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ABSTRACT

CHARACTERIZING ELEVATION EFFECTS OF A PROLATE SPHEROIDAL HRTF
MODEL

by Richard W. Novy

The scattering of an acoustic, monochromatic plane wave from a prolate
spheroidal human head is investigated to determine if incorporating this shape into the
human head-related transfer function (HRTF) could add the ability to model elevation
effects. Scattering is characterized for a prolate spheroid with length-to-width ratio of
roughly 2.5:1, and the results are compared with those from a sphere of diameter equal to
the major axis of the spheroid. Results are presented in the form of surface plots for five
different frequencies. Also discussed is the prolate spheroidal wave function, an example
of solving the Fourier coefficients involved in their generation, and some comments on

extending the HRTF using a triaxial ellipsoid.
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Introduction "

One of the main reasons that the audio portion of virtual reality lags behind the
video is that the interaction of 2 sound wave with the human head is very complicated.
Humans hear in three dimensions. Stereo is a clumsy attempt at three dimensional sound.
When listening through headphones, people perceive the sounds to be emanating from
inside the head. Simple mathematical models have been constructed to synthesize three-
dimensional sound, and some perform reasonably well, but none is convincing enough to
use in virtual reality applications. The most difficult part of the problem is creating a
head-related transfer function which convincingly reproduces mathematically what the
human head does to a sound wave in physical reality.

The human head-related transfer function, hereafter referred to as HRTF, captures
the physical clues that people use to locate sound sources. This transfer function defines
how sound is converted from a wave in free space into a pressure at the ear. It is affected
by head shape, body shape, pinna shape, and many other factors. The human HRTF is far
too complicated to model exactly, but reasonable models for it can be constructed by
using basic acoustic principles. Even if simple models are insufficient for applications,
they provide valuable insight to help in understanding experimentally measured HRTF
responses.

In an HRTF model, the head is represented by a simple shape in the appropriate

coordinate system, and an acoustic wave is scattered by the model head. Pressure is then
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sampled on the model head at the location of the ear. Considerable work has been done
on the HRTF by Duda and Martens using a spherical model head [Duda and Martens
1997]. Their model provides insight to the azimuthal and range effects of the HRTF.
This work was continued by cbmbining it with a pinna model, then successfully using the
results to synthesize binaural sound with coarse elevation effects [Brown 1996].

The elevation effects in the aforementioned work rely only on a model of the
human pinna. Due to its symmetry, a spherical head can only provide information for one
angular dimension. Azimuth was the dimension chosen for a number of reasons,
including the fact that a real head is more circular in azimuth. In order to gain some
understanding of the elevation effects caused by head shape on the response of the HRTF,
the head model must move away from spherical symmetry. Another shape, such as a
prolate spheroid, or a triaxial ellipsoid, must be used in order to produce these effects.
This solution is deceptively simple. The mathematics involved in using either the prolate
spheroidal or the ellipsoidal coordinate systems is far more complicated than that
involved in spherical coordinates. The solution to the three-dimensional Helmholz
equation in either of these coordinate systems is also much more computationally
intensive.

The work for this thesis began with the intention of using a triaxial ellipsoid to
model the human head. Some progress was made, but this approach was abandoned due
to time constraints. Some comments and references for using the triaxial ellipsoid appear

in Appendix A.




-~
S

With the triaxial ellipsdid eliminated, work began on modeling the HRTF using a
prolate spheroid. Building on published material on acoustic scattering by simple shapes
[Bowman, Senior, and Uslenghi 1987], a model HRTF was constructed using
MATLAB.® This model was based on plane wave diffraction by a prolate spheroid. Due
to various difficulties which will be discussed in greater detail, an exaggerated major-to-
minor axis ratio of roughly 2.5 to 1 was used in this model.

There has been at least one other published work using a prolate spheroidal model
HRTF [Sugiyama 1989], but it is written in Japanese. At the time this manuscript was
written, no Engiish translation was available. Although their work does not parallel this
thesis. their equations and figures are consistent with those used here.

The elevation results presented here are interesting. At low frequencies, it appears
that the spherical model and the spheroidal models have similar responses. When
frequencies increase, the responses are very different. These results will be discussed in
some detail in chapter five. The incorporation of the results into a fully functional HRTF
model, simulating sound with elevation effects, is well out of the scope of this project.

These results are very preliminary, and, as such, are limited in their applicability
to the HRTF. More work with the functions in question is required before a prolate
spheroidal model can reasonably be used for synthesis of binaural sound. Still. these
results, with their exaggerated head elongation, provide some insight to the acoustics due
to breaking the spherical symmetry, and will hopefully encourage others to continue

along this path.



1.0 Existing Models

The most studied model for the human HRTF uses a spherical head. Despite its
unrealistic shape, the ease of Working with this model is a great convenience due to its
simple geometry. In many cases, the spherical model is quite adequate to describe the
behavior of the HRTF. This is particularly true of the coarse, low-frequency behavior,
and of behavior that is limited to the equatorial plane.

The main limitation to the spherical model is due to its symmetry, which
manifests itself as an inability to recognize elevation differences in sound sources. A so-
called "cone of confusion"” is introduced. For a sound incident the ear at some angle 6
away from perpendicular, there is a cone with vertex of angle 26 at the ear, from whence
the sound might have its source. That is why this model is generally used without
elevation effects. Even this limitation is somewhat abated when the spherical model is
combined with current models of the human pinna. Together with the pinna model. the
spherical head is quite adequate to allow simulation of binaural sounds which can be

localized to within about thirty degrees of elevation [Brown 1996].

Figure 1.1 - The cone of confusion.




Duda and Martens have extensively researched the response of the HRTF for a
spherical head model. Their findings demonstrate that computational results using the
spherical model compare quité favorably with the overall pattern of measurements made
with the so-called KEMAR dummy, particularly at low frequencies. Both exhibit a six
decibel gain at high frequencies for signals with low angle of incidence to the ear. Both
exhibit the characteristic "bright spot" at incident angles approaching 180 degrees away

from the ear. Finally, at high frequencies, both exhibit a distinct roll-off at large angles

(Fig. 1.2).
Frequency response for different azimuths
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Figure 1.2 - Plot of frequency respounse of the spherical HRTF model from the work of Duda and
Martens. Frequency is plotted along the x-axis, and decibels along the y-axis. Each line represents a
different angle of incidence. Plots representing sounds directly or nearly directly incident the ear are
toward the top of the plot. As angle increases, the plots move toward the bottom of the graph.
Sounds incident exactly opposite the ear are represented by the arc through the middle of the piot.
This arc is evidence that this model produces the traditional bright spot due to constructive
interference. Note the 6 dB gain at higher frequencies for small incident angles, and the roll-off at
larger angles. Figure courtesy of Richard O. Duda.
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Clearly, the work by Duda and Martens is a strong foundation on which to build a

model for the HRTF which incorporates a more realistic response. Of particular interest
is improvement of elevation localization when the pinna model is incorporated. There is
no question that the pinna is ifnportant for elevation effects in the HRTF, but it appears to
provide only very coarse ability to locate sound sources in elevation. There are two other
obvious features humans use to assist in locating sounds in elevation: the head is not a
sphere, and sound reflects from the shoulders.

This thesis is a first attempt to characterize whether the head shape plays much of
a role in the HRTF. It does not attempt to incorporate a non-spherical head into a full-
blown HRTF model. It does, however, examine the amplitude of the sound at the
location of one ear on a prolate spheroid model head for a plane wave incident from all
directions.

This is the second known work for which a prolate spheroid is considered as the
basis for an HRTF. The first work appeared in the Journal of the Acoustical Society of
Japan [Sugiyama 1989]. At the time this manuscript was written, no English translation
of the work was available. Figure captioné are in English, and they compare spherical,
prolate spheroidal, and KEMAR measurements for inter-aural length and cross-
correlation coefficients in a reverberating room. Their equations are consistent with those
used in this work, but their study appears to be quite different. An English translation

should be a priority for anyone continuing this research.



2.0 Solution to the Helmholz Equation in Prolate Spheroidal Coordinates

In order to allow a reasonable chance of successfully modeling the human HRTF,
the shape used to model the head is extremely important. The main criterion which
influences the selection of head shape is separability of the Helmholz equation in three
dimensions. The head-shape must lie upon a surface formed by setting one of the
variables to a constant. For example, the most commonly used shape for the HRTF is the
sphere, formed by setting the range variable to a constant in sphefical coordinates.

The specification of one sphere to act as the head greatly simplifies the
mathematics involved when spherical coordinates are used. Selection of the same sphere
in the Cartesian coordinate system would complicate the mathematics involved. . For that
reason, using a coordinate system where the head shape occurs naturally is convenient.

Because human heads are generally roundish, most of the eleven separable
coordinate systems [Morse and Feshbach 1953] are inappropriate for HRTF models. The
only four that remain as reasonable choices are the spherical, prolate spheroidal, oblate
spheroidal, and triaxial ellipsoidal coordinate systems. Of these, the oblate spheroidal
coordinate system can immediately be discarded since it does not really resemble the
human head. The use of the spherical HRTF model was discussed in chapter one, and its
limitations are the motivation for this thesis. The remaining two coordinate systems are
the obvious choices for a more robust HRTF to include elevation effects. Of these two,

the prolate spheroidal coordinate system is far simpler.



Work for this thesis began with the "nothing ventured, nothing gained" attitude,
by attempting to model the HRTF using triaxial ellipsoidal coordinates. The work was
making progress, but was abandoned due to time constraints. A brief discussion of
ellipsoidal coordinates, and references to important papers on the subject, are contained in
Appendix A.

Although using a prolate spheroid to model the human head did nothing to
eliminate idealizations due to the inherent azimuthal symmaetry, insight was clearly gained
over spherical coordinates. The question of whether azimuthal asymmetry impacts the
HRTF, however, remains unanswered.

Since the prolate spheroidal coordinate system is not commonly used, and many
people are completely unfamiliar with it, a discussion of the coordinate system will
precede the discussion of separation of variables in it. The most widely cited work in
English language research appears to be [Flammer 1957], and it is his notation that is
used throughout this thesis. A more readily available resource, featuring a mostly
adequate summary of prolate spheroidal coordinates and the spheroidal wave function--
the solution to the Helmholz equation in this coordinate system--is available in
[Abramowitz and Stegun 1972]. The material presented here is based upon their
summary in chapter 21, and all equations may be found there.

