San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2005

An interface-based testing technique for
component-based software systems

Brian Bui
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Bui, Brian, "An interface-based testing technique for component-based software systems" (2005). Master's Theses. 2849.
DOI: https://doi.org/10.31979/etd.6a6r-uxts
https://scholarworks.sjsu.edu/etd_theses/2849

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/2849?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AN INTERFACE-BASED TESTING TECHNIQUE FOR COMPONENT-BASED
SOFTWARE SYSTEMS

A Thesis
Presented to
The Faculty of the Department of Computer Engineering

San Jose State University

In Partial Fulfillment
of the Requirement for the Degree

Master of Science in Computer Engineering

By
Brian Bui

December 2005

UMI Number: 1432467

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1432467
Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

© 2005

Brian Bui

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF
COMPUTER ENGINEERING

PO e [2/n et
)(Te?ry G/ac(, Thesis Adviéor
Seien Shol S 120k

Dr. Simon Shim, Thesis Committee Member

WM Mogn vl (H=los

Dr. William Barrett, Thesis Committee Member

APPROVED FOR THE UNIVERSITY /
[hn [G i (2/20/05

ABSTRACT

AN INTERFACE-BASED TESTING TECHNIQUE
FOR COMPONENT-BASED SOFTWARE SYSTEMS

By Brian Bui

Since 1990, Component-Based Software Engineering (CBSE) has rapidly been
emerging as a trend in industrial software engineering. Although the trend towards CBSE
continues to grow, Component-Based Software System (CBSS) testing has remained a
neglected research area. This thesis describes a systematic approach to test and maintain a
CBSS based on its interface and specifications. Our approach is to identify each
component and analyze the dependency and interaction between each component pair. The
dependency information obtained is then used to construct a component dependency graph.
The benefit of the constructed graph is twofold. It fastens the process of designing the
functional and system test suites. Also, this graph facilitates the change impact analysis,
which is crucial to maintain a CBSS if changes to any of its components have been made.

A case study is then used to demonstrate the efficiency and effectiveness of the test model.

ACKNOWLEDGMENTS

I am greatly indebted to my thesis advisor, Dr. Jerry Gao, for his advice and support
throughout my work on this dissertation. His insight about the subject has helped develop
my initial interest in the subject and inspired me to turn the subject of component-based
software system testing into my dissertation.

I am especially grateful to my committee members, Dr. William Barrett and Dr.
Simon Shim. Their suggestions and comments greatly improve my work.

I am grateful to Ms. Parrish for her assistance in the proofreading of this manuscript.

My sincere thanks also go to my parents for their support and encouragement
throughout my study at STSU, and especially during my time of involvement in working on
this thesis.

I owe a great deal of thanks to my friends, Chau Le and Thuan Ly, whose suggestions
and feedback have greatly benefited my work.

Above all, I would like to thank my wife, Cuc Huynh, who was always there to
support and encourage me, especially during times of stress and uncertainties. Without her
emotional support and patience during my research and writing, the completion of this

dissertation would become impossible.

Table of Contents

LISt OF FIGUIES .ottt sa e bbb e et be s viii
LASE OF TaDIES. ..ttt ettt b bbbt Xiil
L. TTOAUCTION .ottt ettt n e et 1
1.2 Why Does CBSS Testing Need AHENtion?........cccceeveeererieenerneneeneeneeeeeenns 2
1.3 Scope and Research ODJECHIVEScoviciviierieninirieescrenere et 3
1.4 Related WOTK ..ottt ettt 3
1.5 Thesis OrganizZation........cocveevieeirieiirrerietesieeste st e e bt se e neenes 4

2. Overview of Component-Based Software Systemcccoveveviveinirenicieeninccneee 6
2.1. What Is @ COMPONENLT?cueeriiiiicieieieiniesieei ettt sttt ene s 6
2.2. Component-Based Software ENgIneering..........ccceevvererenniiinenesennneseseeseseeeinenis 7
2.3 Major Issues and Challenges of CBSS TeStngccceoveviverenineineeneneneneneeeeene 9

3. Component-Based Software System Test Modelcocovviveiinninnncieicenccees 11
3.1 Characteristics of the Test Model.......ccoovviiiiiniciiniees e 11
3.2 ASSUITIPHONS. c.cvvvintetietetietcerieseeteseete e te s ere b esese et e eesessesteseseesesesbesessenseneesesesensesensaseesenes 11
3.3 Basic Definitions of the Test Modelcoeveireineneereeieeeeeeeese s 12
3.4 The TeSt MOGEL...c..ciiiiiiiiiciiee et et e 14
3.4.1 An Overview of the Test Modelcccooiviiviiniieeieeecereeeeee e 14
3.4.1.1 Component Interaction Representationcceoeceeveerrcerinneeeneeeeirnennennnees 15

3.4.1.2 Dependency TyPES ..o reireeiieiieieieseetratrereereer e e ssre st sbae b sie st et sreennas 18

3.4.2 Component Identification..........ceeieiierierieeiecte ettt esnes 18
3.4.3 Data-Function Dependency ANalysisccccvevriiviieererieieieninee e 19
3.4.3.1 Data-Function Dependency Analysiscoccueeeeeroisieerereneeneesecese e 20

3.4.3.2 Data-Function Dependency Graphcccocvvvecinirinienieniesenne e seeieieinne 20

3.4.4 Function-Function Dependency ANalysiscoceeveerirenieineneieeeeesenececenes 22
3.4.5 Component Dependency Representation.......c.o.ovveveceeverrenieeenieeiereeieeeeieeeneene 23
3.4.6 Transitive Closure AIGOTItRIMcccoviiiiieiis s 24
3.4.7 Change IMPact ANALYSIS ...vivevererieriiieinesientiecreietere e sresessessesseessessenessessesseesens 29
3.4.7.1 Component’s API Firewall and Change Impact Algorithms........ccc.ccceuenee. 31

3.4.7.2 Component’s CIDL Firewall and Change Impact Algorithms................... 36

3.4.7.3 Test Change FIrewallccooeviiirrinieie et 40

4. Case Study—the Simulated Elevator SYStemccoeveiieiiiirereeeeeceeeee e 48

vi

4.1 Identifying the Simulated Elevator’s Components........c.ceceeeeevreeceeeneirinnneenerenncns 51

4.2 Dependency ANALYSIS ...cccoviiiiririerierieirere ettt sttt 51
4.2.1 Dependency Associated with CurrentLevelccccovivirieniirienininn e 51
4.2.2 Dependency Associated with DoorStatus.........cccoveveenccnennicviniiiccnne 54
4.2.3 Dependency Associated with ElevatorStatusc.coeeeeeevvecrivriiiincneicciien 57
4.2.4 Complete Elevator System Dependencyccceecveeevneriinieieieinenesresesesenens 59

5 Conclusion and FUture DIr€CHIONSc.coveeuererieieieise ettt e 65
5.1 CONCIUSION 1.uiviietiieieeeie ettt bttt st be bbbt st e e e e b s 65
5.2 FULUTE DITECHIONS w..eviiiiieiiieieeeie sttt ettt et ese e st b e 66

RETETEIICES ..eveeviiveeiiitesetet et ettt b et et s b et e st e be st e b e st e st et e b e se s be e et anseeae b seenaes 67

Appendix A. Component Interface Description Languagecccoceveveerverevrennenerevrcnneenn 69
ALT MOIVE ittt ettt h bt bttt b ettt b et a s bt 69
A.2 Component Interface Description Languagecoceeeveeeeviieninerconiesesecne e 70

Appendix B. Supporting Data for the Elevator System........c.coccovneencrninciniincnnicenienee 74

Appendix C. The SPARC Emulator Case Studyccocveveviniinciniininiiieccceeee, 80

C.1 Overview of the SPARC EMUIatorcoooiiiiiiiirieieicieie e 80

C.2 CIDL and CDG of the SPARC Emulator, VEISION 1 ...occovvvviiiciiiiiieeeeree e 81

C.3 CIDL Descriptions of the SPARC Emulator, VEersion 2cccceccenenernenccenennens 104
C.3.1 Added and Modified COMPONENLScocvrririirrierieririenieiecreisiie e 104

C.4 Change IMpact ANALYSIScoveiieriiiieeieeieie ettt sttt et 108

vii

List of Figures

Figure 2.2.1. Component DIagraml.ccoccevecirmeiiieininiiiisiireinrece s eseetenetsreeessenseneesne s 8
Figure 2.2.2. Component Assembly Process. ...ccocoveoeinineiiicicircecceeeeeee e 9
Figure 3.4.1.1. A Service-Provider COomponentcoceeveeerieeeirnenienncceeennienneenneesnones 16
Figure 3.4.1.2. A Service-Requested COmMPONENt..........ceeeeriveneineienenieniiiecneececnnas 16
Figure 3.4.1.3. Component INteractioncccocerereieirineeirrenieieeee e 17
Figure 3.4.2.1. Component Identification and ISOlation.......c.eceeermecerrvrerecreineienicnneiienene 19
Figure 3.4.3.2.1. Data-Function Dependency Graph.ccccoovmeeenvciiiinininiciiciencnnenn 22
Figure 3.4.4.1. Direct Function-Function Dependencycccoeveveeeemeerinneiiiencnineneneneene 23
Figure 3.4.5.1. Function-Function Dependencyccoveveiecineneneneneneneiee e 24
Figure 3.4.6.1. Transitive Closure Sub-Problem ..o, 25
Figure 3.4.6.2. Transitive CloSUIe MALIIXccovuiireinrieeniiccnreiseesene et siesessene e sve s 29
Figure 4.0.1. The Simulated Elevator CBSS. ... 49
Figure 4.2.1.1. Data-Function Dependency Associated with CurrentLevelccceeneeee. 52
Figure 4.2.1.2. Function-Function Dependency Associated with CurrentLevel 53
Figure 4.2.1.3. Adjacency Matrix for CurrentLevel ..o 54
Figure 4.2.2.1. Data-Function Dependency Associated With the DoorStatus Variable......55
Figure 4.2.2.2. Data-Function Dependency Associated with The DoorStatus Variable.......56
Figure 4.2.2.3. Adjacency Matrix for DOOTSTAtUScccvveeiireinienieinicnin e 57
Figure 4.2.3.1. Data-Function Dependency Associated with ElevatorStatusccce.c.... 57
Figure 4.2.3.2. Function-function Dependency Associated with ElevatorStatus................. 58
Figure 4.2.3.3. Adjacency Matrix for ElevatorStatusc.coereveiiveinincnnirinerireseeneeees 59
Figure 4.2.4.1. Complete Elevator System Dependency.........cceevenecnenerinneceninienennnns 60
Figure 4.2.4.2. Adjacency Matrix for the Simulated Elevator Systemccecececinenrnenns 61
Figure 4.2.4.3. Transitive Closure Matrix for the Simulated Elevator System.......c..c..c....... 62
Figure 4.3.1. Changes Made t0 VErSIOn 2.........ccverimeiniceneiinenieieiesieereeeeennessees e 63
Figure 4.3.2. Change Impact Analysis for the Removal of the MoveTo Node..................... 64
Figure A.2.1. CBSS Described by CIDLcccoiiiiiireriniineiniercneeeeneee s 71
Figure A.2.2. A Two-Component CBSS EXample......ccccoervenereieieieninenenencne e 72
Figure A.2.3. Comp-1"S APciiiiiicceee et s 72
Figure A.2.4. CII of Comp-1 and Comp-2........ceoveirieerniiieneiniinisieieee et 73
Figure B.1. API of the OperationPanel.cccovreerinieiieninnciciene e 74
Figure B.3. CII between the Button2 Function of the OperationPanel Component and

the MoveTo Function of the Elevator Component.ccocovveeevvenieneennncneeisieeeee 75
Figure B.4. CII between the Button3 Function of the OperationPanel Component and

the moveTo Function of the Elevator Component.ccecevveviineneneiiciininec e 75
Figure B.5. CII between the OpenDoorButton Function of the OperationPanel

Component and the OpenDoor Function of the Elevator Component.............ccouenee.e. 75
Figure B.6. CII between the CloseDoorButton Function of the OperationPanel

Component and the CloseDoor Function of the Elevator Component.cccocvneee. 76
Figure B.7. CII between the StopButton Function of the OperationPanel Component

and the StopElevator Function of the Elevator Component...........cccocecnccvrerienernnne 76

Vil

Figure B.8. CII between the DialButton Function of The OperationPanel Component

and the Dial Function of the Elevator Component.cocverererenirnrenenreeneieeesenes 76
Figure B.9. CII between the OperationPanel Function of the OperationPanel

Component and the ShowStatus Function of the Elevator Component.............ccco...... 77
Figure B.10. CII between the moveUp Function of the Elevator Component and the

ControlMoveUp Function of the Controller Component.coe.evveveeveereenrecnrieennenes 77
Figure B.11. CII between the MoveDown Function of the Elevator Component and the

ControlMoveDown Function of the Controller Component.ccoevcervvcrecennenennen 77
Figure B.14. CII between the UpButtonl.2 Function of the FloorPanel Component and

the ControlMoveUp Function of the Controller Component.ccocevveerrrrreerereenene 78
Figure B.15. CII between the DownButtonL2 Function of the FloorPanel Component

and the ControlMoveDown Function of the Controller Component.cccceevrveernene 79
Figure B.16. CII between the DownButtonL.3 Function of the FloorPanel Component

and the ControlMoveDown Function of the Controller Component.c..ccoevveennene. 79
Figure C.2.1. API of the SparcEmulator (the CUT). ..c..eovviriviniieeesereececce e 81
Figure C.2.2. CII between the OpenFileButton of the SparcEmulator Component and

the ReadSource Function of the LoadFile Component.c..ocovveveriivencnceveninnenrennenn 81
Figure C.2.3. CII between the ResetButton of the SparcEmulator Component and the

SetCurrentStatement Function of the StatementHolder Component.cccccoevvevennenne. 82
Figure C.2.4. CII between the ResetButton of the SparcEmulator Component and the

Reset Function of the SparcData COMPONENLt.cceerirviireirireriee i e 82
Figure C.2.5. CII between the StepButton Function of the SparcEmulator Component

and the AddNorm Function of the Addxx Component.cocvecerverrrcciiininerineenene 82
Figure C.2.6. CII between the StepButton Function of the SparcEmulator Component

and the Addx Function of the Addxx Component.coeceveereirenenseriiennireerenan 83
Figure C.2.7. CII between the StepButton Function of the SparcEmulator Component

and the Addxcc Function of the Addxx Component.ccoeveeevenereneeneeneinenenes 83
Figure C.2.8. CII between the StepButton Function of the SparcEmulator Component

and the AddNormcc Function of the Addxx Component.ccoceveieeneneseriennennen, 83
Figure C.2.9. CII between the StepButton Function of the SparcEmulator Component

and the Sub Function of the SubtractX Component.cccoeeiveerecricoreenneccreienennenns 84
Figure C.2.10. CII between the StepButton Function of the SparcEmulator Component

and the Subx Function of the SubtractX Component.cocoeevenrecnecirinicceiienernnenns 84
Figure C.2.11. CII between the StepButton Function of the SparcEmulator Component

and the Subxcc Function of the SubtractX Component.ccccovevenecinrinnccnencnnenn 84
Figure C.2.12. CII between the StepButton Function of the SparcEmulator Component

and the Subcce Function of the SubtractX Component.co.oceceveiniirienneenineennenas 85
Figure C.2.13. CII between the StepButton Function of the SparcEmulator Component

and the Umul Function of the MultX Component........ccoccevvevvvirieiennccnienenenie e 85
Figure C.2.14. CII between the StepButton Function of the SparcEmulator Component

and the Umulecc Function of the MultX Component.c.oeeveviinnecennennenneccnnenens 85
Figure C.2.15. CII between the StepButton Function of the SparcEmulator Component

and the Smul Function of the MultX Component.ccoccecvvvrrirercirnnieneeeneneesvcennes 86

Figure C.2.16. CII between the StepButton Function of the SparcEmulator Component

and the Smulcc Function of the MultX Component.........c.coevvveerereeineneeneenieniennane 86
Figure C.2.17. CII between the StepButton Function of the SparcEmulator Component

and the DivSign Function of the DivX Component.cccceveevveivierinccencrernenereenens 86
Figure C.2.18. CII between the StepButton Function of the SparcEmulator Component

and the DivUsign Function of the DivX Component.cccoceovmvineecniinccnneinnnenens 87
Figure C.2.19. CII between the StepButton Function of the SparcEmulator Component

and the DivSigncc Function of the DivX Component.........covecevevniniececeneneeeeneen 87
Figure C.2.20. CII between the StepButton Function of the SparcEmulator Component

and the DivUsignec Function of the DivX Component.coccceveveriercrrecrieeeieenenens 87
Figure C.2.21. CII between the StepButton Function of the SparcEmulator Component

and the Andnorm Function of the AndX Component.cceceevvrenrineccrnicniennnenenn, 88
Figure C.2.22. CII between the StepButton Function of the SparcEmulator Component

and the AndNormcc Function of the AndX Component...........ccceeervererecnniinneccnnnnns 88
Figure C.2.23. CII between the StepButton Function of the SparcEmulator Component

and the AndN Function of the AndX Component...........coceeereveennvccnenienrcinneennns 88
Figure C.2.24. CII between the StepButton Function of the SparcEmulator Component

and the ORnorm Function of the AndX Component...........ccccovveveereinneneneeiseneenens 89
Figure C.2.25. CII between the StepButton Function of the SparcEmulator Component

and the ORnormcc Function of the ORX Component.ccocevveiveerineerereerereneenens 89
Figure C.2.26. CII between the StepButton Function of the SparcEmulator Component

and the ORcc Function of the ORX COMPONENL. ...c.ccvvviuirieenreieiiriieeceerinree e 89
Figure C.2.27. CII between the StepButton Function of the SparcEmulator Component

and the ORN Function of the AndX COmponent.ccververveeererenieneniesenesieseenenens 90
Figure C.2.28. CII between the StepButton Function of the SparcEmulator Component

and the ORNcc Function of the AndX Component...........cooceevvereeneencneeenenerennenes 90
Figure C.2.29. CII between the StepButton Function of the SparcEmulator Component

and the XOR Function of the XORX Component.ccecevveerereeiniencrenieneneneecnnens 90
Figure C.2.30. CII between the StepButton Function of the SparcEmulator Component

and the XORcc Function of the XORX COmMPONEnt.ccvevveerrerrerieriieirneneeeeeens 91
Figure C.2.31. CII between the StepButton Function of the SparcEmulator Component

and the XNOR Function of the XNORX Component..........cccveverervrerieinereerenenenens 91
Figure C.2.32. CII between the StepButton Function of the SparcEmulator Component

and the XNORcc Function of the XINORX Component.ccoeveveereriereneneerenieneenes 91
Figure C.2.33. CII between the StepButton Function of the SparcEmulator Component

and the SLL Function of the ShiftX Component.........c..cceeverrommennnnncreriineeeennne 92
Figure C.2.34. CII between the StepButton Function of the SparcEmulator Component

and the SRL Function of the ShiftX Component.ccocvvevrvenivineinernicnenreeeenne 92
Figure C.2.35. CII between the StepButton Function of the SparcEmulator Component

and the SRA Function of the ShiftX Component.c.coeeeenrirnnicicieeinecinieen 92
Figure C.2.36. CII between the LoadFile Function of the LoadFile Component and the

