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ABSTRACT 

DETECTION OF ORGANOSILANES WITH SURFACE ENHANCED INFRARED 

SPECTROSCOPY 

by Anh Duong 

Infrared transmission spectra of 1 nm thick organic films were 

studied with and without the aid of a 5 nm thick Au island film enhancement layer. It is 

estimated that absorbance intensities for these molecules were about 100 to 200 times 

higher when they were deposited onto Au films. When the Au film is annealed at 250°C 

the absorbance of these molecules decreased. The smaller islands in the un-annealed Au 

films were more active enhancers of the IR absorption. Given the approximate 

concentration of the molecules within the molecular film and assuming that the extinction 

coefficients are the same in solution and in the film, the apparent thickness can be 

calculated. This thickness exceeds the measured thickness by 10 - 300 times. Even 

accounting for some additional adsorbed material using a simple model of the surface, 

this thickness is greater 5-150 times, than the true thickness. 
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1. INTRODUCTION 

1.1 Research Goal 

The purpose of this research is to develop a protocol for detecting and 

characterizing ultrathin molecular films comprising single monolayers or hybrid bilayers 

using surface enhanced infrared absorbance (SEIRA) spectroscopy. Our basic hypothesis 

is that a simple gold (Au) coating protocol can transform a silicon (Si) wafer support into 

a sensitive infrared (IR) detector for the analysis of ultrathin organic films. Specifically, 

we propose that this 5 nm Au coating will increase the IR absorbance signal of a 

molecular layer adsorbed to it to such an extent as to render it conveniently detectable 

when interrogated in a simple transmission mode. Proof of this will be given by 

employing a 1 nm thick physisorbed layer, a 1 nm thick chemisorbed layer and a roughly 

2 nm thick chemisorbed bilayer. 

The phenomenon of SEIRA is a strong enhancement in the absorption of infrared 

light by molecules deposited onto certain metal nanoparticle films.1 The 'surface 

enhancement' is believed to be due to interactions between the molecular oscillators that 

absorb IR radiation and the localized surface plasmons excited in small metal particles by 

the IR radiation. Enhancement is also believed to be due to chemical interactions 

between the adsorbates and the metal surface. The magnitude of the enhancement 

depends strongly on both the Au particle film morphology and the analyte molecule's 

reactivity with the Au. In this study the adsorbates examined include />-nitrobenzoic acid 

(p-NBA), mercaptoalkyl acids such as 3-mercaptopropinoic acid (MPA), 11-

mercaptoundecanoic acid (MUA), 16-mercaptohexadecanoic acid (MHA), and several 
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organosilanes such as N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 

vinyldimethylsilane, and phenyldimethylsilane bound to an 11 -mercaptoundencanoic acid 

(MUA) layer. Chemical structures of these molecules are showed in Table 1 below 

The Au films were deposited on a Si substrate using thermal evaporation and 

sputtering methods. Using SEIRA in the transmission mode enabled the detection and 

spectroscopic distinction of the chemical species p-NB A, MUA, vinyldimethylsilane, and 

phenyldimethylsilane bound to MUA. 
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Table 1. Chemical names and structures of molecules used during SEIRA 

experiment. 

Chemical Name StDjcJutft 

p- nitrobenzoic acid (p-NBA) 
'0 r,—5, ( 

a \=/ ( 

OH 

"0 

3-ineu;aplopiupaiiuk: acid (MPA) 
O 

11-tnercaptoundecanoic acid (MUA) 
0*_,0H 

O^OH 

16-mcrcaptohcxadecanoic acid (M1IA) HS 

N-(2- amlnoetiiyl) -3-aminopropyltrimetiioxy 
siiane (AEAP-TM) 

H-jN. 

H - 0 

vinyldimethylchlorosilane (VDM-C1) v? 

phcnyldimcthylchlorosilonc (PhDM-Cl) r—\ c l 
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These molecules were chosen for the following reasons. Firstly, there are several 

comparative reports of SEIRA using/?-NBA so a baseline comparison of SEIRA 

efficiency could be established. Secondly, MUA forms a well-defined monomolecular 

layer that can be studied with little or no ambiguity about the molecular coverage. 

Thirdly, MUA comprises a base layer to which the spectrally distinct secondary layer 

silanes could be bound. This provides a test of the sensitivity of SEIRA to layers slightly 

physically removed from the Au surface. 

1.2 The SEIRA Phenomenon 

The first report of the surface enhanced infrared absorption phenomenon was 

made by Hartstein1 in early 1980, where he observed the signal of/?-NBA deposited on a 

thin layer of silver to be more than 30 times stronger than/?-NBA deposited onto the 

same substrate but without the thin layer of silver.1"5 This effect came to be known as 

SEIRA. Some twenty years later it is now largely accepted that both electromagnetic and 

chemical contributions underpin the effect. The major contributors to the SEIRA effect 

are believed to be a) the structure of the metal enhancing surface (i.e., the shapes and 

sizes of the constituent metal particles), b) the interactions between the analyte molecules 

and the metal layer (i.e., possible chemical bonds), and c) the type of metal (typically 

gold, silver, platinum, or copper, based on their complex optical constants). ' Also, 

because of the electrical permittivity of the metal, the enhancement is expected to be 

greatest when the molecular layer is ordered in such a way as to put a substantial 

component of the vibrational transition dipole moment along the surface normal. 

4 



SEIRA has more recently become an active area of research due to its sensitivity in 

measuring layers of atomic dimension which are important for many applications such as 

microelectronics, biochemical sensors, and optical memory.6"11 

SEIRA is a simple method, where a thin layer (20 - 200 A) of metal (e.g., Au, Ag, 

Pt, or Sn) is deposited onto a substrate followed by the deposition of the analyte. Such 

extremely thin thermally evaporated or sputtered thin films of metals tend to have an 

"islanded" structure which is crucial to the electromagnetic resonance phenomenon. 

Figure 1 is a schematic of the substrate, metal island film and analyte. 

Figure 1. The model of the metal-analyte. 

The transmission or reflection of IR radiation is then measured first of the clean 

island film for reference and then of the islands plus analyte. The resulting absorbance 

spectrum closely resembles that of the free analyte but with certain bands strongly 

enhanced. In the infrared region, the incident radiation has a wavelength much larger 

than the 1-2 nm metal islands. This favors an electromagnetic resonance, known as a 

Mie resonance that causes the incident radiation to induce an oscillating dipole in the 
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metal islands, which in turn causes a strong electromagnetic field around the metal 

islands. 

