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ABSTRACT
MULTIVARIATE ANALYSIS OF OPERATIONAL ERRORS IN AIR TRAFFIC
CONTROL
by Damir Ceric
Improving safety by reducing the frequency of operational errors in an air traffic
control environment has long been the goal of the FAA. Complexity embedded in air
traffic control operations, configuration of airspace, and human information processing
capacity limitations allow for multiple factors to influence incidents, creating several
categories of operational error. This study examines several predictors of operational
errors, and is tailored towards recognizing error patterns. A single operational error may
have multiple categories. Identifying unique contributions of any of them is essential,
because it leads to a better human error prediction model. Results in this study revealed
the influence of a number of contextual factors in prediction of error type frequency.
Furthermore, the severity conformance metric (an aircraft proximity index) predicted the
frequency of error categories to some extent. The number of aircraft in a sector did not

contribute significantly towards the prediction of error categories.
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Introduction
Human Error

Due to their complex nature, the causes of human error have never been precisely
defined. We are more likely to talk about different perspectives on human error, where
each one differs in terms of the nature and cause of the problem. Although it is beneficial
to have different approaches to a problem, most human error models are of a theoretical
or academic nature without a significant benefit to applied practitioners (Wiegmann &
Shappell, 2001). The authors mentioned above describe five different perspectives on
human error pertaining to the aviation environment: cognitive, ergonomics and systems
design, acromedical, psychosocial, and organizational. This approach, however, could be
applied to any human-machine interaction environment.

The cognitive approach is one of the most commonly used models for human
error. Those models are usually considered in clearly distinct stages (attention,
recognition, decision, and action) and are based on the information processing theories of
cognitive psychology. Although popular, cognitive models are not problem-free as they
do not address all the relevant issues. For example, they do not consider the influences at
an organizational level or any task-related factors such as equipment design.

Contrary to the cognitive approach, in the ergonomics and systems design
approach the human is never the only responsible cause of error. They are seen as yet
another component of an inseparable system including software, hardware, and various
environmental conditions. Within the aviation community, the focus is usually on

human-hardware interaction and improvements in cockpit and air traffic management



displays and procedures. The disadvantage of this approach lies in the potential
overemphasis on the human-machine interaction. There is a tendency to see all problems
as caused by a flawed design, thus neglecting cognitive, social, and organizational
aspects.

The aero medical perspective approach emphasizes underlying physical
conditions that may lead to human error. Due to the unique environment of an aircraft
crew operation, there is a chance that hypoxia, dehydration, fatigue, and disorientation
may cause more frequent human errors. The physiological aspect is usually
underrepresented in crew training and one of the challenges is to determine the tolerance
threshold of each person, beyond which the crewmember is likely to commit an error.
The psychosocial perspective is seen in terms of the interaction between all aspects of air
transport. Pilots, flight attendants, and air traffic control personnel, all contribute to the
quality of those interactions, and most importantly human error is viewed as a function of
the breakdown in team dynamics and interpersonal communications. The major
drawback of psychosocial theories of human error is the lack of empirical evidence.

The organizational perspective was only recently introduced in the aviation
environment because of an increasing complexity of air accidents. This perspective is
based on the decisions of managers and supervisors as to the causes of the incidents. The

major advantage of this approach is broadening the area of accident investigation as well

as the use of industrial organizational psychology research. However, the causal distance
of organizational factors from the context in which an error occurred makes it almost

impossible to address any aspect of the organization as responsible for the error.



Furthermore, in case of a remedial intervention, changing procedures at the organization
level does not guarantee success.

Human error in aviation. Even with great improvements in air travel safety
during the last five decades, there is an increase in accidents and runway incursions
(Shappell & Wiegmann, 2001). Although we may never be able to answer exactly why
airplane accidents occur, there is a trend in the nature of aircraft accidents that is worth
mentioning. Decades ago, failures were primarily mechanical and physical in nature,
while today the most responsibility can be attributed to human error. Nowadays, people
flying the aircraft are more dangerous than the planes they fly (Shappell & Wiegmann,
2000). Even though there is a 70%-80% contribution of human error in accidents, not all
the errors are related to a single cause, making the whole investigation process very
complicated (Shappell & Wiegmann, 2001). The multitude of factors that may or may
not contribute to committing an error is too large for a simplistic interpretation of
incidents. Therefore, having a valid and reliable human error classification system would
be beneficial for helping understand the specific factors involved in each individual
incident. That is exactly what is missing today; a unified, data driven framework that
could be used for the analysis of human errors. Because, there is no final consensus on a
unified definition of a human error, for practical reasons, classification systems have been
developed.

Reason (1990) proposed a four-layer model that describes human failure where
the layers influence each other. The first layer is called active failure and is directly

responsible for the accident, while the other three layers are termed latent failures. Unsafe



acts, the actions that directly lead to an accident, are the point where the investigators
find the majority of “causes.” An example would be improper scanning of an instrument.
The next layer is called preconditions for unsafe acts (including psychosocial and
physiological breakdowns such as communication problems or fatigue). Crew resource
management (CRM) is the term commonly used to refer to those issues. For example, if
the crew member is fatigued, bad decisions are made and an accident may occur.

Further, the third layer, termed unsafe supervision, happens in complex, multi-factor
situations. For example, two inexperienced pilots who do not know each other are paired
and sent through bad weather. Therefore, there is a lack of supervision that may lead to
the system entering preconditions for unsafe acts and eventually to an incident or
accident. The fourth and last layer is at the organizational level. For example, the airline
budget cut translates into more modest training and flight time, eventually leading to an
accident.

