San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

1997

Trathc management methodologies for ATM
networks : a new approach

Asha G. Dinesh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Dinesh, Asha G., "Traffic management methodologies for ATM networks : a new approach" (1997). Master's Theses. 1434.
DOI: https://doi.org/10.31979/etd.y8ya-4yd9

https://scholarworks.sjsu.edu/etd_theses/1434

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/1434?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1434&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zecb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

TRAFFIC MANAGEMENT METHODOLOGIES
FOR
ATM NETWORKS: A NEW APPROACH

A Thesis
Presented to
The Faculty of the
Department of Mathematics and Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Asha G. Dinesh

May 1997

UMI Number: 1384683

UMI Microform 1384683
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

APPROVED FOR THE DEPARTMENT OF

MATHEMATICS AND COMPUTER SCIENCE
/ .

77/01,/0 U//77 \/\—' T2 v‘"?

Dr. Mglody Moh, K

e

esese,

Dr. Maﬁo Albarran

MZQWC/

Pearce

APPROVED FOR THE UNIVERSITY

o e

© 1997

Asha Dinesh

ALL RIGHTS RESERVED

ABSTRACT

TRAFFIC MANAGEMENT METHODOLOGIES
FOR ATM NETWORKS: A NEW APPROACH

by Asha Dinesh

ATM Networks are high speed networks with guaranteed quality of
service. The main cause of congestion in ATM networks is over utilization
of the physical bandwidth. Unlike constant bit rate traffic, the bandwidth
reserved by variable bit rate [VBR] traffic is not fully utilized at all
instances. Hence, this unused bandwidth is allocated to available bit rate
traffic [ABR]. As the bandwidth used by VBR traffic changes, available
bandwidth for ABR traffic varies. In other words, available bandwidth for
ABR traffic is inversely proportional to the bandwidth used by the VBR
traffic.

To manage ATM networks efficiently, two new protocols are
presented. A burst level admission control mechanism, Modified Fast
Reservation Protocol, to avoid congestion by reserving bandwidth for long
bursts of ABR traffic and a rate based congestion control algorithm,
Explicit Allowed Rate Algorithm, based on the relationship between VBR
and ABR traffic. Both these algorithms significantly improve the network

throughput with minimal overhead on the switch.

TABLE OF CONTENTS

1. INTRODUCTION.............. corsvsesenns ceecereteteetensintistrtncnnnanens 1
1.1 CONSTANT BIT RATE (CBR).....ccocueeeeruenureereienneesseeseessesssens s sesons 2
1.2 REAL TIME VARIABLE BIT RATE (RTVBR) ..ccuurrriiiernennnnnreecrernnennnnes 3
1.3 NoN REAL TIME VARIABLE BIT RATE (NRTVBR).....ccccovuerverennervnnnnnnn. 3
1.4 AVAILABLE BIT RATE (ABR) ...cvevcuereerreerueesesecsnessnecsssessessssssmssssns 3
1.5 UNSPECIFIED BIT RATE (UBR) coceneneniiietictnntceneeeenenesieeasnenssessennnnns 4

2. CONGESTION CONTROL SCHEMES cessesvrrsaaracnes 7
2.1 CREDIT BASEDceouiuiriruiensenensenseneseessesssensesessnsensesssmesssmnsmsn s s 8
2.2 RATE BASED.....uuiueuireiriisncnneennnseesessssssesssssnssssssesssssssnsmsessn s, 8

2.2.1 DECnet Protocol[22]- Ramakrishnan and Jain...................... . . 9

2.2.2 Backward Explicit Congestion Notification(11,20,22]- Newmann.. 9
2.2.3 Explicit Forward Congestion Indication [EFCI] Scheme [8, 11, 22] -
HBUCHYT GNA ViMoo 9
2.2.4 Modified EFCI Scheme]11 ,22]- ATM Forum RBFC (Rate Based Flow
CONLIOY GIOUP ..ot 10
2.2.5 Proportional Rate Control Algorithm [PRCA] [8,11,22]- Barnhart.. 10
2.2.6 Explicit Rate Feedback Scheme([22]- Adams, Chamt, Jain, Lyles

AN RODETES ..ot oo 10

2.2.7 Enhanced Proportional Rate Control Algorithm [EPRCA] [8,11,

20,22] - LLRODEITS ... 11

2.2.10 Enhanced Proportional Rate Control Algorithm+ [EPRCA+] [11] -

R. Jain, S. Kalyanaram and R. Viswanathan.................ooooooeeon.. 12
2.2.11 Enhanced Proportional Rate Control Algorithm++ [EPRCA++] [11]-
R. Jain, S.Kalyanaram and R. ViswanathQn..................oooooeoooooomo . 12

2.2.12 Explicit Rate Indication Congestion Avoidance [ERICA] [20,21]- Raj

Jain, Shiv Kalyanaraman and Ram Viswanathan...............oo........... 12

2.3 BURST LEVEL ADMISSION CONTROL ALGORITHMSoveeeenesnesnnns. 12
2.3.1 Fast Reservation Protocol (FRP......ooonoiieaeeeeeeeeeeeeeeeeeeeeeen, 13
2.3.2 Adaptive Fast Reservation Protocol (AFRP)....cccuuuverreiiaeeeeaannnn.. 13
2.3.3 Fast Reservation Protocol/Immediate T; ransmission (FRP/IT)..... 14

3. MODIFIED FAST RESERVATION PROTOCOL [25]....... .. 16

3.1 MODIFIED FAST RESERVATION PROTOCOL/IMMEDIATE TRANSMISSION

(MFRP/IT)..cccovnuruerennnreienisinisantnsnsssessnesescessssssssssenssssssmennsnsnsnsss. 18

3.3 DISADVANTAGES OF MIFRP AND MFRP/IT u.vuieeenenenereeeennnenernnssnes 20

3.4 PERFORMANCE EVALUATION OF MFRP AND MFRP/IT:........ccccuun..... 21
3.4.1 Single Stage COnfiguration.................ceceeeeeeeeeeeeeeeeeeeeseeeeeeoeen 23
3.4.1.1 Single-Rate SImulation:..........ccoeeiioiiieeeeeeeeeeeeeeeeeeeeeeeeeeo 24
3.4.1.2 Multi-Rate SIMUIAtON: «...o..oooeeeieieieeeieeeeee e 24
B.4.2 EVAIUGLION: ...ttt 25
3.5 MULTI STAGE CONFIGURATIOR:cccuveuereecrrresereerenncsnssssonseseassesenesnns 31
3.5.1 Single-Rate SimulQlion:ccoeeeeeeeeeeeseeeeesereeeeeeeeeeoeeen] 31
3.5.2 Multi-Rate SIMUIQHION:ccoeceeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeoeeeoso 31
B.5.3 EVAIUALION: ...t 32
3.6 PERFORMANCE ANALYSIS OF MFRP AND MFRP/IT:.........uuceeeeennnnn. 39
3.6.1 Blocking Probability chQracteriStics:................cveeeeveeveoeeeooe 39
3.6.2 Throughput CRArQCEIISHICS:..........ceceeeeeeeeerereeeeeeeereeeeeoeooooee 39
3.6.3 Delay characCteriStiCS:...........uuuoveueueeeeeeeeeeeeeeeeeeseeeeeeoeeeoeeee. 39
3.6.4 Source acceptance characCteriStiCS:........ovveeveeeemmeeooeoeoeeoeoeoe 40

4. EXPLICIT ALLOWED RATE ALGORITHM...................... 43

4.1 CALL ADMISSIONceieerrnneeeenecsssneessenseseeassasessenssnnssnenssssmnnemnnnnn. 43
4.1.1 Pseudo code for QdMiSSION:ceoeeveoveeeeeeseeeseoeeoeoooo 44
4.2 FLow CONTROL.......... e testttastetetentateetttettsetentttcnncneersesensnatanannnsens 45

4.2.1 Source AlGOTitRM........cc.c.ooueueeeeeeeeeeeeeeeseeeeeeeeeeoeeeoeooo 45

4.2.2 SWICh AIGOTItRIM ... 47

4.2.3 Destination AlGOTitRmM.................oeeeeeeeeseeeoeeeeoooooooo 50
4.3 ADVANTAGEScoceeerutrerssnneanneessaaseesosseossaressssssesssssnsssmnnnnnnnsnns. 50
4.4 DISADVANTAGES: ...ucceuviesiieeresneecseesssnesseoseessessssssssesssnssmmmesnnsnn. 52

S. PERFORMANCE ANALYSISccooceeeevnnmeeeeerernnnnnnnne.. 53

5.1 PROPORTIONAL RATE CONTROL ALGORITHM [PRCA]....cccceuuevuruunnnnen.. 53
5.1.1 Source AIGOTithmm........c..c..eveeeeeeeeeeeeeeeeeeseseeeeeeoeoeeoooooo 53
9. 1.2 SWitch AIGOTItRM.........eeeeeveveeeeeeeeeeeeeeeeseeeeeeeoeeeoeeoooo 53
S.1.3 DeStination AlGOTitAM................c.ceeeeeeeeeeeereseeeeeseooooooooo 54

5.2 EXPLICIT RATE INDICATION CONGESTION AVOIDANCE [ERICA]............ 54
9.2.1 Source AIGOTIthMm..........c.oueueeeueeeeeeeeeeseseseeeoeeoeooeooooooo 54
9.2.2 SWitch AlGOTitRIm........couveueeeeeeeeeeeeeeereseeeeeeeeoeoooooooo 55
2.2.3 Destination AlGOrithim................o.ceeeevveemeeseeresoooooooooooooo 56

5.3 EXPLICIT ALLOWED RATE ALGORITHM [EARA].........cccrtmmenererrnnennnanes 56
3.3.1 Source AlGOrithim...........ccovuemereeeeeeeeseeeeesoseeeeooooooooo 56
9.3.2 SWitch AIGOTithIm.........veeeeeeeeeeeeeeeeeeeeeoooooooo 56
3.3.3 Destination AlgOrithim...............oveeeeveememeeeseeeooooooooooo 57

5.4 CONGESTION CONFIGURATIONvcuverenrererereacsssensnsessssnsssennsnnsnnsn.. 57
5.4.1 Generation of VBR TYGffiCvv.vuveeeeeeerereesssseessosoooooooooeoosoe 58

5.4.3 Configuration parameters.................oocweweoememeeeooooooo 59

5.4.4 Simulation Results and AnGlYsSis.............o.oooeoeeooeoeooooo 59
5.4.4.1 Message Transfer TIMec...ououevoeoeeeeeeoeooooooooooo 60
5.4.4.1.1 DESCTIDLION.eeemeerenrieeeeeeeeeeeeeeeee oo 60
O.4.4. 1.2 RESUILS......c.eeeeeeeeeeeeeeeeeeeeeeee e 60
O:4.4. LB ANQIYSIS ...t 64
S:4.4.2 BUfer Size.........cooivimmmuimiiieeeeeeeeeeeeeeee 65
0.4.4.2.1 DESCIPLION. ...t 65
5:4.4.2.2 RESUILS ... 65
S:44.2.3 ANAIYSIS........ooeee e 68
5.4.4.3 Bandwidth USagecccovovvemriieeeeeeeeeeooo 69
3.4.4.3.1 DESCTIDHION.........eeeereeeeeeeeeeeeeeeeeeee oo 69
5:4.4.3.2 RESUILS ... 70
5.:4.4.3.3 ANAIYSIS.......cooeeeeeeeeee e 74

5.5 FAIRNESS CONFIGURATION Seeetettanctotccatettttctttterttctsncncacacsscanse 76

S5.5.1 SIMULATION RESULTS AND ANALYSIS................... 78

6. CONCLUSION 86

APPENDIX: SOURCE CODE..........cciiiiiiiinninieneeernneneennnnees. 92

1. INTRODUCTION

Transfer mode is a technique for transmitting, multiplexing and
switching information in a communication network [CCITT]. In other
words, it is the mapping of network user information onto the physical
network. Asynchronous transfer mode (ATM) is a means of transferring
data in a BISDN (Broadband Integrated Services Digital Network) network.
An ideal BISDN network [3,7] is envisioned to have the following features:

* Support different traffic types with guaranteed quality of service.

e Support high link speeds of 155 to 622 Mbits/sec.

» Efficient bandwidth utilization, i.e., usage of the physical bandwidth of
the link must be close to 100% at all instances. In other words, provide
bandwidth-on-demand to all users.

* All data must be formatted into short, fixed length packet with a header
containing routing information.

* Simple switching technique for transferring data

e Minimum buffer size.

* Least additional overhead in end systems.

ATM networks support high speed links and different traffic types
with guaranteed quality of service. For efficient bandwidth utilization, it
uses the concept of bandwidth-on-demand. They are connection oriented,
using fixed length packets for data transfer. Each packet (cell) is 53 bytes
long, consisting of 48 bytes data and 5 bytes header. The header provides
the cell priority, type and routing information [virtual path identifier and
virtual channel identifier used locally in each node for identifying the next
node].

ATM is a universal media for data transfer. ATM supports
bandwidth on demand to all users by using the method of statistical
multiplexing i.e., the statistical mean rate is taken into account while
admitting a connection rather than its peak rate. The source requests the
network for a connection by providing the required peak rate, the
statistical mean rate and the minimum rate. The network accepts a source
if it can support the requirements of that traffic type. An overview of the
characteristics and requirements of different traffic types supported by

ATM networks are described next in this section.

1.1 Constant Bit Rate (CBR)

This traffic type transmits at a constant bit rate. It is very delay

sensitive. The time between two cell transmissions must be within the

maximum cell transfer delay (CDT) specified by the source. It is required to
keep the cell transfer delay between two consecutive cell transfers within
the specified cell delay variation (CDV). Low cell loss is acceptable. E.g.

voice data transfer

1.2 Real Time Variable Bit Rate (RTVBR)

The required rate for this traffic type varies. It is also delay sensitive.
The network must be able to support the peak rate for the maximum burst
length specified by the source at the time of admission. When the source is
not utilizing the peak bandwidth, the network can allocate that bandwidth

to other traffic types. E.g. interactive compressed video

1.3 Non Real Time Variable Bit Rate (NRTVBR)

This traffic type also requires variable bit rate. Unlike CBR and
RTVBR, NRTVBR is not delay sensitive. Hence, cell transfer delay and cell
transfer variation is not an issue for this traffic type. E.g. Compressed

Video, Transaction Processing.

1.4 Available Bit Rate (ABR)
The available bandwidth at any instance can be used by this traffic
type. Hence, if a VBR source is not using the reserved peak bandwidth,

then the network allocates the unused bandwidth to the ABR sources. The

ABR sources are controlled by rate feedback from the network. Cell loss

must be at a minimum, but it is not sensitive to cell transfer delay or cell

transfer variation. E.g. File Transfer, RPC.

1.5 Unspecified Bit Rate (UBR)

This traffic type is not sensitive to delay or cell loss. It uses the left

over bandwidth if any. E.g. News Feed, Network Information.

Table 1.1: Traffic Characteristics

Traffic Bandwidth Usage Cell Cell Dqlay Cell Loss
Type Transfer | Variation | Acceptance
Delay

CBR Constant cell Very Very Moderately
transmission. Always Sensitive | Sensitive Sensitive
uses Peak rate.

RTVBR | Variable cell Very Sensitive | Moderately
transmission. Varies Sensitive | thorough | Sensitive
between Peak rate and the burst
Minimum rate.

NRTVBR | Variable cell Sensitive |N/A Sensitive
transmission rate.

Varies between the Peak
rate and Minimum rate.

ABR Variable cell N/A N/A Not
transmission rate, Acceptable
according to the current
network load.

UBR Variable cell N/A N/A N/A

transmission rate,
according to the left

over network capacity.

n

The table above summarizes the requirements and characteristics of
different traffic types[20,21,22,23].

Traffic management of the above types with guaranteed quality of
service and efficient bandwidth utilization is a challenge to ATM networks.
The average bit rate used by VBR class traffic is usually much lesser than
its reserved peak rate. For better bandwidth utilization, the network takes
advantage of the variable rate of VBR class and allocates the unused
bandwidth to ABR class. Hence, serving all users according to the
bandwidth required at that instance [bandwidth-on-demand]. The
allocation of bandwidth according to the used statistical rate is called
statistical multiplexing.

Statistical Multiplexing [bandwidth-on-demand] increases the
bandwidth utilization but tends to cause congestion in the network. In
other words, if VBR users increase their transmission rate, the physical
link's bandwidth will be over utilized. This will eventually lead to buffer
overflow and cell loss. In ATM networks, if a cell is lost, the source
retransmits the whole packet. Under heavy load conditions, this will
drastically decrease the network throughput. Hence, appropriate traffic
management is critical in ATM networks.

In summary, it is seen that congestion in ATM networks is mainly

caused by the ABR traffic class. This is because, the ABR class users do

not reserve the bandwidth at the time of admission. Hence, to decrease the
chances of congestion, it is better that ABR traffic class reserves
bandwidth for long bursts. In this thesis, a burst level admission control
protocol for ABR class users with long bursts and a simple rate based
traffic management algorithm for ATM networks, called Explicit Allowed
Rate Algorithm [EARA], is presented. EARA manages ABR traffic class
efficiently with/without the modified fast reservation protocol. EARA
* Supports all traffic types with the required quality of service
* Utilizes the bandwidth efficiently
* Transmits ABR traffic at the fastest possible rate
* Avoids congestion, hence requiring less buffer space

This thesis is organized as follows. Chapter 2 describes some
existing congestion control mechanisms for ATM networks. The Modified
Fast Reservation Protocol (MFRP)[25], a burst level admission control
protocol, and its performance analysis is presented in chapter 3. Explicit
Allowed Rate Algorithm (EARA), the new proposed traffic management
scheme for ATM networks is described in chapter 4. Chapter S compares
and analyses the performance of Explicit Allowed Rate Algorithm (EARA)
with Proportional Rate Control Algorithm (PRCA)[8,11,22]and Explicit Rate
Indication Congestion Avoidance (ERICA)[21] and chapter 6 concludes the

thesis.

2. CONGESTION CONTROL SCHEMES

ATM network users can be divided broadly into two groups, namely,
closed-loop and open-loop(8,11]. Open-loop users reserve the required
bandwidth at call-setup. The network cannot change the reserved rate
throughout the entire message transfer. CBR, RTVBR and NRTVBR traffic
types belong to this category. Closed-loop users transmit cells by using the
feedback information from the network. In other words, the network
informs these users about the availability of bandwidth as well as
congestion and the users change their transmission rates accordingly.
This category consists of ABR and UBR traffic types.

When the network gets congested, it is required to inform the ABR
source about congestion as soon as possible. This will eliminate cell-loss
and hence packet retransmission. An overview of the two major
approaches for managing ABR traffic efficiently, namely, credit-based and

rate-based[8,11,20] are described in this section.

2.1 Credit Based

This scheme consists of per-link, per-vc, window flow control. Each
link has a sender and a receiver node [can be a switch]. Each node
maintains a separate queue for each VC and determines the number
[credit] of cells that the sender can transmit on that VC without congestion
and cell-loss. Though this scheme manages the traffic efficiently, it is very

costly for the vendor.

2.2 Rate Based

In this scheme, the network controls the ABR traffic transmission
rate according to the load. It uses resource management [RM] cells to
change ABR traffic transmission rate. An efficient rate-based algorithm
must support the following features:
e Efficient bandwidth utilization
¢ No/minimal cell-loss
e Minimal buffer size
* Simple switch algorithm [less overhead]
» Fair bandwidth allocation among ABR traffic class.

A number of rate-based algorithms have been proposed for ATM

networks[8,11,20,21,22]. Some of which are:

2.2.1 DECnet Protocol[22]- Ramakrishnan and Jain
It uses ANSI Frame Relay standards. At fixed intervals, the window

size is either increased by a fixed amount or decreased by an amount
proportional to the current window size. The packet header contains a bit
to indicate congestion and congestion is signaled in the forward direction.

It uses end-to-end feedback loop.

2.2.2 Backward Explicit Congestion Notification[11,20,22]- Newmann

In this scheme, the switch sends an resource management [RM] cell
to the source when it detects congestion [Negative Feedback]. If the source
receives an RM cell from the switch, it decreases its transmission rate by
an amount proportional to its current rate, otherwise, it increases its rate

by a fixed amount.

2.2.3 Explicit Forward Congestion Indication [EFCI] Scheme [8, 11,
22] - Hluchyi and Yin

This scheme uses a positive feedback mechanism. A single bit in the
header of the ATM data cell is used to indicate congestion. Destination
checks this bit periodically and sends an RM cell to the source if the
congestion bit is not set. If the source receives an RM cell, it will increase
its rate by a fixed amount; otherwise, it will decrease its rate by an amount

proportional to its current rate.

10

2.2.4 Modified EFCI Scheme|11,22]- ATM Forum RBFC (Rate Based
Flow Control) Group

This scheme signals in the forward direction and sends negative
feedback to the source. A new concept of segmentation o control-loop - a
network can be divided into two or more segments by introducing
intermediate network that act as virtual destination and virtual source.
The virtual destination has to send an RM cell to the source if congestion

bit is set - was introduced.

2.2.5 Proportional Rate Control Algorithm [PRCA] [8,11,22]- Barnhart

It uses positive bi-directional feedback mechanism. It supports
segmentation of control-loop. Destination sends a RM cell periodically.
Upon receipt of an RM cell, the source will check the EFCI bit and increase

or decrease its rate accordingly.

2.2.6 Explicit Rate Feedback Scheme([22]- Adams, Chamt, Jain, Lyles
and Roberts
The concept of calculating the explicit rate for each ABR source was

introduced in this scheme. The source sends an RM cell periodically with
the current transmission rate. The switch calculates its fair share
according to the current rate. Any switch along the path - from source to
destination - that does not have the capacity to support the specified

explicit rate can reduce it. It uses end-to-end feedback loop.

11

2.2.7 Enhanced Proportional Rate Control Algorithm [EPRCA] [8,11,

20,22]- L.Roberts
This scheme is a combination of PRCA and Explicit Rate Feedback

schemes. This increases the flexibility of the switch as it can control
congestion through EFCI (forward) or explicit rate (backward) or both.
Explicit rate is interpreted as a dynamic upper bound on the rate
calculated by PRCA. The switch keeps track of every VC [Per-vC
accounting] usage, to ensure that it is still active. It also selectively signals

congestion to sources with large ACR [allowed cell rate].

2.2.8 Adaptive Proportional Rate Control [APRC] [11]- K.Y.Siu and
H.T.Tzeng

This scheme detects congestion on switch depending on the change
in the queue length rather than comparing the queue length to the

threshold value.

2.2.9 Adaptive Proportional Rate Control 2 [APRC2] [11]- K.Y.Siu and
H.T.Tzeng
This scheme is the same as APRC, but it shortens the ramp-up time.

It is done by calculating the mean of current cell rate rather than dividing

available bit rate among all active users.

12

2.2.10 Enhanced Proportional Rate Control Algorithm+ [EPRCA+]
[11]- R. Jain, S.Kalyanaram and R. Viswanathan

Congestion is detected by traffic load at the switch. It has an interval
timer and the count of number of packets received. It signals the source by

using backward RM cells with explicit rate.

2.2.11 Enhanced Proportional Rate Control Algorithm++ [EPRCA++]
[11]- R. Jain, S.Kalyanaram and R. Viswanathan

This scheme uses positive feedback mechanism - source decreases
its rate if an RM cell is not received. It uses a counter at the source for

forward RM cells instead of an interval timer.

2.2.12 Explicit Rate Indication Congestion Avoidance [ERICA]
[20,21]- Raj Jain, Shiv Kalyanaraman and Ram Viswanathan

This scheme avoids congestion by monitoring the load on the switch,
according to the averaging interval, which is determined by the link
capacity. The ABR source sends RM cells periodically [determined by the
network]. The switch sends its load level information back to the source,
which in turn computes and changes its transmission rate accordingly.

The target bandwidth utilization is about 90% of the physical bandwidth.

2.3 Burst Level Admission Control Algorithms

To reduce the severity of congestion, a number of bandwidth

reservation schemes for ABR traffic class has also been proposed. Fast

13

reservation protocol (FRP)[10,18] was the first burst level admission
protocol proposed. An overview of FRP and two major variations of FRP --
Adaptive fast reservation protocol (AFRP)[4,9,29] and Fast reservation

protocol with Immediate transmission (FRP/IT)[9,29] -- are presented next.

2.3.1 Fast Reservation Protocol (FRP)

FRP was the first burst level admission protocol proposed. It works
as follows:

The source sends a cell requesting bandwidth equivalent to the peak
rate for each burst. If the network can support the requested bandwidth
along all the links from source to destination, it sends an ACK, otherwise it
sends a NACK. If the source receives an ACK, it starts transmitting the
data at peak rate. Once the transmission is completed, it sends a cell to
release the bandwidth it was using. If the source receives a NACK, it backs
off for a random time and re-attempts to reserve the peak bandwidth at a

later time.

2.3.2 Adaptive Fast Reservation Protocol (AFRP)
AFRP uses the concept of bandwidth negotiation and random back-

off. It is as follows: Initially the source requests the peak rate as the
required bandwidth. It the source receives an NACK, it will back off for a

period of time and request again for a reduced rate which is:

14

Mean Rate <= New Rate = Old Rate * Decrement Factor

If the source receives an ACK, it will transmit this burst at the rate
accepted by the network, but will increment its asking rate for the next
burst request as follows:

Mean Rate <= New Rate = Old Rate +
(Old Rate * Increment Factor) <= Peak Rate

2.3.3 Fast Reservation Protocol/Immediate Transmission (FRP/IT)

FRP/IT was proposed around the same time as FRP. The concept
used is very similar to FRP. The protocol description is as follows:

The source requests the network to allocate the required peak rate.
It assumes that the network will be able to support the requested rate and
starts transmitting immediately. It keeps a copy of the data transmitted
until it receives an ACK from the network. If the source receives an ACK, it
continues its transmission and releases the bandwidth at the end of this
burst transmission. It discards the copy of transmitted data. If it receives a

NACK, it stops transmitting and retries later with the same peak rate.

