

1.243309826 

1.10 

0.327486501 

2166.774617 

0.315095461 

0.249859766 

1593.640568 

2.193601187 

893.2259393 

1992075.103 

1.16E+04 

Units 

Rad 

Rad 

rad 

km 

rad 

rad 

km 

rad 

km 

kmA2 

kmA2/sec 

ouput 

71.236 

62.842 

18.764 

18.054 

14.32 

125.68 

units 

deg 

deg 

deg 

deg 

deg 

deg 

Where p is assumed a spherical Earth, the line from the spacecraft to the Earth's horizon 

is perpendicular to the Earth's radius, and therefore Earth angular radius in equation 28 

(Boden, 2004). 

sin/? = cos zip = Rr 

RE+H 
Where RE is the radius of the Earth and H is the altitude of the satellite in equation 29. 

P + AQ = 90deg 

Where: Xo is the Maximum Earth central angle 

Dmax is the distance to the horizon. (Range to horizon) 

(28) 

(29) 

max '{RE+H)2-R2
EY2=REtim^ (30) 
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S is the Swath width. The perpendicular separation between the grounds tracks. The 

perpendicular separation between the orbits at the equator is 20.1 deg. Because the swath 

width is 24.2 deg, we now have some overlap margin even at the equator and substantial 

margin at higher latitudes, which are the primary areas of interest (ee equation 31). 

S = sin"1 (sin 24.8 deg sin 55 deg) 20.1 deg 

The Maximum field of view is two times maximum nadir angle 

^ sin 77 

Where D is the Slant range to edge of swath 

IAA = KA(l-co*A) 

Where IAA = the instantaneous access area 

KA = 2.55604187x10s for area in km2 

AAR = 
(2KAsinX) 

Where AAR = the area access rate as the satellite sweeps over the group for the access 

area. Lastly, the Gravitational Perturbations are calculated in Table 5.8. 

Table 5.8: Gravitational Perturbations 
Gravitational Perturbations Output Input units 
Node precession rate - J2 
Node precession rate - Moon 
Node precession rate - Sun 
Total node precession rate 

Node spacing 
Perigee rotation rate - J2 
Perigee rotation rate - Moon 
Perigee rotation rate - Sun 
Total perigee rotation rate 

Eq. 6-19 Pg 143 
Eq. 6-14 Pg. 142 
Eq. 6-15 Pg. 142 

Eqn 6-20 Pg 143 
Eqn 6-16 Pg 143 
Eqn 6-17 Pg 143 

-4.976329661 
-0.000150003 
-6.07906E-05 
-4.976540454 

-23.27910782 
3.818528725 
9.94918E-05 
4.53306E-05 
3.818673548 

deg/day 
deg/day 
deg/day 
deg/day 

deg/rev 
deg/day 
deg/day 
deg/day 
deg/day 
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The rate of change due to h 

r D \ 
Q = -1.5*/ , R (cos / ) ( l -e 2 )" 2 s-2 .06474xl0 'V^(cos / ) ( l -e 2 )~ 

Where: n is mean motion in deg/day 

RE is Earth's equatorial radius 

a is semi-major axis in km 

e is eccentricity 

i is inclination 

Right ascension of the ascending node for the Moon and Sun: 

_-0.00338(cos/) 
Q.„ 

a 
-0.00154(cosi) 

deg 

day 
(35) 

n 

(36) 

(37) 

The rate of change due to J2 
g 

Q) = 0J5nJ, 
V a J 

(4-5sin2 / )( l -e2)~2 

i=1.03237xl0 1 4a"^(4-5sin 2 / ) ( l -e 2 )^ 
deg 
day 

(38) 

Argument of perigee for the Moon and Sun: 

COrnoon — 

0.00169(4-5sin2j) 

n 
8 0.00077 ( 4 - 5 sin2/) 

(Osim = 

n 

The ground station calculation can be seen in Table 5.9; the laser beam ground spot at 

perigee is 1.06 m and apogee is 1.09 m(Wertz, Orbit and Constellation Design, 2004). 

