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ABSTRACT

SELECTED TOPICS IN MATRIX ANALYSIS
by Winston W. Wheeler

In the first part of this thesis, properties of Hadamard matrices and symmetric block
designs are proved and applied to establish the growth factor for Hadamard matrices
through size 12 x 12. Growth is proportional to the maximum pivot size when a matrix is
reduced by Gaussian elimination with complete pivoting, and is of interest because it is one
of the factors in error bounds for calculated solutions of linear systems.

The second part of this thesis studies the problem of which partial Hermitian matrices
(some entries specified, some free) can be completed to positive definite matrices. The
undirected graph of the specified entries is chordal if and only if every partial positive
definite matrix with that graph can be completed. When a positive definite completion
exists, the inverse of the completion with maximum determinant has zeros in those

positions corresponding to unspecified entries in the original partial Hermitian matrix.
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PART ONE

GROWTH IN GAUSSIAN ELIMINATION IN HADAMARD MATRICES



CHAPTER 1
BACKGROUND

In the following work, we will give explicit citations for theorems when possible.
However, for convenience here, some of our theorems amalgamate well-known results

from basic matrix theory. This material can be found in books such as [HJ].

1.1 Hadamard Matrices

1.1.1 Definition. An n x n Hadamard matrix H is a matrix whose entries are +1 and
HHt!= nl.

Notice this implies that the rows are pairwise orthogonal.

1.1.2 By the following theorem, the columns of a Hadamard matrix are also pairwise

orthogonal. Thus the transpose of a Hadamard matrix is also Hadamard.

1.1.3 Theorem. If H is an n X n Hadamard matrix, then Idet(H)l = n"/2 and
H-1 = (1/n)Ht. Thus H is normal.
Proof. Since [det(H)]? = det(H)det(H!) = det(HH!) = det(nI) = nn, Idet(H)l = n2. Hence

H is invertible. In addition, since HH! = nl, we also have H-1 = (1/n)Ht.



So H'H = nH-1H = nl = HHY, i.e., H is (real) normal.

1.1.4 Propesition. Suppose H is Hadamard. If any one or more of the following
operations is done to H, the resulting matrix is again Hadamard:

1) Rearrange rows

2) Rearrange columns

3) Scale any row by -1

4) Scale any column by -1.
Proof. One row (or column) exchange still results in a matrix with pairwise orthogonal
rows (or columns). Any row (column) scaled by -1 is still orthogonal to every other row

(column).

1.1.5 Definition. If H is Hadamard and H; is obtained from H as described in the

proposition above, then H and H; are called Hadamard equivalent.

We have come across three different proofs of the well-known fact that the size p of a
Hadamard matrix must be a multiple of four if p > 2: Hadamard's original proof, one by
Paley, and one found in [DP]. It is interesting how different the proofs are. They illustrate
the remarkable variety of ideas people have employed in the study of Hadamard matrices,
so we present each one.

11
1.1.6 Theorem. The matrices [1] and [ 1 ] are Hadamard. If Hisap xp

1

Hadamard matrix and p > 2, then p is a multiple of four.



First proof [Had]. By Proposition 1.1.4, we can scale columns of H to create a Hadamard
equivalent matrix H; whose first row entries are all +1. Next, we can rearrange columns of
Hj to obtain a Hadamard equivalent matrix H, whose second row looks like [1...1 -1...-1].
Finally, rearrange columns of Hj to obtain a Hadamard equivalent matrix H3 whose third
row looks like [1...1 -1...-1 1...1 -1...-1]. In row three of H3, let a = the number of +1
entries that occur below +1 entries in row two. Let b = the number of -1 entries that occur
below +1 entries in row two. Let ¢ = the number of +1 entries that occur below -1 entries
in row two. And let d = the number of -1 entries that occur below -1 entries in row two.
Because row two is orthogonal to row one, there must be an even number of columns,
i.e., piseven. Since p > 2, let p = 2k for some integer k > 1. Then there are k positive
entries in row two and k negative entries in row two. Thus a+b =c + d =k. Because
rows two and three are orthogonal, we must have b + ¢ = a+d = k. In addition, because
rows one and three are orthogonal, we must havea+c=b+d=k. Hencea+b=a+c =
b+c=b+dsothata=b=c=d. Thus b+ c=kimplies 2b =k. Therefore, p = 2(2b),

i.e., p is a multiple of four.

Second proof [DP]. Because the rows are pairwise orthogonal, there must be an even
number of columns. Hence p = 2k for some integer k > 1 since p > 2. By Theorem 1.1.3,
Idet(H)I = (2k)k.

By Proposition 1.1.4, we can scale rows and columns of H by +1 to create a
Hadamard equivalent matrix H; whose first row and column are all +1. Subtract row 1 of

z
A]’ wherez=[1...1]Jand Aisa

1
H; from each of rows 2 through p, obtaining l:o
(p-1) X (p-1) matrix whose entries are 0 and -2. Since neither scaling rows and columns
by %1 nor adding multiples of one row to other rows affects the magnitude of the

determinant, we have ldet(H)I = idet(H;)I = ldet(A)l = 2p-1 Idet(B)!, where B is a 0, -1



matrix. Since det(B) must be an integer, we have (2k)K = Idet(H)| = 22k-1n, where n is an
integer; therefore kk/2(k-1) is an integer, which can happen only if k is even. Since we

already have p = 2k, we conclude that p is a multiple of four.

Third proof [Pal]. Let H = [h;]. Fork € {1,2,..., p}, let hy denote the kth row of H.
Since the rows of H are pairwise orthogonal, (h; + hy)*(h; + h3) = hj*h; + hj*hsz + hy*h;
+ hy*hs = hy*h; = p. Since both h; + h; and h; + hj are 0, 2 vectors, the product of their
ith components, (hy; + hy)(hy; + hy), is 0 or 4. Hence (h; + hp)*(h; + h3) is a multiple of

four, i.e., p is a multiple of four.

1.1.7 Theorem. {Had] (Hadamard's Inequality) Let A = [a;] be an n X n real matrix
with lagl < 1 for all i, j € {1,...,n}. Then Idet(A)l < n"2, and equality holds if and only if
A is Hadamard.

Proof. Let x; denote column i of A. We first show that

det(AtA) < H(x;x ;)» with equality holding if and only if the columns of A are
i=l

pairwise orthogonal.

First suppose the columns of A are pairwise orthogonal. Then because

(x%))  (XjX,) ... (X]x,)
! ! e (xix
AtA = (xzle) (xz:x 2) - ( 2 n) which is diagonal when the columns of A
(x;xl) (x;xz) (x;xn)

are pairwise orthogonal, det(AtA) = ] (x}x,).
i=l

Now suppose the columns of A are not pairwise orthogonal. We will show that

det(A'A) < f[(xgxi). (1)
i=]



We proceed by induction on n, the size of A. Suppose n = 2 and x; and x; are not
orthogonal. Then (x;x,)=(x3x,)#0. Hence

det(AlA) = det[:g"l :;Z] < (X3%))(X5X,).
Now let n 2 3 and suppose (1) is true through size n-1. Let A be n X n with columns
X15..., Xp such that at least two of them are not orthogonal to each other. Since n 2 3, we
may rearrange the columns so that two of the first n-1 columns are not orthogonal. At most
this changes the sign of the determinant of A, hence does not affect det(AtA). Solet A =
[x1...xp] represent this possibly new matrix. Let U be a real orthogonal matrix such that

A] y .
UA= o c,whereAlxs(n-l)x(n-l).

(The idea is to rotate R so that the span of the first n-1 columns of A goes into R0-1 x {0}.
For example, the QR factorization of A would supply an orthogonal matrix which yields such

amapping: A = QR, Q orthogonal and R upper triangular implies Q'A = R [HJ, 2.6.1].)