While this model encompasses many aspects of human error, it is mainly a
theoretical framework that lacks details of a real-world application. Our goal is to know
the “holes” in each layer and identify them during an accident investigation or detect and
prevent them from happening in the first place.

Human error in the air traffic control environment. The current study focuses
specifically on human error and concentrates on errors committed by air traffic
controllers. Human error in the air traffic control environment shares many of the

characteristics of human errors in general aviation. Although the collisions of two or



more aircraft are rare (Rodgers, 1998), reducing the number of human errors that occur in
air traffic control is a meaningful endeavor.
Air Traffic Control Environment

Considering the technical nature of this study, it is essential to present a brief
summary of the operating procedures used in the air traffic control system.

Airspace sectors. The US airspace consists of 21 zones and there is one Air
Route Traffic Control Center (ARTCC) for each zone. For increased safety and
efficiency, the 21 zones are divided into smaller sectors (Davis, Danaher, & Fischl,
1963).

Air traffic control centers. Tower control is in charge of airport runways,
taxiways, and the immediate surroundings of the airport. Landings, takeoffs, and
handoffs to the other sectors are handled by this type of air traffic control. Consequently,
the size of the airport and the frequency of the traffic will dictate the complexity of the
tower operations.

TRACON. Terminal Radar Approach Control (TRACON) is a type of control
service that exists only around major airports. It serves as an intermediate step in charge
of maintaining climbing and descending traffic between the airport and the en-route
services. One of the primary functions of TRACON is to slow down the aircraft when
approaching the major airport.

ARTCC. Air Route Traffic Control Centre (ARTCC) is an en-route service
providing pilots with control services on their way between the airports. Usually, this air

traffic control occurs at high-level altitudes in airspace divided into sectors. Every sector



is under the responsibility of its own air traffic controller team. The two-member team
includes one radio controller or R-side (executive controller) and one data controller or
D-side (planner controller). The only exception to this setup occurs during the high
volume traffic situations when the third controller (tracker) may be added.

Similarities and differences between TRACON and ARTCC. In order to
understand this two-part study, it is essential to outline the specific nature of both types of
air traffic centers. The more dynamic centers are TRACON centers where constant
altitude change, more variety in aircraft types, and greater reliance on visual flying is
encountered. The main difference between ARTCC and TRACON is the attitude
towards dealing with emergencies. In ARTCC, where the traffic flow is more
predictable, there is sufficient time to develop long-range strategies for dealing with the
problems that may arise. However, In TRACON emergencies must be handled in a more
immediate way or tactically, as they arise suddenly in this less predictable environment
(Wickens, 1997).

Separation minimums for TRACON and ARTCC. Another important set of
differentiating characteristics are mandatory safety separation minima. ARTCC
separation restricts the aircraft’s proximity to five miles laterally and 2000 feet vertically.
In TRACON, however, the minimum standards are three miles and 1000 feet (Wickens,
1997).

The air traffic controller’s responsibilities. According to the Air Traffic
Controller Manual of controller duties, 7110.65L (DOT/FAA/OED, 1996), the first

priority is to separate aircraft and issue safety alerts if necessary. That is accomplished



by using good judgment based on the situation at hand. The controller should utilize all
available information in guiding the aircraft until it is handed off to the adjacent sector.
Although there are many similarities among controllers (depending on the kind of the air
traffic controller involved), the perceptual and cognitive demands may vary, which in
turn may have an impact on errors. For instance, ARTCC controllers rely on a radar
display and paper strips, while tower controllers can use visual cues to determine the
position of an aircraft.
Operational Errors

Operational error can be described as any activity or state of one or more aircraft
in the airspace that eventually leads to the breach of the specified minimum separation
distance. Additionally, human operators such us pilots, air traffic controllers, and other
personnel involved in air operations may contribute to occurrences of operational error.
The Federal Aviation Administration (FAA) and The US Department of Transportation
(DOT) are the two executive organizations responsible for the defining of procedures and
regulations of the operations. Air Traffic Controller Manual 7110.65M
(DOT/FAA/OED, 1996) strictly classifies operational errors into critical ones affecting
separation minima and less critical ones dealing with the deviations (Rodgers & Nye,
1993).

Legal procedure for handling operational errors. FAA Air Traffic Quality
Assurance Order 7210.56¢ (FAA, 2002) is what determines and describes the procedure
of incident reporting (Bailey, 2005). When an operational error occurs, the air traffic

center conducts a thorough investigation immediately after the incident. Normally, a



supervisor detects the occurrence of an error. The first phase is a completion of a
preliminary report document FAA 7210 (FAA, 2000). Next, the incident is presented to
safety staff and air traffic managers. The air traffic controller under whose supervision
the incident happened is temporarily removed from the position, the recorded tapes are
analyzed and all relevant information surrounding the circumstances of the event are
gathered by air traffic managers (Rodgers, 1998). In some centers equipped with
SATORI (Systematic Air Traffic Operations Research Initiative) system, the whole
situation is re-enacted in order to search for the main cause of the error. That method,
however, is used only after an operational error occurred (Pounds & Ferrante, 2003).
Nevertheless, SATORI provides an accurate description of factors that influenced the
incident. At the end, the final operational error or deviation report (containing all
information obtained during the investigation) is filed by ATD (Air Traffic Division)
manager. Refresher training courses, recommendations for future work, possible
penalties, corrective actions, and even decertification finalize the process. For an
example of a final operational error report see Appendix A.

