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ABSTRACT

ODD PERFECT NUMBERS
by Anh minh Nguyen

A perfect number is a positive integer which is equal to the sum of its proper
divisors. For example, six is perfect since 6 = 1 + 2 + 3. No one has ever discovered
an odd perfect number yet (if one exists it must be larger than 10%%), and most
mathematicians believe there are no odd perfect numbers. In this direction, many
results have been proved which limit the type of odd numbers which might be perfect.
For example, any odd perfect number must have at least 8 distinct prime factors. In
1994 Heath-Brown proved the remarkable result that an odd perfect number N with
k prime factors must satisfy the bound N < 4**. This thesis will give a proof of

Heath-Brown’s result and other related results.
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Chapter 1

An Introduction to Perfect

Numbers



1.1 A quick look at the history of the study of

perfect numbers

It is not known when perfect numbers were first studied and indeed the first studies
may go back to earliest times when people started to be curious about numbers.
Perfect numbers were studied by Pythagoras and his followers, more for their mystical
properties than for their number theoretic properties.

Today the usual definition of a perfect number is in terms of its divisors; a positive
integer ts called a perfect number when it is equal to the sum of its proper divisors.
For instance, six is the first perfect number and the second is 28, since6 =1+2+3
and 28 = 1 + 2 + 4 + 7 + 14, but early definitions were in terms of the aliquot parts
of a number. An aliquot parts of a number is a proper quotient of the number. So
for example the aliquot parts of 10 are 1,2, and 5. A perfect number was defined to
be one which is equal to the sum of its aliquot parts in the earlier time.

The four perfect numbers 6, 28,496 and 8128 seem to have been known from an-
cient times and there is no record of these discoveries. The first recorded mathematical
result concerning perfect numbers which is known occurs in Euclid’s Elements written
around 300 BC.

The next significant study of perfect numbers was made by Nicomachus of Gerasa
around 100AD. Nicomachus had some results concerning perfect numbers. All of

these were given without any attempt at a proof.



(1) The n** perfect number has n digits.

(2) All perfect numbers are even.

(3) All perfect numbers end in 6 and 8 alternately.

(4) Euclid’s Algorithm to generate perfect numbers will give all even perfect num-
bers, i.e. every perfect number is of the form 2"~!(2" — 1), for some n > 1, where
2" — 1 is prime.

(5) There are infinitely many perfect numbers.

The fifth perfect number has been discovered and written down in a manuscript
dated 1461.

J.Scheyble gave the sixth perfect number in 1555 in his commentary to a transla-
tion of Euclid’s Elements.

The next major contribution was made by Fermat around 1640. His Little The-
orem shows that for any prime p and an integer a not divisible by p, a»! — 1 is
divisible by p. Certainly Fermat found his Little Theorem as a consequence of his
investigations into perfect numbers.

Mersenne was very interested in the results that Fermat sent him on perfect num-
bers and soon produced a claim of his own which was to fascinate mathematicians
for a great many years. In 1644 he published Cogitata Physica Mathematica in
which he claimed that 2P — 1 is prime {(and so 2P~!(2” — 1) is a perfect number) for
r=23,5,7,13,17,19,31,67, 127,257 and for no other value of p up to 257. Primes

of the form 2P — 1 are called Mersenne primes.



The next person to make a major contribution to the question of perfect numbers
was Euler. In 1732 he proved that the eighth perfect number was 23°(23! — 1) =
2305843008139952128. It was the first new perfect number discovered for 125 years.
Euler also proved the converse of Euclid’s result by showing that every even perfect
number had to be of the form 2P~!(2P — 1).

In 1883 Pervusin showed that 2%°(2%! — 1) is a perfect number. This was shown
independently three years later by Seelhoff. Many mathematicians leapt to defend
Mersenne saying that the number 67 was a misprint for 61.

Further mistakes made by Mersenne were found. In 1911 Power showed that
288(2%9 _ 1) was a perfect number, then a few years later he showed that 210! — 1
is a prime and so 2!%(2!%! — 1) is a perfect number. In 1922 Kraitchik showed that
Mersenne was wrong in his claims for his largest prime of 257 when he showed that
2257 — 1 is not prime.

Many people have followed the progress of finding even perfect numbers but there
was also attempts to show that an odd perfect number could not exist. In fact
Sylvester proved in 1888 that any odd perfect number must have at least four distinct
prime factors. It is also known that such a number would have more than 300 digits
and a prime divisor greater than 106. The problem of whether an odd perfect number
exists, however, remains unsolved.

Today 38 even perfect numbers are known, 2%8(2% — 1) being the last to be discov-

ered by hand calculations in 1911, after that, all others being found using a computer.



In January 27, 1998, the 37** was found. It is (23021376)(23021377 _ 1) and has 1,819,050
digits. The 38'* was found in 1999 . It is (26972592)(2697%593 _ |) and has 4,197,919

digits.



1.2 Some Notation for Arithmetic Function

An arithmetic function is a function having the natural numbers as its domain. The
range of values of an arithmetic function is often a set of integers, but occasionally is
the set of reals or complexes.