(39) 

(40) 
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Table 5.9: Ground Station 

D = 

Perigee d_spot 
Apogee d_spot 

0.8 
1.00E-06 
input 

2.44(A/D)h 
2.44(A/D)h 

M 
M 

output 
1.06E+00 
1.09E+00 

H_perigee = 

H_apogee = 

units 
m 
m 

348000.00 
358000.00 

Equation 41 is the Laser Beam Ground Spot 

f i \ 
"spot ~ ^ H 

Table 5.10 shows the cost vs. the space-rated cost for the major sub-systems of 

the SBSP demonstration. The total estimated cost is $12 million dollars for the 

demonstration (Wertz, Orbit and Constellation Design, 2004), (Chesley, Luts, & 

Brodsky, 2004). 

Table 5.10: System Cost Analysis 

(41) 

Sub-systems 

Total 

International Space 
Station 

Launch Vehicle 

Laser System 
Acquisition Tracking 
Pointing System 

Instrument Bus 

Safety and Control 

Ground Station 

Estimated Cost 

Company 

NASA (FRAM)AJAXA (JEM) 

SpaceX (Dragon Lab) 

Southamton Photonic (YB) 

Tesat (Laser Comm.) 
Saab (Spacecraft Manangement 
Unit) 

Mirrors and Laser Optics 
solar cells, maintenance, and TTC 
(Telemetry, Tracking, and 
Communication) 

Cost ($) 

0.00 

4,000,000.00 

120,000.00 

1,000,000.00 

3,000,000.00 

500,000.00 

1,000,000.00 

9,620,000.00 

Space-Rated ($) 

0.00 

4,000,000.00 

1,200,000.00 

1,000,000.00 

2,000,000.00 

1,000,000.00 

1,000,000.00 

10,200,000.00 

12,000,000.00 

The specification establishes the performance, design and development requirements 

of the Space Based Solar Power Demonstration. The instrument bus houses and 

maintains the instrument on the International Space Station. The main components of 

this system are: Power Management System, Command and Control, and Safety. The 
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laser system is responsible for transferring the energy from SBSP plant to ground station 

in the form of amplified radiation. This system is to be an active closed loop control 

system, working together with the ATP. The controlling system will work with inputs of 

the ATP system. The major components of this system are as follows: laser, lasing 

material, pump source, optical cavity, laser curtain, pointing, and cooling system. The 

ATP system is responsible for acquiring and tracking the position of the target ground 

station and uses that information to point the SBSP system laser towards the target 

ground station. The system also needs to be an active, closed looped system, requiring 

information from the target ground station to help point the laser and assure that nothing 

is impeding the target ground station. The major components of this system are as 

follows: tracking, pointing, safety and control, and isolation and stabilization system. 

The safety and control system is responsible for assuring that nothing can impede the 

SBSP demonstration's path to the target ground station while the laser is operating. The 

major components of the system are as follows: laser curtain, ground-based modular 

laser, turn on and shut off system (Grady, 2008). 
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Table 5.11: Characteristics Specification 
Acquisition. Tracking and Pointing (ATP) System {'assuming ISS »ayloaci not a free flye*; 

Physical Characteristics 

Mirror Aperitifs 
hf--"0'!Laset a ra ion c * t Syelerr Mass 

Vfc 'ai ions f - o n the Inssrnatosa Space Station 
Orbit Altflude 
Ortsi: Velocity 

0 * i t Inclination 
Maximum Slant Ra«ge 

Performance Characteristics 
PointVug Accuracy 

Approximate vaiues 

75 CTI 

ICC k§ 
O.CI-SC-Hz* 
340 5 <crr. • 

27,?00 Km/hr" 
5 ! .64 ' (deg} * 

500 naucfcal n i ies 

Req«/Jremen«s 
10e-7 rad ia l precision 

Laser System 
Physical (Characteristics 

Mirror Apert^-e 
h* " C ' L a s s r and o n c e : Systerr Mass 

Performance Characteristics 

Laser efficiency 
Lass-' Potve-» 

