San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

1993

Adaptive neural network control of a flexible
manipulator

Sun-Ti Wang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Wang, Sun-Ti, "Adaptive neural network control of a flexible manipulator” (1993). Master's Theses. 596.
DOI: https://doi.org/10.31979/etd.g8yr-52mq
https://scholarworks.sjsu.edu/etd_theses/596

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/596?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the iexi directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1353073

Adaptive neural network control of a flexible manipulator

Wang, Sun-Ti, M.S.

San Jose State University, 1993

U-M-I

300 N. Zeeb Rd.
Ann Arbor, MI 48106

ADAPTIVE NEURAL NETWORIX CONTROL OF A

FLEXIBLE MANIPULATOR

A THESIS
PRESENTED TO
THE DEPARTMENT OF GENERAL ENGINEERING

SAN JOSE STATE UNIVERSITY

IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE

By
Sun-Ti Wang

May. 1993

-
-~

APPROVED FOR THE DEPARTMENT OF

GENERAL ENGINEERING

NI Feo

Imin Kao (Pri{lcipa.l Adviser)

—
N\

;. C()ﬁ

J. C. Wang

Albert Tung O’

APPROVED FOR THE UNIVERSITY

ABSTRACT

ADAPTIVE NEURAL NETWORK CONTROL

OF A FLEXIBLE MANIPULATOR
by Sun-Ti Wang

A back-propagation neural network is applied to the end-position control of a
one-link flexible manipulator with payload variations. A very difficult problem in
controlling complex mechanical systenis such as flexible beam robot is finding com-
putationally acceptable methods to compensate for physical variations in the sys-

tem. Adaptive control techniques have been proven to be useful only in stabilization

of linear systems or some special non-linear systems; nevertheless, neural networks

are capable of handling the computational complexity which sometimes can not be
described in detailed mathematical terms. A deadbeat controlier tuned by neural
network for a single flexible arm robot is presented to demonstrate the capability of
neural networks on the field of robotic control. In such an application, the neural
network is employed to adjust parameters of the deadbeat controller as well as to
identify changes of system dynamics when the flexible arm robot is manipulating

various payload conditions.

Acknowledgements

I am grateful to my principal advisor, Dr. Imin Kao, for his helpful guidance
thoughout this study. I would also like to thank Dr. J. C. Wang and Dr. Albert
Tung for their encouragement and acadamic advice.

Thanks are also due to my friends who encourage and support me. Very special

thanks to my family for their unfailing support and love.

Contents

1 Introduction
1.1 General Introduction
1.2 Literatwre Review
1.3 ThesisOutline.
2 Artificial Neural Networks
2.1 What Are Neural Networks?
2.2 Neural Network Construction
2.3 Back-Propagation Network
2.3.1 Learning Behavior
2.3.2 Simulation Examples
3 Neural Networks and Control
3.1 Control Systems and Neural Networks . .
3.2 Training of Neural Networks for Control .
3.2.1 Direct Neural Controller
3.2.2 Neural Network Tuning Controller
4 Control of One-link Flexible Manipulator
4.1 Problem Definition
4.2 Mathematical Model
4.3 Deadbeat Control
5 Adaptive Neural Network Controller
5.1 System Performance vs. Payload Variation
5.2 Adaptive Neural Controller Design
5.3 Simulation Results
6 Conclusions and Future Work
Bibliography
Appendices

vi

...............

...............

...............

...............

...............

...............

...............

...............

...............

e D e P

6

19
19
22
23
25

27
27
28
31
36
36
3R
10

49

51

A Aspirin/MIGRANES

A.1 Aspirin Language and MIGRANES Interface
A2 ExampleFiles
A21 AspirinFile o oo a oo
A.2.2 MIGRAINES Command File

..............

..................

B Numerical Data
B.1 Experimental Data of Literatures
B.1.1 Data of Flexible Beam for First Vibration Mode

B.1.2 Data of Flexible Beam with Payload Variations

B.2 Simulation Data

........

..............................

C Symbols
C.1 Neural Network Symbols
C.2 Symbols of Flexible Beam Dynamics

List of Tables

B.1 Model parameters for first flexible mode

................ 54
B.2 Frequency changes with respect to payload variations 55
B.3 Training data of the adaptive neural controller 56
B.4 Testing data of the adaptive neural controller 56

B.5 Simulation results of the zeros and poles of the deadbeat compensators 56

viii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3

9.1
5.2
5.3
5.4
5.5

5.6

ot
-1

ot
.
[V 2]

The schematic of bio-neuron and artificial neuron
An artificial neural network (ANN)
Constructure of single artificial neuron
Simulation of the sine function
A two-link planar robot arm L L.
Kinematic training results with 300 millions iterations
Trajectory test of the two-link manipulator
Workspace of the two-link anipulator (0° < 6, < 180°,0° < 6, < 180°)

...........

......................

Problem of obtaining training information
A direct neural control system
Copying training data from an existing controller
A neural network tuned PID control system

...........

..............

Schematic of a single flexible manipulator
Root locus of deadbeat control system
Response and control effort of deadbeat control system

................

Response of payloaded system with free-payload compensator

Deadbeat control for various payload
Configuration of adaptive neural network
Adaptive neural deadbeat control system
System response of the adaptive neural network controller with 3%
payload. The plot compares the neural network simulation results
(dotted line) with the ideal response (solid line).
System response of the adaptive neural network controller with 13%
parload. The plot compares the nenral network simulation results
(dotted line) with the ideal response (solid line).
System response of the adaptive neural network controller with 23%
pavload. The plot compares the neural network simulation results
(dotted line) with the ideal response (solid line).
System response of the adaptive neural network controller with 28%
payload. The plot compares the neural network simulation results
(dotted line) with the ideal response (solid line)

.............

ix

—

e fed

p— —
N =1 =T O T O ~1

26

39

5.9 System response of the adaptive neural network controller with 38%
payload. The plot compares the neural network simulation results
(dotted line) with the ideal response (solid line). 46

Chapter 1

Introduction

1.1 General Introduction

An artificial neural network is a system with inputs and outputs, and is internally
composed of simple processing elements which function in an analogous way to a bi-
ological neuron. These processing elements are interconnected by lines with weights,
namely synapses in biological terms. In general, neural networks have many different
types of algorithm in selecting the weights to achieve the desired input/output map-
ping. Depending on the choice of the algorithm, the learning process determines the
type of a neural network. In control systems, this feature can be applied in different
situations, specially in the presence of the operation uncertainty of the plant where
the conventional methods tend to fail frequently under extreme conditions. Generally
speaking. a controlled process with a certain neural network architecture can lead to

a good solution for such systems.

A back-propagation neural network is introduced to.complement. the Pn.d-posit.ion
control of a single link flexible arm robot for various payload conditions. Although
many researchers have presented the modeling and control of flexible manipulators
recently, few of them have discussed the payload variations that affect the overall
performance of the control systems. The main objective of this thesis is to present an
adaptive neural controller based on a deadbeat control scheme to achieve the flexible
beam control with payload variations.