Here are some notable examples (in all examples, divisor means positive divisor):

P.(n) := n" for a fixed integer r.

d(n) := the number of distinct divisors of n.

o(n) := the sum of distinct divisors of n.
or(n) := the sum of the r** powers of the divisors of n.

w(n) := the number of distinct prime factors of n.

Q(n) := the total number of prime factors of n (counting multiplicity).

#(n) := the number of positive integers at most n that are relatively prime to n.

For instance, let n = 90 = 2-3%- 5. Then
P,(90) = 90% = 8100,
w(90) = 3,
Q2(90) = 4.

The positive divisors of n are 1,2,3,5, 6,9, 10, 15, 18, 30, 45, and 90. So

0(90)=1+2+3+5+6+9+ 10+ 15+ 18 + 30 + 45 + 90 = 234,

6



and

d(90) = 12.
Note that if n = p'p3? - - - pi*, then
$(n) =pi" V(o1 = VP V(2 = 1) A V(e — 1)

Thus

#(90) = (20-D1)(3*-V2)(5(-V4) =1-3-2-1-4 = 24.



1.3 Euclid

Theorem 1.3.1 If 2™*! — 1 is prime, then 2"(2"+! — 1) is perfect.

Proof. Let P = 2"*! — 1, and suppose P is an odd prime. Let N = 2"P. To

prove that N is perfect, the first step is to show
o(2®) =21 ~1. (1.1)
The divisors of 2™ are just 1 and the powers of 2 up to 2". Thus
oM =1+214+22 4+ 2 4+ ... 42"

Using the formula for a finite geometric series

n+l_1
1+:1:+:z:2+---+z"=z———,,ifzaél, (1.2)

z-1
(1.1) is obtained by taking z = 2. Next, for any prime p, o(p) = 1 + p. It is easy to
see that o(n) is a multiplicative function, which is a function with the property that
f(ab) = f(a)f(b) whenever gcd(a, b) = 1. (The proof of this will be given in Chapter
2.) Hence
o(N)=o0(2"P) = o(2")o(P)
= (2" -1)}(P+1)
= ("' -1+t -1+1)
= (2™ —1)(2™)
= 2.2"@2"! -1)

2(2"P) = 2N,

8



and hence N is perfect.
Here is another way to prove this theorem without using the multiplicative prop-
erty of o(n). Notice that the divisor of N = 2"P are 1, 2, 22, ..., 2", P, 2P, 2?P,

..., 2"P. Thus

o(2*P) = (1+2+22+-.-+2")+(P+2P+2°P+---+2"P)
= (1+P)(Q1+2+22+---+2")
— 2n+1(2n+1 -1)
= 2(2") (2™ -1)
= 2(2")(P)

= 2N (1.3)



1.4 Euler

The following theorem of Euler completely determines the nature of even perfect

numbers by linking their existence to the Mersenne primes.

Theorem 1.4.1 Any even perfect number is a Euclid number, that is to say of the

form 2*(2™*! — 1), where P = 2™"*! — 1 is a prime.
Example:
28 = 23(2°-1)
496 = 2%2°-1)

8128 25(27 - 1).

Proof. For any even integer N, write N = 2"b, where n > 1 and (b, 2) =1, so that

b is odd. Then since o(N) is multiplicative (see Chapter 2), it follows by (1.1) that

o(N) = o(2"b)
= o(2")o(b)
= (2™ = 1)o(b). (1.4)
Now assume N is perfect. Then
o(N) = 2N
= 271, (1.5)

10



Thus, (1.4) and (1.5) imply
2n+lb — (2n+l - l)O’(b)

which can be rewritten as
b on+l _ g

o®) 2 (16)

The fraction on the right-hand side is in reduced form since the numerator is odd
while the denominator is a power of two. The fraction on the left-hand side of (1.6)
needs to be in reduced form and is the next thing to be shown. Assume that it is not

in the reduced form, then there exists an integer c such that
b=(@2"*'—-1)c and o(b) = 2"tc. (1.7)
If ¢ > 1, then b has at least the divisors 1, b, and c. Thus
o) > 1+c+b

= l+c+ (2™ —-1)c

= 1+2™¢

> 2"t

= o(b),
which is a contradiction. Hence ¢ = 1, so

h=9on+l _q

and

d(b) = 2"+,

11



Therefore,

N =27 = 272" — ).

Any even perfect number must be of the form
2n (2n+l —- l)

and

o(b) = o(2™! — 1) = 27+, (1.8)

was proved.
The next thing to be proved is that (2"+! —1) is a prime. For if not, then (2"+! —1)

has at least one divisor other than 1 and itself and hence
o(b) = o(2**' - 1) > 1 + (2" — 1) = 27+,

which contradicts (1.7). Therefore, (2**! — 1) must be a prime, and the theorem is
proved.

There is a simplier formulation of the result just proved, based on the fact that
2" — 1 can never be a prime if n is a composite number. This follows easily from

(1.2), since if n = rs with r > 2 and s > 2, then

2"~-1 = 2" -1
—_ (2").!_1

= (2'. - 1)(1 + 2" + 22r + e+ (2r)a—l)

12



which is composite. In conclusion, the only time that 2" — 1 can be primeisifn=p
a prime. The results on even perfect numbers can be summarized in the following

theorem.