Operational errors classification. Due to the complexity of circumstances
involved in an incident, the need for a useful framework defining specific categories of
operational reports was recognized by FAA evaluators and investigations staff members.
However, the most crucial feature of an operational error seems to be “severity.”
Severity of an operational error is defined as the physical proximity of two or more
aircraft, the sector characteristics, weather, and altitude. (Pounds & Ferrante, 2003). The

most current severity index (SI) is based on post hoc computations of the data from an



incident in an operational error report. There is a point scale ranging from 0 to 100.
Several factors such as vertical and horizontal separation, level of control, and flight
paths influence the point value assigned to each incident. In addition, there are three
basic levels of severity, high, moderate and low (Bailey, 2005). A statistical analysis
performed by Bailey (2005) targeted at the assessment of SI as a useful severity
classification tool for operational errors. The results showed that, overall, SI served as a
reasonable metric for categorizing Air Traffic Control operational errors.

The present study will use the classification frameworks of operational errors
developed by San Jose State University Human Automation and Integration Lab (HAIL)
in 2005. The classification was based on the analysis of official FAA operational error
reports. Corker and Garcia-Chico collected and examined a set of 539 operational error
reports that occurred in the first six months of the year 2004 (Corker & Garcia-Chico,
2007). There are 24 different categories of operational error types (Appendix B). The
authors developed the framework for both, operational error types and contributory
factors. The basis for the evaluation and classification of errors was provided by the
objective statements in reports without the interference of the reviewers’ interpretations
of the facts (Garcia-Chico, 2006). The focus of this study is the number of error
categories in the operational error reports. Each operational report with more error
categories contained within each incident indicates more complexity, more factors to deal
with, and deserve more attention. There are three reasons for having less categories of
operational error in a report. The first is entirely of practical nature. Any intervention

necessary to separate aircraft will require relatively safe and straightforward solution if



less categories are involved. The second would be important in terms of developing a
causal model as to why the incident occurred. And finally the fewer variables included in
an analysis, the more reliable the results.

Concurrent factors classification. A wide variety of factors closely or remotely
related to an incident are collectively called concurrent factors. They may be present
prior to, during, and after an operational error occurred. In addition to the classification
of operational errors, factors concurrent to operational errors classified into 32 categories
(Appendix C) were used in this study (Corker & Garcia-Chico, 2007). The focus of this
study primarily lies in the number of contextual factors in each operational error report.
As was the case with each of the operational errors, the presence of multiple factors in a
report indicated more complexity, more severe operational errors report, and a greater
need for immediate intervention.

Predictor variables. In this study, three independent variables are used:
contributory factors, severity conformance metric, and number of aircraft. Independent
variables will be referred to as “predictors” in the study.

Criterion variables. The study uses one dependent variable, the sum of different
categories of operational error in each report. The dependent variable will be referred to

as a “criterion” in the study.
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Hypothesis 1

There will be statistically significant overall relationship between the three
predictors: (1)contributing factors, (2)number of aircraft, and (3)the severity conformance
metric and the criterion (the number of categories of operational error).

Rationale for hypothesis 1. The first hypothesis serves as a preliminary indication
of the level of proposed predictors’ contribution in explaining the variance in criterion.
Essentially, the significant support for the first hypothesis allows further investigation
into temporal order of predictors.

Hypothesis 2

After statistically controlling for the number of concurrent factors, the severity
conformance metric will contribute significantly to the prediction of the number of the
categories in each operational error report.

Rationale for hypothesis 2. When analyzing operational errors in general,
particular attention should be devoted to the causal chain of events. Even a seemingly
benign set of errors if occurring in a particular order, may result in events that cannot be
undone (Ferrante & Pounds, 2003). Therefore, entering predictors in a pre-determined
logical order allows for a more precise investigation of temporal precedence of
predictors. Controlling for the first predictor in some way standardizes the reports,
bringing them to the same level and enables measuring a unique contribution of the

following variable, severity conformance metric.
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Hypothesis 3

After statistically controlling for the number of concurrent factors and the severity
conformance metric, the number of aircraft (under the supervision of an air traffic
controller) will help predict the number of the categories in each of the operational error
reports.

Rationale for hypothesis 3. A surprising, counterintuitive finding (Rodgers &
Nye, 1993) revealed that the number of aircraft and traffic complexity were not
significant predictors of operational error severity. However, the severity was defined in
terms of horizontal and vertical separation in their study. This study takes a rather
different approach. Testing the number of categories of operational error in each report
has different results in terms of the importance of the number of aircraft that may be

expected.
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Method

Participants

The operational error reports for the study were collected and recorded in paper
and electronic format by the FAA. Participants in the study were the air traffic
controllers from various ARTCC and TRACON centers in the United States. However,
for the purpose of this study operational error reports symbolize participants. Due to the
sensitive nature of the data, demographic or any other information about the air traffic
controllers is not identified in any way. This study was conducted at San Jose State
University Human Automation Integration Laboratory (SJSUHAIL). In 2006, after
receiving the data from the FAA, the lab analyzed and classified air traffic controllers’
operational error reports that occurred during the first six months of 2005 over the US air
space. The study was an extension of the previous work that utilized the FAA data from
the same period of year 2004. The goal was to further analyze FAA-supplied reports and
search for patterns of frequency of occurrence, as well as to identify the causal
relationships among the predictors of operational errors.
Materials