Table 2.1: Comparison of major burst level control schemes

FRP

AFRP

FRP/IT

Always requests for
eak rate

Negotiates the rate with
the network

Always request for peak
rate

High admission delay

Lesser admission delay

High admission delay

Less transmission
delay

Transmission delay may
be more than FRP and
FRP/IT

Least transmission
delay

No overhead

The source must keep
track of the current
requested rate and
depending on whether it
receives a ACK or

NACK, it must increase
or decrease its rate for
the next request

The source needs to
keep a copy of the data
transmitted before it
receives an ACK from
the network.

16

3. MODIFIED FAST RESERVATION
PROTOCOL [25]

There are three major approaches to bandwidth management of
bursty traffic: the peak rate allocation, the minimum throughput
allocation and the negotiated bandwidth allocation. In this new burst level
admission control scheme, the concept of bandwidth negotiation is used.
MFRP deals with three different rates. They are:
¢ Requested Rate:

This is the desired rate at which the source would like to transmit a
particular burst. It is chosen to be in-between the Peak Rate and the Mean
Rate.

* Minimum Rate:

It is the Mean or Average Rate required for transmitting a particular
burst.

e Allowed Rate:

This is the rate the network has allocated to the source for
transmitting a particular burst. The allowed rate ranges between:

Requested Rate >= Allowed Rate >= Minimum Rate.

17

Modified Fast Reservation Protocol is as follows: At admission
request, the source sends the request cell with the desired rate and the
minimum acceptable rate. The desired rate is chosen to be in-between
the peak rate and the minimum rate, to reduce the overall blocking
probability. The network, at each node, from source to destination
reserves a rate (Allowed Rate) along the link, such that,

Min Rate <= Allowed Rate <= Requested Rate

If the source receives an ACK then it will transmit at the Allowed
Rate. After transmitting the burst, it will release the reserved bandwidth
and wait until the next burst is ready to be transmitted. If the source
receives an NACK, it backs off for a period of time and re-attempts.

* Pseudo Code for manipulation at each node of the network:
Forever
{
Wait for a Request
If (Minimum Rate > Available Rate)
{
Allowed Rate = 0;
Send NACK (Allowed Rate);
}

else

!
1

If (Requested Rate <= Available Rate)
{
Allowed Rate = Requested Rate;
Available Rate = Available Rate - Allowed Rate;

Send ACK (Allowed Rate);

3
f

else

{

18

Allowed Rate = Available Rate;
Available Rate = 0;
Send ACK (Allowed Rate);

-

3
)

)

¢ Pseudo Code for Source:

If (a burst is ready)
[
it
Choose Requested Rate such that
Minimum Rate < Requested Rate < Peak Rate
Forever
{
Send_Request (Required Rate, Minimum Rate);
Wait for Acknowledgment;
If (ACK) is received
{
Transmit at Allowed Rate;
Release the reserved bandwidth;
Wait for next burst;
Choose Requested Rate such that
Minimum Rate < Requested Rate < Peak Rate
!
)
If (NACK) is received
{

Back off for a random period of time

}

i
J

3.1 Modified Fast Reservation Protocol/Immediate
Transmission (MFRP/IT):

MFRP/IT is very similar to MFRP except that the source assumes
that the Requested Rate will be granted and starts transmitting before
receiving an ACK from the network. It keeps a copy of the data it is

transmitting as a back up. If the source receives an ACK from the network,

19

it will continue transmitting. The rate of transmission will now be changed
to allowed rate. It also discards the backup copy of the transmitted data. If
it receives a NACK, it will stop transmitting. It will back-off and retry at a
later time as in MFRP.

e Pseudo Code (Source)

If (a burst is ready)

{
X

Choose Requested Rate such that
Minimum Rate < Requested Rate < Peak Rate

Forever

[
1

Send_Request (Requested Rate, Minimum Rate);
Start transmitting data at Requested Rate;
Keep a copy of the transmitted data as a backup;
If (ACK) is received
{
Change transmission rate to Allowed Rate;
Continue Transmission;
Release bandwidth at the end of this burst transmission;
Discard backup copy of transmitted data;
Wait for next burst;
Choose Requested Rate such that
Minimum Rate < Requested Rate < Peak Rate

}
If (NACK) is received

{
Stop transmission;
Back off for a random period of time;

}

[
-

20

3.2 Advantages of MFRP and MFRP/IT

MFRP (MFRP/IT) Server more fairly accepts sources with different peak
rate as compared with FRP, FRP/IT and AFRP. Since the Requested
Rate is less than the Peak Rate and the Allowed Rate can be as low as
the Minimum Rate.

Utilizes the physical bandwidth more effectively as more sources are
accepted, hence it can carry higher load.

The admission delay is very low.

The blocking probability is also low since, the source is ready to accept

the minimum rate as the allowed rate unlike other schemes.

3.3 Disadvantages of MFRP and MFRP/IT

The source must send the minimum acceptable rate along with the
desired (requested) rate and the network must send the rate that it can
support (Allowed Rate) with acknowledgment, though no extra
hardware is required. It only requires more software overhead.

The transmission delay is more than other schemes but the overall
delay i.e., admission delay + transmission delay is much lesser than

other schemes.

21

3.4 Performance Evaluation of MFRP and MFRP/IT:

The performance of MFRP and MFRP/IT is compared with the
existing protocols, namely FRP, FRP/IT and AFRP via simulation. Both
single rate and multi rate over single stage and multi stage ATM LANs and
WANs are used in this simulation. This model can be extended to any
depth and the results obtained here are valid for any general
configuration.

The performance of the different protocols are compared based on
blocking probability, end-to-end delay and carried load.

Blocking probability is the probability of a source being rejected by
the network, as the requested bandwidth is more than the available
bandwidth. It calculates the ratio of blocked requests and total requests.

End-to-end delay (overall delay) is the sum of admission delay and
transmission delay. Admission delay is the time taken for a source to be
accepted by the network. It includes the back-off delay. Transmission
delay is the time from the start of acceptance by the network till the end of
bandwidth release to the network.

Carried Load (Network Throughput) is the data rate at which the

network has actually transmitted.

22

All protocols are simulated under two configurations (single stage
and multi stage). Under each configuration, single rate (all sources
transmit at the same rate) and multi-rates (each source can transmit at a
different rate) are used. The simulation under each condition is run for 10
seconds and an average of 3 runs is used for evaluation. Three different
traffic types are used for simulating each configuration.

The characteristics of the different traffic types are as follows:

Table 3.1: Simulated Traffic Characteristics

Traffic Type Mean Rate (Mbps) Peak Rate (Mbps)
Type O 10 35
Type 1 15 S5
Type 2 20 85

All configuration parameters used in the simulation are listed in the

next table.

23

Table 3.2: Conjguration Parameters

Parameter Description

Parameter Value

Network

Single-stage and Multi-stage

Traffic

Single-rate and Multi-rate

Source to switch propagation time

0.01 milliseconds

Switch to switch propagation time (WAN)

5 milliseconds

Switch to switch propagation time (LAN)

0.1 milliseconds

Arrival process Random

Burst Length

5 Mbits

Back-off Period

3 * (Mean burst transmission time)
Switch transmission link speed

155 Mbps

Traffic Load

90 Mbps - 180 Mbps

Requested Rate (MFRP) 1.25 * Mean Rate
Increment Factor (AFRP) 0.125

Decrement Factor (AFRP) 0.5

3.4.1 Single Stage Configuration:

In this configuration six sources share a common ATM switch with

an output link capacity of 155 Mbps (figure 1). FRP and AFRP are

compared with MFRP and FRP/IT is compared with MFRP/IT.

Figure 3.1: Single Stage Configuration

Src 1
Src 2
Src 3
Src 4 ATM Switch
Src 3
Src 6

Output link

155Mbps

3.4.1.1 Single-Rate Simulation:

All sources carry either type 0, type 1 or type 2. Both FRPs and
FRP/ITs are simulated. For simulation results of FRPs please refer Figure
2. Both LAN and WAN environments have the same results as the source

to switch distance is the same for both the cases and the cells pass

through only one switch.

3.4.1.2 Multi-Rate Simulation:

Source 1 and source 4 carry type O traffic, source 2 and source 5
carry type 1 traffic and source 3 and source 6 carry type 2 traffic. The

single stage multi rate simulation results of FRPs and FRP/ITs are shown

in figures 3.3, 3.4, 3.5 and 3.6.

25

3.4.2 Evaluation:
Both MFRP and MFRP/IT out perform FRP, AFRP and FRP/IT,

under single as well as multi rate, in both LAN and WAN environments.
Simulation results show that with MFRP, there is a significant increase in
the network throughput and decrease in the overall delay and blocking
probability. In multi-rate simulation, the network throughput is reduced
and the blocking probability as well as the overall delay is increased, as
compared to single-rate simulation. In a multi-rate configuration, there are
three different traffic types competing for the same limited physical link
bandwidth. It can be seen from the results that, type O is favored the most,
followed by type 1 and type 2. This is because the network tends to
accepts VCs asking for lower request rate more faster (dependent on
available bandwidth) than that of higher request rate. As the blocking
probability increases, the overall delay increases and the throughput
decreases. MFRP and MFRP/IT have relatively smaller blocking probability
than FRP, AFRP and FRP/IT since the request rate is chosen to be in
between the minimum and peak rates. The smaller blocking probability in
MFRP and MFRP/IT leads to smaller overall delay and higher network
throughput. Simulation results also show that FRP/IT performs better
than FRP and similarly, MFRP/IT performs better than MFRP. This shows

that MFRP/IT holds the original design goal of FRP/IT.

Figure 3.2: Single Stage Single Rate [FRPs]

Carried Losd

End-to-End Delay

Carried Lond

100 - —&—FRP % 10 - —&—FRrRP
80" —&— AFRP < V —~8— AFRP
60 - —— MFRP S 5/—-‘ e
50 R 3

o o Type 1

0 —& —8 Typel g g 120 150 180
%0 120 150 180 Offered Load
Offered Load

Carvied Load

” |
-

e o0
s ®

Blocking Probability

o
o N

—_———)
100 - —&-FRP :5 10 - W
gg = ~—8—AFRP :é‘ s —8—AFRP
w0 : —&— MFRP ;.6_' - —8—~ MFRP
20 z 0 Type 2
o &. S —" Type 2 S e 120 15 180
% 120 150 180 Offered Load
Offered Load
. —a—FrP z . —@—FRP
- ~@—AFRP 2 o.s'/"—H —8—AFRP
/47‘ o i I
/ HE
= Type 1 E 0 Type 1
% 120 150 180 B 9 120 10 180
Offered Load Offered Load

ocooo0

Blocking Probability

—r— s

1
:2) —8—AFRP
.. —a—MFRP
2.
0 Type 2

%0 120 150 180

Offered Load

Figure 3.3: Single Stage Multi Rate [FRPs] - LAN

27

10 -
I .08 -
Zo6- —&—FF
C S04 ~8—AFRP
‘02 - i
e = 0 . i Type 0
%0 120 150 180 l 90 120 150 180
Offered Load ‘ Otfered Load
10 - 1 -
- g® ,_ =~ 08" o
e —&-FP Z 06 - e
. —8—AFRP * 048 -8 AFP
_— ~8—MFRP S oot -8 MFRP
- 0 . Type 1 = o Type 1
90 120 150 180 20 120 150 180
Offered Load Offered Load
10 1
= 8 08
S 6- B alisd Zo6- —aFrP
< 4- —S—AFRP < 04 —a—AFFP
.. —8—MFRP : 0.2 - —W— MR
B Type 2 = 9 Type 2
90 120 150 180 90 120 150 180
Offersd Load Offered Load
100 -
80 -
T 60 - —.—FR’
T 4. ——AFP
200 - —8—MFRP
()
80 120 150 180

Offered Load

28

Figure 3.4: Single Stage Multi Rate [FRPs] - WAN

£ 1.
S ---rme 3 —8—rRP
2 s —B-arrp = 05 - —8—AFRP
- =
= —8— MFRP E —&— MFRP
T o= T e s OW —& j
1434 -
120 150 180 Z 9 120 150 180
Type Type O
Offered Load 3 Offered Load
z £ .
3 —_ = —_—
s -8 FrP gg': —8—FrP
& —&-arRp £ 7 —8—AFRP
s ~8— MFRP 50.2 - —8— MFRP
8 - 2 o0 —
120 10 %0 Type S g0 120 150 180
1
Offered Load Offered Load Type
i >
B =
[=
X 208 —8
e —
@ Y ~B-AFRP S, —8—AFRP
-] w 0.
= —8-MFRP | S02-. —8— MFRP
& 'E o
120 15 1 =
%0 80 Type) 120 150 180 Type
Offered Load !
Offered Load
|
§ 8- ~8—FRP
z —&— AFRP
£ -.\\.__\._——. —~8—MFRP
9]
120 150 180
Offered load

Figure 3.5: Single Stage Multi Rate [FRP/ITs] - LAN

29

End-to-End Delay

o*— ~—

9%€0 120 130 180
Offered Load

Blocking Probability

—a—FRP/T

—8— MFRP/IT

Type 0

End-to-End Delay

w
.

Blocking Probability

90 120 150 180 Tym 91

End-t0-End Delay

—8— FRP/IT
—&— MFRP/TT

Blocking Probability

—&—FRP/IT
—&— MFRP/IT

Carried Lond

100 _
23: —&—FRP/TT
40 - —&— MFRP/IT
. —
0

30

Figure 3.6: Single Stage Multi Rate [FRP/ITs] - WAN

= o8- £8.
- [
£ 06 - L S6- R
£ 04 —4—FRP/IT z, —— FRP/IT
—— ! o w e
2o02. —8— MFRPT 3, —8— MFRP2IT
-2 —— = I
g 0— : Type Go———=
Q 90 120 150 180 90 120 150 180 Type
Offered Load Offered Load i
-
R e
go.a.__./"\‘ <
g 06 - <
S 04 - @
o
£o02. =
k-1
8 o0 &
E 3
if 1- F10-
E 08 - A 8-
206- —o— FRP/IT T 6- —&—FRP/IT
23
ggz —8— MFRP2IT 5 Z ~&— MFRPIT
£ 02- —_— T o2- —_—
3 om- 2o
Z g0 120 150 180 Type 90 120 150 180 Type
Offered Load Offered Load
150 -
©
3
3 100 ——FRP/IT
(1
<
Q

31

3.5 Multi Stage Configuration:

In this configuration, six sources share two local ATM switches with
output link capacity of 155 Mbps. These two switches are connected to an
other ATM switch, whose output link capacity is 155 Mbps.

Figure 3.7: Multi Stage Configuration

Src |

Src 2 ATM Output link
———

Src 3 Switch 1 | 155 Mbps

ATM Output link
Switch 3| 155 Mbps

Src 4
Src 5 ATM Output link
Src 6 Switch 2 | 155 Mbps

3.5.1 Single-Rate Simulation:
All input sources on both ATM switches carry either type O, type 1

or type 2, which in turn is transmitted to the third ATM switch. Both FRPs
and FRP/ITs are simulated, in LAN as well as WAN environments. The
simulation results of multi stage single rate FRPs are shown in figures 3.8
and 3.9.

3.5.2 Multi-Rate Simulation:
Source 1 on switch 1 and source 4 on switch 2 carry type O traffic,

source 2 on switch 1 and source 5 on switch 2 carry traffic type 1 and

32

source 3 on switch 1 and source 6 on switch 2 carry type 2 traffic. The
output from these two switches are transmitted to the third switch that
transmits to the destination. For simulation results of FRPs and FRP/ITs,

please refer figures 3.10, 3.11, 3.12 and 3.13.

3.5.3 Evaluation:
Under both single and multi rate, in LAN as well as WAN

environments, MFRP and MFRP/IT outranks FRP, AFRP and FRP/IT.
Though, the data passes through more number of switches in a multi
stage network, the characteristics of MFRP are similar under both single
and multi stages. In multi-stage configuration, both FRP and AFRP suffer
from high blocking probability and low throughput. The network
throughput has diminished in this configuration as the blocking
probability (back-off delay) dominates the overall performance. Though the
performance of MFRP and MFRP/IT is not the same as in single-stage
configuration, it continues to perform better than FRP and AFRP due to its
flexible bandwidth acceptance capacity.

From the simulation results, it is clear that the overall delay in all
configurations is directly proportional to the blocking probability. As the
blocking probability is much lesser in MFRP and MFRP/IT, its
performance is improved significantly as compared to FRP, AFRP and

FRP/IT.

Figure 3.8: M

ulti Stage Single Rate [FRPs] - LAN

33

Carried Load

Carried Load

2

0= B
90 120 150 180
Offered Load
100 .
80"
60 -
0
m!\v——o—n
00— — &—/——a———14
S0 120 150 180
Offered Load

End-to-End Delay

By
—8—FRP =
—8— MFRP =

_ 100 - Loz
Z 8" —_— R
3 . —&-FrP | Z
T w0- ~@-AFRP | =
L ~a—mrrp | 2
Q) —— :‘:-'5
% 120 150 180 b
Offered Load Type2 |
|
]
£ >
g - -8 3 1-
fee— iR 1 = -
< 0at —a-wwe £ 000 8-
£o02. —&—MFRP £o02- —8—MFRP
3 om- 0
= 30 120 150 180 = 9 120 150 180
Offered Load Type Offered Load Type 1
>
= "' J— - —a
Z 08 —8—FRP
£ 06 - —8— AFRP
204 —8— MFRP
Z02- —_—
-]
T e 120 150 180 Type2

34

Figure 3.9: Multi Stage Single Rate [FRPs] - WAN

150

Offered Load

120

A f w
m n [=]

Supaq pug-o1-puy

—&— AFRP
—8 MFRP
Type

180

150

120
Ofered Load

% 8

$0

puo] pate)

T
~§— AFRP
—8— MFRP

[
[=}) o

—

180

150

120

&

fupq pug-oi-puy

EE
$44
7

b |
w (=]

pror) paie)

8 8

2

150

120

Ofiered Load

&

Offered Load

Q ®WWw<TNO

180

fejag pug-oy-puy

88898°
puo pauiuy

180

150

Offered Load

—8—FRP
~#—AFRP
—a—MRP

180

150

Qliered Load

' Vo
—~ 00 O ¢ (=]
o oo M

150

Cffered Load

~8— AFRP
—&8— MFRP
180

150

120

' &

o
Amiqeqoiy Suppdorg

Offered Load

Figure 3.10: Multi Stage Multi Rate [FRPs] - LAN

€ 150 - - - % 10 - —
EH &~ 2 sa<::’__./‘¢ —8—FrP
T —8—AFRP LI —8—ArRe
£ B~ " & g &\ g 2. —8—AFRP
S o¥T/——eTT — = ol_ﬁ.—:—’:":::. -
% 120 150 180 g g 120 50 0 Typeo
Offered Load Offered Load
;E: 1 - 5 10 FRP
% '<:;,,—-a-/1 —a—Fre Z .8 0 ~e— 8 AFRP
£ os- —8—AFRP 26 —&—MrRe
= & MFRe A o
i om — k4 25—-——/’—.
2 % 120 150 180 = 090 120 150 180 ype 1
Offired Load Type O
Offered Load
P >
e £10 -
E O.S'F——_‘.\/. —a—rre S 8>—£: —&—FRP
2 06- ~8—AFRP z s —S—ArRe
x 04 - ~8— MFRP ¢ 5. MR
£o02. e]
ey c o
20 90 120 150 180 Type
= 9 120 150 180 Type 1 2
Offered Load

Offered Load

z

Z 08 -

E 0.6> 8- FRP
T o04- —@— AFRP
£02- —&— MFRP
S 0 —

Z g0 120 150 180

:
]
i

Figure 3.11: Multi Stage Multi Rate [FRPs] - WAN

36

< 150 - Zw0.
3 100 —8—FRP 2 2' —8—FRP
£ 0B —8— AFRP S 48 —&— AFRP
" z 5 < MR
90 120 150 180 =
) 120 150 180 0
Offered Load lype
Offered Load
£ 1. Ew0-
= —_— [—_——
£ —8—FRP S SN)
£ 05 —8—AFRP I D —8— AFRP
£ og—-tp————8 MR £ 2 ~8— MFRP
= - Zo -
Z 9 120 150 180 SR 120 150 180
Offered Load Type Offered Load Type
>
;:-3 1 - £ 10
E o.sN —a— P s .\ﬁp_:: —a—FRP
F06- —8— AFRP g S5- —8— AFRP
- - e
§0~4 —~&— MFRP o —&— MFRP
£ 02- —_— = —_
£ 0 = 90 120 150 180
T 90 120 150 180 T Offered Load Type 2
Offered Load
>
= 1
< 08- pp——
=2 -
s 06 - FRP
< 04 - —8-— AFRP
£02- —8— MFRP
s 0
= 90 120 150 180
Offered Load Type

37

Figure 3.12: Multi Stage Multi Rate [FRP/ITs] - LAN

@R
MFRP/IT
Type

180

150

Qffered Load

Q W W=+t NO

&

Suvjaq puz-o1-puy

150

‘EEEER

puor pattu)

& A

QWO T™NO
=

fujag pugy-oy-puy

—&—FRP/TT
—&— MFRP/IT
180
Type

150

120

:]
o
fupquqory Jusoorg

180

150

Qffered Load

Qfered Load

—&—FRP/TT
~&8— MFRPNIT
Type

[[m

WOt NO
£vjaq puy-oy-pugy

180

150

120

Qffered Load

—&—FRP/TT
—8— MFRP/IT
180
Type

150

120

LI LR) %
~0QTqoO
Ooom

Anrqeqosy Sunpog

Qiered Load

—&— FRP/TT
~8— MFRP/TT
150 180

120

S@asno S
3333
Lnrquqosg Suiyoorg

Qfiered Load

38

Figure 3.13: Multi Stage Multi Rate [FRP/ITs] - WAN

_ 150 - 210
g . = 8- e
R S R s
g sol\.\.—_. ~8— MFRP?IT i /—_" —8— MFRP/IT
% o Z om-
9% 120 150 180 = 90 120 150 180
Type O
Offered Load Offered Load
Z 1. Z10-
Z 08 - 2 80\./?""—. B
E 0.6 - +E-12P/r1‘ —:,:' 6 - +FRP/IT
= 04 —8— MFRP/IT = ‘; - —8— MFRP/IT
£o." — I R
e Eo
=) - 120 150 180
90 120 150 180 Type O Type 1
Offered Load
Offered Load
>
£ 1- Zwo- ——8—a
=z 0.8‘\./’. é 8
£06- —8—FRP/IT Z 6- ey
w 0.4 - —8— MFRP?IT g e- ~&— MFRP?IT
£o02, _ 2 2. _—
g o £ 0
= =
= 90 120 150 180 90 120 150 180
Type 1 Type 2
Offered Load Offered Load
>
= 1-
Z osg—"
£06- —8—FRP/IT
0 04 - —8— MFRPAIT
£ 02 _
o
= g0 120 150 180 Type 2

39

3.6 Performance Analysis of MFRP and MFRP/IT:

3.6.1 Blocking Probability characteristics:
FRP has the highest blocking probability, since the Requested Rate

1s always the Peak Rate. If a source is blocked, AFRP reduces the
Requested Rate for the following admission request. This increases the
chance of being accepted by the network, hence the blocking probability is
lower than FRP. In MFRP, the Requested Rate is chosen to be in between
the Peak Rate and the Mean Rate, rather than the Peak Rate. It also sends
the minimum acceptable rate to the network, so that the network,
depending on the available bandwidth, can allocate the highest possible
rate. This decreases the blocking probability as the source is rejected only

if the network cannot allocate the minimum required rate.

3.6.2 Throughput characteristics:
With MFRP, the carried load is tripled when compared to FRP and

AFRP. By choosing the Request Rate to be in between the Peak Rate and
the Mean Rate, MFRP allows more sources to be admitted into the

network. This in turn increases the network throughput.

3.6.3 Delay characteristics:
MFRP has the least admission delay, followed by AFRP and FRP,

while the transmission delay is the least in FRP, followed by AFRP and

40

MFRP. This is due to the fact that in FRP, all sources transmit at their
Peak Rate, thus transmitting faster. As the Requested Rate is always the
Peak Rate, the overall admission delay is the highest in FRP. AFRP
negotiates the bandwidth with the network, thus reducing the admission
delay and increasing the transmission delay. MFRP Requests for a rate in
between the Peak Rate and the Mean Rate. It also notifies the network the
minimum acceptable rate. This decreases the admission delay to a great
extent but increases the transmission delay. Though the transmission
delay is the highest in MFRP, it has the least overall delay, because the

admission delay counterbalances the transmission delay.

3.6.4 Source acceptance characteristics:

Sources with lower peak rate have a higher probability of being
accepted by the network than other sources. In other words, sources
seeking higher peak rate have higher blocking probability. This unfair
acceptance by the network can be controlled by the protocol to an extent.

FRP is the most unfair protocol with respect to source acceptance,
since the Requested Rate is always the Peak Rate. AFRP is fairer than FRP,
though initially, the Requested Rate is the Peak Rate, since, if a source
gets blocked, it reduces the Requested Rate by the Decrement Factor.
Thus, increasing the chance of being accepted by the network in the

subsequent call request. MFRP is the fairest protocol as it chooses the

41

Requested Rate to be in between the Peak Rate and the Mean Rate,
increasing the chance of being accepted earlier. This in turn allows more
sources to be accepted by the network.

The source acceptance characteristics of FRPs and FRP/ITs are
clear from the simulation results. Please refer figures 14 and 15 for the
‘source acceptance fairness" comparison of FRP/ITs in multi rate
configurations under both LAN and WAN environments.