Theorem 1.4.2 The even perfect numbers are precisely the numbers of the form

2P-1(2P _ 1) (1.9)

where p is a prime and 2P — 1 is also a prime.

13



1.5 An interesting result on perfect numbers

Theorem 1.5.1 If you sum the digits of any even perfect number (other than siz),
then sum the digits of the resulting number, and repeat this process until you get a

single digit, that digit will be one.

Examples.
28 = 101
496 — 19-10-1
8128 — 192101
33,550,336 — 28— 101
8,589,869,056 — 64 —10—1
Proof.

Let s(n) be the sum of the digits of n, where the digits of n in decimal notation

are ag,a;, - -, ax then,
n = ag + 10a; + 10%az + - - - + 10%q,.

Since
10! = 1(mod 9)
102 = 1(mod 9)

102 = 1(mod 9)

14



10* = 1(mod 9),

Also,

n=ag+a;+---+ ax(mod 9)

or
Go+a; +---+ag =n(mod 9)
or
s(n) = n(mod 9).

Thus, this theorem can be proved by showing: perfect numbers are congruent to one
modulo nine.

If n is a perfect number, then n has the form 2P~!(2P — 1), where p is prime (see
Theorem 1.3.2 in this chapter).

From Euler’s Theorem,

a*™ = 1(mod n) if ged(a,n)=1.

So
24 = 1(mod 9)
since
#(9) = 6,
thus
2% = 1(mod 9).

15



Hence,

2" =1(mod 9) if m = 0(mod 6).
Case 0. If p=2, then
2P-l(2P 1) = 227122 _-))

= 2(3)

= 6 = 6(mod 9).

Thus p can not be equal 2.

Case 1. If p=1(mod 6), then

P — 1 =0(mod 6)

Thus
2P~! = 1(mod 9), where p = 6j+ 1, for some j € N.
And
2 —1= (2% —1) = (2 — 1)(mod 9)
Therefore,

2r-1(2P — 1) = 1(2! — 1)(mod 9) = 1(mod 9)

Case 2. If p = 3(mod 6), then

p—1 2(mod 6)

2r-1

2%(mod 9)

16



= 4(mod 9)

and 2 -1 = 2% —1(mod 9)

7(mod 9)

Hence,

2P"1(2? —1) = 28(mod 9)

1(mod 9)

Case 3. If p=5(mod 6), then

p—1 = 4(mod 6)
2?~1 = 2%(mod 9) = 7(mod 9)
2? = 2°=5(mod 9)
271 = 4(mod 9)

Hence,

2P~1(27 — 1) = 28(mod 9) = 1(mod 9).

17



Chapter 2

Some results on arithmetic

functions
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2.1 Multiplicative functions

Let n be a positive integer. The divisor function d(n) counts the number of
positive integers which divide n (including 1 and n itself). Let o(n) be the sum of
positive divisors of n (including 1 and n). In Table 1 below, d(n) and o(n) were

evaluated for n in the range from 1 to 10.

n 11}1213/4(5/6 {78910

dn)|1]2]2|3|2/4(2|4]|3]|4

on)|1]3[4|7|6]|12]|8|15]13]18

. Table 1

Table 1 shows that there are times that d(mn) can be determined from d(n) and

d(m), and similarly for o(mn). For example,
d(2 - 5) = d(10) = 4 = d(2)d(5)
d(2-3) = d(6) =4 = d(2)d(3)
o(2-5) = 0(10) = 18 = 0(2)0(5)
o(2-3) = 0(6) = 12 = 0(2)0(3).
On the other hand, this can not always be done, as the following examples illustrate:
d(2-4)=d(8) =4 #d(2)d(4)=2-3=6

0(2-4)=0(8) =15#0(2)0(4) =3-7 =21.

19



In the above examples, it shows that

d(mn) = d(m)d(n) (2.1)
and

o(mn) = o(m)o(n), (2.2)

in every case that gcd(m,n) = 1. This can be proved shortly. These examples

motivate the following definition.

Definition 2.1 An arithmetical function f is multiplicative if f is not identically zero
and f(mn) = f(m)f(n) whenever gcd(m,n) = 1. If f(mn) = f(m)f(n) for all m,n,
then f is said to be a completely multiplicative function.

One example of a completely multiplicative function is f.(n) =n".

Theorem 2.1.1 If f is multiplicative, then f(1)=1.

Proof. Assuming that f is multiplicative, then

f(n)=f(1-n) = f(1)f(n)

since ged(1,n) = 1, for all n. Since f(n) # 0 for some n; thus f(1) = 1.
Because of the multiplicative property, the evaluation of a multiplicative function
f at a positive integer is reduced to that of evaluating f at the prime powers that

divide n. Thus, if n = pi'p3? - - - p¢*, then

f(n) = fi'p2*---pe)

20



= f(pv')p2*---Pe)
Fe) () f(P3° - - - p¢*)

= f)f@?)f(@5°)--- f(p*)-

The next theorem shows how to construct a new multiplicative function from a

known multiplicative function.
Theorem 2.1.2 Let f be a multiplicative function and suppose
g(n) =3_ f(d). (2.3)
din
Then g(n) is multiplicative.