The study has used methodical descriptions of operational error incidents that
occurred over US airspace between January and June 2005.
Procedure

Complete reports containing operational error reports were reviewed and all
potentially relevant indicators of controller’s behavior before, during and after the

occurrence of the incident were documented. The reports were then divided into
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TRACON and ARTCC divisions of centers, forming separate datasets. It is crucial to
emphasize that TRACON and ARTCC are two completely independent sources of
information. The study therefore is a two-part analysis. In order to provide support for
each of the hypotheses, two distinct types of analyses were conducted. For the first
hypothesis, standard multiple regression analysis was implemented to gain a general
understanding of the contributions of the predictors of the variance in the criterion. In
order to test the temporal order of influence of the predictors stated in the remaining two
hypotheses, a hierarchical multiple regression analysis was performed.
There are two independent sets of results, TRACON and ARTCC datasets. Both use
standard and hierarchical multiple regression analyses. Study 1 describes TRACON and
Study 2 describes ARTCC results respectively.
Data Organization

Based on the FAA definitions of the categories of the operational errors,
researchers analyzed reports and different concurrent factors and classes of operational
errors were identified. It is important to mention that a single operational error report
could contain one or more categories of operational error or concurrent factors.
Regardless of the nature of a particular operational error or concurrent factor, a higher
number would represent a higher occurrence of complexity in airspace and is therefore
examined in more detail. Furthermore, the operational error reports included additional
information. Time on duty when an incident occurred, training information, and location

are some of the examples.
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Results

This study represents two independent analyses of two very different kinds of
airspace, TRACON and ARTCC. The number of observations that entered analysis for
the TRACON was 254 (N=254) and for the ARTCC the number was somewhat larger
(N=337).
Analysis | TRACON

To gain a general sense of the relationships among predictors (as well as the
relationships between the predictors and the criterion) Table 1 is presented here.
Table 1

Means, Standard Deviations, and Correlations among Variables for TRACON

Variable Description M SD 1 2 3 4
1. Categories of Operational Error  1.70  1.26 A8F*  _33%k 02
2. Number of Concurrent Factors 1.48 1.58 -23*%* .06
3. Severity Conformance Metric ~ 78.19 22.45 -.07
4, Number of Aircraft 6.00 2.15

Note. Listwise exclusion (N=254). *p<.05. **p<.01.
The overall mean for the criterion was relatively low (M=1.70, SD=1.26). The
mean for the concurrent factors was similar with somewhat more variability (M=1.48,

SD=1.58). The number of aircraft in the sector (M=6.00, SD=2.15) and severity
conformance metric (M=78.19, SD=22.45) means were higher.
It should be noted that the criterion (categories of operational error) and

concurrent factors were expected to have relatively low means, as well as low minimum
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and maximum values simply due to the fact that the number of categories of operational
error was limited and there are only so many concurrent factors that a controller can
encounter in any particular incident. The number of aircraft present when an operational
error occurs is somewhat limited as well. The severity conformance metric, however,
ranges from zero to well over one hundred allowing for more variance and a higher mean
value.

The pearson correlation coefficients are presented in Table 1. The criterion is
positively correlated with the concurrent factors (+=.48, p<.001) which is consistent with
the study’s expectations. However, the number of categories of operational error
criterion is negatively correlated with the severity conformance metric (r=-.33, p<001)
indicating that the lower the severity conformance metric index, the higher the number of
categories of operational error in each report there are. Considering the nature of this
variable, with lower score representing higher proximity of the aircraft, the correlation is
consistent with the rationale for the study’s hypothesis.

Standard multiple regression correlation analysis. To identify the significant
predictors of the criterion, a standard multiple regression was conducted as the first
analysis. In order to test our first hypothesis all three predictors were entered into the
analysis at the same time and the results indicate that they contributed to 28% of the
variance in the criterion, R=.53, R*=.28, F(3, 250)=32.37, p<.001. Next, to assess unique
contribution of the predictors, the betas are examined. Table 2 shows that only two
predictors are significant. The number of concurrent factors (§=.43, p<.001) is positive,

indicating that the higher number of concurrent factors leads to the higher number of
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categories of operational error. Severity conformance metric shows negative significance
with the criterion (B=-.23, p<.001) meaning that the lower value of the metric leads to the
higher number of the categories of operational error. The number of aircraft predictor is
non-significant (B=-.02, p>.68) showing that the number of aircraft was not a good
predictor of the number or categories of operational error in each report.

Table 2

Standard Multiple Regression for TRACON

Variable Description B SEB B
Number of Concurrent Factors 34 .04 43%*
Severity Conformance Metric -01 .00 -23%*
Number of Aircraft -01 .03 -.02

Note. *p<.05. ¥*p<.01.

Hierarchical multiple regression correlation analysis. The second hypothesis is
that severity conformance metric has a significant predictive value after the number of
concurrent factors variable is controlled for. The third hypothesis proposes that after
statistically controlling for the number of concurrent factors and the severity
conformance metric, the number of aircraft adds to the prediction of the criterion. The
hierarchical multiple regression (Table 3) was conducted to test the second and the third

hypotheses.
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Table 3

Hierarchical Multiple Regression for TRACON

Variable Description B SEB B

Step 1

Number of Concurrent Factors .38 .04  .48**
Step 2

Conformance Severity Metric  -.01 00 -.23%*
Step 3

Number of Aircraft -.01 03 -02

Note. *p<.05. **p<.01.