StatementHolder Function of the StatementHolder Component.ccccovvreeencirenne. 94
Figure C.2.37. CII between the LoadFile Function of the LoadFile Component and the

StatementHolder Function of the StatementHolder Component.cccccvvineiecnnnn 95

Figure C.2.38. CII between the ReadSource Function of the LoadFile Component and

the StatementHolder Function of the StatementHolder Component.ccccovervecuenee 95
Figure C.2.39. CII between the ReadSource Function of the LoadFile Component and

the StatementHolder Function of the StatementHolder Component.c.cceceeevevenene 95
Figure C.2.40. CII between the ReadSource Function of the LoadFile Component and

the StatementHolder Function of the StatementHolder Component.ccccoeorverennne 96
Figure C.2.41. CII between the LoadFile Function of the LoadFile Component and the

SetlsLabel Function of the StatementHolder Component............cccovvreevercccvrervverennnnes 96
Figure C.2.41. CII between the ReadSource Function of the LoadFile Component and

the SetlsComment Function of the StatementHolder Component.cocccevverrnenene. 96
Figure C.2.42. CII between the ReadSource Function of the LoadFile Component and

the SetlsInvalid Function of the StatementHolder Component.ccccoceeveverrererennen. 97

Figure C.2.44. CII between the SetBreakpointMouseClick of the SparcEmulator
Component and the SetBreakPoint Function of the Comp-StatementHolder

COMMPOTIENL. .covvevreuerreeriteite ettt ettt ettt bbb on bbbt b bt be e ebe s e e b eaeebennenens 97
Figure C.2.45. CII between the Addcc Function of the Addxx Component and the

SetRegisterValue Function of the Comp-SparcData Component.cccoeecevveeernnnnes 98
Figure C.2.46. CII between the Addcc Function of the Addxx Component and the

SetRegisterValue Function of the Comp-SparcData Component..........coceevvervvrnrencenens 98
Figure C.2.47. CII between the StepButton of the SparcEmulator Component and the

BA Function of the Comp-BranchX Component.ccocecvrevrerreincrncenereeenenen. 100
Figure C.2.48. CII between the RunButton of the SparcEmulator Component and the

BA Function of the Comp-BranchX Component.coccecvreiriririeninecccorecnnineeene 100
Figure C.2.49. CII between the RunButton of the SparcEmulator Component and the

BN Function of the Comp-BranchX Component.ccceevevireeninenieies e 100
Figure C.2.49. CII between the StepButton of the SparcEmulator Component and the

BN Function of the Comp-BranchX Component.ccceecvrinieenenierereseensassennens 101

Figure C.2.50. CII between the SetRegisterValue Function of the SparcData

Component and the SetValue Function of the Comp-RegisterHolder Component. ..102
Figure C.2.51. CII between the GetRegisterValue Function of the SparcData

Component and the GetValue Function of the Comp-RegisterHolder Component...102
Figure C.2.52. Partial CDG of the Sparc Emulator Showing the Execution Path When

the StepButton Is Pressed.oooiiiiiiiice e 103
Figure C.2.53. Partial CDG of the CBSS Showing the Execution Path of the

OPENFIEDUIION ..ot 103
Figure C.3.1. CII between the StepButton Function of the SparcEmulator Component

and the TST Function of the Comp-TestX Component.ccoevevvvreenrerncrirnnenee 104
Figure C.3.2. CII between the RunButton Function of the SparcEmulator Component

and the TST Function of the Comp-TestX Component.c.oceeeevvnrinevcieennnnee 105
Figure C.3.3. CII between the TestReg Function of the TestX Component and the

GetRegisterValue Function of the SparcData component.ccoceevvvereevinineniennns 106
Figure C.3.4. CII between the TestReg Function of the TestX Component and the

SetRegisterValue Function of the SparcData Component.cccocoeeverveereeccrreenn. 106

Figure C.3.5. CII between the ReadSource Function of the LoadFile Component and

the SetlsInvalid Function of the StatementHolder Component.ccecveevvenvriruinnnne 107
Figure C.3.5. CII between the ReadSource Function of the LoadFile Component and

the SetlsInvalid Function of the StatementHolder Component.ccoecerevcivencnnne 107
Figure C.4.1. Impact on Part of the System CDG due to the Added IsInstruction

FUNCHON 11ttt b et eb e e s et sb b aesbeteesne b sbeenie 108

Figure C.4.2. Impact on Part of the System CDG due to the Modified Addcc Function...109

List of Tables

Table 3.4.1.1. Test Model Algorithm.o.oiriiiiiniirie e e e 15
Table 3.4.3.1. Data-Function Dependency Types.......cooceiiiiiiiiiiiiic e 20
Table 3.4.6.1. Floyd-Warshall AIgOrithm.........co.cooiiiii e 27
Table 3.4.6.2. Transitive Closure Algorithm............ooooiiiiiiiiiii i 28
Table 3.4.7.0.1. Possible Changes Made to a Component.........cc...ooevvviiiinininennnn.. 30
Table 3.4.7.0.2. Test Model Change.ovvvriiiiiiiiiiic e 31
Table 3.4.7.1.1. Change Impact Algorithm for Modified API Functions.................... 33
Table 3.4.7.1.2. Change Impact Algorithm for Deleted API Functions...................... 35
Table 3.4.7.1.3. Change Impact Algorithm for Added API Functions.. v 36
Table 3.4.7.2.1. Change Impact Algorithm for Any Function Modlﬁed from Any
Component’s CIT of a CIDL-Based CBSS.... ... 38
Table 3.4.7.2.2. Change Impact Algorithm for Any Function Deleted from Any
component’s CII of a CIDL-Based CBSS.......cooiiiiiiiic 39
Table 3.4.7.2.3. Change Impact Algorithm for Any Function Deleted from Any
component’s CII of a CIDL-Based CBSS.........oiiiiiii e 40
Table 3.6.2.1. Algorithm to Find a Path from One Node to Another........................ 46
Table 3.6.2.2. Path between All-Node-Pair Algorithm. ..ot 47
Table C.2.1. Direct Dependency between the SparEmulator.runButton and Other
Components in the SPARC Emulator System, Version 1................covviiiiinnns 93
Table C.2.2. Dependency of the StepButton or RunButton on the Functions of the
StatementHolder Component.coviuiiiiiiii i 94
Table C.2.3. Dependency between a Mnemonic Function and the Functions of the
SparcData COmMPONENT.ooiriiniiiii i 99
Table C.2.4. The Branch Component...........oooiuiiiiiii it 101
Table C.3.1. Components Added 10 VErsion 2.........ccoevveririinniiriniineiesieiniienenens 104
Table C.3.2. Dependency between the StepButton/RunButton of the SparcEmulator
Component and the Functions of the New Components.............c.ccceeveniiinnnenn 105

Table C.3.3. Dependency between the Added Components and the Old Components....106

1. Introduction

In this chapter, we describe the basic concepts of Component-Based Software
Engineering (CBSE), point out the importance of Component-Based Software System
(CBSS) testing, and discuss the reasons why a testing model is needed. The chapter is

concluded with a brief discussion of the organization of this paper.

1.1 Background

Early in the 1990’s, under the pressure to meet the marketplace need, software
researchers and practitioners began the search for an alternative way to build efficient and
cost-effective software systems. Their work and research gave birth to a very attractive,
fast, efficient, and cost-effective technique, known as CBSE, to build new software
systems. The idea is to use high-quality, reusable modules called components as the
building blocks for constructing large and complex software systems.

As software systems become larger and more complex, the abandon of the traditional
software development approach makes sense since it often requires building a software
system from scratch. No doubt, that approach is too costly and far too often fails to meet
the demand of today’s fast-changed market and technology.

Saving time and money are two critical aspects of developing software systems.
According to Voas (1998), even the best programmer can only produce 10 lines of
“validated, documented code per day.” Also, building software systems using the
traditional approach proves to be “often too late—too late to be productive before

becoming obsolete” (Szyperski et al., 2002). Given these facts, the cost of developing new

software systems, containing hundreds of thousands of lines of code, will be far too
expensive to be marketable in the near future. Furthermore, the time it takes to drive a
product from inception to delivery will soon mean a battle of life and death.

The widespread and rapid acceptance of CBSE has indicated the importance of an
emerging technology that can be used to rapidly build CBSS’s to meet today’s fast-changed
market. The trend towards CBSE was once predicted that “at least 70% of all new software
applications to be developed in 2003 will be assembled primarily from components”
(Goulao & Abreu, 2002). Although the tendency to use components to build software
systems has been increasingly growing, most of the work in CBSE has focused on the
“technical and technological issues” (Cechich et al., 2003). CBSS testing, however, has

received very little attention (Gao et al., 2003).
1.2 Why Does CBSS Testing Need Attention?

Components’ reliability plays an extremely important role in the development of any
CBSS. This implies that reliability should take into account not only the reliability of any
individual component, but all the components in the system as a whole. If any component
in a CBSS fails to function, it can certainly lead to disaster. One example is the case of the
Ariane 5 vehicle that exploded only one minute after takeoff (Weyuker, 1998; Xie, 2004).
The problem was the inadequate testing of the components reused from its predecessor—
the Ariane 4.

Today’s trend towards CBSD indicates the need to develop an efficient and effective
model to test CBSS’s to avoid the disaster similar to the Ariane 5 problem. And this is the

very objective of this paper, which will be discussed in the next section.

1.3 Scope and Research Objectives

The goal of this research is to develop a systematic approach to test a CBSS based on
its interface and specifications. The test model focuses on the component’s interface, also
known as Application Programming Interface (API), and its specifications to deduce the
dependency and interaction among the components of a CBSS. The process of
constructing the test model begins with the static analysis of individual component’s
interface. The interaction between every component pair, through the publicly accessible
methods from the interfaces, is then analyzed. Complete coverage is achieved after all the
dependency among the components in that CBSS have been examined. The direct
dependency information between one component and another is then stored in a table,
called the adjacency matrix. Once this table is constructed, we apply an algorithm to find
all the indirect dependency between one component and the others. Finally, a Component
Dependency Graph (CDG) is constructed to help analyze the change impacts resulting from
possible future modifications of any component. Another algorithm is then applied on the
CDG to examine the ripple effects that might occur if changes to any component in that

CBSS would be made.

1.4 Related Work

Orso et al. (1999) propose incorporating metadata into a component that provides
both dynamic and static information about that component. Component users can then use
the information provided by the metadata to test and analyze a CBSS. Harrold et al.
(2001) then extends the idea so that the metadata provided in a component can be used to

support regression testing based on the component’s source code or specifications.

Gao et al. (2003) employ the collaboration diagram, state-chart diagram, and
component diagram provided by the Unified Modeling Language (UML) as a tool for
CBSS integration testing. Similarly, Strembeck & Zdun (2005) suggest a scenario-based
approach (similar to use cases in UML) to develop test cases against a component’s
functionality.

Beydeda & Gruhn (2001) propose constructing a component-based software flow
graph derived from the component’s specification (black-box) and source code (white-box)
for creating test cases. The study of both the data and function dependency between the
internal and external functions are examined to generate test cases.

Haddox et al. (2002) suggests the use of a wrapper that sits between a component and
the system on which that component runs. This extra layer helps intercept all the input and
output from that component (or a CBSS). Information obtained from the interception
makes it possible to apply fault injection, internal data state gathering, and assertion
checking as the appropriate techniques to test a CBSS.

1.5 Thesis Organization

The remainder 1s organized into several chapters and appendices. Chapter 2 gives an
overview of CBSE and the issues and challenges of CBSS testing. Chapter 3 covers the
component test model, which is the research objective of this paper. Chapter 4 presents a
case study to show how the test model can be applied on a real CBSS for testing and
maintaining purposes. Chapter 5 concludes the paper and gives recommendations for
future direction. Appendix A focuses on the description of the Component Interface

Description Language (CIDL), which can be used to facilitate the task of CBSS testing.

Appendix B includes the CIDL representation for the case study presented in Chapter 4.

Appendix C goes over a relatively large, real-world project as another case study.

2. Overview of Component-Based Software System

In this chapter we discuss a CBSS, the characteristics of each component, and the
interaction of these components in a CBSS. Also, we go over the issues and challenges in
CBSS testing. We conclude the chapter by presenting the techniques that component
software researchers, over a decade, have proposed to test a CBSS.

2.1. What Is a Component?

In the software component literature, a “component” is broadly and loosely defined.
Szyperski’s definition would be one of the most widely accepted definitions of a
component. According to Szyperski (1996), “a software component is a unit of
composition with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to composition by
third parties.”

Szyperski’s definition tends to emphasize 3 important characteristics of a component:
an independent unit, a unit of composition, and a well-defined interface. This means a
component, as an independent unit, can have its own interface. And the composition or
integration of several components to form a CBSS may have another interface—the
interface of the composition as a whole.

Similarly, Crmkovic and Larsson (2002) define a component as “a reusable unit of
deployment and composition that is accessed through an interface.” This definition stresses
three important characteristics of a component: reusable, composition, and interface. A

component as a reusable unit may mean that it can be used “as is” at the time needed, and it

can later be modified for any particular purposes. The other two characteristics—interface
and composition—are defined in a similar fashion to those of Szyperski’s definition.

Likewise, D’Souza & Wills (1998) defines a component as “... a coherent package of
software that can be independently developed and delivered as a unit, and that offers
interfaces by which it can be connected, unchanged, with other components to compose a
larger system.”

As we have seen, researchers have attempted to define a component in many different
ways. Despite those differences, all definitions clearly share one common point—the
emphasis of the importance of well-defined interfaces. In fact, a component’s interface is

very important since it is “a specification of its access point” (Crnkovic & Larsson, 2002).
2.2. Component-Based Software Engineering

Since 1990, CBSE has rapidly been emerging as a trend in industrial software
engineering. CBSE can be described as a paradigm shift from the traditional approach to
build software systems that can meet the demand of a fast-change market and technology in
a timely manner. Loosely speaking, CBSE is the process of assembling preexisting
software components, often Commercial-Off-The-Shelf (COTS) components, to build new
systems rather than implementing them from scratch.

Components are available in two forms: in-house and COTS (Goulad & Brito, 2002).
They can be written in a wide variety of programming languages and run on different
platforms. Today, system designers are increasingly becoming interested in using COTS
components to build new software systems. This approach has been widely adopted, and

Mehta et al. (2002) even suggest rebuilding legacy systems using CBSE. Also, Voas

(1998) observes that components have been deployed in many areas such as mobile
phones, radios, bridges, etc.

Figure 2.2.1 is a pictorial representation of a component. A component may have a
number of interfaces, and each interface represents a service access point. A service access
point can either be a provided service or a requested service. The function signatures (i.e.,
return type and formal arguments) associated with each service specifies how its
functionality can be accessed. Well-written specifications usually point out the pre-
conditions and post-conditions required before and after an API function is accessed and

returned, respectively.

F interface i %

Component X

interface j

Figure 2.2.1. Component Diagram.

Figure 2.2.2 illustrates the process of assembling a CBSS. Software system designers
begin the process by selecting the desired COTS or in-house components. Each component
is then tested to make sure that it behaves according to its specification. Once unit testing
is done, integration testing usually follows to make sure that the selected components
interact with one another well. Finally, all the components are assembled to form a

functional CBSS.

} interface i

Component 1

E——

F interface '
' I

1 interface i !
r interface i ‘ Component 1 —»ﬁ@

interface j

Component 2

——{ interface |

Component 2

[interface j l

interface i

Component N

| interface j H——
T

‘ interface i J

Component-based software system

Component N

T interface | ’
|

Figure 2.2.2. Component Assembly Process.
2.3 Major Issues and Challenges of CBSS Testing

Software system maintenance is a very expensive process. Testing can account for
more than half the total cost of a software system (Harrold, 2000). The cost for
maintaining a CBSS is even higher (Ye & Offutt, 2001). Unfortunately, CBSS testing has
remained a neglected research area.

One of the most obvious challenges of CBSS testing, as cited by Rosenblum (1997), is
the “technological heterogeneity”’ nature of the prefabricated components. Technological

heterogeneity means that different components used to assemble a CBSS may be written in

different programming languages and targeted different platforms. Thus, the testing
methodology used must be both platform independent and language independent.
Other major issues and challenges of CBSS testing, according to Gao et al. (2003),
include the following
e COTS components are shipped as binaries. This makes it very difficult to
analyze and test components because of the lack of access to the source code.
o Reusable components must be retested in the new contexts to avoid the Ariane
5 problem mentioned earlier.
e It’s costly to construct test beds and test drivers.
o COTS components provided by component vendors are not built-in testability

components.

10

3. Component-Based Software System Test Model

In this chapter, we detail the steps necessary for constructing the CBSS test model.
Assumptions about a CBSS are made, and definitions of each part of the test model are
given. Then, we explain how the test model can be used to design the necessary test cases
for the functional and system testing purposes. We conclude the chapter with the
explanation of how the test model can be used to maintain a CBSS.

3.1 Characteristics of the Test Model
The component test model represents a high-level abstraction of a CBSS, and it has

the following characteristics

The test model is both platform- and language-independent, so it can be used to

represent a wide variety of CBSS’s.

e [tisscalable.

e Itis constructed from the component’s API and functional specifications.
Ideally, component dependency is described using the CIDL, which is
described in Appendix A.

e Dependency among components is presented using a CDG that helps ease the
maintenance task.

3.2 Assumptions
We make the following assumptions about all the components of a CBSS under study
e Each component should have well defined interfaces and functional

specifications.

11

If any dependency exists between a service of one component and another, this
information should be clearly and explicitly stated in either the component’s
API or its functional specifications.

Ideally, a CBSS is specified by a simple scripting language called the
Component Interface Description Language (CIDL), which has been proposed
and developed by Dr. Jerry Gao at SJSU. We postpone the discussion of CIDL
and revisit this topic in Appendix A. For now, it suffices to say that CIDL
offers many advantages over the current component technology since it helps

increase component testability and controllability.