The prolate spheroidal coordinate system is formed by rotating the two-

dimensional elliptical coordinate system about the major axis of the ellipses. The prolate
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spheroidal coordinate system is‘ a family of confocal prolate spheroids and hyperbeloids
of revolution (Fig. 2.1). The rotated elliptical coordinates are

_ntn __n-n 51
; —2f,r7 Yk (2.1)

where r| and r; are the distances from a given point to each focus of the confocal ellipses
and hyperbolas, and 2f'is the interfocal distance. Upon revolving the coordinate system
about the major axis of the ellipses, three coordinates emerge: £, 1, and @. Flammer
orients the ellipsoids resulting from this revolution in such a way that the major axes lie
along the Cartesian z-axis. For any given point (£,n,¢), the spheroid containing the point
is given by &, the hyperboloid by 7, and the angle about the axis of revolution by ¢.

The range of £ is [1,e0), where £=1 represents the degenerate ellipsoid forming a
line segment joining the foci, and &= is an infinitely large sphere (such that the distance
2f can be considered zero). The range of n is [-1,1], where n=-1, +1 are degenerate
hyperboloids forming rays along the negative and positive z-axes, respectively. The value
n=0 is the degenerate hyperboloid forming the xy-plane. The range of ¢ is [0,27),

measured as an angle around the axis of rotation.

Figure 2.1 - The prolate spheroidal geometry [Bowman, Senior, and Uslenghi 1987]. Figure appears
by permission of Taylor and Francis, Inc.



The Cartesian coordinates (x,y,z) relate to the prolate spheroidal coordinates

(&,1,9) by the following relations:

X=-2£d\/(§2-1)(1-rf) cos@. (Z.ia)
y= ;l-dJ(fz -1)(1-7*)sing, (2.2b)

dén. (2.2¢)

where 4 is the distance between the foci; It is clear from the form of these expressions
that it is far simpler to convert from prolate spheroidal coordinates to Cartesian than in
the other direction.

In spheroidal coordinates, the Wave Equation takes the form

e - e 0] SR Eh a0 @9

where ¢ = i—d » the product of the semi-focal distance and the wavenumber [Bowman,

10

Senior, and Uslenghi 1987]. The variable c is used as a way to represent frequency in the

literature, and should not be confused with the speed of sound. It is worth noting that
equation (2.4) can be converted to the oblate spheroidal coordinate system by simply
replacing £ by &, and ¢ by -ic [Flammer 1957].

If the angular solution to the wave equation is represented by Sma(c,n), and the

radial by Rmn(c,£), then the function ® can be written in the separable form




1

@ =R (c,%)S,.(c,n) ::15 me. (2.5)

Rumn(c,E) and Spn(c,m) are the solution to the same ordinary differential equation over

different ranges of the independent variable (recall the ranges of € and n):

2 [(52 - l)d% R.(c, «f)] - (lm —*E + J R.(c.£)=0 (2.6)

—— ml
dé¢ £ -1

and

2

d . d 22 m —
d—ﬂ[(l—n )d—ﬂSM(c, 77):,'*'('1,”. -c'n —ﬁ)SM(c, m=0. (2.7

The quantity Amy is both separation constant and eigenvalue, determined such that the
value of Rmn(c,£) is finite at E=%1, and S,..(c,n) is finite at n=+1. The solutions to these

two equations are discussed in more detail in the next chapter.




3.0 Prolate Spheroidal Wave Functions

3.1 The Prolate Angular Function

The solutions to equations (2.6) and (2.7) are the prolate spheroidal angular
and radial wave functions. The solutions have some similarities, but the differences
are very strong, due mainly to the boundary conditions. Each type will be discussed
separately. The material presented here is due to Flammer.

The angular solution, Sma(c,n), actually takes two forms. Both are defined as
Fourier expansions in associated Legendre functions. The prolate angular function of

the first kind is defined as

SO(em)= Y. d(c)Bn (7). 3.1

r=0]

The prolate angular function of the second kind is defined as

o !

Sem(c:1)= 3 d ()05, (7). (3.2)

r=—<c

where, in both cases, d™ is the Fourier coefficient, and the prime above the
summation sign indicates that it includes only even values of  when (n-m) is even,
and odd values of r when (n-m) is odd. P™ refers to the associated Legendre function
of the first kind, and Q" to the associated Legendre function of the second kind. The

angular spheroidal wave function of the second kind is not considered part of the

solution to the Helmholz equation because it is singular at n=+1. For that reason, it
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will not be further discussed. Henceforth, S,.(c,n) will implicitly refer only to the

prolate angular function of the first kind.

Presented below are drawings of the first few angle functions, generated by

MATLAB?® code for the angle function, S. These plots make use of coefficients da;"

(or 4™) though dg™ (or dJ), which is the extent the series were expanded for all

work presented in this thesis.
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Figure 3.1: Angular Spheroidal Wave Functions, Upper left, =0, 0=0. Upper right, m=1, n=1. Lower left, m=1, n=2.
Lower right, m=1, n=3. The variable m is the degree, and n the order, of the angular spheroidal wave function.

The main difficulty in working with the angular spheroidal function is the

generation of the coefficients @™ . This is not a difficulty that is easy to overcome.

There is no analytic representation for the d™ coefficients. Instead, they must be
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represented by series expansions in ¢, which must be generated individually, because
there is no formula for this, either. Upon studying the material presented later in this
section, it becomes clear that there is no obvious way to generate these series
computationally. As mentioned earlier, the independent variable, ¢, is the product of
half the interfocal length of the spheroid, and the wavenumber of the incoming
acoustic signal. It is used as the representation of frequency in these expressions.

There is no aesthetic way to present the recursions and normalizations
involved in the derivation of these coefficients. Both Flammer and Abramowitz and
Stegun are unclear in communicating the generation of the series representations of
these coefficients, so this material will be followed by an example with comments.
Flammer presents the following equations with some explanation in the text, whereas
Abramowitz and Stegun essentially present the material in the form of a list without
explanation. Both books also furnish a great deal of material not included here, and
Flammer, in particular, discusses convergence requirements of some continued
fractions involved in generation of these relations. In fact, the material presented here
is limited to a practical minimum. The interested reader should refer to Flammer if
more depth is required. This material should be sufficient to allow—with perhaps
considerable work—generation of any coefficient desired.

The coefficients d™ subscribe to the following recursion relation due to

Flammer:
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(2m+r+2)2m+r+1)c (0)
(2m+2r +3)2m+2r+5)

+ [ m+r)im+r+1)-4,,(c)+ zgn;:)z(:nj)r(;;):;r”f;i L cz]d;"" (c)
r(r-1)c? -

(2m+2r —3)2m+2r 1) ™(c)=0, (r=0). (3.3)

This is a second-order difference equation with two non-trivial solutions, only one of

which converges. The solution of interest is, of course, the converging one, where the

ratio d™ /d™, approaches zero as —cz/ (4r2). With that condition enforced, equation

(3.1) is absolutely convergent for all finite 7.

The eigenvalues of a transcendental equation relating two continued fractions,
developed by Flammer, are important to the construction of the d™ coefficients. The
transcendental equation itself is not directly used, so it is not presented here. The
eigenvalues are in the form of a power series—also in ¢”. Algebraic manipulation of
the continued fraction representation of the eigenvalues, described in Flammer, yields
the following expressions, allowing easy calculation of the first five terms in the
series representation of the eigenvalues. Flammer lists a sixth term which is omitted

here for the sake of space. The desired eigenvalues have the form

€)= 0™, (3.4)
k

and the first five coefficients are expanded below.



6" =n(n+1) (3.5)
m_ 1|, (2m=1)2m+1) 3
&= 2[1 (2n-1)(2n +3)] -6

g =l[(n—m—l)(n;m)(n+m-l)(n+m)
) (2n-3)(2n-1)’(2n +1)

(3.7)

(n—m+1)(n—m+2)(n+m+1)(n+m+2)J
(2n+1)(2n+3)’(2n +5)

25" =(4m* -1

>[(n—-m+l)(n—m+2)(n+m+1)(n+m+2)
(2n-1)(2n+1)(2n-3)’(2n+5)(2n+7)

(n—m—l)(n—m)(n+m—1)(n+m) (3.8)
(2n-5)(2n-3)(2n~1)(2n +1)(2n+3) '

" =24n’ 1) A+ L B+1C+L1D (.9)

(n—:n—l)(n—m)(n+m—l)(n+m) ’
(2n-5)(2n-3)(2n-1)' (2n+1)(2n +3)’

_ (i=mtl(n-me2)(ntme1fn+m+2) (3.10)

(2n-1)"(2n+1)(2n +3)'(2n+5)(2n + 7)°

B (n—m-3)(n—m- 2)(n—m—1)(n1—m)(n+ m=3)(n+m=2)(n+m-1)(n+m)
(2n-7)(2n-5)(2n-3)'(2n~1)'(2n+1)

(n—m+l)(n—m+2)(n—m+3)(n—m+4)(n+m+l)(n+m+2)(n+m+3)(n+m+4)

(2n+1)2n+3)'(2n+5)(2n+7)°(2n+9)

(3.11)

16
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_ (n—m+l)z(n—m+2)z(n+m+l)2(n+m+2)2

< (2n+1)*(2n+3)'(2n+5)°

(n—-m- l)z(n - m)z(n +m-— l)z(n + m)2

3 5 5 (3.12)
(2r-3)(2n- 1) (2n+1)

D= (n=m—-1)(n=m)(n—m+1)n-m+2)n+m—1)n+mn+m+ In+m+2)
(2n-3)(2n-1)"(2n+1)*(2n+3)"(2n+5)

(3.13)
The ¢¢" term is in the form Abramowitz and Stegun provide. Flammer depicts it fully
expanded as one long expression.
The above is adequate to determine the coefficients 4™ to within an arbitrary
factor of d7". In order to completely determine all the coefficients, a normalization

scheme must be employed. There are three schemes outlined in Abramowitz and
Stegun, including Flammer's. One more is presented by Morse and Feshbach, who
use far different notation, and somewhat different methods to address the prolate
spheroidal wave functions. The normalization scheme of choice is F lammer's, and

that is the one presented here. Flammer's relations are:

e () eam) () (e m)

% @ Ty

(n-m) even, (3.14a)

r=0 2 3 5

'EDF(re2mal)t () (n et mt1)!

T G e o (e =iy ==

r=|

(n-m) odd. (3.14b)
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Again, the prime above the summation sign indicates the that only even terms are
used in (3.14a), and odd terms in (3.14b).