Approxim»t<e values 
75- e n 
ICO Kg 

Re4jssfreji?en*s 

at Seas* 30% 

SCO Wsfes 

Safety and Control System 
Performance Characteristics 

Laser c v i a l n S s « Diameter 
Laser Cur iae Area 

Requirements 

3D rn 
706.55-8 rrr 

Instrument Bus 'assuming a f*ee f.-yer and nc; an ISS pay c>3* 
Physical Characteristics 

Solar Pastel Area 

Per fo rmance Characteristics 

Power' 

Approximate values 

10 r** 

RegsfrrewerWs 

4 KWatte" 

The systems database was benchmarked with Werts & Larson, 2004. All the equations 

came directly from Space Mission Analysis and Design, Third Edition 

52 



Chapter 6: Conclusions 

Photovoltaic cells convert solar energy directly into power for electricity grids. 

Solar radiation is directly proportional to the current source of a solar cell connected in 

parallel. Solar cells also consist of diodes which represent the p-n junction of a cell. 

There are over a dozen types of solar cell materials; this thesis focuses on thin film. Thin 

film solar cells are light weight and require fewer materials to produce; hence they are 

cheaper in cost per solar cell. Due to the high cost of space access and the massive 

quality of solar cells needed to collect solar power on orbits, thin-film solar cells are ideal 

for SBSP. 

SBSP has been discussed and studied for over thirty years by people in related 

industries. The thesis describes a small-scaled space-based solar power demonstration 

using laser technology to beam down power from orbit. Laser beaming allows for 

practical sizing of components. Lower earth orbit (LEO) and the International Space 

Station are the perfect test beds for this technology to be demonstrated. However, for a 

full-scale space-based solar power system, geosynchronous orbit (GEO) is ideal. GEO 

period is equal to the Earth's rotational period with an orbital eccentricity of 

approximately zero. 

Launch Vehicles (LV) are the main constraining variables of Space-Based Solar 

Power. Lowering cost to space access and support infrastructure is the first step to enable 

a viable system of SBSP. Systems engineering was performed to identify the SBSP 

system requirements and constraints. The N2 Diagram identifies interactions between 

major factors of the system. The Functional Flow Block Diagrams indicate the sequential 
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relationship of all functions that must be accomplished by a system. A complete set of 

project requirements includes the functional needs requirements, performance 

requirements, and interface requirements. The Product Breakdown Structures 

decomposed and allocated those requirements down to design elements. The 

components' physical characteristics and their approximated values are stated in Table 4. 

The tradeoff study on launch vehicles cost is in Appendices I and II which 

compare the cost for all existing Expendable LV and Reusable LV. Reusable Launch 

Vehicles are concluded to be cheaper than Expendable launch vehicles. When comparing 

the Russian Proton and the Chinese Long Mach expendable launch vehicles to the United 

States, SpaceX Falcon 9 reusable launch vehicle, Falcon 9 launch cost is by far the 

cheapest at $8,200 per kg. 

The demonstration in figure 13 shows the concept of Space-Based Solar Power. 

The components necessary for this demonstration are: Pointing Control Device - Gimbal 

or Spacecraft attitude control, Laser and Mirror Aperture, and Acquisition-Tracking-

Pointing System. The demonstration experiment is to collect 2500W from the 

International Space Station, allocate 100W to support systems, and 2400W for laser 

beaming system. A prediction of 50% loss to the laser system, another 50% is estimated 

to be lost due to the atmosphere, and finally, a 50% loss to the Photovoltaic ground 

station. The laser power demonstration should beam 300W on the ground. 

The Excel program should be used as a database of systems engineering for basic 

orbit dynamics calculation for the Space-Based Solar Power demonstration. The cost 

analysis estimated a total cost of the demonstration at $12 million dollars. Appendix III 
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shows some structure analysis calculations. Appendix IV has the entire component 

specification document in details. 