3.3 Basic Definitions of the Test Model

This section is intended to go over the basic definitions of the test model only.

Definitions specific to any part of the test model will be discussed in a separate and

relevant section for ease of reference. Let’s begin with the definition of a component.

Definition 3.3.1. A component, C = API, U FS.U B, is a set of API functions and

functional specifications where

APL = {APIp;, API,..., APIg,} is the functional API of the component C.
Each APIg; should, at least, clearly define every externally accessible function
Fi.

FS.is a well-defined functional specification of the component C, and

Bc is the component binary.

Several components may be required to form a functional CBSS. In such a system, the

interaction among the components is an important concept since the realization of

12

component dependency would both enhance the understanding of a CBSS and facilitate the
process of change impact analysis. And change impact analysis is extremely important to
evaluate the effects of changes made to a CBSS. The discussion thus far leads to

Definition 3.3.2.

Definition 3.3.2. Anevent, E = {E,, E; E;, Eis,..., En}, is a finite set of events that may
happen during the execution of a CBSS where
e FEach event E; denotes a distinct link that represents the interaction between 2
functions of a component or a function of one component to that of the others.
Each API function of a component in a CBSS should be thoroughly tested. A test suite
is specifically designed for each API function of a component to ensure its functionality.

The component’s unit-testing test suite is defined in Definition 3.3.3.

Definition 3.3.3. A CBSS test suite, T = {t;, to, ..., tn}, 15 a test suite that consists of all
possible test cases intended to execute against all the AP] and Component Interaction
Interface (CII) functions , Fc = {Fi, Fa,, Fo}, of that CBSS. Each t; is a test set that is
used to execute against a particular API or CII function F;, each representing a node on the
CDG.

The test model is graph-based, and this graph is used to represent the direct
dependency among the functions of every component pair. The data structure used to store
the dependency information is a matrix (i.e., a 2 x 2 array). Itis called the adjacency
matrix and is defined in Definition 3.3.4.

Definition 3.3.4. Adjacency Matrix. An adjacency matrix, A = a;;, 1s a Boolean matrix

whose i row and j column is 1 if and only if there occurs a directed edge from i to j.

13

3.4 The Test Model

This section gives detailed descriptions of the test model. Section 3.4.1 gives an
overview of the test model. Section 3.4.2 shows how the interaction among the functions
of the components would be represented. Section 3.4.3 covers the component
identification process. Section 3.4.4 includes the steps necessary to identify data-function
dependency. The process of identifying the dependency between one function of a
component and the function(s) of another component is discussed in Section 3.4.5. Section
3.4.6 covers the representation of data-function and function-function dependency. Section
3.4.7 concludes the chapter with the explanation of how the test model can be used to

maintain a CBSS if changes to any component in a CBSS would be made.
3.4.1 An Overview of the Test Model

The process of constructing the test model consists of 7 steps. We begin the process
by identifying every component of a CBSS. The dependency between one component and
another is then examined and presented using a dependency matrix, called the adjacency
matrix. The adjacency matrix only records all the direct dependency among the functions
of the components. Another algorithm is used to find all the direct and indirect dependency
whose information is later stored in another matrix, called the transitive-closure matrix.
Information obtained from the transitive-closure matrix can later be used to construct the
CDG. Test coverage algorithms as well as change impact algorithms are then developed to
traverse the CDG for the purpose of testing and maintaining a CBSS. Table 3.4.1.1

summarizes the algorithm used to construct the test model.

14

Test Model Algorithm

1. Identify each component of a CBSS.
Analyze the dependency among the functions of one component and those of the
others.

3. Construct an adjacency matrix to record all the direct dependency among the
functions of the components.

4. Construct the transitive-closure matrix to record all direct an indirect dependency

among the components.

Construct the component dependency graph for maintenance purposes.

Develop the algorithms required for test coverage criteria.

7. Develop the algorithms necessary to analyze change impacts.

AN

Table 3.4.1.1. Test Model Algorithm

3.4.1.1 Component Interaction Representation

Components can be divided into two categories: service provider and service
requestor. A service-provided component is designed to serve a request of other
components. A service-requested component sends a request to a service provider for a
particular service. There are also cases in which a component can serve as both a service-
provided and service-requested component. In any case, a component’s interface is the
access point for inter-component interactions. Figure 3.4.1.1 is a pictorial representation of
a service-provided component. For simplicity, this example shows a component with only
2 services, both of which are provided services. In reality, however, keep in mind that a
component may offer many different services, and it may have both provided and requested

services.

15

; Service i
Service
provider x
] Service j 7

|

Figure 3.4.1.1. A Service-Provider Component
Similarly, Figure 3.4.1.2 represents a service-requested component. Again, the
purpose here is, for simplicity, to show a component with only two requested services:

Request i and Request j.

Request i |

Service
requestor y
} Request | T
|

Figure 3.4.1.2. A Service-Requested Component

Components in a CBSS interact with one another via their interfaces. Depending on
the complexity of a CBSS, the number of components can be very large, and the
dependency among these components can be very complex. But, no matter how complex a
CBSS might have been imagined, the interaction among the components of a CBSS
follows the same principle. That is, these components provide or request a service through
their interfaces. As long as the requested function of one component passes the correct
arguments to the provided service of another, the requested service is guaranteed to be

fulfilled (of course with the assumption that no system fault or error has been occurred

16

during this time period). For simplicity, the interaction between 2 simple components in a

typical CBSS is shown in Figure 3.4.1.3.

' Service i |<—————[Request i

Service Service
provider x requestor y

1 T
I Service | ’4—“1 Request j i

J I

Figure 3.4.1.3. Component Interaction
In our test model, the interaction among all the components in a CBSS is represented
as a CDG. From that graph, system testers can easily visually view the dependency among
the components. The concept of the CDG is formally defined in Definition 3.4.1.1.
Definition 3.4.1.1. Component Dependency Graph. A component dependency graph,
denoted Gc = (V, E, D), is a directed graph where
o V={v,Va..., vy} is a finite set of nodes, and each node v; € V represents a
function of a component.
e E=VxVisa finite set of edges. Each edge e(u,v) € E 1is a link from the
source node u to the destination node v.
e D is a finite set of edged label, which either represents data-function

dependency or function-function dependency.

17

3.4.1.2 Dependency Types
Component dependency can be classified into 3 categories: data-function
dependency, function-function dependency, and control sequence dependency. Each
dependency type will be discussed in a separate section shortly.
3.4.2 Component Identification
Given the facts that a CBSS can be very large and complex, the task of validating and
revalidating such a system would be very complicated (in fact, it might be very
sophisticated and tedious) if one has no knowledge of the dependency among its
constituent components. The component identification process is very important for the
following reasons
e One component may have a number of features. In this case, unit testing is
mandatory to ensure the quality and reliability of each component before
conducting integration and system testing.
e It helps component users and testers gain a better understanding of the CBSS
under study.
e It greatly benefits the process of change impact analysis and regression testing
when changes are made to any component of a CBSS.

From now on, the CBSS example shown in Figure 3.4.2.1 will be used to discuss the
process of constructing the test model. As illustrated in that Figure, the CBSS example is
composed of 3 components: component X, component Y, and component Z. Each is
identified and isolated for the purpose of data-function dependency analysis describing in

the next section.

18

P =

Component X

—

Component Z

L Fe

Fa

)

Component Y

Fs

:

Figure 3.4.2.1. Component Identification and Isolation
3.4.3 Data-Function Dependency Analysis

Data-function dependency can be classified into 5 categories as follows

e Defined>Used: one function (may be more than one) Fi defines the datum Di,
and another function Fj (may be more than one) uses Di.

e Defined—>defined and used: one function (may be more than one) Fi defines the
datum Di, and another function Fj (may be more than one) uses Di and redefines
it.

o Defined and used->Defined and used: one function (may be more than one) Fi
defines and uses the datum Di, and another function Fj (may be more than one)

also uses Di and redefines it.

Table 3.4.3.1 is designed to review the key points of the data-function dependency

types.

Data Dependency Types

Function Fi Function Fj

Fi defines Di only Fj uses Di only

Fi defines Di only Fj both defines and uses Di
Fi both defines and uses Di | Fj uses Di only

Fi both defines and uses D1 | Fj both defines and uses Di

Table 3.4.3.1. Data-Function Dependency Types
3.4.3.1 Data-Function Dependency Analysis

Information about the Data-function dependency is extracted from the component’s
API and functional specifications. The process begins with the construction of a data-
function dependency graph. This graph shows all the functions of a component that either
define or use a particular datum D; directly. Information from this graph can be used to
build an adjacency matrix that conveys the same information as the data-function
dependency graph; however, we will later discuss how the adjacency matrix can be used to
construct another matrix that shows all the indirect dependency related to the datum D;.
3.4.3.2 Data-Function Dependency Graph

Before discussing how we represent the data-function dependency, let’s first go
through a definition that serves as one of the fundamentals of the test model.
Definition 3.4.3.2.1 Data-Function Dependency Graph. A data-function dependency

graph G, denoted G = (Vg, Vp, E, D), is a graph in which

20

o Vi={vy, Vy,..., Vy} is a finite set of nodes. Each node v € V represents an
API or CII function of a component that either defines or uses the datum D;.
In this context, circles are used to represent a function as a node in any graph.

e Vpis anode that represents a global datum D;. In this context, square boxes
are used to represent the datum D; in any graph.

e Eachedge e € E represents the relationship between an API or CII function
F; and the datum D;.

e D specifies the data-function dependency type that indicates whether F; uses or
defines the datum D;.

A data-function dependency graph is constructed by gathering information from a
component’s API and CII, and the corresponding functional specifications. Given well-
written API and specifications, we can check the entire CBSS to see what functions would
define or use the datum D;. The data-function dependency extracted is then used to
construct a data-function dependency for each global datum (if provided in the API or
specifications). Figure 3.4.3.2.1 shows a typical data-function dependency graph. This
graph indicates the following:

o F; (CompX) defines D; only.

o F, (CompX) both defines and uses D;

e F;and Fs (CompY) use D; only.

e Fsand Fs(CompZ) use D; only

21

Legend used
—» Used by

——p Defined by

Figure 3.4.3.2.1. Data-Function Dependency Graph.
3.4.4 Function-Function Dependency Analysis
We begin this section with the definition of a function-function dependency graph.
Definition 3.4.3.2.1 Function-Function Dependency Graph. A function-function
dependency graph G, denoted G = (V, E, D), is a graph in which
e Eachnodev e V represents an API or CII function of a component.
e FEachedge e € E represents the relationship between an API or CII function

F; and another API or CII function Fj.

22

e D indicates that the dependency type is function-function rather than data-
function.
From Figure 3.4.2.1, we can identify the following function-function dependency
among the components
1) Dependency between component 1 and component 2: F1>F;
2) Dependency between component 1 and component 3: F,->Fs
3) Dependency between component 2 and component 3: F4->Fg
The information obtained so far can now be used to construct an adjacency matrix

that records all the direct function-function dependency as shown in Figure 3.4.4.1.

F1 | F2 | F3 | F4 | F5 | F6
F1]0 {1 |1 10 |0 |O
F2/0 |0 |0 JO |1 10
F3/0 [0 |0 |1 [0 |O
F4|{0 {0 /0 |0 |O |1
F5/0 [0 [0 |O |O |O
F6 /0 |0 |O [0 |0 |0

Figure 3.4.4.1. Direct Function-Function Dependency
3.4.5 Component Dependency Representation

Suppose the function-function dependency between the 3 components shown in
Figure 3.4.2.1 is further complicated as illustrated in Figure 3.4.5.1. The indirect
dependency between any function pair can not be identified by examining the adjacency
matrix shown in Figure 3.4.4.1. We need to find a way to represent both the direct and

indirect dependency among the components. This is the topic of the next section in which

23

we will present a simple but very effective algorithm that helps reveal all the dependency

among the components of a CBSS.

Figure 3.4.5.1. Function-Function Dependency
3.4.6 Transitive Closure Algorithm

An obvious disadvantage of an adjacency matrix is that it only shows the direct
dependency between two functions F; and F;. Any indirect dependency between F; and F;
(if occurs) would remain unknown. Therefore, we should somehow come up with an
algorithm to detect any indirect dependency between the two functions F; and Fj. Given a

graph G = (V, E) represented by a Boolean N x N matrix A (i.e., an adjacency matrix), the

24

problem now becomes the question of “how would we determine whether there is a path
from i to j for all vertexesi,j € V?”

The problem we are trying to solve is to find all paths from node 1 to node j that may
or may not pass through any intermediate nodes. Careful thought reveals the fact that there
are only two cases that make 1t possible to travel from i to j without having to visit any
intermediate nodes. The first case is the path that directly connects i and j. The second
path is the self loop path. In other words, this is a path from i to j in which i equals to j.

All paths from 1 to j other than the 2 cases mentioned earlier must pass through some
intermediate node. Now, let’s discuss this sub-problem based on the simple graph shown
in Figure 3.4.6.1. Suppose we have a Boolean N x N matrix A. Suppose further that we
are interested in knowing the results of the AND operation being applied on A[i][k] and
A[K][j]. The result of that computation is true (i.e., equals to 1) if and only if both the
values of A[i][k] and A[k][j] are true. This observation implies two facts. First, there must
exist some link E; that connects 1 and k. Likewise, k and j must be connected by some link
E,. The second fact can be deduced from the first by observing that the length of the path

fromitojis 2 (i.e., the two links E; and E»).

o0 .

Es
K

N

Figure 3.4.6.1. Transitive Closure Sub-Problem

25

The observation discussed in the previous paragraph can be further supported by the
calculation of the Boolean product of an adjacency matrix. Let’s take the graph shown in
Figure 3.4.5.1 as an example to illustrate this idea, and let’s call it graph G. All paths of
length 1 have already been presented in the adjacency matrix shown in Figure 3.4.4.1, and
let’s name this matrix as A;. Now, suppose we want to find all paths of length 2 by
examining A; without referring to graph G at all. How can we do that?

The answer to the question turns out to be very simple. Let’s try to compute the entry

for row F; and column Fs by finding their Boolean product as follows

(011000) X =0*0+1"1+1*0+0"0+0*0 +0*0 =1

OO0 -~0

Note that the Boolean product just obtained clearly indicates that a path of length 2
exists between the 2 nodes F; and Fs. If we continue to calculate the Boolean product for
all other entries in matrix A, the end result is another matrix whose truth value of the entry
onrow i and column j, if equals to 1, would indicate that there is a path of length 2 from 1
to j. In other words, the resulting matrix is one that contains all paths of length 2 from node
1tonodej. Let’s denote this matrix as A,. Similarly, a matrix consisting of all paths of
length 3 can be obtained by forming the Boolean product of the entries in the adjacency
matrices A; and A,.

Now we can formally define the transitive closure that shows whether there is a path

between any pair of nodes F; and F;.

26

Definition 3.4.6.1. Transitive Closure Matrix. Given a directed graph, G = (V, E), where V
is a finite set of vertices, and E ¢ V x V is a finite set of edges. A directed graph, G’ = (V,
E”), is the transitive closure of G if and only if for any given pair of edges (a, b) and (b, ¢),

there exists a path (a, ¢).

Now that the transitive closure of graph G has been defined, we are interested in
seeking the answer to the question “how can we compute the transitive closure of G?” One
way to compute it is to set 1 as the weight for all edges ¢; € E, and then run the well-known
Floyd-Warshall Algorithm, which is derived from the following observation

e Letd;; be the weight of the shortest path from node i to node j whose
intermediate nodes belong to the set {1, 2, 3, ..., k}.

e When k equals to 0, d;; must be equal to a;; since there are no intermediate
nodes from i to j; otherwise, ¢ ; ® = min {c ij (k=1), cixk—1) + cyik—1)}.

Table 3.4.6.1 shows the Floyd-Warshall Algorithm that can be used to compute the

all-pairs shortest path from a weighted and directed graph.

Floyd-Warshall Algo(A)
C=A;
n = A.length();
fork=1tondo
fori=1tondo
forj=1tondo
clilfj] = min { c[i][j], c[il[k] + c[k] {1}

return C.

Table 3.4.6.1. Floyd-Warshall Algorithm
Now, with some modification to the Floyd-Warshall Algorithm, we can easily

compute the transitive closure of graph G. Let’s consider the following relation

27

e T;;=1ifthereis apath fromito]
e Otherwise, T;;=0.

Since the weight of all the edges in this graph is 1, we can replace the operators “min

and +” in the Floyd-Warshall Algorithm with the operators “(V and A)” to achieve our goal

(note that this algorithm is also called the original Warshall Algorithm). The Transitive

Closure Algorithm (TCA) is shown in Table 3.4.6.2.

TransitiveClosure_Algo(A)

C=A;
n = A.length();
fork=1tondo
fori=1tondo
forj=1tondo

t[i]0] = thh] v (k] At[K][]).

return C.

Table 3.4.6.2. Transitive Closure Algorithm

We are now ready to return to the topic of figuring out all the function-function
dependency from an adjacency matrix. Figure 3.4.6.2 shows the transitive closure matrix
obtained after running the TCA on the adjacency matrix shown in Figure 3.4.4.1. Note that
not only does this matrix retain all the direct dependency among the nodes in that graph,
but also it records all the indirect dependency. For example, cell (6, 6) indicates the
indirect dependency between F; and Fs. The indirect dependency of every other pair of

nodes can be explained in a similar fashion.

28

F1!F2 |F3 |F4|F5|F6
F1/0 |1 |1 |1 |1 |1
F210 [0 (0 |O |1 |O
F3/0 [0 |0 |1 |O |1
F4{0 [0 |0 {0 |0 |1
F5/0 |0 |0 10 |0 |0
F6[{0 |0 |0 |O |O |O

Figure 3.4.6.2. Transitive Closure Matrix
3.4.7 Change Impact Analysis

As a CBSS evolves, changes made to one or more components happen frequently.
Whenever any changes are introduced into a CBSS, it is crucial to know what changes have
been made and what might be affected. The process of identifying the changes and the
inadvertent effects caused by the changes is called change impact analysis. And it benefits
us in the following ways

e Enhance our understanding of the system.

¢ Identify the potential effects caused by the changes.

e Help save time and effort in regression testing.

e Help identify and select test cases that need be executed against the changes to

ensure that the system under test is still dependable and reliable.

CBSS change impact analysis is both quantitative and qualitative. Quantitative
analysis refers to the measurement of the number of changed components and the amount
of time spending on identifying the parts or items that would be affected by the software
changes. Qualitative analysis addresses the issue of how effective the end results of the
change impact analysis would help system testers determine and select the right test cases

to execute against the changes. Failure to understand software changes and their potential

29

effects on a CBSS means that we allow inadvertently ripple effects to go unnoticed until
disaster occurs as in the case of the Ariane 5.
Typical changes in a CBSS include data, function, and control sequence changes.