Expanding the coefficients ™ is where both Flammer, and Abramowitz and
Stegun are unclear. To a persén who is not constantly working with this type of
expression, the approach to take in solving for the appropriate coefficients for any
given 4 is really not very obvious. For this reason, the determination of dyis
provided as an example. Upon studying this example, it should be clear how to
proceed in generating any d”"desired. Hopefully, the inclusion of this example will
make work with spheroidal wave functions accessible to more people. The
computations for this example were graciously provided by Dr. Thomas B. A. Senior
of the University of Michigan Radiation Laboratory, in an unpublished
correspondence [Senior 1998]. In fact, without Professor Senior's generous
assistance, the majority of this chapter would not have been written. A 1960 paper by
Senior, appearing in the Canadian Journal of Physics, presents the series expansion
produced by this example, and that for six other coefficients [Senior 1960].

For 4 in this example, m and n are set to zero. Begin by entering zeros in

the appropriate places in equation (3.3). This reduces the recursion relation to

2r(r+1)-1
(2r —1)(2r +3

(r + 2)(r + 1)(:2
(2r +3)(2r +5)

) cz}dﬁ”(c)

d(c) + [r(r +1) = Ag(c) +

r(r - l)c2 00
(2r=-3)2r-y

(c)=0. (3.15)
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It is also necessary to determine the series for Ax(c) from equation (3.4), by setting

m and n to zero in equations (3.5) through (3.13). Upon doing that, the resulting

series is

Ao(c) =1+t~ + e+, (3.16)

where y = 7%= (Notation is Senior’s.)

When r is set to zero in equation (3.15), the recursion reduces to
7y =(Ag(c) -1c?)dy”. (3.17
By substituting equation (3.16) into (3.17), the resulting recursion is in place as
d¥ =[%c2—56%c4+'—,3§§c6+...]d3°. (3.18)
Next, the normalization scheme must be simplified by entering zeros for m

and n. Because m and n are both zero, (n-m) is even, so equation (3.14a) is the correct

expression to use. Upon entering zeros in the appropriate places, this reduces to

< (—l)ér! 00
——d " =1. 3.19
2% TR G

Expanding this series yields

d’ —1dP +2dP® -3d®+. . .=1. (3.20)
The normalization expansion in equation (3.20) is the key to finding the expansion for
dy’ . Since the d™ coefficients will be represented in series expansions, they can be

written as:

dy’ = Ay + AC* + A, c + AicS+. (321)



dy’ = Bc* + Bye* + B+, (3.22)
and
dY =Cyc* + Ce+... (3.23)
When writing these expansioﬁs, it is critical to remember that the expansion begins
with the ¢ term having the same exponent as the subscript on d. Substituting

equations (3.21) through (3.23) into equation (3.20), and equating coefficients shows

that
A, =1, (3.25)
A -1B =0, (3.26)
and
4,-3B,+3C, =0. 3.27)
With some manipulation, equation (3.18) can be written as
d?::-g{b-écl-ﬁyf‘-”}dyc{ (3.28)

Upon substituting the expansions in equations (3.21) and (3.22), this becomes

&+B§:+&8+m:—%ﬁ—%ﬁ—J?ftm}L%+A¢2+43+”}. (3.29)
Once again, equating coefficients reveals that

B=-54=-%. (3.30)
Using this result with (3.25) makes it clear that

4=—1. (3.31)

[t is also not difficult to show that



B =-4(4-3)=rk. 632)
and that
B=-t{4-d4-12) 633

With some manipulation,

9B, + Ay =4 A4+ = B (3.34)

which shall be referred to shortly.
In order to arrive at the 4, term, some additional work is required.
Substituting r = 2 into equation (3.3) yields the recursion

00
dy" +3d + {92 A5 +12c?) 4 -o. (3.35)
C-

Upon replacing A4,(c) with its expansion, this develops into

00
d’ +3dP +{9+3c7 + L'+ } 0. (3.36)
=

Once again, substituting the expansion forms of the d”" terms (equations 3.21 - 3.23),

and equating coefficients, produces relations which allow determination of A In
particular, the relation

A4, +9B;+3 B, +B +3C, =0, (3.37)
in concert with equation (3.34), produces

_;4.”.57.*.%(:'14.%—#.:0, (3.38)

SO,



C =z (3.39)

Equation (3.27) can now be solved for 45, yielding

A, =5 (3.40)

305 -
Putting the terms together finally produces the series representation for d,°,
which is
4’ =1-55¢* + 85" + 0(cf). (3.41)

As mentioned above, Senior has expanded several other series through the number of

terms that can be achieved without further expansion of 4y(c).

3.2 The Prolate Radial Function

Like the angle functions, there are two solutions to the radial portion of the
wave equation in prolate spheroidal coordinates. Unlike the angle functions, neither
solution can be discarded in a cavalier manner, as both solutions can be forced to fit
the boundary conditions. Additionally, under Neumann conditions (rigid spheroid),
the first derivative of the radial functions are used in place of the function itself, The
condition at infinity is the Somerfeld Radiation Condition. Discussion of the
Somerfeld Radiation Condition is out of the scope of this thesis. and it is taken on
faith that this condition is met.

In addition to the two solutions mentioned above, two linear combinations of

the solutions exist in much the same way that Bessell Functions combine to create
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Hankel functions. This relationship is more than a similarity. In fact, the spherical

Bessel and spherical Hankel functions are both degenerate forms of the radial prolate
spheroidal wave functions, in the limit as the interfocal distance approaches zero.
The form of these functions is described below.

The radial spheroidal wave function of the first kind is an expansion in

spherical Bessel functions of the first kind:

Ele:) =3 1(2m+r) (5.5-1)- 2, A e )M Jn-r(€8).
Z dmn( ) r=0,1 !
r=0.1 r!
(3.42)

where the summation in the denominator is a scaling factor. The radial spheroidal
wave function of the second kind is similar, but is an expansion in spherical Bessel

functions of the second kind:

2 \%m o !
551 IJ Z lrvm-ndmn( )(2m+r) y,,,,,(Cf).

SO —— (
Z a"™(c) 2m+r)!
r=0,1 ’ r!

(3.43)
The radial spheroidal wave functions of the third and fourth kinds are defined
as:
RV, =R0(c,&) 2 iRP(c,0). (3.44)

Flammer describes R')(c, &) as converging very slowly, perhaps only in the limit. Of

course, this is also true of R)(c,&) and R (c,&). Because these expressions




converge slowly, it becomes quite computationally intensive to calculate specific
values in the radial direction, including at the surface of the prolate spheroid of
interest. This is one reason why a lookup table approach was used for the radial
functions. Further discussion of the lookup table appears in a later chapter, but
because a lookup table was used, no plots of the radial function were generated in

conjunction with this thesis.




4.0 Construction of the HRTF Models

The traditional definition of the HRTF is the ratio of the pressure at the ear with
the free-field pressure at the origin. Rather than working with pressure, the acoustics
literature prefers to work with velocity potential (x,r). Pressure is retrieved from the
velocity potential by the following expression [Morse and Feshbach 1953]:

174
—p ==y, 4.1
pP-p, a Y 4.1)

where p, is the ambient pressure, and v is a damping coefficient (and should not be
confused with y in the previous chapter). The velocity potential at the ear is defined as

V.+Vl:;, , where V] is the incident wave, and V% is the scattered wave. The velocity

potential at the origin is defined as ¥|._,. The HRTF is the ratio of the two:

V4V,
x=¢ _ (4.2)
v

HRTF =

[}

X =

Here. the nomenclature X = £, should be interpreted as representing the surface of the
head model, i.e., the sphere or prolate spheroid of interest, in its appropriate coordinate
system. Because the waves are propagating in a medium with negligible viscosity (air), y
is set to 0, so damping is neglected. The time dependence has the form e, thus it is

separable from the rest of the expression. Upon taking the partial derivative of ¥ with
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respect to time to achieve the representation for pressure, most of the expression is treated
as a constant, and a factor of iwr—with a density constant &, if not normalized away—is
produced. The extra constants, as well as the time dependence, cancel upon taking the
ratio described above. Workihg with pressure or velocity potential is, therefore,

equivalent when modeling the response of the HRTF.

4.1 Spherical HRTF Model

Investigation into the response, at the location of the human ear, of a plane wave
scattered by a prolate spheroidal model head would be meaningless without first
preparing a benchmark. The commonly used spherical-head model is the ideal place to
begin the investigation, as it will provide a reference against which to gauge the response
of the prolate spheroid. The approach used here developed quite differently from that of
Duda and Martens, but the results are consistent.

The spherical model described below is based on the material appearing in chapter
10 of [Bowman, Senior, and Uslenghi 1987], and that material is discussed in far greater
detail in that book. Familiarity with the spherical coordinate system is assumed.

Recall that the denominator of the HRTF is V):-o- In spherical coordinates, the
form of this expression is

V,= exp{ ilcr[cos 8, cos& +sin g, sin fcos(p - (po)]}, 4.3)

r=0
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With r setto 0, ¥;=1. The denohminator of the HRTF being unity greatly simplifies the

expressions, and the HRTF becomes simply V;+7 at the surface of the sphere. The

expression, when r = a, is

3 & P(cos6)
HRTF =V, +V, = —(ka)z n=o( i)"(2n+ 1)———h:,), ) (4.4)

Note that in the denominator, the first derivative of the spherical Hankel function appears,
in order to meet the acoustically hard boundary conditions.

A test to verify this model is describing the same behavior as that described by
Duda and Martens, so one of their plots was duplicated using the relations described in
Bowman, Senior, and Uslenghi. The original plot, produced by the author, using Duda
and Martens' original MATLAB® code, appeared as Figure (1.2). The reproduction,

using equation (4.4), appears below.

Normalized Frequency Response by Angle
10 v v v

Response indB

10" 10° 10’ 10’
Normalized Frequency

Figure 4.1 - Plot of frequency response from spherical head model of the HRTF using the methods
developed for this thesis. Compare with the plot in figure (1.2). Jagged lines in the plot are due to
aliasing caused by insufficient sample points at high frequencies. Normalized frequency is c.



There are several notable features of the two plots which merit discussion. The
code developed by Duda and Martens will generate figure (1.2) in roughly five minutes
on a computer equipped with 2200 MHz CPU. The code developed for this thesis took
roughly seven hours to plot the same graph. There is one main reason for this. Duda and
Martens spent a great deal of effort developing and exploiting recursions to eliminate
redundant calculations. For this thesis, the Legendre and Hankel functions were
generated from scratch for each term in equation (4.4), amounting to over 250 terms for
the highest of frequencies. That the algorithm used in figure (4.1) was intended as a
verification of this HRTF model, and was not intended to be used as a research tool, made
a seven-hour run tolerable for one execution of the code. Duda and Martens' spherical
HRTF algorithm is clearly the more efficient by orders of magnitude.