Additional future work that can be done related to this thesis is structure analysis for 

the Space-Based Solar Power systems design. This project also needs funding for 

demonstration. 
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Appendices 

Appendix I: Expandable/Disposable, 2-stage, 3+stage 
Country Vehicle 

Name 
Launch Type Orbit 

USA 

Space 
Explorati 
on 
(SpaceX) 

Falcon 1 
Falcon le 

Reusable, 2-stage 
Reusable, 2-stage 

LEO 
LEO 

FALCON 1 and FALCON 1 B 

Orbital 
Sciences 
Corporat 
ion 

Lockhee 
d Martin-
Boeing 
joint 
venture 
United 
Launch 
Alliance 

United 
Launch 
Alliance 

Taurus 

Atlas V 

Delta II & 
IV 

4-stage LEO 

LEO/GT 
O 

2 or 3-stage, 2-stage 

I 1 I * 111 
LEO/GT 
O 

Minotaur 4-stage LEO/SSO 

Orbital 
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Sciences 
Corporat 
ion 

Russia 

State 
Rocket 
Center 
Makayev 

Russian 
Space 
Agency 

Volna/Shtil' 

Cosmos-3M 
(KOCMOC-

3M) 

Proton 

3-stage 

2-stage 

^B 0 ^B 
• • c • • H M H 
^m o ^1 
^m c ^1 

3-stage (w/optional 4-stage) 

LEO 

LEO/SSO 

LEO/GT 

S100K/ 
10kg 

1,500 kg 
775 kg 

22,000 kg 
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Commer 
cial and 
Russian 
governm 
ent 
launches 

Russian 
Space 
Agency 

Japan 

Made by 
Mitsubis 
hi Heavy 
Industrie 
s (MHI) 
for 
JAXA 

Rockot 
(POKOT) 

H-HA 

HTV 

3-stage 

2-s 

I 
I 

? 
ft 

I « 

i 
8! 
f! 

age 

! 

If 

4 

\ 

I 

41 

H-n Transfer Vehicle to ISS 

0 

LEO 

LEO/GT 
0 

LEO 

6,000 kg 

$13M-
$15M/2000k 
g 

$10K/ lkg -
LEO 

10,000-
15,000kg 

4,100-
6,000kg 

$100M/ 
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Indian 
Space 
Research 
Organiza 
tion 

080 0 0 0 
SLV^kl 

QOO 

GEO? 
LEO 
SSO 
GTO 

LEO 
GTO 

6000kg 

$1.8M/ 
100kg 
3.250 kg 
1600 kg 
1000 kg 

5,000 kg 
2,500 kg 
$2M / 100kg 

Ukraine | Dnepr-1 | 3-stage (4 or 5 with SpaceTug upper stages) LEO I 4.500 kg 
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Russian 
Space 
Agency 

China Long March 

ISS 
TLI 

LEO/GT 
O 

3,200 kg 
550 kg 

$10K/lkg 

$60 million 
cost; 5,200 
kg to GTO, 
cost per kg is 
$11,500 

Europe Ariane 5 2-stage LEO/GE 
O 

16,000 kg 
6.800 kg 

Israel Shavit 3-stage LEO 
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Reference: http://en.wikipedia.org/wiki/I-jiunch vehicle 
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Appendix II: Reusable Launch System 
Country 

USA 

Space 
Exploration 
(SpaceX) 

EUROPE 

European 
Space 
Agency 
(ESA) and 
European 
Aeronautic 
Defence 
and Space 
Company 
EADS N.V. 
(EADS) 

INDIA 

Defence 
Research 
and 
Developme 
nt 
Organisatio 
n (DRDO) 
and Indian 
Space 
Research 
Organizatio 
n (ISRO) 

Vehicle 
Name 
Falcon 9 
(Normal) 
Falcon 9 
(Heavy) 