These changes are summarized in Table 3.4.7.0.1

Category Possible Changes

Function change | 1) Change function name

2) Change function return type

3) Change function scope

4) Add, delete, or change formal
parameters.

5) Add or delete a function

&) Change internal logics, algorithms,
or data structures

9) Change an internal-function
interaction sequence

Data change 1) Change declaration or definition
2) Change data scope
3) Add or delete data.

Control sequence | 1) Delete node
change 2) Add node
3) Delete Link
4) Add Link

Table 3.4.7.0.1. Possible Changes Made to a Component

When any changes are made to a component, the changes will also affect the test
model. Even a minor change may have ripple effect on many parts of a CBSS. In this
case, the entire CBSS should be re-examined to identify the affected parts and determine
what test cases should be rerun to ensure the reliability and stability of the system. Since

the test model is represented using a CDG, the only two changes that can happen in the test

30

model are node and link changes. In other words, the removal/addition of any functions
from/to any component in a CBSS would cause some changes to occur in the test model.

Possible changes of the test model are summarized in Table 3.4.7.0.2.

Change category | Possible changes
Test model 1) Delete node
2) Add node
3) Delete Link
4) Add Link

Table 3.4.7.0.2. Test Model Change
3.4.7.1 Component’s API Firewall and Change Impact Algorithms

In order to identify the changes and their potential effects on a CBSS, we need to find
a systematic way to analyze the changes. To solve this problem, we adopt the firewall
concept and notation proposed by Kung et al. (1995). The technique presented in this
paper, however, differs to Kung et al.’s in three fundamental ways. First, our firewall
approach is constructed based on the API functions and/or data provided in the
component’s CIDLs (i.e., API and CII) instead of object-oriented class firewall. Secondly,
our testing strategy is interface-based instead of white-box testing. Finally, the change
impact algorithms we develop to compute the firewall of the CDG and the CIDL are
unique, and they haven’t been addressed in the literature.

Let’s begin the discussion of the component firewall and change impact analysis by
considering two versions of a CBSS. Let G=(V, E, D) be the current CDG where V = {v;,
V2, ..., Vn} 18 2 finite set of vertices, each representing an API or CII function of a

component. E = {ey., e, ..., &,} is a finite set of edges between 2 nodes v; and v;. D is a set

31

of labeled edge that either represents the data-function dependency or function-function
dependency of one version of a CBSS. Likewise, let G’ = (V’, E’, D’) be the CDG
resulting from the changes introduced into a CBSS, where V’ = {v{’, vo’, ..., v’} is a finite
set of vertices, each representing an API or CII function of a component. E’ = {e,’., e,’,
..., &’} is a set of edges between 2 nodes vi’ and v;’, and D’ is a set of labeled edge that
either represents data-function or function-function dependency of the changed CDG.

Let’s review the key point of the transitive closure of a graph G defined in Definition
3.4.5.1. This definition states that G’ is the transitive closure graph of G “if and only if for
any given pairs of edges (a, b) and (b, ¢), there exists a path (a, ¢).”” This information can
now be used to define a binary relation Ry for a component’s API functions as follows
R = {<F;, F;> | <F;, F> € VA <F, F;, d> € E} (1).

When changes are made to any function of a component, the changed node of the
CDG must also be identified. We next define the component function firewall relation,
denoted as Rgw, which represents the changes made to a CBSS.

Rew =Rp N(V’ap1 X VVapn) N(Varr X Vap) 2).

The component’s API function firewall for any modified API function Fioq, denoted
as Capr FW, can be defined as shown below
Carir FW (Finod) = {Fx | <Fmoa, Fi> € Rpw} (3).

Similarly, the component’s API function firewall for any deleted API function Fe,
denoted as Capr FW, can be defined as follows

Carir FW (Fae1) = {Fx | (3 Faer, 3 Fi) [<Fyel, Fi,] € (E-E) A <Fga, Fi> € R'ew} (4).

32

Also, the component’s API function firewall for an added API function F,qq4, denoted
as Capir FW, can be defined as follows
Carir FW (Fada) = {Fx | (3 Faaa, 3 Fr) [<Faaa, Fx, &>] € (B” ~E) A <Fuas, Fi> € R'pw } (5).
With the firewall defined thus far, we can design an algorithm to identify the changes
introduced into a CBSS, reconstruct a new CDG, and analyze the change impacts. Table
3.4.7.1.1 shows the algorithm for identifying the functions that would be affected by a

modified function F; of any component in a CBSS.

ChangeImpactAlgoForModifiedFunct(Cc.Fc, G)
1. Input:

2. Fc = array containing M modified API functions from later version of the CBSS
3. G = transitive closure graph of the previous version of the CBSS with N nodes;

4. Output:
Fatrecrea[], Which is an array of vector of the affected functions/nodes

5. Begin:

6. String found = null; //hold a modified function

7. Vector rowElements = null; //hold elements of a row retrieved from the TC matrix

8. Vector [] colElements = null; //hold elements of a column retrieved from the TC matrix
9. Fori =1 to number of elements in Cc.Fc do

10. found = Cc.Fc[i];

11. rowElements = retrieveRowFromTCMatrix(found);

12. Faffected [1] =F affected [1] U IOWElements;

13. if (rowElements != null) // sanity check

14. for j = 0 to retrieveRowFrom TCMatrix.length do

15. colElements[j] = retrieveColumnFromTCMatrix(j);
16. Fattected [1] = Fattectea [1] U colElements[j];

17. end for

18. endif

19. end for

20. Return Fagrected;

21.end

Table 3.4.7.1.1. Change Impact Algorithm for Modified API Functions

33

From Table 3.4.7.1.1, one would realize that the key to the algorithm is the transitive
closure matrix of the CDG. Given the identity of a modified API function, we can directly
go to the row corresponding to that node and add all the entries with a 1 to the affected
function set. Then, for each entry with a 1 in that row, we jump to the column
corresponding to that entry and record all the entries with a 1 in that column. The final
affected function set is the union of the set of that row (i.e., all elements in that row) and
the sets of all those columns.

The same algorithm as shown in Table 3.4.7.1.1 can be used to find the affected
functions as a result of any changes made to the datum D;. The only difference between the
algorithms for function change analysis and data change analysis is that the former takes
the array of the modified API functions as one of its formal parameters to analyze the
affected functions caused by the changes. The later, however, takes as input an array of the
globally modified data as one of its formal parameters to analyze the affected functions.
This means the algorithm to find the affected functions resulting from the globally
modified data is exactly the same as the algorithm presented in Table 3.4.7.1.1, except that
every instance of the array Fc (i.e., lines 2 and 10) would be replaced by Dc. And Dc is an
array of the globally modified data from a later or modified version of the CBSS under
study.

The algorithm to compute the change impact resulting from any deleted API function
is similar to that of the function-modified algorithm. Table 3.4.7.1.2 shows the algorithm

necessary to compute the change impact of any deleted API function.

34

ChangelmpactAlgoForDeletedFunct(Cc.Fc, G)

1. Input:

2. Fc = array containing M deleted API functions from later version of the CBSS
3. G = transitive closure graph of the previous version of the CBSS with N nodes;
4. Qutput: Fagectea]], Which is an array of vector of the affected functions/nodes

5. Begin:

6. String found = null; //hold a deleted function

7. Vector rowElements = null; //hold elements of a row retrieved from the TC matrix

8. Vector [] colElements = null; /hold elements of a column retrieved from the TC matrix
9. For i =1 to number of elements in Cc.Fc do

10. found = Cc.Fc[i];

11. rowElements = retrieveRowFromTCMatrix(found);

12, Fatfected [1] = Faffected [1] U rowElements;

13. if (rowElements !=null) / sanity check

14. for j = 0 to retrieveRowFromTCMatrix.length do

15. colElements[j] = retrieveColumnFromTCMatrix(j);
16. Faftected [1] = Fatfected [1] U colElements[j];

17. end for

18. endif

19. end for

20. Return Faffected;

21. end

Table 3.4.7.1.2. Change Impact Algorithm for Deleted API Functions

For data and functions added to a newer version of a CBSS, we also need to slightly
modify the input to the algorithm shown in Table 3.4.7.1.1 in order to find the impacted
functions presented in the CDG. Recall that the input to the function-modified algorithm
(line 3 of Table 3.4.7.1.1) is the transitive closure matrix of an older version of a CBSS.
Data and functions added to a newer version of a CBSS, however, only appear in the
transitive closure matrix of the newer version. As a result, the input to the algorithm that
would be used to find the affected nodes of the CDG should be the transitive closure matrix

of the later version. Table 3.4.7.1.3 shows the algorithm to find the affected nodes

35

resulting from any number of functions added to any component in a CBSS. Again, if the
array Fc is replaced by Dc, which is an array of M added data from a later version of the
CBSS, we would obtain an algorithm to compute the affected function set resulting from

the added data.

ChangelmpactAlgoForAddedFunct(Cc.Fc, G)

. input:

. Cc.Fc = array containing M added API functions from a later version of the CBSS
. Tc = transitive closure graph of the newer version of the CBSS with N nodes.

. Output: Fasreced[], Which is an array of vector of the affected functions

2N =

. Begin:

. String found = null; //hold an added function

. Vector rowElements = null; //hold elements of a row retrieved from the TC matrix

. Vector [] colElements = null; /hold elements of a column retrieved from the TC matrix
9.Fori=1toMdo

10. found = Cc.Fc[i];

11. rowElements = retrieveRowFromTCMatrix(found);

12. Faffectcd [1] = Faffected [1] U rOWElementS;

13. if (rowElements !=null) // sanity check

14. for j = 0 to retrieveRowFromTCMatrix.length do

0~ ON D

15. colElements[j] = retrieveColumnFromTCMatrix(j);
16. Fastected [1] = Faffected [1] U colElements[j];

17. end for

18. endif

19. end for

20 Retum Faffected,

Table 3.4.7.1.3. Change Impact Algorithm for Added API Functions
3.4.7.2 Component’s CIDL Firewall and Change Impact Algorithms

The information discussed in this section is related to the CIDL of a CBSS, which is
discussed in detail in Appendix A. Readers are encouraged to review Appendix A for a

better understanding of the CIDL.

36

When changes are made to any component’s CII of a CBSS, the CDG would also be
affected. In this case, we also need to figure out the impact of the changes. Again, the
firewall concept discussed in the previous section can now be applied to analyze the change
impact resulting from changes made to any component’s CII. Let Reipr be a binary
relation for a component’s CII functions. The component’s CIDL firewall can be defined
as follows
Repr = {<Ci.F;, Cj.F> | <Ci.F, Cj.F» € V A <Ci.F;, Cj.F;, &> € E} (D).

When changes are made to any function of a component, the changed node of the
CDG must also be identified. We next define the component CIDL function firewall
relation, denoted as Reiprrw, which represents the changes made to a CBSS.

Rewerw =R N(Vernr X Venr) N(Vene X Verpr) 2).

Now, let R’ciprrw be the transitive closure of Reppr. The component’s CIDL function
firewall for a modified function F,,.4, denoted as Ccpr FW, can be defined as follows
Ceorrw FW (Crnod-Frnod) = {Ci-Fi | <Crnod.Finod, Ci.Fi> € R’ciprew } (3).

For a deleted function Fge, the component’s CIDL function firewall, denoted as
Ccem FW, can be defined as follows

CeplFW (CiFael) = {C.Fi | (3 Fael, 3 Fi) [<Ci.Fgel, Ci.Fy, > e (E-E’) A
<Ci.Fee, CFi> € R’ciprrw } (4).

Similarly, the component’s CIDL function firewall for an added function Fyyq,

denoted as Ccipt FW, can be defined as follows

CeplFW (Ci.Fadd) = {Cka [(3 Faag, 3 Fk) [<Ci.Fadd, Ck.Fy, d>] € (E’ — E) A
<Ci.Faae, CkF> € R’ cpirw } (5).

37

With the component’s CII firewall defined thus far, we can design an algorithm to
identify the changes introduced into a CBSS, reconstruct a new CDG, and analyze the
change impacts. Table 3.4.7.2.1 shows the algorithm for identifying the functions that
would be affected by a modified function C;.F; of any component’s CII in a CIDL-based

CBSS.

ChangelmpactAlgoForModifiedFunctinCIDLSyst(C;.Fi, G)

1. Input:

2. Fuv = array containing M modified functions from later version of the CBSS

3. G = transitive closure graph of the previous version of the CBSS with N nodes;
4. Output: Fasecreal |, Which is an array of vector of the affected functions/nodes

5. Begin:

6. String found = null; //hold a modified CII function

7. Vector rowElements = null; //hold elements of a row retrieved from the TC matrix

8. Vector [] colElements = null; /hold elements of a column retrieved from the TC matrix
9. Fori=1 to number of elements in Fc do

10. found = Ci.F; [1];

11. rowElements = retrieveRowFromTCMatrix(found);

12, Fastected [1] = Fatfectea [1] U rowElements;

13. if (rowElements != null) // sanity check

14. for j = 0 to retrieveRowFromTCMatrix.length do

15. colElements(j] = retrieveColumnFromTCMatrix(j);
16. Fattected [1] = Faftectea [1] U colElements[j];

17. end for

18. endif

19. end for

20. Return Faffected;

21.end

Table 3.4.7.2.1. Change Impact Algorithm for Any Function Modified from Any
Component’s CII of a CIDL-Based CBSS.

For any deleted function specified in the changed component’s CII, the algorithm to
compute the change impact is similar to that of presented in Table 3.4.7.2.1. The only

difference is that the algorithm used to compute the change impact resulting from any

38

deleted CII function would take in an array of deleted CII functions for the computation
instead of an array of modified CII functions. Table 3.4.7.2.2 shows the algorithm for the

change impact computation of any function modified in any component’s CII.

ChangeImpactAlgoForDeletedFunctInCIDLSyst(Ci.F;, G)

1. Input:

2. C..F; = array containing M deleted functions from later version of the CBSS

3. G = transitive closure graph of the previous version of the CBSS with N nodes;
4. Output: Fatected[], Which is an array of vector of the affected functions/nodes

5. Begin:

6. String found = null; //hold a deleted function

7. Vector rowElements = null; /hold elements of a row retrieved from the TC matrix

8. Vector [] colElements = null; //hold elements of a column retrieved from the TC matrix

9. Fori=1 to number of elements in Fc do

10. found = Ci.F; [1];

11. rowElements = retrieveRowFromTCMatrix(found);
12. Faffected [1] = Faffccted [1] U rowElements;

13. if (rowElements !=null) // sanity check

14. for j = 0 to retrieveRowFromTCMatrix.length do

15. colElements[j] = retrieveColumnFromTCMatrix(j);
16. Fatected [1] = Faffectea [1] U colElements[j];

17. end for

18. endif

19. end for

20. Return Fafrected;

21. end

Table 3.4.7.2.2. Change Impact Algorithm for Any Function Deleted from Any
component’s CII of a CIDL-Based CBSS.

When any CII function is added to the CII of any component of a CIDL-based CBSS,

component users and system testers also need to identify the changes made and figure out

39

the change impact. Again, the key to compute the change impact is the transitive closure
graph.
The algorithm for the change impact computation of any function added to the CII of

any component of a CIDL-based CBSS is shown in Table 3.4.7.2.3.

ChangeImpactAlgoForAddedFunct(C:.F;, G)

1. Input:

2. C;.F; = array containing M added CII functions from a later version of the CBSS
3. Tc = transitive closure graph of the newer version of the CBSS with N nodes.

4. Output: Fagrecrea[], Which is an array of vector of the affected functions

5. Begin:

6. String found = null; //hold a function

7. Vector rowElements = null; /hold elements of a row retrieved from the TC matrix
8. Vector [] colElements = null; //hold elements of a column retrieved from the TC matrix
9.Fori=1toMdo

10. found = Ci.Fi [1],

11. rowElements = retrieveRowFromTCMatrix(found);

12. Faffected [1] = Faffected [1] U I'OWElCantS;

13. if (rowElements !=null) // sanity check

14. for j = 0 to retrieveRowFromTCMatrix.length do

15. colElements[j] = retrieveColumnFromTCMatrix(j);
16. Fattected [1] = Fasfected [1] U colElements(j];

17. end for

18. endif

19. end for

20. Return Fatfected;

Table 3.4.7.2.3. Change Impact Algorithm for Any Function Deleted from Any
component’s CII of a CIDL-Based CBSS.

3.4.7.3 Test Change Firewall

When changes are made to a component, regardless of its component’s API or CIDL,
component users and system testers would also be interested in seeking the answers to the
following questions

e Which test case can be reused?

40

e Which test case is outdated?
e Which new test case should be added to the system test suite?

Recall that a CBSS test suite has already been defined in Definition 3.3.4. From this
definition we know that each component’s API function or CII function represents a node
in the CBSS CDG. Another important point of Definition 3.3.4 is that a test set is uniquely
designed for each node of the CDG, and this is the key that helps answer the three
questions mentioned at the beginning of this section.

When changes are made to any API or CII function, the test set associated with that
function is certainly affected. Also, the changes would affect the system test suite. In order
to identify the affected test cases, we define the test change firewall that helps component
users and system testers identify the test suite impact. Let C;.Fibe a changed function F; of
a component C;, and let T; be the test set associated with F;. The test change firewall for the
CIDL-based CBSS can be defined as follows
Repr = {<Ci.F.Ti, G.F,.T; > | <C.F.T;, G.F,.T; > € VA <C.F.T;, G.F,.T> € E} ().

When changes are made to any function of a component, the changed node of the
CDG must also be identified. We next define the component CIDL test firewall relation,
denoted as Reiprtrw, Which represents the changes made to the CIDL of a CBSS.

Remrrew = Re N(Ver X VVemr) N(V et X Vo) (2).

Now, let R’cipLtrw be the transitive closure of Repprrrw. The test change firewall for

a modified function F 4, denoted as Cepr TFW, can be defined as follows

CeoL TEW (CiFmod. Th) = {Ci.Fi. Tx | <Ci.Finoa. Ti, Cr.F. Ti> € R’ciprrrw} (3).

41

For a deleted function Fg, the test change firewall, denoted as Ccipt TFW, can be
defined as follows

Cap1 TFW (Cl‘.Fde1.Ti) = {Ck.Fk.Tk | (3 Fael, 3 Fk) [<Ci.Fde1.T,', Ck.Fk.Ti>] € (E — E’) A
<Ci.Fe. Ti, Ce.Fi. Ti > € R’cpitew } (4).