Figure 3.14: Fairness Evaluation [FRP/ITs] - LAN
SINGLE STAGE MULTI RATE __ MULTI STAGE MULTI RATE

1 -
£ o8 g
£ —_— % —_
Z 06 - —&—Typel 3 —&—Type0
E‘ 0s - —8—Typel ; ~@Typel
= —8—Type2 s —8—Type2
02 £
= FRP/IT = FRPNT

[3) —

20 120 150 180 90 120 150 180
Offered Load Offered Load
09

> 08 -
Z o7 =
Z 06 - _ g -
E 05 - —8—Type0 E 8 Type0
< o0 —&—Typel < —&—Typel
£ 03 - —8—Type2 £ —8—Type2
£o02- &
= 0 MFRP/IT & MFRP/IT

0

90 120 150 180 90 120 150 180
Offered Load Offered Load

42

Figure 3.15: Fairness Evaluation [FRP/ ITs] - WAN

SINGLE STAGE MULTI RATE

MULTI STAGE MULTI RATE

1 1-
Eos o £ os o
= —8—Typeo = —8—Typeo
:_‘:: 06 - —8—Type! ‘ E 06 —&—Typel
¥ 04 —&—Type2 ¥ 04 ~8—Type2
% 02 - - -E 02
= FRP/IT J FRP/IT
0 —_— 90 120 150 180
% 120 150 180 Offered Load
Offered Load
. 1 - > 1 -
£0° e L Ty
Zo6- —~8—Typel EOS —&—Typel
® 0.4 - —8—Type2 | » 04 - —&—Type2
%02 — 3022 T
= o MFRP/IT | =0 MFRP/IT
90 120 150 180 ;
Offered Load |
|
Table 3.3: Summary of the five FRP Protocols
FRP AFRP MFRP FRP/IT | MFRP/IT
Mechanism Request Back-and- One time Request One time rate
peak rate | forth rate rate peak rate | negotiation
negotiation negotiation
Blocking rate High Moderate Low High Low
Transmission Short Moderate Varies Short Varies
time (depends on (depends on
allowed rate) allowed rate)
Extra Overhead | None Source keeps | One extra Source Those of
track of parameter at | must MFRP and
current the request keep a FRP/IT
requested cell and the copy of
rate and ACK its data
increases or trans.
decreases its before it
rate receives a
depending on ACK from
ACK or NACK network
received from
switch

43

4. EXPLICIT ALLOWED RATE ALGORITHM

With statistical multiplexing, it is seen that the bandwidth used by
the VBR traffic type has a direct impact on ABR transmission rate. Based
on this observation, EARA explicitly specifies the ABR transmission rate.
In other words, the switch finds out the available bandwidth and explicitly
informs the ABR source its allowed transmission rate by using RM cells.
As per the ATM Forum Specifications[23], ABR sources send an RM cell to
the switch indicating the current rate that it is using [CCR], for every 32
[Nrm-1] in-rate BRM and data cells transmitted. The fair share of each VC

or allowed explicit rate is calculated on the current rate used by that VC.

4.1 Call Admission

A source is admitted into the network if it can support all its
requirements. When a CBR or VBR source is admitted, if the used
bandwidth becomes more than the total bandwidth, then the allowed
explicit rate for ABR sources are calculated [please refer section 4.3 for
details on Fair Share calculation] and if there is any change in the allowed

rate, then an RM cell will be generated.

44

4.1.1 Pseudo code for admission:

AB - Available Bandwidth on switch
UB - Used Bandwidth on switch

TB - Total Bandwidth on switch
ACR - Allowed Cell Rate

ER - Explicit Rate

CBR:

if (AB < Constant Rate) | | (TB < (£CBR[Constant Rate] +
LVBR[Peak Rate| + TABR[Minimum Rate))))

Send NACK

else

!
1

AB = AB - Constant Rate
UB = UB + Constant Rate
Send ACK
if (UB > TB)
Calculate the allowed ER for all ABR VCs and Send RM cells

in backward directions.
!
J

RTVBR & NRTVBR:

if (AB < Mean Rate) | | (TB < (XCBR[Constant Rate]| +
ZVBR(Peak Rate| + ZABR[Minimum Rate])))

Send NACK

else

{
3

AB = AB - Mean Rate

UB = UB + Initial Rate

Send ACK

if (UB > TB)
Calculate the allowed ER for all ABR VCs and Send RM cells
in backward directions

()

ABR:

if ((AB < Minimum Rate) | | (TB < (SCBR|[Constant Rate] +
LVBR[Peak Rate] + ZABR[Minimum Rate])))

Send NACK
else

{
AB = AB-Minimum Rate
Set ACR = Initial Request Rate
Send ACK
Calculate the allowed ER for all ABR VCs, including the one
starting.
if (new allowed ER > current ACR)
Send RM cell in the forward direction
if (new allowed ER < current ACR)
Send RM cell in the backward direction.
Note: RM cells are not generated if new allowed ER is equal to current

ACR.

3
s

4.2 Flow Control

The source and the destination behavior for EARA are as specified in
the ATM Forum Traffic Management Specifications. Given below are the
highlights of the source and destination algorithms with detailed EARA

switch algorithm.

4.2.1 Source Algorithm
ABR source starts transmitting at the negotiated initial rate. For

every Nrm-1 data cells transmitted, it generates an RM cell indicating the
current cell rate. The RM cell will go to the destination and return back to
the source with the allowed rate explicitly specified by the switch(es). Each

ABR source keeps the time-stamp of the last RM cell it received. This time-

46

stamp indicates the time of RM cell creation. When an ABR source receives
an RM cell, it checks the stored time-stamp against the one in the RM cell.
If the time-stamp on the RM cell is greater than the stored time-stamp,
then it changes its allowed rate [ACR] and keeps the new time-stamp.
Otherwise, it discards the RM cell and continues transmitting at the
current ACR.

Pseudo code [source]

Initialize:
data_cells = 0; //# of data cells transmitted-
counter to send RM cells
time-stamp = start-time;

if (time to transmit next cell)
{
if (data_cells == Nrm-1)
Generate and send a FRM cell
Reset data_cells to O
else
Generate and send Data cell

Increment data_cells
1
J

if (BRM cell received)

{
t

if (time-stamp < time-stamp on BRM cell)
Update allowed cell rate [ACR] to ER on RM cell
Reset time-stamp to the time-stamp on RM cell
else
Discard BRM cell

-

47

4.2.2 Switch Algorithm

To avoid congestion and delay, the switch needs to keep track of the
current rate used by CBR and VBR traffic class together and ABR class. In
order to achieve it, the following parameters are required:

Table 4.1: Switch Parameter List

Parameter Description

Rate Monitor Interval Time interval to check current load

Total Cells # of cells that the switch can process in a given
interval of time

Reserved Cells # of CBR and VBR cells processed in a given
interval of time

ABR Cells # of ABR cells that can be processed in a given
interval of time

The switch monitors its load periodically, according to the
rate_monitor_interval. This interval is changed if needed, while admitting a
VBR source. It depends on the peak rate of all admitted VBR VCs. Rate-
monitor interval can be defined as the time required for the VBR VC
(which has the highest peak rate among all VBR VCs currently in the
network) to transmit a cell at its peak rate. Initially, this interval is set to a
very high value. When a VBR source is admitted, the new rate_interval is
calculated. If the new rate_interval is less than the current rate_interval,
then the current rate_interval is changed to the new rate_interval. The new

rate_interval is the time required to send a cell at peak rate. When the

48

rate_interval changes, the total number of cells the switch can process in
that interval of time must be updated.

When an RM cell is received from the source, the current cell rate
used by the source is noted on the switch. For fair allowed explicit rate
calculation, this used rate is taken into account, rather than the allowed
rate [use-it-or-lose-it].

In order to find out the available bandwidth for ABR traffic class
dynamically, the switch must keep a count of the total number of cells it
got in an interval from CBR and VBR sources [reserved_cells]. The number
of ABR cells that the switch can handle without causing congestion and
delay as well as utilize the bandwidth efficiently, is:

new ABR_cells = total_cells - [reserved_cells + remaining_cells]
where the remaining cells is the number of cells currently in queue (CBR,
RTVBR, NRTVBR, ABR & RM), if any, to be processed.

If the newly calculated number of ABR cells is different from the
current number of ABR cells the switch can handle, then the fair share of
each ABR VC is calculated as:

Fair Share = new_ABR_cells/cur_ABR_cells
For each ABR VC,

new allowed_rate = Fair Share * current_cell_rate

49

If the new allowed_rate is less than the current allowed_rate, it
implies that the switch bandwidth is over-utilized and there is a potential
for congestion. Hence RM cells with explicit rate are sent in backward
direction to the source. If the new allowed rate is more than the current
allowed rate, it implies that the switch bandwidth is under-utilized. Hence
RM cells are sent in the forward direction to the destination, which in turn
reverse the direction and sends it back to the source. This is done in order
to ensure that all switches in the path from source to destination can
support the explicit rate set in the RM cell. If any switch on the path
cannot support this rate, the RM cell is dropped by that switch.

Pseudo code [switch]
Initialize:

rate_monitor_interval=highest peak_rate among all active VBR VCs

total_cells = total bandwidth * rate_monitor_interval [units of time]

reserved_cells = 0;

time_counter = 0;

cur_ABR_cells = 0;

remaining_cells = O;
if (received data cell)

Increment remaining cells

if (traffic type is CBR or RTVBR or NRTVBR)

Increment reserved_cell

if (transmitted data cell)
Decrement remaining_ cells

if (received RM cell)
Update current cell rate of that ABR source to the CCR in RM cell
if (ACR of that ABR source < ER in RM cell)

S0

Forward to next node

else
Drop that RM cell

if (time_counter == rate_monitor_interval)
if ((reserved_cells + cur_ABR_cells) I= total_cells)

{
1

new_ABR_cells = total_cells - [reserved_cellstremaining cells]
Fair_Share = new_ABR_cells/cur_ABR_cells
For each ABR VC,
new_allowed_rate = Fair_Share*current_cell_rate
if ((new_allowed_rate < current_allowed_rate)
Generate and send RM cell in the backward
direction to the source
else
Generate and send RM cell in the forward
direction.

}

Reset reserved_cells to O

4.2.3 Destination Algorithm

If an RM cell is received, the destination changes its direction and
sends it back to the source.
Pseudo code [destination]
if (received RM cell)

Reverse the direction by setting DIR to 1

Send it back to the source

4.3 Advantages

e The queue length at any time will be a minimum and it can grow
dynamically as needed.

* The maximum queue size needed at any instance is,

2((Peak-Rate)VBR * (Max.Burst-Size)VBR) -
2((Mean-Rate)VBR * (Avg.Burst-Size)VBR

ABR users are granted the maximum possible rate at any instance.
Hence, they can transmit faster.

RM cells are generated only when required by the network. It is used
for both decreasing as well as increasing the bandwidth allocated to
ABR VCs.

Only one rate monitor is required for keeping a count of the number of
cells received from CBR and VBR class in a time interval.

Congestion detection depends mainly on the current VBR traffic
transmission rate.

If a potential for congestion is detected, then RM cells are sent to the
source directly, so that the source can decrease the rate quickly. Also,
as the switch is not under congested state, when RM cells are
generated, the chances of the RM cells not reaching the source is
decreased significantly. In other words, RM cells are generated as a
preventive congestion mechanism rather than using RM cells for
notifying the ER, when the switch is congested.

By setting the allowed cell rate explicitly, policing will be more robust.

No major hardware requirements.

4.4 Disadvantages:

* Initiating RM cells to all ABR users, when used bandwidth is more or

less than the total physical bandwidth.

S. PERFORMANCE ANALYSIS

Explicit Allowed Rate Algorithm (EARA) is compared with
Proportional Rate Control Algorithm (PRCA)[8,11,22] and Explicit Rate
Indication Congestion Avoidance (ERICA)[21] algorithm. All the three
algorithms are simulated in two different configurations. Given below is a
overview of the algorithms used in the simulation and an analysis of its

results under both configurations.
5.1 Proportional Rate Control Algorithm [PRCA]

5.1.1 Source Algorithm

* ABR source starts transmission at initial rate.

* When the source receives an RM cell, it checks the CI bit. When this bit
is set, it indicates that a switch along the path to the destina.tion is
congested. Hence, according to the status of the CI bit, the source
changes its transmission rate by multipicative decrease or increase of

its current rate.

5.1.2 Switch Algorithm

* The switch keeps track of the total number of cells in the queue,

including CBR, RTVBR, NRTVBR, ABR and RM.

A switch is said to be congested if the number of cells in the queue
exceeds the set threshold.

It sets the CI bit of the data cell, if it is congested.

S.1.3 Destination Algorithm

Destination sends RM cells periodically to the source.
If the last data cell it received had the CI bit set, then it will set the CI

bit in the RM cell, indicating congestion to the source.

5.2 Explicit Rate Indication Congestion Avoidance [ERICA]

5.2.1 Source Algorithm

ABR source starts its transmission at the negotiated initial rate.

It sends an RM cell to the switch periodically, according to the
averaging interval determined by the network.

The source keeps track of the time-stamp of the last RM cell. Initially, it
is set to the start time.

When the source receives the RM cell, it checks the stored time-stamp
value and checks it against the time-stamp of the received RM cell. If
the time-stamp on the RM cell received is more than the time-stamp
on the source, then it adjusts its rate according to the indicated load

level and updates its time-stamp. Keeping track of the time-stamp is

[9)]
9]

required as the switch sends a copy of RM cell backwards, when the

switch is congested.

5.2.2 Switch Algorithm

The switch monitors its load periodically (according to averaging
interval), trying to maintain the input load close to the output load.
When a switch receives an RM cell, it updates the current cell rate used
by that ABR source.

For each averaging-interval period, the switch calculated the fair-share
of each ABR VC. Fair-share of a VC is the available bandwidth divided
by the total number of ABR sources.

It then checks the load level, which is the ratio of the input load to the
output load.

If the load level is more than 1, it indicates that there is a potential for
congestion. Hence, it makes a copy of the RM cell and sends in the
backward direction to inform the source about congestion at its
earliest. .

The available physical bandwidth for ABR sources is calculated by
assuming that CBR and VBR sources will be transmitting at the same
rate for the next interval.

A VC’s share is the maximum of the fair-share and the current rate

divided by the load level.

5.2.3 Destination Algorithm

* When the destination receives an RM cell, it reverses the direction and

sends it back to the source.
5.3 Explicit Allowed Rate Algorithm [EARA]

5.3.1 Source Algorithm
* ABR source starts transmitting at the negotiated initial rate.

* It sends an RM cell periodically, indicating the current rate used.

e When it receives an RM cell, it checks the stored time-stamp against
the time-stamp on the RM cell. If the time-stamp of the received RM cell
is greater than the stored time-stamp, it will reset its transmission rate
according to the explicit rate specified by the network and update its
time-stamp.

5.3.2 Switch Algorithm

¢ The switch monitors its load according to the rate-monitor interval. If
the total bandwidth used in this interval is not equal to the total
physical bandwidth, then fair share of each ABR source is calculated
and informed, as needed.

e The switch calculates the fair share of each ABR source, by assuming

that the CBR and VBR sources will be transmitting the same number of

n
~1

cells in the next interval. It also takes into account, the cells that are
currently in the queue and needs to be processed in the next interval.

* When the switch receives an RM cell, it updates the current rate used
by that VC. If the specified ER is less than the allowed rate for that VC,
then it transmits to the next node. Otherwise, it is dropped.

5.3.3 Destination Algorithm

e When the destination receives an RM cell, it reverses the direction and

sends it back to the source.

5.4 Congestion Configuration
In this configuration, all VCs pass through two switches]| 17,23,26].
A total of 46 VCs are simulated. The link between switch 1 and switch 2

gets congested when all VCs are active.

ES1 |- ;| ES 47
.". .': ..'. .'.'
ES2 ~ 7 | ES48
Swil |[155 Mbp.L Swt 2 :
ES 45 ES 91
———’ .'. ". ." .’.
ES46 | 7 S~ | ES92

Figure 5.1: Congestion Configuration

S5.4.1 Generation of VBR Traffic
Typically, VBR applications have varying amount of data

transmitted in a continuous manner. Real time VBR traffic is simulated by
generating 30 frames per second. In other words, a frame is generated
every 33 milliseconds. The number of cells in each frame varies. Hence,
having variable bit rate. The number of cells in the nt frame A(n) is
determined by the Auto Regressive model [AR(2)][6,12], which is,

A(n) = ak(n-1) + bw(n),
where a and b are constants and o(n) is a Guassian random variable with
a mean m. The mean E(A) and the auto-covariance of the bit rate C(n) are
equal to:

E(A) = bm/(1-a);

C(n)= ban/(1-a?);

From these two equations, the values of a and b are determined.

Non real time VBR traffic is generated by alternating busy and idle
periods. Busy periods are for a constant time (16 milliseconds). The
number of frames generated per busy period is either O or 1. The number
of cells in a frame is determined by AR(2). Idle periods are generated by
using exponential distribution with Standard Deviation, B = 1/16 and
Mean U, a random number between 0 and 1. The above traffic generated

results in the bit rate approximately given in reference [19].

5.4.2 Input Parameters

Table 5.1 Input Parameters

Type Peak Rate | Mean Rate | Init. Rate | Msg-Length | # of VCs
(Kbps) (Kbps) (Kbps)
CBR 2000 2000 2000 50ms 4
RTVBR |8280 6784 7400 SO0ms 10
NRTVBR | 7310 5088 6000 250000Kbits | 12
ABR 5173 0 259 200000Kbits | 20

5.4.3 Configuration parameters
Table 5.2 Conﬁjuration Parameters

Parameter Description

Parameter Value

Source to switch propagation time

0.01 milliseconds

Switch to switch propagation time (LAN) 0.1 millisecond
Switch to switch propagation time (WAN) S millisecond
Arrival process Poisson

Switch transmission link speed 155 Mbps

Decrement rate [PRCA]

1/16 * current rate

Increment rate [PRCA]

1/32*

current rate

Averaging interval [ERICA]

300 microseconds

S.4.4 Simulation Results and Analysis

The simulated algorithms are compared by evaluating the total time

taken to complete message transmission, the buffer size required at any

60

instance and bandwidth usage. In this section the results for the WAN and

LAN environment in congestion configuration are illustrated.

5.4.4.1 Message Transfer Time
5.4.4.1.1 Description

Message transfer time is the period a VC is actively transferring
data. A VC is active, from the time it is admitted into the network until the
source completes transmitting all messages and releases the bandwidth to
the network. VCs are admitted into the network at poisson arrival rate.
This in turn, determines the start time for each VC. The total time taken
by each VC depends on its transmission rate and congestion at each link
in its path to the destination. Hence, the total time taken differs according
to the congestion control mechanism used. The total time taken by each
VC under simulation of different algorithms are shown in fig. 5.2 and 5.3.

5.4.4.1.2 Results
The total time take for message transfer by each ABR source and the

average time taken by ABR sources to completely transmit the message in
both LAN and WAN environments, under PRCA, ERICA and EARA

algorithms are shown in the table next.

61

Table 5.3: Total Time for complete Message Transfer by ABR Sources

WAN LAN
VC Number PRCA | ERICA | EARA PRCA | ERICA | EARA
1 857661 |65310 |68688 |852761 |60410 |63788
4 857661 |64911 {69207 |852761 |60011 |64307
8 857661 |64072 |69253 |852761 |59172 |64353
10 857661 | 63685 |[70392 |852761 |58785 |65492
13 857661 |63841 |69352 |[852761 |58941 |64452
15 857661 |63868 |[69346 |852761 |58968 |64446
17 857661 63901 |[69261 |852761 |59001 |64361
18 857661 |[64125 |68962 |852761 (59225 |64062
20 857661 |64317 |[69578 |852761 |59417 |64678
23 8357661 |64425 |69446 |852761 |59525 |64546
25 857661 |64783 |69527 |852761 |59883 |64627
27 8357661 |65397 |69321 |852761 |60497 |64421
30 857661 |65248 | 68563 |852761 |60348 |63663
31 857661 |65399 |68703 |852761 |60499 |63803
34 857661 |65413 |67906 |852761 |60513 |63006
36 857661 |65620 |68441 |852761 |60720 {63541
38 857661 |66676 |67443 |852761 |61776 |62543
41 857660 |68377 |65631 |852760 |63477 |60731
43 857661 |69178 |64089 |852761 |64278 |59189
45 857661 |68348 |62294 |(852761 (63448 |57394
Average 857661 | 65345 | 68270 | 852761 | 60445 | 63370

62

ission

ge Transm

Time for Message Transm

PRCA

- Total

.

-2

Figure

43
37

TEERE

—

quinN DA

000056
000006
0000S8
000008
0000SL
000004
000059
000009
0000SS
00000S
0000St
00000+
0000sg
00000€
0000SZ
00000¢
0000S1
00000 _A
0000S

0

Time (micro sec)

ERICA

T 887 Qgo~

DQUINN DA

000021
000S11
000011
000S01
000001
000S6

00006

| 000S8

00008
000S.
0000L
00059
00009
000SssS
0000S
000st
0000¢
00ose
0ooog
000ST
00002
000s1
00001
000S
0

Time (micro sec)

- ——

s
—

0oost1
oooort
000s0t
000001
000S6
00006
000S8
00008
000SL
00004
000S9
00009
000SS
0000S
000St
0000¢
000s€
00oo€
000S?
00002
000Ss1
00001
000S

0

Time (micro sec)

63

ission

age Transm

Jor Mess

gure 5.3: LAN - Total Time

i;

O 0 NN
T 0O NN~

nquny DA

© —~

0000S6
000006
0000S8
000008
0000S2
000002
000059
000009
0000ss
00000S
0000St

Time (micro sec)

00000
0000s€
00000¢
0000S2
000002
0000ST

000001 A

0000S
0

ERICA

000ST11

©

<+

O NN W 0 —~

oooort
000So01
000001
000S6
00006
000s8
00008
000Ss4
0000L
000Ss9
00009
000SsS
0000s
000S¢t
0000t
000s¢g
0ooo¢
000S¢
00002
000S!1
00001
000S
0

MO NN~
JBquiny DA

Time (micro sec)

000011

™
<

000s0or1
000001
000S6
00006
000Ss8
00008
000S.
00002
000Ss9
00009
000SS
0000S
000St
0000
000S¢E
0oo00¢
000S¢
0000Z
000S1
00001
000S
0

8RN 2o

RN DA

Time(micro sec)

64

5.4.4.1.3 Analysis

From the results shown in the figure 5.2 and 5.3, it can be seen that
the total time taken for transferring all messages using EARA and ERICA
is approximately 1/8th the times required using PRCA. This is because
PRCA starts off at a low initial rate and keeps increasing its rate very
slowly. It has no information about the network load and hence cannot
make use of all the available bandwidth. Thus, this algorithm takes the
longest time to complete transmission.

In the table above, we see that the time to complete message
transmission by ABR sources with EARA increases and then decreases,
according to their start time. This is because, the switch allocates a lower
transmission rate when its input load is higher than the output load. This
helps to keep the queue size and cell loss at a minimum. As the congestion
diminishes, EARA allows ABR sources to transmit at higher rates. Hence,
ABR sources complete transmitting faster when there is no congestion.

ABR sources seem to complete transmitting with ERICA during
congestion as in the simulation the buffer size is infinite. If the buffer size
is limited, then there would be cell loss, which leads to retransmission of
the lost packets. Thus, increasing the time to complete transmission
tremendously. Hence we can conclude that under practical situations,

EARA transmits faster than ERICA.

5.4.4.2 Buffer Size
5.4.4.2.1 Description
The total number of cells, including both Data and RM cells, that

the switch needs to handle at any given instance determines the required
queue size. The purpose of figures 5.4 and 5.5 is to illustrate the total
buffer size required in a switch, which depends on the algorithm used. For
PRCA, the buffer size used is negligible, as this algorithm does not fully
use the available bandwidth in the network. Under ERICA, switch 2 the
required buffer space is insignificant. Hence, this case is not shown.

5.4.4.2.2 Results

The average number of cells in queue under each traffic type for
ERICA and EARA during congestion, is shown in the following table.

Table 5.4: Average number of cells in queue

Algorithm CBR | RTVBR | NRTVBR | ABR | RM | TOTAL
ERICA [Swt 1] | 0.03 |0.04 0.43 185.5 | 0.31 | 186.3
EARA [Swt 1] |0.22 |0.25 5.23 11.50 | 3.74 | 24.66
EARA [Swt2] |0.16 |0.17 3.80 9.16 |4.15 [21.59

The average number of cells in both LAN and WAN environments are
the same, as the only difference is the increase in message transfer delay
for both Data and RM cells. Figures 5.4 and 5.5 show the total number of
cells, including both Data and RM cells with respect to the time. Cells
accumulated by different traffic types are not shown in the figure as they

overlap each other and hence not very visible.

66

WAN - Total buffer space required at an instance
_ERICA - Switch 1|

.