In the present work software developments have been taken into account. We
utilize MATRIXx! on UNIX environment for control systems analyses, and both
Aspirin/MIGRAINES? on UNIX and NWorks Explorer® on PC are used for back-

propagation network studies.

1.2 Literature Review

Neural networks have been hailed as the greatest technological advance since the
transistor. A new form of machine intelligence has been elevated to transcendental
heights, and thousands of technical papers and magazine articles have been written
on the subject. Many types of researchers have an interest in this ;subject, and each
brings a piece to the puzzle in an attempt to assemble a detailed working madel
of the mind. Understanding neural networks with the material available today is

not easy without a degree in mathematics. biologv or computer science. In order to

'NMATRIX x is a registered trademark of Integrated Systems Inc. C'alifornia, USA.
*This software is the copyright of Russell Leighton and the MITRE Corporation.
3This software is the copyright of NeuralWare.Inc.

[OV

show some appreciation for the vast amount of science brought together by neural
networks, Stanley and Bak {1988] introduced materials on the basics of neurobiology
and cognitive science to bridge the gap so that more people can understand and use
neural networks.

Today neural networks are actively explored in artificial intelligence, psychology.
engineering, and physics. There seems little doubt that neural network technology
will have a lasting impact on the engineering science. For control applications, Millers
et al. [1990Db] brought together the different strands of theory that are most relevant to
understanding and extending the state of the art in the use of neural networks. Barto
et al. [1983] showed how a system consisting of two neuronlike adaptive elements can
solve a difficult learning control problem. Also, Narendra and Parthasarathy [1990]
demonstrated that neural networks can be used effectively for the identification and
control of nonlinear dynamical systems.

In robot control, the overall complexity of many robotic control problems and the
ideal of a truly general robotic system have led to much discussion of the use of neural
networks. Millers ef al. [1990a] presented a learning control technique based on an
extension of the CMAC (Cerebellar Model Arithmetic Computer) network proposed
by Albus that a training scheme is used to adjust the weights in the network in or-
der to form an approximate dynamic model of the robot in appropriate regions of
the control space and simultaneously the network is used during each control cyele
to predict the actuator drives required to follow a desired trajectory. In adlition.

Ichikawa and Sawa [1992] introduced a learning algorithm and capabilities of neural

networks whose outputs and inputs are directly connected to plants just like ordinary
feedback controllers. They proposed such a control scheme which is equivalent to
state estimation and capable of controlling a highly nonlinear plant that can never
be stabilized using a constant-gain linear controller. Another application of neural
networks does not serve as a direct controller, but adjust the parameters of a con-
ventional controller. Caiiete et al. applied this type of neural network to a nonlinear
self-tuning tracking problem [IWANN 1991].

In current robot control practice, the problem of controlling flexible manipulators
has been widely studied, because there are substantial potential advantages to us-
ing robot manipulators that are very lightweight and flexible — advantages in power,
quickness, and performance, as well as in weight. Initial studies have been concen-
trated on the single flexible link. Although most of the previously proposed control
strategies have been proved successful [Cannon and Schmitz 1984, Wang ef al. 1989,
Wang and Vidyasagar 1991], they are insensitive to modeling uncertainty., such as
payload variations, while achieving good stability and high performance.

The purpose of this thesis is to utilize neural networks based upon a tuning con-

troller scheme on the single beam control problem while payload conditions are varied.

1.3 Thesis Outline

In what follows. we first describe the features of neural networks and then brielly

introduce the learning algorithm of a back-propagation neural network. The reason

for applying the artificial neural network techniques to control systems is the next
subject. Secondly, the adaptive neural control architecture is presented by following
an outline of modeling and deadbeat control strategy of a single flexible arm robot.

Finally, we show the simulation results and conclude the work we have done.

Chapter 2

Artificial Neural Networks

2.1 What Are Neural Networks?

The term neural networks comes from their design, which is based on the neural
structure of the brain; both have highly interconnected neurons. At the present
time, biologists, psychologists, computer scientists, engineers, and mathematicians
are working all over the world to learn more about neural networks. Much is already
known about the topic, but as is the case in most new research areas, there are a lot
more questicns than there are answers [Miller III et al. 1990L].

Neural networks are sometimes called by other names: artificial neural systems,
connectionist systems. neurocomputers. adaptive systems. 1)a1'alle.l distributed pro-
cessors. collective decision circuits. and natural intelligence {Stanley 1983]. A neural

network is a massively parallel. dynamic svstem of highly interconnected interacting

6

, Biological Neuron

Inputs

Figure 2.1: The schematic of bio-neuron and artificial neuron

parts based on neurobiological models. The behavior of the network depends heav-
ily on connection details. The state of the network evolves continually with time.
Networks are considered clever and intuitive because they learn by example rather
than by following programmed rules. With experience, networks become sensitive to
subtle relationships in the environment.

The goal of neural network designers is to mimic what the brain does best: associa-
tive reasoning, learning, and thought. The ability to learn is one of the distinguishing
features of neural networks. They are not programmed the same way artificial infel-
ligence systems are programmed. Information is stored as patterns. not as a series of
information bits as in normal computers. Most neural networks are software simula-

tions. with neurons that are only memory locations in a conventional computer.

-1

An artificial newral network (ANN) is a model that simulates activities of neurons
in a biological neural network (see Figure 2.1). Now we usually write a set of instruc-
tions for a computer so that the computer simulates the neurons and the connections
between the neurons. We then try to see if these model systems behave like the bio-
logical systems. In spite of the enormous amount left to learn about neural networks,
we can already build simple artificial neural systems that allow a computer to speak

aloud, read in text from a scanner, and control robot arms.

2.2 Neural Network Construction

A neural network consists of layers of neurons which are connected to each other.
A neuron is defined as a processing element which sums up the incoming signals and
generates an output signal according to some predefined function. The details of
how the neurons interconnect are important in building a neural network. Some of
the neurons will be used to communicate with the outside world. There are input
neurons which receive information from the environment and send it to the inner
layers of neurons. The output neurons provide the network’s response in the form of
objects. All the others are hidden and are part of a large internal abstract pattern. An
ANN is somehow like a black box with some magic inside that takes raw materials
and gives out expected products. Figure 2.2 depicts the basic configuration of an

artificial neural network.

Input Hidden Output
Layer Layers Layers

Figure 2.2: An artificial neural network (ANN)

A neural network can be described in terms of its individual neurons, the con-
nections between them, and the activation and transfer functions. These terms are
common to all neural networks. First, it is important to understand these concepts
and then to explore more complex concepts which explain the differences in various
neural networks.

A connection is a unique line of communication that goes from one sending neuron
to one receiving neuron. On each connection at the input of a neuron, there is a
weight, or connection strength, which is analogous to a synapse. The weight controls
the strength of that incoming signal to the neuron. As shown in Figure 2.3, the weight
of a particular connection is represented by w;;. where i is the receiving neuron and
J is the sending neuron. The ith neuron is represented by u; where v stands for unif
of neuron and 7 is its number.