Most of the seven-hour processing time was taken up by extending the number of
terms used in series (4.4) for higher frequencies. A self-adjusting algorithm was used to
increase the number of terms in equation (4.4) as a function of kg, itself a function of
frequency. A plot created while developing this algorithm, (F ig 4.2), demonstrates how
crucial an adequate number of terms can be for this type of model. F igure (4.2) was
generated using the number of terms for all frequencies that figure (4.1) used for the very
lowest of frequencies. Figure (4.2) was generated in under 20 minutes, using the same

brute-force methods of figure (4.1), other than using fewer terms.
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10 10° 10
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Figure 4.2 - This plot demonstrates how critical a sufficient number of terms can be. This is the same
plot as in figure (4.1) with two major differences. First, the frequency axis is not normalized, and
second, the number of terms was too small for the higher frequencies. The model holds through
about 10* then it fails completely. The point of failure would be near 10' if the plot were normalized.

An additional interesting feature of figure (4.1) is the jaggedness of the plot in the
higher frequency range. This is a result of the limited number of samples used for
calculating the curves. Only ten samples were used per decade. This small number of
terms is sufficient to verify that the overall performance of the model is the same as the

Duda-Martens model, but insufficient to prevent aliasing at the higher frequencies.

4.2 Prolate Spheroidal HRTF Model

The prolate spheroidal HRTF model is based on the work presented in chapter 11
of [Bowman, Senior, and Uslenghi 1987]. It is a mathematical model of a plane wave

incident upon an acoustically rigid prolate spheroid.
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The plane wave is incident at an angle &, measured from the positive z-axis. A
plane wave incident at the angle { has (dimensionless) velocity potential
V,= exp{ik(xsin{+ zcos 4’)} . (4.5)
At the origin, ¥;=1. Once again, the denominator of the HRTF ratio presented in
equation (4.2) is unity. As with the spherical case, the HRTF is equivalent to looking at
Vi + V; at the surface of the spheroid. In the prolate case, this expression is

2 L] in+l 1
V+V, = &, ——S,.(c.cos&)S, (c,n)cosmep. (4.6)
o) W T ) o8 u(ern)

where &, is the Neumann Symbol (&, = 1 when m =0, and &, = 2 when m is another
positive integer). Note that the first derivative of the radial prolate function appears in the

denominator due to the Neumann boundary condition imposed at the spheroid.

4.3 MATLAB® Implementation
Creating a MATLAB® algorithm to calculate the HRTF response for a plane

wave incident the spherical head from any given angle is quite straightforward. In order
to keep this model consistent with how the prolate model was developed, the incident
wave needed to have its direction specified by an elevation and azimuth angle. The main
difficulty was converting these two angles into the single angle required by equation

(4.4). The solution to this problem proved to be a simple application of the law of
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Incident Wave

Figure 4.3 - Azimuth angle ¢ and elevation angle /2 -  are converted to one angle q by use of the
Iaw of cosines for spherical triangles.

cosines for spherical triangles [Spiegel 1968]. Due to the geometry used for the problem,
the triangle in question is always a right triangle, which simplifies the expression used for
this angle conversion to

= arccos[cos pcos(:-¢ )] : 4.7)

The angle 6 in equation (4.7) is inserted in the Legendre polynomial of equation (4.4).
The Legendre polynomial is generated using the MATLAB® function Legendre, keeping
only the m =0 terms. The derivative of the spherical Hankel function is constructed by
generating the derivatives of the spherical Bessel functions of the first and second kind,
then adding them per the definition of the spherical Hankel function,
H(z)=j(z)+i(z2). (4.8)
The spherical functions are constructed per their definitions, using the MATLAB®
functions besselj and bessely. The rest of the calculation is simply an exercise in

summing a finite series.



Creating an algorithm for the prolate model HRTF proved to be much more
challenging. Because understanding of the generation of the coefficients d™ was
achieved very late, a look-up table approach was forced on the project. For the derivative
of the radial function, a look-ﬁp table proved invaluable. Whenever one of these values
was required, the MATLAB® code retrieved it from a table rather than generating the
value. The roundest spheroid for which tabulated coefficients [Flammer 1957] were
available was §; = 1.077, defining a prolate spheroid with length-to-width ratio of roughly
23:1. Tt was this restriction on &, that forced this study to be limited to the plane wave
case, representing an acoustic point source at infinity. The ability to generate other
coefficients 4" allows study of range effects because £ is then a variable that can be
worked with.

There were two main look-up tables used, both based on tabulated values
appearing in [Flammer 1957]. For the prolate angle functions, the coefficients d™ were
looked up, then the angle functions calculated for any angular resolution desired. This is
possible because the angle function only depends on the d™ specific to the surface of

interest.

For the radial portion of the acoustic equation, the derivative of the radial function
was looked up. The reasons for this were the unwieldy form of the derivative, and the
slow convergence of the prolate radial function of the second kind. Sufficient accuracy

for the radial function would have been very expensive in terms of computation time.
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Also, looking up the radial portion allowed the terms to be calculated in one table

reference for 47" instead of many. Since resolution in range was not an issue, it was
preferable to use the efficiency of the direct table reference. All other terms in equation
(4.6) are generated on the fly, and a simple summation of a double finite series ties all the
pieces together. A copy of all MATLAB® code can be found in the Appendix B, and the

look-up tables in Appendix C.



5.0 Results

5.1 Comments on HRTF Models and Presentation of Results

The simulations run with the spherical and prolate spheroidal HRTF models were
identical save for the acoustically rigid head-shape. A plane wave of a pure acoustic tone
was incident the surface from different directions. The wave started from the direction of
the positive z-axis. An elevation angle £ is defined as the angle between the positive z-
axis and the direction the plane wave is arriving from. In other words, it is measured
from the vertical, rather than from the horizontal, which is normally thought of when
elevation is discussed (Fig. 5.1). The angle ¢ was incremented in 5 degree steps. from 0
to 90 degfees. For each angle £. the azimuth. ¢, was varied from 0 to 180 degrees. also
in 5 degree steps. An angle ¢ =180 is directly incident the ear, whereas an angleof =0
is incident on the other side of the head. where the other ear would be located.

In the first step of Z, the plane wave is incident the very top of the head. Since
there is no elevation component to the direction of incidence, there is no effect as (0}
changes. The wave is simply pivots around the z-axis. Once € > 0. azimuthal effects

begin to appear. and as £ grows. these effects become more pronounced (Figure 5.1).
The frequency of the incident wave was limited by available values for d™ .

which were determined via tables included in [Flammer 1957]. This. in turn. limited the

values for c. The variable c is related to the wave number and semi-focal distance by
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Figure 5.1 - Geometry of the incident plane waves.

For this thesis, ¢ was limited to the integers 1,2.3.4, and 5. This corresponds to
frequencies of f; = 530 Hz, f5= 1060 Hz, £; = 1590 Hz, f, = 2120 Hz, and £; = 2650 Hz.
and wavelengths of 65 cm. 32 cm. 22 cm, 16 cm, and 13 cm., respectively. Fortunately.
all of these frequencies fall into the region of (Figure 4.2) with sufficient terms for
convergence. This allowed the fast algorithm, with relatively few terms in ¢, to be used
in the spherical HRTF model. The MATLAB® routine for the spherical model runs to
completion in under seven minutes on a computer equipped with 200 MHz CPU. In
contrast. the routine for the prolate spheroid model takes about a hour. even with the
lookup tables.

Because the spheroidal model was restricted to prolate spheroids for which

Flammer included tables. the selection of head shapes was very limited. Flammer's tables



were taken from earlier works using the prolate spheroid to model a wire in antenna
theory. As unintuitive as it might be, the standard way to refer to a specific spheroidal
surface is by its § coordinate, and the spheroid of interest is noted as &i- The relationship
between &, and length-to-width ratio of the prolate spheroid is

length &
width —\[g 1"

(6.2)

The roundest spheroid with a preconstructed list of coefficients and values available in
[Flammer 1957] is €, = 1.077. This translates to length-to-width ratio of 2.69:1. In order
to be consistent with [Sugiyama 1989], the height of the model head is fixed at 22.2 cm.
The fact that £, = 1.077 forces the width of the model head to 8.25 cm; not a particularly
convincing head shape. Despite the obvious drawbacks to exaggerating the eccentricity.
in many ways it is more useful than a realistic head shape. The differences between the
spherical and prolate spheroidal head models are greatly magnified. and the effects of
going out-of-round are more evident.

The results with the spherical model are rather subtle, and are presented in several
plots below. The azimuth angle. o, is plotted along the right side of the diagram. and the
elevation angle. Z, is plotted along the left side—both are in degrees. The plots on the left
half of the page have amplitude plotted along the z-axis». normalized in the sense that the
incident wave is unity. The plots on the right half of the page are similar to those on the
left except the z-axis is plotted in decibels. Results from the top of the head are located

along the right-front edge. Results from the wave directly incident the ear is located at




the back-right corner of the plot. The characteristic_ "bright spot.” resulting when the
wave is incident the side of the head opposite the ear, is seen at the back-left corner of the
plot. The "bright-spot” effect is due to constructive interference of the scattered acoustic
waves, traveling around the head in each direction and meeting at the opposite side. Note
that the frequencies used are in the low and moderate ranges for the spherical model when
the transition from low to high is defined as a signal with wavelength equal to the
circumference of the sphere. For the prolate spheroidal model, some interesting effects
appear whenc =4 andc=5. Two very-high-frequency plots. using the spherical model.
are also presented for comparison to these. Below each surface plot appears the same
plot looking at the elevation-amplitude plane or elevation-decibel plane, respectively.
This allows a more accurate measure of the peaks and troughs of the response surfaces.
MATLAB® was allowed to auto-scale the z-axis because much of the detail is lost when
the scales are fixed. Fixed z-axis plots appear at the end of this chapter.

In order to demonstrate the higher-frequency characteristics of the response of the
spherical HRTF. plots have been generated for ¢ = 20. and ¢ = 40. Clearly. the high-
frequency characteristics of the spherical model HRTF differ from those of the spheroidal
HRTF.