Figure 5.4

l, S
Pl i LY2L9
i SSHb9
: 69299
; 16519
; o11s9
i #1809
: Svibo
: 0S1.8
Y 950€£9
Svbogs
6,029
! L96SS
: i T0019
A . i | €€TSS
1 3 11L6S E6bbS
: L5585 al l6Les 7
EESLS m .m 90EES o
” v
: TS § w.. : £2€TS m
: E -
Terss o a|: s1ols o
; sseve £ _ 9stis =
P z8zes : I8Y0S
. L186b
— veleg
P
N 99018 L6.8b
Do . 8018%
I § 0€E00S
. : 8%
M cT68Y clviy
|) SbeLb 0LY9b
: : il 08vSY
: : I evLIb §
ol ob b b 9v1Th
et blcey NoMoMowomo
83888888 ° e
T OHOHON A~ = {008 /511q)) Yipimpueg
anangd) ul sjed

67

Time (micro sec)

Figure 5.5: LAN - Total buffer space required at an instance

~ tvbls +S6H9 Z296v9
P BECo9 661£9 £8S19
m “ 898r9 GGS19 8YEES
y coLes — 060LS
| m ‘ 6eveo abv8s $SEQS
i Reenta . S6598 80958
, T T b986s Al N b8bS
Emmmm m ovzbe m N c60bs
m oomum.m w. 81085 m 5 19865
9L6SS § | = 8 ebers
06Lb5 & : . m qw crors
6sbes rco0e ' cheos
.m ~ . T S602S LOb8Y 2ST0s
| | 04805 bLTLY zZos6v
, 8656b 9819¢p 00s8b
00+8% zeisy vllly
080Lt 995€t £90Lb
W cesst 6bbTH 0LLSY
_ 1 800t SS9bb
o (@]

g Q %w-%w.%mwwso%m:m %m%m%mwmsoﬁzmv

ananb ui s[j2) ananb ur s[[3p

68

5.4.4.2.3 Analysis
Under ERICA, only the first switch gets congested, whereas under

EARA, both switches seem to be congested. The data in the table and the
graphs illustrate that switch 1 would need lesser number of buffers while
using EARA than ERICA. Whereas, switch 2 needs more buffers with
EARA than with ERICA. But it is important to notice that with EARA, the
number of buffers required in a switch is only about 1/8% of that required
by ERICA. Also, the number of buffers required on both switches is almost
the same. In other words, the total number of cells accumnulated at any
instance is much lower in EARA than ERICA. Hence, it can be concluded
that with unlike ERICA, EARA the buffer requirements are less and almost
same on all switches in the path.

With EARA, the switch 2 seems congested because, when switch 2
realizes that the VBR traffic sources are increasing their rate of
transmission, it calculates the allowed rate for ABR sources and transmits
RM cells in the backward direction. When this switch completes
processing all the cells it has in its queue, it recalculates the allowed rates
and transmits RM cells in the forward direction. Hence, the number of RM
cells processed by this switch is much higher. When these RM cells reach
the switch 1, it just drops it as the allowed rate for these ABR sources on

switch 1 is lower. This scenario is seen because, the switch sends RM cells

69

only in the backward direction when the input load exceeds the output
load. Though this might seem to impose some overhead on switch 2, itis
better to utilize the output link capacity and to make sure that the
congestion on switch 1 is controlled on time. Also, it is important to
understand that switch 2 keeps track of the input rate of the ABR sources,
L.e., the allowed rate is calculated on the current rate used by the source.
Hence, if a switch is congested on one path, the bandwidth is allocated to
other VCs that do not have congestion.

The buffer size used for this simulation is infinite. Hence, there is no
cell loss. But, in practical conditions, the buffer size is limited. In other
words, there will be buffer overflow and hence, cell loss. The buffer size
required by ERICA is much larger than EARA on switch 1. If the buffer size
was limited, then ABR sources would have to retransmit the lost packets,
which would both increase the congestion on the switch as well as the
total time required for complete message transmission. In summary, it is
seen that a switch using EARA needs a much lesser buffer space as
compared to a switch using ERICA.

5.4.4.3 Bandwidth Usage
5.4.4.3.1 Description
A switch is said to over utilize the bandwidth when the bandwidth

used by the VCs is exceeding the physical link’s bandwidth. Under this

70

situation, the cells start accumnulating, eventually causing congestion and
cell loss. Hence, it is required to avoid this scenario. When a switch under
utilizing its bandwidth, the bandwidth is wasted and hence not acceptable.
In an ideal network, the total physical bandwidth must be fully utilized at
all instances. In other words, there should be no source requesting
bandwidth to transmit messages, when the link’s bandwidth is under
utilized.

In this section, the simulated algorithms are compared and analyzed
with respect to the bandwidth utilization. Bandwidth utilization on each
switch is shown by the total .physical bandwidth of the link, the available
bandwidth and the used bandwidth. Available bandwidth is the bandwidth
that is left over for admitting more VCs. Used bandwidth shown in the
figures are the bandwidth used at an instance. In other words, it is the
rate used by CBR and VBR VCs and the the allowed rate of the ABR VCs.
The allowed rate for ABR VCs depend on the variable bit rate of VBR users
and the remaining number of cells in the queue.

5.4.4.3.2 Results
Figures 5.6, 5.7, 5.8 and 5.9 show the total bandwidth, available

bandwidth and the used [CBR and VBR]/ allocated[ABR] bandwidth on the
switch under both LAN and WAN environments. The bandwidth used by

the extra cells in the queue is not shown in these figures.

Figure 5.6. WAN - Bandwidth Usage - (Switch 1)

71

165000 PRCA - Switch 1
- 150000 ! -
2 135000 § —o—Avail. , -
S 120000 f BW
T 105000 fE------rmrmmememeareceneneneaas L
2 gggoo -------- —®&—Total
. = 75000 : BW g
‘ g 60000 - ~----=="n===m = e —A—Used |
. B 45000 1Ko BW
T 30000 {2 << A - roncneme e ot e e e emcae e e e e e een
© @ 15000
f o "
' o o (] (] o O [] ©c O ©O o (@] [@] Q0 O O o [=]
. [« o (@] [=) [=] o [=] o o o (=] [=) o o o (=) (=] .
: o [=) Q (@) o [=] Q [=) [=) o [w] [«) C (@] (=) (=] o
: N < Vo] o O N <« O @ o N T« O O O N < i
n (@] n Q v - 0 ~— O o I 0.3 N &~ N ® (] o]
: — — N N m M < T oW O O &~ - -] @
Time (micro sec)
x 165000 ERICA - Switch 1 !
. & 150000 l
S 135000 - TPsesmemressizariionenserssnifBOAMR IRORAI 1 e srmrimionssansmesssaessanns ——Avail | |
& 120000 - BW |
© B 105000 feeeeeseacese® !
' ¥ 90000 - ?
. < 75000 - -
|2 60000 H
" & 45000 - :
i\ § 30000 -
¢ m 150001
0

(o] O (=] io O ‘ .O. O O ' O [=] O . o . o ‘O o Ol
(=} [=4 (=] (o] (=] (=] (=] o o (=] (=] (=} [=} (=] o
o (=] o (=] Q (=] o (=} [=] [=] o (=] o o (=]
~ < — >2] wn N o)) Q0 m o o~ < — © [Tp]
— N N s < < '2] O (o [2] [o,} o o
Time (micro sec)
165000 =
!
5 150000 ——Avail | |
2 135000 e BW
3 120000 ~_ - 1
.~ E 105000 feeeiiceeeen W - —&—Total ||
¢ X 90000 {-- o - BW |
i E 75000 ferececeeenecs fleeeed —tr—Used ! |
2 60000 - e BW |
© £ 45000 : ' ’
. § 30000 -\ : |f
t @ 15000 §- :
! © 0 Q@ @ Q9 O O O O O O O O O O 0 O o ;
, O Q © © O O O O © 0 O &6 & & &6 o (=] i
O O O O O O O 0 ©Q © © & & 6 o o O
O N 0 T O VvV N B <« O VOV N ® <+ O V N
—_ = N M M <« <« N v O &~ &~ 0o 00 O O

Time (micro sec)

Figure 5.7: WAN - Bandwidth Usage - (Switch 2)

PRCA - Switch 2

ool oNoNeoNe
Q00000
Q00000
nNounowmo
WINMHONOGR
Tt et gt gt
(098 /suqy)

75000
60000
45000
30000

£

Wpimpueg

15000

ooov88
oooces
00008L
00082,
0009.9
000v29
ooombm\f
00002S m
ooowcv.m

E

00091+
000bog
00021€
000092
00080¢
000951
000b01
0002S

0]

ERICA - Switch 2

e annnes]

¥ oooso1

- 00086

ocole
ooovs

¥ 00042

¥ 0006¥

165000

150000

135000 +---- N
120000 §----remm
105000 4-

90000

(03s /snqy)

.
—4
(o]
(o]
(o]
n
~

60000

=

45000 4----mm-s

30000 -

15000
0

\pIMpueg

0000.

)

000€9
0009S -

IMICro sec

Time (

¥ 000zt

000s¢e
00082

- 00012
000b1
- 0002

0

165000
150000
135000

ooozot
¥ 00096
% 00006
¥ ooovs
: wooomh
3 000z

-§ 00099

00009
- 000tS
0008t
- 0002b
0009€

“4+ 4 9goog

- 00062

- 00081
00021

: 0009

20000

05000 {---cseeeen
90000 '
75000 --ereesieeenes
0000 {-serseeeueess
5000

30000 {----

15000 {-A

6
4

1
1

(03 /suqy) yipimpueg

0

Time (micro sec)

dth Usage - (Switch 1)

wi
PRCA - Switch 1

S5.8: LAN - Band

igure 5

.

F

0oov8s
000¢Z€es
000082
0008¢2.
000929
000+29
000c.is
0000zs
00089t
00091t
000¢9e
oooz1ie
000092
00080T
0009S1

’

Time (micro sec}

1

165000

120000 +4-- i
105000 }--e-veer

mwm
i

45000

il

150000
135000 {--~

(038 /suqy) yipimpueg

- 000801
.Hooowm

£ 00016

: 00048

00024

00002
© 000€9
00095
1 0006t
- 0002t
- 000S€E
¥ ooosz
.woooﬂm
Mooovﬂ
moooh

0

(o]

Time (micro sec)

EARA - Switch 1

mmadfevanseanancnsnnananan

214

90000
£ 75000 -

s /suqy)

0

45000
30000
15000

60000 4----------y

pwpueg

- 000501
wooomm
¥ ooot16
Wooovw
© 00042

00004

Mooomo
- 00096
F 0006t
mmooom¢.
.“ooomm
ooosz
3 000tz
- 0001
- 0002

0

Figure 5.9: LAN - Bandwidth Usage - (Switch 2)

165000
150000
L35000 B «cvereeereemimtmn ittt erettettrae s e n et ca e e en e
120000 - --~mnrmrmmmmre e e et e eeeeee
105000 -e- -

90000 1-&—-— - - .-
75000 - Beeccmcmimnttemiiniitiititaitrtirriteasatretistentarersrsnsssensensasnsennnnensnsnnsesd
60000 - -

45000 4 Y AR T C UL EOTE DRSO PO PUNOU P OLUUININSPRPORR
30000 — —

15000 #%-°

0

Bandwidth (Kbits/ sec)

0

52000
104000
156000
208000
260000
312000
361000
416000
468000
520000
572000
624000
676000
728000
780000
832000
884000

Time (micro sec)

165000
150000
135000
120000
105000
90000
75000
60000
45000 _
30000 ST N %
15000 4-4 A ; . s

. .
0 & e dalubtbebibbibatabalddataebeebntab bbbt Sdedabe s b b R L E T 2 2= =1 a2 3L AR 22 iL s IV I ITI IS INT ST IR TS TN F T TP a
IR R R R R e RS AR AR SR s SR RaRRaS: IR R RN N R Rs s saRanun aansnannt

Bandwidth {Kbits/sec)

19000

=]
S
Q
<
@

7000
14001
21000 {
28000
35000
42000
56000
91000
98000
105000

Time (micro sec)

EARA - Switch 2 !
165000
150000 e g n ;
135000 -~~~V R | T s . Oy ooy Mme—Avall |

120000 A -f i .
105000 ---rermenssct A s N e SR - .e- | BW |

soce ~

5 0 sresremscrcntane .ol ‘o uthmenagderse B¢ T Bad Mahatamnloe Sy P Sy TR R i

60000 4--- . LY. - ' . ! BW

45000 - ; et :

30000 4

15000 4.
0

Bandwidth (Kbits/sec)

6000 :
12000 |
18000
24000
30000
36000
42000
72000 §
78000?5
84000;;
90000
96000 §
102000

! Time (micro sec)

5.4.4.3.3 Analysis
From figures 5.6, 5.7, 5.8 and 5.9, it can be seen that PRCA does

not utilize its bandwidth efficiently. Unlike PRCA, both ERICA and EARA

try to utilize their bandwidth to the full extent at all times. This

.

75

try to utilize their bandwidth to the full extent at all times. This maximum
utilization of bandwidth speeds up the ABR message transfer, though it
creates some overhead in the switch of calculating the fair explicit rate
[ER].

ERICA seems to allow its sources to transmit at high rates at all
instances. It is seen from the results that the dip in the transmission rates
during congestion is very small. This is because, ERICA does not consider
the number of cells remaining in the queue, when calculates the fair share
of the ABR sources. In other words, it over utilizes the bandwidth, though
the target bandwidth utilization is 90% of the physical bandwidth. This
can eventually lead to buffer overflow and hence, cell loss. In an ATM
network, when cell loss is detected, the source must retransmit the whole
packet. This will increase congestion on a switch and message transfer
delay. Hence it will increase the total time required for complete message
transfer.

EARA utilizes its bandwidth more efficiently than ERICA even
though, in EARA the switch has to send RM cells to all ABR users. RM
cells seem to increase the queue size when the input rates are exceeding
the output rates. But, as the switch detects this in a very early stage, it

avoids congestion by sending RM cells. Though RM cells utilize some of the

76

switch's bandwidth, it ultimately increases the overall bandwidth
utilization rather than decreasing.

In figure 5.6, 5.7, 5.8 and 5.9, it is seen that in EARA the bandwidth
drop down after it exceeds the total physical bandwidth. This is because,
when calculating the allowed explicit rate for ABR users, the bandwidth
required for transmitting the cells already in the queue is taken into
account. The bandwidth used by the remaining cells in the queue [not
shown in the figures| decreases the bandwidth allocated for ABR sources.
This helps the switch to transmit the cells already in the queue, thus
keeping the queue size is at a minimum at all instances. As congestion
diminishes, the allowed bandwidth for ABR sources increases, thus
allowing the sources to transmit at higher rates. Hence, it can be
concluded that EARA efficiently utilize the bandwidth at all instances with

early congestion detection and hence its avoidance.

5.5 Fairness Configuration

There are five switches in this configuration and the number of VC
passing through each switch is different. An algorithm is said to be fair if it
treats all sources equally at all instances. This configuration is used to

evaluate the fairness of an algorithm[23].

Figure 5.10: Fairness Configuration

AD
—n

S"\g«:'. 1

155 Mbps

B,F‘[

S\v«: 2

155Mbps

155Mbps

Swt 4 | 155Mbps

[ac

Swi's |B,E

The VC parameters used in this configuration is the same as the

congestion configuration, but VCs are grouped into different categories

depending on the path it uses. Group A and B pass through four switches

and they have the same number of VC passing through them. Similarly, all

other groups pass through two switches and have equal load.

Given below is the list of VC in each group and the number of

switches it passes through before reaching its destination.

Table 5.5: VC Confi tion

Group # of # of # of # of # of Switch
CBR RTVBR NRTVBR ABR Switches | Numbers
VCs VCs VCs VCs

A 0 2 2 4 4 1,2,3,4

B 0] 2 2 4 4 2,3,4,5

C 1 2 2 3 2 3,4

D 1 2 2 3 2 1,2

E 1 2 2 3 2 4,5

F 1 2 2 3 2 2,3

78

5.5.1 Simulation Results and Analysis
Fairness of the simulated algorithms in both LAN and WAN

environments, are evaluated by looking at the average time taken for
message transfer in each group as well as the bandwidth used in each
switch. In this configuration, only ERICA and EARA’s results are shown

and analyzed as PRCA’s performance does not play a significant roll.

5.5.1.1 Total Time

Group A and Group B pass through the same number of switches
and have the same number and types of VCs. Hence the average time
taken for message transfer by ABR VCs must be almost the same under
both groups.

Given below is the total time taken by each VC in group A and B.

Table 5.6: Comparison of Groups A & B by total time of msg. transfer

WAN LAN
ERICA EARA ERICA EARA
A B A B A B A B

VC1 93612 93605 73257 73264 59302 59336 44600 44598
vC2 94390 94590 73281 73277 59350 59647 44633 44717
vC3 98904 97810 73271 73279 59691 59652 44618 44624
VC4 106049 104995 73304 73327 59907 59930 44668 44671
Avg. 98238.75 97750 73278.25 | 73286.75 | 59562.5 | 59641.25 44629.75 44652.5
Diff. 488 8.5 78.75 22.75

Groups C, D, E and F have the same inputs and configuration.

Hence the time taken by ABR VCs of each group must be almost the same.

79

Table 5.7: Comparison of Groups C,D,E&F by total time of msg. trnfr.

WAN
ERICA EARA
c D E F c D E F
vC1 63618 63739 63846 63865 53816 53788 53807 53793
vc2 64398 64318 64381 64455 53858 53842 53841 53827
vC3 64496 64487 64380 64318 53860 53880 53874 53873
Avg. | 64170.67 | 64161.33 | 64202.33 | 64212.67 | 53844.67 | 53836.67 | 53840.67 53831
Diff. 51.3¢4 13.67
Table 5.8: Comparison of Groups C,D,E&F by total time of msg. tranfr.
LAN
ERICA EARA
Cc D E F c D E F
VC1 59162 59098 59199 59176 44264 44235 44256 44244
vc?2 59629 59391 59395 59542 44295 44317 44288 44275
VC3 59818 59800 59872 59831 44292 44326 44324 44290
Auvg. 59536.33 | 59429.67 [59488.67 | 59516.33 44283.67 | 44292.67 | 44289.33 | 44269.67
Diff 106.66 23

From the above tables, it can be seen that the difference in the

average time taken by similar groups using EARA is lesser than that of

ERICA. Hence, it can be concluded that EARA is fairer than ERICA.

5.5.1.2 Bandwidth Usage

The number of groups (VCs) passing through switch 1 and switch 5

are same. Similarly, the number of VCs passing through switch 2, 3 & 4

are same. Hence the bandwidth used in each of these switch groups must

be almost the same. Given below are the results of simulation.

80

Figure 5.11: Bandwidth Usage of Switch 1 & 5- WAN
ERICA -Switch 1

= 160000
% 140000
r 120000 — AVal].
Z 100000 BW
z 80000 —&—Total
z 60000 BW
H 40000 Used
E 20000 —‘“aw
= 0 & N
s g 2 2 € g g g g
g 2 g £ £ £ g g 2
- ~ o~ < [7r} 2 (g x >
- ™N el T w: -3 ~ x xS
Time (micro sec)
- 160000
£ 140000
£ 120000 7
Z 100000 ——Avail.
= 80000 BW
= 60000
H 40000 = - - - o oo e o e e e e +;“’;al
g 20000 R R
= 0 AN i N EERARIYYAAYAAAAAMA e U sed
s =] Q =] =3 BW
g § § 8 & 8 8§ 8 g
- N 3 T vy s &~ x
bd ~N L < v (o4 @©
Time (micro sec)
T 160000 EARA - Switch 1
2 140000
Z 120000
£ 100000
= 80000 .
= 60000
2 40000 -
g 20000
= 0 .
[} [=] (=3 (=] (-] Q [=] [~] [} S =]
§§:§8§88§¢8¢8g8g¢e¢g¢
- - o~ - ~ < < 0w O] o~ I:E 5 g
Time (micro sec)
_ 160000
g 140000 |
¥ 120000 .
Z 100000 .
= 80000
£ 60000 |
2 40000
& 20000
= 0

N
< < wn

Time (micro sec)

gg g gg % §. % g g% g -

From the figures, it can be seen that the bandwidth used in

switches 1 and 5 are almost equal using EARA as compared to ERICA in

81

the WAN environment.

__ Figure 5.12: Bandwidth Usage of Switch 1 & 5 - LAN

ERICA - Switch 1

= 160000
¥ 140000
¥ 120000 - e
5‘5 100000 —o-—gv‘r"axl.
~ 80000 .
£ 60000 e i T - T, i Total
¥ 40000 f-----_ WS ican o -~ - - —— = BW
= 20000 aAth e s . .. -2 A SN = o — — — | iy U sed
:=. 0 . L L N L. . L . . N L . . I Bw
e g g g g] g g g g
= S & ¥ 3 3 = 2 S
-— ~N [} A4 w3 =] ™~ x =4
Time (micro sec)
= 160000 ERICA - Switch 5
% 140000 -
2 120000 e—Avail
£ 100000 | BW
=~ 80000
Total
£ 60000 —.—BT”“!
¥ 30000 .
£ 20000 - —ty—— U scd
= 0 - BW
b 8 2 8 g 2 8 8 8 2
= (=1 (=] o (=1 =3 [=] [=] (=1
— ~N ~3 < w Q &~ x [
- ~N ~ T w: 0 ~ x o
Time (micro sec)
< 160000
E 140000
£ 120000 S
£ 100000 ——— Avail.
£ o000 BW
Z 60000 - —8— Total
2 40000 BW
£ 20000 - iy U sed
= o BW
© 8 8 8 8 8 8 8 8 8 8 8 8 8 8 =g
(=] (=3 o [~} [=] = (=3 [=3 (=] (=] i=3 = (= = [~}
- N -] « [~ o N x < o =} ™] < [=3
- - N ~ ~ < - vy ° o o~ ™~ [+ o
Time (micro sec)
_ 160000 EARA - Switch S
§ 140000
% 120000
2 100000
X
= 80000
£ 60000
£ 40000
£ 20000
= 0
e e
§ §E 8 § 888858868 8¢8¢g 8
(=} o™~ © <« Q 3 ™~ xn i (=3 =4 ~N x < [=]
- -t [y] [~ T - w - o - ~ @ [

Time (micro sec)

82

The results in the LAN environment is similar to that of the WAN

environment.

__Figure 5.13a: ERICA - Bandwidth Usage of Switch 2,3 & 4 - WAN

'E 160000 ERICA - Switch 2
,i 140000 ¥
2 120000
§ 100000 —4&— Avail.
= 80000 BW
S 60000 St
T) UG, S ——— —&— Total
',5 20000 o 22 ___ ..M ______ L ___ - s BW
S 0) ... ! Used
° 8§ 8§ 8 8 8 8 8 8 s BW
S S =] =) =) 3 o o o
- Q] < n e ~ 0 o
- ~) < Ty] ve) ~ o 1)
Time (micro sec)
T 160000 ERICA - Switch 3
@ .
z
8 -
X —&—Avail.
£ BW
§ ~—Total
T BW
5
= —A— Used
8 8 8 BW
=] S S
s ® &
7} 0 o
Time (micro sec)
ﬁ Y
E —— Avail.
= BW
_-'g ~—&—Total
2 BW
c
8 —A— Used
BW

Time (micro sec)

83

ge of Switch 2,3 & 4 - WAN

'Figure 5.13b: EARA - Bandwidth Usa

EARA -Switch

53

THIT

aum\w:nx-;:gau:am

1

00006
000v8
0008L
000¢2L
00099
00009
000%S
0008
0002
0009¢
0000¢
00otvc
00081
0ooct
0009

Time (micro sec)

i

— e el -t

(03s/s11q)1) Yipmpueg

d. §
MWHW LE;
R N
v+ 11 & 1§| ooooe
1]]] ! !
v 1 ¥ F] ooove
Voo ' A I ooosy.
]] t] m
Voo . 1 ooozL
]]]] ..»
Vol i 1] 00099
3 1]] 1 .m_
SR .8 8] oooo9
w [t o]
@ §)] oooss
v 8 €] ooosy
]]) t
m Vot i 1+ 1 oooze
[} t] 1] _.
Vo i 1+ 1 3} ooooe
]]]] [
v o Y 1 ooooe
v Y L ooope
[] il]]
v R ooost
[] (] !]] _ur
%) 4 ooozt
[]]]] _-v
F | Y o0oo9
]]]]]
——t—— ¥

Time (micro sec)

4. F
HWHWWW

____".
____"””
EEE 2
N RN 1N
M ERpsl N
oM H §
N_ __..n
.____n
I - IR TR
[~ TUEE T B
[. ¢) ._u
| I | .__m
m""."":
F I | -__..
BN 1E I
Y 4. BEE
¥ "R

mmmmmmmmo

— el ey

(0as/suqy) yipmpueg

00006
0008
00082
000TL
00099
00009
000%S
0008+
000¢t
0009¢
0000t
000+
00081
00021
0009
0

Time (micro sec)

Figure 5.14a: ERICA - Bandwidth Usage of Switch 2,3 & 4 - LAN.

160000

84

BW
—@— Total

Y - e~ —d— Used
A, BW

42000

60000
84000
90000
96000

102000

o
o
o
T
N

—&— Avalil.

~—{— Total
BW

~—#— Used

Time (micro sec)

—&— Avail.

85

Figure 5.14b: EARA - Bandwidth Usage of Switch 2,3 & 4 - LAN

160000 Ao Sl
40000 TOOQ - - - -~ - -------------- oo oo
F20000 | - - - Qygc = = —~ = = == m e m e e e e] - T
2 —— Avail.
100000 - - N o ____]

BW
80000 f------oo-o papgege o - .
<€ 60000 | ----- S _ 87 e ~—@— Total
) w
240000 | --- - o ___TT°CT A - - B
20000 xS - o . TTTes e —--4 —A—Used
a 0 BW

Qo

5000

160000 g
w&’uoooo b

#20000
Qooooo
= 80000 -
B 60000 -

160000 gu
40000 —_—
320000 —Q'—Q;Iall.
800000
= 80000 ~—@— Total
3 60000 - BW
'8 40000 | —py— Used
& 20000 - BW

The simulation results shown next in both LAN and WAN
environments , clearly illustrates that, unlike ERICA, the bandwidth used
in switches 2, 3 and 4 are almost the same in EARA. Thus, it can be

clearly seen that EARA is fairer than ERICA.

86

6. CONCLUSION

In this thesis, two new protocols have been introduced, namely,
Modified Fast Reservation Protocol [MFRP] and Explicit Allowed Rate
Algorithm [EARA]. MFRP is a burst level admission control mechanism
and EARA is an algorithm for controlling congestion in ATM networks.

MFRP and MFRP/IT are improved burst level admission control
protocols for ATM networks. It uses a simple mechanism of choosing the
Request Rate in between the Peak Rate and the Mean Rate. This allows
more sources to be admitted into the network, thus increasing the network
throughput. This also leads to fairer acceptance of sources with different
Peak Rates. Along with the Request Rate, MFRP also sends the minimum
acceptable rate to the network at call request. This allows the network to
allocate the maximum possible rate in between the Minimum Rate and the
Request Rate. Thereby, significantly reducing the blocking probability and
the overall delay.