The neural diagram looks like a simplified model of a biological network and the

terminology is the same. This does not imply that the actual operations ol a rcal

Neuron uy

from neuron
O)ij
Figure 2.3: Constructure of single artificial neuron

neuron are being depicted. We are merely illustrating the artificial neuron used in a
neural network. The neural connections in the brain are much more dense than the
diagram shows, but we can know much about the basics of learning using this model.
The state of activation is a way to refer to the state of the neural network at
a given time. At any point in time ¢, the neuron ¢ adds up the weighted inputs
to produce an activation value a;(t) whose value is the sum of the weighted inputs
at that time. The activation is passed through an output. or transfer function f;.
which produces the actual output for that neuron for that time, o;(t). The activation
function specifies what the neuron is to do with the signals after the weights have
had their effect. Once inside the neuron, the weighted signals are summed to a net
value. After summation, the net input of the neuron is combined with the previous

state of the neuron to produce a new activation value.
After the weighted sum of the effective inputs has been computed. it is {rans-
formed by a typically non-linear function which is called transfer function. The

transfer function defines how the neuron’s activation value is to be output. It can he

10

linear, sigmoid, or threshold that acts to “transfer” the internally generated snm to a
potential output value. Normally, but not always, the transfer function is fixed at the
time a network is constructed, and sends out a signal determined by the activation
value of the neuron.

The way in which the neurons are connected to each other has an enormous effect
on the operation of the network. Specifying the connections determines the type
of processing that will occur. No matter what the exact transfer function is, the
neuron fires when it recognizes a particular value combination of incoming neural
signals. In other words, the operation of a neuron is defined by laws (learning rules)
for determining a match between the input vector, consisting of incoming signals, and
a weight vector or internal parameter set.

The first and most important decision made for applications of a neural network is
choosing the architecture. Neural network architecture refers to how the neurons are
connected to each other and what kind of neurons they are. The training of a neural
network depends upon what architecture is chosen. Also,the number of inputs and
outputs, the number of layers, and the training laws of the network must be specified.
When a network is well designed, its overall state after training will be such that new
inputs will produce the desired response patterns.

A [frequently asked question about neural network training is: How long should
the network be trained? The answer is that training time is application specific. The
training time duration of a network is based on the performance users required. The

test phase is one way of determining how well the network has learned and how well

11

the network will perform. A major difference hetween training and testing is that in
the test phase, the weights in the network are not updated. The network is trained
by adjusting its connection weights on the training cases, and the test cases serve
as a way of measuring network performance. During this test phase, the test cases
are presented to the network and the network provides results. If the test cases are
representative of data the network will see in the real world, we will have a good idea

of how well the network will perform its desired task.

2.3 Back-Propagation Network

Currently the most widely known connectionist learning scheme of neural networks
is the back-propagation network, a layered network consisting of an input layer of
linear neurons, an output layer and at least one layer of nonlinear neurons. Back-
propagation is a supervised learning method in which an error signal is fed back
through the network altering weights as it goes, in order to prevent the same error
from happening again. Weights are updated by means of a chosen learning rule to
reach the desired output. For this particular algorithm, the vector of the output

signals of the network is compared with an output objective vector, in such a way

. 9 . . .
that the learning process 22 = 0 is achieved. where E is the global error and w; ave

n

the weights.

2.3.1 Learning Behavior

The aim of the learning process is to minimize the global error E of the system
by modifying the weights. Given the current set of weights *wy;, it is necessary to
determine how to increment or decrement them in order to decrease the global error.
Each time a particular data set (7,d) - input and desired output — is shown, the back-
propagation algorithm medifies the weights to reduce that particular component of the
overall error function E, which is defined proportional to the square of the Euclidean
distance hetween the desired output, d, and the actual output, o, of the network for

a particular input pattern as a standard form.

E=-x (dk - Ok)2. (2.1)

N[-

The actual error function is unimportant in understanding the mechanism of back-
propagation. The critical parameter that is passed back through the layers is the error

defined by

where *I; is the weighted summation of inputs to jth neuron in layer s. Later, it will
he shown that this can be considered as a measure of the local error at jth processing
element (PE) in s level.

o8, o8=1 9 .
fwji = legey < T€; 7 T (2.3)

where ®w;; is the amount of change to the weights joining ith PE in layer (s — 1) to
jth PE in layer s. l..s is the learning coeflicient or learning rate. °¢; is the local error
at jth PE in level s, *~la; is the activation value of ith PE in level (s —1).

13

Activation is the state of a PE at a given time. Its value indicates the sum of the

weighted inputs for the PE at the particular time.

"atj = f[swj,- X s_iil'i] = f[sIJ']'

—
o
N9

—_

With large learning rates, a network may go through large oscillations during learning.
In fact, if the rates are too large, the network may never settle or converge. Smaller
rates tend to be more stable. Nevertheless, a small learning coefficient can lead to very

slow learning. A variation on the algorithm is introduced to resolve this dichotomy.

Swji = leoey X °€; % *“La; + momentum x *wj;.

—_
o
ot

=

The momentum term is added so that the learning rate can be increased without
causing oscillations. This acts as a low-pass filter on the delta weight (the amount of
change to the weights) terms since general trends are reinforced, whereas oscillatory
behavior cancels itself. As the learning coefficient tends to zero and the number of
updates tends to infinity, the learning algorithm is guaranteed to find the optimized

set of weights that gives the least mean square error of the total error function.

2.3.2 Simulation Examples

A couple of learning examples of back-propagation networks worked on UNIX
using Aspirin/MIGRAINES (see Appendix A.l) are examined to demonstrate some
hasic ideas of neural networks’ applications.

The first exercise to simulate the input-output mappings of function sinf. A C
code is written to calculate values of sinf with small 6 increment. e.g. 5 degrees. as

14

T L)

Target ~—
Network Output ---- _

sin{Theta)

N

-1 1] 1
[¢] 10 20 30 40 50
The Number of Training Data

80

Figure 2.4: Simulation of the sine function

training data for the network. The neural network learns the input-output behavior
of function sinf as shown in Figure 2.4. The theoretical data are plotted in a solid
line and the neural network simulation results are in a dotted line. From the figure,
it is obvious that the simulation results are fairly close to the exact values.

The second attempt is to have a neural network learn the kinematic of a two link
planar robot, as shown in figure 2.5. The position of the end-effector of the robot can
be expressed as a function of the link parameters, [; and I3, and the angles, 8; and

6,. The expression is in equation 2.6.

r o=l X cosby + 15 x cos(6y + 0,).

Yy = ll X 31‘7701 + 12 X 81‘7?(01 + 02) (2())

Figure 2.5: A two-link planar robot arm

The training information is derived by incrementing joint angle 6; by 9° from 0°
to 180° and for each ; increment the second joint angle 6, varies from 0° to 180° by
9°. Both training data and testing data can be generated through C codes according
to the above equations.

Figures 2.6 - 2.8 illustrate the learning results of back-propagation neural networks.
Despite the learning algorithm, some significant factors must be considered when the
neural network is built. As mentioned earlier, learning coefficients will determine
the connection convergence. Size of training data, as well as times of iterations, will
have a significant impact on the learning results, and the transfer function will decide
the range of the network outputs. In addition. the number of layers and processing
elements per layer are also important decisions.! The way to choose proper values or

these criteria is based upon user’s experience. The more we know or learn about the

"Most back-propagation networks will have one or two hidden layers, with the number of pro-
cessing elements in the hidden layers usually falling somewhere hetween the total number of iput
and output processing elements. The more complex the relationship hetween the input data and
the desired output, the more processing elements are normally required in the hidden layer.