Mie theory or Lorenz-Mie theory is a complete solution for the scattering of 

electromagnetic radiation by spherical particles. It calculates the extinction cross section 

(a), when the size of the particles is less than 20nm.13"15 The theoretical extinction cross 

section equation for very small spherical particles is listed in equation 1 below: 

9-V-e3'2 a)-£"((o) 
<T= — (1) 

C (s{G)y+2-SMf+s"{(D)2 

Where o is the scattering cross section 

V is the particle volume 

8M is the dielectric constant of the medium 

c is the speed of light 

co is the light frequency 

Note that a resonance condition is fulfilled when s (co)' = -2 SM, hence resonance 

is dependent on both the substrate and solution media and the metal. This condition may 

be used as a guide to determine what light frequency ranges will lead to spectral 

enhancement phenomena like surface enhanced Raman scattering (SERS) and SEIRA but 

computation of the SEIRA effect is still the subject of research. The full set of equations 

for Mie scattering is extensive and governs the radial distribution of scattered light 

intensity and may also be solved for local electric field strengths. For nanoparticle films 

the local dielectric function (SM) is a composite of the substrate, solution and metal 
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particles and must be approximated with effective medium theory though even with such 

approximations interparticle electromagnetic coupling is still largely unaccounted for.14'15 

It is generally accepted however that molecules either physically or chemically 

adsorbed on the surface of the metal couple to this electromagnetic field via their own 

vibrationally induced dipoles as in the case of normal IR light absorption. But because of 

the Mie resonance in the metal particles the local electric field strengths can be greatly 

magnified, and the corresponding absorptions appear to be enhanced by a factor roughly 

equal to the square of the ratio of the free-space and local plasmonic electric field 

strength. Also, because the molecules experiencing SEIRA are generally adsorbed to a 

metal surface,1'6'16 they will tend also to follow the surface selection rule which states that 

for a given vibrational mode to be IR-active it must have a component of its transition 

dipole moment that is perpendicular to the local metal surface (along the local surface 

normal), which favors certain modes over others.17 This leads to a different looking 

spectrum because band intensities are redistributed, but band positions appear to be 

largely conserved. 

Figure 2 depicts approximately the electromagnetic field induced by the radiation 

as it distributes about the metal island. The substrate in this Figure is represented by the 

blue block which may be, for example, silicon, germanium, ZnSe or another IR 

transparent material. The gold oval represents the metal island which can be one of a 

variety of metals including gold, silver, copper, and platinum. Resonant coupling of the 

incident electromagnetic radiation to the free electrons in the metal causes a strong 

electromagnetic field to accumulate at the metal surface. The electromagnetic field is 
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represented by dotted lines. Note that the electric field lines are largely constrained to the 

metal surface normal as they exit the metal particle. 

p-polarization 

Electric field 

±)s- polarization 

Figure 2. Electromagnetic field of metal island. 

Since electric fields at metal surfaces only lie only along the surface normal, only 

those vibrations that produce oscillating dipoles with components that are perpendicular 

to the surface exhibit the SEIRA effect. This phenomenon is expressed in the following 

equation. 

\2 ic i2 I ~ f (du7 dQ)z |E|Z cosz6> ~ f cosz6> (2) 

Where I is the relative intensity of the absorption 

T is the surface concentration of absorbers 

0 is the angle between the dipole moment derivatives of the 

vibrational mode and the surface normal, 

(d|j, / dQ)2 is the amplitude of the dynamic dipole and 
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|E|2 is the square of the electric field that excites the molecule. 

Figure 3 illustrates the surface selection rule as it might apply to the symmetric 

stretching mode of the NO2 group of an adsorbed p-NB A molecule. In Figure 3 a, thep-

NBA molecule is oriented such that the symmetric NO2 stretch (vs NO2) has a dynamic 

dipole moment that lies along the surface normal. The vs NO2 mode actually has two 

dipolar components, a and b, that oscillate in phase yielding a vector sum c. In Figure 3a, 

this resultant dipole lies along the surface normal, coincident with the local electric field 

driven by the IR radiation which is also confined to the surface normal. In Figure 3b the 

effect of a change in molecular orientation is illustrated. In this case both the major axis 

of the molecule and the dynamic dipole moment of the NO2 group both lie parallel to the 

metal surface. This dipole moment is now orthogonal to the incident IR field and 

therefore this mode is expected to be IR silent.5 Using equation 2 above can sometimes 

yield estimates of the orientation of molecules at the metal surface. 
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a) 

IR radiation-^ 

p-NBA 

Gold island 

Si substrate 

-<«s 

IR radiation 

Gold island 

O) Si substrate 

Figure 3. Effect of molecular orientation on SEIRA enhancement where a) is IR 

active and b) is IR inactive. 
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As implied above, most research supports the conclusion that the SEIRA 

mechanism is electromagnetic in origin.1,6'716 However molecular structure and 

polarizablity of the absorbate clearly also play an important role in SEIRA enhancement 

because of the strikingly different levels of enhancement exhibited by different 

vibrational modes. This chemical effect was described by Badilescu and co-workers who 

observed a pronounced enhancement for molecules containing functional groups such as 

carboxylic acid and nitro groups. The underpinnings of this chemical effect were 

further explored by Osawa and co-workers who examined the role of charge transfer 

between the adsorbate and metal determining SEIRA intensities. They described SEIRA 

as due to "a vibronic union of vibrational modes with charge-transfer excitations between 

the metal surface and the analyte molecule such as j?-NBA." In this framework, SEIRA 

is thought to be augmented by chemical interactions between the molecule when the 

metal surface induces a change in the vibrational polarizability (also known as the 

vibrational hyperpolarizability) of the molecule. This hypothesis is supported by the 

large SEIRA enhancement (~ 20 to 30 fold) observed for CO bound to silver because 

binding is known to greatly increase the vibrational hyperpolarizability of bound CO 

relative to free CO.5'816 Merklin and Griffiths subsequently corroborated these studies 

using a series of the nitrophenols because the nitro-group is strongly coupled 

electronically to the Ag surface. The nitrophenols are believed to undergo donor-

acceptor interactions with Ag upon chemisorption. Accordingly the vibrational modes 

associated with the nitro group exhibit a large SEIRA enhancement factor of roughly 20 

to 30.5 
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1.3 Experimental Factors that Affect SEIRA Enhancement 

Among those parameters conveniently accessible to the experimentalist are 

variation of the substrates, metal and metal deposition parameters. Many different IR 

transparent substrates have been used to study SEIRA enhancement including Ge,7 CaF2,3 

and Si. The metal layers that have been studied include gold, silver, " platinum, 

copper,5 and ruthenium.21 The most common metal used is gold since it is not easily 

oxidized. There are also several different ways to deposit the metal films, including 

resistive thermal evaporation, physical vapor deposition, and electrochemical 

deposition.19'21 In order to achieve the best SEIRA results optimization of metal 

deposition rate, film thickness (20 to 200 A), temperature and cleanliness of the substrate 

before and after the deposition is required. The enhancement factors appear to be largest 

(up to several hundred fold) when metal islands are densely aggregated but not 

00 0% 

interconnected. ' 

Many studies also have been done to improve enhancement by varying factors 

such as surface roughness,24 surface irregularities,8 molecular orientation,23 metal film 

thickness, ' and metal-molecule-metal sandwich configurations. Table 2 lists the 

relative enhancement factors found for these conditions. Recently several studies have 

shown the importance of having alkanethiol self-assembled monolayers (SAMs) on the 

metal surface as a base for building another layer as an example. " Other studies 

demonstrated that optimal enhancement was observed for grazing angle external 

reflection at ~ 80° and for metal films of approximately 4 -10 nm thickness (p- and s-

polarized light gave similar results).4'10'32 For external reflection the incident angle is 
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important because it dictates various parameters such as the interfacial reflectivities (and 

therefore the effective absorbing path length of the radiation through the surface layer), as 

well as introducing a polarization dependence to the phenomenon as is the case in any 

light reflection. 