Frequency and sphere radius are coupled. so increasing frequency while holding
the rad.us constant has the same effect as increasing the radius whil.e holding the

frequency constant. The sphere used in these simulations had a 22.2 cm diameter, which




is the same size as the major-axis of the prolate spheroid. There are some obvious

features which are strikingly different between the two HRTF models.

sphere. 530 Hz (c = 1)

sormre. 530 Hz(c= 1)

Normalized Pressure

Figure 5.2 - Response of a 530 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back

corner).
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Figure 5.3 - Response of a 530 Hz plane wave incident a spherical head model. These plots are the
same as those appearing in figure 5.2 except only the elevation effects are seen.



sphere. 1060 Hz (c = 2)

sphare, 1080 Hz (c = 2}
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Normalized Pressure

Figure 5.4 - Response of a 1060 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back

corner).
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Figure 5.5 - Response of a 1060 Hz plane wave incident a spherical head model. These plots are the
same as those appearing in figure 5.4 except only the elevation effects are seen.
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sphere. 1590 Mz (c = 3)

Figure 5.6 - Response of a 1590 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back

corner).
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Figure 5.7 - Response of a 1590 Hz plane wave incident a spherical head model. These plots are the
same as those appearing in figure 5.6 except only the elevation effects are seen.
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sphere. 2120 Mz (c = 4)

sphere. 2120 Hz(c = 4)

4,
0.,
Y%

0%
%

()
"0
)
;'I
’,
%,

()
0"
¢,
0.0,
0%
()
%%
( ;,;’ %
)

O
2000
0%
0,
.

5
0

dB

Normalized Pressure

Figure 5.8 - Response of a 2120 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back

corner).
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Figure 5.9 - Response of a 2120 Hz plane wave incident a spherical head model. These plots are the
same as those appearing in figure 5.8 except only the elevation effects are seen.



sphere_ 2650 Hz (c = 5)

sphere, 2650 Hz (c = 5)

Normalized Pressure

Figure 5.10 - Response of a 2650 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back
corner).
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Figure 5.11 - Response of a 2650 Hz plane wave incident a spherical head model. These plots are the
same as those appearing in figure 5.10 except only the elevation effects are seen.
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Figure 5.12 - Response of a 10600 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back

corner).
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Figure 5.13 - Response of a 10600 Hz plane wave incident a spheriéal head model. These plots are
the same as those appearing in figure 5.12 except only the elevation effects are seen.
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Figure 5.14 - Response of a 21200 Hz plane wave incident a spherical head model. Raw amplitude is
shown in the left plot, and decibels in the right. Elevation is plotted along the left edge, and azimuth
along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees azimuth (the back

corner).
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Figure 5.15 - Response of a 21200 Hz plane wave incident a spherical head model. These plots are
the same as those appearing in figure 5.14 except only the elevation effects are seen.
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Figure 5.22 - Response of a 2120 Hz plane wave incident a prolate spheroidal head model. Raw
amplitude is shown in the left plot, and decibels in the right.
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Figure 5.24 - Response of a 2650 Hz plane wave incident a prolate spheroidal head model. Raw
amplitude is shown in the left plot, and decibels in the right. Elevation is plotted along the left edge,
and azimuth along the right edge. The ear is located at 90 degrees elevation, and at 180 degrees

azimuth (the back corner).

251 spherond.c=5 251 sprerong. c=5
25 10i T l l
5
o 2 0
a s
§ 10
L5 N .
NS
§ E-> dB 5] /L
H 1 '4 <20 L
g NNWZS
=] = 3 25
z N—7
0s \ g 20
35
ol 40
80 70 60 50 40 30 20 10 [*] 80 70 8 50 40 30 20 10 [}

§

Figure 5.25 - Response of a 2650 Hz plane wave incident a prolate spheroidal head model. These
plots are the same as those appearing in figure 5.24 except only the elevation effects are seen.

It is of great interest that the spherical model was never subjected to frequencies
high enough to cause a 6 dB gain at the point of incidence. The spheroid, on the other

hand, did achieve the 6 dB increase with relatively low frequencies.



One possible explanation is that there is an error in one of the MATLAB®
routines. The algorithms were thoroughly checked several times. and this has been
dismissed as being the cause. Still. this possibility warrants some comment. The most
likely error is that of head dimension being off by a factor of 2 (i.e.. using a diameter
instead of a radius). This was examined by testing different head sizes with the spherical
model. Head size being fixed for the spheroidal model forced changing it in the spherical
model. None of these sizes produced results anything like the spheroidal model. Also.
the fact that the sphere still hasn't achieved the 6 decibel gain by ¢ = 40 would indicate
that head size is not the issue, since it has already been pointed out that increasing
frequency and radius are mathematically the same action .

The response of the spheroidal model as a function of continuous frequency is not
known. There could be some overlooked physics involved which drastically changes the
shape of the response with frequency as the eccentricity of the spheroid increases. One
possibility is that the spheroid causes scattering to be mostly restricted to the azimuthal
directions. The sphere scatters with circular symmetry by virtue of its shape. Perhaps
more energy is lost to space in the spherical case. Moving toward a rounder, more head-
like shape. should alter the response surface of the spheroidal model closer to that of the
spherical model. The limited head-shape options drastically hamper understanding of
why the spheroidal model achieves the 6 decibel gain at such a low frequency. It should
to be thoroughly investigated with an algorithm that allows something similar to figure

(1.2) to be created.
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The other, and probably more important difference in the responses of the two
models. is the 35 dB trough on the spheroid plot for ¢ = 5. Along with the interesting
ripples that begin appearing around ¢ = 3, this trough is clearly important to the response
of the spheriodal HRTF at this frequency. There is a dip in the ¢ = 4 plot that occurs ai an
elevation far closer to the top of the head (for waves incident at roughly the temple). Is
this the same feature as the spike when ¢ = 5? With the ability to expand the coefficients
d," . as described in chapter 3, it should be possible to investigate if. where, and under
what conditions this trough moves. If this is indeed the same feature. it could be
fundamental to l{ow humans localize sound in elevation, particularly sounds that are not

monochromatic.

6.2 Conclusion
[n order to provide a more useful tool for comparison of the response to the
spherical and prolate spheriodal HRTF models, the decibel response surfaces have been

reproduced to the same scale and placed side-by-side.



spnere. 530 Hz(c= 1)

dB dB

Figure 5.26 - Side-by-side comparison of response of the sphere (left) and spheroid (right) model

HRTF to an incoming plane wave of 530 Hz. Both responses are quite flat and strikingly similar for
this low frequency.

sphere. 1060 Hz(c = 2) 251 sprerod. c= 2

Figure 5.27 - Side-by-side comparison of response of the sphere (left) and spheroid (right) model
HRTF to an incoming plane wave of 1060 Hz. Both responses are still quite flat, but the response to
the spheroid is beginning to exhibit the first signs of high-frequency behavior.
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Figure 5.28 - Side-by-side comparison of response of the sphere (left) and spheroid (right) model
HRTF to an incoming plane wave of 1590 Hz. The response to the spherical model is still quite flat,
but the spheroidal model is really starting to show high-frequency effects, including a narrowing of
the so-called "bright spot’ at the left-most part of the plot.

sphere. 2120 Hz(c = 4) 251 spheroxt.c= 4

Figure 5.29 - Side-by-side comparison of response of the sphere (left) and spheroid (right) model
HRTF to an incoming plane wave of 2120 Hz. The response to the spherical model is flat even at this
frequency, though it is apparent that the so-called "bright-spot" is beginning to narrow. Although it
has been narrowing with each increment in frequency, this is the first time that the effect is quite
noticeable. This is the first indication of higher-frequency behavior in the spherical model, but the
spheroidal model already exhibits interesting ripples.
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Figure 5.30 - Side-by-side comparison of response of the sphere (left) and spheroid (right) model
HRTF to an incoming plane wave of 2650 Hz. The response to the spherical model is beginning to
move noticeably away from flatness, and the so-called "'bright-spot” continues to narrow. By this
point, the spheroidal model exhibits some extraordinary behavior.
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Figure 5.31 - Side-by-side comparison of response of the spherical HRTF model to an incoming plane
wave of 21200 Hz, (left) and of the response to the spheroid HRTF model to an incoming plane wave
of 2650 Hz (right). Even with the frequency of the incoming wave almost an order of magnitude
higher, the spherical model produces only some. ripples with circular symmetry.

Clearly, the work incorporated into this thesis is a mere fraction of what is
necessary for incorporation of the prolate spheroidal head into a working HRTF model
that can synthesize binaural sound. A great deal of work needs to be completed before

that can become a reality. A list of several items that need attention appears below.



W
th

¢ Conversion of the look-up tables to series expansions of the coefficients d™ is
needed in order to allow any value of £ to be used in a computer algorithm. It would
require a great deal of work to expand these coefficients by hand to allow them to be

placed into a generic look-up table routine, that would pass in the value of ¢ to

produce the required coefficient d™.

¢ Duplication of the work published by Duda and Martens using the prolate spheroid at
several elevations is necessary to characterize how the spheroid affects the shape of
the frequency response. Results from this thesis indicates the 6 decibel gain occurs at
far lower frequencies with the spheroid than with the sphere. This attribute needs to
be verified and understood. The cause for such an unexpected response is not
intuitively obvious.

* Investigation of the effects of range is critical to the HRTF model. With a look-up
table as described in the first bullet. a point source can be used instead of a plane
wave. Bowman. Senior. and Uslenghi provide the necessary algorithms to proceed if
the required values of E can be solved. That look-up table would allow this type of
generic spheroid to be considered.

 Physical construction of a spheroid head model. and measurement the real response

from it. is an important step toward verification of the mathematical model.
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* Study of a spheroid as close as possible to the shape of the human head is another
obvious step. These resuits should be compared to those from the spherical model.
and those presented in this thesis. It is reasonable to expect that as &, approaches
infinity—the spheroid becoming a sphere—the response of the HRTF will more and
more closely resemble that of the spherical model.

* Incorporation of pinna models and other effects into the spheroidal HRTF model. and
generation of binaural sound from this compound model. should be the culmination of
all the aforementioned work.

¢ Finally, the differences between using a prolate spheroid and a triaxial ellipsoid must
be investigated. A third dimension of asymmetry will affect both elevation and
azimuthal effects. The HRTF must ultimately model the human head more and more
closely, and the triaxial ellipsoid is one step closer than the prolate spheroid. A
discussion of preliminary work with the triaxial ellipsoid. which was done in

conjunction with this thesis. is presented in Appendix A.