Proof. Suppose n > 1,m > 1, where gcd(m,n) = 1. The goal is to show that

g(m)g(n) = g(mn). First,

g(m)g(n) = EI: f(d) Y f(d2) = 3 f(d1)f(da). (2.4)
di|lm dain dyjm
dajn

If d;|m, d;|n and ged(m,n) = 1, then

ged(dy,d2) = 1.

Thus by the definition of multiplicative function

f(d1) f(d2) = f(drdy),

21



and (2.4) becomes

g(m)g(n) = 3_ f(did2).

dy|m
dz|n
Let d = d,d,, where d,, d; are positive. If di|m and dz|n, then d = d,d>|mn, and

every divisor of mn is of this form. Therefore,

g(m)g(n) = dlZ f(d) = g(mn),

and hence g(n) is multiplicative. As an immediate consequences of Theorem 2.1.2,

the next theorem is followed

Theorem 2.1.3 The functions d(n) and o(n) are multiplicative.
Proof. The function f(n) = 1 for all n is multiplicative and

dn)=>_1=3 f(d).
din din
Thus by Theorem 2.1.2 d(n) is multiplicative.
The function f(n) = n is completely multiplicative and
o(n) =) _ d=73_ f(d).
din din

Hence, o(n) is also multiplicative.

22



2.2 Divisors and Sums of Divisors

Definition 2.1 The generalized divisor function o,(n) for any real (or complex)

number a is defined by
oa(n) =3 d*. (2.5)
din

When a = 0, it is easy to see that d(n) = o¢(n) and o(n) = o1(n)-

Theorem 2.2.1 If the factorization of n into primes is given by
n=plep Bl

then
d(ni = (a1 +1)(az +1)(az+1)---(ac + 1) = f[(a,- +1) (2.6)

and

=1

[ (¢i+l)a _
ga(n) =[] (B—l-,r_-l—l) - (2.7)

Proof. If p is a prime and a > 1, then the divisors of p* are 1,p,p*. %, - p°.
Thus d(p®) = a + 1. Since d(n) is multiplicative,
d(n) = d@y'p? - P;")

= dE)dpE)- - dip)

(a1 + 1)(az + 1)(azg + 1) -- - (a. + 1).

Therefore,

d(n) = [T(a: + 1)

i=1

23



which proves (2.6).
Next, 04(n) is a multiplicative function since it is a divisor sum of the multiplica-

tive function f(n) = n*. Thus
oa(PF'PF - - - D) = 0a(pi*)0a(p2’) - - - Oa ?t)

As before the divisors of p* are 1, p, p?,---,p?, and hence by (1.2)

p(a+l)a — 1)

o.a(pa)=la+pa+p2a+“.+paa=( pa—l

Thus

aa(n) _ p(1a1+1)a -1 pgaz-#l)a -1 - pgag-H)a -1 _ fI ga.-+1)a -1
T —1 g -1 pr—1 i=1 pf—1

which gives (2.7).

This section is concluded with an inequality for o(n) which can often be used in
the arguments in place of (2.7) and does not depend on the powers of the primes that

divide n.

Lemma 2.1. For n > 2,
1

—1‘—>H(1-;). (2.8)

o)~

Proof. The notation a™ || b means that a™|b but a™*! /b.

n_ p™
am ~ 1 5™

P™iin

pm
= [l ===

pmin  p—-1

24



Note that the product on the right-hand side of (2.8) is actually ¢(n)/n, where
#(n) is the Euler phi function which equals the number of numbers less than or equal

to n and relatively prime to n.

25



Chapter 3

Odd Perfect Numbers Have at

Least 4 Distinct Prime Factors

26



This chapter will prove that odd perfect numbers, if they exist, must have at
least 4 distinct prime factors. This result was first proved by James Sylvester in 1888.
The best current result of this type replaces 4 by 8. Heath-Brown’s theorem in the
next chapter shows that all theorems of this type can be obtained through a finite
search. In the first two sections, it will be proved that an odd perfect number cannot
have one or two distinct prime factors. These proofs were proceeded from scratch
to demonstrate how one would first approach this problem. In the third section, a
general result of Euler on odd perfect numbers that simplifies the cases that need to °
be considered will be proved. In the last section, this result will be applied to prove

that no odd perfect number has three distinct prime factors.

27



3.1 The case of one prime factor

Let n > 3 be an odd perfect number that has only one prime factor.

Case 1. If n = p, then
o(n)=o(p) =1+p,
while since n is perfect, it follows that
o(n) = o(p) = 2p.

Thus

1+p=2p
which implies p = 1, which contradicts both the fact that p > 3, and that p is a
prime.
Case 2. Ifn=p?, then
o(n) =o(p®) =1+p+p
while since n is perfect, it follows that
o(n) = o(p?) = 2p%.
Thus
1+p+p°=2p

which implies 1 + p = p? or
plp-1)=1,

28



which is impossible since p > 3.
Case 3. If n = p™, where m > 2, then
o(n)=o(™)=1+p+p*+---p
while since n is perfect , it follows that
o(n) = o(p™) = 2p™.