2009 

Hopper 

2015 

AVATA 
R 
(Aerobic 
Vehicle 
for 
hypersoni 

Aerospace 
TrAnspo 
Rtation) 

2015 

Launch Type 

Reusable, 2-stage (Manned) 
httD://en.wikiDedia.ore/wiki/Falcon 9 

m 
s 

1 

Orbit 

Low Earth 
Orbit (LEO) 

^ ^ ^ H Geostationar 
^ ^ ^ | y Transfer 
^ ^ 1 Orbit (GTO) 

HB WM ^^^^^^H 
•*. "i ^ ^ ^ ^ ^ ^ H 

m M ^^^^M M • I H • m m m 1 1 
Unmanned, Reusable, Signle-stage 
http://en.wikiDedia.org/wiki/Hopper (spa 
cecraft) 

^-„..^--<^«. ^ M M 

Low Earth 
Orbit (LEO) 

GEO 
.*i ' - ^ ^ S S H H H H ^ ^ I H (Geostationa 
""'# * ^ I ^ ^ ^ ^ H f i 2 5 | ry Earth 

I^^^^^HBT "̂ WF ' '""'-"'* 
t**̂  " ^sf^K^^^^^^^I 
1̂ , . —̂  î KHk\1^^^^^^^ l̂ 
k-- . ... . < T J £ I H B ^ ^ ^ ^ I 

1 ' » ^ ^ _- H^fk*i»t*--

Single-stage reusable rocket planes 
http://en.wikipedia.ora/wiki/Avatar RL 
V 

IJLUU) 

IJJW Earth 
Orbit (LEO) 

M^^^^^H^^HH^MuitlH^Bm 
1 ^ ^ 2 s . „ ^ ^ ^ ^ ^ ^ ^ ^ 1 m^ ^ ^ 
M i ^pN^JN ' J 
^•L^^V^ ..^Jfl B > .dH 
i r-^jQa *̂  

-Cost 

Falcon 9 - starts 
@ $35 million; 
able to boost 9,900 
kg to LEO, 4,900 
kg to GTO, 
minimum GTO 
cost per kg is 
$10,500 
Falcon 9 Heavy -
starts @ $78 
million cost; able 
to boost 27,500 kg 
to LEO, 12,000 kg 
to GTO, minimum 
GTO cost per kg 
$8,200 

$15,000/kg 

$67/kg/ 
500 kg to 1000 kg 

estimated vehicle 
life of 100 
launches 
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m2 

Appendix HI: Miscellaneous Excel Database 
Structural Analysis 
Material Properties: 7075 aluminum is chosen 

Young's Modulus E = 7.lxl09N/ 
/ m 

Poisson's Ratio v = 0.33 

Density p = 2.8x\03kg/ 
Ultimate Tensile Strength F = 524xl06 N/, 

/ m 
Yield Tensile Strength F. = 448 x 106 N/ 

0 / m 

3 

m 

m2 

Cylinder area moment of inertia, I 

\~ET (71xl09)/ , A 
10 = 0.560 - ^ T = 0 - 5 6 J - ^ >—r^I = 8.982x10scm4 

ymBl! ^|(2,000)(10)3 

The required thickness, t = 
7uR5 

Type of Load 
Axial 

Bending Moment 

Weight (N) 
19,614 
19,614 

Distance (m) 
-

5 

Load Factor 
6.5 
3.0 

Limit Load 
127,5000 (N) 

294,200 (N-m) 
2M 

Equivalent axial load, Peq = P^ + — 

Ultimate Load = Limit load x Ultimate Factory of Safety 
Sizing for Tensile Strength 

P 
Axial stress, cr = — ,A = 2nRt, solve for required thickness 

A 
Sizing for Stability (Compressive Strength) 

Size the cylinder for stability, (p =—J— , /=1.0-0.90l(l .0-c"*') 