Table 2. Relative enhancement factor after metal surface and configuration 

being modified. 

Main Parameter 
Studied 

surface roughness 
surface 

irregularities 
molecular 
orientation 
metal film 
thickness 

metal-molecule-
metal sandwich 

structures 

Metal 
Type 

Ag 

Ag/Cu 

Au 

Au 

Au 

Molecule 

octanethiol 

p-NBA 

benzenethiol 

4-pyridinethiol 

4-pyridinethiol 

Relative 
Enhancement 

Factor 

5 

5-30 

70 

59 

Reference 

14 

15 

13 

16 

16 
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It is possible to approximate the granular metal film as a pseudo-homogeneous 

phase and to then take advantage of the straight-forward Fresnel calculations for 

predicting approximate SEIRA spectra.16 The Fresnel equations assume that the 

materials are non-magnetic, and may be used to calculate Rs, Rp, Ts, and 7> where R is 

the reflection coefficient and T is the transmission coefficient for p- and s-polarized 

incident rays. For a single reflection the Fresnel equations may be stated succinctly, as 

below. If the incident light is s-polarized, the reflection coefficient is given by equation 3 

below: 

Hs 
s'm(6t — &i) 

sin(0t + 6i) 

Til COs(0j) — Tl2 GOs(0t) 
1 2 

Hi cos(0j) + n2 cos($t) (3) 

Where 0t can be derived from 0; by Snell's law. 

If the incident light is p-polarized, the R is given by equation 4 below: 

ftp — 
t&n(0t~0i) 

tan(0 t + 0i) 

T%I cos{0t) — T%2 cos(#j) 
T2 

ntcos(0t) + ri2cos(0i) 
(4) 

If the incident light is unpolarised (containing an equal mix of s- and ̂ -polarizations), the 

reflection coefficient is: 

R= (Rs + Rp)/2. 

The transmission coefficient in each case is given by 

(5) 

r s = 1 - R* 

Tp=l-Rp. 

(6) 

(7) 
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It should be noted however that application of the Fresnel equations to a system as 

complex as a modified interface requires a common but more advanced computation than 

the ones outlined above because of: a. multiple reflections within the multilayer stack, 

and b. the fact that that the optical constants are usually complex numbers that 

incorporate both the conventional refractive index and the absorptivity. To estimate the 

complex optical constants nj and nj effective medium theory is often used. This takes 

into account the optical constants of both the metal and the surrounding dielectric 

medium including the sample layer. The calculations of SEIRA enhancement ofp-

NBA16 are in reasonable qualitative agreement with observation based on conventional 

multilayer Fresnel reflectivity calculations. 

The effective medium models are used to compute an average complex refractive 

index for the surface layer based on the size and spacing of the metal spheroids and the 

absorption spectra of the absorbate molecules. Two models have been shown to be 

effective for this: the Maxwell-Garnett and the Bruggeman models.16 The Maxwell-

Garnett model works best when the packing density of the metal is small. However, 

when the metal particles are densely aggregated the Brugggeman effective medium 

theory is evidently more accurate.16 These models may be succinctly expressed as: 

Maxwell-Garnett model: 

e M G = e h ((3 + 2Fa) / (3-Fa)) (8) 

Where GMG is the effective (space averaged) dielectric function 

F is the packing density of the metal, defined as F= dmass/dopt. 

dmass is the mass thickness. 
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dopt is the optical thickness. 

a is the polarizability of the metal covered with adsorbed molecular layer. 

€his the dielectric constant of the surrounding medium. 

Bruggeman model: 

CBR = Ch (3(1- F) + Fa)/ (3(1-F) - 2Fa) (9) 

Where GBR is the effective dielectric function. 

F is the packing density of the metal, defined as F= dmass/dopt. 

a is the polarizability of the metal covered with adsorbed molecular layer. 

Ch is the dielectric constant of the surrounding medium. 

Effective medium approximations have not yet been attempted on the data collected in 

this study, but are planned for a subsequent analysis. 

1.4 SEIRA Measurements 

SEIRA measurements can be made using a variety of geometries including a) 

transmission mode, ' b) surface reflection-absorption mode (RA), ' ' and c) 

attenuated total reflection mode (ATR). ' ' ' ' Diagrams of these optical geometries 

are illustrated in Figures 4a, b, and c respectively. 
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a) 

IR beam -* Detector 

Sample 

IR radiation 

b) 

Analyte 

Metal layer 

Substrate 

c) 

Sample 
Metal layer 

Crystal 

IR radiation 

Figure 4. SEIRA set up a) transmission mode, b) surface reflection-absorption 

mode, and c) attenuated total reflection mode where e\ can be 60 to 80°. 
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1.4.1 Transmission mode 

This method does not require additional instrumental accessories, as does the 

ATR mode or RA mode. A sample with the gold - analyte layer is simply placed into the 

sample compartment of an infrared spectrometer. This mode was used to collect data for 

the SEIRA experiments described in this thesis because a convenient optical sampling 

configuration is highly desirable in FTIR studies and otherwise can present a substantial 

barrier to the implementation of the method on a routine basis. Different sampling modes 

may in some cases provide a larger effective light path length (depending on the angle of 

incidence, e.g., surface reflection-absorption) or may be compatible with liquid samples 

(such as attenuated total reflection) so the method choice is clearly analyte dependent. 

1.4.2 Surface Reflection-Absorption mode (RA) 

This method measures the energy that is reflected off the surface of a sample. The 

incident beam penetrates through the analyte and then reflects off the metal back to the 

surface of the film. When the beam exits the thin film it has geometrically passed 

through the film twice and at an angle off of the surface normal. Therefore its 

absorbance intensities are typically 2 - 4 times those of the corresponding transmission 

mode experiment. Some of the energy that passes through the surface layer is absorbed 

by the sample and then reflects off of the substrate below the surface layer. 

1.4.3 Attenuated Total Reflection mode (ATR) 

This method operates by measuring the changes that occur in an internally 

reflected infrared beam when the beam comes into contact with a sample. An infrared 

beam is directed onto an optically dense material such as germanium or diamond with a 
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high refractive index at a certain angle which is greater than the critical incident angle of 

about 80°. The resulting internal reflectance creates an evanescent wave that goes 

beyond the surface of the crystal and penetrates into the sample to a depth of several 

hundred angstroms (which is held in contact with the crystal). ATR-SEIRA is a highly 

sensitive technique for both physiorbed and chemisorbed analytes with an enhancement 

which is often greater than twenty to thirty fold relative to the normal IR transmission 

technique. ' This is due to the grazing incidence reflection absorption geometry which 

has an electric field perpendicular to the substrate surface, while the normal incidence 

transmission geometry has an electric field in the plane of the monolayer. This method 

was used during wet chemistry to analyze the nuclei and chemical plating on a coated Si 

surface.32 

1.5 SEIRA Applications 

As noted above, SEIRA is a very sensitive surface technique which in some cases 

yields over a hundred fold enhancement in the absorption signal of adsorbed analytes. It 

can be used for the detection of many adsorbate molecules located at the: metal-air, 

metal-liquid or metal-solid interfaces. In the opinion of the author, SEIRA as an 

analytical technique is still in its infancy and may find wide application in surface trace 

analysis where small concentrations must be detected with a percent accuracy greater 

than 90%.16 In research settings SEIRA has also been used for biochemical sensors,6'9 

electrosoption,32 and electrocatalysis.37 It can also be used to determine the adsorption 

and desorption kinetics of multiple layers of material. As an example, ATR-SEIRA is a 
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valuable tool for the investigation of the hydrogen bonding between silosane anchor 

carboxylic acid and the surrounding molecules.39 

As was noted in the introduction, the working hypothesis that guided these 

experiments is that a thin Au coating will transform a simple silicon wafer support into a 

sensitive IR detector for ultrathin organic films, and specifically that a 5 nm Au coating 

will increase the IR absorbance signals of a molecular layers such as ones formed by 