EARA detects congestion at a very early stage, hence making it
possible to avoid congestion. From the results, it is seen that BRM cells
need to be transmitted when there are data cells waiting for transmission.

As the number of ABR users increase, there is a potential that the cell

87

delay for real time traffic becomes unacceptable. Therefore, it is suggested
that BRM cells are processed after transmitting real time data cells. This
will ensure that the real time traffic will have the least cell delay and also
the input-output load will be balanced soon. In summary, it is seen that
EARA has the following characteristics:

e Detects congestion at a very early stage and hence avoids it.

¢ Switch needs minimal buffer space.

¢ Bandwidth is fully utilized at all instances.

* ABR traffic sources can transmit at the highest possible rate that the
link to the destination can support. In other words, as expected, it
takes a longer time when congestion is detected in the network.
Otherwise, it completes transmission in minimum time.

Further study open on this subject are,

e Simulation of EARA with non-persistent ABR traffic and its
comparison with other algorithms.

* Add a factor § in EARA algorithm, to decrease RM cell generation,
by allowing the number of remaining cells to be within a range. In
other words, while calculating the number of ABR cells that can be
handled by the switch without congestion will be given by,

new ABR_cells = total_cells - freserved_cells + § * remaining_cells],

88

where § < 1.

To decrease RM cell traffic, for each ABR VC, the switch can keep

the time-stamp of the last RM cell processed, instead of the source.

1)

2)

3)

4)

5)
6)

7)

8)

9)

10)

11)

12)

13)

89

REFERENCES

A.Iwata, N. Mori, C. Ikeda, H.Suzuki and M.Ott, "ATM connection
and traffic management schemes for multimedia inter-networking"”,
Communications of the ACM, Vol.38, No.2, pp.73-89, February,
1995.

Aleksandar Kolarov and G. Ramamurthy, "End-to-end Adaptive Rate
Based Congestion Control Scheme for ABR Service in Wide Area
ATM Networks".

Anthony S. Acampora, “An Introduction to broadband networks”,
Plenum Press, New York.

C.Ikeda and H. Suzuki, "Adaptive congestion control schemes for
ATM LANSs", Proceedings of Infocom 94, Toronto, pp. 820-838, June
1994.

CCITT, CCITT Recommendations, I series (B-ISDN), July 1992.
Chikara Ohta, Hideki Tode, Miki Yamamoto, Hiromi Okada and
Yoshikazu Tezuka, “Peak rate regulation scheme for ATM networks
and its performace”, Infocom "93.

David E. McDysan and Darren L. Spohn, “ATM theory and
application, McGraw-Hill, Inc.

Flavio Bonomi and Kerry W, Fendick, "The rate-based control
framework for the available bit rate ATM service”, IEEE Network,
March/April 1995.

G.M.Bernstein and D.H. Nguyen, "Blocking reduction in fast
reservation protocols”, Proceedings of Infocom "94, Toronto,
pp.1208-1215, June 1994.

H.Suzuki and F.A. Tobagi, "Fast bandwidth reservation scheme with
multi-link and multi-path routing in ATM networks", Proceedings of
Infocom "92, Florence, Italy, Pp- 2233-2240, May 1992.

Hiroyuki Ohsaki, Masayuki Murata, Hiroshi Suzuki, Chinatsu Ikeda
and Hideo Miyahara, "Rate-based congestion control for ATM
networks", Computer Communications Review.

Jaime Jungok Bae and Tatsuya Suda, “Survey of Traffic Control
Schemes and Protocols in ATM Network, “Proceedings of IEEE,
Volume 79, Number 2, February 1991, pg(170-189].
K.K.Ramakrishnan and Peter Newman, "Integration of rate and
credit schemes for ATM flow control", IEEE Networks, March/April
1995.

14)

15)

16)

17)

18)

19)
20)

21)

22)

23)
24)

25)

26)
27)

28)

29)

90

Kai-Yeung Siu and Hong-Yi Tzeng, "Intelligent congestion control for
ABR service in ATM networks", Computer Communication Review,
October, 1995.

Kim and P.Wang, "ATM networks: Goals and challenges”,
Communications of the ACM, Vol. 38, No. 2, pp. 39-44, Feb 1995.
Kompella and 1. Widjaja, "Burst-level admission control protocols
with multirate traffic and arbitrary network topology”, Proceedings of
IC3N 95, Las Vegas, Sept. 1995.

Madhavi Hegde and W. Melody Moh, "Effect of bursty source traffic
on rate-based ABR congestion control schemes".

P.E.Boyer and D.P. Tranchier, "A reservation principle with
applications to the ATM traffic control", Computer Networks and
ISDN Systems, 24 (1992), pp.321-334.

Raif O.Onvural, “Asynchronous Transfer Mode Networks:
Performance Issues”, Artech House.

Raj Jain, "Congestion control and traffic management in ATM
networks: Recent advances and a survey”, August 3, 1995.

Raj Jain, ShivKalyanaraman and Ram Viswanathan, “The OSU
scheme for congestion avoidance in ATM networks using explicit
rate indication”.

Robert Walthall, "Using rate based flow control to manage available
bit rate traffic in asynchronous transfer mode networks", October,
1995.

The ATM Forum, "ATM user-network interface specification”,
Version 4.0, Ipq Hall, 1993.

Turner, "Managing bandwidth in ATM networks with bursty traffic”,
IEEE Network Magazine, pp. 50-58, Sept. 1992.

W.Melody Moh, Usha Rajagopal and Asha Dinesh, “Improved burst-
level admission control schemes for ATM networks”, Proceedings of
the Fifth International Conference on Computer Communications
and Networks.

W.Melody Moh and Madhavi Hegde, “Evaluation of ABR congestion
control protocols for ATM LAN and WAN”.

White Paper, “ATM switch traffic management essentials”, Integrated
Telecom Techonlogy.

Y.Chang, N.Golmie and David Su, "Study of interoperability between
EFCI and ER switch mechanisms for ABR traffic in an ATM
network".

Y.Z.Cho and A. Leon Garcia, "Performance of burst-level bandwidth
reservation in ATM LANs", Proceedings of Infocom "94, Toronto, pp.
812-820, June 1994,

30)

31)

91

Yazid, H.T. Mouftah and T.Yang, "Fast reservation protocol and
statistical multiplexing: A comparative study”, Proceedings of ICC
94, New Orleans, pp. 733-737, May 1994,

Yoon Chang, Nada Golmie and David Su, "A rate based control
switch design for ABR service in an ATM network".

92

APPENDIX: Source Code

/-‘:xxxxxxxuxxx%n‘(xxxxxxxxxxx R R R E L 2 L L T B L o AP

Description: Definition of data structures to store the VC information and

struct ER_Data

(

long ER_rate; // N_TCR - New Transmitted Cell Rate

double wait_time; //Delay before it really reaches the source

double ER_Chng; //time stamp of the last time the ER was changed
struct ER_Data *next;

5

struct vc_node

{

long peak_rate; //peak rate at which the source can transmit
long mean_rate; //mean rate at which the source transmits
long init_rate; //start rate of the source transmission

long cur_rate; //OCR-Offered Cell Rate = TCR-Transmitted Cell Rate
long Msg Len; //total length of the message to be transmitted

long Cells2Trns; //equivalent number of cells to be transmitted
int CellsSent; //number of cells transmitted

int Interval_timer; // 300 micro sec

int tglRM;

int num_sws; //number od switches

int traffic_type; //1-CBR; 2-RTVBR; 3-NRTVBR; 4-ABR
int vc_num,; //Virtual Circuit Number

int from; //Source

int to; //Destination

int active; //0-not started; l-transmistting; 2-Done

int CI; //Congestion Indicator

int Busy; //Used for NRTVBR

int CellsInNxtFrm; / /Used for VBR

int CellsInCurFrm; //Used for VBR

int CellsInLstFrm; //Used for VBR

int swt_nums[10]; //Swithces in the path

double StartTime; // Starting time of transmission

double
double
double
double
double
double
struct

struct

B
IR

class ve

f

!
public:

NxtCellTime; //Time at which next cell must be transmitted
EndTime; //Time at which transmission was complete
LstRMtime; //Time last RM cell was processed

RMwaittime; //Delay

rem_cells; //# of cells yet to be transmitted

transmit; //used by VBR

ER_Data *ERdat; //next explicit rate

vc_node *next_vc; //next VC

struct vc_node *vc_head; // head of the VC list
vc() {ve_head=0;} // Constructor

~vc(){} //Destructor

int init_vclist(); //initialize the list

int print_vclist(); //print the list

int clean_vclist(); //free the allocated memory

i

/****************************** end of list h ***************‘k****************/

93

File: source.h

Description: Definition of the class source and some of the

constant values used in the simulation.

%k k

sxxxxwxxxxxxxx*xxxxxannsxxuxxxxxxxxxxxxxxxxwxxxxxxxxxxxxxxxxxxxxxxxu;xxxxxxx/

/ /constants used for generating RT and NRT VBR traffic
#define RTDELAY 33
#define NRTDELAY 16

#define a0 2.462
#define al 1.2068
#define a2 0.2257
#define Mean 0

#define StdDev 12.67

class source

{
1

public:

1T
IR

int Avg Int; //ERICA - interval
source() {Avg_Int = 300;} / /constructor
~source() {} / /destructor

/ /check, format and send data/rm cells at appropriate time

int send_cells(struct vc_node *vhead,struct sw_node *shead,
double time,int ACR,FILE *cell_loss,FILE *abrvc);

/ /finds the exponential

double expo(double rate);

/ [clean up by freeing the allocated memory

int All_done(struct vc_node *vhead,struct sw_node *shead);

private:

/ / Generate VBR traffic

double Gen_VBR(struct vc_node *curvc);

double getEn();

/ / generate random number

double frand();

/ [prioritize the array according to the time and explicit rate
void SortArray(struct vc_node *venxt);

%% o dedededede gk dede o dede ke dde ek dk ok ek ek k Fedkdekkdkdedkdodekkkk
/ end of SOUI'CC.h * *****************/

94

File: switch.h

Description: Definition of class switch and structures for holding the
information on the switch, Data and RM cells.
KX XXX Kk K dododk dkJede 3o do o Jo ddo Jo o do do ke ddoded dok ek ke Khkkdkkkhkdkkkkhkhkhhhhhkhkthhhkrtrkrrrkrktdhttrrh *xx/
struct RMcells
{
double timestamp; //time this cell was created
double prop_time; //delay in the network
double Ld_Adj_Fectr; //Load Adjustment Factor
long cur_rate; //OCR - Offered Cell Rate
long ER_rate; //TCR -Transmitted Cell Rate

int vc_num,; //virtual circuit number

int num_sws; //number of switches it passes through
int swt_nums[10}; //swithes in the path

int CI; //congestion indication

int DIR; //O-to destination; 1-to source

struct RMcells *next_cell;

struct cells

double timestamp; //time this cell was created
double prop_time; //delay in the network
long num_cells; //number of cells to be transmitted

int vc_num; //virtual circuit number

int num_sws; //number of switches it passes through
int swt_nums(10}; //swithes in the path

int last_cell; //transmission complete-release bandwith
int CI; //congestion indication

struct cells *next_cell;

1
)2

struct vc_info

f
1

long cur_num_cells; //# of cells processed in this interval
long used_cur_rate; //current used rate

long allowed_cur_rate; //allowed current rate

long timer; //timer to check the interval

long interval; //period to wait

96

int vc_num; //virtual cirtuit number

int

type; //traffic type

struct vc_info *next_vclist;

I
[B

struct sw_node

{
double

double
double
double
double
double
long
long
long
long
long

TCR; / /target cell rate
LL; //load level
Cellspermicsec; //cells per micro second
Ready; //ready to transmit a cell on the link
timer; //timer for next cell
Ready_time; //time elapsed for next transmission
TB; / /total bandwidth
UB; //used bandwidth
AB; / /available bandwidth
FS; //fair share
interval; //time to wait

Int sw_num,; //switch number

int TCC;

int qued_cells; //# of cells queued

int rem_cells; //# of cells remaining in the switch

struct
struct
struct
struct
struct
struct
struct
struct

|5

ve_info *sw_vclist; //list of VCs on the switch
cells *Chead; //Data cells of CBR VCs

cells *Rhead; //Data cells of RTVBR VCs

cells *Nhead; //Data cells of NRTVBR VCs

cells *Ahead; //Data cells of ABR VCs

RMcells *BRMhead; //Backward RM cells queue
RMcells *FRMhead; / /Forward RM cells queue
sw_node *next_sw;

class swtch

{
public:
int

debug, TOT_SWT,TOT_ABR;

double SRC_SWT, SWT_SWT,ULB,LLB;

struc

t sw_node *sw_head;

swtch() { //constructor - initialize all fields
sw_head = 0;

97

debug = 0;
TOT_SWT = 5;
TOT_ABR = 20;
SRC_SWT=10.0;
SWT_SWT=1000.0;
ULB = 1.1;

LLB =0.9;

}

~swtch() § //destructor
int init_swlist(); //initaliaze the switch list
int print_swlist(); //print the switch list
int clean_swlist(); / /free the memory allocated for the switch
//call set up
int call_setup(struct vc_node *vhead,int ACR,double time);
// switch all cells in the queue according to the timer and bandwidth
int swt_all(FILE *qcountl, FILE *qcount2, FILE *qcount3,

FILE *qcount4, FILE *qcount5, FILE *bwidthl,

FILE *bwidth2, FILE *bwidth3, FILE *bwidth4,

FILE *bwidthS5,vc_node *vhead,double time,

int acr);

private:
/ /transmit cells to the next node
int switch_cells(struct sw_node *swcur, double time,
struct vc_node *vhead, int ACR);
/ /switch backward RM cells
int switch_BRMcells(struct sw_node *swcur,struct vc_node *vhead,
double time,int ACR);
/ /switch forward RM cells
int switch_FRMcells(struct sw_node *swcur,struct vc_node *vhead,
double time,int ACR);
/ /1og the number of cells in each queue
void QCount(struct sw_node *swcur,FILE *qcountl,FILE *qcount?2,
FILE *qcount3,FILE *qcount4,FILE *qcounts,
double time);
/ /unique to EARA
int EARA(struct sw_node *cur_sw,struct vc_node *vhead,double time);
int ERICA(struct sw_node *cur_sw); // unique to ERICA
/ /check the load level
int chk_sw_load(struct sw_node *swcur,struct ve_node *vhead,
double time,int ACR);

I

// monitor the rate used

int monitor_rate(struct sw_node *swcur,int ACR);

/ /log the bandwdith used

void log BW(struct sw_node *swcur,double time,FILE *bwidth1,
FILE *bwidth2,FILE *bwidth3,FILE *bwidth4,
FILE *bwidth3, int ACR);

long findER(struct sw_node *cur_sw,long rate); // find explicit rate

int swap_cells(struct sw_node *swcur,struct cells *head,int type,

double time,struct vc_node *vhead,int ACR);

int add_vc(struct vc_node *vccur,int ACR); // add an other VC

/ /add backward RM cell

int Add_BRMcell(struct RMcells *newRM, int sw_num);

//add forward RM cell

int Add_FRMcell(struct RMcells *newRM, int sw_num);

//add RM cell

int Add_RM(struct RMcells *newRM, int sw_num);

98

kkkkkhkhkkkkhkkkhkihkhkhkkkkkhkkkrdkx M kkkhkkkhkhkhkbkkkikhkkhkhkkkkkkkihkikkikik
/ end of switch.h *rkk f

99

HEXRXRRXIXRRXEIRRIRRRT ARk hkkkdhkdekhkkkhkhkhhhhkhhhhkdhkkkkhkkhkhhkkhdkkkkhkhkhithhhkihkhikskitt

File: callsetup.cpp

Description: This file contains the code for admitting a VC. According to
the traffic type, different rules are excuted.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "list.h"

#include "switch.h"

/****

Description: This routine is called from the main routine. VC arrival is
Piossion. It sets up a VC account in the switches along the
path from source to destination. To achive this it undergoes
two passes. If the first pass is successfull, then it means
that the VC can be admitted. In the second pass, the required
rates are allocated and the bandwidth allowed for ABR VCs
are adjusted if necessary.

****/

int swtch::call_setup(vc_node *vhead,int ACR,double time)

(
1

struct vc_node *vcnxt;
struct sw_node *swnxt;
int iret=0;

long tmp_interval;

if (debug == 1)
printf("In callsetup\n");

venxt = vhead;
// parse the VC list to find the next VC to be added.
while (venxt != 0)
{
if (venxt->active != Q)
vecnxt = venxt->next_vc;
else
break;

if (venxt == 0) // all VCs are active or completed transmission
return(0);

// set the start time of message transmission

if (venxt->StartTime == 0)
venxt->StartTime = time;

// First Pass
int success = 1;
for (i=0;i<venxt->num_sws;i++) // for each switch in the path
{ // from source to destination
if (success == 0) //can't support - reject
break;

swnxt = sw_head; //find the switch in the switch list
while ((swnxt != 0) && (swnxt->sw_num != venxt->swt_numsyi]))
swnxt = swnxt->next_sw;

if (swnxt == 0) // did not find the specified switch

~ -

printf("ERR: Switch numbers not in sink. Module callsetup\n")

exit(1);

}

switch(venxt->traffic_type)
{
case 1: //CBR - check to see if the constant/peak rate
if (venxt->peak_rate > swnxt->AB) //can be supported.
success = 0; //if not, reject
break;
case 2: //RTVBR
case 3: //NRTVBR
case 4: //ABR
if (venxt->mean_rate > swnxt->AB) // check if mean rate
success = 0; // can be supported, else reject.
break;// Note: must check the sum of peak rates of all
default: //CBR and VBR VCs before accepting.
printf("NO SUCH TYPE! VC_NUM: %d\n",venxt->vc_num);
t
)
}
if (success == 0) // Do not have enough bandwidth to support
return(l); // reject the VC

100

101

else
{ // accept the VC
venxt->active = 1; // Set VC to active
ret = add_vc(venxt,ACR);// Add the VC information to each switch
if (ret I=0) // Could not add successfully,
return(-1); // reject it.
!
)

// Second Pass
for (i=0;i<venxt->num_sws;i++) // for each switch in the path,

{
1

tmp_interval = O; //initialize local interval to check if the
/ / switch monitor interval must be updated

swnxt = sw_head; //Find each switch
while ((swnxt != 0) && (swnxt->sw_num != venxt->swt_nums|i]))
SWnxt = swnxt->next_sw;

if (swnxt == 0) // Did not find the switch - internal error

{
printf("ERR: Switch numbers not in sink. Module callsetup\n");
exit(1);

}

/ / update the information in switch
switch(venxt->traffic_type)

f
!

case 1: //CBR - decrement the available rate and
// increment the used rate
swnxt->AB = swnxt->AB - vcnxt->peak_rate;
swnxt->UB = swnxt->UB + venxt->peak_rate;
/ /if EARA, update the allowed bandwidth if neccessary
if ((swnxt->UB > swnxt->TB) && (ACR == 0))

{
1

ret = EARA(swnxt,vhead,time);
if (ret = 0) // error encountered
return(-1);// reject
}
break;
case 2: //RTVBR
case 3: //NRTVBR

102

/[decrement the available bandwidth by mean rate
// and increment the used bandwidth by initial rate
swnxt->AB = swnxt->AB - vcnxt->mean_rate;
swnxt->UB = swnxt->UB + venxt->init_rate;
/ /if EARA, update the allowed bandwidth if necessary
if ((swnxt->UB > swnxt->TB) && (ACR == 0))
{
ret = EARA(swnxt,vhead,time);
if (ret 1= 0) // error encountered
return(-1); // reject
}
if ACR ==0) //if EARA, update the monitor interval
{ / /if needed
tmp_interval = 424000/vcnxt->mean_rate;
if (swnxt->interval > tmp_interval)
swnxt->interval = tmp_interval;
!
J
break;
case 4: //ABR
/ /derement the available rate.
/ /check the used rate and accordingly
/ /allocate the bandwidth for that VC
swnxt->AB = swnxt->AB - venxt->mean_rate;
/ /increment the used rate by initial rate
if ((ACR!=0) ||
((swnxt->TB - swnxt->UB) < vcnxt->peak_rate))
swnxt->UB = swnxt->UB+vcnxt->init_rate;

else

{
|

swnxt->UB = swnxt->UB + venxt->peak_rate;
venxt->cur_rate = venxt->peak_rate;

1
S

/ /if EARA, update the allowed bandwidth if necessary
if (ACR == 0) &&

((swnxt->TB - swnxt->UB) < venxt->peak_rate))
{

ret = EARA(swnxt,vhead,time);

if (ret != 0) // error encountered

return(-1); // reject

}

break;

}

/****

Description: This routine adds the given VC info to all switches in the

****/

3
|

103

defauit:
printf("NO SUCH TYPE! VC_NUM: %d \n",venxt->vc_num);

l
]

if (debug == 1)
1

1

}

swnxt = sw_head;
while (swnxt != 0)

{
1

printf("SW_NUM: %d TB: %ld UB: %ld AB: %Id\n",
sSwnxt->sw_num,swnxt->TB,swnxt->UB,swnxt->AB});
SWIXt = swnxt->next_sw;
1

s
printf("Out of callsetup.\n");

return(0); //successfully admitted the VC

path from source to destination.

int swtch::add_vc(struct ve_node *vccur,int ACR)

{
!

struct ve_info *svlist,*svnxt;
int i;
struct sw_node *swcur;

for (i=0;i<vccur->num_sws;i++) //for each switch in the path

{

swcur = sw_head; // find the switch

while ((swcur != 0) && (swcur->sw_num != vecur->swt_numsfi]))
SWCUr = swcur->next_sw;

if (swcur == 0) // could not find the switch - internal error

{
printf("Error in switch numbers. VC: %d\n",vecur->vc_num);
exit(1); // abort the program

}

104

// allocate space for storing the newly admitted VC
svlist = new(vc_info);
if (svlist == 0) // out of memory

[
1

printf("Out of memory in add_vc. SW_NUM: %d VC_NUM: %d\n",
Swcur->sw_num,vccur->vc_numy);
exit(1l); // abort the program
}
/ [successfully allocated the space for this VC.
/ /initialize it with the given values
svlist->vc_num = vceur->ve_num;
svlist->cur_num_cells = 0;
svlist->type = vccur->traffic_type;
svlist->inact = O;
svlist->timer = O;
if (ACR == ()
{
svlist->allowed_cur rate = vccur->peak_rate;
svlist->interval = 424000/vccur->peak_rate;
svlist->used_cur_rate = vecur->peak_rate;

1
s

else

{
svlist->allowed_cur_rate = vccur->init_rate;
svlist->interval = 300; / /300 micro sec;
svlist->used_cur_rate = vccur->init_rate:

}

svlist->next_vclist = 0;

/ /insert the VC info into the switches VC list

if (swcur->sw_vclist == Q)
swecur->sw_vclist = svlist; //first element in the list

else

f
1

svnxt = swecur->sw_vclist; // add to the end of the list
while (svnxt->next_vclist != 0)
svnxt = svnxt->next_vclist;
svnxt->next_vclist = svlist;
h
!
return(0); //successfully added

}

int swtch::EARA(struct sw_node *cur_sw,struct vc_node “vhead,
double time)

int Li,sw_num,ret;

struct vc_info *svlist;

struct RMcells nxtrm;

struct sw_node *nxtsw;

struct vc_node *vcnxt;

struct ER_Data *tmpERdat,*newERdat;

double FairShare = 0;

long TotABR = 0; // used for fair allocation of bandwidth

long CurAB =0; // currently, available bandwidth for ABR VCs
long SureUB = 0; // bandwidth currently used by CBR and VBR VCs
long cur_rate = 0;

if (debug == 1)
f
1
printf("IN EACR.\n");
printf("EARA-UB: %ld AB: %ld\n",cur_sw->UB,cur_sw->AB);

1
s

svlist = cur_sw->sw_vclist;
while (svlist != 0)

f
X

if (svlist->type == 4)
]
1

if (svlist->allowed_cur_rate == 0)

{
R

venxt = vhead,;

while ((venxt->ve_num != svlist->vc_num) && (venxt I= 0))
vCnxt = venxt->next_vc;

if (venxt == Q)

{
1

printf("No such VC. EARA \n");
return(l);
\
)
// this is done in order to allocate bandwidth fairly
TotABR = TotABR + vcnxt->init_rate;

i
J

106

else

// persistent traffic - look at allowed rate as the
// used rate cannot be different
TotABR = TotABR + svlist->used_cur_rate;

}

1

s

else // bandwidth currently used by CBR and VBR VCs
SureUB = SureUB + svlist->used_cur_rate;

svlist = svlist->next_vclist;

/| Total available rate for ABR VCs
CurAB = cur_sw->TB - (SureUB +

(long){(cur_sw->rem_cells*424000)/ cur_sw->interval));

if (TotABR > 0) // if any ABR VCs are present

[
1

/ /calculate the fairshare
FairShare = (double)CurAB/(double)TotABR;

svlist = cur_sw->sw_vclist;
while (svlist!= 0) // scan the VC list
{
if (svlist->type == 4) // if ABR VC
{
venxt = vhead; // find the VC
while ((venxt->ve_num != svlist->vc_num) && (venxt != 0))
vCnxt = venxt->next_vc;

if (venxt == 0) // VC not found - internal error
{
printf("No such VC. EARA \n");
return(l);
}
/ /if cuurent allowed rate is zero, then allocate
/ [rate according to the initial rate
/ / Note: since only persistent traffic is used, the
/ /used rate is never less than the allocated rate
if (svlist->allowed_cur_rate == 0)
cur_rate = (long)(FairShare* (double)venxt->init_rate);
else // set rate according to the used rate
cur_rate = (long)(FairShare*(double) svlist->used_cur_rate);