In step one of the regression analysis, concurrent factors accounted for 23% of the
variance in criterion, R=.48, R?=.23, R%4=.23, F(1,252)=74.98, p<.001. Coefficient
beta was significant (B=.48, p<.001) continuing to show that the larger number of
concurrent factors per report leads to the larger number of the categories of operational
error.

In step two, the severity conformance metric was entered in the regression
analysis. As predicted by the second research hypothesis, the variable added a significant
amount of additional variance (5%) in the criterion, AR*>=.05, F(1, 251)=17.39, p<.001.
However, the B value, although significant, is negative (B=.-23, p<.001). That finding is
consistent with the nature of the variable. The lower the value of the severity

conformance metric is, the higher the proximity of the aircraft conflicts.
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In the third and final step of the regression analysis, after controlling statistically
for concurrent factors and the severity conformance metric variables, the number of
aircraft predictor was entered. Contrary to our hypothesis, adding another variable did
not significantly contribute to an explanation of the variance in the criterion, AR*=.00,
F(1,250)=.17, p>.05. The B value was not significant (=.-02, p>.68). This finding is
rather surprising and further research and analysis is necessary to show if the number of
aircraft in each incident in TRACON is indeed not significant. It seems almost
counterintuitive that the increased capacity of the sector is not relevant, because the first
reaction would be to believe that at some point a controller overwhelmed with a large
number of aircraft would have to make an error simply because of their human cognitive
limitations. However, the data in the study show the opposite.

Analysis 2 ARTCC

Descriptive statistics and a correlation table help in obtaining an overview of the
relationships among the predictors and the criterion (Table 4). The overall mean for the
criterion was (M=2.59, SD=1.11). The means for the concurrent factors are similar with
a little more variability (M=2.34, SD=1.62). The number of aircraft in the sector
(M=9.55, SD=3.84) and the severity conformance metric (M=74.87, SD=17.71) were

somewhat higher.
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Table 4

Means, Standard Deviations, and Correlations among Variables for ARTCC

Variable Description M SD | 2 3 4
1. Categories of Operational Error 259  1.11 A9%%-03 .00
2. Number of Concurrent Factors 234 1.62 -05 .15
3. Severity Conformance Metric ~ 74.89 17.71 -.09
4. Number of Aircraft 9.55 384

Note. Listwise exclusion (N=337). *p<.05. **p<.01.

The pearson correlation coefficients are presented in Table 4. Criterion is mildly
positively correlated with concurrent factors (r=.19, p<.001) which is consistent with the
study’s expectations. The number of categories of operational error criterion is not
significantly correlated with the severity conformance metric (r=-.03, p>.05). The
number of aircraft and the criterion are not correlated (r=-.00, p>.05).

Standard multiple regression correlation analysis. To provide support for the
hypotheses and to determine the extent to which the independent variables serve as good
predictors of the number of categories of operational error, a standard multiple regression
analysis was conducted as the preliminary investigation. To test the first hypothesis, all
three predictors were entered into the analysis at the same time and the results indicate
that these predictors contribute to only 4% of the variance in the criterion, R=.20, R*=.04,
F(3,333)=4.46, p<.01. In order to assess the unique contribution of the predictors, the

values are examined. The Table 5 shows that only one predictor was significant.
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Table 5

Standard Multiple Regression for ARTCC

Variable Description B SEB B

Number of Concurrent Factors .14 .04 . 20%*
Conformance Severity Metric  -.00 .00 -.03

Number of Aircraft -01 .02 -04

Note. *p<.05. ¥*p<.01.

The number of concurrent factors (B=.20, p<.001) is positive, indicating that the
high number of concurrent factors leads to the high number of categories of operational
error. Severity conformance metric predictor (f=-.03, p>-.48) and number of aircraft
(B=-.4, p>.52) are non-significant.

Hierarchical multiple regression correlation analysis. The second hypothesis
was that the severity conformance metric has a significant predictive value after the
number of concurrent factors variable is controlled for. The third hypothesis was that
after statistically controlling for the number of concurrent factors and the severity
conformance metric, the number of aircraft adds to the prediction of the criterion. The
hierarchical multiple regression was conducted to test both hypotheses. As shown in

Table 6, the three predictors were separately entered into the analysis.
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Table 6

Hierarchical Multiple Regression for ARTCC

Variable Description B SEB B

Step 1

Number of Contributing Factors .13 04 19%*
Step 2

Conformance Severity Metric -00 .00 -.02
Step 3

Number of Aircraft -.01 02 -04

Note. *p<.05. **p<,01.

In step one of the regression analysis concurrent factors accounted for 4% of the
variance in criterion, R=.19, R?=.04, R24=.03, F(1, 335)=12.83, p<.001. Coefficient
beta was significant (§=.19, p<.001). This finding indicates that reports with a large
number of concurrent factors lead to the reports with a large number of categories of
operational error.

In step two, severity conformance metric was entered in the regression analysis.
Contrary to the second research hypothesis, the variable did not add significant amount of
additional variance in the criterion, AR?>=.00, F(1, 334)=.18, p>.05. The beta coefficient
was not significant (=-.02, p>.67).