0 ... 0 ¢

Soifi,je {1,..., n-1}, we have x;xj = x;U‘ij = (Uxi)‘(ij) =y;yj. Thus since

Let y; denote column i of A;. Then UA = [Ux;...Ux,.; Ux,] = [y' e Yn y]-

X1,--+» Xn-1 are not pairwise orthogonal, the columns of A, are not pairwise orthogonal.

n-}
By the inductive hypothesis, det(A}Al) < l:lI(yfyi ). Now we have

t A
Atl 0] det[ ! y] = c-det(A})-c-det(A1)=
y' ¢ 0 ¢

det(AtA) = det[(UA(UA)] = det[
n-1 n-1 n
c? det(AA)) < czzl--l(y;yi = czn(x}xi) < T (x{x,) since x!x, = y'y +c2.
i=1 i=} i=l
This completes the proof of (1). Thus we have shown that det(AtA) < I_I(Xitxi ), and
i=1

equality holds if and only if the columns of A are pairwise orthogonal.



We now notice that H(x;xi) =nRif lagl = 1 for all i and j, and is strictly less
i=1
otherwise. (Recall that la;l < 1 for alli and j.) In other words, H(xgxi) < nR, with
i=l

equality holding if and only if la;l =1 for all i and j. Thus we have shown that
det(A'A) < n®, and equality holds if and only if A is Hadamard. Hadamard's Inequality

then follows immediately.



1.2  Symmetric Block Designs and Hadamard Matrices

1.2.1 Definition. A symmetric block design with parameters v, k and A,
or (v, k, A)-symmetric block design, is a collection of v objects and v sets (called blocks)
such that

severy block contains k objects,

*cvery object is found in k blocks,

severy pair of blocks has A objects in common, and

severy pair of objects occurs together in exactly A blocks.

1.2.2 Definition. An incidence matrix of a (v, k, A)-symmetric block designisav X v
matrix defined as follows: Number the objects 1 through v and number the blocks 1
through v. Define A = [a;] by

a; = 1 if object i belongs to block j, and

g;; = 0 otherwise.

1.2.3 Remark. A different numbering of objects and/or blocks would yield an

incidence matrix which could be obtained from A by permuting rows and/or columns.

It is often useful to associate each row of A with an object and each column with a block.

The following theorem is essentially due to Todd [Tod]. He stated it somewhat

differently as symmetric block designs had not yet been defined.



1.2.4 Theorem. There exists a (4n-1, 2n-1, n-1)-symmetric block design if and only if
there exists a 4n X 4n Hadamard matrix.

Proof. (<) Let H be a Hadamard matrix of order 4n. Negate rows and columns as
necessary so that the first row and column of the resulting matrix H; are positive. By
Proposition 1.1.4, H; is Hadamard. Define a (4n-1) X (4n-1) matrix B by deleting the first
row and column of H; and changing every -1 in the remaining submatrix to 0. Then B can
be thought of as an incidence matrix if we identify each row with one object and each
column with one block. We will show that B is an incidence matrix of a (4n-1, 2n-1, n-1)-
symmetric block design.

Since H) is Hadamard and each entry of column 1 and row 1 is +1, each of columns 2
through 4n and each of rows 2 through 4n of H; contains +1 in exactly 2n positions.
Hence there are 2n-1 positive entries in each column and in each row of B. So it follows
that each block contains 2n-1 objects and each object is found in 2n-1 blocks. Now we
need only show that any 2 objects occur together in exactly n-1 blocks and any 2 blocks
have n-1 objects in common. That is, if we choose any two rows (columns) of B, there
will be exactly n-1 positions where +1 appears in both rows (columns), i.e., their dot
product will be n-1. We include the proof for rows of B; the proof for columns is similar.

Leti, je {2,...,4n} withi#j. We will show that there are n positions where +1
occurs in both row i and row j of H;. Suppose there are k positions where +1 occurs in
both rows. Then there are 2n-k other +1's in row i matched with -1 in row j, and 2n-k
other +1's in row j matched with -1 in row i. Hence the dot product of row i with row j
will include 4n-2k occurrences of -1 which implies that k = n since row i and row j are
orthogonal. Since B is obtained by deleting the first row and column of H; and changing
every -1 in the remaining submatrix to 0, for any two rows of B, there are n-1 positions

where +1 appears in both rows, i.e., their dot product is n-1.




By a similar argument for columns, we conclude that for any two columns of B, there
are n-1 positions where +1 occurs in both columns. Therefore we have shown that B is an
incidence matrix of a (4n-1, 2n-1, n-1)-symmetric block design.

We remark that the definition of B given above may seem arbitrary, but it actually
arises rather naturally. The matrix B in this theorem is essentially the "reverse" of the
matrix we called B in the second proof of Theorem 1.1.6, where by "reverse" we mean
change each 0 to 1 and each -1 to 0.

(=) Let B be an incidence matrix of a (4n-1, 2n-1, n-1)-symmetric block design.
Then B has order 4n-1, each row of B has (2n-1) +1's and 2n O's, and the dot product of
any tworows isn-1. Leti,je {1,...,4n-1} withi#j. Then inrow i of B, there are n-1
positions where +1 occurs matched with +1 in row j of B. Also in row i of B, there are
(2n-1)-(n-1) = n positions where +1 occurs matched with 0 in row j of B. Thus in row i of
B, there are 2n-n = n positions where 0 occurs matched with 0 in row j, and hence n
positions where O occurs matched with +1 in row j. Adjoin to B a first column and first

1 2z
row of all +1's, obtaining the 4n X 4n matrix [ ¢ B]’ where z = [1...1]. Change the O's

z

in B to -1's. We will show that the resulting matrix H is Hadamard.

Since H is a 1 matrix, we need only show that any two rows of H are orthogonal. In
each of rows 2 through 4n of H, there are 2n occurrences of +1 and 2n occurrences of -1.
Hence row 1 of H is orthogonal to every other row. Leti,je {2,...,4n} withi# j- Then
from what we know about B above, there are n positions in row i of H where +1 appears
matched with +1 in row j, n positions where +1 appears matched with -1 in row j,

n positions where -1 appears matched with +1 in row j, and n positions where -1 appears
matched with -1 in row j. Hence the dot product of row i with row j is zero, i.e., row i and

row j are orthogonal. Since the choice of i and j was arbitrary, we conclude that any two

10




rows of H selected from rows 2 through 4n are orthogonal. Thus we have shown that the

rows of H are pairwise orthogonal, and H is Hadamard.

1.2.5 Example. The existence of a 12 x 12 Hadamard matrix is equivalent to the

existence of an (11, 5, 2)-symmetric block design.

+ + +
+ - +

+
+

+ + + +

+ + +
+ + + +
+ + + |
+ + + 1
+ + + I
I+
+ 1
Pl

=

+ + + + + + + + + + + +

+ 4+ + | I
Lo +
Lo |
I+ |
+ +
Lo |
|+
+
|
+ o+ o+

+ 4+ +

+ + +
+
|
|
|
+
|
|
+
|

where + denotes a +1 entry and - denotes a -1 entry.

11



Therefore

+ 0+ + 4+ 0 0 0 + 00
0+ 0 + + + 0 00+ 0
0 0+ 0+ + + 000 +
+ 00 + 0+ ++ 00O
0O+ 00+ 0 + + + 00
B=|0 0 + 0 0 + 0 + + + O},
0 00+ 00 + 0 + + +
+ 00 0+ 0 0 + 0 + +
+ + 0 0 0+ 0 0 + 0 +
+ + 4+ 0 0 0 + 0 0 + O
0+ + + 0 0 0 + 0 0 +

where + denotes a +1 entry.
Let row i of B correspond to object i; let column i of B correspond to block i, and let

B; denote block i. Then

B; =({1, 4, 8, 9, 10}; B, ={2,5,9, 10, 11}; Bs = {1, 3,6, 10, 11};
By={1,2,4,7, 11}; Bs={1,2,3,5,8}; Be = {2, 3,4, 6,9};
B;={3,4,5,7, 10}); Bg = {4,5,6,8, 11}; By ={1, 5,6,7,9};
Bio={2, 6,7, 8, 10}; B, =1{3,7,8,9, 11}.