16

Network Path ——
Ideal Path -----

Figure 2.7: Trajectory test of the two-link manipulator

17

Y Axis

Network ——
Ideal ----
-0.6 2] 1 1 1 1 1]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X Axis

Figure 2.8: Workspace of the two-link anipulator (0° < 6, <180°,0° < 0, < 180°)
features of neural network the better we can utilize the network.

Although the relationships between inputs and outputs of the above examples
could be expressed by equation 2.6, the beauty of ANNs is that their learning abili-

ties are not necessarily described by mathematical expressions, which will be demon-

strated in later sections.

Chapter 3

Neural Networks and Control

3.1 Control Systems and Neural Networks

A successful control system can respond to changing demands and standards, and
should be trying to satisfy many requirements at once — not only keeping the plant
output within some limits (and that is meant in the most general sense), but also
doing so inexpensively, quickly and efficiently. Especially in robotics research, it has
become increasingly understood that the environment in which robots work requires
more intelligent control. Many of the assumptions made in control theories should
be questioned if robots are to handle the tasks assigned. Systems that are subject
to multiple purposes and abstract goals may not be adequately handled with current
control methodologies. Learning control is a method of controlling a nonlinear system
that may achieve the desired goals. Furthermore. the model of the system may be

incompletely known. In addition. such systems may interact with unknown changing

19

environments and have complex hehaviors and goals. ANNs may provide more than
conventional control systems. They may be used to build a model of a little known
system and to control it.

Neural networks offer certain advantages over traditional adaptive control algo-
rithms and their implementations. Yet, in designing the concept of a learning control
system the methods of conventional control should not be discarded. Methods and
concepts that have been developed in control can be used in designing more complex
learning controllers. For example, if owr goal is system identification, a traditional
method is to build a (structural or mathematical) model of the system and excite it
with the same input as is provided to the actual system. The difference between the
model and the system output is used to update the parameters of the model. We may
study this technique using more extensive models, such as those attainable by using
an ANN. This method of control should build on the powers and tools that the field
of conventional control has shown already, but it must extend its tools bevond the
rigor of mathematical formulations, so that it can work in a large range of domains.
as mentioned above, and under more dynamic and more realistic conditions.

Expectations for applying the neural networks to controllers are associated with
learning ability and versatile mapping capabilities from input to output. The versatile
mapping capabilities should provide a means of controlling nonlinear plants which
cannot be carried out well with traditional linear feedhack controllers. The learning
ability can reduce human effort in designing controllers and even suggests a potential

for discovering better control schemes than presently known.

In most current robot arm position control technicues, the dynamic equations of
the robot arm are linearized or assumptions are made to simplify the model into a
linear one. In order to deal with nonlinearities and more complex robotic systems we
need to consider the nonlinearities of the process. The nonlinear relationships may
be modeled, yet it may be difficult, if not impossible, to design controllers for their
processes. In addition, causes of optimal design difficulties do not necessarily lie in
the system dynamics, but may also be in the specifications required. In practical
situations, there are a variety of preferences or evaluations for control performances
and most of them are not optimized theoretically. Only a very limited number of
criteria can be optimized systematically.

In contrast, the tools and capabilities of conventional adaptive control should
not be thrown away, but their limitations should also be recognized. At the root
of the trouble, we believe, is the primary aim of control theory to describe plants
with manipulable mathematical models, in order to analyze those models and to
design controllers for them that can be proven to be stable. However, the plant
and environment may be very complex and difficult to model, especially within the
framework necessary to apply these techniques. A more general abstract control that
can be applied to these complex problems max never be proven to he optimal or
consistently convergent. just as there is no way in programming to prove a program
of any size or competence to be correct.

A more complex and general control can be developed by not invariably requiring

mathematical justification of our models. and opening far wider the doors of what is to

21

¥ N

Target Target
Controller Plant
Outputs Outputs

Controller ‘

Plant B

Figure 3.1: Problem of obtaining training information

e considered in control. Neural networks systems display many of the characteristics

that are needed in the dramatic future of learning control applied to robotics.

3.2 Training of Neural Networks for Control

Learning control using neural networks somehow requires a training procedu're in
which desired, or target, outputs of the decision rule, model..., ete. are available for
a sufficiently varied set of cases. Where does this training information come from?
Figure 3.1 outlines the general problem of obtaining training information in nenral
network control: target plant outputs may be known. but not the control signals that

produce them.

Suppose one wants a neural network to learn to control a plant that is too complex.

[SV]
2]

Neural

Plant
z - Controller e an

Figure 3.2: A direct neural control system

or about which too little is known, to permit the use of conventional techniques for
designing controllers. In a typical control problem, one may have target plant outputs
but not target network outputs which are the control signals. How can training signals
be provided to the network unless some agency already knows a great deal about how
to control the plant? Furthermore, the modeling uncertainty also gives rise to a
difficult problem with regard to robustness. Learning by experiments on an actual

plant could skip the modeling process and avoid the uncertainty.

3.2.1 Direct Neural Controller

Two types of application of neural network control system architectures are pos-
sible. The first type of network serves as a direct controller whose outputs and inputs
are directly connected to plants just like ordinary feedback controllers (Figure 3.2).
For this type of neural system. we have to overcome an important problem: who can
teach the neural controller and how?

Although evaluation of the plant response is quite easy. it is very difficult to show
the right answer at each time step of a transient process. If the evaluation can he made

on an instantaneous basis, we can tell whether the network output of this moment

23

is appropriate or not. However. most. dynamic systems do not guarantee the success
of this local, instantaneous judgment. The evaluation should be made based on a
global basis where the appropriateness of the control at each time is judged in a total
response curve which spans the time from the initial to the settling. It is preferable
to let the neural network learn so that a global and arbitrary evaluation of the total
responses of the plant will be optimized and the output of the controller (network)
will cancel the plant output error eventually.

In order to satisfy these needs, learning algorithms must be modified to accommo-
date the network learning procedure. Ichikawa and Sawa [1992] proposed a learning
algorithm which is a kind of simulated evaluation process in which a group of networks
gradually improves as a whole, by crossing over connection weights among them. or
by mutational changes of the weights, according to fitness values assigned to each
network by a global evaluation.

Copying an existing controller is another possible way to train the network con-
troller. If there exists a controller capable of controlling the plant, then the informa-
tion required to train a neural network can be obtained from this controller as shown
in Figure 3.3. One might question the utility of this method on the grounds that if
there already exists an effective controller. why would it be useful to have another one
in the form of a network? Three answers are apparent: first. the existing controller

may be a device that is impractical to use (such as a person): second. the adaptive

—network-may be-able to fornraneffective control rule o tie hasis of a representation
of the system state that is easier to measure than the representation required by the

24

o
- Plant
>
g
Controller -
<
Target
Network
Outputs
<%
- !
-§

Figure 3.3: Copying training data from an existing controller

existing controller [Miller III et al. 1990b); and third, the existing controller may not

e able to respond well enough to changing task requirements which are not modeled.