The results presented above demonstrate that modeling the human head with a
prolate spheroid adds some response characteristics fundamentally different from those of
the sphere. The prolate spheroid model. representing an elongated head. produces
interesting constructive and destructive interference patterns in frequency response at far
lower frequencies than does the spherical model. The 6 dB gain at the point of incidence

appears to be achieved at lower frequencies as well, and the reasons for this are not
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intuitively obvious. There is a deep trough at the highest frequency investigated. which
possibly moves to different locations of the response surface with frequency. The

response of the prolate spheroidal HRTF model is sufficiently different from that of the

spherical model to warrant further study.
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Appendix I - HRTF Using a Triaxial Ellipsoid

The obvious next extension to the HRTF model, beyond using a prolate spheroid
for head shape, is to use a triaxial ellipsoid. This introduces several difficulties that aren't
encountered with any of the models previously discussed. Since this thesis project began
with the intention of bypassing the prolate spheroid and going directly to the triaxial
ellipsoid, quite a bit of information was gained that warrants discussion. It is hoped that
this appendix will assist a future researcher locate appropriate references, and provide
some insight into the approach used. The triaxial ellipsoid model was abandoned only
because it became clear that insufficient time was available to complete it.

The two main approaches to this problem are to use differential equations or
integral equations to solve it. From literature and Internet searches, it quickly became
apparent that the integral equation approach is by far the most common. Although the
work is, for the most part, understandable, the methods used are relatively advanced
integral equation techniques. Since the work done in spherical coordinates (and now
prolate spheroidal coordinates) all uses differential equation methods, it made sense to
search for information on a differential approach to the problem.

Before mentioning the numerical solution that was finally discovered, it is
appropriate to first summarize the coordinate system and its idiosyncrasies. The triaxial
ellipsoidal coordinate system is the most general of all the eleven orthogonal coordinate

systems. The other ten are degenerate forms of it [Morse and Feshbach 1953]. The
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triaxial ellipsoid is the only coordinate surface of all these coordinate systems that cannot
be formed as a surface of revolution, and as such, is the most complicated simple surface
for which diffraction problems of this sort can be solved by separation of variables.

The coordinate systen{ itself is formed by a set of confocal and orthogonal triaxial
ellipsoids, hyperboloids of one sheet, and hyperboloids of two sheets. A point is
specified by identifying one of each, but this is only sufficient to identify the point within
any particular octant of the Cartesian coordinate system. This is because there are eight
points at which these all intersect. This problem was overcome by enforcing boundary
conditions at the Cartesian planes on the Lamé wave functions, which are the triaxial
ellipsoid equivalent of the radial and angular prolate spheroidal wave functions.

Specifics on the Lamé wave functions, the aforementioned boundary conditions,
and the Helmholz equation in ellipsoidal coordinates are out of the scope of this thesis.
They are well documented in the references listed at the end of this appendix, and are
quite easy to understand in the context of the computational methods used.

The main difficulty in working with the Lamé wave differential equations is the
identification of their eigenvalues. Without this informatien, the proper Lamé wave
function solutions cannot be identified. The eigenvalues are found with the help of an
auxiliary system of ordinary differential equations, which must be solved
computationally. For the work done prior to abandoning this head shape, Runge-Kutta
routines were employed. The solution to this system of ordinary differential equations is

an estimate of the eigenvalue for the Lamé wave equation. This estimate is fed into what



is referred to as a "two-dimensional fork method" for finding the proper eigenvalue
[Abramov, et. al. 1989]. This is a self-correcting algorithm which slices off regions of
the plane until the correct answer is known within a predetermined tolerance.

The boundary conditions at the Cartesian planes introduce a nine-term
representation of the solution to the Helmholz equation at any given point, but in many
cases several of those terms are zero. Further explanation of the process of generating a
solution to the problem of a plane wave scattering from the triaxial ellipsoid—from
which the HRTF model is constructed—is again left to the references below. They are
quite well written, and relatively easy to follow. The caveat to that statement is that these
papers were originally written in Russian, and the references below point to the English
translations. The first three references are essential to anyone pursuing this type of
research, and the other references are of supplemental interest. It should be noted that the
Journal most of these papers were published in changed names from U.S.S.R.
Computational Mathematics and Mathematical Physics, to simply, Computational
Mathematics and Mathematical Physics, at about the same time as the breakup of the

Soviet Union.
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Appendix B - MATLAB® Code

HRTFSPH.M

% This is a script file to calculate the HRTF of a sphere.

%

%

% Syntex is HRTFSPH

%

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997-8

%

clear;
clg;
holdtime = cputime;
c0 =343; % m/s
omega = 21200; %Hz, equivilenttoc =1
k = omega/c0;;
a=.111 % radius of sphere size of prolate
% spheriod in the large dimension,
% worst case for high frequency effects.
ka = k*a;

phi = zeros(1,37);

zeta = zeros(1,37);
zeta2 = zeros(1,19);

rrr = 0:36;

nnn = 1:19;

phi = (rrr*pi/36);

zeta = (rrr*pi/36);
zeta2(nnn) = zeta(nnn);
ViVs = zeros(19,37);

forss=1:19
sS
fortt=1:37

tt
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theta = acos(cos(phi(tt))*cos(pi/2-zeta(ss)));
scale_factor = i/(ka"2);
sum = 0;
forn=0:10
constant = (2*n+1)*(-1)"n;
P = legendre(n,cos(theta));
PP =P(1);
hprime = (/ka)*(spherej(n.ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1.ka));
sum = sum + constant*PP/hprime;
end

ViVs(ss,tt) = abs(scale_factor*sum);
end

%plot(phi,ViVs(ss,:))
%hold on
%drawnow

end
ViVs = fliplr(ViVs);
% ViVs =20*logl 0(ViVs); %convert to dB

phi = phi * 180/pi; % convert to degrees
zeta2 = zeta * 180/pi; % convert to degrees

mesh(phi,zeta2,ViVs)

shading interp

colormap(cool);

%o axis([0 180 0 90 -40 10]); % For dB response
axis([0 180 0 90 0 2.5]); % Natural amplitude response
title('sphere, 21200 Hz (c = 40)');

total_time = cputime - holdtime



SPHEREJ.M

function [j] = spherej(alpha,x)

%

% The function spherej calculates the spherical bessel function
% of the first kind, order alpha, with argument x.

%

% syntex:

% [j] = spherej(alpha,x)

%

%

%

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997

%

%

% Constrcted from the algorithms in "Handbook of Mathematical Functions"
% by Abramowitz and Stegun, Dover, 1962

%

[j] = sqrt(pi/2/x)*besselj(alpha+0.5,x);

66



SPHEREY.M

function [y] = spherey(alpha,x)

%

% The function spherey calculates the spherical bessel function
% of the second kind, order alpha, with argument x.

%

% syntex:

% [y] = spherey(alpha,x)

% where:

%  alpha = order of spherical bessel function

% X = argument

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997

%

% Constrcted from the algorithms in "Handbook of Mathematical Functions"
% by Abramowitz and Stegun, Dover, 1962

%

[y] = sqrt(pi/2/x)*bessely(alpha+0.5,x);
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HRTFDUDA.M

% This is a script file to duplicate Duda's results.

%

% syntex: HRTFDUDA

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997

%

clear;

clg;

holdtime = cputime;

c0 =343; % m/s

a =.54 %To match Duda's plot
% ka =k*a;

phi = zeros(1,37);

zeta = zeros(1,37);
zeta2 = zeros(1,19);

rrr = 0:36;

nnn = 1:19;

phi = (rrr*pi/36);

zeta = (rr*pi/36);
zeta2(nnn) = zeta(nnn);
ViVs = zeros(37,28);
ss=19;

fortt=1:37
rt

for freqent = 1:28

if freqent < 11
omega = 100 * freqent; % 100 - 1000 Hz range
k = omega/c0;
ka = k*a;
elseif freqent <20
omega = 1000 * (freqent - 9); % 2000 - 10000 Hz range
k = omega/c0;
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ka =k*a;
elseif freqent <29
omega = 10000 * (freqent - 18); % 20000 - 100000 Hz range
k = omega/c0;
ka = k*a;
end
omega
tt
ka

theta = acos(cos(phi(tt))*cos(pi/2-zeta(ss)));
scale_factor = i/(ka”"2);
sum = 0;

ifka<l
forn=0:10_
constant = (2*n+1)*(-i)"n;
P = legendre(n,cos(theta));
PP =P(1);
hprime = (n/ka)*(spherej(n,ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1,ka));
sum = sum + constant*PP/hprime;

end
elseifka <5
forn=0:30

constant = (2*n+1)*(-i)"n;

P = legendre(n,cos(theta));

PP =P(1);

hprime = (n/ka)*(spherej(n,ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1,ka));

sum = sum + constant*PP/hprime;

end
elseifka< 10
forn=10:70

constant = (2*n+1)*(-i)"n;
P = legendre(n,cos(theta));
PP =P(l);
hprime = (/ka)*(spherej(n ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1,ka));

sum = sum + constant*PP/hprime;

end

elseif ka < 25
forn=0:150
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constant = (2*n+1)*(-i)"n;

P = legendre(n,cos(theta));

PP =P(1);

hprime = (n/ka)*(spherej(n,ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1 ka));

sum = sum + constant*PP/hprime;

end
elseif ka < 40
forn =0:200

constant = (2*n+1)*(-1)"n;

P = legendre(n,cos(theta));

PP =P(1);

hprime = (n/ka)*(spherej(n,ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1,ka));

sum = sum + constant*PP/hprime;

end
elseif ka > 39
for n = 0:250

constant = (2*n+1)*(-1)"n;
P = legendre(n,cos(theta));
PP =P(1);
hprime = (n/ka)*(spherej(n,ka)+i*spherey(n,ka)) -
(spherej(n+1,ka)+i*spherey(n+1,ka));
sum = sum + constant*PP/hprime;
end
end

plotomega(freqent) = omega;
ViVs(tt.freqent) = 20*log10(abs(scale_factor*sum));
end %end freqent loop

% Trying to normalize like duda

plotomega = plotomega*a/c0;
semilogx(plotomega,ViVs(tt,:),'g")
title('Frequency Response by Angle, 8.75 cm sphere')
xlabel('Frequency'), ylabel('Response in dB')
hold on

drawnow

end %end tt loop
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% ViVs = fliplr(ViVs);
% ViVs = 20*logl0(ViVs); %convert to dB
% ViVs = 20*logl0(ViVs);

% mesh(phi,zeta2,ViVs)

% shading interp

% colormap(cool);

% title("sphere, 130000 Hz");

% total_time = cputime - holdtime
% end

% end
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HRTF.M

%

% This is a script file to calculate the head-related transfer function (HRTF)
% of a prolate spheroidal model head. The equation for Vi + Vs on the

% surface of the spheroid is given in "Electromagnetic and Acoustic

% Scattering by Simple Shapes" by J.J. Bowman, T.B.A. Senior, and P.L.E. Uslenghi
% Hemisphere Publishing Corporation, 1987

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University

% (c) Richard W. Novy, 1997

%

clear;

holdtime = cputime;

% Head shape is 22.2 cm by 8.25 cm

clg;

sound_speed = 343; % m/s

omega = 530; %Hertz

¢ =1; % This was a living document, change c as needed.

xil =1.077; % Forced upon us by virtue of being roundest value available.