There are 11 objects. Each block has 5 objects, and it is easy to check that each object is
found in 5 blocks. Furthermore, a straightforward check shows that each pair of objects
occurs together in exactly 2 blocks, and that each pair of blocks has two objects in

common. The construction is reversible, and so the equivalence follows.

12



1.3 Gaussian Elimination

"Gaussian elimination" is defined somewhat differently by different authors. We need
to have a very explicit meaning for the term. Informally, our definition of usual Gaussian
elimination is: Use replace-type row operations to reduce the matrix, with no row or
column exchanges unless necessary to obtain a nonzero value in the next diagonal position.

The formal definition follows.

1.3.1 Definitions. Let A = [a;] be a nonzero n x n real matrix. In this paper, to

reduce A by usual Gaussian elimination means perform the following steps:

(1) If a;; =0, choose some a,, # 0 and exchange rows 1 and k and columns 1 and p to get

the nonzero entry in the (1, 1) position. Let A® = [afj"’] denote the new matrix.
(2) Pivot on a{9--that is, add multiples of row 1 to the rows below it to create zeros in

their column 1 positions. Let

[, (0) ()} (0) (0)

a5, a4 aj 2in

0 ay al .. a¥

)= M . m
AD=1 0 af) af) .. al
m o Lm m
| 0 a, a, .. a, i

be the new matrix obtained.
(3) Foreachk=2,..., n-1, repeat steps (1) and (2) on the (n-k+1) x (n-k+1) lower right
principal submatrix of Ak-1), as long as that submatrix is not all zero. The final matrix will

be upper triangular and will be denoted as follows:

13



[, (0) (0) 0)

a3, aj; a,
M 10)

0 a; a, .. ay

n-1) = ) @
AnD=10 0 af .. af
(n-1)
L) 0 ... a,; "]

We will call the diagonal entries pivots. We often use p, to denote Iai';'”|, the magnitude of

the kth pivot.

1.3.2 If the algorithm can be completed without any row or column exchanges, i.e., if
foreachk € {1,..., n-1}, alf™" # 0 when A®-D is created, then we will say that A has

Property P.

1.3.3 In numerical algorithms, step (1) in 1.3.1 is often modified so that even when
aly™” # 0 when A-D is created, a row and/or column exchange may be done in the
(n-k+1) x (n-k+1) trailing principal submatrix of Ak-1) so that some other number is used
for the kth pivot. The criteria for choosing the next pivot is called a pivoting strategy. We
are interested here in the pivoting strategy called Gaussian elimination with complete
pivoting (GECP). The algorithm is the same as the one for usual Gaussian elimination,
except we replace step (1) with the following:

(I') Search column 1 from row 1 to n, then columns 2,..., n in the same way, for an
entry with maximal magnitude. Using the first such a,, found, exchange rows 1 and k and

columns 1 and p, if necessary, to put a,, into the (1, 1) position. Let A©) = [ajj"’] denote

the new matrix.

14



1.3.4 Theorem. An n X nreal matrix A is invertible if and only if every pivot is
nONZero.

Proof. The only matrix operations involved in usval Gaussian elimination or GECP are
adding multiples of a row to other rows, and row and column exchanges, both of which

leave the magnitude of the determinant unchanged. Thus Idet(A)l = [det(A®-D)l =

©,M,

(n-1)
aj’ay --a

nn

. Hence A is invertible if and only if every pivot is nonzero.

1.3.5 Definition. Matrices which require no row or column exchanges during GECP

will be called completely pivoted (CP).

1 1 -1
1.3.6 Example. A=|1 -1 1| has Property P, but is not CP.
1 1 3

1.3.7 Itis observed in [DP] that any n X n matrix A can easily be altered to obtain a new
matrix B which is CP and for which B{n-1) = A(™1), To get B, imagine that GECP is done
to A and one keeps track of the row and column exchanges that occur. Do these exchanges
to A first, in the same order, and call the resulting matrix B. Then GECP on B would not

require any exchanges, and A(n-1) = B(n-1),

1.3.8 Example. Do GECP on

1111 111 1]
1 1 -1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1
: :: :: _: : ‘: _: ’: which is an 8 x 8 Hadamard.
1
1
1

-1 1 -1 -1 -1 1 1

15
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HD

H;

HO

H®

H®)

H

Observe that we exchanged rows 2 and 3 of H(1), rows 3 and 4 of H(?), and rows 4

and 6 and columns 4 and 5 of H®). If we perform these exchanges to H first, in the same

order they occurred during GECP on H, we obtain
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Performing GECP on B results in no row or column exchanges, and at its conclusion we

get

= H),

[

0 -2 0 0 -2 2
-2 2

-2

-2

0

0 0

-2 2 -2 2
-2 2 -2 2
0 0 04 0 4

0 0 o0 4
0

0 0

0 0 0 0 4 4
0 0 0 O

0

0

BM
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CHAPTER 2
MAIN RESULTS

2.1 Properties concerning Determinants

2.1.1 Definition. Let A be an n X n real matrix. A(i,...iylj;...j,) will denote the p x p
submatrix of A obtained from the intersection of rows i,,.. ., i, with columns jy,..., j,.
When the two sets of indices are the same, A(i,...i,) will abbreviate except for the
following two cases:

A(p) will denote the leading p X p principal submatrix of A, i.e., A(l...p), and

A[p] will denote the trailing p X p principal submatrix of A, i.e., A(n-p+1...n).

This notation is similar to that in [HJ]. It is different from the notations found in the

three main references for this chapter, [DP], [EM], and [Gan]. Each of these uses a
different notation: In [DP], A(i,...ij...j,) denotes a determinant; [Gan] uses a similar

notation for determinants; and in [EM], A(p) and A[p] both denote magnitudes of

determinants.
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2.1.2 Theorem. [Gan, p. 26] Suppose A is n X n, invertible, has Property P, usual

Gaussian elimination is done on A, and 1 <k <n. Then if k <1, j,

a0 detA(l...kill..kj)
y det A(k) )

Thus the kth pivot, a*™ =det A(k)/det Ak-1).
Proof. Because A has Property P, both A(k) and A(1...kill...k j) do also. Since the

determinant of a matrix is unchanged by adding multiples of a row to other rows, we have
det A(1...kill...k j) =det A®(1.. .kill...k j)= a{Pal)---alkPal¥’, and det A(k) =

1y ?

), (k-1)

a,’ay +a,, . By Theorem 1.3.4, since A is invertible, every pivot is nonzero. Hence

det A(k) #0. So we have

o _ Airag-ag ey’ detA(L. kill..k j)
y alPal).-.alk det A(k)

Observe that the same result is true if A is invertible, CP, and GECP is done on A.

2.1.3 Remark. In the course of proving Theorem 2.1.2, we have also shown that any

leading principal submatrix of an invertible matrix with Property P is invertible.

2.1.4 Definition. Let A =[a,] be an n X n real matrix. The adjugate of A, denoted by
adj(A), is the transpose of the matrix of cofactors of the elements a, of A, i.e., if
r,s € {1,..., n}, the (s, r)-entry of adj(A) is (=1)"*Sdet A(L...F...nll...5...n), where T

means “omit r."

2.1.5 Theorem. [Lip, p. 176] Suppose A is an n X n invertible real matrix. Then

1=

dor(a) 2UA):
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2.1.6 Theorem. [DP] Suppose A is n X n, invertible, has Property P, usual Gaussian
elimination is done on A, and 1 <k <n. Then the kth pivot a{*™" is 1/x where x is the
(k, k)-entry of A(k)"l. In particular, this theorem is true if A is CP.

Proof. By 2.1.3, A(k) is invertible. Let B = A(k). Then by Theorem 2.1.5, the (k, k)-

w, and this equals detAK=D hich equals 1/al™" by

entry of B-1 i
24 ® —4e®) det AK)

Theorem 2.1.2.