3.2.2 Neural Network Tuning Controller

The second type of neural control svstem is the tuning controller conpled with a
neural network to adjust the parameters of a conventional controller. This type of con-
trol architecture is capable of performing generalization for tracking input commands

not previous learned and producing satisfactory responses when operation conditions

|8
[\

Neural Network

kpk sk

R PID v Y
z | Controller s Plant

Figure 3.4: A neural network tuned PID control system

change. For example, a PID controller shown in Figure 3.4 can be tuned by adding
a neural network to verify its parameters for a given input reference [[WANN 1991].

Although the neural network does not actually control the plant in terms of so-
called adaptive neural control system, the idea is useful to help expand the functions
of conventional controllers when facing uncertain conditions from the environment.
In this thesis, we will address this kind of application on flexible beam control based

on deadbeat control theory.

Chapter 4

Control of One-link Flexible

Manipulator

4.1 Problem Definition

In recent years the problem of controlling flexible manipulators has been studied
extensively for the purpose of performing tasks, such as autonomous satellite retrieval
or repair and in orbit assembly of the space station.

Control of a rigid arm robot has two severe limitations: first, the inherent flex-
ibility in the structure and drive trains of robots (as well as in the bases on which
thev are mounted) makes it impossible to achieve truly high precision: and second.
members and drive trains of the robot have to be made very stiff. and must therefore
be heavy. in order to get some degree of precision. These limitations typically limit

the robot to slow speeds and/or require high levels of drive power. A flexible heam

|8\
-1

manipulator is recommended to overcome these limitations.

As we shall see, the increase of velocity and decrease of mass of robotic systems
become two important topics of current research in this field. As a consequence of
this development, the manipulators undergo considerable elastic deformations. If the
oscillations caused by elasticity of manipulators could be compensated by appropriate
control concepts, it would be possible to build light weight robots suitable for space

applications.

4.2 Mathematical Model

An accurate dynamic model for the flexible arm is required in order to control the
tip position of the manipulator. A simplified analytic model is derived by Cannon
and Schmitz [1984]. The arm is modeled as a continuous, pinned-free beam of length
whose moment of inertia about the root is I, with an additional lumped inertia I, at
the actuator end (hub). Displacement of any point P, along the beam at a distance x
from the hub is given by the hub angle 8(¢) and the elastic deflection w(«, t) measured
from the line oz, as shown in Figure 4.1.

For the beam, we use the Euler-Bernoulli model for which rotary inertia and shear
deformation effects are ignored. so that the beam deflection y(x.7) can be expressed
as

ylat) = w(a.) + 20(t). (4.1)

1)
oo

Control
Torgue

Figure 4.1: Schematic of a single flexible manipulator

Then the kinetic energy I and potential energy 1 are

A T I by 2
K = S{hf +/0 (55 dm].

V

it

1.7t 6%y 2

= —=) dx - T4)]. 2
2[/0 EI(3%) de — T6] (4.2)
The assumed-modes approach is employed to derive the beam deflection:

o
y(z, 1) =Y di(x)gi(x). (4.3)
i=0
where ¢ denotes various vibration modes,¢;(z) are the mode shapes of the beam, and
gi(x) are the corresponding generalized coordinates.

Now the Lagrangian. L = ' — 1", can be found as

o

N .)) fn] i
2k = (In 4+ 1) =D (I + Lw?q? + Tlqo+ > (—(E'-(U)(/i)- (4.1)
=0

i=0 i=0
where ¢o describes the rigid body mode. « are the pinned-free frequencies. and 5%(())

are the actuator modal gains. The ¢;'s are considered as the generalized coordinates

29

<

of the system so that one can apply the Euler-Lagrange equations. The equations of
motion are, therefore,
d 6L 6L .
() == =0, (45)
t 0g; 0q;

where ¢ = 0,1,2,.--,n. Substituting equation 4.4 into equation 4.5, we have

n

.o 9 S bivdm)’ qjw? JE gsadm [givdm .
Gi = —(I;,)/u dizdm — qiwi [l + T, |- jz#:i(I). (4.6)

The state space equations can now be derived in the form

X

]

AX + BU,
Y = CX. (4.7)

The matrices X, A, B, and C are expressed for the case n = 3, but the same pattern

holds for all n:

X=14qg do @ ¢ ¢ G| - (4.8)

01 0 0 0 0 0 o |

00 0 0 0 0 0 0

00 0 1 0 0 0 0

0 0 —w? —26uw; 0 0 0 0

A= . (1.9)

00 0 0 0 1 0 0

00 0 0 —w? —26us 0 0

00 0 0 0 0 0 1
00 0 0 0 0 —wf -2y |

T
010) 0 Bw 0 B | .
T |0 10 e o gHe o -,33(0)] : (4.10)

L0 ou() 0 () 0 ¢(l) 0
C= . (4.11)
01 0 0 o0 <20 0 0
The two rows of the measurement output matrix C are the tip-sensor and the hub-
rate-sensor measurement vectors. The numerical data is adopted from the experi-
ments in [Cannon and Schmitz 1984] to identify the elements of above matrices (see
Appendix B.1.1). Theoretically, the number of vibration modes is infinity, but prac-
tically a finite value is used due to the limitation of the bandwidths of the actuator

and sensors.

4.3 Deadbeat Control

The first vibration mode of the flexible beam system is investigated through the
rest of this thesis to examine the study objectives. Hence, the discrete manipulator

dynamic of this fourth-order system in state space form can be represented as

X1 = PXp+QU,.

Y, = CX,. (41.12)

Suppose that the initial condition is set to be zero. The svstem transler function

31

can be obtained:
Giz) =CzI-P)'Q. (4.13)
This transfer function is processed by MATRIXy and its general form for the

fourth-order system is

biz™t 4 byz7? + b3z ™3 4 byz
G(z) = 1277+ 0227 + 03277 + 0y (4.14)

14+ a1z7t 4+ apz~2 + azz=3 + a4z~

where @y, aq,- -, b3, and by are constant coeflicients.
Before the control strategy is explored, it is better to determine whether the

system is controllable. The system controllability matrix can be derived as follows:

M = Q PQ P2Q P3Q |- (4.15)
When the rank of matrix M meets the order of the system, we can confirm that the
system is controllable.

The easiest method of testing the response of the system is to introduce a step
function which is accomplished by changing the input quickly to a new position and
observing the reaction of the output. If the sampling time of this discrete system is
long, however, a control that moves the state along as rapidly as possible might be
feasible. A system with this kind of controller which beats the state to a dead stop
in at most n steps. where n is the order of the svstem. is referred to as a deadbeat
svstem.! Such a digital system has a remarkable property: that is. all of its poles are
at = = 0. This response is ideal for many applications. In many practical situations.

digital systems are designed to be deadbeat. if possible.