Et 
Cylinder buckling stress, acr = 0 .6^—. Note that if acr were greater than the material's 

R 
proportional limit, we would use additional methods for inelastic buckling. 
Critical buckling load, Pcr = Aocr 

j, - /wo\ wr. Allowable Load or Stress . _ 
Margin of safety (MS) MS = 1.0 or 

Design Load or Stress 
MS= ^=^xarea 1 Q 

Design Load or Stress 
Calculating the Mass: Mass of the cylinder, m = plnRtL 
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Appendix IV: Components Specification Document 
Space Based Solar Power Demo 

Instrument Bus Specifications Overview 
1.0 Scope 
1.1 This specification established the performance, design and development requirements 

of the Space Based Solar Power (SBSP) Demonstration Instrument Bus. 

2.0 Requirements 
2.1 System Description 
2.1.1 General Description The instrument bus houses and maintains the instrument in 

orbit or on the International Space Station. 
The main components of this system are: 

2.1.1.1 Power Management System This system manages the power to the LASER 
System, ATP System, and Safety and Controls System. 

2.1.1.1.1 Solar Panels* If the Instrument is housed on a free flyer, the power for the 
instrument will need to be generated on-orbit using an array of solar panels 

2.1.1.1.2 Battery Backup* If the instrument is housed on a free flyer, the bus will need to 
provide backup power for when the instrument's orbit is in eclipse. 

2.1.1.2 Command and Control This system will manage the interaction between the 
different systems on board the SBSP demonstration. 

2.1.1.2.1 Safety The Command and Control System will have a Safety system to 
prevent and electronic tampering with the SBSP demonstration. 

2.1.1.3 Communications* If the instrument is housed on board a free flyer, the system 
will need to maintain its own operational communications with the ground. 

2.2 Characteristics 
2.2.1 Performance Characteristics Requirements 
2.2.1.1 Quantity 
2.2.1.1.1 Power* 4kW* 

2.2.2 Physical Characteristics Approximate values 
2.2.2.1 Solar Panel Area* 10 m2* 

(*assuming a free flyer and not an ISS payload) 
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Space Based Solar Power Demo 
LASER System Specifications Overview 

3.0 Scope 
1.1 This specification established the performance, design and development requirements 

of the LASER System for Space Based Solar Power (SBSP) Demonstrations. 

4.0 Requirements 
2.1 System Description 
2.1.1 General Description The LASER system is responsible for transferring the energy 

from Space Based Solar Power Plant to the Ground station in the form of amplified 
radiation. 
This system is to be an active closed loop control system, working together with the 
ATP. The controlling system will work with inputs of the ATP system. 
The major components of this system are as follows: 

2.1.1.1 LASER the LASER will convert the electrical output from the solar panel or the 
batteries into amplified radiations for transfer to Earth station. 
The major components of LASER are as follows 

2.1.1.1.1 Lasing material (crystal, gas, semiconductor, dye, etc..) 
2.1.1.1.2 Pump source (adds energy to the lasing material, e.g. flash lamp, electrical 

current to cause electron collisions, radiation from a laser, etc.) 
2.1.1.1.3 Optical cavity consisting of reflectors to act as the feedback mechanism for light 

amplification 
2.1.1.1.3.1 LASER Curtain A LASER curtain is a low power beam, with a wider 

diameter, which would alert the ground station to send a signal shutting down the 
LASER if an object were to impede the LASER'S path to the ground station 

2.1.1.2 Pointing this is the optical system (consisting of lenses) which would be 
responsible for limiting the LASER to the desired spot on the ground station. 

2.1.1.3 Cooling System LASER operation produces lot of heat energy; cooling system 
would regulate the temperature of the LASER. 