2.1.7 Corollary. [Tor], [Cry] If H is an n x n Hadamard matrix and H is reduced to
upper triangular form with any pivoting strategy, then the final pivot has magnitude n.
Proof. Whatever pivoting strategy is used, we may assume the row and column exchanges
involved are done to H first. Then the new matrix H; has Property P, and is Hadamard by

Proposition 1.1.4. By Theorem 2.1.6, the final pivot of H; is 1/x where x is the (n, n)-
entry of H;'! = (J/n)H,'. Hence x = £1/n which implies that the final pivot is +n.

2.1.8 Theorem. [Gan, p. 21] Let M be an n X n invertible matrix and let 1 <k <n. If
o = {ij <i, <-- <1} is an ordered subset of {1, 2,..., n}, let o' = (i) <iy < <ipy'}
denote its ordered complement. Then for any ordered subsets o = {i, <i;<--<i} and

B = {ji <j2<- <j} < {1,2,..,n},

. . ge . _l m s T ) :
det M-1(i,...ilj;.. .jo = cget(iVI) det MGy'...joiliy' oo i)

k
where m= Z(ir +3,).
r=}

We first prove the following:
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A B
2.1.9 Lemma. LetX = [C D]’ where D is a k Xk block and A is (n-k) x (n-k).

A B
Suppose X is invertible and X-1 = [ cl D‘ ] where D; is a k x k block. Then
1 1

_ det(A) . 1y - detX(n—k)
det(D;) = ___det(X)’ i.e., det X-lk] = —_det(X) .

Proof. We first show that A is invertible if and only if D; is invertible.

S A is invertible. Th A B 1= * O-IAB’th duct of
uppose A is invertible. Then 0 D—CA"IB__ _cA-! ilc D is the product o

invertible matrices, hence is invertible. Thus D —CA-1B is invertible. Now

A-l 0 1 -B(D-CA~lB)!TA B 1 0] .
—leel —1a |= which
0 (d-cAa'By!|o I |lo p~caBf |0 1

-1 _ _cA-Imy-l I 0
implies that A 0 Yoo I —-B(D-CA"B) [ -1 :l = X-1 which is
0 (-ca By !|o I -cA™! 1

A, B
c] D‘] by definition. Thus D, = (D — CA-1B), i.e., D, is invertible. (§)
L1 1

To prove the converse, suppose D, is invertible. Then

A -BD7lc, 0 [1 -B ][I 0 }[A B}
1 11 1 1 1 1. . . .
_ = -1 is the product of invertible matrices,
D;'c, 1] o 1 Jlo piljc D

hence is invertible. Thus Al -—BlDl_lCl is invertible. Now

[ 1 0 (A,-B D lc )‘l O A,-B Dlc, o 10
- 1 11 1 11 ™ = hich implies that
__Dl 1Cl I][ 0 I Dl_lcl I 0 I which implies tha

[ 1 0], -BDIc)? ofI -B/JI O A B
172171 1 = ichi
_—D;’l , I]I: 0 o 1o Dx_l X which is [ C D] by

definition. Thus A= (A, — BIDI_ICl )_l, i.e., A is invertible. Hence we have shown that

A is invertible if and only if D is invertible.
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I -B(D-CA™'B)”! I 0
If det(A) # 0, det(X) = det[o ( ; ]det[_CA_l 7 |detc)

ol 0
=% D-caB
= det(A)-det(D — CA"1B)

= det(A)-det(D;') by (§)
_ det(A)
" det(D))’

det(A)

Thus det(Dy) = .
det(X)
Finally, if det(A) = 0, then det(D;) = 0 = det(A)/det(X); so the theorem is also true when A

is singular.

Proof of Theorem 2.1.8. Let M be an n X n invertible matrix and let 1 <k <n. Leto =
{iy<i; < <i} and B = {j; <j, < < ji} be ordered subsets of {1, 2,..., n}. We
need to show that

m
detM-l(il...iklj]...jk)= ( 1)

det(M)

det MQ,'...j0k iy . 154")
k

where m = Z(i, +3j.)
r=1

Define permutation matrices R and P so that X = RMP has M(B'lot") as its leading
(n-k) X (n-k) principal submatrix, i.e., X(n-k) = M(B'lo’). Note that for each
re {1, 2,..., n-k}, R exchanges rows so that row j,' of M is in row r of X, and P
exchanges columns so that column i;' of M is in column r of X. We may assume that R
and P act on M in the following way. Start with M and exchange row j,' of M with each
row above it in turn. This is a total of j,' - 1 row exchanges. Exchange row j,' with each
row above it except the top row. This is a total of j,' - 2 row exchanges. Do this for each

of rows j;',..., ja' in order to put rows jy',..., j,.' in positions 1,..., n-k, respectively.
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_(n=k)(n-k+1)
2

n-k
The total number of row exchanges is Z A

r=1]

. Proceed in a similar way

to put columns iy,..., i,,' of M in positions 1,..., n-k, respectively. The total number of

n-k _ _
column exchanges is Z i'- (n k)(121 k+1)
r=1

n-k n-k
o= Z(i,’ +j')—(n—k)(n-k+1). Since (n—Kk)(n -k + 1) is even, & and Z(i,' +j,')
r=l r=]

. Hence the total number of exchanges is

k n-k
have the same parity. In addition, since Z(i, +j. )+ E(ir' +j,' ) =n(n+1) which is even,
r=1 r=]

k n-k k
z:(ir +j,) and X(i,' +j," ) have the same parity. Letting m = Z(ir +j,), it follows that
r=1 r=1

r=1
det(X) = (-1)%-det(M) = (-1)M-det(M). *
Since X = RMP, X-1 = P'M-IRY, and foreachr € {1, 2,..., n-k}, Pt exchanges rows
so that row i;' of M-1 is in row r of X-!, and R! exchanges columns so that column ji of M-1
is in column r of X-1. Thus X-1(n-k) = M-}(/'IB') which implies that X-1[k] = M-1(0yB).
By Lemma 2.1.9 and our choice of R and P, we have

detM(B'la')
det(X)
_ (="

det(M)

det M-1(oyp) =

-detM(B'lo’) by (%)

We will make use of the following result, which says that in a Hadamard matrix, the
determinants of any leading principal submatrix and its complementary trailing principal

submatrix are proportional in a special way.
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2.1.10 Corollary. [EM] Let H be an n X n Hadamard matrix and let 1 <k <n. Then
Idet H(k)l = nk-2/2 |det H[n-k]I.

|detH[n — k]|

Proof. By Th 2.1.8, Idet H-1(k)I =
roo y Theorem e (k) |det(H)|

. Since Idet(H)! = n"2 and H'! =

(1/n)H, we have Idet [(1/n)HY](k)l = n-"V2 Idet H[n-k]!. Also, det [(1/n)Ht](k) =
(1/nk)det Hi(k) = (1/nk)det H(k). Therefore, we have (1/nk) Idet H(k)l = n"/2 |det H[n-K]|

which completes the proof.

2.1.11 Corollary. [EM] If H is an n x n Hadamard matrix which has Property P, and

I <k <n, and H is reduced without row or column exchanges, then

|detH[k —1]]
[detH[k]

Pok+t =1

Proof. By Theorem 2.1.2 and Corollary 2.1.10,

by, < detH-k+ D] n" 26 ik -1  ldet H[k - 1
n-k+l —

ldetH(n—k)] ~  n"*"2|detH[Kk]| [detH[k]|

2.1.12 Corollary. [EM] Suppose H is an n X n CP Hadamard matrix, and 1 <k < n.
If My.; is any (k-1) x (k-1) submatrix of the trailing principal submatrix H[k], then

Idet H[k-1]l 2 Idet(Mx.1)I.
Proof. Suppose a (k-1) x (k-1) submatrix My.; of H[K] satisfied Idet(Mj.;)| > Idet H[k-1]).
We will show that H then cannot be CP. Because Mg.; # H[k-1], there exist r, s 2 n-k+1
and not both n-k+1 such that My.; = H(n—k +1...f...nIln — k +1...8...n),where T means

"omit r." Do the first n-k+1 steps of GECP on H. Then
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_ ldetHIk -1

Poket =

by Corollary 2.1.11

|det H[k]|
det(M
|—(—k’-1—)-|- by our assumption
|[detH[k]]
_ n|detH(n—k+l...f...nln—k+1...§...n)|

|det HIK]]
det(H)-detH™'(L..n~ksslL...n~ k )
det(H)- detH ' (n - k)
det [(1/n)H')(L...n~k slL...n -k 1)
det [(1/ n)H')(n k)|

by Theorem 2.1.8

since H is Hadamard

=n

nn—_lm|deth(l...n—k sil...n—k r)l
n

— |detH! (n - k)|
n

Jdet H(L...n — k sll...n -k r)]
|det H(n ~ k)|

h{r® by Theorem 2.1.2.