'In some literature, a deadbeat system is also named critical damping system that the system
output reaches the desired value as rapidly as possible and without overshooting [Baeck 1968].

32

If we employ deadbeat control strategy to our system where sampling time is 1

second, then a compensator would |

go+ @127 + g2z + a7 + ¢y
D(z) =

—4

1—piz7l —ppz=? — p3z=3 — pyz

where
1
o = by + b2 + b3+ by’
@1 = 4o,
92 = @29,
43 = asqo,
¢4 = «4qo,
m = biqo,
P2 = b,
p3 = baqo,
ps = baqo,

and these p, ¢ constant coefficients must satisfy

prt+p2t+pst+py = 1,

o+ a+a+antg = UH).

P

(4.16)

(117

where U'(4) is the fourth step or final control torque applied to the control system.

Thus. the system close-loop transfer function will be

Gu(z) = m=2+ 1722:+ Pz + Ps

33

(4.18)

)

-
LU AL AL L L

hmeginary
o

-
N

2 -
3 |-
‘—l|ll'llllllllllllll T NS SIS SN I AT A W NI
-3 -2 -1 o 1 2 3 4 8]
Ros!

Figure 4.2: Root locus of deadbeat control system

From Figure 4.2, we can see that the deadbeat controller drives all system poles
to the origin in z-plane. Figure 4.3 shows the deadbeat control effort, and system
response for the free payload flexible manipulator; the solid line indicates the step

response and the dotted line represents the control efforts.

34

Ll L
Response —
Torque ~---:
¢
S E
~t
0
]
o E
]
o
©
el -
]
o
”
g .
2,
g
(4
~0.4 1 1 1 1 1
0 5 10 15 20 25 30

Tima

Figure 4.3: Response and control effort of deadbeat control system

Chapter 5

Adaptive Neural Network

Controller

5.1 System Performance vs. Payload Variation

Many of today’s robots are required to perform sequential tasks; for example,
it may be required to pick up an unknown mass, and t.hen move to a pre-specified
location or along a pre-planned trajectory. Therefore, a good controller design should
have the ability to suppress the undesired vibratory motion which is due to payload
variation. For an arm with considerable rigidity. the undesired dynamics can be sup-
pressed by using a high gain controller. Yet. for an arm with considerable Hexibility
or when high speed manipulation is required. the effectiveness of the designed com-
pensator is sensitive to pavload variation. As shown in Figure 5.1. the free payvload

compensator is not suitable for the system with variable. finite payload.

36

1.4 T T T T T
0% payload ——
5% payload -----
1.2 10% payload ----- 4
1 b A S .’._,,_"'::,r.
0.8 .
] 0.6 F ¥ .
=3
o
%
2]
3 Y 1
0.2 |- -
N S
-0.2 -
-0.4 1 1 1] 1
0 5 10 15 20 25 30

Time
Figure 5.1: Response of payloaded system with free-payload compensator

Due to the parameter changes, such as moment of inertia and natural frequency
caused by changes of the mass of payload,! system dynamics are no longer the same
as those of the free-loaded system where system dynamics matrix P and control in-
put matrix Q in the state space (see equation 4.12) are varied. Hence, a payload
adaptation mechanism capable of taking care of both the system identification and
compensator modification according to payload conditions is desired, in order to han-

dle the payload variations.

1 Assume the damping ratio is constant hecause its changes are very small. Typicallv. damping
ratio of the flexible beam ranges from 0.007 to 0.01 [Hastings and Book 1987].

37

) L] L) k]
0% payload ———
15% payload =----
30% payload -«
45% payload ——
60% payload —--

Response

-3 [1 i 2 1

Time
Figure 5.2: Deadbeat control for various payload
5.2 Adaptive Neural Controller Design

We now intend to adopt a back-propagation neural network to design a neural
network controller that can adapt to the unpredicted variation in the payload using
the approach depicted in Figure 3.4.

Because a deadbeat controller is to beat the system response to the desired value
as rapidly as possible, it can result in a significant overshoot when the payload is too
heavy, e.g., 60% of the beam mass or more. Such an undesirable overshoot is shown
in Figure 5.2. A reasonable pavload range. specified within 40% of the heani mass,
will be considered in the following study.

If the flexible arm is equipped with a payload measure device. the system payvioad

measurement will be linked to the neural network which performs two tasks mentioned

(VY]
(o]

7o \\.7 o

Maa-ui d/Q;\/Q - cx*‘%;’{;% z-ro?>

Payload @_b)C\’ Py ‘;:,A(® Poles
204 No A\e

meme—me—dp To Flexible Beam System
Figure 5.3: Configuration of adaptive neural network

in section 5.1. The neural network design, as shown in Figure 5.3, consists of two
sibnetworks. The first network takes payload measurement as its input and outputs
moment of inertia and natural frequency for the next network’s inpiits as well as for
system identification. For the second subnetwork, a problem arises: What would be
the hest choice for this network to learn? It is better to review the system dynamics
before we answer this question.

In order to analyze the control system through the Lagrangian for our design
purposes, the dynamic equations of the first mode vibrating arm can be formulated

as:
(:{.0 = bo'lL,
g1+ 26 w10 + q:fql = byu. ' (H.1)

Hence the characteristic equation of the fourth-order open-loop system in = domain

can be written as:

(z =1z + ez +d) =0. (5.

[V §
8%
~—

39

Neural fe=—rmemmcmmmnc

Network ¥ ____ __
Zeros 1
and !
Poles v
Deadbeat F';:a':e >
Controller =" System

Figure 5.4: Adaptive neural deadbeat control system

And from the previous deadbeat controller design, we can find that the com-
pensator has two zeros at z = 1. Obviously, these zero-pole cancellations are very
important criteria for the deadbeat controller to accomplish system stability. Ac-
cording to this observation,the neural network is expected to handle the cancellation
perfectly; otherwise the order of the system will be increased. Eventually, the sec-
ond subnetwork is designed to learn the locations of zeros and poles of the deadbeat
compensator so that the cancellation will be done fairly. It has been proven that the
network can learn the pattern z = 1 perfectly via computer simulations. Therefore,
the adaptive neural control system is constructed as Figure 5.4 which employs a back-
propagation network to tune the deadbeat controller as well as to identify the flexible

beam dynamics with respect to payload variations.

5.3 Simulation Results

Data analyzed in this simulation study is based on the experimental results de-

rived in [Wang et al. 1989] and the ideal deadbeat compensator is obtained through

40

MATRIXx analyses. We adopt nine sets of various .payload cata (see.Appemlix
B.1.2) to train the neural network which learns the patterns of zero-pole locations of
compensator with payload over beam mass from 0% to 40% increased by 5%.

After the back-propagation network has been trained, it is evaluated by randomly
assigning payload conditions, e.g., 3%. Figures 5.5 to 5.9 demonstrate the capabil-
ity of the designed neural network to handle the payload variation for the flexible
arm robot. Within the specified payload range. it is clear that the adaptive neural
network is capable of controlling the system behavior with payload up to 38% with
stable response. As the payload increases, the response of the adaptive neural net-
work controller takes longer to settle. Nevertheless, the adaptive neural controller is

able to deliver adequate control responses.