/7-NBA, the mercaptoalkyl acids, and silanes described above. 

20 



2. EXPERIMENTAL METHODS 

2.1 Metal Deposition 

The metal island films were deposited using either a Pelco SC-7 sputter system 

from Ted Pella, Inc. or a Denton Vacuum DV-515 vacuum evaporation system. The 

thickness and distribution of the gold coating is a function of several adjustable 

deposition parameters: chamber pressure, power setting, coating time and the target to 

table distance. These parameters were described below. A high purity gold sputter target 

was placed in the sputter disk of the Pelco SC-7 sputter system, which was located 

approximately 10 cm above the stage holding the Si substrate. Sputter deposition was 

done under argon at a pressure of 0.08 mb with a current of 40 mA. After 15 sec a 5 nm 

film was obtained. When using the DV-515 the evaporation took place under a pressure 

of 8 x 10"6 torr with a current a t 3 2 - 3 5 A x 5 V o n a small tungsten wire basket 

(Englhard-Clal B12b-040W). The film thickness was monitored and controlled by the 

thickness monitors, Pelco FTM-2 from Ted Pella, Inc. for sputtering and the TM-100 

from Maxtek, Inc. for evaporated films. Reference FT-IR spectra were obtained 

promptly after gold deposition. 

Prior to deposition of metal island films each of 1 x 2 inch polished Si substrates 

(p-type ~ 20 ficm) was rinsed three times with isopropanol and dried with N2. The 

cleaning step is critical in order to remove any contamination due to air exposure prior to 

the deposition.1"4'6'7'16'20 
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2.2 Method of Annealing Au on a Si Substrate 

In order to understand the effect of thermal annealing on the magnitude of the 

SEIRA effect, selected the Au sample were thermally annealed to enlarge the Au island 

features. We do not wish to imply that the conditions which were chosen in this 

experiment are optimal from the perspective of SEIRA enhancement - rather, guided by 

literature reports of successful SEIRA-active metal films we desired to make a 

preliminary judgment of the effect of thermal annealing on the SEIRA magnitude and to 

correlate this difference with the anticipated change in Au surface morphology. The 

annealing was done at 250°C in a Lindberg Blue-M furnace under a flow of N2 at 30 

cm /s for one hour. The Au sample was then cooled to room temperature before the 

deposition of 1 mM/>-NBA in isopropanol. The annealed sample was then compared 

with a non-annealed sample in terms of SEIRA enhancement and correlating to structure 

via SEM and AFM images of grain morphology. 

2.3 Method of Preparing Analyte Layers 

/>-NBA and mercaptoalkyl acids (3, 11, or 16) were used as test analytes for 

SEIRA technique refinements. /?-NBA was dissolved in HPLC grade isopropanol 

(obtained from Aldrich) at a concentration of 0.001%. Droplets of 20 uL were pipetted 

onto the substrates (Si or Si|Au) yielding circular wetted areas of ~5 mm. Assuming a 

uniform distribution of pNBA across this layer corresponds to a 10 nm film thickness. 

Mercaptoalkyl acids were prepared as 1 mM solutions in isopropanol and substrates were 
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soaked in this solution for 10 minutes at room temperature and then removed from 

solution and dried in a nitrogen stream. 

2.4 Method of Forming Secondary Layer of Silanes 

Au coated Si samples were immersed in 1 mM isopropanol MUA solutions for 10 

min at room temperature. The samples were then removed and dried under a stream of 

N2. 

Neat silanes were obtained from Gelest. Silane solutions in toluene were 

prepared at a concentration of 10 mM. Using a glove-box MUA treated Au samples were 

immersed in the silane solutions for 10 min. Samples were then rinsed five times with 

toluene and dried under a stream of N2. 

2.5 Instrumentation 

2.5.1 Fourier Transform Infrared Spectroscopy 

Vibrational spectra were recorded using a Nicolet 6700 FT-IR spectrometer. A 

DTSC TEC detector was used for these measurements. The frequency range was set 

from 4000 cm"1 to 400 cm"1. The beam splitter was KBr. The gain number used during 

measurement was set at 2 with a mirror velocity of 0.6329 cm/s and an aperture setting of 

100. The transmission mode was set with automatic atmospheric suppression. The 

number of scans was set at 64 with a resolution of 4 cm"1. The final data was reported in 

the absorbance format. 
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2.5.2 Atomic Force Microscopy 

The gold films were characterized with Atomic Force Microscopy (AFM) using a 

digital instruments dimension Veeco 5. The measurement was performed in tapping 

mode with an etched silicon cantilever. Images were collected in air with an ambient 

relative humidity in the range of 38 - 45 %. The AFM scan speed was set to 15 to 30 

min per scan. 

2.5.3 Scanning Electron Microscopy 

Cross sections of the samples were evaluated by imaging on a Hitachi 4300 

scanning electron microscope (SEM) with a thermal field emission source. Samples were 

cleaved and residual cleaving particles were removed by placing under a stream of N2 for 

30 sec. The accelerating voltage used during measurement was 2.5 kV and the working 

distance was 7 to 9 mm with an aperture of 6. The emission current was 8000 nA. 
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3. RESULTS and DISCUSSION 

3.1 Substrate Deposition and Characterization 

Among the many parameters that may affect the magnitude of SEIRA 

enhancement, the quality of the Au layer formed during metal deposition is perhaps the 

most important. Important film qualities may include the thickness of the metal layer, the 

size and shape of metal islands, and crystallographic aspects of the metal surface 

structure. Figures 5 a and b below show SEM images for gold metal films that were 

formed using the SC-7 evaporator and the DV-515 sputter systems respectively. These 

images show that the metal films consist of metal islands that are on average 40 - 60 nm 

in diameter. From the size and the number of the islands in a unit area, the average 

height of the gold islands was estimated to be about 1/4 of the diameter of the islands, 

which is approximately 10 nm to 12 nm. 
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a) 

b) 

Figure 5. SEM images of gold layer on silicon substrate prepared with a) the 

DV-515 evaporator or b) the SC-7 sputter. 
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The 3D AFM images from Figure 6 show individual gold islands. The images 

also show that gold island growth is uniform across the silicon substrate on the micron 

scale and is highly corrugated with root mean square (RMS) roughness of approximately 