% zeta = pi/2; % Incident angle measured down from z-axis

eta = 0; % Altitude coordinate of ear (selects hyperboloid of choice)

%phi = pi; % Azimuthal coordinate of ear. (When sound moves, phi actually moves).

scale_factor = 2/(c*(xil*2-1)); % Part of the equation outside the sum.
phi = zeros(1,37);

zeta = zeros(1,37);

zeta2 = zeros(1,19);

rr = 0:36;

nnn = 1:19;

phi = (rrr*pi/36);

zeta = (rrr*pi/36);

zeta2(nnn) = zeta(nnn);

ViVs = zeros(19,37);

forss=1:19
fortt =1:37
ss
tt

%for ss = 1:19



Y%ss
sum = 0;
form =0:3
forn=m:3
% fprintf(’.");
ep = epsilon(m); ,
norm = i"(n+1)/N(m,n,c);
r3prime = lookuprp(m,n,c);
S_zeta = s_angle(m,n,c,cos(zeta(ss)));
S_eta =s_angle(m,n,c,eta);
azimuth = cos(m*phi(tt));
sum = sum + ep*norm*S_zeta*S_eta*azimuth/r3prime;
end
end
ViVs(ss,tt) = abs(sum * scale_factor);
% ViVs
end
%oplot(phi, ViVs(ss,:))
%hold on
%drawnow
end
phi = phi*180/pi;
zeta2 = zeta2*180/pi;

%xlabel('elevation (radians)");
%ylabel('normalized pressure at ear');
ViVs = 20*logl 0(ViVs);
mesh(phi.zeta2,ViVs)

shading interp

colormap(cool);

title("2.5:1 spheroid, c = 1");
total_time = cputime - holdtime
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EPSILON.M

%

function [ep] = epsilon(m)

%

% The function epsilon is the Neumann symbol.

% It returns 1 if m = 0, otherwise returns 2.

%

% Syntex:

% ep = epsilon(m)

%

% Where:

%  m = degree of spheroidal wave function

%

% Function taken from the book Electromagnetic and Acoustic Scattering
% by Simple Shapes, by J.J. bownam, T.B.A. Senior, and P.L.E. Uslenghi,
% Hemisphere Publishing Corporation, 1969, Rev. 1987

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University

% MATLAB function (c) Richard W. Novy, 1997

ifm==0
ep=1;
else
ep=2;
end
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LOOKUPRP.M

function R3prime = lookuprp(m,n,c)

%

% This function performs a look-up table operation
% to find the derivative of the radial spheroidal

% wave function R(3).

%

% Syntex:

% d = lookuprp(m,n,c)

%

% where:

% m = degree of spheroidal wave function

% n = order of spheroidal wave function

% c=Independent variable c=1/2*k*d Currently this routine
% only has lookup-tables integers c=1 through 5.

%

% R(3) =R(1) +i*R(2)
%

% R(3) =R(1) + i*R(2)
%

% Tables taken from the book Spheroidal Wave Functions, by

% Carson Flammer, Stanford University Press, 1957

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997

%

%

%

ifc==

fid=fopen('cirlpr.tab',r');
clrlpr=fscanf(fid,'%f,[4,4])"
Rlp=clrlpr(m+1,n+1);
status = fclose(fid);

fid=fopen('c1r2pr.tab’,'r");
clr2pr=fscanf(fid,'%f,[4,4])";
R2p=clr2pr(m+1,n+1);
status = fclose(fid);

eiseifc ==2



fid=fopen('c2rlpr.tab’,'r);
c2rlpr=fscanf(fid,'%f,[4,4])';
Rlp=c2rlpr(m+1,n+1);
status = fclose(fid);

fid=fopen('c2r2pr.tab’,’r);
c2r2pr=fscanf(fid,'%f,[4,4])";
R2p=c2r2pr(m+1,n+1);
status = fclose(fid);

elseifc =3
fid=fopen('c3rlpr.tab','r');
c3rlpr=fscanf(fid,'%f,[4,4])";
Rlp=c3rlpr(m+1,n+1);
status = fclose(fid);

fid=fopen('c3r2pr.tab’,'r');
c3r2pr=fscanf(fid,'%f,[4,4])’;
R2p=c3r2pr(m+1,n+1);
status = fclose(fid);

elseifc =4
fid=fopen('c4rlpr.tab','r');
c4rlpr=fscanf(fid,'%f,[4,4])’;
Rlp=c4ripr(m+I,n+1);
status = fclose(fid);

fid=fopen('c4r2pr.tab','r);
c4r2pr=fscanf(fid,'%f,[4,4])";
R2p=c4r2pr(m+1,n+1);
status = fclose(fid);

elseifc=35
fid=fopen('c3rlpr.tab','r');
cSrlpr=fscanf(fid, %f,[4,4])’;
Rip=cSripr(m+1,n+1);
status = fclose(fid);

fid=fopen('c5r2pr.tab','r');
c5r2pr=fscanf{fid,'%f",[4,4])';
R2p=c5r2pr(m+1,n+1);
status = fclose(fid);



else

error(’'c out of range. Must be integer 1 through 5.")
end

R3prime =Rl1p + i*R2p;
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S ANGLE.M

function S =s_angle(m.n.c,p_arg)
%
% The function s_angle returns the value of the angular
% spheroidal wave function for a given m, n, ¢, and
% p_arg.
%
% Syntex:
% s_angle(m.n,c,p_arg)
% where:
% m = degree of spheroidal wave function
% n = order of spheroidal wave function
% ¢ = Independent variable c=1/2*k*d
% p_arg = argument of the Associated Legendre Function,
% generally eta or cos(zeta)
%
%
% Taken from the book Spheroidal Wave Functions, by
% Carson Flammer, Stanford University Press, 1957
%
% Produced in process of completion of masters thesis,
% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997
%
%
if rem(n-m,2) =0
stemp = 0;
forr=0:2:8
tempP = legendre(m-r,p_arg); .
P = tempP(m+1); % To account for MATLAB indexing starting at 1 not 0.
clear tempP;
d = lookup(m.n.r,c);
stemp = stemp + d*P;
end
elseif rem(n-m,2) == 1
stemp =0;
forr=1:2:9
tempP = legendre(m+r,p_arg);
P =tempP(m+1); % To account for MATLAB indexing starting at 1 not 0.
clear tempP;
d = lookup(m,n,r,c);
stemp = stemp + d*P;
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end
else

error('m and n must be integers');
end

S =stemp; % Return answer angular S evaluated at p_arg
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LOOKUP.M

function [d] = lookup(m,n,r,c)

%

% This function performs a look-up table operation

% to find the spheroidal wave function Fourier

% coefficients.

%

% Syntex:

% d = lookup(m,n,r,c)

%

% where:

% m = degree of spheroidal wave function

% n=order of spheroidal wave function

%  r=iteration of summation calling this function

% r=0,1,2,3

% ¢ =Independent variable c=1/2*k*d Currently this routine
% is limited to integer c values between 1 and 5.

%

% Tables taken from the book Spheroidal Wave Functions, by
% Carson Flammer, Stanford University Press, 1957

%

% Produced in process of completion of masters thesis,

% Department of General Engineering, San Jose State University
% MATLAB function (c) Richard W. Novy, 1997

%

%

%

ifc==

if ==0| r==1
fid=fopen('c1rOrl.tab','r');
clrOrl=fscanf(fid,'%f,[4,4])’;
d=clr0rl(m+1,n+1);
status = fclose(fid);

elseif =2 | =3
fid=fopen('c1r2r3.tab','r');
clr2r3=fscanf(fid,'%f",[4,4])';
d=clr2r3(m+1,n+1);
status = fclose(fid);

elseifm=4 |r==35
fid=fopen('c1r4r5.tab','r');
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clrdr5=fscanf(fid,'%f,[4,4])";
d=clr4r5(m+1,0+1);
status = fclose(fid);
elseif =6 |r=7
fid=fopen('c1r6r7.tab’,'r);
clrér7=fscanf(fid,'%f,[4,4])";
d=clr6r7(m+1,n+1);
status = fclose(fid);
elseif =8 |r=9
fid=fopen('c1r8r9.tab','r);
c1r8r9=fscanf(fid,'%f,[4,4])";
=c1r8r9(m+1,n+1);
status = fclose(fid);
else
error('r out of range. Must be integer 0 through 9');
end '

elseifc =2

if =0 | r==1
fid=fopen('c2r0rl.tab','r');
c2r0rl=fscanf(fid,'%f,[4,4])";
d=c2r0rl(m+1,n+1);
status = fclose(fid);

elseif =2 r==3
fid=fopen('c2r2r3.tab’,'r');
c2r2r3=fscanf(fid,'%f,[4,4])’;
d=c2r2r3(m+1,n+1);
status = fclose(fid);

elseif==4 |r==35
fid=fopen('c2r4r5.tab','r');
c2rdr53=fscanf(fid,'%f,[4,4])’;
d=c2r4r5(m+1,n+1);
status = fclose(fid);

elseif ==6 |r==17
fid=fopen('c2r6r7.tab','r'’);
c2rér7=fscanf(fid,'%f,[4,4])';
d=c2r6r7(m+1,n+1);
status = fclose(fid);

elseif==8 |r==9
fid=fopen('c2r8r9.tab','r’);
c2r8r9=fscanf(fid,'%f,[4,4])’;
d=c2r8r9(m+1,n+1);




status = fclose(fid);
else

error('r out of range. Must be integer 0 through 9');
end

elseifc =3

if =0 | =1
fid=fopen('c3r0rl.tab','r');
c3r0r1=fscanf(fid,'%f,[4,4])";
d=c3r0rl(m+1,n+1);
status = fclose(fid);

elseif =2 | =3
fid=fopen('c3r2r3.tab','r');
c3r2r3=fscanf(fid,'%f,[4,4])’;
d=c3r2r3(m+1,n+1);
status = fclose(fid);

elseif—4 |[r=35
fid=fopen('c3r4r5.tab','r’);
c3rdr5=fscanf(fid,'%f,[4,4]);
d=c3r4r5(m+1,n+1);
status = fclose(fid);

elseif =6 [r=17
fid=fopen('c3r6r7.tab’,'r');
c3r6r7=fscanf(fid,'%f,[4,4]);
d=c3r6r7(m+1,n+1);
status = fclose(fid);

elseif ==8 |r==9
fid=fopen('c3r8r9.tab'",'r');
c3r8r9=fscanf(fid,'%f,[4,4])";