Similarly, the test change firewall for an added function F,44, denoted as Cep TEW,
can be defined as follows

CCIDLTFW (Cj.Fadd.Ti) = {Ck.Fk.Tk ’ (3 Fadd, 3 Fk) [<C1.Fadd.Tl', Ck.Fk.Tk>] S (E’ - E) A
<Ci.Faa.Ti, CeFi. Tk > € R’cipirew § (5).

42

3.5 Component Function Sequence Representation
A component function sequence diagram is a graph that represents both the external
stimuli (i.e., input from users) and the interaction sequence among the functions of the
components in a CBSS. Each node represents a distinct function that either receives the
input from the user or invokes another function for help on completing a service requested.
Nodes that receive users’ input are connected to one another by bi-directional links while
nodes representing function dependency among the components are connected to one
another by directed arcs. Each directed edge from node i to node j implies that function i
and function j depend on each other to perform a specific task.
Definition 3.2.5.1 Component Function Sequence Diagram—a component function
sequence diagram is a quadruple G = (F,, Fq, E,, Eq) where
o F,={Fyu,Fu, ..., Fin} is a finite set of API functions through which users can
interact.
o Fys={Fa1,Fa, ..., Fan} is a finite set of API functions; each represents a
function of a component that would help carry out some specific task in
response to a call from a function F .
e E,={Ey, Ewn,....Emn} is a finite set of bidirectional links. Each edge Eui € E,
connects a function Fyi to a function Fj.
e Eq= {Eq1, Ea,....Em} 1s a finite set of directed arcs. Each arc Eqi € Eq connects

a function Fyi or Fgi to a function Fgj.

43

3.6 Coverage Criteria
Coverage criteria can be defined as a set of rules that act as the guidelines to help
determine the testing thoroughness of a CBSS. Since the test model is graph-based, a
number of well-known test coverage criteria can be used. These include node coverage,
link coverage, conditional link coverage, and path coverage criteria. Because of the
timing constraint, it is impossible to address all of these coverage criteria. Our goal is to
focus on only three coverage criteria: node, path, and edge. Each of these coverage
criteria will be discussed shortly.
3.6.1 Node Coverage Criterion
If P is defined as a set of complete paths of a digraph G, P satisfies the all-node
criterion if and only if it includes a set of all nodes in G. This coverage criterion can
easily be achieved by observing the following three key points of the test model
e The CDG is represented as a graph.
e The data-function dependency is recorded in the corresponding transitive
closure matrix.
e The function-function dependency is recorded in the corresponding transitive
closure matrix.
The three key points just discussed mean that node coverage can be obtain directly

from the transitive closure matrix of the CDG.

44

3.6.2 Path Coverage Criterion

If P is defined as a set of complete paths of a digraph G, P satisfies the all-path
criterion if and only if it includes a set of all paths in G. If only simple paths are
considered, this criterion can easily be achieved using either of the 2 well-known search
algorithms: Breadth-First-Search (BFS) or Depth-First-Search (DFS). If a path exists
between node 1 and node j, we want to make sure that there is at least one test case
covering that path. We use BFS as the algorithm to find whether there exists a path from
one node to another. The algorithm for traversing a CDG and finding a path from one
node to another using BFS is outlined in Table 3.6.2.1.

Note that the algorithm shown in Table 3.6.2.1 can only find one path beginning
from the source node and ending at the destination node. In order to find all simple paths
in a graph G, we need to call the pathSearch algorithm with all possible combination of
the source and destination nodes. Again, since the dependency among the API and CII
functions of a CBSS is stored in the transitive closure matrix, it’s relatively easy to come
up with an algorithm to accomplish the task. The algorithm to find the set of all the

simple paths of a graph G is called TraverseAll, which is shown in Table 3.6.2.2.

45

Procedure pathSearch (src, dest, Graph G)

Input: src, dest; // source node and destination node
G; // graph
Output: array stored the path from the source to the destination node

String pathHolder [];
pathHolder[0] = src;
if (src == dest)
return pathHolder;
String pathReturn{];
Queue Q;
Q.insert(src); //insert src node at the tail of the Q
//recursively search for path to destination using BFS
While (!Q.isEmpty())
{
String aNode = Q.remove(); //remove a vertex from the head of the Q
int aNodelIndex = G.getNodelndex(aNode); //obtain the index of the node
// iterator to traverse the graph
Iterator iter = G.iterator(aNode);
while (iter.hasNext()) //iterate until has no neighbor
{
String nextNode = iter.next();
Int nextNodelndex = G.getNodelndex(nextNode);
if (src != dest && pathHolder[nextNodelndex] == null)
{
Q.insert(nextNode); //has no neighbor, so insert to Q
pathHolder[nextNodelndex] = aNode;

}
}

// store path in pathReturn array
for (int 1 = pathHolder.length; i >=0; i--)
{
pathReturn[i] = pathHolder[i];

1

3

pathReturn[0] = src;
return pathReturn;

Table 3.6.2.1. Algorithm to Find a Path from One Node to Another

46

Procedure traverseAll (Graph G)

len = G.length();
for (int 1= 0; 1 <len; i++)
for (int j = 0; j <len; j++)
pathSearch(i, j);

Table 3.6.2.2. Path between All-Node-Pair Algorithm.
3.6.3 Link Coverage Criterion

If N is defined as a finite set of paths of a digraph G, N satisfies the all-link
criterion if and only if it includes all the links in G. Again, this goal can also be achieved
by traversing G using either BFS or DFS. Since a link e; is just an arc that connects two
nodes j and k, all-link coverage would be achieved if all-node coverage is guaranteed. In
fact, the algorithms shown in Tables 3.6.2.1 and 3.6.2.2 guarantee all-node coverage, so
the all-link coverage is automatically covered. Also, we can implement DFS as the
search method and traverseAlIDFS as an algorithm to achieve the all-link criterion.
Because of the timing constraint and for the sake of simplicity, we decided to choose the

former approach to satisfy the all-link coverage criterion.

47

4. Case Study—the Simulated Elevator System

In this chapter, we discuss how the test model can be applied on a simulated elevator
system. The simulated elevator system is a CBSS that has been designed by a group of
graduate students at SJSU. It consists of 4 components: floor panel, operation panel,
elevator, and up-down controller. This system is shown in Figure 4.0.1.

The simulated elevator is a Graphical User Interface (GUI) CBSS in which the two
components—OperationPanel and floorPanel—act as the user’s access points (i.e., users
can interact with these two components). The OperationPanel provides users with 7
buttons. When users press the buttons labeled 1, 2, or 3, the elevator would move to the
appropriate floor level. The OpenDoorButton and CloseDoorButton can be used to open or
close the elevator’s door. Similarly, users can press the StopButton button any time to stop
the elevator. The dialButton is provided so that users can make a call for help in case of
emergency. The floorPanel component provides component users with 4 buttons:
upButtonL1, upButtonL2, downButtonL2, and downButtonL.3 (we show this component
with only 2 buttons in Figure 4.0.1 to simplify the presentation). All the 4 buttons just
mentioned will be shown in Figure 4.2.3.2. Users can press any of these buttons to request
the elevator to move to the appropriate floor level.

The other two components—Elevator and Controller—are invisible to component
users. They function behind the “scene” to help the OperationPanel and the Floorpanel

components to fulfill users’ requests.

48

OperationPanel

1

|

i controller }

l

‘ openDoorBlutton J—»t openDoor }
| closeDoorButton }—»‘ closeDoor '
| stopButton |————— stopElevator |
| dialButton }—»‘ dial }
OperPar!el —————» showStatus |

Elevator

moveTo f———_———

[

] Yy v
L 53
o <
i
S IRE:
0

I
| controlMoveDown ‘4_

| A

controller[controlMovelUp :

;

l
] floorPanel J
|

— upButton }ﬂoorPaneI
|

—4 downButton ‘
I

Figure 4.0.1. The Simulated Elevator CBSS.

49

In this chapter, we only show the CIDL of the API functions of the OperationPanel
component and the CII for the closeDoorButton of the elevator component. The complete

CIDL description of the elevator system can be found in Appendix B.

Component-API: Comp-operationaPanel, V. 1.0
{
Function-Signatures:
Button1i;
Button2;
Button3;
openDoorButton;
closeDoorButton;
stopButton;
dialButton;
OperPanel,

Figure 4.0.2. API of the OperationPanel
Figure 4.0.2 shows the API of the OperationPanel component, and Figure 4.0.3

partially presents the CII of the OperationPanel and the Elevator components

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;
{

Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;
{
Comp-OperationPanel:closeDoorButton R*
CompElevator-V1:closeDoor();

}
}

Figure 4.0.3. CII of the OperationPanel and the Elevator Components

50

4.1 Identifying the Simulated Elevator’s Components

Figure 4.1 is a pictorial representation of the simulated elevator system. From that
Figure, one can easily identify not only the component constituents of the component-based
elevator system, but also the dependency between one component and the others. For
example, the openDoorButton API function of the OperationPanel component depends on
the openDoor function of the Elevator component to fulfill a request to open the elevator’s
door.

4.2 Dependency Analysis

According to the API and specifications, the simulated elevator CBSS has 3 global
variables: currentLevel, doorStatus, and elevatorStatus. The function-function dependency
associated with each of these global variables will be discussed in a separate section
shortly.

4.2.1 Dependency Associated with CurrentLevel

Figure 4.2.1.1 shows the data-function dependency associated with the currentLevel
variable among the components in the simulated elevator. All the functions shown in this
Figure define, use, or both define and use the currentLevel variable. For example, the
function moveTo (a function of the Elevator component) uses the variable currentLevel.
Also, the function moveUp (also a function of the Elevator component) both defines and
uses currentLevel. So, changes occur to currentLevel mean that all of these functions will

be affected.

51

- -~ -

-7 Elevator >~
7 ~ ~
// \\ \\
/
/[moveTo moveDown \\

/

/ r
/ \\/ |
| |

|
!

0 enDb currentLevel \
P -« | \

!
I
!
|
|
|

|

| \
|

|

\

\ [closeDoor ,

Legend used
—» Used by

—p Defined by

Figure 4.2.1.1. Data-Function Dependency Associated with CurrentLevel

Figure 4.2.1.2 is a pictorial representation of the function-function dependency

associated with the currentLevel variable.

52

— -

/\

e Elevator
/
// moveUp moveDown
/ F
\
\

I
!
|
I
]

\
\ moveTo
E
!

by
- /\ A
/ éhowStatus
/ /
' Elevat& ,

I
/ /
! s
I 7
| [setEleStatus|, - |
’ !
l\ \ | , \
\ ! N
N > / /
N \ ~—~d___- , Elevator /
~ o 7/
—_——— — - _——_ e ———
/ //
Legend used

/
! closeDoor / ——® External interaction

| !
K
\\ J /’ — — — 9 Internal interaction
\
/

Figure 4.2.1.2. Function-Function Dependency Associated with CurrentLevel

53

Figure 4.2.1.3 shows the adjacency matrix whose information is derived from Figure
4.2.1.2. This matrix shows all the direct dependency among the functions of the
component-based elevator system. All these functions either use or define the currentLevel
variable. Later on, the transitive closure algorithm will be used to find all the indirect

dependency associated with this variable.

OOOOOOOOOOOOO>
OO || |IO|O|O|Oo|o|o|o|o|~|m

(=) le] fel jo) le] o) [o] kol o) fa) Kl Ead ool ol
OHOOOOOOOOOOOZ

OOOOOOOO'—‘OOOOC}

olo|ol—lo|o|ojo|o|lo|o|o|o|

OO OO OO |O|O|O|—|—

OIO|IC|C|I0|I0|Oo|Io|(o|o|o|— T

OIO|IO|OIO | OO |O|— | == Oim
OO | OO OO |O|— | O|lo|o|C|T
OIQO|IC|OIO|— OO0 |I0|O|o|o|

(=] el] [w] (a] le) [e] (=] fel fo] [l Pl fe)

Sedi=l i el fe) fel fav) Lol [l fav) [l fal £l l op

Z|TAR| TR Q| E T 0w >

Figure 4.2.1.3. Adjacency Matrix for CurrentLevel

4.2.2 Dependency Associated with DoorStatus

Figure 4.2.2.1 shows the data-function dependency associated with the doorStatus
variable among the components in the simulated elevator. Again, all the functions shown
in this Figure either define or use the doorStatus variable. So, if any change occurs to the
doorStatus variable, all of these functions will be affected. That is, any change occurred to
doorStatus will affect all of these functions no matter if they define or use doorStatus. This

is the ripple effect that has been mentioned throughout this paper.

54

//_\

moveDown
G

<Elevlnit

doorStatus \

;
e /
//
Elevator <
/

/
—_ closeDoor

I

Legend used
—» Used by

—p Defined by

Figure 4.2.2.1. Data-Function Dependency Associated With the DoorStatus Variable.
Figure 4.2.2.2 shows the function-function dependency associated with the

doorStatus variable among the components in the simulated elevator system. Again, all the

functions shown in this Figure either define or use the doorStatus variable. So, if any

change occurs to the doorStatus variable, all of these functions will be affected.

55

_— e e ——

\ moveTo
\ /
\ E A /
\ / /
N/ \ //
N \
/4 N e A7
/ l \
/ | \
——_— = |=——777 T~
-~
s, ,«\ \
/ / \
/ 1 2 \
/ B c \
/
/ \
y \
7/
\
// \
y \
/ \
/
/ \\
/
/ /closeDoor Init penDoo \\
/| Button | o Button | |
| Q// \ / !

Elevator

e T e e
~— —_—

Figure 4.2.2.2. Data-Function Dependency Associated with The DoorStatus Variable

Figure 4.2.2.3 is the adjacency matrix whose dependency information is directly
taken from Figure 4.2.2.2. Again, this matrix only shows all the direct dependency among

the component constituents of the elevator system.

56

A/B|CID|E/FIG|H|T|J K
AO|1|1T]1]0[0]0|101]0
B|{0O|O|OJO|1][0]0]0(0/0]0
C([0/0]0{0}1]0]/0]0]0/0]0
D|0J0J0O]JO]1]0|0]|0]0]0|0
E{0]0j0}0|0|1]1]0]0{0]0
F|{0|/0|0]0]0]0{0]0|0]0]0
G|0/0j0]0}{0|0O|0]O0 0|00
Hi0[0]/0]0O|0]|0]0 |0 |1]0}0
I (0]0]0[0|0}{0/0}{0|0/{0]O
J1010/0/0 0000|001
K/0j0j0j0!/0][0[0[{0]0]0]0

Figure 4.2.2.3. Adjacency Matrix for DoorStatus

4.2.3 Dependency Associated with ElevatorStatus

Figure 4.2.3.1 shows the data-function dependency associated with the elevator

Status variable among the components in the simulated elevator.

—

moveDow}
Vo

stopElevator

moveU p

/

cIoseDoor\

showStatus) \K/
/

Legend used
——» Used by

—p Defined by

Figure 4.2.3.1. Data-Function Dependency Associated with ElevatorStatus

57

//
Ve
-

/stopEIeva or} \l

/
Status P U (
\
N\ N |
]

’ Elevator, N Elevator

___/

—_—__7 / \
I

// controIMoveUp controlMoveDown !

\ | |

]

e
\ e /
N —— Controller ~

-~ —_ —_——

Figure 4.2.3.2. Function-function Dependency Associated with ElevatorStatus

58

Figure 4.2.3.2 shows the function-function dependency associated with the

elevatorStatus variable among the components in the simuiated elevator system, and Figure

4.2.3.3 is the adjacency matrix whose dependency information is directly taken from Figure

4232

Hl—lololojolo|o|o|o|o|lo|o|lo|o|o|o|olo|lo|olo
nl~olojlo|lojojlojolojo|ojo|oio|o|lolo|olo|o|o
Hlolololo|lolo|lo|lolo|o|ololclo|lolo|~|lo|—~|o|o
Ol—io|olo|olo|o|lo|jolo|o|o|o|o|o|ojololo|jc|o
n—olo|lo|lolojo|lo|o|lo|o|lo|lolo|lo|lolo|lolo|lolo
Olo|o|o|lcolo|lolo|olo|o|o|o|ol—|oj—~|clololo|o
Zl~lolo|lo|lojojo|olo|lo|o|lo|o|o|lo|o|o|lolo|la|lo
Slolo|olo|olo|olololo|o|~|o|olo|lolololololo
Hl—~olo|lo|lo|lojlololo|o|lolo|o|lo|o|lo|lo|o|lolo|o
Mlo|lojlo|lo|lo|lo|o|c|o|~|ololo|lolololololololo
—-l—olo|lolojololololololo|lo|lolo|o|lo|ololo|o
—~|lo|lo|lo|o|lo|jo|lo|~|lolololo|lolo|lo|lo|lo|o|lojo|o
T~ o|lolo|olo|lolo|olo|lo|lo|olo|olo|o|olo|lalo
Olojo|lo|jo|~lo|lo|o|lcio|lc|lo|lololo|laojolaclojolo
Hlojo|lojo|~olojo|lojo|olo|lojololojololo|lalo
mo|l—|—l—~|clolojo|o|o|lo|lo|lo|o|o|o|lojolo|lolo
Al~lo|lolo|lojo|lo|loio|olo|lolo|lo|lolo|lo|loic|alo
Vi—~ojlo|lo|o|lolo|lo|lo|oio|o|o|o|lo|lo|lao|lajo|lolo
Al—~|ojo|o|o|oio|olo|lo|lo|lo|lc|lo|lo|lo|lo|lolo|lalo
<|olo|lo|o|olo|o|lo|o|lo|o|o|olo|lo|lo|lo|lolola|o

<im|o|Am|m|O| ||~ [MI|Z|Z|0|a| O || = |2

Figure 4.2.3.3. Adjacency Matrix for ElevatorStatus

4.2.4 Complete Elevator System Dependency

The complete picture showing the relationship among all the functions of the
component constituents of the component-based elevator system is shown in Figure
59

424.1.

__,—
-——

7/
y F \
/
’ \
//)\/ \\
’ A 4 \
,/ Elevator A / \
\
\
OpenDoor \\
\
\
/ \
Ve | N
4 \ — AN
, - | \

S)/ /"""’r 7 OpPanel | \\
// // Dial \

closeDoor 1 2 \ W I
/ /
| K , | [OpenButton B C //
\ / H ~ s
N /

N / N

closeButton! "‘ / d|aIButton
J ‘

Imt ~

ownButton, /downButto
L2) B

/ \§J;// S SN N

/ ~_ N/

/ /
-

Q \\ Elevator
I | evator s
showStatus ; FloorPanel \'4« ~——_-7
//// ST -
\\ Elevator)/\R }/\[\
- // contro!MoveUp\ controIMoveDown
] O R //
/

Figure 4.2.4.1. Complete Elevator System Dependency

60

Figure 4.2.4.2 shows the adjacency matrix whose information is extracted from

Figure 4.2.4.1.