107

// make sure that the allowed rate does not exceed the
// peak rate
if (cur_rate > venxt->peak_rate)

cur_rate = venxt->peak_rate;

if (cur_rate < 0)

cur_rate = 0;

if (cur_rate != svlist->allowed_cur_rate) //Send RM Cell

{

/ /set all the fields for an RM cell
nxtrm.timestamp = time;
nxtrm.vc_num = svlist->vc_num;
nxtrm.num_sws = venxt->num_sws;
nxtrm.cur_rate = svlist->allowed_cur_rate;
nxtrm.ER_rate = cur_rate;
nxtrm.Ld_Adj_Fctr = 0;
nxtrm.CI = 0;
nxtrm.prop_time = O;
nxtrm.swt_nums[0] = vcnxt->from;
/ /set all the switch numbrs in the path
for (i=0;i< venxt->num_sws;i++)
nxtrm.swt_nums(i+1] = venxt->swt_nums]i];
// set destination
nxtrm.swt_nums[i+1] = venxt->to;
/ /send RM cell in backward direction to the source
if (cur_rate < svlist->allowed_cur_rate)
{
nxtrm.DIR = 1;
ret = Add_BRMcell(&nxtIm,cur_sw->sw_num);
}
else
{// send RM cell in the forward direction to notify all switches
nxtrm.DIR = O;
ret = Add_FRMcell(&nxtrm,cur_sw—>sw_num);
}
if (ret != 0) //error processing RM cell - internal error
return(-1);
/ / set the allowed rate
svlist->allowed_cur rate = cur_rate;
/ /update its interval
if (cur_rate I= Q)
svlist->interval = 424000/cur_rate;

108

else
svlist->interval = 424000/ vcnxt->init_rate;

svlist->timer = 0; // reset the timer
/ /set the used rate
svlist->used_cur_rate = svlist->allowed_cur _rate;
}
}
svlist = svlist->next_vclist; // process next VC
}
h
if (debug == 1)
printf("EARA-UB: %ld AB: %ld\n",cur_sw->UB,cur_sw—>AB);
return (0); // successfully balanced the load
\
J

/****

Description: This routine adds an RM cell to the end of backward RM list

****/
int swtch::Add_BRMcell(struct RMcells *newRM, int sw_num)
{

struct sw_node *swecur;

struct RMcells *rmcur,*rmprv;

inti;

/ /find the given switch

swcur = sw_head;

while ((swcur != 0) && (swcur->sw_num != sw_num))
SWCur = swcur->next_sw;

//scan the list
rmcur = swcur->BRMhead;
rmprv = swcur->BRMhead;

while ((rmcur != 0) &&
(rmcur->ve_num != newRM->vc_num))

f
t

rmprv = rmcur;

rmcur = rmcur->next_cell;
!
J

109

/ /if a rm cell for the same vc is found
if (rmcur != 0) && (rmcur->vc_num == newRM->vc_num))

[
1

if (newRM->DIR == rmcur->DIR)
{ // going in the same direction

if (newRM->ER_rate < rmcur->ER_rate)

{ / /update the allowed rate
rmcur->ER_rate = newRM->ER_rate;
rmcur->Cl = newRM->CI;

h

}
else
{

if (newRM->DIR == 1)

{ //update the timestamp and the rate
rmcur->timestamp = newRM->timestamp;
rmeur->prop_time = newRM->prop_time;
rmecur->cur_rate = newRM->cur_rate;
rmcur->ER_rate = newRM->ER_rate;
rmcur->DIR =];
rmcur->CI = newRM->ClI;

}

else

{ / /update rate only
if (newRM->ER _rate < rmcur->ER_rate)

rmcur->ER_rate = newRM->ER_rate;

}

h

1
!

else
{// an RM cell for this VC does not exist. Create a ne one.
rmcur = new(RMcells);
if (rmcur == 0)
{
printf("Out Of Memory. - Drop_RMcells\n");
exit(1);
h
else
{ / /allocated successfully. Initialize it.
rmeur->timestamp = newRM->timestamp;
rmcur->ve_num = newRM->vc_num;

110

rmcur->num_sws = newRM->num_sws;

for (i=0;i<newRM->num_sws+2;i++)
rmcur->swt_nums(i] = newRM->swt_nums]i];

rmcur->cur_rate = newRM->cur_rate;

rmcur->ER_rate = newRM->ER_rate;

rmcur->Ld_Adj_Fctr = O;

rmcur->prop_time = newRM->prop_time;

rmcur->DIR = newRM->DIR;

rmcur->C[= newRM->CI;

rmcur->next_cell = 0;

/ /insert the new RM cell into the list

if (swcur->BRMhead == 0)
swcur->BRMhead = rmcur;

else

{
rmprv = swcur->BRMhead;
while (rmprv->next_cell != 0)

rmprv = rmprv->next_cell;

rmprv->next_cell = rmcur;

}

}

)

J

return(0); //added successfully
\
J

/****

Description: This routine adds an RM cell to the end of forward RM list

****/

int swtch::Add_FRMcell(struct RMcells *newRM, int sw_num)

{
1

struct sw_node *swcur;
struct RMcells *rmcur,*rmprv;
int 1;

/ /find the given switch

swcur = sw_head;

while ((swcur != 0) && (swcur->sw_num != sw_num))
SWCur = swcur->next_sw;

111

//scan the list
rmcur = swcur->FRMhead;
rmprv = swcur->FRMhead;
while ((rmcur != 0) &&
(rmcur->vc_num != newRM->vc_num))

{

IrMprv = rmcur;

rmcur = rmecur->next_cell;
1
J

if ((rmcur != 0) && (rmcur->vc_num == newRM->vc_num))
{ //found an RM cell for the same VC. Update it
if (newRM->ER _rate <= rmcur->ER_rate)
rmcur->ER_rate = newRM->ER_rate;
else
{
rmcur->timestamp = newRM->timestamp;
rmcur->prop_time = newRM->prop_time;
rmcur->cur_rate = newRM->cur_rate;
rmcur->ER_rate = newRM->ER_rate;
rmcur->DIR = newRM->DIR;
rmcur->Cl = newRM->ClI;
1
)

1
!

else
{ / /create a new cell
rmcur = new(RMcells);
if (rmcur == 0)
{
printf("Out Of Memory. - Drop_RMcells\n");
exit(1);
}
else
{ / /initialize it
rmcur->timestamp = newRM->timestamp;
rmcur->vce_num = newRM->vc_num;
rmcur->num_sws = newRM->num_sws;
for (i=0;i<newRM—>num_sws+2;i++)
rmecur->swt_nums(i] = newRM->swt_numsl[i;
rmcur->cur_rate = newRM->cur_rate;
rmcur->ER_rate = newRM->ER_rate;

112

rmcur->Ld_Adj_Fctr = newRM->Ld_Adj_Fctr;
rmcur->prop_time = newRM->prop_time;
rmcur->DIR = newRM->DIR;

rmcur->C[= newRM->ClI;

rmcur->next_cell = O;

//insert it into the list
if (swcur->FRMhead == 0)
swcur->FRMhead = rmcur;

else

!
1

rmprv = swcur->FRMhead;
while (rmprv->next_cell != 0)
rmprv = rmprv->next_cell;
rmprv->next_cell = rmcur;
}
}
}
return(0); //added successfully

}

/****

Description: This routine adds an RM cell to the end of RM list
Note: The backward Rm list is used by ERICA and PRCA for RM list

****/

int swtch::Add_RM(struct RMcells *newRM, int sw_num)

{
1

struct sw_node *swcur;
struct RMcells *rmcur,*rmprv;
int i;

//find the switch

swcur = sw_head;

while ((swcur != 0) &8 (swcur->sw_num != sw_numy))
SWCUr = swcur->next_swi;

/ /create a new cell
rmcur = new(RMcells);
if (rmeur == Q)

f
1

printf("Out Of Memory. - Drop_RMcells\n");

1
s

exit(1);

else

{
1

}

/ /initialize it

rmcur->timestamp = newRM->timestamp;

rmcur->ve_num = newRM->vc_num;

rmcur->num_sws = newRM->num_sws;

for (i=0;i<newRM->num_sws+2;i++)
rmcur->swt_numsl[i| = newRM->swt_nums]i];

rmcur->cur_rate = newRM->cur_rate;

rmcur->ER_rate = newRM->ER_rate;

rmcur->Ld_Adj_Fctr = newRM->Ld_Adj_Fctr;

rmcur->prop_time = newRM->prop_time;

rmcur->DIR = newRM->DIR;

rmcur->CI = newRM->ClI;

rmcur->next_cell = 0;

/ /insert it into the list

if (swcur->BRMhead == 0)
swcur->BRMhead = rmcur;

else

{
rmprv = swcur->BRMhead,;
while (rmprv->next_cell I= 0)

rmprv = rmprv->next_cell;

rmprv->next_cell = rmcur;

}

return(0); //added successfully

3
’

/****

Description: This routine is used to set up ERICA parameters

****/

appropriately.

int swtch::ERICA(struct sw_node *cur_sw)

{

int 1,i,sw_num,ret;
struct vc_info *svlist;
struct sw_node *nxtsw;
int cell_count = 0;

113

114

long SureUB = 0; //bandwidth currently used by CBR and VBR

//find the bandwidth used by ABR and the rest
svlist = cur_sw->sw_vclist;
while (svlist != 0) //scan through the list
{

if (svlist->type == 4)

f

1

cell_count = cell_count + svlist->cur_num_cells;

svlist->cur_num_cells = O;

3
s

else
SureUB = SureUB + svlist->used_cur_rate;
svlist = svlist->next_vclist;
\
]

/ /Find the target cell rate
cur_sw->TCR = ((cur_sw->TB-SureUB)*900) /424;
cur_sw->TCC = (cur_sw->TCR*cur_sw->interval)/ 1000000;

/ [calculate the fair share
cur_sw->FS = ((cur_sw->TCR/TOT_ABR)*424)/1000;
/ / set the load level accordingly
if (cell_count == Q)
cur_sw->LL = 1.0/(double)cur_sw->TCC;
else
cur_sw->LL = (double)cell_count/(double)cur_sw->TCC;

return(0);

!
s

*
/ *kkkkhkkkhkhkkkrhkhkhhkhkkrthkkkik end of callsetup.cpp ****************************/

File: list.cpp

Description: This file contains code that reads data from the input file and
and stores it in memory in the form of lists.

#include <stdio.h>
#include <stdlib.h>
#include "list.h"

/***
Description: This routine creates the list and initializes the list with

data from the given input file.
***/
int vc::init_vclist()

{
!

struct vc_node *tmp,*tmpl,*tmp2;
int i,count,l;

FILE *input;

int vc_num = 0;

input = fopen("INPUT","r");
if (input == Q)

{
1

print{("Error opening input file.\n");
exit(1);

13

)

while (feof(input)) // read the complete file
{
tmpl = new(vc_node); //create a new structure for each VC
if (tmp1 == Q)
{
1
printf("Out of memory.\n");
exit(1);
!
]
tmpl->next_vc = 0; //initialize to O.
for (i=0;i<10;i++)
tmpl->swt_nums(i]=0;

116

/ /read from file and fill in the VC information

fscanf(input,"%d %ld %Ild %ld %d %d %ld %d ", &tmpl->traffic_type,
&tmpl->peak_rate,&tmpl->mean_rate,
&tmpl->init_rate,&tmpl->from,
&tmpl->to,&tmpl->Msg Len, &tmpl->num_sws);

for (i=0;i<tmpl->num_sws;i++)
{

if (i == (tmpl->num_sws - 1))

fscanf(input,"%d\n",&tmp1l->swt_nums]i]);
else
fscanf(input,"%d ",&tmp1->swt_numsli));

}
// Initialize the rest of the fields to O.
tmpl->ERdat = O;
tmpl->cur_rate = tmpl->init_rate;
tmpl->vc_num = vc_num;
tmpl->active = 0O;
tmpl->StartTime = O;
tmp1->NxtCellTime = O;
tmpl->EndTime = O;
tmpl->CellsSent = 0;
tmpl->Interval_timer = O;
tmpl->LstRMtime = O;
tmpl->RMwaittime = O;
tmpl->tglRM = O;
tmpl->transmit = 0;
tmpl->Busy = 0;
tmpl->CI = 0;
tmpl->CellsInNxtFrm = 0O;
tmpl->rem_cells = 0.0;

// set the number of cells to transmit according to the traffic type
switch (tmp1->traffic_type)
{
case 1: // CBR
tmpl->CellsinCurFrm = 0;
tmpl->CellsinLstFrm = O;
tmp1l->Cells2Trns = tmpl->Msg Len*1000;
break;

case 2: //RTVBR
tmpl->CellsInCurFrm = 24;
tmpl->CellsInLstFrm = 24;
tmpl->Cells2Trns = tmp1->Msg_Len*1000;
break;

case 3: //NRTVBR
tmpl->CellsInCurFrm = 198;
tmpl->CellsInLstFrm = 198;
tmpl->Cells2Trns = (tmp1l->Msg Len/8)/48;
/ /Above, div by 8 to convert to bytes
// and then by 48 as 5 bytes are for header
break;

case 4: // ABR
tmp1->CellsInCurFrm = 0;
tmpl->CellsInLstFrm = 0O;
tmpl->Cells2Trns = (tmp1->Msg_Len/8)/48;
/ / Above, div by 8 to convert to bytes
// and then by 48 as 5 bytes are for header
break;

}

tmpl->next_vc = Q;
// append to the end of the list

if (ve_head == Q)
vc_head=tmp];
else

{
tmp2 = vc_head;
while (tmp2->next_vc != Q)
tmp2 = tmp2->next_vc;
tmpl->next_vc = 0;
tmp2->next_vc = tmpl;

}

ve_num++;

1
J

fclose(input); //close the input file

return(0});
\
]

117

118

/ *kk

Description: Prints the data stored in the list and logs the total time taken
by each VC to complete the entire message transmission.
***/

int ve::print_vclist()

!
1

struct vc_node *tmpl;
FILE *total_time;

/ /open the logfile
total_time = fopen("TRANSTM.OUT","w");
if (total_time == Q)

f
1

printf("Error opening TRANSTM. \n");
exit(1);
}
tmpl = vc_head;
while (tmp1 != 0)
{
switch(tmp1->traffic_type)
{
case 1:
printf("\nTYPE: CBR\n");
printf("VC Number: %d\n",tmp1->vc_num);
printf("Peak Rate: %ld\n",tmp1->peak_rate);
printf("Current Rate: %ld\n",tmp1->cur_rate);
printf("Active: %d\n",tmp1->active);
break;
case 2:
printf("\nTYPE: RTVBR\n");
printf("VC Number: %d\n",tmp1->vc_num);
printf("Peak Rate: %ld\n",tmpl ->peak_rate);
printf("Mean Rate: %ld\n",tmp1l->mean_rate);
printf("Current Rate: %ld\n",tmp1l->cur_rate);
printf("Active: %d\n",tmp1l->active);
break;
case 3:
printf("\nTYPE: NRTVBR\n");
printf("VC Number: %d\n",tmp1 ->vc_num);
printf("Peak Rate: %Id\n",tmpl ->peak_rate);
printf("Mean Rate: %Id\n",tmp1 ->mean_rate);

3
§

119

printf("Current Rate: %ld\n",tmp1->cur_rate);
printf("Active: %d\n",tmp1->active);
break;
case 4:
printf("\nTYPE: ABR\n");
printf("VC Number: %d\n" ,tmpl->vc_num);
printf("Peak Rate: %ld\n",tmp1l->peak_rate);
printf("Current Rate: %Id\n",tmp1->cur_rate);
printf("Active: %d\n",tmp1->active);
break;
default:
printf("\n\nError in type.\n");
printf("VC Number: %d\n\n" ,tmp1->vc_num);
break;
}
printf("VC_NUM: %d REM_CELLS: %If\n",tmp1->vc_num,
tmpl->rem_cells);
fprintf(total_time,"%d %If %If \n", tmpl->vc_num, tmp1l->StartTime,
tmpl->EndTime); // Log to file
tmpl = tmpl->next_vc;
}
fclose(total_time); //close the log file
return(0);

/***

Description: This routine frees the memory used by the VC list

***/

int ve::clean_vclist()

{

I3
s

struct vc_node *tmpl;

while (ve_head->next_vc != ()

{
tmpl = vc_head->next_vc;
vc_head->next_vc = vc_head->next_vc->next_vc;
delete(tmpl);

!

]

delete(vc_head);

return(0);

*hkdkkkhhkhkkhkkhkdhhdhhhdhdhs 3 *hdkdkkk ddkddkddkd
/ end of hSt.Cpp % *dkk *khkk ***************/

120

/**

File: main.cpp

Description: The file contains the main loop of simulation. It opens and
closes all the logfiles. It adds a VC for simulation at
piosson arrival rate. It also takes care of freeing all the

allocated memory for simulation.
***/

#include <stdio.h>
#include <stdlib.h>
#include "list.h"

#include "switch.h"
#include "source.h"

#define Total_VCs 40

int main(int argc,char **argv)
{
vc vclist;
swtch swlist;
source src;
struct sw_node *tmp;
int acr =0;
Int ret=1;
int retl =0;
double time = 0;
int nxtcall = 0;
double Sum;
FILE *qcountl,*qcount2,*qcount3,*qcount4,*qcount5;
FILE *bwidthl,*bwidth2,*bwidth3,*bwidth4,*bwidth5, *abrvc;

if (argc == 1)
acr = 0;
else
acr = atoi(argv(1]); //0 = EARA; 1 = PRCA; 2 = ERICA;

/[intialize the vc and the switch list by reading the input file.
vclist.init_vclist();
swlist.init_swlist();

/ /open all log files

qcountl = fopen("QCOUNT1.QUT","w");
qcount2 = fopen("QCOUNT2.0UT","w");
qcount3 = fopen("QCOUNT3.0UT","w");
qcount4 = fopen("QCOUNT4.0UT","w");
qcountS = fopen("QCOUNTS.OUT","w");
bwidthl = fopen("BWIDTH1.0UT","w");
bwidth2 = fopen("BWIDTH2.0UT","w");
bwidth3 = fopen("BWIDTH3.0UT","w");
bwidth4 = fopen("BWIDTH4.0UT","w");
bwidthS = fopen("BWIDTHS.OUT","w");

gcount2 ==

if ((qcountl == 0) || (0) ||
=0) | | (bwidth2 == 0) | |

(bwidthl ==
(abrvc == 0))
4
1
printf("Error opening OUTPUT FILES \n");
exit(1);
v
1]

// Start the simulation
while ((ret == 1))
{

if (nxtcall == 0)

{

/ /Piosson Arrival Rate
Sum = 0;

while (Sum < 1.0)

{

nxtcall++;

swlist.call_setup(vclist.vc_head,acr,time); //add a VC

Sum = Sum+src.expo(1.0/ double(Total_VCs));

3

)]
nxtcall = nxtcall * 1000;

3
[

else

{
if (nxtcall > 0)

nxtcall--;

121

|3
!

/****************************

/ /send cells to the switch according to the rate.
retl = src.send_cells(vclist.vc_head,swlist.sw_head,time,
acr,cell_loss,abrvc);

/ /send cell to the next node
ret = swlist.swt_all(qcount1l,qcount2,qcount3,qcount4,qcounts,
bwidth1,bwidth2,bwidth3,bwidth4,bwidth5,
vclist.vc_head,time,acr);
if (ret 1= Q)
{
printf("Error in switching.\n");
break;
}
//Check if all VCs completed messages transmission
ret = src.All_done(vclist.vc_head,swlist.sw_head);
// increment timer in milliseconds
time = time + 1.0;

} //end of simulation

// Close all opened files
fclose(qcountl);
fclose(qcount?2);
fclose(gcount3);
fclose(qcount4);
fclose(qcount5);
fclose(bwidth1);
fclose(bwidth2);
fclose(bwidth3);
fclose(bwidth4);
fclose(

bwidth5);

// print the VC and switch list
vclist.print_vclist();
swlist.print_swlist();

/| Free the allocated memory
vclist.clean_vclist();
swlist.clean_swlist();

return(0);

122

end Of main.cpp *******************************/

123

/**

File: source.cpp

Description: This file contains code that is excuted by the source.
It scans the source list and for all active sources, it
generates cells according to its traffic type and the rate.
**\
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "list.h"
#include "switch.h"
#include "source.h"

/****

Description: This routine is called by the main. It checks the source list
and for all active VCs, it creates and sends cells to the
appropriate switch.

****/
int source::send_cells(struct vc_node *vhead, struct sw_node *shead,
double time,int ACR,FILE *cell_loss, FILE *abrvc)

{

struct vc_node *vcnxt;

struct sw_node *swnxt;

struct cells *cellnxt,*celiprv;

struct vc_info *swvcnxt;

struct Rmcells *rmnxt,*rmprv;

struct ER_Data *tmpERdat,*delERdat;

int i=0;

double k=0;

int a,done,l;

int nocell;

long num_cells;

venxt = vhead;
while (venxt != 0) //scan the complete list
{ / /active source

a=0;

nocell = 0;

num_cells = O;

done = 0;

if (venxt->active == 1)

{
1}

if (venxt->Cells2Trns == 0) //completed message transfer?
done = 1; //yes
swnxt = shead;
while (swnxt != 0) //find the first switch in the path
f
1
if (swnxt->sw_num == venxt->swt_nums|0])
break;
else
SWnxt = SWnxt->next_sw;

(swnxt == 0) //could not find the switch - internal error

'-*-.‘:-"-ﬂ

printf("Error in Switch List - Send_cells \n");
exit(1);

}

if ((venxt->NxtCellTime == 0) | | (venxt->NxtCellTime <= time) | |
(venxt->transmit > 0)) // time to transmit?

{ // yes
cellnxt = new(cells); // create a new cell
if (cellnxt == Q) // no memory - internal error

{
printf("Out of memory - source \n");
fprintf(cell_loss,"%d %d %If ", venxt->traffic_type,
venxt->ve_num,time);
nocell = 1;
1
)
// initialize the cell parameters
cellnxt->timestamp = time;
cellnxt->num_sws = venxt->num_sws;
for (i=0;1i< 10; i++)
cellnxt->swt_nums]i] = 0;
cellnxt->swt_nums[0] = venxt->from;
for (i = 0; i < venxt->num_sws; i++)
cellnxt->swt_nums[i+1] = venxt->swt_numslif;
cellnxt->swt_nums[i+1] = venxt->to;
cellnxt->next_cell = 0;
cellnxt->vc_num = venxt->ve_num;
cellnxt->prop_time = 0O;
cellnxt->num_cells = 0;

124

cellnxt->CI = Q;

if (done == 1) // is this the last cell to be transmitted?
cellnxt->last_cell = 1;

else
cellnxt->last_cell = 0;

k = 0.0;

switch(venxt->traffic_type)

f
1

case 1: //CBR
if (done == Q)
{ //find the rate
k = (double)venxt->mean_rate/424000.0; //384=8*48 /ms
venxt->rem_cells = venxt->rem_cells + k;
num_cells = (long)venxt->rem_cells;
if (num_cells > 0) //can a cell be transmitted?

venxt->rem_cells = venxt->rem_cells - (double)num_cells;

1
J

if (num_cells > 0) | | (done == 1))
{ // cell is transmitted - insert into the cells list of swt
celinxt->num_cells = num_cells;
if (swnxt->Chead == 0)
swnxt->Chead = cellnxt;

else

{
1

cellprv = swnxt->Chead;

while (cellprv->next_cell I= Q)
cellprv = cellprv->next_cell;

cellprv->next_cell = cellnxt;

1
s

swvcnxt = swnxt->sw_vclist; //find this VC on the switch
while ((swvcnxt I= 0) &&
(swvcnxt->ve_num = venxt->ve_num))
SWVCnxt = swvenxt->next_vclist;
if (swvcnxt == 0) // internal error
{
printf("Error in vc_num - source %d\n",venxt->ve_num);
exit(1);
}
// update vc info. on switch
swvenxt->cur_num_cells = swvenxt->cur_num_cells +
cellnxt->num_cells;

126

1

}
else // not yet time to send.
delete(cellnxt);
break;
case 2: //RTVBR
if (done == Q)
{ //active
if ((venxt->NxtCellTime == 0) | | (venxt->NxtCellTime <= time))
{ // generate real time VBR traffic
k = Gen_VBR(vcnxt); //384 = 8 * 48
venxt->transmit = venxt->transmit + k;
// send cells every 33 ms
venxt->NxtCellTime = time + 33000.0;
}
if (venxt->transmit >= 1)
{ / /data to transmit?
k = (double)venxt->peak_rate/424000.0;
//384 = 8 * 48 per millisecond
venxt->rem_cells = venxt->rem_cells + k;
num_cells = (long)vcenxt->rem_cells;
if (num_cells > Q) // time to transmit?
{
venxt->rem_cells = venxt->rem_cells - (double)num_cells;
venxt->transmit = venxt->transmit - (double)num_cells:
if (venxt->transmit == 0)
venxt->rem_cells = 0;
}
}
}
if (num_cells > 0) | | (done == 1))
{ // cell is transmitted - insert into the cells list of swt
cellnxt->num_cells = num_cells;
if (swnxt->Rhead == Q)
swnxt->Rhead = cellnxt;
else
{
cellprv = swnxt->Rhead;
while (cellprv->next_cell != 0)
cellprv = cellprv->next_cell;
cellprv->next_cell = cellnxt;
\
]

127

swvenxt = swnxt->sw_vclist; // find the vc on switch
while ((swvcnxt != 0) &8s
(swvenxt->ve_num != venxt->ve_num))
swvcnxt = swvenxt->next_vclist;

if (swvenxt == 0) //internal error

f
1

printf("Error in vc_num - source %d\n",venxt->ve_num);
exit(1);
h
// update vc info. on switch
swvcenxt->cur_num_cells = swvenxt->cur_num_cells +
cellnxt->num_cells;