Hence we have shown that the magnitude of the (n-k+1)st pivot is strictly less than that
of the (s, r)-entry of H®-K) and that (s, r)-entry occurs in H™K)[k], thus necessitating row
and/or column exchanges in the (n-k+1)st step of GECP on H. Therefore H is not CP, a
contradiction. Hence we conclude that Idet(My.1)! < Idet H[k-1]l, and since M.; was

chosen arbitrarily, the proof is complete.

2.1.13 The previous corollary says that Idet H[k-1]! is the largest magnitude of a minor
of H[k]. This leads to the following:
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2.1.14 Corollary. [EM] Suppose H is an n X n CP Hadamard matrix, and 1 <k <n.

Thep et HIK~1]
|det H[K]]

is the largest magnitude of an entry of H[k]-.
Proof. By 2.1.3, H(n-k) is invertible. Thus
0 # Idet H(n-k)! = Idet(H)! Idet H-1[k] by Theorem 2.1.8

= |det(H)! ldet [(1/n)HY[k])l  since H is Hadamard
= Idet(H)I (1/nk) Idet H{[k]!
= Idet(H)! (1/nk) idet H[K]I.

Hence det H[k] # 0, i.e., H[k] is invertible.

By Theorem 2.1.5, H[k]! = -adj H{k], and by 2.1.13 and the definition of

[detH[k - 1]
|det H[K]|

detH[k]
adjugate, Idet H[k-1]l is the largest magnitude of an entry of adj H[k]. Hence

is the largest magnitude of an entry of H[k]-1.

Many authors have studied the problem of bounding idet(A)l, where A is a £1 matrix.

We will make use of a few of these results, which we now state.

2.1.15 Theorem. [Wil] Let d, denote the largest possible value of the determinant of an

n X n matrix whose entries are 1. The first seven values of the sequence (di) are 1, 2, 4,
16, 48, 160, 576. For n=2,..., 7, if the magnitude of the determinant of an n X n matrix

of £1's is d,, then the matrix must have a minor whose magnitude is d,.,. This cannot

happen when n = 8.

The values of d, through d; were computed by Williamson in [Wil]. Furthermore, he

showed that forn = 2,..., 7, if A is an n X n matrix with determinant d,, then any other
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n X n matrix with determinant d, can be obtained from A by a sequence of row exchanges,
column exchanges, row negations, and/or column negations. This is also true forn = 8

and n = 12 since these matrices are Hadamard, and there is just one equivalence class for

8 x 8 and 12 x 12 Hadamards [CW, p. 112].

2.1.16 Examples. For n=2,..., 7, an n X n matrix with determinant d, is given and a

minor is indicated whose magnitude is d,,,.

n=2 n=3
1 1 -1 -1
[ i l] 1 1 -1{, (3, 3) minor
1 -1 1
n=4 n=>5
{1 -1 -1 [1 -1 =1 -1 -1]
{ - ] i 1 -1 -1 1
1 1 1 b (1, 1) minor 1 1 1 t -1}, (1, 5) minor
| 1 1 1_| 1 -1 -1 1 1
(1 -1 1 -1 1]
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I -1 -1 -1 -1 -1
1 1 -1 -1 -1 1
I 1 1 1 1 -1 .
1 21 -1 1 1 1l (6, S) minor
1 -1 1 -1 1 1
r -1 1 1 -1 1]
n=7
(1 -1 =1 -1 -1 -1 -1]
I 1 -1 -1 1 1 -1
1 -1 -1 1 1 1 1
1 1 1 1 -1 -1 1Y, (7,7) minor
I -1 1 -1 1 -1 1
1 -1 1 -1 -1 1 1
-1 1 1 1 1 -1]

When n = 8, ds = 4096 and any matrix H whose determinant has magnitude d; is
Hadamard by Theorem 1.1.7. So (1/8)Ht=H-1= 1(1/4096)-adj(H) which implies that
adj(H) = £512Ht. Hence each minor of H has magnitude 512, whereas d, = 576.
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2.2 Pivot Magnitudes

2.2.1 Theorem. [DP] Letn24 and let H be an n X n Hadamard matrix. Reduce H by
GECP. The magnitudes of pivots one through four are 1, 2, 2, and 4, respectively.

Proof. Negate rows and columns of H as necessary to make the first row and column
positive. Observe that the pivot magnitudes of the resulting matrix H; will be the same as
those of H. If H; is not CP, do the row and column exchanges to H; first in the same
order they would occur when doing GECP on H;. The resulting matrix H; = [h] is then
CP and H{"™™V = H{"V; 50 the pivot magnitudes of H, and H will be the same.

The (1, 1)-entry of H; is 1 and every entry of the trailing principal submatrix
H{"[n-1]is 0 or -2. Thus because H is CP and invertible, h{) = -2, and it is not hard to
see that every entry of H(zz)[n —2] must be 0 or 2 by considering all the possibilities
when pivoting on h{y. Hence h{} =+2. Each entry of HS’[n—3] is 0, 2, or +4, and
we will show H(23)[n — 3] has an entry with magnitude 4. It then follows that |hf.f,’l =4
since Hj is CP.

By Theorem 1.1.6, n = 4p for some p 2 1. Each column of Hj has one of the

following four sign patterns in its first three entries:

I i o v

+ + + +

+ - + - (§)
+ + - -

The mutual orthogonality of the first three rows of Hy implies that there are exactly p
columns of each of the four types. (This follows at once from the argument in the first
proof of Theorem 1.1.6.) Because H; is CP and invertible, det H»(3) # 0 which implies

that the first three columns of H, must have different sign patterns. Choose any
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column j 2 4 of Hj of the type not represented among columns 1, 2 and 3 of H,. There are
p of these, so at least one exists. We will show that there exists a row i such that
Idet Ho(12 3il1 2 3 j)l = 16.

By permuting columns 2, 3 and j if necessary, we may assume that Hj has the pattern
(8) in its first three rows and the four columns 1, 2, 3, j. The mutual orthogonality of the
first three columns of H; implies:

There are exactly p rows of each of types I through IV above. *)
In particular, there are p rows having pattern + - - in their first three entries, and all these
rows lie below the first three rows. At least one of these rows (say, the ith) must have a; =
+1. Otherwise, we claim column j of H, would have more than 2p negative entries which
contradicts its being orthogonal to column 1. To see this, observe that there are eight

different patterns that a row of H; can have as its 1, 2, 3, j entries:

1 2 3 J Number of rows with pattern

+ + + + c
+ + + - d
+ - + + e
+ - + - f
+ + - + g
+ + - - h
+ - - + a
+ - - - b
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So by (*) we have

c+d =e+f=g+h=p. ¢))
Because columns 1 and j are orthogonal, we have

c+e+g+a = 2p. 2)
Similarly, because columns 2 and j are orthogonal,

d+e+h+a = 2p. 3)
And since columns 3 and j are orthogonal,

d+f+g+a = 2p. C))]
Subtract (3) from (2) to get

c+g = d+h. &)
Subtract (4) from (2) to get

c+e = d+f. (6)
Solve for gin (1) and (5) to get c+d-h = g = d+h-c which implies ¢ = h.
Similarly, solve fore in (1) and (6) to get c+d-f =e = d+f-c which implicsc=f.