Hl—lo|lolo|lo|lojloijo|lo|olojo|lolojololoiolololo|lolo
nl—olo|lo|jolojojolojo|olojolojololo|jo|olo|o|jo|e
Hiololo|o|lo|ojlojo|o|o|loclo|o|oio|lo|~lo|—|lo|olo|o
Ol—|o|ojo|o|o|lo|o|lo|olo|o|olo|o|oio|oio|o|o|olo
o |olo|lo|lo|o|lo|lolo|lo|lo|o|o|lo|loio|o|loIoiolo|o
,OOOOOOOOOOOOOOIOIOOOOOOO
Zil—lolojlo|o|lolo|o|o|lo|o|o|lc|lo|olo|lo|o|oiololo|lo
Slolololo|lo|lololc|ololol—lo|loio|lololo|lo|lo|lo|lolo
| Oolo|ojolo|oio|o|o|o|o|o|lo|oio|lo|lo|Io|lo|olole
Moloolojo|lo|lo|lojoi—~|ololo|lo|lo|o|lo|o|lo|olojo|o
=|l—lOolo|o|o|olo|o|o|lo|olo|o|lolo|o|lo|lo|lo|lololo|o
—~|oloo|o|o|o|o|—|o|lo|loiololololo|o|lo|lo|lolo|o|o
D—lo|o|olojlojlo|lo|olo|ojoo|lololo|lo|lo|lo|lo|lo|lo|o
Olo|lo|ojo|—~|olojo|loloololololo|lo|lo|lo|lolololalo
Holo|lojlo|—|olo|lo|o|lo|lo|o|o|lolo|lo|lo|lo|lolo|lojo|o
PNo|—|—~—~lOolo|lo|jo|lojc|o|o|olo|lo|lojlolo|lo|lo|lojoio
Al—|o|o|o|lo|lojo|o|olo|olo|o|lolo|lo|lo|lo|lo|o|lolo|o
Ol |o|ojo|o|o|ojo|olocio|o|jolo|lo|lo|oiolololojolo
Ai—iolojojo|lo|ojo|lojo|ololo|lo|jololo|lc|olololalo
< Oio|o|o|o|lo|oio|o|loloiolo|oiololo|lo|lo|lo|lolo

<|mOAR|L|OE| |~ MR |Z 20|~ |0 |n|=2 (> B

Figure 4.2.4.2. Adjacency Matrix for the Simulated Elevator System

The adjacency matrix of the simulated elevator system, after being input into the

transitive closure algorithm, would yield the transitive closure matrix as shown in Figure

4.2.4.3. Note that this Figure displays all the direct as well as indirect dependency among

the component constituents of the elevator system. The information presented in this

matrix will later be used as the input the Change Impact Analysis Algorithm to figure out

61

the possible impacts on the system if any changes have been made to any of functions of

any components.

= olojololc|o|lo|oiIo|o|loio|lo|o|lolo|olio|lo|o|lo|o
w2 OO |IOIOIO|O|O|IC|O | OO |O|IC|O|Io|0|o|Io|IoIo|Io|Io
% olo|o|lo|lo|lolojoio|olo|lo|io|o|jo|~|ol—lo|lo|lolo
o4 olo|lololo|o|ojlo|lolo|o|o|o|lo|ololo|olo|lo|o|o
-9 olo|ciolo|oloio|o|lo|o|lo|lo|oloio|o|lolo|lo|lo|lo
O o|lo|ojo|jo|o|o|lo|o|o|loio|—~|o|~o|o|lolo|jo|olo
Z olo|oloio|o|o|o|o|loicio|o|lolo|lo|o|lo|lo|o|o|e
> olo|ololo|olo|ojo|o|—|olo|lo|lo|lo|o|lo|lo|lolo|o
. o|lolojloio|olojo|lo|lo|o|olo|o|lo|ololololo|lo|lo
M o|lo|ojo|o|o|olo|—~|oIc|clo|lo|lolo|lololo|lo|o|e
—_ olo|lolo|olo|ojo|o|lo|o|o|o|o|lo|lo|ojo|o|o|olo
— o|o|oclojo|o|—~(clo|o|c|lolo|lo|lolo|lolololo|lo|o
s o|lo|lojo|o|oio|olo|o|lolojo|lo|loio|lololo|lo|o|lo
) —~l—l—~l—~lOololololo|o|oio|o|lo|olojo|lo|lo|lololo
£y — == —~o|o|lolo|lo|lo|o|lojo|lo|lolo|lolola|lololo
m —~l—|—~lololo|lolo|ojo|olojo|o|lolo|lolo|la|lolo|lo
o olo|oiojo|oloic|o|lo|c|lo|lolo|lolo|lo|olo|lolo|o
@] olo|o|o|o|o|ojlo|o|lo|oiIc|Iolo|olo|lo|lo|loiocio|o
m olo(o|lo|lo|jo|lo|o|o|loilo|lo|lo|olo|lolololo|o|lolo
< o|lolo|o|o|olo|o|ojolo|o|o|olo|lololic|lo|lo|o|o

MO A @ | |[O R = (M S 20 | | | = D > B

Figure 4.2.4.3. Transitive Closure Matrix for the Simulated Elevator System

4.3 Change Impact Analysis

The information showing so far is extracted from version 1 of the elevator system. In
62

version 2, a few data and function changes were done on the system. Now, let’s see how
the test model can be used to help component users and testers verify the effectiveness of

those changes.

Function Function Function Data Data Data
added deleted modified added deleted modified
cntiMoveTo | moveTo movelUp elevatorStatus
moveDown
cntiMoveDown
cntiMoveUp

Figure 4.3.1. Changes Made to Version 2.

Let’s take the change made to the function moveTo as an example to illustrate how

the test model can be used to determine the change impact. Figure 4.3.2 shows the selected

parts of the elevator system for the purpose of change impact discussion. Note that this

Figure indicates moveTo is the node/function that has been removed. Now, let’s see how

effective the Function Change Impact Algorithm shown in Table 3.4.7.2 can be used to

identify the change impact of moveTo on the elevator system. Following are the steps the

algorithm would cover to identify the change impact

1)

2)

Step 1: go to row E (i.e., corresponding to the moveTo node) of the transitive

closure matrix representing the elevator system, retrieve all elements with a

1 value, and store it in some buffer. Let’s call this set of elements as RowE.

Clearly, RowE = {F, G}.

Step 2: for every element in RowE, go to the column corresponding to that

element, retrieve all elements with a 1 value, and store it in some buffer.

Assuming elements with a 1 value in column F is named ColumnF set and

that of for column G is named ColumnG set, we obtain the following results
ColumnF set = {A, B, C, D, E}, and

ColumnG set = {A, B, C, D, E}.

63

3) Step 3: the affected functions are the results of the union of RowE,
ColumnF, and ColumnG sets. These functions include A (not shown in

Figure 4.3.2), B,C,D,E, F, and G.

~_ Elevator / : deleted

@ affected

Q unaffected

Figure 4.3.2. Change Impact Analysis for the Removal of the MoveTo Node

64

5 Conclusion and Future Directions

5.1 Conclusion
Although the trend towards CBSS has been increasingly growing since 1990, much
of the work thus far has focused on issues related to architecture and design. Very few
papers have addressed CBSS testing even though the cost of testing and maintaining a
software system is more half its total cost.
This paper proposes a systematic interface-based testing approach for testing CBSS’s.
The test model is constructed from the information provided in the component’s well-
defined interfaces and specifications. By going through the steps necessary to build the test
model, represented as a component dependency graph, system testers can better understand
the functionality of a CBSS and learn how test cases should be designed to test it. Overall,
the test models offer software system testers the following advantages:
e Construct a test model for any CBSS, independent of platform and
programming language.
¢ Gain better understanding of the functionality and features provided by a
CBSS under test.
o Learn how to identify components in a CBSS and how to represent the whole
system as a graph that shows the interaction among the components.
e Observe and learn how to find the direct dependency among the components
of a CBSS.
o Observe and learn how to find the indirect dependency among the

components of a CBSS.

65

o Select test coverage criteria to meet the timing and budget constraints.
e Provide guidelines for change impact analysis, which is necessary for

maintaining a CBSS.
5.2 Future Directions

Even though the proposed method can be used to effectively build a test model for
CBSS’s, the steps involved might become a tedious process in constructing a test model for
large and complex CBSS’s. Future work would involve the developing of a technique that
can automate the tasks of component identification and dependency detection. One way to
automate these tasks is the need of establishing some standard for specifying and
representing the component dependency in the specification or API. In this case, CIDL
(the topic of Appendix A) is a promising standard that would help facilitate the test
automation.

While waiting for such a standard to become available, we will further enhance our
technique and conduct an empirical study on large-size CBSS’s. Also, we will consider
expanding the capability of the test model so that it can dynamically interact with the CBSS
under test to better understand the internal interaction of a component. Furthermore, we
would consider supporting the more challenging coverage criteria such as path coverage

and condition-link coverage.

66

References

Beydeda, S. & Gruhn (2001), V. 4n Integrated Testing Technique for Component-Based
Software. ACS/IEEE International Conference on 25-29 June 2001, 328 — 334,

Cechich, A., Piattini, M., Vallecillo, A. (2003). Component-Based Software Quality
Methods and Technique. New York: Springer 2003.

Crnkovic, I. & Larsson, M. (2002). Building Reliable Component-Based Software System.
Boston: Artech House.

D’Souza D. F. & Wills A. C. (1997). Objects, Components, and Frameworks with UML—
the Catalysis Approach. Mass.: Addison-Wesley.

Gao, J. Z., Tsao, J., Wu, Y. (2003). Testing and Quality Assurance for Component-Based
Software. MA: Artech House.

Goulad, M., Brito, E. A. F (2002). The Quest for Software Components Quality.
Proceedings of the 26" Annual International, 26-29 Aug. 2002, 313-318.

Kung, D. C., Gao, J., Hsia, P., Lin, J., Toyoshima, Y (1995). Class Firewall, Test Order
and Regression Testing for Object-Oriented Programs. Journal of Object-Oriented
Programming, 51-65.

Haddox J. M., Kapthammer, G. M., Michael, C. C. (2002). An Approach for
Understanding and Testing Third Party Software Components. Proceedings of the
48" Reliability and Maintainability Symposium. Seattle, WA, January, 2002

Harrold, M. J. (2000). Testing: A Roadmap. International Conference on Software
Engineering; Proceedings of the Conference on The Future of Software
Engineering, Limerick, Ireland, May 2000, 61 - 72

Lau, K. K. (2004). Component-Based Software Development: Case Studies. New Jersey:
World Scientific.

Harrold, J. M., Orso, A., Rosenbum, D. Rothermel, G. (2001). Using Component Metadata
to Support the Regression Testing of Component-Based Software. Proceedings of the
IEEE International Conference on Software Maintenance on 7-9 Nov. 2001, 716 -
725

Mehta, A. & Heineman, G. T. (2002). Evolving Legacy System Features into Fine-Grained

Components. Proceedings of the 24™ International Conference on Software
Engineering, 2002, 417 — 427.

67

Orso. A., Harrold M. J., Rosenbum D. (2000). Component Metadata for Software
Engineering Tasks. Second International Workshop on Engineering Distributed
Objects, 129-144.

Rosenblum S. D. (1997). Adequate Testing of Component-Based Software.
Retrieved October 17, 2005, from
www.ics.uci.edw/~dsr/ics9734.pdf

Strembeck, M. & Zdun, U. (2005). Scenario-based Component Testing Using Embedded
Metadata
Retrieved on October 20, 2005, from
http://wi.wu-wien.ac.at/~uzdun/publications/tecos04.pdf

Szyperski, C., Gruntz, D., Murer, S. (2002). Component Software Beyond Object-Oriented
Programming. Boston: Addison-Wesley.

Voas, J. M. (June 1998), Certifying Off-The-Shelf Components. Computer, 31 (6), 53-59

Voas, J. M. (June 1998). The Challenges of Using COTS Software in Component-Based
Development. Computer, 31 (6), 44-45.

Weyuker, J. E. (1998). Testing Component-Based Software: A Cautionary Tale. JEEE
Software, 15 (5), 54 - 59

Xie, G. (2004). Decomposition Verification of Component-Based Systems—A Hybrid
Approach. Proceedings of the 19™ International Conference on Automated Software
Engineering on 2004, 414-417.

Xie, G. & Zhe, D. (2004). Model-Checking Driven Black-Box Testing Algorithm for
Systems with Unspecified Components.
Retrieved on October 27, 2005, from
http://arxiv.org/PS cache/cs/pdf/0404/0404037.pdf

Ye W., Offutt, J. (2003). Maintaining Evolving Component-Based Software with UML.
Proceedings of the Seventh European Conference on 26-28 Mar. 2003, 133-142.

68

Appendix A. Component Interface Description Language
This Appendix includes detailed descriptions of the Component Interface
Description Language (CIDL), which is an innovative approach being proposed by Dr.
Jerry Gao at SJSU to facilitate the task of CBSS testing.
A.1 Motive
As mentioned throughout this dissertation, CBSS testing is very difficult for two
main reasons. First, components are available on the market as COTS. Being unable to
access the source code of a CBSS means that users have no choice other than performing
black-box testing to ensure the quality and reliability of that CBSS. The other dilemma is
that the documents shipped with those components (i.e., component’s API and functional
specifications) are not well written. This lack of well-defined APIs and specifications has
proved to make CBSS testing become a very difficult task.
Dr. Gao has explained the need for establishing the CIDL standard as follows
e Provide a standard representation for components.
e Help separate a component’s interface and the interaction interface from its
implementation.
e Specify the interaction of the components in their interfaces instead of hiding

it as in the conventional approach.

69

A.2 Component Interface Description Language

To overcome the two problems mentioned in the previous section, Dr. Gao proposes
that each component should have two interfaces: component API and Component
Interaction Interface (CII). Component API refers to the API of a component in which all
of its externally accessible functions are defined and accessible by component users. In
other words, the API of a component is the interface through which users can access.

The CII is a new concept. Its name implies the specification of the interaction
between one function of a component and the function of another component of a CBSS.
Through this interface, component users can easily identify the dependency among all the
components of a CBSS.

Figure A.2.1 is a pictorial representation of a CBSS, which have an API and a CII.
This diagram shows that the component example consists of 4 components: Component
Under Test (CUT), component 1, component 2, and component 3. Note that the CUT has
its own API, which is accessible by component users. In Addition, each component has its
own CIDL interface, in which the dependency between one function of a component and
the function of another component is specified. For example, CIDL-1 clearly tells users
how the CUT would interact with Comp-1. The interaction between the CUT and Comp-2

or the dependency between the CUT and Comp-3 can be explained in a similar fashion.

70

API

Corhp under test {

LT

CIDL-1 @ (" cIDL-3
\T'/

Comp-1 Comp-2 Cc;mp-3

Figure A.2.1. CBSS Described by CIDL
The main advantages of establishing the CIDL standard are pointed by Dr. Gao as
follows
¢ Increase component testability and controllability
e Facilitate component unit, integration, and system: testing.
e Facilitate system assembly, change, control, and deployment.

Figure A.2.2 shows an example of a two-component CBSS. The component Comp-1
is the under-test component. The functions F1 and F2 are its API while port 1 is its CII. Its
API offers the functions F1 and F2 through which component users can access. The CII
specifies the interaction between Comp-1 and Comp-2. The arrow from port 1 to G1

indicates the dependency between Comp-1 and Comp-2.

71

Comp-1.F1 R* Comp2:G1

String F1 (int x1) Int G1 (inty1)

E

}
1 ! Port 1
I

API Comp-1 — Comp-2
L V. 1.0 - APl V. 2.0
- |
> J T
String G2 (int y2, string y3)

Int F2 (boolean x2, int x3)

Figure A.2.2. A Two-Component CBSS Example.

Figure A.2.3 and Figure A.2.4 show the API of Comp-1 and the CII of Comp-1 and
Comp-2, respectively. Note that the information provided by both the API and the CII can
be scanned by a parser so that the dependency between these two components can be stored
in a file or a database. This information can later be used to construct the adjacency matrix,

transitive closure matrix, and the CDG for testing purposes.

Component-API: Comp-1, V. 1.0
{
Function-Signatures:
String F1 (input-list: int x1;),
Int F2 (input-list: int x2;
Output-list: int x3;)

Figure A.2.3. Comp-1’s API

72

Component-interact: Comp-1, V. 1.0

{
Port: Comp-2, V. 2.0,

{

Comp-1:F1 R* Comp2-V2:G1
} .

}

Figure A.2.4. CII of Comp-1 and Comp-2.

73

Appendix B. Supporting Data for the Elevator System

This section is intended to present the complete CIDL of the elevator system.

Component-API: Comp-operationaPanel, V. 1.0
{
Function-Signatures:

Buttonl1;
Button2;
Button3;
openDoorButton;
closeDoorButton;
stopButton;
dialButton;
upButton;
downButton;
OperPanel;

}

Figure B.1. API of the OperationPanel.

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0 : Buttonl R* Comp-Elevator, V. 1.0:
Boolean moveto(int fromLevel, int toLevel);

}
}

Figure B.2. CII between the Buttonl Function of the OperationPanel Component and the
MoveTo Function of the Elevator Component.

74

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0,

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0:Button2 R* Comp-Elevator, V. 1.0:
Boolean moveto(int fromLevel, int toLevel);

}
}

Figure B.3. CII between the Button2 Function of the OperationPanel Component and the
MoveTo Function of the Elevator Component.

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0:Button3 R* Comp-Elevator, V. 1.0:
Boolean moveto(int fromLevel, int toLevel);

}
}

Figure B.4. CII between the Button3 Function of the OperationPanel Component and the
moveTo Function of the Elevator Component.

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0:openDoorButton R* CompElevator, V. 1.0:
Boolean openDoor();

;
}

Figure B.5. CII between the OpenDoorButton Function of the OperationPanel Component
and the OpenDoor Function of the Elevator Component.

75

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0:closeDoorButton R* CompElevator, V. 1.0:
Boolean closeDoor();

}
}

Figure B.6. CII between the CloseDoorButton Function of the OperationPanel Component
and the CloseDoor Function of the Elevator Component.

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0:stopButton R* CompElevator, V. 1.0:
Boolean stopElevator();

}
}

Figure B.7. CII between the StopButton Function of the OperationPanel Component and
the StopElevator Function of the Elevator Component.