}

else
delete(cellnxt);
break;
case 3: //NRTVBR
if (done == Q)
{ //active
if (venxt->NxtCellTime == 0)| | (venxt->NxtCellTime <= time))
{ //time to transmit next cell
if ((venxt->Busy == 0) || (venxt->Busy == 1))
{ / /generate VBR traffic if busy period
k = Gen_VBR(vcnxt); //384 =8 * 48
venxt->transmit = venxt->transmit + k;
if (venxt->Busy == 0)
{
int 1 = rand()%?2;
/ /randomly set next cell generation time
if (1 ==0)
{
venxt->NxtCellTime = time + 16000.0;
venxt->Busy = 2;
}
else
{
venxt->NxtCellTime = time + 8000.0;
venxt->Busy = 1
}

}

else

128

{ //idle time
venxt->Busy = 2;
venxt->NxtCellTime = time + 8000.0;
}
;
else
{ / /wait for exponential time
a=2;
double temp = 0.0;
while (((long)temp < 1) | | ((long)temp > S00000))
temp = expo(1.0/160000.0);
venxt->NxtCellTime = time + (long)temp;
venxt->Busy = 0; // next time generate cells

}
}
if (venxt->transmit >= 1)
{ // transmit cells
k = (doublejvenxt->peak_rate/424000.0; //384=8*48 /ms
venxt->rem_cells = venxt->rem_cells + k;
num_cells = (longjvenxt->rem_cells;
if (num_cells > 0)
{ //time to transmit
venxt->rem_cells = venxt->rem_cells - (double)num_cells;
venxt->transmit = venxt->transmit - (double)num_cells;
if (venxt->transmit == 0)
venxt->rem_cells = O;
!
}
}
if ((num_cells > 0) &8& (a == 0)) | | (done == 1))
{ // cell is transmitted - insert into the cells list of swt
cellnxt->num_cells = num_cells;
if (swnxt->Nhead == Q)
swnxt->Nhead = cellnxt;
else
{
cellprv = swnxt->Nhead;
while (cellprv->next_cell != 0)
cellprv = cellprv->next_cell;
cellprv->next_cell = cellnxt;
}

3
s

129

swvcnxt = swnxt->sw_vclist; //find the vc on the switch
while ((swvcnxt = 0) &&
(swvenxt->ve_num != vcnxt->ve_num))
swvcnxt = swvenxt->next_vclist;
if (swvenxt == 0) //internal error
{
printf("Error in vc_num - source %d \n",venxt->vc_numy);
exit(1);

1
s

/ /update vc info. on switch
swvcnxt->cur_num_cells = swvenxt->cur_num_cells +
cellnxt->num_cells;

else

delete(cellnxt);

break;
case 4: //ABR
if (venxt->ERdat != 0) // if any rm cells have arrived

{

SortArray(venxt); //get the latest one
tmpERdat = venxt->ERdat;
while (tmpERdat != 0) //if any RM cell
{
if (tmpERdat->wait_time > 1) //wait for the transmission
tmpERdat->wait_time = tmpERdat->wait_time - 1;//time
else
{ // update the tranmission rate
if (tmpERdat->ER_rate > venxt->peak_rate)
tmpERdat->ER_rate = venxt->peak_rate;
venxt->cur_rate = tmpERdat->ER_rate;

/ /delete this RM cell
delERdat = venxt->ERdat;
if (venxt->ERdat->next == Q)
venxt->ERdat = O;
else
venxt->ERdat = venxt->ERdat->next;
delete(delERdat);
1
J
tmpERdat = tmpERdat->next; //continue to scan

}

130

L]
]

if (venxt->cur_rate > 0) //allowed rate is not zero (minimum)

f
[

k = (double)venxt->cur_rate /424000.0;
venxt->rem_cells = venxt->rem_cells + k;
if (venxt->rem_cells > 1.0)
{ //time to transmit a cell
if ((ACR==1) || //PRCA
(ACR ==0)) && //EARA
(venxt->CellsSent >= 32) &&
(done == 0)) | |
((ACR == 2) && //ERICA
(venxt->Interval_timer >= Avg_Int) &8s
(done == Q)))
{ //create an RM cell
rmnxt = new(RMcells);
if (rmnxt == 0) //internal error
printf("Out of memory. RM\n");
else
{ //initialize the rm cell parameters
rmnxt->next_cell = O;
rmnxt->timestamp = time;
rmnxt->vc_num = vcenxt->ve_num;
mnxt->num_sws = venxt->num_sws;
rmnxt->prop_time = 0;
rmnxt->swt_nums[0] = venxt->from;
for (i=0;i<rmnxt->num_sws;i++)
rmnxt->swt_numsli+1] = venxt->swt_numsli];
rmnxt->swt_nums(i+1] = venxt->to;
rmnxt->cur_rate = venxt->cur_rate;
if (ACR == 1) //PRCA
rmnxt->ER_rate = venxt->cur_rate +
(long)(venxt->cur_rate/256);/ /increment
else //ERICA
rmnxt->ER_rate = venxt->cur_rate;
rmnxt->Ld_Adj_Fctr = O;
rmnxt->Cl = 0;
rmnxt->DIR = Q;
if (rmnxt->ER_rate > venxt->peak_rate)
rmnxt->ER_rate = venxt->peak_rate;

—p—

131

//insert it into the list
if (ACR = 0)
!
1
if (swnxt->BRMhead == 0)
swnxt->BRMhead = rmnxt;

else

{
1

rmprv = swnxt->BRMhead;
while (rmprv->next_cell != 0)
rmprv = rmprv->next_cell;
rmprv->next_cell = rmnxt;
h
b
else
{//EARA
if (swnxt->FRMhead == 0)
swnxt->FRMhead = rmnxt;
else
{
rmprv = swnxt->FRMhead;
while (rmprv->next_cell != 0)
rmprv = rmprv->next_cell;
rmprv->next_cell = rmnxt;
}
}
}

/ /reset the counters
venxt->CellsSent = 0;
venxt->Interval timer = O;
venxt->rem_cells = venxt->rem_cells - 1.0;
!
num_cells = (longjvenxt->rem_cells;
if (num_cells > 0)
{ //time to transmit a cell?
venxt->rem_cells = venxt->rem_cells - (doublejnum_cells;
venxt->CellsSent = venxt->CellsSent + num_cells;
}
else
a=2;

132

if ((num_cells > 0) && (a == 0)) | | (done == 1))
{ // cell is transmitted - insert into the cells list of swt
celinxt->num_cells = num_cells;
if (swnxt->Ahead == 0)
swnxt->Ahead = cellnxt;
else
{
cellprv = swnxt->Ahead;
while (cellprv->next_cell != 0)
cellprv = cellprv->next_cell;
cellprv->next_cell = cellnxt;

\
s

swvcnxt = swnxt->sw_vclist; //find the ve on the switch
while ((swvcnxt != 0} &8&
(swvenxt->ve_num != venxt->ve_num))
swvcnxt = swvenxt->next_vclist;
if (swvenxt == 0) //internal error

f

L
printf("Error in vc_num - source %d\n",venxt->ve_num);
exit(1);

}

/ /update vc info. on switch

swvenxt->cur_num_cells = swvenxt->cur_num_cells +

cellnxt->num_cells;

1
|

else
delete(cellnxt);
if (ACR == 2) //ERICA
venxt->Interval_timer++;
break;

}

1
J
if (((venxt->traffic_type == 1) | | (venxt->traffic_type == 2)) &8
(venxt->Cells2Trns > 0))
venxt->Cells2Trns--; //CBR & RTVBR
if ((venxt->traffic_type == 3) | | (venxt->traffic_type == 4))
{ //NRTVBR and ABR
venxt->Cells2Trns = venxt->Cells2Trms - cellnxt->num_cells;
if (venxt->Cells2Trns < 0)
venxt->Cells2Trns = 0;

}

if (venxt->Cells2Trns == 0)

{
1

venxt->NxtCellTime = O;

venxt->Busy = 0;
1

]
if ((venxt->Cells2Tmns == 0) && (done == 1))
venxt->active = 2; / /Message transfer complete - release bw

X
J

venxt = venxt->next_vc; //process the next source

3
]

return(0); //successfully processed all sources

double source::Gen_VBR(struct vc_node *curvce)

{

1
s

curvc->CellsInNxtFrm = a0+(al*curve->CellsinCurFrm)-

(a2*curvc->CellsInLstFrm)+getEn();

curve->CellsInLstFrm = curvce->CellsinCurFrm;
curvc->CellsInCurFrm = curve->CellsInNxtFrm;

return(curve->CellsInNxtFrm);

double source::getEn()

{
1

int i;
double x,y,t1,t2;
intm = 0;

tl = 6.28*(rand()%100);
m = (rand()%10);
while (m == Q)
m = (rand()%6);
t2 = sqrt(-2.0*-log(m));

X = cos(tl)*t2;
X = (StdDev*x) + Mean;
y = sin(t1)*t2;

y = (StdDev*y) + Mean;

1=rand()%10;
if (i <5)
return(x);

133

134

else
return(y);

double source::expo(double rate)

{
double U,result;

U = frand();

if (U < 0.001)
U=0.001;

result = -log1O(U)/rate;

return(result);
\
5

double source::frand()

{
1

double result = 0;

int i;

const double D=138409;
const double M=32768;
const double C=25173;

1 = rand()%10000;
result = (C*(double)i)+D;
result = fmod(result,M);
result = result/M;
return(result);

}

int source:: All_done(struct vc_node *vhead,struct sw_node *shead)

f
X

struct vc_node *tmpvc;
struct sw_node *swnxt;
struct vec_info *swvenxt;

tmpvc = vhead,;
while (tmpvc != 0)
{

1
s

if (tmpvc->active != 2)
return(l);

else
tmpvc = tmpvc->next_vc;

3
)

swnxt = shead;
while (swnxt != 0)
{
swvcnxt = swnxt->sw_vclist;
if (swvenxt != Q)
return(l);
SWnxt = swnxt->next_sw;
h
return(0);

void source::SortArray(struct vc_node *venxt)

{

struct ER_Data “tmpERdat,*prvERdat, *nxtERdat, *insERdat,*delERdat;

// Sort array according to wait_time
tmpERdat = venxt->ERdat;
while (tmpERdat->next != 0)
{
prvERdat = tmpERdat->next;
nxtERdat = tmpERdat->next;
while (nxtERdat != 0)
{
if (tmpERdat->wait_time > nxtERdat->wait_time)
{
if (nxtERdat == prvERdat)
{
nxtERdat = nxtERdat->next;
tmpERdat->next = nxtERdat;
prvERdat->next = tmpERdat;
tmpERdat = prvERdat;

prvERdat = tmpERdat->next;

1
]

else

{
if (nxtERdat->next == Q)

}

/ /delete the entry whose timestamp less than the first entry

prvERdat->next = 0;
else

prvERdat->next = nxtERdat->next;
nxtERdat->next = tmpERdat;
venxt->ERdat = nxtERdat;
nxtERdat = prvERdat->next;

prvERdat = nxtERdat;
nxtERdat = nxtERdat->next;
}

}
tmpERdat = tmpERdat->next;

tmpERdat = venxt->ERdat;
while (tmpERdat != 0)

{

if (tmpERdat->next == Q)
break;
nxtERdat = tmpERdat->next;
prvERdat = tmpERdat->next;
while (nxtERdat != 0)
{
if (nxtERdat->ER_Chng <= tmpERdat->ER_Chnyg)
{
delERdat = nxtERdat;
if (tmpERdat->next == nxtERdat)
{
if (nxtERdat->next == Q)
{ .
prvERdat = O;
nxtERdat = O;

tmpERdat->next = 0;

1
}

else

{
prvERdat = prvERdat->next;

136

nxtERdat = nxtERdat->next;
tmpERdat->next = nxtERdat;
\
)

3
}

else
{
if (nxtERdat->next == 0)
{
prvERdat->next = 0;
nxtERdat = 0;
}
else
{
prvERdat->next = nxtERdat->next;
nxtERdat = prvERdat->next;
}

}
delERdat->next = 0;

delete(delERdat);
}

else

{
1

prvERdat = nxtERdat;
nxtERdat = nxtERdat->next;
!
J

1
J

tmpERdat = tmpERdat->next;
}

return;

h

137

d*khkkhkkhkdkkhkkkhkhkkhkkkrkkhkrik * tx & 23 khkkkkdkdkkhkhkdhhkhkkdkihkdkidk
/ end Of SOUIrCe.Ccpp ****** xxxrrrrsstiktirirtsttsrs */

138

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

File: switch.cpp

Description: This file contains the switching algorithms. It also initalizes
the sw1tch and I'CCCIVCS / sends the cells from node to node.

e Je Jo Jo o ok K F*kkdkxk FxKkkhhkkkhkdkhhkhkkhhhkkhhhhhkhhhkhkkhkkkkkhhkhdhhhkhrhkhkhkhrkkrrkhkrkrkdikriirt /

#include <stdio.h>

#1include <stdlib.h>

#include <math.h>

#include "switch.h"

#include "list.h"

/****

Description: This routine intializes all the switches used for simulation.
It sets the correct default values.
****/
int swtch::init_swlist()
{
struct sw_node *tmp,*tmpl;
struct cells *init_cell,*Icell;
struct RMcells *RM_init_cell, *RM_Icell;
int 1i,,k;
int sw_num=100;

for (k=0;k<TOT_SWT;k++)

[
1

tmp = new(sw_node); //create a new switch
if (tmp == Q) //internal error

{
1

printf("Out of memeory in switch module.\n");
exit(1);
}

tmp->AB = 155000; //Available Bandwidth

tmp->UB = 0; //Used Bandwidth

tmp->TB = 155000; //Total Bandwidth

tmp->TCR = ((double)tmp->TB*1000*.9)/424; / /used for ERICA
tmp->TCC = ((long)tmp->TCR*300)/1000000; //used for ERICA
tmp->FS = (tmp->TCR*424)/(TOT_ABR*1000); //used for ERICA
tmp->LL = 1; / /used for ERICA

tmp->Cellspermicsec = (double)tmp->TB/424000.0;

3
]

139

tmp->sw_num = sw_num; //switch number
tmp->Ready = 0;

tmp->qued_cells= 0;

tmp->rem_cells=0;

tmp->Ready_time = 0;

tmp->interval = 300; //300 micro sec - ERICA
tmp->timer = O;

tmp->sw_vclist = 0;

tmp->Chead = 0; //CBR Data Cells Queue
tmp->Rhead = 0; //RTVBR Data Cells Queue
tmp->Nhead = 0; //NRTVBR Data Cells Queue
tmp->Ahead = O; //ABR Data Cells Queue
tmp->BRMhead = 0; / /Backward RM Cell Queue
tmp->FRMhead = 0; //Forward RM Cell Queue
tmp->next_sw = 0; //Pointer to the next switch

if (sw_head == 0) // insert into the list
sw_head = tmp;

else

{
1

tmpl = sw_head;
while (tmpl->next_sw != Q)
tmpl = tmpl->next_sw;
tmpl->next_sw = tmp;
}

SW_num-++;

return(0); //successfully initialized all switches

/****

Description: This routine prints the number of cells in each queue as well

as the total, including RM cells.

****/

int swtch::print_swlist()

{

struct sw_node *tmpl;
struct cells *ctmp;
struct RMcells *rtmp;
int ¢,r,n,a,brm,frm;

140

tmpl = sw_head;

while (tmpl != Q)

{

c=r=n=a=brm=frm=0;
rtmp = tmpl->BRMhead;
while (rtmp != 0} //find out the number of cells in backward RM queue

{
brm++;
rtmp = rtmp->next_cell;
!
)
rtmp = tmpl->FRMhead;
while (rtmp != 0} //find out the number of cells in forward RM queue

{
frm++;
rtmp = rtmp->next_cell;

}
ctmp = tmpl->Chead;
while (ctmp != 0) //find out the number of cells in CBR queue

{

CH++;

ctmp = ctmp->next_cell;

}
ctmp = tmpl->Rhead;
while (ctmp != 0) //find out the number of cells in RTVBR queue

{

r++;

ctmp = ctmp->next_cell;

1
J

ctmp = tmpl->Nhead;
while (ctmp != 0) //find out the number of cells in NRTVBR queue

{

n++:

ctmp = ctmp->next_cell;

1
s

ctmp = tmpl->Ahead;
while (ctmp != 0) //find out the number of cells in ABR queue

{

at++:

ctmp = ctmp->next_cell;
!
)

}

13
J

141

/ /Print to screen

printf("SW_NUM: %d TB: %ld UB: %ld AB: %!d\n",
tmpl->sw_num,tmpl->TB,tmp1->UB,tmpl->AB);

printf("QUEUE - BRM: %d CBR: %d RTVBR: %d NRTVBR: %d
ABR: %d FRM: %d\n", brm,c,r,n,a,frm);

tmpl = tmpl->next_sw;

return(0); //completed scanning through all queues

/****

Description: This routine frees all the memory allocated for the switch

***/

int swtch::clean_swlist()

{

struct sw_node *tmpl,*tmp;
struct cells *ctmp,*ctmp1;
struct RMcells *rtmp,*rtmp1;

tmpl = sw_head;
while (tmp1l != 0)

{

rtmp = tmpl->BRMhead;
while (rtmp != 0) //Clean up backward RM queue
{
rtmpl = rtmp;
rtmp = rtmp->next_cell;
delete(rtmpl);
v
J
rtmp = tmpl->FRMhead;
while (rtmp != 0) //Clean up forward RM queue
{
It
rtmpl = rtmp;
rtmp = rtmp->next_cell;
delete(rtmp1);

h

ctmp = tmpl->Chead;
while (ctmp != 0) //Clean up CBR queue
{

ctmpl = ctmp;

ctmp = ctmp->next_cell;

1
)

}

delete(ctmpl);

1
s

ctmp = tmpl->Rhead;
while (ctmp != 0) //Clean up RTVBR queue
f
t
ctmpl = ctmp;
ctmp = ctmp->next_cell;
delete(ctmpl);

I3
S

ctmp = tmpl->Nhead;
while (ctmp != 0) //Clean up NRTVBR queue
f
1
ctmpl = ctmp;
ctmp = ctmp->next_cell;
delete(ctmp1);
}
ctmp = tmpl->Ahead;
while (ctmp != 0) //Clean up ABR queue
{
ctmpl = ctmp;
ctmp = ctmp->next_cell;
delete(ctmp);
\
J
tmp = tmpl;
tmpl = tmpl->next_sw; //get next witch
tmp->next_sw = Q;
delete(tmp);

return(0); //freed all allocated memory

/****

142

Description: This routine switches all the cells in the queue according to

the priority or traffic type.

****/

int swtch::switch_cells(struct sw_node *swcur,double time,
struct vc_node *vhead,int ACR)

{

struct cells *head;
struct RMCells *rmh;
int type=0;

type=1;
while ((swcur->Ready >= 1) && (type < 5)) //time to transmit?

[
1

switch (type)
{

case 1:
if (sweur->Chead != 0) //any CBR cells?
swap_cells(swcur,swcur->Chead, type,time,vhead,ACR);
break;
case 2:
if (swcur->Rhead != 0) //any RTVBR cells?
swap_cells(swcur,swcur->Rhead, type,time,vhead,ACR);
break;
case 3:
if (sweur->Nhead != 0) //any NRTVBR cells?
swap__cells(swcur,swcur—>Nhead,type,time,vhead,ACR);
break;
case 4:
if (sweur->Ahead != 0) //any ABR cells?
swap_cells(swcur,swcur->Ahead, type,time,vhead,ACR);
break;
}type++;

!
if ((swcur->BRMhead == 0) && (swcur->Chead == 0) &&
(swcur->Rhead == 0) &8 (swcur->Nhead == 0) &&
(swcur->Ahead == Q) &8& (swcur->FRMhead == 0))

swecur->Ready = 0; // no cells in queue
return(0); //completed transmission successfully

/****

Description: This routine finds the next node to whcih the cell must be
passed to and sets up all the parameters correclty

and transmits them.

****/

int swtch::swap_cells(struct sw_node *sweur,struct cells *head,int type,
double time,struct vc_node *vhead,int ACR)

int j=0;

143

144

struct sw_node *swnxt;

struct cells *nxtcell,*newcell,*cur;
struct vc_node *vcnxt;

struct vc_info *swvcprv,*swvenxt;

while ((head != 0) &8& (swcur->Ready >= 1)) //switch all cells in the
{ // given queue if we have the bandwidth
for (j = 0; j < head->num_sws+2; j++)
{ //find the switch number
if (head->swt_nums[j] == swecur->sw_num)
break;
}
if (head->swt_nums[j-1] < 100) //from source
head->prop_time = head->prop_time+SRC_SWT; // update the
else // propagation delay accordingly
head->prop_time = head->prop_time+SWT_SWT;
if (head->swt_nums[j+1] < 100)
{ / /reached destination.
printf("DST: %d Time: %If\n",
head->swt_nums|j+1],(time+head->prop_time+SRC _SWT));
if (ACR == 1) // if PRCA
{
if (head->CI == 1) // Congestion?
venxt->Cl = 1; // Set it and store
else
venxt->Cl = 0;

1
J
if ((head->last_cell == 1) &&
((long)swcur->Ready >= head->num_cells))
{ // Last cell to be transmitted on this VC
venxt = vhead,;
while ((venxt != 0) &8 (venxt->ve_num != head->vc_num))
venxt = venxt->next_vc;
/ /update end time
venxt->EndTime = time+head->prop_time+SRC_SWT;
1
)
}

else

{
swnxt = sw_head;

while ((swnxt->sw_num != head->swt_nums[j+1]) &&
(swnxt != 0)) //find the next switch
SWnxt = swnxt->next_sw;
if (swnxt == 0) //internal error
{
printf("Error: No such switch number: %d
Module switch_cells.\n", nxtcell->swt_nums|j+1]);
exit(1);

!
s

newcell = new(cells); //create a new data cell
if (newcell == 0) //internal error
{
printf("Out of memory.\n");
exit(1);
1
J
for (j=0;j<10;j++) / /initialize all info. on the cell
newcell->swt_nums(j] = O;
newcell->num_sws = 0;
newcell->next_cell = 0;
switch (type) //according to the type insert into the queue of the
{ / /next switch
case 1:
if (swnxt->Chead == 0)
swnxt->Chead = newcell;
else
{
nxtcell = swnxt->Chead; // In the next switch
while (nxtcell->next_cell I= 0)
nxtcell = nxtcell->next_cell;
nxtcell->next_cell = newcell;
!
)
break;
case 2:
if (swnxt->Rhead == 0)
swnxt->Rhead = newcell;
else
{
nxtcell = swnxt->Rhead; // In the next switch
while (nxtcell->next_cell = 0)
nxtcell = nxtcell->next_cell;
nxtcell->next_cell = newcell;

146

!
break;
case 3:
if (swnxt->Nhead == 0)
swnxt->Nhead = newcell;
else

!
t

nxtcell = swnxt->Nhead; // In the next switch
while (nxtcell->next_cell != 0)
nxtcell = nxtcell->next_cell;

nxtcell->next_cell = newcell;

!

)

break;

case 4:

if (swnxt->Ahead == 0)

swnxt->Ahead = newecell;

else

[
t

nxtcell = swnxt->Ahead; // In the next switch
while (nxtcell->next_cell != 0)
nxtcell = nxtcell->next_cell;
nxtcell->next_cell = newcell;
!
]
break;

}

nxtcell = newcell;
/ /set up all the values correctly.
nxtcell->timestamp = time;
nxtcell->ve_num = head->vc_num;
nxtcell->prop_time = head->prop_time;
nxtcell->num_sws = head->num_sws;
for (j=0; j < head->num_sws+2;j++)
nxtcell->swt_nums][j] = head->swt_nums]j];
if ((long)swcur->Ready >= head->num_cells)
{
nxtcell->num_cells = head->num_cells;
nxtcell->last_cell = head->last_cell;

}

else

[
1

nxtcell->num_cells = (long)swcur->Ready;

147

nxtcell->last_cell = 0;

L

)

if ((nxtcell->CI == 0) && (swcur->qued_cells > 9)) //congested?
nxtcell->CI = 1; / /used by PRCA

else
nxtcell->CI = 0;

swvcnxt = swnxt->sw_vclist;

while ((swvenxt->ve_num != head->vc_num) && (swvenxt != 0))
swvcnxt = swvenxt->next_vclist; //look for that VC info

if (swvenxt == 0) //internal error

{
printf("Error in vc number in sw %d\n",swnxt->sw_num);
exit(1);

1
s

/ /update the number of cells received
swvcnxt->cur_num_cells = swvcnxt->cur_num_cells+
nxtcell->num_cells;

}

if ((long)swcur->Ready < head->num_cells)
{
head->num_cells = head->num_cells - (long)swcur->Ready;

swcur->Ready = swcur->Ready - (long)swcur->Ready;

1
)

else

{
It

if (head->last_cell == 1) //last cell to be transmitted ?
{
swvenxt = swcur->sw_vclist;
SwWvCcprv = swcur->sw_vclist;
while ((swvenxt != 0) &8 (swvenxt->ve_num != head->vc_num))
{
SWVCPIV = SWVCNXt;
swvcnxt = swvenxt->next_vclist;
1
J
if (swvenxt == 0) //find the VC
{
printf("Error in vc numbers. \n");
exit(1);
}
/ / release bandwidth
swcur->UB = swcur->UB - swvcnxt->allowed_cur_rate;

}

if (swecur->UB < Q)
swcur->UB = 0;
/ /connect the list and remove this VC

if (swvenxt == swcur->sw_vclist)

{
t

if (swvenxt->next_vclist != 0)
swcur->sw_vclist = sweur->sw_vclist->next_vclist;

h

else

{
1

if (swvenxt->next_vclist I= 0)
swvcprv->next_vclist = swvenxt->next_vclist;
else
swvcprv->next_vclist = Q;
h
if ((swvenxt == swcur->sw_vclist) &&
(swvenxt == swvcprv) &&
(swvcnxt->next_vclist == 0))
swcur->sw_vclist = 0;

else

[
1

swvenxt->next_vclist = O;

delete(swvenxt); // free the memory
!
i

/ /update the available bandwidth

swecur->Ready = sweur->Ready - (double)head->num_cells:

head->timestamp = 0; / /clear all values
for (j=0; j < head->num_sws+2;j++)

head->swt_nums]j] = 0;

head->num_sws = 0;
head->vc_num = 0O;
head->last_cell = 0;
head->CI = O;
head->num_cells = 0;
head->prop_time = 0;

if (head->next_cell == 0) //remove this cell from the current

{

/ [switch
delete(head);
head = 0Q;

?