2.2 Characteristics 
2.2.1 Performance Characteristics Requirements 
2.2.1.1 Quality 
2.2.1.1.1 LASER efficiency at least 30% 
2.2.1.2 Quantity 
2.2.1.2.1 LASER Power 800W 

2.2.2 Physical Characteristics Approximate values 
2.2.2.1 Mirror Aperture 75 cm 
2.2.2.2 Mirror/Laser and on orbit System Mass 100 kg 
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Space Based Solar Power Demo 
Acquisition, Tracking, and Pointing System Specifications Overview 

5.0 Scope 
1.1 This specification established the performance, design and development requirements 

of the Space Based Solar Power (SBSP) Demonstration Acquisition, Tracking and 
Pointing (ATP) System. 

6.0 Requirements 
2.1 System Description 
2.1.1 General Description The ATP system is responsible for acquiring and tracking the 

position of the target ground station and uses that information to point the SBSP 
system laser towards the target ground station. 
The system is to be an active, closed-looped system, requiring information from the 
target ground station to help point the laser and assure that nothing is impeding the 
target ground station. 
The major components of this system are as follows: 

2.1.1.1 Tracking The tracking mechanism will lock onto a signal sent from the target 
ground station and follow it as the SBSP Demo travels through its orbit. The period 
of acquisition will vary from a few minutes to about 10 to 15 minutes depending on 
pass elevation, altitude, etc. 

2.1.1.2 Pointing The pointing mechanism will ensure that the SBSP system laser is 
positioned to accurately direct energy at the target ground receiver. 

2.1.1.3 Safety and Control A signal sent from the target ground station will immediately 
shutdown the laser if any object impedes the safety laser curtain from the target 
ground station. 

2.1.1.4 Isolation and Stabilization System The SBSP laser system must be isolated 
from outside vibrations in order to insure high accuracy pointing. 

2.2 Characteristics 
2.2.1 Performance Characteristics Requirements 
2.2.1.1 Quality 
2.2.1.1.1 Pointing Accuracy at least 1 x 10"7 radian precision 
2.2.2 Physical Characteristics Approximate values 
2.2.2.1 Mirror Aperture 75 cm 
2.2.2.2 Mirror/Laser and on orbit System Mass 100 kg 
2.2.2.3 Vibrations from the International Space Station 0.01-50 Hz* 
2.2.2.4 Orbit Altitude 340.5 km * 
2.2.2.5 Orbit Velocity 27,700 km/hr* 
2.2.2.6 Orbit Inclination 51.64°* 
2.2.2.7 Maximum Slant Range 500 nautical miles 

(*assuming an ISS payload and not a free flyer) 
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Space Based Solar Power Demo 
Safety and Control System Specifications Overview 

7.0 Scope 
1.1 This specification established the performance, design and development requirements 

of the Space Based Solar Power (SBSP) Demonstration Instrument Bus. 

8-0 Requirements 
2.1 System Description 
2.1.1 General Description The Safety and Control System is responsible for assuring that 

nothing can impede the SBSP Demonstration's path to the target ground station 
while the LASER is operating 
The system is to be an active, closed-looped system, requiring information from the 
target ground station to operate. 
The major components of the system are as follows: 

2.1.1.1 LASER Curtain The LASER curtain is a low power, wider spread beam with 
the purpose of providing an early warning sign in the event an object inadvertently 
passes through the path between the LASER and the Ground Station. 

2.1.1.2 Ground-Based Modulatable LASER If the Ground Station receives the 
unobstructed signal from the LASER curtain, a modulatable LASER will send a 
signal to the instrument to activate the LASER system. 

2.1.1.3 Turn on/Shutoff System This system will activate the SBSP LASER System if 
the SBSP instrument receives the signal from the modulatable LASER from the 
Ground Station confirming an unobstructed path between the LASER and the 
Ground Station receiver. At any time the laser loses contact with the modulatable 
LASER, this system will deactivate the LASER system. 

2.2 Characteristics 
2.2.1 Performance Characteristics Requirements 
2.2.1.1 Quantity 
2.2.1.1.1 Laser Curtain Spot Diameter 30 m 
2.2.1.1.2 Laser Curtain Area 706.858 m2 
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