=c3r8r9(m+1,n+1);

status = fclose(fid);

else
error('r out of range. Must be integer 0 through 9');

end

elseifc=4
ifr==0| r==1
fid=fopen('c4rOr1.tab'",'r');
c4rOrl=fscanf(fid,'%f,[4,4])’;
=c4r0rl(m+1,n+1);
status = fclose(fid);
elseif ==2 | r==3



fid=fopen(‘c4r2r3.tab','r);
cdr2r3=fscanf(fid,"%f,[4,4])’;
d=c4r2r3(m+1,n+1);
status = fclose(fid);

elseif—=4 |r=35
fid=fopen('c4r4r5.tab','r');
c4rdr5=fscanf(fid,'%f,[4,4])’;
d=cd4r4r5(m+1,n+1);
status = fclose(fid);

elseif =6 [r=17
fid=fopen('c4r6r7.tab','r’);
c4r6r7=fscanf(fid,'%f,[4,4])’;
d=c4r6r7(m+1,n+1);
status = fclose(fid);

elseif =8 |r==29
fid=fopen('c4r8r9.tab','r');
c4r8r9=fscanf(fid,'%f,[4,4])’;
d=c4r8r9(m+1,n+1);
status = fclose(fid);

error('r out of range. Must be integer 0 through 9');

else

end
elseifc=35

if =0 | r==1

fid=fopen('c5r0rl.tab','r');
c5r0rl=fscanf(fid,'%f,[4,4])’;
d=c5r0rl(m+1,n+1);
status = fclose(fid);

elseif ==2 | =3
fid=fopen('c5r2r3.tab'",'r');
cSr2r3=fscanf(fid,'%f,[4,4])";
d=c5r2r3(m+1,n+1);
status = fclose(fid);

elseif =4 |r==35
fid=fopen('c5r4r5.tab','r');
cSr4r5=fscanf(fid,'%f,[4,4])";
d=c5r4r5(m+1,n+1);
status = fclose(fid);

elseif ==6 [r==7
fid=fopen('c5r6r7.tab','r');
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c5r6r7=fscanf(fid,'%f,[4,4])";
d=c5r6r7(m+1,n+1);
status = fclose(fid);
elseif—8 |r=9
fid=fopen('c5r8r9.tab’,'r');
c5r8r9=fscanf(fid,'%f,[4,4])';
d=c5r8r9(m+1,n+1);
status = fclose(fid);
else

error('r out of range. Must be integer 0 through 9');
end

else

error('c out of range. Must be integer 1 through 5.");
end
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APPENDIX C - LOOKUP TABLES

TABLES FOR d COEFFICIENTS

CIRORI.TAB
94837e0 .94217e0 .22044e-1 .17108e-1
0 .98074e0 .97013e0  .33693e-1
0 0 .99022e0  .98179¢0
0 0 0 .99392¢0
CiR2R3.TAB
-10195¢0 -.38007e-1 .10251el .98941e0
0 -.12734e-1 -.11833e-1 .100905el
0 0 -39671e-2 -.51649¢-2
0 0 0 -.17299e-2
CIR4R5.TAB
17316e-2  .43231e-3  -25156e-1 -.17461e-1
0 .85735e-4  .66284e-4 -.10667e-1
0 0 .13242e-4  .16368e-4
0 0 0 .32762e-5
CIR6R7.TAB
-.12439e-4  -23553e-5 .21193e-3  .11659e-3
0 -.33126e-6 -.21608e-6 .50833e-4
0 0 -.30713e-7 -.34497e-7
0 0 0 -.49200e-8
CIR8R9.TAB
49490e-7 .75651e-8 -.92262e-6 -.42212e-6
0 .82303e-9  .46283e-9 -.14307e-6
0 0 0 0

0 0 0 .57374e-11
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C2ROR1.TAB

831620 .79276e0  .8392le-1 .67686e-1
0 93070101 .88878¢0  .12739448

0 0 96260 93072

0 0 0 97672
C2R2R3.TAB
-32059  -.13049 .10845¢e1 95749

0 -44714640e-1 -42790e-1 .10293799]

0 0 -.14622e-1 -.19242-1

0 0 0 -.65420e-2
C2R4R5.TAB
21062e-1 .59797e-2  -.10800  -.67949

0 11668363e-2  .95266e-3 -.43462124e-1
0 0 19025e-3  .24160e-3

0 0 0 48535e-4
C2R6R7.TAB
-.5955le-3  -.13080e-3 36596e-2  .18186e-2
0 -17729547e-4 -.12376e4  .82742033e-3
0 0 17385e-5  -.20249¢-5
0 0 0 -28777e-6
C2R8R9.TAB
93876e-5 .16842e-5  -63916e4 -.026367e4
0 17451722e-6  .10578e-6  -.93072037¢-5
0 0 11441e-7  .12115e-7

0 0 0 13304¢-8
C2RI0R1].TAB
-9437le-7  -.14318e-7 .68648¢-6 .24251e-6

0 0 -.64097e-9  .69919976¢-7
0 0 0 0

0 0 0 -.48578e-11
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C3ROR1.TAB
.71480 .60970 16387 .14644
0 .86663809 .77681 .25854188
0 0 92379 .85610
0 0 0 95107
C3R2R3.TAB
-51422 -22885 .11188el  .90068
0 -.82909539¢e-1 -.81877e-1 .10421783el
0 0 -.29016e-1 -.38651e-1
0 0 0 -.13480e-1
C3R4R5.TAB
J1137e-1 23672e-1 -.26116 -.14678
0 46155268e-2  .40466e-2 -.99059250e-1
0 0 .81422e-3  .10728e-2
0 0 0 21748e-3
C3R6R7.TAB

-43773e-2  -.11665e-2 20202e-1  .89060e-2

0 -.15321188e-3 -.11734e-3  .42375950e-2

0 0 -.16323e-4 -.20017e-4

0 0 0 -.2839%e-5
C3R8R9.TAB
.15220e-3  .33819e-4 -.7999%4e-3  -.29172e-3

0 33306131e-5 .22445e-5  -.10712776e-3

0 0 23767e-6  .26752e-6

0 0 0 .29102e-7
C4RORI1.TAB

62537 44886 22575 23404
0 80272 65807 .39433
0 0 .88015 .76970
0 0 0 .92027
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C4R2R3.TAB

-63356e0  -29359¢0 .10554el .80626e0

0 -11712e0 -.1176%9¢0 .102543el
0 0 -44112e-1 -.59007e-1
0 0 0. -.21405¢-1
C4R4RS5.TAB
.14138e0 .53331le-1 -.46970e0 -.24610e0
0 .10772e-1  .10097e-1 -.17380e0
0 0 20777e-2  .28417e-2
0 0 0 .58631e-3
C4R6R7.TAB
-.14689%-1 -46370e-2 .66025e-1  .27035e-1
0 -.60952e-3 -51308e-3  .1319le-1
0 0 -44112e-1 -.59007e-1
0 0 0 -.21405e-1
C4R8R9.TAB
.87978e-3  .23780e-3 -.46988e-2 -.15895e-2
0 22926e-4  .17281le-4 -.59168e-3
0 0 .18073e-5  .21798e-5
0 0 0 .23579e-6
C5RORI.TAB
56032 33290 .25069 .29568
0 74568 54991 .50609
0 0 .83650 .68211
0 0 0 .88728
CSR2R3.TAB
-.69561 -31756 .89072 .66145
0 -.14351 -.14352 96817
0 0 -.57882 -.77006e-1

0 0 0 -.29361e-1
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C5R4R5.TAB

21548 .86971e-1 .67508e0 -.34845

0 .18863e-1 .18547e-1 -.25706
0 0 39717e-2  .55988e-2
0 0 0 .11876e-2
C5R6R7.TAB
-32721e-1 -.11568e-1 .15139¢0 .61728e-1
0 -.15808e-2 -.14397e-2 .30334e-1
0 0 -.20429e-3 -.27928e-3
0 0 0 -.40285e-4
C5R8R9.TAB
29359-2 .91415e-3 -.16987e-1 -.57625e-2
0 .89688e-4 .74621le-4 -21167e-2
0 0 .78295¢e-5 .10096e-4
0 0 0 .10944e-5
Tables For R'
CIRIPR.TAB

-3422e0 .2357e0 .1283e0 .258e-1

0 .8384e0 .2067e0 .314e-1.

0 0 .1389¢0  .228e-1

0 0 0 Jd21e-1
CIR2PR.TAB

7279el  .1672e2  9116e2 .7922e3

0 2624e2  .1313e3  .1040e4
0 0 3121e3  .2092e4
0 0 0 .5353e4

C2R1PR.TAB




-.1203el  -.7400e-2 .3407¢0 .1701e0

0 .1356el  .6840e0 .2197e0
0 0 .5033e0 .1639¢0
0 0 0 .906e-1
C2R2PR.TAB
4772el  .5900el .1290e2 .5307e2
0 .7208el  .1779e2  .6992e2
0 0 4025e2  .1398e3
0 0 0 .3468e3
C3RI1PR.TAB
-2260el -.8068e0 .2414e0 .3872e0
0 .1373el  .1107el .5816e0
0 0 9588e0 .4634¢e0
0 0 0 27540
C3R2PR.TAB
3762el .4238¢l .5410el .1208e2
0 4479el  .6377el .1569e2
0 0 .1260e2  .3038e2
0 0 0 7222e2
C4R1PR.TAB
-.3233el -.1876el -.4143e0 .4098e0
0 8776e0 .1183el .9474¢0
0 0 .1341el .8563¢0
0 0 0 .5642¢0
C4R2PR.TAB
.2692el  .3459el .3942el .5268el
0 4056el  .4086el .6153el
0 0 .5981el  .1092e2

0 0 0 .2433e2



C5RI1PR.TAB

-.390lel -288lel -.1460el -.635e-1

0 -.258e-1 .7911e0  .1065el
0 0 .1502el  .1208el
0 0 0 9113e0
C5R2PR.TAB
.1909el  .2523el  .3637el .3788el
0 4022el  .3713el .4543el
0 0 .4045el  .5482el

0 0 0 .1074e2
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