41

1-4 L] T 1) 1 L] il Ll ¥ T
Ideal —
Natwork -----
-]
4 o
I
o
Q
o
2 -
_0 4 ' i 1] 1] V] L]
[+] 5 10 15 20 25 30 © 35 40 45 50

Time

Figure 5.5: System response of the adaptive neural network controller with 3% pay-
load. The plot compares the neural network simulation results (dotted line) with the
ideal response (solid line).

42

T T L] L) ¥ 1
A Ideal ——
Network -----
1.2} \ .
L S Pk N 2 P AN LS PP N = =
1 % K% i v Ry ot oo o= = —— S04
0.8 .
9 0.6 | 4
]
9
-%
n
3 0.4 -
0_2 - -
(o]
~0.2 -
~0.4 1 1 1 1 I L 1 1 L
0 5 10 15 20 25 30 35 40 45 50
Time

Figure 5.6: System response of the adaptive neural network controller with 13%
payload. The plot compares the neural network simulation results (dotted line) with
the ideal response (solid line).

43

2] T L] T ¥ L] ¥) L
Ideal —
Notwork «----
1.5 B
1+ = Plain) - ',’"\ — Praiy ~— Rt — o o = s =, - S - ==
o - = -
1]
o
o
2
L]
&
0.5 i .
[4] -
_0.5 A L 1 1 1 1 1 1 I
[o] 5 10 15 20 25 30 35 40 45

Time

Figure 5.7: System response of the adaptive neural network controller with 23%
payload. The plot compares the neural network simulation results (dotted line) with

the ideal response (solid line).

44

50

T T Y T T

Idea) —
Network

Response
o
7]
1

.....

=0.5

10

Figure 5.8: System response of the adaptive neural network controller with 28%
payload. The plot compares the neural network simulation results (dotted line) with

the ideal response (solid line).

15

20

25
Time

3o 35 40 45 50

2-5 L] T) R T T T L] 1

Ideal —
Notwork -----

Response
o
w
¥
]

~0.5 -

1.5 2 2 . 2 1 2 1 1 2

0 5 10 15 20 25 30 35 40 45 50
Time

Figure 5.9: System response of the adaptive neural network controller with 38%
payload. The plot compares the neural network simulation results (dotted iine) with
the ideal response (solid line).

46

Chapter 6

Conclusions and Future Work

It has been shown that a simple architecture in which a neural network takes over
the conventional feedback controller has promising potential. One distinguishing
feature about ANN is its self-tuning capability. Simulation results reveal the neural
network’s versatility to adapt to various payload conditions for a single flexible robot
manipulator. The work presented here has been based on simulations; experimental
verification should be performed in the future.

In terms of flexible beam control strategy for a single link, the use of more effective
control schemes, such as a low-order compensator or a LQG controller instead of
deadbeat controller. is suggested for future study with sufficient vibration modes to
represent the system dynamic. Neural networks should be applied to these improved
control systems based upon the work presented in this thesis.

In addition, the state-of-the-art neural networks are not just used to replace the

47

conventional adaptive controllers but to incorporate intelligence with robotic applica-
tions. In the future, we might expect robots to handle tasks and to reason or respond
logically like human beings with intelligent neural network control. Challenges of

neural network control are lying ahead and await further investigation and research.

Bibliography
[1] Baeck, Henry S. 1968. Practical Servomechanism Design. McGraw-Hill.

[2] Barto, Andrew G.; Sutton, Richard 5.; and Anderson, Charles W. 1983. Neu-
ronlike adaptive elements that can solve difficult learning control problems. IEEE
Trans. on Systems, Man, and Cybernetics SMC-13(5).

[3] Cannon, Robert H. and Schmitz, Jr. Eric 1984. Initial experiments on the end-
point control of a flexible one-link robot. Int. J. Robot. Res. 3(3).

[4] D’'Azzo, John J. and Houpis, Constantine H. 1966. Feedback Control System
Analysis and Synthesis. McGraw-Hill.

[5] Franklin, Gene F.; Powell, J. David; and Workman, Michael L. 1990. Digital
Control of Dynamic Systems. Addison-Wesley.

[6] Hastings, G. G. and Book, W.J 1987. A linear dynamic model for flexible robotic
manipulators. IEEE Control System Magazine 1(1).

[7) Ichikawa, Yoshiaki and Sawa, Toshiyuki 1992. Neural network application for
direct feedback controller. IEEE Trans. on Neural Networks 3(2).

[S] IWANN, International Workshop 1991. Artificial Newral Networks. Springer-
Verlag. Granada, Spain.

[9] Kung, Sun-Yuan and Hwang, Jenq-Neng 1989. Neural network architectures for
robotic applications. IEEE Trans. on Robotics and Automation 5(3).

[10] Menq, Chia-Hsiang and Chen, Jian-Shiang 1985. Dynamic modeling and
payload-adaptive control of a flexible manipulator. Proc. IEEE Conf. on Robotics
and Automation 1.

[11] Miller I1I, W. Thomas; Hewes, Robert P.; Glanz, Filson H.; and Kraft I1I, L. Gor-
don 1990a. Real-time dynamic control of an industrial manipulator using a neural-
network-based learning controller. IEEE Trans. on Robotics and Automation 6(1).

[12] Miller ITII, W. Thomas; Sutton. Richard S.: and Werbos. Paul J. 1990). Neural
Networks for Control. MIT Press.

[13) Narendra, Kumpati S. and Parthasarathy. IKannan 1990. ldentification and con-
trol of dynamical system using neural networks. JEEE Trans. on Neural Nelworks

1(1).

[14] Phillips. Charles L. and Harbor. Royce D. 1983. Feedback Control Systems.
Prentice Hall.

49

[15] Stanley, Jeannette 1988. Introduction to Neural Networks. California Scientific
Software.

[16) Wang, David and Vidyasagar, M. 1991. Transfer functions for a single flexible
link. Int. J. Robot. Res. 10(5).

[17] Wang, Wen-Jien; Lu, Shui-Shong; and Hsu, Chen-Fa 1989. Experiments on the
position control of a one-link flexibie robot arm. IEEE Trans. on Robotics and
Automation 5(3).

Appendix A

Aspirin/ MIGRANES

A.1 Aspirin Language and MIGRANES Interface

The Aspirin/MIGRAINES system is the copyright of Russell Leighton and the
MITRE Coporation, and it is licenced free of charge for research and development
purposes.

The Aspirin/MIGRAINES system is intended to simplify and speed up the process
of investigating neural network paradigms as well as to facilitate the efficient execution
of large, non-trivial neural network systems.

Aspirin is a declarative language used to describe arbitrarily complex neural net-
works. The goal of Aspirin is to make simple (i.e.. commonly used) network constriets
easy to describe. vet allow any network topology to be specified. An Aspirin descrip-
tion of a network is used to generate a computer program to simulate that network.

Aspirin encompasses a very large range of capabilities. enough to consistently describe

the majority of feed-forward network topologies and the related learning algorithms
in an economical manner. When new cases arise, Aspirin enables a user to define new
functionality by specifying replacement simulation code or by adding extensions to
Aspirin’s code generators.