In the third and final step of the regression analysis, after controlling statistically
for concurrent factors and severity conformance metric variables, number of aircraft

predictor was entered. This step did not confirm the third hypothesis, as adding another
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variable did not significantly contribute to an explanation of the variance in the criterion,
AR?*=.00, F(1,333)=.42, p>.05. Beta coefficient was not significant (f=-.04, p>.52). This
finding is rather surprising and further research and analysis is necessary to show that
number of aircraft in each incident in ARTCC is not a significant predictor of the number

of categories of operational error.
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Discussion

The overarching goal of the study was to continue the exploration of operational
errors and circumstances they occur in. More precisely, the study searches for possible
predictors that may influence the frequency of occurrence of operational error categories
per incident and possibly their temporal order. Additionally, this study will contribute to
the exploration of multiple regression correlation statistical method as a possible tool
when analyzing operational errors. That method is used to develop relationships between
variables collected by the FAA and will help in accident investigation. The usefulness of
the novel statistical approach has three aspects. The first is that the multiple regression
has not been used before in operational error analysis. The second is that it enables
developing of a causal model for operational errors. The third aspect, depending on the
results of the analysis, is focusing the FAA’s attention to only significant predictor
variables of operational errors.

The first hypothesis stated that there would be statistically significant overall
relationship between the three predictors (concurrent factors, number of aircraft, and the
severity conformance metric) and the criterion, number of categories of operational error.
The first analysis, standard multiple regression, was conducted to test the hypothesis.
The results confirmed the prediction almost entirely. For TRACON analysis, two
predictors, concurrent factors and conformance severity metric were statistically
significant explaining a great portion of variance in the dependent variable, while the
number of aircraft was not. In ARTCC analysis, however, all predictors account for a

small percentage of variance. Only one predictor, the number of concurrent factors per
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report, was statistically significant. Therefore, the difference is two-fold: the amount of
variance explained by all three predictors and the lack of statistical significance of
severity conformance metric variable in ARTCC part of the study. The difference in
variable contribution between ARTCC and TRACON is an important finding. Usually,
the FAA collects a multitude of variables considering the obtained data as predictive of
operational errors. If, for example, there is only 4% of variance accounted for, as in the
part of this study, FAA may consider shifting the focus from all variables to the most
significant ones only.

Possible explanation of the discrepancy between TRACON and ARTCC results
may lie in the different minimum separation criteria between the two types of airspace
control aﬁd that is exactly what severity conformance metric variable is based on. It is
plausible that ARTCC having larger separation minimum than TRACON simply does not
account for enough variance because of the nature of some of the categories of
operational error that by definition have greater likelihood of happening in TRACON
only. There seems to be a difference in airspace operations between ARTCC and
TRACON because variables are differentially predictive for the two types of airspace.
The TRACON requires three miles and 1000 ft minimum separation, while ARTCC 1s
much larger in volume of airspace, and allows five miles laterally and 2000 ft vertically.
Further, the TRACON operations require constant changes and adjustments and are in
general more dynamic. Finally, TRACON more often deals with altitude-related
categories of operational error and it is possible that there are more of those categories

present in the TRACON dataset. For example, a category of the operational error named
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“altitude inadequate” is more likely to occur frequently in TRACON than in ARTCC
airspace. That does not mean severity conformance metric should be completely
abandoned as an indication of the number of categories of operational error in ARTCC.
The difference in sample size (337 for ARTCC compared to 254 for TRACON),
however, could not have been something that led to the discrepancy in the results.
Although having smaller number of observations, TRACON accounted for more variance
than ARTCC. Practical application of this finding is the reduction in man hours needed
for data collection. Currently, all data is collected and all variables treated as having the
same relevance. Identifying the most important predictors could shorten the time needed
for data-collection, thus saving resources as well. This new “Data Economy” approach
would mean considering and collecting the data for relevant variables only. The
following two hypotheses tested for possible temporal order of the predictors.
Hierarchical multiple regression analysis was used to control the order of entry of
variables specified in the hypotheses.

The second hypothesis stated that after statistically controlling for the number of
concurrent factors, severity conformance metric will contribute significantly to the
prediction of the number of the categories in operational errors. The TRACON analysis
confirmed the hypotheses and after controlling for the number of concurrent factors,
adding severity conformance metric explained small but statistically significant amount
of additional variance. However, in ARTCC analysis, the results were negative. These

findings are similar to the first part of the study and the explanation is quite similar.
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Sample size could not possibly be the issue, because there are more reports for ARTCC
collected.

The third hypothesis was that after statistically controlling for the number of
concurrent factors and severity conformance metric, adding the number of aircraft in the
sector (under the supervision of an air traffic controller) would help predict the number of
the categories in operational errors. The data (TRACON and ARTCC) do not show
support for this hypothesis. These findings are consistent with previous research that
number of aircraft is not a significant predictor of the severity of operational error
(Rodgers & Nye, 1993). It is especially surprising in this study, because other two
variables have been statistically controlled for prior to adding number of aircraft variable.
The sample size could not be one of the factors in this case, especially not in ARTCC that
shows larger sample size and where we see a greater number of aircraft in each incident
occurrence than in TRACON (see tables 1 and 4). Another alternative explanation for
the lack of number of aircraft variable significance could be that only three predictor
variables were used and there may be additional factors that were not taken into account
that mediate relationships between predictors and criterion.