20 A for samples coated by thermal evaporation and 15 A for sputtered coated samples. 

Literature reports of similar films showed strong surface enhancement.22'23 Important 

guidelines for metal film preparation were derived from a range of reports in the 

literature. These indicated that the metal film surface roughness increases with 

increasing gold layer thickness up to 26 nm, but that beyond this limit the Au layer 

quickly becomes a continuous film and SEIRA enhancement is lost.110'25 
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a) 

Roughness data I 

Image Statistics 
Img. Rms (Rq) 1.941 nm 
Img. Ra 1.523 nm 

2D view of gold islands with roughness 
calculation 

3D view of gold Islands 

b) 

Roughness data 

Image Statistics 
Img. Rms (Rq) 1 £60 
Img. Ra 1236 

2D view of gold Islands with roughness 
calculation 

3D view of gold Islands 

Figure 6. AFM images of gold on silicon substrate prepared with a) the DV-515 

evaporator or b) the SC-7 sputter. 
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3.2 Comparison of SIERA to Conventional IR and the Effect of Annealing on 

Enhancement 

Figure 7 contrasts transmission absorption FTIR spectra ofp-NBA solutions and 

thin films prepared on Si, Si|Au, and thermally annealed Si|Au. Figure 7a shows the 

spectrum of a 1% solution of/?-NBA in CCI4. Figures 7b-d show spectra of 

approximately 1.0 nmp-NBA films prepared on the following substrates: b. polished Si, 

c.10 nm Au on polished Si, and d. polished Si with a 10 nm Au film that has been 

annealed for 1 hr at 250°C under N2. 
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c) 
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l e s o * 2200 2000 

Wmnumbers (cm-1) 

Figure 7. a) transmission IR absorbance spectrum of 1.0 %p-NBA in CCI4 (50 

urn path length), b) transmission IR absorbance of ~1.0 nm film ofp-NBA on 

polished Si, c) SEIRA spectra of-1.0 nm film ofp-NBA on Au|Si, d) SEIRA 

spectrum of ~1.0 nm film ofp-NBA on annealed Au|Si. 
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The band assignments for Figure 7 are based on a paper by Griffiths et al. 

Clearly the presence of the Au layer is crucial to the detection of the organic film as no 

/7-NBA signal was observed for identically prepared p-NBA films cast onto the Au-free 

substrate (a polished Si wafer surface). Band assignments are as summarized in the 

following Table 3: 
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Table 3. Band assignments for approximately a) 1.0 %p-NBA in CCI4 (50 urn 

path length). 1.0 nm j>-NBA films prepared on the following substrates: b) 

polished Si, c) 10 nm Au on polished Si, and d) polished Au film on polished Si 

that has been annealed for 1 hr at 250°C under N2. 

Freq. / cm"1 

2850 - 3000 

1750 -1700 

1600 

1550 

1350 

1320 

Group Mode Assignment 

CH2 stretch 

C=0 stretch 

Anti-symmetric CO2 stretch 

Anti-symmetric NO2 stretch 

symmetric CO2 

symmetric NO2 stretch 

Observed in Figure 7 

a and c 

aandc 

a, c and d 

a, c and d 

a, c and d 

a, c and d 
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The distribution of band intensities and widths differ dramatically between 

solution and solid ultrathin films on Au both as-deposited and annealed. Beginning with 

the comparison between solution and solid phase films (a and b), it is clear that the 

overall spectral changes are fairly complex. The CH resonances broaden substantially in 

the solid film, but in striking contrast, the NO and CO bands are substantially narrowed. 

Narrowing of course implies that either the film is relatively ordered or, inclusively, that 

the enhancement effect is selective within the inhomogeneous distribution of molecular 

orientations. The loss of rotational freedom in the p-NBA film may also contribute to 

this narrowing. If the band assignments are conserved, then one might venture to 

speculate that CO intensity is more enhanced than NO intensity, but: a. the surface 

structure is uncertain, and b. the possibility certainly exists that solution derived band 

assignments may be invalid for the collection of SEIRA bands observed in the 1300 -

1800 cm"1 region. While the exact assignments may be quite opaque in this setting, the 

simple fact that the strong enhancement is observed for narrowed bands is quite 

significant. The effect of Au annealing is also quite substantial. For example, the CH 

stretching band enhancement is attenuated below detection in the annealed-Au system, 

and the C=0, CO2, and NO2 bands again redistribute by a very large factor while 

retaining the very narrow bandwidths of the as-prepared Au system. 

The CO2 (as) and CO2 (s) bands in Figure 7d are red shifted and enhanced after 

annealing as can be seen when compared to Figure 7c. The SEIRA enhancement of p-

NBA observed in Figure 7c for the CH2, C=0, NO2 (as), and NO2 (s) stretching 

disappears after annealing as shown in Figure 7d. With annealing, Au islands merge and 
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form large aggregates. The phenomenon of forming large Au islands is called grain 

growth. This occurs with the migration of grain boundaries, and subsequently leads to a 

loss of enhancement in SEIRA. The SEM images of Figure 8a illustrate the arrangement 

of approximately 6 - 8 nm Au islands deposited on Si which uniformly coat the substrate. 

Figure 8b shows the formation of large Au islands after annealing. 
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a) 

b) 

Figure 8. SEM images of the/?-NBA on Au films a) before annealing and b) 

after annealing at 250°C for 1 hour under N2. 
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3.3 Calculations for SIERA Enhancement 

In order to place the observed band intensities in context, we performed a simple 

and approximate calculation of the apparent enhancement in absorption intensity. This 

calculation involved several steps. First, the approximate p-NBA film thicknesses were 

estimated as follows. The 20 uL droplet of 0.010 % (w/v) alcoholic p-NB A solution that 

was cast into a thin film was estimated to have dried in a uniform disc of 1.0 cm diameter 

(as was observed). The mass and approximate density of solid/?-NBA was then used to 

compute the average approximate p-NB A film thicknesses, dpnys ~l-0 ran. Next, the 

free-solution extinction coefficients for selected bands were computed using a 

transmission spectrum of/?-NBA in CCI4 solution (1.0 % (w/v) x 50 urn). Referring back 

to the SEIRA spectra the apparent thickness of the solid films was calculated using 

Beer's law: 

dApp = A / (eccw * c) (10) 

Where dApp is the apparent film thickness (cm) 

A is the absorbance 

eccw is the solution-phase molar absorptivity (L mol"1 cm") and 

c is the estimated concentration (mole L"1) in the solid film 

Table 4 illustrates the very large dApp values observed for/>-NBA films deposited on 

SEIRA substrates. This may be due to the SIERA surface selection rule effect on 

enhancement of the IR absorbance measured for the analyte on Au islands. SIERA 

enhancement is thus parameterized as the ratio of the apparent film thickness to the 

physical film thickness, dApp / dact-
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In order to even more conservatively estimate this enhancement factor, a possible 

increase in signal due to an increase in surface area is also incorporated. Because the test 

substrates used were not smooth, but instead covered with Au islands, it might be argued 

that the increased surface area accounts for part or all of the increased signal that was 

observed. That is, for any given 2-D unit area of test substrate there should be a greater 

number of analyte molecules directly adsorbed to the surface than for the same unit area 

on an ideal smooth surface. To estimate such a contribution to the apparent enhancement 

was approximated based on a uniform hexagonal distribution of Au islands hemispheres 