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0:dialButton R* CompElevator, V. 1.0:
Boolean dial();

;
;

Figure B.8. CII between the DialButton Function of The OperationPanel Component and
the Dial Function of the Elevator Component.

76

Component-interact: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Port: Comp-OperationPanel, V. 1.0; Comp-Elevator, V. 1.0;

{
Comp-OperationPanel, V. 1.0 :OperationPanel R* CompElevator, V. 1.0:
void showStatus(String curStatus);

h
}

Figure B.9. CII between the OperationPanel Function of the OperationPanel Component
and the ShowStatus Function of the Elevator Component.

Component-interact: Comp-Elevator, V. 1.0; Comp-Controller, V. 1.0;

{
Port: Comp-Elevator, V. 1.0; Comp-Controller, V. 1.0;

{
Comp-Elevator, V. 1.0:Boolean moveUp (int fromLevel, int toLevel) R*
Comp-Controller, V. 1.0: void controlMoveUp(int fromLevel, int toLevel);

}
}

Figure B.10. CII between the moveUp Function of the Elevator Component and the
ControlMoveUp Function of the Controller Component.

Component-interact: Comp-Elevator, V. 1.0; Comp-Controller, V. 1.0;

{
Port: Comp-Elevator, V. 1.0; Comp-Controller, V. 1.0;

{
Comp-Controller, V. 1.0:Boolean moveDown (int fromLevel, int toLevel) R*
Comp-Controller, V. 1.0: void controlMoveDown(int fromLevel, int toLevel);

}
}

Figure B.11. CII between the MoveDown Function of the Elevator Component and the
ControlMoveDown Function of the Controller Component.

77

Component-API: Comp-floorPanel, V. 1.0
{

Function-Signatures:

upButtonL1;

upButtonL2;

downButtonL.2;

downButtonl3;

}

Figure B.12. API of the FloorPanel.

Component-interact: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Port: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Comp-FloorPanel, V. 1.0: upButtonL.1 R* Comp-Controller, V. 1.0:
void controlMoveUp(int fromLevel, int toLevel);

}
}

Figure B.13. CII between the UpButtonL1 Function of the FloorPanel Component and the
ControlMoveUp Function of the Controller Component.

Component-interact: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Port: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Comp-FloorPanel, V. 1.0: upButtonL.2 R* Comp-Controller, V. 1.0:
void controlMoveUp(int fromlevel, int toLevel);

b
}

Figure B.14. CII between the UpButtonL.2 Function of the FloorPanel Component and the
ControlMoveUp Function of the Controller Component.

78

Component-interact: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Port: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Comp-FloorPanel, V. 1.0: downButtonL2 R* Comp-Controller, V. 1.0:
void controlMoveDown(int fromLevel, int toLevel);

)
}

Figure B.15. CII between the DownButtonL.2 Function of the FloorPanel Component and
the ControlMoveDown Function of the Controller Component.

Component-interact: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Port: Comp-FloorPanel, V. 1.0; Comp-Controller, V. 1.0;

{
Comp-FloorPanel, V. 1.0: downButtonL.3 R* Comp-Controller, V. 1.0:

void controlMoveDown(int fromLevel, int toLevel);

}

!
f

Figure B.16. CII between the DownButtonL3 Function of the FloorPanel Component and
the ControlMoveDown Function of the Controller Component.

79

Appendix C. The SPARC Emulator Case Study

C.1 Overview of the SPARC Emulator

The SPARC emulator is a tool that allows SPARC assembly language beginners to
explore the SPARC Instruction Set Architecture (ISA), write SPARC assembly code, run
the written program, and step through the executing program for debugging purposes. It's
a Graphical User Interface (GUI) application that makes it very convenient for users to load
any SPARC assembly program for execution. During the execution of an SPARC
assembly program, the tool displays all the major SPARC registers and a DEBUG button
that makes it possible for users to singly step through the assembly file for debugging
purposes. Through the GUI, users can visually examine the contents of the affected
registers after any particular instruction has been executed. The GUI displays the

computed results using all 4 well-known radices: decimal, binary, hexadecimal, and octal.

The SPARC emulator is a relatively large program. Version 1.0 consists of 17
components, and version 2.0 has 33 components. Because of the large size of the system,
the dependency and interaction among the components of this system will be presented
using the CIDL instead of CDG. The change impact results will be presented in tabular

form.

The main component of the SPARC emulator is the SparcEmulator. It is a GUI
component through which users can interact. In other words, users can access all the
features provided by the emulator on this GUL. As soon as receiving any user’s request, the

SparcEmulator would direct that request to an appropriate component for help. Depending

80

on the dependency among the components for a particular service, the just called
component may fulfill the user’s request itself, or it may send the request to another

component for help until the requested service is served.
C.2 CIDL and CDG of the SPARC Emulator, Version 1

In this section, we present the dependency among the components of the SPARC

Emulator, version 1, using the CIDL.

Component-API: Comp-SparcEmulator, V. 1.0
{
Function-Signatures:
openFileButton;
resetButton;
setBreakpointMouseClick;
helpButton;
registerButton;
registerTableButton;
stepButton;
runButton;
pauseButton;

}

Figure C.2.1. API of the SparcEmulator (the CUT).

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-LoadFile, V. 1.0
{

tl
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:openFileButton R* Comp-LoadFile, V1:

StatementHolder[] readSource(String pathname)

}
}

Figure C.2.2. CII between the OpenFileButton of the SparcEmulator Component and the
ReadSource Function of the LoadFile Component.

81

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-StatementHolder, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:resetButton R* Comp-LoadFile, V1:

void setCurrentStatement(boolean value);

}
}

Figure C.2.3. CII between the ResetButton of the SparcEmulator Component and the
SetCurrentStatement Function of the StatementHolder Component.

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-SparcData, V. 1.0

{
Port: Comp-SparcData, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:resetButton R* Comp-SparcData, V1:

void reset();

}
}

Figure C.2.4. CII between the ResetButton of the SparcEmulator Component and the Reset
Function of the SparcData Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-Addxx, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-Addxx, V. 1.0:

void addNorm (String rs1, String rs2, String rd);
}
}

Figure C.2.5. CII between the StepButton Function of the SparcEmulator Component and
the AddNorm Function of the Addxx Component.

82

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-Addxx, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-Addxx, V. 1.0:

void addx (String rs1, String rs2, String rd);
}
}

Figure C.2.6. CII between the StepButton Function of the SparcEmulator Component and
the Addx Function of the Addxx Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-Addxx, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-Addxx, V. 1.0:
void addxcc (String rs1, String rs2, String rd);
}
;

Figure C.2.7. CII between the StepButton Function of the SparcEmulator Component and
the Addxcc Function of the Addxx Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-Addxx, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-Addxx, V. 1.0:
void addNormcc (String rs1, String rs2, String rd);
}
}

Figure C.2.8. CII between the StepButton Function of the SparcEmulator Component and
the AddNormec Function of the Addxx Component.

83

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-SubtractX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-SubtractX, V. 1.0:

void sub (String rs1, String rs2, String rd)
}

}

Figure C.2.9. CII between the StepButton Function of the SparcEmulator Component and
the Sub Function of the SubtractX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-SubtractX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-SubtractX, V. 1.0:

void subx (String rs1, String rs2, String rd)
}

}

Figure C.2.10. CII between the StepButton Function of the SparcEmulator Component and
the Subx Function of the SubtractX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-SubtractX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-SubtractX, V. 1.0:

void subxcc (String rs1, String rs2, String rd)
}

}

Figure C.2.11. CII between the StepButton Function of the SparcEmulator Component and
the Subxcc Function of the SubtractX Component.

84

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-SubtractX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-SubtractX, V. 1.0:

void subcc (String rs1, String rs2, String rd)
}

}

Figure C.2.12. CII between the StepButton Function of the SparcEmulator Component and
the Subcc Function of the SubtractX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-MultX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-MultX, V. 1.0:

void umul (String rs1, String rs2, String rd);
}

}

Figure C.2.13. CII between the StepButton Function of the SparcEmulator Component and
the Umul Function of the MultX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-multX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-multX, V. 1.0:
void umulcc (String rs1, String rs2, String rd);

}

}

Figure C.2.14. CII between the StepButton Function of the SparcEmulator Component and
the Umulcc Function of the MultX Component.

85

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-multX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-multX, V. 1.0:

void smul (String rs1, String rs2, String rd);

}

}

Figure C.2.15. CII between the StepButton Function of the SparcEmulator Component and
the Smul Function of the MultX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-MultX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-MultX, V. 1.0:

void smulcc (String rs1, String rs2, String rd);

}

}

Figure C.2.16. CII between the StepButton Function of the SparcEmulator Component and
the Smulcc Function of the MultX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-DivX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-DivX, V. 1.0:

void divSign (String rs1, String rs2, String rd);
}

}

Figure C.2.17. CII between the StepButton Function of the SparcEmulator Component and
the DivSign Function of the DivX Component.

86

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-DivX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-DivX, V. 1.0:

void divUsign (String rs1, String rs2, String rd);
}

}

Figure C.2.18. CII between the StepButton Function of the SparcEmulator Component and
the DivUsign Function of the DivX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-DivX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-DivX, V. 1.0:

void divSignce (String rs1, String rs2, String rd);
}

}

Figure C.2.19. CII between the StepButton Function of the SparcEmulator Component and
the DivSigncc Function of the DivX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-DivX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-DivX, V. 1.0:

void divUsignce (String rs1, String rs2, String rd);
}

}

Figure C.2.20. CII between the StepButton Function of the SparcEmulator Component and
the DivUsigncce Function of the DivX Component.

87

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-AndX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-AndX, V. 1.0:

void andNorm (String rs1, String rs2, String rd);
}

}

Figure C.2.21. CII between the StepButton Function of the SparcEmulator Component and
the Andnorm Function of the AndX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-AndX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-AndX, V. 1.0:

void andNormcc (String rs1, String rs2, String rd);

}

}

Figure C.2.22. CII between the StepButton Function of the SparcEmulator Component and
the AndNormcc Function of the AndX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-AndX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-AndX, V. 1.0:

void andN (String rs1, String rs2, String rd);
}

}

Figure C.2.23. CII between the StepButton Function of the SparcEmulator Component and
the AndN Function of the AndX Component.

88

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-ORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ORX, V. 1.0:

void ORnorm (String rs1, String rs2, String rd);
}

}

Figure C.2.24. CII between the StepButton Function of the SparcEmulator Component and
the ORnorm Function of the AndX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp- ORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp- ORX, V. 1.0:

void ORNormcc (String rs1, String rs2, String rd);
}

}

Figure C.2.25. CII between the StepButton Function of the SparcEmulator Component and
the ORnormec Function of the ORX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp- ORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp- ORX, V. 1.0:

void ORcc (String rs1, String rs2, String rd);
}

}

Figure C.2.26. CII between the StepButton Function of the SparcEmulator Component and
the ORcc Function of the ORX Component.

89

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-ORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{

Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ORX, V. 1.0:
void ORN (String rs1, String rs2, String rd);

}

}

Figure C.2.27. CII between the StepButton Function of the SparcEmulator Component and
the ORN Function of the AndX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-ORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ORX, V. 1.0:

void ORNcce (String rs1, String rs2, String rd);
}

}

Figure C.2.28. CII between the StepButton Function of the SparcEmulator Component and
the ORNcc Function of the AndX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-XORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{

Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ORX, V. 1.0:
void XOR (String rs1, String rs2, String rd);

}

}

Figure C.2.29. CII between the StepButton Function of the SparcEmulator Component and
the XOR Function of the XORX Component.

90

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-XORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{

Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ORX, V. 1.0:
void XORcc (String rs1, String rs2, String rd);

}

}

Figure C.2.30. CII between the StepButton Function of the SparcEmulator Component and
the XORcc Function of the XORX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-XNORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-XNORX, V. 1.0:

void XNOR (String rs1, String rs2, String rd);
}

}

Figure C.2.31. CII between the StepButton Function of the SparcEmulator Component and
the XNOR Function of the XNORX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-XNORX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-XNORX, V. 1.0:

void XNORcc (String rs1, String rs2, String rd);
}

}

Figure C.2.32. CII between the StepButton Function of the SparcEmulator Component and
the XNORcc Function of the XNORX Component.

91

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-ShiftX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{

Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ShiftX, V. 1.0:
void SLL (String rs1, String rs2, String rd);

}

}

Figure C.2.33. CII between the StepButton Function of the SparcEmulator Component and
the SLL Function of the ShiftX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-ShiftX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ShiftX, V. 1.0:

void SRL (String rs1, String rs2, String rd);
}

}

Figure C.2.34. CII between the StepButton Function of the SparcEmulator Component and
the SRL Function of the ShiftX Component.

Component-interact: Comp-SparcEmulator, V. 1.0; Comp-ShiftX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0;

{
Comp-SparcEmulator, V. 1.0:stepButton R* Comp-ShiftX, V. 1.0:

void SRA (String rs1, String rs2, String rd);
}

}

Figure C.2.35. CII between the StepButton Function of the SparcEmulator Component and
the SRA Function of the ShiftX Component.

92

The dependency of the runButton on the other components is the same as the
dependency between the stepButton and the other components. So, we will present the
dependency between the runButton and the other components in tabular form as shown in

Table C.2.1

Component under Study | Directly Dependent on

SparcEmulator.runButton | Addxx.addnorm (String rs1, String rs2, String rd);
Addxx.addx (String rs1, String rs2, String rd);
Addxx.addxcc (String rs1, String rs2, String rd);
SubtractX.sub (String rs1, String rs2, String rd)
SubtractX.subx (String rs1, String rs2, String rd)
SubtractX.subxcc (String rsl, String rs2, String rd)
SubtractX.subcc (String rs1, String rs2, String rd)
MultX.umul (String rs1, String rs2, String rd);
MultX.umulce (String rs1, String rs2, String rd);
MultX.smul (String rs1, String rs2, String rd);
MultX.smulce (String rs1, String rs2, String rd);
DivX.divSign (String rs1, String rs2, String rd);
DivX.divUSign (String rs1, String rs2, String rd);
DivX.divSigncce (String rs1, String rs2, String rd);
DivX.divUSignce (String rsl, String rs2, String rd);
AndX.andNorm (String rs1, String rs2, String rd);
AndX.andN (String rs1, String rs2, String rd);
AndX.andNormcc (String rs1, String rs2, String rd);
AndX.andNcc (String rs1, String rs2, String rd);
ORX.ORnorm (String rs1, String rs2, String rd);
ORX.ORnomcc (String rs1, String rs2, String rd);
ORX.ORN (String rs1, String rs2, String rd);
ORX.ORNcc (String rs1, String rs2, String rd);
XORX.NOR (String rs1, String rs2, String rd);
XORX.NORcc (String rs1, String rs2, String rd),
ShiftX.SLL (String rs1, String rs2, String rd);
ShiftX.SRL (String rs1, String rs2, String rd);
ShiftX.SRA (String rs1, String rs2, String rd);

Table C.2.1. Direct Dependency between the SparEmulator.runButton and Other
Components in the SPARC Emulator System, Version 1.

93

The stepButton and runButton of the SparEmulator component also depend on the

functions of the StatementHolder component. Table C.2.2 shows their relationship.

Component under Study | Directly Dependent on

SparcEmulator.stepButton | StatementHolder.String getLabel()

StatementHolder.int getAddress()

or StatementHolder.String getInstruction()

StatementHolder.String getParam(int paramNum)

SparcEmulator.runButton | StatementHolder.String getErrorMessage()

StatementHolder.Boolean setIsInvalid()

StatementHolder.boolean isComment()

StatementHolder.setlsComment(boolean value)

StatementHolder.void setlsInvalid(boolean value)

StatementHolder.void setCurrentStatement(boolean value)

StatementHolder boolean isCurrentStatement()

Table C.2.2. Dependency of the StepButton or RunButton on the Functions of the
StatementHolder Component.

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*
Comp-StatementHolder, V. 1.0: StatementHolder(String str);

}

}

Figure C.2.36. CII between the LoadFile Function of the LoadFile Component and the
StatementHolder Function of the StatementHolder Component.

94

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*
Comp-StatementHolder, V. 1.0: StatementHolder(String strl, String str2);

}

}

Figure C.2.37. CII between the LoadFile Function of the LoadFile Component and the
StatementHolder Function of the StatementHolder Component.

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*
Comp-StatementHolder, V. 1.0:
StatementHolder(String strl, String str2, String str3);

}

}

Figure C.2.38. CII between the ReadSource Function of the LoadFile Component and the
StatementHolder Function of the StatementHolder Component.

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*

Comp-StatementHolder, V. 1.0:
StatementHolder(String strl, String str2, String str3, String str4);

}

}

Figure C.2.39. CII between the ReadSource Function of the LoadFile Component and the
StatementHolder Function of the StatementHolder Component.

95

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*

Comp-StatementHolder, V. 1.0:
StatementHolder(String label, String strl, String str2, String str3, String str4);

}

}

Figure C.2.40. CII between the ReadSource Function of the LoadFile Component and the
StatementHolder Function of the StatementHolder Component.

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*

Comp-StatementHolder, V. 1.0:
void setIsLabel (String value);

}

}

Figure C.2.41. CII between the LoadFile Function of the LoadFile Component and the
SetlIsLabel Function of the StatementHolder Component.

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*

Comp-StatementHolder, V. 1.0:
void setlsComment (Boolean value);

}

}

Figure C.2.41. CII between the ReadSource Function of the LoadFile Component and the
SetlsComment Function of the StatementHolder Component.

96

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0,

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*

Comp-StatementHolder, V. 1.0:
void setIsInvalid (Boolean value);

}

}

Figure C.2.42. CII between the ReadSource Function of the LoadFile Component and the
SetIsInvalid Function of the StatementHolder Component.

Component-interact: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-LoadFile, V. 1.0; Comp-StatementHolder, V. 1.0;

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*
Comp-StatementHolder, V. 1.0:
void setIsInvalid (Boolean value);

}

}

Figure C.2.43. CII between the ReadSource Function of the LoadFile Component and the
SetIsInvalid Function of the StatementHolder Component.

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-StatementHolder, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-StatementHolder, V. 1.0

{
Comp-SparcEmulator, V. 1.0: setBreakpointMouseClick R*
Comp-StatementHolder, V1: void setBreakPoint(Boolean val);

}
}

Figure C.2.44. CII between the SetBreakpointMouseClick of the SparcEmulator
Component and the SetBreakPoint Function of the Comp-StatementHolder Component.