Finally, some suggestions for future research based on the results of this study
deserve to be mentioned. Most importantly, a novel approach of using multiple

correlation regression analysis used in this study has allowed for a more diverse approach

in operational error research. Future work could incorporate more predictors in search of
a causal pattern of operational error precursors. Essentially, this is the beginning of a

modeling process for relating error classification to error complexity. In order to
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substantiate this approach, more relevant data that would contribute to more significance
of the results would need to be collected and analyzed. One way to materialize that could

be the multivariate approach used on the archival data spanning over several years.
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Appendix A
Operational Error Report Example

N90-R-04-E-003: CPC providing OJT on combined satellite positions in the EWR area
for 0+05 minutes responsible for 9 aircraft, no previous OE/D. The DEV is certified on
the majority of the positions and the positions were combined to add to the complexity to
determine if the DEV was ready for a certification. N9OKC/WW24 was level at 3,000
feet heading southbound for a VOR alpha approach into TEB. N628CC/F2TH was east
bound descending out of 4,000 for 3.000 feet overtaking the West-wind. The DEV
turned N9OKC to a 130 heading to intercept the final and turned N628CC south bound
for base leg. The OJTI was aware of the conflict and was coaching the DEV, however
when the DEV issued the last turn, the OJTI took over the frequency but was too late to
maintain separation. Closest proximity 400 feet vertical, 2.0 miles lateral Moderate
Severity Category “C.” Required 1,000 feet or 3 miles. Staffing, 2 OS’s assigned, 1 on
break, 14 CPC’s 3DEV’s on duty, 6 CPC’s on break, 1 CPC on OT.

In this report, a novice (developmental controller, DEV) fails to notice two
aircraft on a collision course. The expert (certified controller, OJTI) notices them but did

not have time to intervene to prevent the loss of separation.
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Appendix B

Operational Error Categories List

Operational Error
(OE) Category

Definition

Aircraft overlapped:

Airspace violation:

Altitude inadequate:

Cleared below
minimum altitude:

Climb through:

Control
coordination:

Datablock
misentered
information:

Descend through:

The label or aircraft symbols were overlapped on the radar screen,
preventing the controller to perform adequately his/her duties and
identify the conflict.

An aircraft penetrated airspace that was delegated to another
position of operation or another facility without prior coordination
and approval. Also, if controller issues a clearance that violates a
restricted area, e.g., military, Minimum Vectoring Area (MVA).

New issued flight level coincides with the conflicting aircraft’s
flight level. The vertical paths do not cross each other, but both
aircraft are flying towards the same altitude or one of them flying
towards the other’s altitude. Flight level change is given by the
current controller.

Aircraft cleared below minimum allowed altitude (MVA). This is
always coupled with airspace violation, but not vice versa. The
altitude change had to be given by the current controller.

The aircraft is cleared to climb to a flight level that crosses other
aircraft’s path. The current sector controller issues the clearance
for the level change. Changing flight level to the same altitude that
other aircraft has is considered “Altitude Inadequate”.

Failure to correctly coordinate (incomplete or absence of
coordination between controllers) either inter- or intra- facilities,
e.g., dismissing coordination or passing incomplete information.

The controller enters wrong information, e.g., he or she issued a
flight level or heading and he or she entered a different one.

The aircraft is cleared to descend to a flight level that crosses other
aircraft’s path. The current sector controller issues the clearance
for the level change. Changing flight level to the same altitude that
other aircraft has is considered “Altitude Inadequate”.
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Operational Error
(OE) Category

Definition

Fail converging:

Fail identification
altitude climbing/
descending:

Fail overtaking
traffic:

Flight Paper Strip
(FPS) misentered
information:

Hear/readback:

Instruction not
intended:

Letter-of-agreement

(LOA)
misapplication:

Misapplication of

procedure:

Misread
information:

Failure to detect a conflict between aircraft with converging
horizontal routes. Both aircraft need to have converging headings
issued in other sectors or by the CPC (certified professional
controller) in control but vary in advance to the conflict. That is,
the controller fails to detect the convergence. It is possible to have
initially both aircraft at different levels.

Failure to identify a conflict when one of the aircraft is descending
or climbing, but the clearance was issued by other sector. If it was
issued by the current sector, it is classified under “climb through”,
“descend through” or “altitude inadequate”.

Failure to separate overtaking traffic. It includes violations of
standard separation when aircraft is caught behind the other
aircraft with the same course or when the CPC gives a vector to
locate the aircraft in a parallel path or to resume heading (not
including parallel tracks issued in other sector).

The controller writes wrong information on the flight paper strip or
omits subsequent revisions, e.g., he or she issued a flight level or
heading and he or she entered a different one on the flight paper
strip.

The pilot reads back incorrectly the instruction given by the
controller, and it goes undetected by the controller. It includes no
pilot readback errors too.

Controller issues an instruction he/she stated as non intended (e.g.,
slips of tongue when giving a flight level, speed).

Misapplication of letter of agreement between sectors. This is a
particular case of “misapplication of procedure”. If there is a letter
of agreement to apply and the controller did not do it.

Controller applies a procedure that is not longer valid or it is not
possible to apply under current circumstances.

Controller reads wrong information; either he or she reads a wrong
field or states reading incorrect information in the report. It does
not include short term failures when retrieving information.
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Operational Error Definition

(OE) Category

Other: Other situations/errors not mentioned in the list before.

Overlooked traffic: ~ Controller misses or ignores the traffic situation for some reason
(e.g., distraction, preoccupation, other conflict). It should be
clearly stated in the operational error description that the controller
overlooked the traffic.