Thus

or

1 — pm_pm-l_'_._p2_p

= p(pm—l_pm—2_._._l)_

Therefore p|1 which is impossible.
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3.2 The case of two prime factors
Let n be an odd perfect number that has two distinct prime factors. Then
o(n) = 2n. (3.1)

Consider the special case of n = pq before doing the general case when n = p¢®.

Case 1. If n = pq, where ged(p, q¢) = 1, then
o(n) = o(pq) = o(p)o(q) = (1 +p)(1 + q)

and thus by (3.1)

(1+p)(1 + q) = 2pq. (3:2)
Simplifying gives

l+p+q+pg = 2pg,

= 1 (3.3)
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Since p,q > 3, implies

trr_1
pga- 3 3 9
which gives
1,1, r 1,11
pq ¢ p ~— 9 3 3
- I
9
< 1
contradicting (3.3).

A second method to see that (3.2) is impossible is to consider the prime factor-

ization implied by this relation. Since p does not divide (1 + p), it follows that

pl(1+q)

and similarly ¢ does not divide 1 + g, so

q/(1 +p).
But since p # ¢, either
P=2+g
or
q22+p
which contradicts either
pll+q
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or

ql(1 + p).

A third method to show that (3.2) is false is simply to note that since p and q are
odd, the left-hand side of (3.2) is divisible by 4 but the right hand side is not divisible
by 4. This method will be used again in the next section to prove a more general
result.

Case 2. The General Case: If n = p®¢®, where ged(p,q) = 1, then

o(n) = o(p°¢)
= a(p")o(q")

- (9 (5

pa+lqb+l — pa+1 _ ql>+l +1

(p-1)g-1)
pqpnqb _ pa+l _ qb+l + 1
P-1(@-1) (@E-1@-1) @E-1)@-1) ((E-1)0g-1)
pq p0+1 1

_ _ b1 _
P-De-D" G-DE-D Ge-De-D¢ Y
p q
< (%) (%)~ 9

This last equation is actually just a special case of Lemma 2.1. If n is a perfect

number then o(n) = 2n, and this will be impossible by (3.4) when

(pil) (qzl) <2 (33)

The function f(zr) = %= is a decreasing function for z > 1 since its derivative is

z-1

—(x —1)"2 < 0. Since p > 3 and ¢ > 5 (on taking p to be the smaller of the two
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distinct primes), hence

p q 3 5_15
(p—l)(q-l)<2 1i=3<?

so that (3.5) is satisfied and therefore n is not perfect.

The simplicity of the above argument might suggest that one can easily proceed
to more prime factors. The problem that arises is that the analogue of (3.4) no
longer produces a factor less than 2 when small prime factors occur. These small
prime factors require separate arguments which become increasingly complicated.

This occurs in the case of 3 distinct prime factors and will appear in section 3.4.
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3.3 A Result of Euler on Odd Perfect Numbers

Now consider the prime factorization of an odd perfect number. In section 3.1 a
proof (the third method) based on the main idea that will be used here. That idea
is that o(n) is divisible by 2 but not by 4, and this will impose conditions on the
factorization of n through equation (2.7). The simplest result of this type is that a
square-free number can not be an odd perfect number. To see this, notice that if n

is square free then n = p,p, . .. p, with distinct primes, and thus

on)=MmEm+1)(p2+1)...(p +1).

This expression is a product of ¢ even numbers, and thus is divisible by 2¢, which
contradicts 4 fo(n) unless ¢t = 1, and t = 1 was eliminated in section 3.1. Here is a

general result of Euler and its proof.

Theorem 3.3.1 If n is an odd perfect number, then n = p®s® where p is a prime,

ged(p,s) =1, and
p = l{mod 4), and a = 1(mod 4).

Proof. Let n be an odd perfect number, where n = [[;_, p;*. Then o(n) = 2n, and

since n is odd, 2 || o(n), or equivalently,
o(n) = 2(mod 4).
Since o is multiplicative,

o(n) = o(pt'py®---p¢')
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= o(pi')o(p?’) - - - o(pe*).
Hence
o(p1*)o(p?’) - -- o(pf*) = 2(mod 4). (3-6)
From this equation one can see that precisely one of the factors on the left must be

divisible by 2 (but not 4) and thus there exists a unique p with p® || n and
o(p®) = 2(mod 4). 3.7)
Since p is odd, it must be congruent to either 1 or 3 modulo 4. But if p = 3(mod 4),
then
o(@®) = 1+p' +p*+p*+---+p°

= 1+3+1+3+1+3+---(mod 4)

0 or 1 (mod 4)

which contradicts (3.7). Hence p = 1(mod 4) as stated in Theorem 3.3.1. With

p = 1(mod 4) , it follows that

o(p®) = 1+p +p*+p*+---+p°

1+1+1+---+ 1(mod 4)
(a+l)vtenm

= (a+1) (mod 4)

which implies by (3.7) that a = 1(mod 4).
It remains to show that n = p®s?. Let n = mp®. Then, by multiplicativity and
(3.6)
o(n) = o(m)o(p®) = 2(mod 4), (3.8)
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which by (3.7) implies o(m) is odd. Suppose q is an odd prime such that ¢®/jm. Then

o(q®%) is also odd by multiplicativity. Now either
q = 1(mod 4)

or

q = 3(mod 4).