Suppose a = 0, i.e., H, has no rows with pattern + - - + in entries 1, 2, 3, j. Then the

number of -1's in column j is

d+f+h+b = d+c+c+p

= 2p+c
>2p since ¢ 2 1 because the first row of Hj is all +1.

This contradicts the fact that column j and column 1 are orthogonal. Hencea #0, i.e.,

there is a row of H, (we called it the ith row) with pattern + - - + in entries 1, 2, 3, j.

Thus
1 1 1 1
. . 1 -1 1 -1
Idet Ha(1 231112 3j)l = det = 16.
1 1 -1 -1
1 -1 -1 1
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detH, (1231123
By Theorem 2.1.2, [h®|= ' 2( J)l =16_ 4. Hence because H; is CP,
i} 4
|det H, (3)]

[$| = 4 which completes the proof.

2.2.2 Corollary. [EM] If H is a CP Hadamard matrix whose order is at least 4, then
Idet H(4)I = 16. Thus by Hadamard's Inequality, H(4) is a Hadamard matrix of order 4.

In [DP), it was shown that the magnitude of the fifth pivot in an 8 x 8 or larger
Hadamard matrix reduced by GECP must be 2 or 3. The following theorem is the key
result in [EM] which allows the authors to prove that when H is a 12 x 12 Hadamard

matrix reduced by GECP, the fifth pivot is 3.

2.2.3 Theorem. If His a 12 x 12 CP Hadamard matrix, then Idet H(5)! = 48.

Proof. Negate rows and columns of H as necessary so that the first row and column of the
resulting matrix H; are all positive. Observe that H; is CP, Hadamard, and Idet H;(5)l =
Idet H(5)I. By Corollary 2.2.2, H(4) is Hadamard, hence is equivalent to a (3, 1, 0)-
symmetric block design by Theorem 1.2.4. Number the objects 1, 2, and 3, and denote
block i as Bj'. Without loss of generality, we may assume that By' = {1}, B,' = {2}, and

B3'= {3}. This (3, 1, 0)-symmetric block design has incidence matrix

1 0 o 1 1 1 1
L 1 1 -1 -1
C={0 1 O}, and this yields H;(4) = 11 1 -1l
0 01
1 -1 -1 1

We will now show that some 5 % § submatrix of H; with determinant 348 has H;(4)asa

submatrix.
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By Theorem 1.2.4, H; is equivalent to an (11, §, 2)-symmetric block design. We
have already arbitrarily fixed H;(4). We can enlarge our set of objects to be {1, 2,..., 11}.
There will be eleven blocks now; call them By, Bs,..., Bj;. The incidence matrix C for
H;(4) is the leading 3 x 3 principal submatrix of the incidence matrix for H;; hence B;'is a
subset of Bj, B>' is a subset of B,, and B3' is a subset of B3. From the incidence matrix
C, we see that object 3 is not in B; or B;. Thus without loss of generality, let By =
{1,4,5,6,7},and B, = {2, 4, 5, 8, 9}. This chooses 4 and 5 as the pair that appears in
B; and By, and lets 6, 7, 8, and 9 fill in the remaining spots.

Since there cannot be three blocks containing the same pair, either By "B, N B3 is
empty, or it consists of one object which we can call 5 without loss of generality. If
B; N B; n B3 = {5}, then B3 must contain 6 and 8 so that IB; N B3l = IB; " B3l =2;
hence B3 = {3, 5, 6, 8, 10} or {3, 5, 6, 8, 11}. If B " By N B3 =, then B3 must
contain 6, 7, 8, and 9 so that iB; N B3! =1B; N B3l =2; hence B3 = {3, 6, 7, 8, 9}.

Let B4 be a block that contains 1 and 2, but not 3. (There are two blocks that contain
any pair such as 1 and 2, and they could not both contain 3 because then there would be too
many elements in common.) We claim that B4 does not contain 4. Suppose, on the
contrary, that 4 € B4. Then 5 ¢ B4 since otherwise 4 and 5 would be in By, B,, and By, a
contradiction. In addition, neither 6 nor 7 can be in B4 since that would imply IB; N Byl 2 3;
and neither 8 nor 9 can be in B4 since that would imply IB; N B4l = 3. Hence B4 must
contain 10 and 11. Checking the three possibilities for B3 above shows that in any case,
IB; M Byl < 1, contrary to the parameters of an (11, 5, 2)-symmetric block design. Thus
B4 contains 1 and 2, but not 3 and not 4.

The information about objects 1 through 4 and blocks B, through B4 tells us that the
following is a submatrix of Hj:

H,4) z
M5=[ lz(t) _1],wherez‘=[l 1 1-1].

33




Note that det(Ms) = 48. We claim that because H; is CP, this implies Idet H;(5) = 48.

jdetH, (5) . s
By Theorem 2.1.2, —————— = ps, which, because H; is CP, is greater than or equal
T |detH, (4)
- 4 C b |det(M5)|
to the magnitude of each entry of Hg )(8], one of which is ———>L by Theorem 2.1.2.
|det H, (4)|

Thus by Theorem 2.1.15, 48 = d; 2 Idet H;(5)! = Idet(M;)| = 48. Hence 48 =Idet H;(5)l =
Idet H(5)!.

2.2.4 Corollary. [EM] IfHis a 12 x 12 CP Hadamard matrix, then

_ ldetH(5)l _ 48 _
j = JGetHE) 48

" ldetH(4) 16

2.2.5 Theorem. [EM] If H is a 12 x 12 Hadamard matrix, and H is reduced by
GECP, then the absolute values of pivots one through twelve are 1, 2, 2, 4, 3, 10/3, 18/5,
4,3, 6, 6, and 12, respeciively.

Proof. Rearrange rows and columns of H so as to obtain a CP matrix. Call it H. We first
show that Idet H[7]l = 576. By the preceding corollary, we have ps; = 3. By Corollary
2.1.11, we also have

12ldet H[7]
Idet H[8]

Ps = Pi2gn1 =
‘Thus Idet H[7]I = (1/4) |det H[8]l = (1/4) Idet H[12 - 4]I
= (1/4) 1264 Idet H4)l by Corollary 2.1.10
= (1/4) 122 (16) by Corollary 2.2.2
= 576.
By Theorem 2.1.15, this is the largest possible value of the determinant of a 7 x 7 matrix

whose entries are +1. In addition, Theorem 2.1.15 tells us that H[7] must have a minor

whose magnitude is 160. Hence 160 < Idet H[6]! since Idet H[6] is greater than or equal to

34



the magnitude of each minor of H[7] by Corollary 2.1.12. Furthermore, Idet H[6]| < d; =
160. Hence ldet H[6]I = 160.

In a similar way, we conclude that Idet H[S]l = 48, Idet H[4]! = 16, Idet H[3] = 4,
Idet H[2]l = 2, and Idet H[1]I = 1. Pivots six through eleven of H now follow from
Corollary 2.1.11:

12idetH[6]l _ 12-160 _ 10

Po= P = "Rl 576 3"

_py,, o 12etHISI 1248 18

P = Puen = TactAe] 160 5°
_ _ 121detH[4) _ 12-16 _,
Pg = P12-5+1 Idet H[5] a3 5
. _ 121detH[3) _ 12:4 _,
=P = TCHA 16
_ _ 12detHR2) _ 122 _
Pio = P12-341 Idet H[3] 4 s

121det HI1I 121

P =Prz2a = ctHI) = 6.

IdetH[2] = 2

And p;, = 12 by Corollary 2.1.7.
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PART TWO

COMPLETION OF PARTIAL POSITIVE DEFINITE MATRICES



CHAPTER 1
BACKGROUND

Henceforth all matrices are assumed to be n X n unless otherwise indicated.

1.1 Positive Definite Matrices

242 e s bt e o diate AK Vo VI I T
1.1.1 Definitions. The Hermmitian adjoint A” (also called conjugaie transpose) of a

complex matrix A is defined by A* = A", where A is the component-wise conjugate of A.
A complex matrix A is called Hermitian if A* = A. The set of all n X n Hermitian matrices

will be denoted H.