Speed inadequate: Speed issued is not adequate to prevent loss of separation. It might

Temporal error-
issue:

Transpose
information:

Vector inadequate:

Wrong aircraft:

be misestimated, or coupled with other operational errors, such as
issuing clearance at a wrong time.

Failure to issue timely the instruction, i.e., the instruction is
correct, but it is not issued in time to prevent loss of separation.
Operational error is only categorized as temp error-issue if this fact
is written in the report.

Alter the sequence of saying a clearance for two different aircraft,
mixing callsigns, numbers, symbols and/or instructions. The
confusion involves two aircraft that exits in the sector (or one was
recently handed off), or same airline but wrong number (e.g.,
AA1345 instead of AA1365, which is flying as well).

Controller is giving an incorrect or inaccurate heading (vector) to
the aircraft that creates the conflict. It is sometimes coupled with
“fail overtaking”.

The aircraft callsign used is wrong. There is no confusion among
aircraft within the sector, but the controller uses a callsign that
does not either exist or is not in the sector.
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Appendix C

Concurrent Factors Categories List

Contextual Factor Definition

Climb slow/fast: Aircraft did not climb as quickly or climbed faster than
controller anticipated.

Combined sectors: Controller was working with combined sectors. This does
not mean merging both R-side and D-side (controllers)
roles in one position.

Descend slow/fast: Aircraft did not descend as quickly or descended faster than
controller anticipated.

Distraction: Some event attracted controller’s attention and diverted
him/her from the evolving conflict.

D-side absent: D-side controller was not on duty and R-side controller
assumed responsibilities of both.

D-side coordination: D-side coordinated with other sectors a change in the
aircraft profile, which conflicted with other aircraft in the
vicinity. CPC (certified controller) was not able to separate,
either because of lack of internal coordination or lapse on
the application of further measures.

Flight plan not checked: Controller was not aware of the flight plan and aircraft
made an “unexpected” maneuver (it is unexpected because
the controller is not aware, but it is compliant with the
flight plan).

Inadequate relief briefing:  Inadequate position relief briefing. Either coordination or
communication problem arises as the result of the position
relief (incomplete or erroneous briefing). It must be
explicitly stated.

Lapse in coordination: Controller forgot completely or partially to coordinate with
the adjacent sector.

Lapse in delivery Controller forgot delivering a clearance s/he intended.
clearance:
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Contextual Factor

Definition

Mishearing:

Misjudgment:

Misread information:

Multiple aircraft:

No pilot
response/deviation:

Not enough information:

OS absence/CIC present:

Other complexity factors:

Other:

Pilot/Other controller
requests a conflicting
clearance:

Either pilot or controller misheard a voice message.

The maneuver was miscalculated or misjudged by the
controller, because the complexity of the traffic or
distraction. It is present when the operational error is
related with timing.

Some misread information triggered the sequence that led
to the error.

A conflict involving several aircraft, or the operational error
was created due to a cascade effect when avoiding a
conflict elsewhere.

There was no pilot’s response to a controller request or
his/her action did not follow the corresponding clearance, 1f
any (e.g., due to a pilot hear back error). This includes
encounters where a different aircraft is responding to a

controller’s call when the clearance was not addressed to
him/her.

Not enough information to identify any factor relevant at
the time of the error.

OS (operating supervisor) was not in the room (e.g., on a
break), he/she was engaged in other tasks at other sector, or
working a radar position at the same time. The report states
clearly the circumstances. It also includes the cases when
there is a CIC (controller in charge).

Traffic situations that create unusual conditions and
therefore increase complexity of controller operations,
which are not gathered under other category (e.g., MIT or
military operations).

Other factors identified.

Pilot requested a conflicting clearance that was critical to
lose separation, and controller did not realize.
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Contextual Factor

Definition

Point out aircraft:

Recent combination/
decombination:

Slip in clearance:

Stuck mike:

TCAS maneuver:

Temporal airspace
complexity:

Traffic complexity:

Training in progress:

Transmission stepped on:

Turbulence complexity:

Turn wide/sharp/early/late:

One controller points out an aircraft to the other sector. It is
consider that the traffic situation is more complex.

Sectors were recently combined/re-combined. “Recently”
is considered within five minutes.

Slip on delivering, the flight level, the callsign or the
heading.

The channel or the microphone failed in the transmitter
mode because other microphone blocked the frequency.
There was no transmission of the message.

TCAS (Traffic alert and collision avoidance system),
present in the operational error, might have contributed to
the conflict and/or increased the complexity. Not all TCAS
are considered in this category.

Operational error occurs with some unusual airspace
configuration that might have impacted on the complexity.
(e.g., change of runway configuration due to weather, or
use of unusual airways due to high traffic volume).

Traffic complexity rating. This is rated by controllers, but
because usually the summary report does not have this
information available, traffic is considered complex if the
reports states the MAP (monitor alert parameter) number
and the number of aircraft in the sector is higher than 2/3 of
the MAP.

There was training being conducted at the position where
the error took place.

Here the transmission was partially-blocked (stepped on).
One part of the message was audible, and the other part was
not.

Turbulence was created due to another aircraft presence.

Aircraft turn was wider/sharper/was initiated earlier/later
than the controller anticipated.
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Contextual Factor Definition

Weather complexity: Weather or conditions caused by weather increase the
complexity of operations, (e.g., route deviation, closure of a
runway, icing affecting climb).
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