97

The dependency between any SPARC mnemonic function and the other components
of the SPARC emulator system 1s similar. Figure C.2.45 and C.2.46 show the direct
dependency between the addcc function of the Addxx component and the functions of the
SparcData component. The dependency between any other SPARC mnemonic function
(except for the branch instructions) and the functions of other components is shown in

Table C.2.3.

Component-interact: Comp-Addxx, V. 1.0 ; Comp-SparcData, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-StatementHolder, V. 1.0

{
Comp-addcc, V. 1.0: void addx (String rs1, String rs2, String rd) R*
Comp-SparcData, V1: void setRegisterValue(String regName, int val);
}
}

Figure C.2.45. CII between the Addcc Function of the Addxx Component and the
SetRegisterValue Function of the Comp-SparcData Component.

Component-interact: Comp-Addxx, V. 1.0 ; Comp-SparcData, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-StatementHolder, V. 1.0

{
Comp-addcc, V. 1.0: void addx (String rs1, String rs2, String rd) R*
Comp-SparcData, V1: long setRegisterValue(String register),
}
}

Figure C.2.46. CII between the Addcc Function of the Addxx Component and the
SetRegisterValue Function of the Comp-SparcData Component.

98

Dependant Supporters of the SparcData

component
Addxx.addnorm (String rs1, String rs2, String rd); | void setRegisterValue(String
Addxx.addx (String rs1, String rs2, String rd); regName, int val);
Addxx.addxcc (String rs1, String rs2, String rd);
SubtractX.sub (String rs1, String rs2, String rd) or

SubtractX.subx (String rs1, String rs2, String rd)

SubtractX.subxcc (String rs1, String rs2, String rd) | long getRegisterValue(String

SubtractX.subcc (String rs1, String 152, String rd) register);

MultX.umul (String rs1, String rs2, String rd);

MultX.umulcc (String rs1, String rs2, String rd);

MultX.smul (String rs1, String rs2, String rd);

MultX.smulcc (String rs1, String rs2, String rd);

DivX.divSign (String rs1, String rs2, String rd),

DivX.divUSign (String rs1, String rs2, String rd);

DivX.divSignce (String rs1, String rs2, String rd);

DivX.divUSigncce (String rs1, String rs2, String rd);

AndX.andNorm (String rs1, String rs2, String rd);

AndX.andN (String rs1, String rs2, String rd);

AndX.andNormcce (String rs1, String rs2, String rd);

AndX.andNcc (String rs1, String rs2, String rd);

ORX.ORnorm (String rs1, String rs2, String rd),

ORX.ORnormcc (String rs1, String rs2, String rd);

ORX.ORN (String rs1, String rs2, String rd);

ORX.ORNcc (String rs1, String rs2, String rd);

XORX.NOR (String rs1, String rs2, String rd);

XORX.NORCcc (String rs1, String rs2, String rd);

ShiftX.SLL (String rs1, String rs2, String rd);

ShiftX.SRL (String rs1, String rs2, String rd);

ShiftX.SRA (String rs1, String rs2, String rd);

Table C.2.3. Dependency between a Mnemonic Function And the Functions of the
SparcData Component.

Figure C.2.47 and C.2.48 show the CII for the BA function of the BranchX
component. The dependency between the runButton/resetButton and the other branch

functions are displayed in Table C.2.4.

99

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0
;

!
Port: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0
{
Comp-SparcEmulator, V. 1.0: stepButton R*
Comp-BranchX, V1: void BA(String addr);
}
}

Figure C.2.47. CII between the StepButton of the SparcEmulator Component and the BA
Function of the Comp-BranchX Component.

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0

{
Comp-SparcEmulator, V. 1.0: runButton R*
Comp-BranchX, V1: void BA(String addr);

}
}

Figure C.2.48. CII between the RunButton of the SparcEmulator Component and the BA
Function of the Comp-BranchX Component.

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0

{
Comp-SparcEmulator, V. 1.0: runButton R*
Comp-BranchX, V1: void BN(String addr);

}
}

Figure C.2.49. CII between the RunButton of the SparcEmulator Component and the BN
Function of the Comp-BranchX Component.

100

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-BranchX, V. 1.0

{
Comp-SparcEmulator, V. 1.0: stepButton R*
Comp-BranchX, V1: void BN(String addr);
}
}

Figure C.2.49. CII between the StepButton of the SparcEmulator Component and the BN
Function of the Comp-BranchX Component.

Component | Component’s functions

BranchX void BA (String label);
void BN (String label);
void BNE (String label);
void BE (String label);
void BG (String label);
void BLE (String label);
void BGE (String label);
void BL (String label);
void BGU (String label);
void BL (String label);
void BGU (String label);
void BLEU (String label),
void BCC (String label);
void BCS (String label);
void BPOS (String label);
void BNEG (String label);
void BVC (String label);
void BVS (String label);

Table C.2.4. The Branch Component.
The getRegisterValue and the setRegisterValue functions of the SparcData
component are also dependent on some functions of the RegisterHolder component. Their

relationship is shown in Figures C.2.50 and C.2.51.

101

Component-interact: Comp-SparcData, V. 1.0 ; Comp-RegisterHolder, V. 1.0

{
Port: Comp-SparcData, V. 1.0 ; Comp-RegisterHolder, V. 1.0

{
Comp-SparcData, V1: long setRegisterValue(String register) R*
Comp-RegisterHoler, V2: void setValue(long value);

}
}

Figure C.2.50. CII between the SetRegisterValue Function of the SparcData Component
and the SetValue Function of the Comp-RegisterHolder Component.

Component-interact: Comp-SparcData, V. 1.0 ; Comp-RegisterHolder, V. 1.0

{
Port: Comp-SparcData, V. 1.0 ; Comp-RegisterHolder, V. 1.0

{
Comp-SparcData, V1: long getRegisterValue(String register) R*
Comp-RegisterHoler, V2: long getValue();

}
}

Figure C.2.51. CII between the GetRegisterValue Function of the SparcData Component
and the GetValue Function of the Comp-RegisterHolder Component.

As mentioned earlier, it’s impossible to show the CDG of the whole system in this
context because of the large size of the Sparc emulator CBSS. Ins'tead, the two critical
paths of the CDG are shown in Figure C.2.52 and Figure C.2.53 to demonstrate the
function-function dependency among the components of the Sparc Emulator. These two
paths are carefully selected to provide readers with the core structure of the Sparc

Emulator.

102

. e BN
______ setValue

getParam RegHolder

.
‘
j
/ ' i i
’ ! T
: |
) + ¥
1 ' t
\ ; |
\ ; \ i
) \
D / \ | '
“~. - i \ I H
.................. iy ! i
T P = \\ Ay 1 ’
i e \ s H
P D0 3 getVaiue | |
F ' : v, K
‘. i . A
vy I i i /
T RN ,’
.] v " N .
Iy

v 1 I i

\ :

‘

StepButton

setlsinvalid

Figure C 2.52. Partial CDG of the Sparc Emulator Showing the Execution Path When the
StepButton Is Pressed.

Statement
Holder

setisLable | .’ NS N

s j
K StmHolder
__/ Simlde—"

Figure C.2.53. Partial CDG of the CBSS Showing the Execution Path of the openFilebutton

103

C.3 CIDL Descriptions of the SPARC Emulator, Version 2

In version 2, a number of components are added to the SPARC Emulator in addition
to the modified components. To save space, only part of the changes will be shown using
CIDL. The remainder will be displayed in tabular form.

C.3.1 Added and Modified Components

The new components introduced into version 2 of the SPARC emulator are shown in

Table C.3.1.

Components added to the CBSS | Component’s functions

TestX void testReg(String register)

SetX void setReg(String register, long value)
NotX void notNegate(String rs, String rd)
ClearX clearReg(String rd)

MovX void mov(String s, String rd)

Call void call (String addr)

JMPL void JmpL(String addr, String rd)

Save void save(String rs1, String rs2, String rd)
Restore void restore(String rs1, String rs2, String rd)
SyntaxChecker Boolean isInstruction()

Table C.3.1. Components Added to Version 2.
The runButton and stepButton of the SparcEmulator depend on the functions of these

new components for a particular task. We will next show the CII of the new components.

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-TestX, V. 2.0
{ Port: Comp-SparcEmulator, V. 1.0 ; Comp-RegisterHolder, V. 2.0

{

Comp-SparcEmulator, V1: stepButton (String register) R*
Comp-TestX, V2: void TST(String register);

;
}

Figure C.3.1. CII between the StepButton Function of the SparcEmulator Component and
the TST Function of the Comp-TestX Component.

104

Component-interact: Comp-SparcEmulator, V. 1.0 ; Comp-TestX, V. 2.0

{
Port: Comp-SparcEmulator, V. 1.0 ; Comp-RegisterHolder, V. 1.0

{
Comp-SparcEmulator, V1: runButton (String register) R*
Comp-TestX, V2: void TST(String register);
}
}

Figure C.3.2. CII between the RunButton Function of the SparcEmulator Component and
the TST Function of the Comp-TestX Component.

The dependency between the stepButton/runButton and the functions of any new

component is shown in Table C.3.2.

Components under Study | Directly dependent on

SparcEmulator.stepButton | TestX.void testReg(String register)

or SetX.void setReg(String register, long value)

SparcEmulator.runButton | NotX.void notNegate(String rs, String rd)

ClearX.clearReg(String rd)

MovX.void mov(String rs, String rd)

Call.void call (String addr)

JMPL.void JmpL(String addr, String rd)

Save.void save(String rs1, String rs2, String rd)

Restore.void restore(String rs1, String rs2, String rd)

Table C.3.2. Dependency between the StepButton/RunButton of the SparcEmulator
Component and the Functions of the New Components.

105

The relationship between each function of the added components and the functions of

the old components is shown in Figure C.3.3, Figure C.3.4, and Table C.3.3.

Component-interact: Comp-TestX, V. 2.0 ; Comp-SparcData, V.1.0

{
Port: Comp-TestX, V. 2.0 ; Comp-SparcData, V.1.0

{
Comp-TestX, V. 2.0 : void testReg(String register) R*
Comp-SparcData, V. 1.0 : long getRegisterValue(String register);

}

}

Figure C.3.3. CII between the TestReg Function of the TestX Component and the
GetRegisterValue Function of the SparcData Component.

Component-interact: Comp-TestX, V. 2.0 ; Comp-SparcData, V.1.0

{
Port: Comp-TestX, V. 2.0 ; Comp-SparcData, V.1.0

{
Comp-TestX, V. 2.0 : void testReg(String register) R*
Comp-SparcData, V. 1.0 : void setRegisterValue(String register, int value),

}

}

Figure C.3.4. CII between the TestReg Function of the TestX Component and the
SetRegisterValue Function of the SparcData Component.

Dependant (version 2) Supporters of the RegisterHolder
component
TestX.void testReg(String register) void setRegisterValue(String
SetX.void setReg(String register, long value) regName, int val);
NotX.void notNegate(String rs, String rd)
ClearX.clearReg(String rd) or
MovX.void mov(String rs, String rd)
Call.void call (String addr) long getRegisterValue(String
JMPL.void JmpL(String addr, String rd) register);
Save.void save(String rs1, String rs2, String rd)
' Restore.void restore(String rs1, String rs2, String rd)

Table C.3.3. Dependency between the Added Components and the Old Components

106

The introduction of the SyntaxChecker component into the SPARC emulator causes

the changes shown in Figure C.3.5 and Figure C.3.6.

Component-interact: Comp-LoadFile, V. 1.0; Comp-SyntaxChecker, V. 2.0;

{
Port: Comp-LoadFile, V. 1.0; Comp- SyntaxChecker, V. 2.0,

{
Comp-LoadFile, V. 1.0:StatementHolder[] readSource(String pathname) R*

Comp-SyntaxChecker, V. 2.0: Boolean isInstruction();

}
'}

Figure C.3.5. CII between the ReadSource Function of the LoadFile Component and the
SetlsInvalid Function of the StatementHolder Component.

Component-interact: Comp-SyntaxChecker, V. 2.0; Comp-StatementHolder, V. 1.0;

{
Port: Comp-SyntaxChecker, V. 2.0; Comp-StatementHolder, V. 1.0;

{
Comp-SyntaxChecker, V. 2.0 : Boolean isInstruction() R*

Comp-StatementHolder, V. 2.0: StatementHolder(String strl);

}
}

Figure C.3.5. CII between the ReadSource Function of the LoadFile Component and the
SetlsInvalid Function of the StatementHolder Component.

From the specifications, we know that all the functions of the Addx and subtractX
components incorrectly set the value of any register with an integer type (i.e., 32 bits)
instead of a long type (i.e., 64 bits). Because of that change, all the functions that have the

transitive closure relationship with the addxxx and subxxx functions are affected.

107

C.4 Change Impact Analysis

Once again, since the SPARC emulator is a relatively large system, we are unable to
show the impact of the changes on the entire system using a CDG. Figure C.4.1 and Figure
C.4.2 are carefully selected to demonstrate the change impact in two critical paths of the
CBSS. Figure C.4.1 shows the impact on part of the system CDG because of the addition

of the isInstruction function.

k

© added
g affected

Figure C.4.1. Impact on Part of the System CDG due to the Added IsInstruction Function

108

Figure C.4.2 shows part of the system CDG caused by the modification of the addcc

function.

@ added
affected

Figure C.4.2. Impact on Part of the System CDG due to the Modified Addce Function
Figure C.4.3 shows the change impact analysis due to the modified addcc function of
the Addx component. The effect of the other modified “add” functions of the Addx
component on the system is similar to that of the addcc function and is omitted for the sake
of simplicity.
Also, note that the change impact of all the modified “subtract” functions of the SubX
component can be explained in a similar fashion to that of the modified addcc function.

Figure C.4.4 shows the impact of the modified subce function of the SubX component.

109

Added Modified | Affected Reused Obsolete | New
Component | Function | Nodes Test cases | Test cases | Test cases
AddX addcc SparcEmulator-> | Nodes that | None. None.

stepButton, don’t have

SparcEmulator-> | component

runButton, test

SparcData-> firewall

getRegisterValue, | With the

SparcData-> addcc

setRegisterValue, | node.

RegisterHolder->

getValue

ResigterHolder->
setValue

Figure C.4.3. Change Impact due to the Modified Addcc Function of the AddX

Component.
Added Modified | Affected Reused Obsolete | New
Component | Function | Nodes Test cases | Test cases | Test cases
SubX subcc SparcEmulator-> | Nodes that | None. None.

stepButton, don’t have

SparcEmulator-> | component

runButton, test

SparcData-> firewall

getRegisterValue, | With the

SparcData-> addcc

setRegisterValue, | node.

RegisterHolder->

getValue

ResigterHolder->

setValue

Figure C.4.4. Change Impact due to the Modified Subcc Function of the SubX Component.

110

Added Added | Affected Reused Obsolete | New

Component | Function | Nodes Test cases | Test cases | Test cases

SettX setReg | SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With the setx node
SparcData-> testReg (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue
ResigterHolder->
setValue

Figure C.4.5. Change Impact due to the New SetXComponent.

Added Added | Affected Reused Obsolete | New

Component | Function | Nodes Test cases | Test cases | Test cases

TestX testReg | SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With the Tst node
SparcData-> testReg (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue

ResigterHolder->
setValue

Figure C.4.6. Change Impact due to the New TestX Component.

111

Added Added | Affected Reused Obsolete | New
Component | Function | Nodes Test cases | Test cases | Test cases
SettX setReg | SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With the setx node
SparcData-> testReg (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue
ResigterHolder->
setValue
Figure C.4.7. Change Impact due to the New SetX Component.
Added Added Affected Reused Obsolete | New
Component | Function | Nodes Test cases | Test cases | Test cases
NotX NotNegate | SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With the setx node
SparcData-> NotNegate (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue
ResigterHolder->
setValue

Figure C.4.8. Change Impact due to the New NotX Component.

112

Added Added | Affected Reused Obsolete | New

Component | Function | Nodes Test cases | Test cases | Test cases

ClearX clearReg | SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With the setx node
SparcData-> clearReg (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue
ResigterHolder->
setValue

Figure C.4.9. Change Impact due to the New ClearX Component.

Added Added | Affected Reused Obsolete | New

Component | Function | Nodes Test cases | Test cases | Test cases

MovX mov SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With mov the setx node
SparcData-> (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue

ResigterHolder->
setValue

Figure C.4.10. Change Impact due to the New MoveX Component.

113

Added Added | Affected Reused Obsolete | New

Component | Function | Nodes Test cases | Test cases | Test cases

Call call SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With call the setx node
SparcData-> (shown in the
setRegisterValue, Aftfected Nodes
RegisterHolder-> column).
getValue
ResigterHolder->
setValue

Figure C.4.11. Change Impact due to the New Call Component.

Added Added | Affected Reused Obsolete | New

Component | Function | Nodes Test cases | Test cases | Test cases

JIMPL jmpL SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
getRegisterValue, | With jmpL the setx node
SparcData-> (shown in the
setRegisterValue, Affected Nodes
RegisterHolder-> column).
getValue

ResigterHolder->
setValue

Figure C.4.12. Change Impact due to the New JMPL Component.

114

Added Added | Affected Reused Obsolete | New
Component | Function | Nodes Test cases | Test cases | Test cases
Save save SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
Save(), With node the setx node
save (shown in the
Affected Nodes
column).
Figure C.4.13. Change Impact due to the New Save Component.
Added Added Affected Reused Obsolete | New
Component | Function | Nodes Test cases | Test cases | Test cases
Restore NotNegate | SparcEmulator-> | Nodes that | None. Component test
stepButton, don’t have firewall for all
SparcEmulator-> | component nodes having
runButton, test transitive closure
SparcData-> firewall relationship with
Save() With node the setx node
notNegate (shown in the
Affected Nodes
column).

Figure C.4.14. Change Impact due to the New NotX Component.

115

Added Added Affected Reuse | Obsolete New
Componen | Function | Nodes d Test cases Test cases
t Test
cases
SyntaxChe | isInstructi | SparcEmulator-> | T.open | T.readSource- | T.IsInstruction->
cker on openFileButton, | File- StatementHold | StatementHolder,
LoadFile-> >readS | er, T.readSource->
readSource, ource | T.openFileBut | IsInstruction->
SyntaxChecker-> ->readSource | StatementHolder,
isInstruction, All > T.openFileButton
StatementHolder | other | StatementHold | readSource->
-> nodes | er. IsInstruction->
StatementHolder | with StatementHolder,
compo
nent
test
firewal
1

Figure C.4.15. Change Impact due to the New JMPL Component.

116

	San Jose State University
	SJSU ScholarWorks
	2005

	An interface-based testing technique for component-based software systems
	Brian Bui
	Recommended Citation

	tmp.1290447007.pdf.61vLf