Figure 9. 
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Hexagon 

*-Gold 

Figure 9. An approximate surface area calculation for hexagonal array of Au 

hemispheres. 
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A hexagonal area unit contains a total of seven atoms - six peripheral and one 

central. Each of the six peripheral atoms contributes 1/3 of its surface to the hexagonal 

cell while the central atom contributes all of its area. The surface area of each island 

hemisphere is 47ir /2 where r is the hemisphere radius. Thus the total Au surface area in a 

2 

given hexagonal area unit is AAu = 6 • (} ) = 4 • n • r2. Dividing this by the area 

of the corresponding flat hexagon, AGeom - ^-r2, yields an increase in surface area by a 

A Any2 

factor of — — = r * 1.8. Even allowing for this modest factor the enhancement 
Geom 2 

values are still as large as -1000 See Table 4. 
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Table 4. SEIRA enhancement calculation for/?-NBA 

M
o

lecu
le 

D
-N

B
A

 

Band 
Assignment 

Frequency 

CH stretch 

3100-2800 cm"1 

C02 asymmetric 

1500-1450 cm"1 

N02 asymmetric 

1500-1450 cm"1 

C02 symmetric 

1350-1300 cm"1 

N02 symmetric 

1400-1350 cm"1 

C=0 

1750-1700 cm"1 

1%p-NBAin 
solution 

A 

0.48 

0.34 

0.7 

0.24 

0.12 

0.17 

£ma 

(L/mole 
cm) 

890 

630 

1300 

440 

220 

310 

p-NBA deposited 
on Au/ Si 
substrate 

A 

0.0015 

0.0015 

0.003 

0.0011 

0.0013 

0.0038 

d A P P -

A/(ema*c) 

150 

220 

210 

230 

540 

1120 

Enhancement 
Calculation 

dApp / 

dpHYS 

150 

220 

210 

230 

540 

1120 

dApp/ 

(1.804* 
dpHYs) 

130 

190 

180 

200 

460 

950 
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3.4 SEIRA Results for Molecular Monolayers 

In these studies monolayers of selected molecules were prepared on Si|Au 

substrates to evaluate their SEIRA absorbance. A subsequent section will describe 

experiments wherein one of these molecules, mercaptoundecanoic acid, was used as an 

anchor layer for secondary molecular overlayers and SEIRA intensities for these systems 

will be evaluated as well. The analytes used for monolayer studies are 3-

mercaptopropinoic acid (MPA), 11-mercaptoundecanoic acid (MUA), and 16-

mercaptohexadecanoic acid (MHA). In most Figures the absorbance spectrum of a drop-

cast film of MUA, on polished Si anticipated to be roughly 1.0 nm thick is included for 

comparison. 

Thin layers of Au (approximately 7nm) were prepared on a Si substrates and their 

transmission spectra recorded as reference. Mercaptoalkanoic acids were then 

chemisorbed to the Au surface. These substrates were used to measure SEIRA 

enhancement - see Figures 10-12 below. The band assignments for these molecules are 

based on seminal work by Allara and others.40"44 Clearly the presence of the Au layer is 

crucial to the detection of the organic film since there was no signal observed on the same 

molecule (MUA) deposited on polished Si. Band assignments are as summarized in 

Table 5: 
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Table 5. Band assignments for analytes adsorbed onto Au surface where: a)isl6-

mercaptohexadecanonic acid (~ 1.4 nm), b) is 11-mercaptoundencanoic acid(~1.0 

nm), c) is 3-mercaptopropionic acid (~0.4 nm), and d) is 11-

mercaptoundencanoic acid deposited on bare Si (—10 nm) for comparison. 

Freq. / cm"1 

2850 - 3000 

1750-1700 

1460 -1400 

1350-1150 

750 - 700 

Group Mode Assignment 

CH2 stretch 

C=0 stretch 

carboxylate symmetric stretch 

+ CH2 scissor 

CH2 rock / wag 

CH2 bend 

Observed in Figure 14, 15,16 

a, b 

a, b, and c 

a, b, and c 

a, b, and c 

a, b, and c 
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Aliphatic CH stretch 

yV. 

d) ^ H ^ i f ^ ^ f ^ ^ Vv-^w^Wv 
3-WOO; 

3000 3400 3203 30OC 

wavenunber (cm-1) 

Figure 10. High-frequency SEIRA spectra in the 2700 - 3500 cm"1 region. 

Analytes adsorbed onto Au surface where: a) is 16-mercaptohexadecanonic acid 

(~ 1.4 nm), b) is 11-mercaptoundencanoic acid (-1.0 nm), c) is 3-

mercaptopropionic acid (~0.4 nm), and d) is 11-mercaptoundencanoic acid 

deposited on bare Si (-10 nm) for comparison. 
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Figure lOa-c shows the C-H stretching region for the three molecules. The 

symmetric and antisymmetic stretches are observed at 2850 and 2926 cm"1 respectively. 

These bands are both strong and informative as their frequencies are known to be 

sensitive to the state of crystallinity of the alkyl chain, so a comparison with literature 

values is relevant and yields the following qualitative conclusion. The limited resolution 

of these spectra prohibits detailed analysis, but those values observed are within the range 

observed for liquid alkanes 2924 cm"1 and crystals 2855 cm"1 and are consistent with 

literature values for n-alkanethiols on continuous Au films.40"45 In Figure lOd, MPA does 

not exhibit a measurable signal for the C-H stretch. This is due in part to the short alkyl 

chain - there are only four alkyl hydrogens on MPA compared to twenty on MUA and 

thirty on MHA. But if all methylene hydogens absorb equivalently, then a measurable 

absorbance peak ( ^ • 0.002 » 0.0004 ) might arguably be resolved above the local noise 

envelope (0.0002). This suggests that either these particular modes oscillate more nearly 

parallel to the local surface plane in MPA or perhaps that so near the surface there may 

be a point of relatively low enhancement. On the other hand, since CH wagging and 

bending modes observed for all three Figure 11, the former orientation effect would seem 

more likely. 
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0.0001 

! 
o.aoEf 

c) 

d) 

C=0 stretch 

C02 symmetric stretch + 
CH2 (b.nd) 

C-H2 rocking and 
wagging 

1800 

Wlvenutffcars (cm.1) 

-1 Figure 11. Mid-frequency SEIRA spectra in the 1300 - 1800 cm" region. 