1.1.2 Definition. A Hermitian matrix A is positive definite if x*Ax > 0 for all nonzero

x € Cn. If the above inequality is changed to x*Ax = O for all nonzero x € Cn, then A is

said to be positive semidefinite.

1.1.3 Remark. For an n x n Hermitian matrix A, there exists a unitary matrix U such

that U*AU is a real diagonal matrix. In other words, the eigenvalues of A are real and

there is a set of n orthonormal eigenvectors for A.
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1.1.4 Theorem. [HJ, 7.2.1] A Hermitian matrix A is positive definite (semidefinite) if
and only if all of its eigenvalues are positive (nonnegative). |

Proof. (=) Let A be positive definite and A be an eigenvalue of A with associated
%

. X Ax . e .
eigenvector x. Then x*Ax = x*Ax = Ax*x. Thus A = is positive since it is a ratio
X X

of two positive numbers.

(«=) If each eigenvalue of A is positive, then for any nonzero x € C®, we have

x*Ax =x*U*DUx  where D = diag(A,, A,,..., A,) is the diagonal matrix of
eigenvalues of A and U is unitary

=y*Dy where y = Ux
= z;"i vy, wherey*= [;;1- : -}7':]
i=1

= Z}"ib’ilz

> 0.

The positive semidefinite case is proved simiiarly.

1.1.5 Remark. Since the trace of A is the sum of its eigenvalues and the determinant of
A is the product of its eigenvalues, it follows from the above theorem that det(A) > 0 and

tr(A) > O for positive definite A, and det(A) 20 and tr(A) 2 O for positive semidefinite A.

1.1.6 For a Hermitian matrix H=[h,], h =h_ and thus h,, is real. In order to

understand the optimization theorems in [GISW], it is helpful to identify H with an element

of R™ as follows: for 1 £r<s<n,let h, =x,, and for r <, let h, = x,, + iy,,, where x,
and y,; are real. Create the n2-tuple of all x, y,; by lexicographic ordering:

[X115 X125 Y125 X135 Yi3se+0> Xins Yins X225 X23, Y23s-++» X2ns Y2nsers Xnnl.
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Observe that this defines an isomorphism from the set of n X n Hermitian matrices H
onto R™ (both real vector spaces) and the identification provides a topology for H.

interior,

We will use the terms "open set," "closed set, closure," "boundary," and

"limit point" as defined in the usual topology on R™ [Pat].

1.1.7 Definition. Given a matrix A, A(k) will denote the leading k x k principal

submatrix of A.

1.1.8 Theorem. Let A be n x n Hermitian. Then the following are equivalent.
(1) A is positive definite.
(2) Ack) is positive definite for eachk=1,...,n.
(3) det A(k)>0foreachk=1,...,n.
(4) There exist a lower triangular L with diagonal entries 1 and a real diagonal D
with positive diagonal entries such that A = LDL".
Proof. (1)= (2) Letke {1,...,n} and let x be a nonzero k-tuple. Define an n-tuple
y =[x O]t Theny # 6, where 6 denotes the zero vector; so y*Ay > 0. In addition,
x*AK)x = y*Ay; thus A(k) is positive definite.
(2) = (3) is immediate since the determinant of a matrix is the product of its
eigenvalues, each of which is positive when the matrix is positive definite.
(3) = (4) Since a,; = det A(1) > 0, the first step of Gaussian elimination can be

performed without row exchanges obtaining

a, 3 -t @

t L}

an=| O 22 A
L) t

0 anZ ot ann_I

Since adding a multiple of one row to another does not affect the determinant, we have
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det A(2) = det A“)(Z) =a, ,a'zz. Since det A(2) > 0 by hypothesis and a,, > 0 from above,

a,, >0. Thus the next step of Gaussian elimination can be performed without row

exchanges obtaining
[a,, a, a; - a,
0 a, ay - a,
A®D=|0 0 a, - a, |, where a, >0 by the same reasoning as before.

O 0 a, - a

Continuing in this way, we reduce A to an upper triangular matrix U; with positive

diagonal entries.

Notice that
B! 0 0 .- 0]
A =1,A, whereL;=|-m,;, O 1 --- O withm,, = a,/a,, and
__mnl 0 0 . 1—

1 0 o - 0
0 1 o - 0

A@ =LA =1,11A, whereLy= [0 —m,, with m,, =a,, / a,,.

[SY
- QO

0 -m,, 0 - 1]

This pattern continues for each A®) throughk =n - 1. Hence we can write
Uy =Ly LiA.

Then
A=L'L"--L7 U, and
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1 0 0 .- 0t O O 07
m, 10 - 00 1 o0 0
L'rl = (m, 01 0o m, 1 oL},
m,, 0 O 1{0 m, O 1]
1 0 0 0]
m, 1 0 0
=|m,; my, 1 0{=L
_mnl m,, mg; - l_

Now let D be the diagonal matrix of main diagonal entries of U; and let U = D-1U;. Then

A =LDU, where L and U are lower and upper triangular, respectively, and have diagonal

entries 1. '

Since A = A* and D is real, LDU = U*DL*. Hence D-1(U*)-1LD = L*U-1. The left
side is lower triangular and the right side is upper triangular; thus both must be diagonal.
Since L* and U-! are upper triangular with diagonal entries 1, their product must have

diagonal entries 1; hence L*U-! = I which means L* = U. Thus A = LDL* as claimed.

E

(4) = (1) Let x be nonzero in C®and let y = L*x. Then x*Ax = y*Dy = Z'di|yi|2 >0
i=1

where D = diag(d,,..., d,) and y* = [)T,ﬁ] Hence A is positive definite.

Notice that with appropriate generalizing, the (1) = (2) part of the above proof can be

used to prove the following:

1.1.9 Theorem. [HJ, 7.1.2] Every principal submatrix of a positive (semi)definite

matrix is positive (semi)definite.
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1.1.10 Since det(A) is a polynomial in the entries of A, the function det: H —» R is
continuous. Foreachk = 1,..., n, we define Vy = {A € H: det A(k) > 0}. Since (0, =)

is an open set in R and det is continuous, Vi must be open in H for eachk = 1,..., n.

n
Hence ﬂl V. is open in H since it is the intersection of a finite number of open sets in H.
i=

We define S = ﬁVi which equals {A € H: A is positive definite} by Theorem 1.1.8.

Thus So, the set of positive definite n X n Hermitian matrices, is open in H.
The following result justifies some claims made in [GISW].

1.1.11 Theorem. The closure of S, which we will call S, is the set of all positive
semidefinite n X n matrices. Furthermore, S is the interior of S.
Proof. Since S = %, if A € S, then either A € S or A is a limit point of Sg. In either

case, there exists a sequence <Ai) in Spsuchthat imA; = A, i.e, 1im(A )rs =A,

i—eo idee\ 1

where (Ai )rs denotes the (r, s)-entry of A;. If x is a nonzero vector in CB, x*Aix > 0 for

each i. Furthermore, since addition, multiplication, and conjugation are continuous
- . % * . . oy . .
functions, we have limx A;x=x Ax. Hence x*Ax 2 0, i.e., A is positive semidefinite.

i—>e0

Conversely, suppose A is positive semidefinite. Let &> 0. Then by Theorem 1.1.4,
A + €l is positive definite since each eigenvalue of A + €] is of the form A + € where A is an
eigenvalue of A. Since gi_r)rg(A +€l)= A, Ais in the closure of Sg.

To see that Sy is the interior of S, first recall that Sy is open in H. Hence Sy < S°,
where S° denotes the interior of S. To show that S°©  Sg, we will prove thatif A ¢ Sy,
then A g SO. Let A e S -Sp. Then A is positive semidefinite, but not positive definite.
Hence its smallest eigenvalue is zero. Let € >0 and note that the smallest eigenvalue of

A-€lis-e. Thus A-el ¢ S. Since ii_l"lg(A —¢&l) = A, we conclude that no neighborhood

of A isinside S. Hence A ¢ S9, as desired.
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Henceforth we will write S° for the set of positive definite n X n matrices.