Two cases below will show that b must be even.

Case 1. If ¢ = 1(mod 4), then

o(@®) = 1+¢' +¢*+---+¢

1+1+1+---+ 1(mod 4)
(Ml)vmms

(1 + b)(mod 4).

Thus (1 + b) must be odd and so b must be even.

Case 2. If ¢ = 3(mod 4), then

o(@) = 1+q+¢+---+¢°

= 14+3+1+3+---+1(mod 4)
(H-l)vterms

which is odd only when b is even.
Therefore, in either case, b must be even. Since this argument applies for every
prime dividing m, thus

m = q'e¢? -
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= (¢{'¢5---¢t)?

= 32,

where since each b; is even, it is true that b; = 2c;.

37



3.4 The case of three prime factors

Let n = p*¢®r be an odd perfect number that has three prime factors, and assume

p < ¢ <r. Then by Lemma 2.1

> (-3)

pin

and therefore in this case, it is true that

o(n) < (pf 1) (qf 1) (r ~ l)n. (3.9)

Thus n can not be perfect when

(pf 1) (qfl) (r: 1) <z (3.10)

As in section 2 each factor in (3.10) is a decreasing function. First consider the case

that p and ¢ are as small as possible. Then p > 3, ¢ > 5, and thus (3.10) holds if

(2) @) (=) <

which simplifies to

15 1
6<177
which gives
11
T 16
and thus
r > 16.
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Therefore (3.10) holds and n is not perfect if
p>3, ¢>5 r>17. (3.11)

Next, consider when p > 3, ¢ > 7 and r > 11 which when substituted into (3.10)
gives

(3)G) (@) - 1w <

and hence (3.10) holds and n can not be perfect for
p=>3 q=27 r>11 (3.12)

On combining (3.11) and (3.12), the cases left to be considered are the sets of primes
{3,5,7}, {3,5,11}, and {3,5,13}. In place of Theorem 3.3.1 which fails to handle

these cases, so to take account of the powers of these primes is a need. Thus,

a(n) = 0(3%)0(5")o(r)

B ™

while if n is perfect then

o(n) = 2n = 2(3*5°r°). (3.14)

Combining (3.13) and (3.14) and simplifving gives that if n is perfect then

(5-2) (6-3) (522) -

Now proceed to deal with three cases separately.
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Case 1. Suppose p =3, ¢ = 5 and r = 7 and thus n = 3°5*7°. Substituting into

(3.15) and simplifying gives

(3 - —) (5 - —) (7 - —) — 96. (3.16)

Since of the primes 3, 5, and 7 only 5 = 1(mod 4), by Theorem 3.3.1, both 3® and 7¢

must be squares, and hence a and c are even, which in particular imply that
a>2, c>2
Using these and the trivial b > 1 it shows that the left-hand side of (3.16) is
26 24 242
> - — - —_— )= —=——— = 96. ce
> (3 )(5 ) 7 7‘2) 15 = 96.7836... > 96
which contradicts (3.16)

Case 2. Suppose p = 3, ¢ = 5, and r = 11, and thus n = 3*5°11° where a and
c must be even by Theorem 3.3.1 as in Case 1. If the inequalities a > 2, b > 1, and
c > 2 were used as in Case 1, a contradiction to (3.15) can not be seen. To solve this

problem, first show that

To see this, notice by multiplicativity
o(n) = 0(3%5°11°) = 0(3%)o(5%)o(11°)

and so
o(3%)|o(n) = 2(3°5°11°)
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since n is perfect. But if a = 2 then
o(3)=1+3+3*=13

which does not divide 2(325°11¢). Therefore a # 2 and since a is even a > 4.
Now consider two sub cases: b= 1 and b > 2. First, if b > 2, then with a > 4 and

¢ > 2 the left-hand side of (3.15) is

11 — 77 _ 242124133
> (3- o) 22208 16.28839. .
(3 ;) (5- 52) ( 10 ) 81 25 121 020089 > 16,

which is a contradiction. Next, if b = 1 by (3.15) that

(3“ )(5"5) (11—116)=160

which implies

(3_-) (11_11°)=%0>33

which is impossible since
(3——) (- uc) <3-11=33

Case 3. Suppose p = 3, ¢ = 5, and r = 13, and thus n = 3°5°13°. By Theorem

3.3.1, a is even since 3 # 1(mod 4). Suppose ¢ > 2. If not, then by multiplicativity
o(n) = 0(3°5°13°) = 0(3%)0(5%)0(13°),

which since
o(13') =1+13=14
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implies that

7lo(n) = 2(3°5°13°)

which is impossible. Hence ¢ > 2.
Thus a > 2, a even, b > 1, and ¢ > 2 . Divide these into three sub cases: i) a > 4,

b>2,andc>2,ii)a>4,b=1,c>2,andiii)a=2,6>1,andc>2. Let r =13

in (3.15) in order to obtain
(3 - —) (5 - ) (13 - @ = 192. (3.17)

i) Suppose a > 4, b > 2, and ¢ > 2. Then the left-hand side of (3.17) is

1 1
(3-—)( 5—2) ( 3—@) —192.5562... > 192

which exceeds the right-hand side of (3.17).
ii) Ifa > 4, b =1, and ¢ > 2 then (3.17) becomes
(3-3) (13-55) -0
which is impossible since the left-hand side is < 39.