Analytes adsorbed onto Au surface where: a) is 16-mercaptohexadecanonic acid 

(~ 1.4 nm), b) is 11-mercaptoundencanoic acid (~1.0 nm), c) is 3-

mercaptopropionic acid (~0.4 nm), and d) is 11-mercaptoundencanoic acid 

deposited on bare Si (-10 nm) for comparison. 
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In Figure 11 one observes a prominent band in the region 1700 - 1750 cm" range, 

assigned to the CO stretching mode of the carboxylate.40"44 This band is relatively strong 

for MHA, weak for MUA and barely evident for MP A. Since the coverage of these 

molecules is expected to be quite similar the relative intensity differences again deserve 

some comment. Since the atomic motions associated with this mode are predominantly 

along a single C=0 bond axis, rotation of the carbonyl group can change the surface 

projection of the corresponding transition dipole moment very substantially, and 

correspondingly impact its absorption strength. So, weakness in the MPA case may be 

due to a different carboxylate headgroup orientation. This is supported by an ATR-

SEIRA study of MPA adsorption from ethanol and chloroform. In this study, surface 

hydrogen bonding between adjacent MPA molecules is implied to pull the C=0 bond into 

an orientation nearly parallel to the local Au surface, which might account for the 

diminished C=0 intensity in MPA relative to MUA/MHA films. This is also consistent 

with the ~1710 cm"1 frequency observed in this study - free C=0 is observed at ~1750 

cm"1. However, distance dependence to the SEIRA effect may also underpin this 

difference diminution in intensity. 

Literature spectra for MUA monolayers on smooth gold (obtained by grazing 

angle external reflection) show similar band frequencies to those that we observed for 

MPA, MUA, and MHA.40"44 The band observed between 1400 - 1460 cm"1 is assigned to 

a mixture of CH2 scissor deformation and the symmetric CO2 stretch absorption, the 

band at 1300 -1380 cm"1 is assigned to a mixture of CH2 rocking and wagging motions 

and the 700 - 800 cm"1 bands are assigned to CH2 bending modes. 

46 



Band intensities are summarized in Table 6, which also shows the approximate calculated 

enhancement for MHA, MUA, MPA modes on the Au layer. The calculated 

enhancement values for these molecules were in the range of 180 to 300. The band 

intensities that we observed were quite similar to those observed by Imae and colleagues 

(0.0015 - 0.0027) but our band strengths consistently increased with decreasing 

frequency, and at 1150 - 1350 cm"1 exceed those of the Imae study by about a factor of 

four. This is further reflected in the large enhancement values that we compute for bands 

in the 1150 -1350 cm"1 range (200 - 500). Our results also trend oppositely in to the 

unenhanced external reflection measurements of Nuzzo et al.2 and Corn et al.,40'41 in 

which studies very smooth, continuous, and relatively thick Au films approximating bulk 

Au surfaces were employed. This trend clearly implies a frequency dependence of the 

magnitude of the SEIRA enhancement that increases at lower infrared frequencies -

possibly due to a stronger electromagnetic resonance at the lower frequency. 
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a) 

b) 

c) 

d) •Ojoj-
1300 

CHj chain (out 
of-plane bend) 

1000 BOO 

W»r*numb*tt (em-1) 

Figure 12. Low-frequency SEIRA spectra in the 650 -1200 cm"1 region. 

Analytes adsorbed onto Au surface where: a) is 16-mercaptohexadecanonic acid 

(~ 1.4 nm), b) is 11-mercaptoundencanoic acid (-1.0 nm), c) is 3-

mercaptopropionic acid (~0.4 nm), and d) is 11-mercaptoundencanoic acid 

deposited on bare Si (-10 nm) for comparison. 

48 



a) 

t>> 

M 
>Ji^. fX^'-

«) 

Figure 13. a) 1% of 16-mercaptohexadecanonic acid, b) 11 -

mercaptoundencanoic acid, and c) 3-mercaptopropionic acid (-0.4 nm) in CCI4 

collected using a 50 mm pathlength NaCl cell. 
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Table 6. SEIRA enhancement calculations for MUA, MHA, and MPA on Au 

surface. 

M
o
le

cu
le

 
M

U
A

 
M

H
A

 
M

P
A

 

Band Assignment 

Frequency 

CH 
3100-2800 cm"1 

c=o 
1750-1700 cm"1 

COOH + CH2 scissor 

1440-1400 cm"1 

CH2 rock / wag 
1350-1150 cm"1 

CH stretch 
3100-2800 cm"1 

C=0 stretch 

1750-1700 cm"1 

COOH + CH2 scissor 
1440 - 1400cm"1 

CH2 rock / wag 
1350-1150 cm"1 

CH 
3100-2800 cm"1 

C=0 
1750-1700cm"1 

COOH + CH2 scissor 
1440 - 1400cm"1 

CH2 rock / wag 
1350 -1150cm'1 

1% solution 

A 

0.875 

0.956 

0.200 

0.156 

0.895 

0.998 

0.600 

0.166 

0.258 

0.357 

0.038 

0.036 

£ma 

(L/mole 
cm) 

634 

693 

145 

113 

475 

529 

318 

88 

698 

966 

103 

97 

1mM solution 
deposited on Au/ 

Si substrate 

A 

0.0015 

0.0035 

0.0035 

0.0061 
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3850 

2770 
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3.5 SEIRA Analysis of Si|Au|MUA|Silane Multilayers 

As mentioned in the previous section, mercaptoalkyl acids are interesting not only 

as analytes, but also as linkers for a second generation of analytes which by themselves 

do not bind to Au. In our study, MUA was used as the linker and a variety of silane 

based molecular layers were reacted with it. This serves as a test of both the silyl 

reactivity and the SEIRA enhancement for this second molecular layer that is slightly 

removed from the Au surface. The following compounds were reacted with pre-formed 

Si|Au|MUA layers and then rinsed and analyzed: N-(2-aminoethyl) 3-aminopropyl 

trimethoxysialne (AEAP-TM), vinyldimethyl chlorosilane (VDM-C1), and 

phenyldimethylsilyl chloride (PhDM-Cl). Figure 14 shows the mechanism of silylester 

formation which links the "second generation" silane layer at the Au|MUA surface. 
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Figure 14. Mechanism of MUA-analyte linkage through silylester formation. 
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SEIRA spectra are presented in Figures 15, 16, and 17 in the high mid and low 

frequency ranges respectively, and for a representative MUA layer (a), AEAP-TM (b), 

VDM-C1 (c), and PhDM-Cl (d) layers respectively. It is important to note at the outset 

that the SEIRA spectra below use their respective Si|Au|MUA as blanks so the net 

absorbance observed is due exclusively to either: a. the silyl overlayer, or b. any 

contributions from structural changes (i.e., changes to the C=0 or CO2 resonances) that 

occur due to silylester formation or c. any changes in the magnitude of the SEIRA effect 

induced by the formation of the relatively high refractive index second generation layer. 
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fawti number fcm-'1) 

Figure 15. High-frequency SEIRA spectra in the 2500 - 3900 cm"1 region of 

analytes deposited on MUA/ Au/ Si substrate treated with a) nothing, b) AEAP-

TM, c) VDM-C1, and d) PhDM-Cl. 
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Figure 16. Mid-frequency SEIRA spectra in the 1200 - 2100 cm"1 region of 

analytes deposited on MUA/ Si substrate treated with a) nothing, b) AEAP-TM, c) 

VDM-C1, and d) PhDM-Cl. 