MIGRAINES is an interface for evaluating and interacting with a neural network
simulation. Utilities exist for moving quickly from an Aspirin description of a net-
work directly to an executable program for simulating and evaluating that network.
The interface MIGRAINES has been kept intentionally separate from Aspirin so that
the limitations of MIGRAINES do not restrict the performance of Aspirin. How-
ever, in practice, Aspirin and MIGRAINES are used as a single. cohesive unit. This

combination allows for simple specification and creation of efficient neural networks.

A.2 Example Files

The following two files illustrate an Aspirin program and how MIGRAINES is

used to navigate through the network.

A.2.1 Aspirin File

Aspirin file of two link manipulator simulation:

DefineBlackBox Robot
{
OutputLayer-> Out
InputSize-> 2
Components-> {

PdpNode3 Hidden [10]

InputsFrom-> $INPUTS

PdpNode3 Out [2]

InputsFrom-> Hidden

53

A.2.2 MIGRAINES Command File

This command file illustrates some features of the MIGRAINES user interface.

This program saves the hidden layer and output vectors

for plotting

This program assumes you have loaded a test.df file

Keep sure we’re in the right place
poproot

Load the network

load Network.save

push Robot

Get some values in the hidden nodes

cycle 1

no header

pnoheader

echo $<<<<$ Open pipe to file $>>>>$
push Robot:Hidden

This opens a file and dumps the data...
popenNodes HiddenValues cat $>$ hidden_values.pdat
pop

push Robot:0ut

This opens a file and dumps the data...

echo "opens a file and dumps the data..."
popenNodes OutputValues cat $>$ output_values.pdat
echo "Done."

There are 99 more patterns, after each pattern

all node value pipes are updated

cycle 99

echo $<<<<$ Close pipes $>>>>$
pclose HiddenValues
pclose OutputValues

quit

ot
(W

Appendix B

Numerical Data

B.1 Experimental Data of Literatures

B.1.1 Data of Flexible Beam for First Vibration Mode

Data of table B.1 is from [Cannon and Schmitz 1984], where beam length [=1 m

and the total moment of inertia Iz = 0.44 kgm?.

Mode Frequency | Modal Damping | Actuator Gain | Tip-sensor Gain
w 4 .(0) $i(l)
Rigid Body 0 0 1.0 1.12
First Mode 1.88 0.015 2.97 -11

Table B.1: Model parameters for first flexible mode

B.1.2 Data of Flexible Beam with Payload Variations
Data of table B.2 is from [Wang et al. 1989] which is a follow-up study of [Cannon

and Schmitz 1984].

B.2 Simulation Data

Data of Table B.3 is used to train the adaptive neural network. The zeros and
poles of compensators from Table B.4 are target outputs of the network for testing,

and the actual network outputs are tabulated in Table B.5.

Payload/Beam Mass | Frequency of First Mode (Hz)
0% 1.75
30% 1.10
60% 0.60
90% 0.50

Table B.2: Frequency changes with respect to payload variations

-1

Ut

% | w(Hz) | It(kgm?) D(z) poles D(z) zeros
0% | 1.7500 | 0.4400 | 0.2867 | 1 | -0.7749=£50.5688 | 1| 1 [-0.1734%;0.9585
5% 1 1.6766 | 0.4546 | 0.3043 | 1 | -0.7981450.5726 | 1 | 1 | -0.1028+,0.9697
10% | 1.6083 | 0.4684 | 0.3215 1 |-0.8217450.5758 | 1| 1| -0.0364%;0.9755
15% | 1.5097 | 0.4909 | 0.3479 | 1 |-0.8604£;0.5796 | 1 |1 | 0.0599+£;0.9758
20% | 1.3968 | 0.5108 | 0.3808 | 1 {-0.9126+;0.5816 |1 {1 | 0.1697+70.9645
25% | 1.2575 | 0.5393 | 0.4256 | 1 | -0.9929+;0.5775 | 1 {1 | 0.3026450.9335
30% | 1.1000 | 0.5720 | 0.4832 |1 |-1.11524;0.5525 | 1 | 1| 0.4463+;0.8766
35% | 0.9719 | 0.6005 | 0.5362 | 1 |-1.2533+30.4911 | 1|1} 0.55574;0.8139
40% | 0.8541 | 0.6276 | 0.5905 | 1 [-1.4303+50.3275 | 1 |1 | 0.64864;0.7443
Table B.3: Training data of the adaptive neural controller
% | w(Hz) | IT(kgm?) D(z) poles D(z) zeros
3% | 1.7078 | 0.4488 [0.2967 | 1 | -0.7879+50.5710 | 1 | 1 | -0.13294;0.9650
13% | 1.5600 | 0.4780 | 0.3342 | 1 |-0.8400%;0.5778 |1 |1} 0.0107%50.9768
23% | 1.3249 | 0.5255 | 0.4033 | 1 {-0.9515%0.5808 | 1 | 1} 0.23884;0.9503
28% | 1.1801 | 0.5554 | 0.4530 | 1 {-1.0479+50.5692 | 1 | 1| 0.3743+;0.9034
38% | 0.9083 | 0.6150 | 0.5648 | 1|-1.3413470.4266 {1 |1 | 0.6068x;0.7777
Table B.4: Testing data of the adaptive neural controller
% D(z) poles D(z) zeros
3% 102975 | 1]-0.78794,0.5723 { 1 | 1 | -0.12904,0.9677
13% 1 0.3312 | 1] -0.83782,0.5772 11 } 1§ 0.0027%,0.9712
23% 1 0.4046 | 1| -0.95304,0.5770 | 1 | 1 } 0.24594,0.9524
28% 1 0.4539 | 1| -1.0469450.5692 1 | 1| 0.37904,0.9122
38% | 0.5681 | 1} -1.35764;0.4009 | 1 | 1| 0.60954,0.7720
Table B.5: Simulation results of the zeros and poles of the deadbeat compensators

(w3}
o

Appendix C

Symbols

C.1 Neural Network Symbols

a;(t) Activation value of i-th neuron at time .

E Global error of a neural network.

%€ Local error at j-th PE in s layer.

f Transfer function.

8I; Weighted summation of inputs to j-th neuron in layer s.
Leoes Learning coefficient or learning rate.

0;(t) Output value of i-th neuron at time t.

wji Weights between j-th neuron and i-th neuron.

s=1a; Activation value of /-th PE in level (s — 1).

59

C.2

¢(1)

dr

Symbols of Flexible Beam Dynamics

Beam length.

Moment of inertia of the beam about the root.
Moment of inertia at the hub.

Total moment of inertia,sum of I and I;.
Natural frequency.

Damping ratio.

Hub angle.

Elastic deflection.

Beam deformation.

Kinetic energy.

Potential energy.

Lagrangian.

Generalized coordinate.

Mode shape of the heam.

Actuator modal gain.

60

	San Jose State University
	SJSU ScholarWorks
	1993

	Adaptive neural network control of a flexible manipulator
	Sun-Ti Wang
	Recommended Citation

	tmp.1290447007.pdf.tObyE