iii) Ifa =2, b > 1, ¢ > 2, then (3.17) becomes

1\ (.. 1) _864_
(5"33) (1"-136)" 13 = 0046l

which is impossible since the left-hand side is < 65.
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Chapter 4

Heath-Brown’s Lemma 1
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Heath-Brown’s Lemma 1
Let r be a positive integer and let n;,---,n, be integers such that 1 <n; < --- <

n,.. Suppose that ¢ is a rational number in the range

r r—1
I:Il(l - ;:—‘_) < % < _I_'I(l - %)- (4.1)

Then

"

[In < (4a)¥1.

=1

Before proving Heath-Brown’s Lemma 1, the following lemmas are needed:
Lemma 4.1

If 0 <a; <1, then

[[l-a)21-3 a.
i=1 i=1
Proof. (By induction on r.)

If r=1, then 1 —a; > 1 — a,, so the lemma is true for the case r = 1.

Now assuming the lemma is true for the case r = k — 1, so

Ma-a)>1-Fa

=] =1

and then

fI(l - a) ('ﬁ(l - ai)) (1-ax)

i=1 i=1

(I-Eai) (1 —ax)

i=1

Y

k-1 k-1
- 1-Ya-atara
i=1

i=1
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k k—1
= 1-) a+ary a
=1

i=l
k
> 1- Za‘-.
=1

Lemma 4.2

For any positive integer k, it is true that k + 1 < 2%,
Proof. (By induction on k)

Fork=1,

1+1=2=2%

Thus the lemma is true for the case k = 1.

Now assume it is true for the case k = r — 1, so that

r-l1+1=r<2%

Then
21‘
< —
T=73
or
r+1<2r<?,
and so
r+1<2
is also true.
Lemma 4.3

For any positive integer k, it is true that 1 + 5&}9 < 2k,
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Proof.

If K =1, then

1(1+1) _

5 2

1+

and the lemma is true for £ = 1. Now assume £ = r — 1 is true. Then

L=

1 <ot

Now if kK = r then

R ) R

-l p

IA

2r—1 + 21-—1

IA

= 227
= 27,
where Lemma 4.2 was used.
Proof of Heath-Brown’s lemma 1: (By induction on r.)
When r = 1, (4.1) implies

<1,

o R

1-L<
ny

and using the right-hand inequality gives a < b. Since a and b are both integers, it is

true that
a+1<b,
hence,
L
b " a+1
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or

a_ _a
b " a+1
Thus
-t <2 @
n, b " a+1l
Therefore, if
-1 8
ny a+1
then
1 1 a+1 1 _ 1
n_ a+1 a+1 a+1
or
:1< -1
nl-a-{-l
which gives
1,1
n;  a+1
or

ny <a+1<4a=(4a)?"L

Thus the case r = 1 is true. For the induction step, suppose that some integer n;
must satisfy

n; < 2%a. (4.2)

Assume on the contrary that n; > 2*+1a for every i. From (4.1)

f[(l—l)<3<ﬁ(1—l)<1
i=1 T b n' T
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It follows that a < b, hence a + 1 < b so that

a a z 1
>->TI-—=
a+l-b_g( n,)
By lemma 4.1
a a . A |
>->Ma-—)>1-%Y —
a+l—b_,-=r‘[1( ) - T
From the assumption
n‘>2i+la’
which gives
1 1
n; 2'tlg
and thus,
PLIPA G T
n; 2i+lg
Hence,
a t1 1
>1- —_>1- - =1-
a+1 g i §12'+1a

1

2a

since 32, s+ is a geometric series which converges to § Thus,

=1

a 1

a+l> 2a

which implies
a > 2a -1
a+1 2a

or

2a? > (2a—1)a+1)
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2a? > 2d®+a-1
-a > -1
a < 1

20 < a+1.

This is a contradiction since 2a > 1 + a.

Now take k to be the smallest integer i for which n; < 2*!q holds. Thus
ning---ng < nf < (2¥Ha)*

and if r = k, then

r
Hn" < (2r+la)r.
=1

Next, if 1 <k <r -1, then $ is a rational number in the range

0(i-7)<5<T(-5).

i=1 ™ i=1 L
which is equivalent to

1(-7) IL(-2) <5<,

=1

16-2) 1,0-2)

i=k+1

r;:.,

It follows that

._fI (1__1') el ?-L)<.rﬁl (l_i)'

i=k+1

But

‘_,(1-—) I-Da-=-3)--1=-5)
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NNy - - -Nk
mng-om(l— 21 - 1)---(1-3)
l'k=lni
nf:x("k -1)’

and hence
3 _2. nf:l n
L(1-4) b Min(ne-1)
Let
a’ all*, n;

Ifl1<k<r-—1,then
r l al r—-1 l
<2 1__).
I (i-7)sg<T (-5

i=k+1 L] i=k+1

It therefore follows from the induction assumption that

r—1 k
H n < (4«1’)""""1 = (4a H n,-)""—‘k'l
i=k4+1 i=1

= )" ([In)*

=1
k k
= (M)z"‘-*([lln.-)f‘*(gn.-)-*.
Thus
r—1 k ok k —
(II n)(IIm) < (40)* ([In)*, which implies
i=k+1 i=l1 i=1
[n < @7 [In)"",
i=1 i=1
and by (4.3)

I:In‘_ < (40)2'—“-1(2’”'10)“2'—.).