55 



CH2 chain (out-
of-plane bend) 

MO 600 

wavenumber(cm-1) 

Figure 17. Low-frequency SEIRA spectra in the 500 -1200 cm" region of 

analytes deposited on MUA/ Si substrate treated with a) nothing, b) AEAP-TM, c) 

VDM-C1, and d) PhDM-Cl. 
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Figures 15-17a show the unmodified MUA layer referenced to Si|Au, and are 

similar to the above MUA spectra (Figure 10b) showing strong CH stretching modes in 

the 3000 cm" region in addition to a broad OH band near 3700cm"1. TheAEAP-TM 

results in Figures 15-17b show only weak C-H modes and no evidence of an NH band 

was observed in the 3500 - 3100 cm"1 range. The amplitudes of the C-H bands are 

roughly XA that of the original MUA layer (Figure 15a). Given the relative abundances of 

the C-H chromophore on MUA (20 per molecule) and AEAP-TM (16 per molecule) this 

is not unreasonable. It is also likely that the putative silane monolayer may be 

substantially lower density than the alkanethiol SAM one given the steric bulk of the 

trimethoxysilyl group at the point of attachment. Lastly, one might also anticipate a 

small SEIRA effect for this second layer given its distance from the Au surface. This 

being said, it is still possible that very little reaction may have taken place. The absence 

of NH resonance may simply be a signal-to-noise issue as there are only three NH bonds 

per molecule, but no band was seen. No band attributable to Si-0-CH3 was observed, nor 

was an Si-O-Si resonance which might form if adjacent silanes cross-linked. These 

bands would be expected near 1600 cm"1 (see solution phase spectra in Figure 18). 

Lastly, if the silyl ester had formed with the carboxylic acid it might also be expected to 

replace OH band intensity with a band characteristic of the silyl ester but this was not 

observed - rather a very slight intensification of the OH region was observed. 

The two chlorosilanes VDM-C1 and PHDM-C1 had largely similar results - i.e., 

CH resonances but no loss of OH but with some additional bands that were consistent 

with reactivity. For example, the PHDM-C1 spectra in 15, 16, and 17d show evidence of 

57 



aromatic CH, aromatic C=C, and CH bending modes characteristic of the phenyl group. 

Interestingly, both VDM-C1 and PHDM-C1 spectra present a weak band in the C=0 

stretching region in Figures 16c and d, but AEAP-TM does not. The presence of this 

band can only be attributed to an intensification of the existing MUA C=0 stretching 

mode without substantial frequency shift as it does not have a derivative line shape. The 

putative VDM-C1 layer presents (16c) a bands characteristic of the vinyl group. 

An alternate hypothesis for the lack of Si-0-CH3 bands in Figure 17b (or possibly 

elsewhere) is the loss of Au islands due to silanes undercutting the Au islands. But since 

the blank was Si|Au|MUA, in this case one would expect strong negative absorbance 

features corresponding to Au and MUA and these were not observed. 

Of the three silanes examined, the weakest case for derivatization is in the case of 

the AEAP-TM. One might rationalize this based on the relatively low reactivity of the 

methoxy silane since methoxy is among the less reactive leaving groups in Si based on 

SN2 reactions ,17 Aside from the expected bands near 1600 cm"1 for Si-OCH3, this 

molecule lacks distinctive chromophores, leaving this case somewhat ambiguous. Given 

this result enhancement calculations for this molecule are omitted. AFM images of the 

original Au, Au|MUA and Au|MUA| silane layers are shown in Figure 19. 

The reactivity order for these silanes is chloride > amino > methoxy. 
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Figure 18. 1% analytes in CC14 solution where: a) is PhDM-Cl, b) is VDM-C1, 

and c) is MUA collected through a NaCl window. 
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Figure 19. One by one micron AFM images of a) Au, b) Au|MUA, c) 

Au|MUA|AEAP-TM, d) Au|MUA|VDM-Cl, and e) Au|MUA|PhDM-Cl 
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Little difference was anticipated between the Au and Au|MUA surfaces since 

MUA is only expected to be 1 .Onm thick. Indeed, only slight differences in texture were 

observed between the Au|MUA and the assumed Au|MUA|AEAP-TM layer from - see 

Figure 19b and Figure 19c. The chlorosilane layers were clearly different in Figure 19d 

and 19e. Images were dominated by nodular structures that were much wider (100 nm) 

than the original Au islands (20 nm), and somewhat taller (50 nm) than the original Au 

islands (20 nm). If these data are truly representative of the sufaces then it would seem 

likely that the chlorosilanes may have undergone a nucleated polymerization reaction of 

some sort. 

The true physical dimension of the monolayer, dpHYS ~ 0.5 nm, was estimated 

using CambridgeSoft Chem3D and using a simple geometry optimization employing CS 

MOP AC Pro at the AMI level that had little impact on the result. With this 

approximation to dpHrs, the band intensities were analyzed and an apparent enhancement 

computed. The solution-phase spectra shown in Figure 17 were used to derive extinction 

coefficients for the modes listed and the corresponding bands in the surface spectra were 

used as above to compute the approximate relative enhancements. Table 7 shows the 

results for the chlorosilanes and according to this the CH and C=C modes appear to be 

strongly enhanced. Of course, these enhancements are in inverse proportion to the layer 

thickness dpHYs so these values must be considered upper estimates. 
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Table 7. Enhancement comparison for MUA/VDM-silyl and PhDM-silyl 

monolayers. 
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4. CONCLUSIONS 

Remarkably strong SIERA enhancements were observed in transmission FTIR 

experiments using ~7 to 8 nm sputtered and evaporated Au island films on polished Si. 

Thermal annealing of the Au was found to both increase the island sizes (according to 

AFM and SEM images) and to strongly decrease the SEIRA magnitude. Both 

physisorbed/>-NBA and chemisorbed mercaptoalkyl acids exhibited enhancements as 

large as 100 to 300 fold and for a broad range of modes (e.g., CH2 stretch, C=0 stretch, 

anti-symmetric CO2 stretch, or symmetric CO2 stretches). Absorbance signals for a 

secondary silane layers bound to mercaptoundecanoic acid were much weaker, but 

assuming monomolecular silane layers were still strongly enhanced for selected modes 

ranging from 5 to 100 fold. This diminution at the secondary layer indicates that: a. the 

enhancement phenomenon may attenuate quickly as a function of distance from the 

surface, and therefore that b. the protocol may not be as sensitive a tool for secondarily 

bound layers. However, transmission mode SEIRA using polished Si substrates with thin 

Au layer thickness ranging from 20 to 80 Angstroms may prove a powerful method for 

trace detection of surface adsorbing species as it yields strong signals for as little as 1 nm 

of adsorbed material corresponding to submonolayers detection limits. Interesting future 

work may include the development of new chemistries that enable surface linkage of 

either a broader range of analytes, or in contrast, a more selective set of surface linkers 

that target specific analytes. This for example would be especially useful as a forensic 

chemistry sensor where the detection of a given molecule of interest (e.g., illicit drugs or 

explosives and their precursors) may be present at low concentrations in a complex 
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mixture of compounds. At such a point it would begin to be possible to define the 

concentration detection limits for this type of sensor. 
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