148

switch (type)
1
1
case 1:
swcur->Chead = 0;
break;
case 2:
swcur->Rhead = 0;
break;
case 3:
swcur->Nhead = 0;
break;
case 4:
swcur->Ahead = 0;
break;
h
h
else
{
cur = head;
switch (type) // update the list
{
case 1:
swcur->Chead = head->next_cell;
head = swcur->Chead;
break;
case 2:
swecur->Rhead = head->next_cell;
head = swcur->Rhead;
break;
case 3:
swecur->Nhead = head->next_cell;
head = swcur->Nhead;
break;
case 4:
swcur->Ahead = head->next_cell;
head = swcur->Ahead;
break;
!
cur->next_cell = O;
delete(cur);

}

149

150

1
f

13
!

return(0); //successfully transmitted all cells
\
)

/****

Description: This routine logs the number of cells in each queue at
runtime.

****/

void swtch::QCount(struct sw_node *tmpl,FILE *qcountl,
FILE *qcount2,double time)
{
struct cells *ctmp;
struct RMcells *rmcell;
long cbr,rtvbr,nrtvbr,abr,brm,frm;
long count;
long total;

cbr=rtvbr=nrtvbr=abr=brm=frm=0;
total = Q;
rmcell = tmp1->BRMhead;
while (rmcell = 0) // scan throught the queue and find the total
{ // number of backward RM cells
brm++;
rmcell = rmcell->next_cell;
}
printf("BRM Q: %ld \n",brm);
rmcell = tmp1->FRMhead;
while (rmcell != 0) // scan throught the queue and find the total
{ // number of forward RM cells
frm++;
rmcell = rmcell->next_cell;

}
printf("FRM Q: %Id\n" frm);

ctmp = tmpl->Chead,;
while (ctmp != 0) // scan throught the queue and find the total
{ / /number of CBR cells

cbr = cbr + ctmp->num_cells;

ctmp = ctmp->next_cell;
1
s

printf"CBR Q: %Id\n" cbr);

ctmp = tmpl->Rhead;
while (ctmp != 0) // scan throught the queue and find the total
{ // number of RTVBR cells
rtvbr = rtvbr + ctmp->num_cells;
ctmp = ctmp->next_cell;
\

§
printf("RTVBR Q: %ld\n",rtvbr);

ctmp = tmpl->Nhead;
while (ctmp != 0) // scan throught the queue and find the total
{ // number of NRTVBR cells
nrtvbr = nrtvbr + ctmp->num_cells;
ctmp = ctmp->next_cell;
\

)
printf("NRTVBR Q: %ld \n",nrtvbr);

ctmp = tmpl->Ahead;
while (ctmp != 0) // scan throught the queue and find the total
{ // number of ABR cells
if (ctmp->timestamp != 0)
abr = abr + ctmp->num_cells;
ctmp = ctmp->next_cell;
!

J
printf("ABR Q: %ld\n",abr);

total = cbr+rtvbr+nrtvbr+abr; // find the total number of data cells
count = total+brm+frm; // total count of all cells , data & RM

printf("SW_NUM: %d TOTAL CELLS: %ld\n",tmp1->sw_num,total);
if (total > 5)
{//log to a file
if (tmpl->sw_num == 100)
fprintf(qcount1,"%lf %Id %ld %Id %ld %ld %ld %ld %ld\n",
tirne,brm,cbr,rtvbr,nrtvbr,abr,frm,tota.l,count) ;
else
fprintfqcount2,"%If %ld %ld %Id %Id %Id %Id %Id %ld\n",
time,brm,cbr,rtvbr,nrtvbr,abr,frm,total,count) ;
}
tmpl->qued_cells = total;

151

152

return; // scanned and logged the number of cells in queue
\
)

/****

Description: This routine check if the input and the output loads are equal
and according to the algorithm used it may calculate the fair
share and notify ABR sources.

****/

int swtch::chk_sw_load(struct sw_node *swnxt,struct vc_node *vhead,

double time,int ACR)

{

struct vc_info *swvenxt;
int ret=0;

swnxt->UB = O;
swvcnxt = swnxt->sw_vclist;
while (swvenxt != 0) //Check each VC on the switch
{ / /and accordingly find the used rate
if (swvenxt->type == 4)
swnxt->UB = swnxt->UB + swvcnxt->allowed_cur_rate;
else
swnxt->UB = swnxt->UB + swvcnxt->used_cur_rate;
Swvcnxt = swvcnxt->next_vclist;
1
)

if (swnxt->UB != swnxt->TB) //if used rate is not equal to total rate

[
1

if (ACR == 0) // execute EARA
ret = EARA(swnxt,vhead,time);
}

if (ACR == 2) // execute ERICA
ret = ERICA(swnxt);

if (ret != Q)
return(ret);

/[successfully monitored the load and executed the switch algo.
return(0);
}

153

/ L2 2203

Description: This routine monitors the rate of each VC. This is used for
simulation verification only.
****/

int swtch::monitor_rate(struct sw_node *swnxt,int ACR)
{

struct vc_info *swvenxt;
long bits;

swvcnxt = swnxt->sw_vclist;
while (swvenxt != Q)
{
if (swvcenxt->timer == swvenxt->interval) // Is it time to update ?
{
if (swvenxt->type == 4)
{
if (swvenxt->cur_num_cells != 0)
{ // find out the used rate
swvcnxt->used_cur_rate = (swvenxt->cur_num_cells*424000)/
swvcnxt->interval;
if (ACR = 2)
swvenxt->cur_num_cells = 0;
h
}

else
{ //find the used rate
swvcnxt->used_cur_rate = (swvcnxt->cur_num_cells*424000)/
swvcnxt->interval;
swvcnxt->cur_num_cells = 0;
}
swvcnxt->timer = 0; / /reset timer
h
else
swvenxt->timer++; // or update it

swvenxt = swvenxt->next_vclist; // go to next VC

}

return(0); //succefully updated the used rates
!
)

154

/***r
Description: This routine switches the RM cells send in the backward
birection queue.
****/
int swtch::switch_BRMcells(struct sw_node *swcur,struct vc_node *vhead,
double time,int ACR)
{
struct RMcells *rmcur,rmnxt,*cur_cell:
struct sw_node *swnxt;
struct vc_node *vccur;
struct ER_Data *tmpERdat,*newERdat;
int i,j, pPrv_sw_num,nxt_sw_num,ret,k,I;
struct vc_info *swvccur;
long N_TCR=0;
double tmpLd_Adj_Fctr=0;

if (swecur->Ready_time <= time)
{
if ((sweur->BRMhead != 0) | |
(swcur->Chead != 0) | |
(swcur->Rhead != 0) | |
(sweur->Nhead != 0) | |
(swcur->Ahead != Q) | |
(sweur->FRMhead !=0))
swcur->Ready = swcur->Ready + swecur->Cellspermicsec; //update
else
swcur->Ready = 0;
!
swcur->Ready_time = time;
ret = 0;
rmecur = swcur->BRMhead;
while ((rmcur != 0) && (swcur->Ready >= 1))
{
k =0;
swvccur = sweur->sw_vclist;
// find the VC that number for which an RM cell is received
while ((swvccur I= 0) && (swvccur->ve_num I= rmecur->ve_numy)
swvccur = swvccur->next_vclist;
if (swvccur == 0) // cannot find - probably completed transmission
{ // clear all values and drop it
rmcur->timestamp=0;

for (j=0y<rmcur->num_sws+2;j++)
rmcur->swt_numslj] = 0;
rmcur->num_sws = 0;
rmcur->cur_rate = Q;
rmcur->prop_time = Q;
rmcur->ER_rate = O;
rmcur->Ld_Adj_Fctr = O;
rmcur->vc_num=0;
rmcur->DIR = 0;
rmcur->CI = O;
cur_cell = rmcur;
rmcur = rmcur->next_cell;
swcur->BRMhead = rmcur;
cur_cell->next_cell = O;
delete(cur_cell);

}
else // found the VC

{
for (i=0;i<rmcur->num_sws+2;i++) // find the switch on the path
{
if (rmcur->swt_numsi] == swcur->sw_num)
break;
}

if (rmcur->swt_numsli] != swcur->sw_num) //internal error
{
printf("Error in switch numbers. - switch_RMCells \n");
exit(1);
1
J

if (rmcur->DIR == Q) // if going to destination
{
NXt_SW_num = rmcur->swt_nums[i+1];
prv_sw_num = rmcur->swt_numsi-1];

}

else //going to source

{
NxXt_sw_num = rmcur->swt_nums(i-1];
Prv_sw_num = rmcur->swt_nums[i+1];

}

o]
ul

156

if ACR == 2) //ERICA
{ / /check the load.
if ((swcur->LL >= LLB) &8& (swcur->LL <= ULB))
{
if (rmcur->cur_rate > swcur->FS)
tmpLd_Adj_Fctr = swcur->LL/LLB;
else
tmpLd_Adj_Fctr = swcur->LL/ULB;

1
s

else
tmpLd_Adj_Fctr = swcur->LL;

if (tmpLd_Adj_Fctr > rmcur->Ld_Adj_Fctr)
rmcur->Ld_Adj_Fctr = tmpLd_Adj_Fctr;

/ / backward indication - input more than output
if (tmpLd_Adj_Fctr > 1)
{
if (rmcur->DIR == Q)
{ //send a copy to source
rmnxt.timestamp = rmcur->timestamp;
rmnxt.vc_num = rmcur->vc_num;
rmnxt.num_sws = rmcur->num_sws;
for (j=0;j<rmcur->num_sws+2;j++)
rmnxt.swt_nums[j] = rmcur->swt_nums]j];
if (prv_sw_num < 100)
rmnxt.prop_time = rmcur->prop_time+SRC_SWT;
else
rmnxt.prop_time = rmcur->prop_time+SWT_SWT;
rmnxt.cur_rate = rmcur->cur._rate;
rmnxt.ER_rate = rmcur->ER_rate;
rmnxt.Ld_Adj_Fctr = rmcur->Ld_Adj_Fctr;
rmnxt.DIR = 1;
rmnxt.Cl = rmcur->CJ;
if (prv_sw_num < 100)
ret = Add_RM(&rmnxt,swcur->sw_num);

else
ret = Add_RM(&rmnxt,prv_sw_num);
if (ret != 0)

exit(1);

L
J

}

157

if ((ACR == 0) &8s

{

(swvccur->allowed_cur_rate >= rmcur->ER_rate) | |
(ACR !=0))

if ((nxt_sw_num < 100) && (rmcur->DIR == 1))

{
1

//find vc & update it
veeur = vhead;
while ((vecur != 0) &8& (vccur->ve_num != rmcur->vce_numy))
vceur = vecur->next_vc;
if (vccur->LstRMtime <= rmcur->timestamp)
{
newERdat = new(ER_Data); //create a new cell
if (newERdat == 0) //internal error
f{
1
printf("Out of Memory- ER data\n");
exit(1);
!
newERdat->wait_time = rmcur->prop_time + SRC_SWT;
if (ACR == 2) //ERICA
{
if (rmcur->Ld_Adj_Fctr == Q)
rmcur->Ld_Adj_Fctr = 0.01;
N_TCR =(long)((double)rmcur->cur_rate/
rmcur->Ld_Adj_Fctr);
if (rmcur->Ld_Adj_Fctr >=])
{ //set ER according to load level
if (N_TCR < rmcur->ER _rate)
rmcur->ER_rate = N_TCR;
}
else
{
if (N_TCR > rmcur->ER_rate)
rmcur->ER_rate = N_TCR;
}
if (rmcur->ER_rate > vecur->peak_rate)
swvccur->allowed_cur_rate = vccur->peak_rate;
else
swvccur->allowed_cur_rate = rmcur->ER_rate;

138

L
i

newERdat->ER_rate = rmcur->ER_rate;
if (ACR == 1 && rmcur->Cl ==1) //PRCA
newERdat->ER_rate = vccur->cur_rate -
(long)(vccur->cur_rate/ 16);
if (ACR == 1)
{
1
if (rmcur->ER_rate > vccur->peak_rate)
swvccur->allowed_cur_rate = vccur->peak_rate;
else

swvccur->allowed_cur_rate = rmcur->ER_rate;

1
J

newERdat->ER_Chng = rmcur->timestamp;
newERdat->next = 0;

if (vecur->ERdat == 0) //insert into queue
vceur->ERdat = newERdat;
else
{
tmpERdat = vccur->ERdat;
while (tmpERdat->next != Q)
tmpERdat = tmpERdat->next;
tmpERdat->next = newERdat;
}
vceur->LstRMtime = rmcur->timestamp;

}

}

else

{
1

if ((nxt_sw_num < 100) && (rmcur->DIR == 0))
{ //set progation time
rmeur->prop_time = rmcur->prop_time+SRC_SWT;
rmcur->DIR = 1;
veeur = vhead;
while ((vecur != 0) &8& (vccur->ve_num != rmceur->ve_numy)
vccur = veeur->next_vc;
if (vecur->CI == 1)
rmcur->CI = 1; / /update congestion bit for PRCA
else
rmcur->Cl = 0;
k=1;

t

]

if (k == 0)

{ //get all the parameters and send to next node
rmnxt.timestamp = rmcur->timestamp;
rmnxt.vc_num = rmcur->vc_nurn,;
rmnxt.num_sws = rmcur->num_sws;
for (j=0;j<rmcur->num_sws+2;j++)

rmnxt.swt_nums(j] = rmcur->swt_nums]jj;
if (prv_sw_num < 100)

rmnxt.prop_time = rmcur->prop_time+SRC_SWT;
else

rmnxt.prop_time = rmcur->prop_time+SWT_SWT;
rmnxt.cur_rate = rmcur->cur_rate;
rmnxt.ER_rate = rmcur->ER_rate;
rmnxt.Ld_Adj_Fctr = rmcur->Ld_Adj_Fctr;
rmnxt.DIR = rmcur->DIR;
rmnxt.CI = rmcur->CI;

if (ACR == Q)

ret = Add_BRMcell(&rmnxt,nxt_sw_num);
else

ret = Add_RM(&rmnxt,nxt_sw_num);
if (ret != Q)

exit(1);

}

3
s

swcur->Ready = swcur->Ready - 1;
!
s
if (k == 0) //clear all values and delete it
f
1
rmcur->timestamp=0;
for (j=0;j<rmcur->num_sws+2;j++)
rmcur->swt_nums[j] = 0;
rmcur->num_sws = 0;
rmcur->cur_rate = Q;
rmcur->prop_time = 0;
rmcur->ER_rate = Q;
rmcur->Ld_Adj_Fctr = 0;
rmcur->vc_nums=0;
rmcur->DIR = O;
rmcur->Cl = 0;
if (rmcur->next_cell == 0)

159

160

f
1
delete(rmcur);

swcur->BRMhead = O;

1
J

else

{ / /remove the cell and connect the list
cur_cell = rmcur;
swcur->BRMhead = rmcur->next_cell;
cur_cell->next_cell = 0;

delete(cur_cell);

1
f

rmcur = swcur->BRMhead;

}
h
h
return(0); //successfully swaped backward RM cells
!
J

/ ddkkk

Description: This routine switches the RM cells send in the forward
direction queue.
*kkk /
int swtch::switch_FRMcells(struct sw_node *sweur,struct ve_node *vhead,
double time,int ACR)

f
1

struct RMcells *rmcur,rmnxt,*cur_cell;
struct sw_node *swnxt;

struct vc_node *vccur;

struct ER_Data *tmpERdat,*newERdat;
int ij ,PIV_sSw_num,nxt_sw_num,ret,k,I;
struct vc_info *swvccur;

ret = Q;
rmcur = sweur->FRMhead;
while ((rmcur != 0) && (swcur->Ready >= 1))

(
t

k=0;

swvccur = sweur->sw_vclist;

while ((swvccur != 0) &8& (swvccur->vc_num != rmcur->ve_numy))
swvceur = swvcecur->next_vclist;

if (swvccur == 0) // cannot find - probably completed transmission

f
1

}

// clear all values and drop it

rmcur->timestamp=0;
for (j=0;j<rmcur->num_sws+2;j++)

rmcur->swt_numsfj] = 0;
rmcur->num_sws = O;
rmecur->cur_rate = Q;
rmcur->prop_time = Q;
rmcur->ER_rate = O;
rmcur->Ld_Adj_Fctr = 0;
rmcur->vce_num=0;
rmcur->DIR = O;
rmcur->Cl = Q;
cur_cell = rmcur;
rmcur = rmeur->next_cell;
swcur->FRMhead = rmcur;
cur_cell->next_cell = 0;
delete(cur_cell);

else // found the VC
f

1

for (i=0;i<rmcur->num_sws+2;i++) // look for the switch number

{
if (rmcur->swt_numsfi] == swcur->sw_num)
break;

3
J

if (rmcur->swt_numsli] != swcur->sw_num) // internal error

{
1

printf("Error in switch numbers. - switch_ RMCells \n");
exit(1);

}
if (rmcur->DIR == 0) // going to destination

{
NXt_sw_num = rmcur->swt_numsli+1];
Prv_sw_num = rmcur->swt_nums[i-1];

}

else // going to source

f
1

nxt_sw_num = rmcur->swt_nums|i-1];
Prv_sw_num = rmcur->swt_nums{i+1];

}

161

if ((ACR == 0) && (swvccur->allowed_cur rate >= rmcur->ER_rate) | |
(ACR !=0))

{

if ((nxt_sw_num < 100) &8& (rmcur->DIR == 1))

{

//find vc & update it
vceeur = vhead;
while ((vccur != 0) &8& (vccur->ve_num != rmcur->vc_num))

if
{

else

vccur = vecur->next_vc;
(vecur->LstRMtime < rmcur->timestamp)

newERdat = new(ER_Data);
if (newERdat == 0)

{
1

printf("Out of Memory- ER data\n");
exit(1);
!
/ /update propagation time
newERdat->wait_time = rmcur->prop_time + SRC_SWT;
newERdat->ER_rate = rmcur->ER_rate;
if (ACR == 1 && rmcur->CI == 1) //PRCA
newERdat->ER_rate = vccur->cur_rate -
(long)(vccur->cur_rate/ 16);
newERdat->ER_Chng = time;
newERdat->next = 0;

if (vecur->ERdat == 0) // add to list
vecur->ERdat = newERdat;

else

{
tmpERdat = vecur->ERdat;
while (tmpERdat->next I= 0)

tmpERdat = tmpERdat->next;

tmpERdat->next = newERdat;

}

vecur->LstRMtime = rmcur->timestamp;

163

{
1
if (nxt_sw_num < 100) && (rmcur->DIR == 0))
{ / /update propagation time
rmcur->prop_time = rmcur->prop_time+SRC_SWT;
rmcur->DIR = 1;
veeur = vhead;
while ((vccur != 0) && (vccur->ve_num != rmcur->vce_numj)
VCCUr = vccur->next_vc;

if (vecur->CI == 1) // congested?
rmcur->Cl = 1;

else
rmcur->CI = 0;

k=1;

}

if (k ==0)

{ // set all values and send it to next node
rmnxt.timestamp = rmcur->timestamp;
Imnxt.vc_num = rmcur->vc_num;
rmnxt.num_sws = rmcur->num_sws;
for (=0;j<rmcur->num_sws+2;j++)

rmnxt.swt_nums(j] = rmcur->swt_numsij];
if (prv_sw_num < 100)
rmnxt.prop_time = rmcur->prop_time+SRC_SWT;
else
rmnxt.prop_time = rmcur->prop_time+SWT_SWT;
rmnxt.cur_rate = rmcur->cur_rate;
rmnxt.ER_rate = rmcur->ER_rate;
rmnxt.Ld_Adj_Fctr = rmcur->Ld_Adj_Fctr;
rmnxt.DIR = rmcur->DIR;
rmnxt.CI = rmcur->CI;
ret = Add_FRMcell(&rmnxt,nxt_sw_num);
if (ret = Q)
exit(1);
}
}
swcur->Ready = swcur->Ready - 1;
!
J
if (k == Q)
{//clear all values and delete from memory
rmcur->timestamp=0;

}
1
]
{

for (j=0;j<rmcur->num_sws+2;j++)
rmcur->swt_nums(j] = 0;
rmecur->num_sws = 0;
rmecur->cur_rate = 0;
rmcur->prop_time = 0;
rmcur->ER_rate = 0;
rmcur->Ld_Adj_Fctr = 0;
rmcur->ve_num=0;
rmcur->DIR = 0;
rmcur->CI = Q;
if (rmcur->next_cell == Q)
{
delete(rmcur);

swcur->FRMhead = 0;

1
s

else

{
cur_cell = rmcur;
sweur->FRMhead = rmcur->next_cell;
cur_cell->next_cell = 0;
delete(cur_cell);

}

rmcur = swcur->FRMhead;

J
return(0); // successfully switched the cell to the next nodel

L
s

/****

Description: This routine logs the bandwidth usage

****/

void swtch::log BW(struct sw_node *swnxt,double time,FILE *bwidth]1,

{

FILE *bwidth2,int ACR)

struct ve_info *swvcnxt;

if (ACR != 0)

{

swnxt->UB = 0;
swvcnxt = swnxt->sw_vclist;

164

1
s

while (swvenxt != 0) // find out the total used rate

{
1

if (swvenxt->type == 4)
swnxt->UB = swnxt->UB + swvcnxt->allowed_cur_rate;
else
swnxt->UB = swnxt->UB + swvcnxt->used_cur_rate;
swvenxt = swvenxt->next_vclist;
b
) .
if (swnxt->sw_num == 100) // log to file
fprintf(bwidth1,"%If %ld %I1d %ld\n",
time,swnxt->AB,swnxt->TB,swnxt->UB);
else
fprintf(bwidth?2,"%]If %ld %Id %ld\n",
time,swnxt->AB,swnxt->TB,swnxt->UB);

return; //completed log

/****

Description: This routine fluses all the forward RM cells if there are cells

in the backward RM cell for that VC as the values in forward
RM cells is no longer valid.

****/

void swtch::FlushFRM(struct sw_node *sweur)

{

struct RMcells *rmprv,*rmcur, *rmtmp;
struct RMcells *becur;

if (swcur->BRMhead != 0)
f

bcur = swcur->BRMhead;
while (bcur = 0) //if any backward RM cells
{
if (sweur->FRMhead != 0) // if any forward RM cells
{
rmcur = swcur->FRMhead;
rmprv = swcur->FRMhead;
while (rmcur !=) // find if there is a forward RM cell
{ // of that VC which has a bacward RM cell
if (rmcur->ve_num == bcur->vc_num)

}

166

f
1

if (rmprv == rmcur) // remove it from forward queue

{
rmtmp = swcur->FRMhead;
if (sweur->FRMhead->next_cell == 0)
swcur->FRMhead = 0;
else
swecur->FRMhead = swcur->FRMhead->next_cell;
rmcur = rmprv = swcur->FRMhead;

}

else

{
rmtmp = rmcur;
rmprv->next_cell = rmcur->next_cell;
rmcur = rmprv->next_cell;

}
delete(rmtmp); // flush it
}

else
{ // reconnect the queue
IMprv = rmeur;
rmcur = rmeur->next_cell;
!
h

1

)
bcur = beur->next_cell; // go to next RM cell
h
}
return; //successfully flushed all cells

/****

Description: This routine is the main routine of the switch. It calls the

appropriate routines and executes the required algorithms.

****/

int swtch::swt_all(FILE *qcountl,FILE *qcount2,FILE *bwidthl,

{

FILE *bwidth2, vc_node *vhead,double time,int acr)

sw_node *swcur;
int retl;
double result;

167

swcur = sw_head;
while (swcur {= Q)

{
1

retl = Q;
FlushFRM(swcur); // flush Rm cells if required
/ / log the number of cells in queue
QCount(sweur,qcountl,qcount2,time);
// switch the backward RM
retl = switch_BRMcells(swcur,vhead, time,acr);
if (retl !=0) //cells
{ // internal error
printf("Error in Switch_RMcells. \n");
break;
h
// transmit cells to next node
retl = switch_cells(swcur,time,vhead,acr);
if (retl != 0) // internal errorl
{
printf("Error in Switch_cells. \n");
break;
\
J
// switch the forward RM
retl = switch_FRMcells(swcur,vhead,time,acr);
if (retl 1=0) // cell
{ //internal error
printf("Error in Switch_RMcells. \n");
break;

|3
S

retl = monitor _rate(swcur,acr); // monitor the rate used by each VC
if (retl != 0) / /internal error
{

printf("Error in Update SW Rates. \n");

break;
!
J
if ((acr == 0) | | (acr == 2)) //EARA and ERICA
{
1

if (sweur->timer >= swcur->interval) // if the timer expired

{

if (acr == Q)
sweur->rem_cells = swecur->qued_cells;

168

retl = chk_sw_load(swcur,vhead,time,acr); / / check the load
if (retl != 0) //internal error
{

printf("Error in Check SW Load.\n");

break;

1
s

swcur->timer = Q; //reset timer
}
else
swcur->timer++; // increment timer count

}

result = fmod(time, 1000.0);

if (result == 0) //log the bandwidth usage
log BW(swcur,time,bwidth1,bwidth2 ,acr);
SWCUr = swcur->next_sw;

}

return(Q); //successfully completed the switch algorithm

1
J

/************************** end Of SWItCh.Cpp *******************************/

	San Jose State University
	SJSU ScholarWorks
	1997

	Traffic management methodologies for ATM networks : a new approach
	Asha G. Dinesh
	Recommended Citation

	tmp.1290447007.pdf.8cJIZ