=1
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This estimate also holds when k& = r by (4.4).

To complete the induction, it is necessary to have

Hni S (4)2'-la2'—1 = (4a)2"—1_

i=1
Therefore, if

(42'-*-1) (2k(k+1)2""‘) < 42! (4.5)

and

a? i 1gh Tt < g7 (4.6)

can be shown then the proof is completed.

Proof of (4.5): Since
(a7 -1 (2k(k+1)2'"") = QA2"*-1)ok(k+1)z~*

2(2""""l =2) 2k(k+l)2"‘k .

By Lemma 4.3, this last expression is < 2 "= -2277%

2(2r—h+l _2)+2r+l —or—k+l

— g¥¥i-2
— 922-1)
— 471
Proof of (4.6):
Lemma 4.2 k + 1 < 2*, gives
@Dk (@Rl ek
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a2 "t(+k)-1

a2""2"—1

IA

.
= a¥ 1,
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Chapter 5

Heath-Brown’s Lemama 2
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Heath Brown’s Lemma 2:

Let N > 3 be an odd number divisible by a set S of primes, and suppose that

@ = % > 1.
Then N is the product of two coprime factors U and V' with the following properties.
(i) w(V) = v is at least 1.
(ii) U is divisible by a set T of primes, where v + #T — #S = w is non-negative.

(iii) %2 = ¥, with do(V')|5.

(iv) 46 [1(T) < (4dTI(S))**".

Proof.
Let [I(S) = Hpesp-
If S is the empty set,
)
1--] =1
(-3
If S is not the empty set and since 2 € S, then
1 p-1
-3)-n()
0(-3)-0(5
is a product of even numbers divided by a product of odd numbers and therefore

has even numerator when written as a fraction in lowest terms. On the other hand

[:4

2 = _f&; is less than 1 since N is less than o(N), and 300 = =% has odd numerator

when written as a fraction in lowest terms, since reducing a fraction to lowest terms

does not change an odd numerator to an even one. It follows that
1 d
1--) #=.
0(-5)#
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Case 1.

(5.1)

CYEN

)
1--)>
(-3
In this case, first construct a non empty set S’ of primes which is disjoint from S
and also dividing N. By lemma 2.1
| N d
l--)| < —= = —-.
,I.-,Iv ( p) o(N) n

Dividing out the contribution to the product of the primes in S, one obtains

M=) g7 (1)
npeS(l—;) pINPES p
d
S Mes(1-1)
< 1,

since [Tpes(1 — 3) > 4.

Thus

PIN pgS

where

d=d[[p=d][(S).and n'=n][(®-1) (5.2)
pes pes

Since [Inpes(l — %) < 1, the product is not empty and therefore the set of

primes p|N and p € S is not the empty set. Some elements in this set are selected to
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construct a subset S’ = {p;,p2,P3, - -, Pw} With the properties that

ﬁ(l--‘-)g%<'ﬁl(1-l). (5.3)

i=1 Di i=1 Di

First, pick a prime p; such that p,|N and p; € S. Then either

(l—l)$£,<l
%1 n

£,<(1_i).
n 2

If the first situation holds, take S’ = {p:} and the proof is completed. Otherwise, the

or else

set p|N,p € S,p # p1, is not empty, and a second prime p, is picked from this set.

Then
(-5 (-5) <(1-5)
y 51 P2 N
and either
I’
(-2)(-2)<2
y 41 D2 n
or else

<o-2)(-2)

In the first case, take S’ = {p;,p2}, w = 2 and have

[(-5) =5 <m0-7)-(-5)

Otherwise, a third prime p3 is picked as before, let S’ = {p,, p2, p3}, so that

T(-3)=(-3) (-3) (-2) < (-3) (-2)
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and either
or else

Again, in the first case

1(-3) <2< (-2)-(-3)0-2)

Otherwise, take S’ = {p1,P2,P3, P} and keep repeating on this process. At the k*

2 _fi(1-2)

non bi

stage,

But if m is the number of primes p| NV and p &€ S, then
fi(-5) = L,0(-7) <%
=1\ Pi/  pNpgs\ P/ T
and hence k < m. Thus, there is some w where
w w-—1
(-4)s£<H0-2)
i=1 Pi L = pi
for S’ = {p1,p2,- - ,Puw}, Pi|N, and SN'S' = 0.

Thus by Heath-Brown’s Lemma 1,
[1r =TI(S) < (42)*™*
i=1
and hence by (5.2)

[I(s'us) = TISHIIS)
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< @)THIS)
= (4d[Is)" T TIS)

= (4)*TI(5)*. (5.4)
Moreover

sl 1 d

i(-7)<%
implies

1 1 d 1
(-5 I(i-3)<5m(t-