1.1.12 It is easy to verify that S is a cone [HJ, 7.1.3]: thatis,ifa,b=0and M, Ne€ S,
thenaM +bN € S.
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1.2 Partial Matrices and Graphs

1.2.1 Definitions. A partial matrix is a matrix that has at least one unspecified, or
free, entry. A partial Hermitian matrix A is a partial matrix with the property that if a, is
specified, then a, is specified and a, = a__.

1.2.2 Definitions. A completion of a partial matrix A = [a,] is a matrix M = [my]
with all entries specified and which satisfies m = a for each specified entry a,in A. A
Hermitian completion of a partial Hermitian matrix is a completion that is Hermitian. A
positive (semi)definite completion of a partial Hermitian matrix is a completion that is

Hermitian and positive (semi)definite.

1.2.3 Definitions. A finite undirected graph G = (V, E) is a finite set of vertices V
together with a set of edges E which is a subset of { {x, y}: X,y € V}. G may contain
loops, i.e., x may equal y for an edge {x, y} € E. Unless otherwise indicated, we assume

that V={1,2,...,n}.

1.2.4 Definition. A cligue is a subset C c V having the property that {x, y} € E for
all x, y € C, including all loops {x, x} forx € C.

It is not customary in graph theory to include all loops in the definition of clique as we
have done, but it is important to have them here. In addition, many graph theory texts
define a clique as a subgraph rather than a subset of vertices as we have done. Our

definition allows us to develop important concepts in chapter four.



1.2.5 Definitions. Given a graph G = (V, E), a G-partial matrix A(G) = [a,]] isa
partial matrix whose (r, s)-entry is specified if and only if {r, s} € E. (So either a, and a,,
are both specified or neither is specified, because G is undirected.) We say that A(G) is
G-partial positive (semi)definite if A(G) is partial Hermitian and for any clique C of G, the
principal submatrix [a,;] of A(G), k, p € C, is positive (semi)definite. In other words, a
G-partial Hermitian matrix A(G) is G-partial positive (semi)definite if every completely

specified principal submatrix of A(G) is positive (semi)definite.

1.2.6 Given a graph G = (V, E) and A(G) = [a,,] a particular G-partial matrix, we define
H(A(Q)) to be the set of all Hermitian completions of A(G). For each {r, s} ¢ E and

I #8, a5 = X, + iy, determines two real variables, x,; and y,,. Notice that a, determines the

same two real variables since a, = a_. For each {r,r} ¢ E, a, = x,, determines one real

variable, X,. If m is the number of real variables in A(G) determined by all pairs

{r, s} ¢ E, then H(A(G)) can be identified with R™ in the same way we identified H with

R in 1.1.6. Hence H(A(G)) is closed in H because an m-dimensional subspace of R'12
is closed in R“z. Define S(A(G)) =S N H(A(G)) which is the set of all positive
semidefinite completions of A(G). Then S(A(G)) is closed in H since it is the intersection
of two closed subsets of H.

The set of all positive definite completions of A(G) is S°® N H(A(G)) which is open in
H(A(G)) since S° is open in H.

The following theorem justifies claims in [GISW].
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1.2.7 Theorem. Suppose there exists a positive definite completion of A(G). Then
S° N H(A(G)) # @ and its closure is S(A(G)). Furthermore, S® N H(A(G)) is the interior
of S(A(G)) relative to H(A(G)).

Proof. Let B be a positive definite completion of A(G). Then B € S° N H(A(G)).

Since the closure of S° N H(A(G)) is a subset of S°A H(A(G)) which equals
S N H(A(G)), we have S° NH(A(G)) < S(A(G)).

Let C e S(A(G)) and te (0, 1). Then (1 - t)B + tC is a Hermitian completion of
A(G). Moreover (1 - t)B -+ tC is positive definite: if x # 6, x*[(1 - t)B +tCjx =
(1- t)x*Bx + tx*Cx > 0 because x*Bx > 0,1-t>0, and x*Cx = 0. Hence
(1-9B +tCe S°N H(A(G)). As tapproaches 1, (1 - t)B + tC approaches C. Thus Cis
a limit point of S N H(A(G)) which implies C € m. Since C was chosen
arbitrarily, S(A(G)) = S°® N H(A(G)). Therefore we have shown that S(A(G)) is the
closure of S° N H(A(QG)).

To see that S° N H(A(G)) is the interior of S(A(G)) relative to H(A(G)), first recall
that S° N H(A(G)) is open in H(A(G)). Thus S°® N H(A(G)) < S°(A(G)) where SO(A(G))
denotes the interior of S(A(G)) relative to H(A(G)).

Let W € SO(A(G)). We need to show that W must be positive definite. Let B be a
positive definite completion of A(G). Since W is in the interior of S(A(G)) relative to
H(A(G)), there is a subset U of S(A(G)), open in H(A(G)), such that W € U. Since the
whole line {tW + (1 - )B: te R} isin H(A(G)), and U is open in H(A(G)) and contains
W, there exists an € > 0 such that Wy = (1 + )W + (-€)B is also in U. Thus Wg e S°(A(G))

which implies Wo is positive semidefinite. By the reasoning in the first part of this proof,
tWo + (1 - t)B is positive definite foreacht e (0, 1). Let ty= ﬁ Then

toWo + (1 - t)B = W; so W is positive definite, as desired. Since W was chosen

arbitrarily, S°(A(G)) < S° N H(A(G)). Thus we have shown S°(A(G)) = S° N H(A(G)).
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Henceforth we will write S°(A(G)) for the set of all positive definite completions of
A(G).
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CHAPTER 2
CONVEX SETS AND STRICTLY CONCAVE FUNCTIONS

2.1 Introduction

2.1.1 The purpose of this chapter is to lay the groundwork for chapter 3 where we will
consider the following cases given a graph G and a particular G-partial matrix A(G).

(Case 1) The graph G contains a loop at every vertex, i.e., every diagonal entry of
A(G) is specified. Then S(A(G)) is compact, and we will see that the determinant function
takes its maximum on S(A(G)) at a unique B € S°(A(G)).

(Case 2) Some loop is missing in G. That is, some diagonal entry is unspecified in
A(G). Then S(A(G)) is closed but not compact, and the determinant function is not
bounded on S(A(G)). In this case, we will study the behavior of the determinant on
compact subsets of S(A(G)) such as K= {Z e S(A(G)): tr(Z) < T} where 0 <T <, We
will show that the determinant function takes its maximum on such K at a unique B, but

this time B is on the boundary of K.

2.1.2 Definition. A subset K of R? is convex if the line segment joining any two
points in K lies entirely in K. That is, if forevery x,ye Kandt e (0, 1),

tx + (1 - )y € K, then K is convex. -
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2.1.3 Definition. If K is a convex subset of R™, a function f: K — R will be called
strictly concave if f(tx + (1 - t)y) > tf(x) + (1 - )f(y) for every distinct pair X, y in K and
eachte (0, 1).

2.1.4 Forx,y e K and fixed t between 0 and 1, tx + (1 - t)y is a point on the segment
joining x and y. In addition, (tx + (1 - t)y, tf(x) + (1 - t)f(y)) is a point on the segment

joining (x, f(x)) and (y, f(y)).

2.1.5 Observe that the function L(x) = log(x) is strictly concave on (0, =):

Letz=1tx + (1 -t)y.

Ly) T

L{z) +
t-L(x) + (1 - t)L(y) -

Lx) T
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2.2 Properties of the Determinant Function; Convex Optimization

The following is somewhat stronger than 7.2.7 in [HJ].

2.2.1 Lemma. A is positive definite if and only if there exists a positive definite matrix
C such that A = C*C.
Proof. Suppose A is positive definite. Then A can be unitarily diagonalized as A =
UDU*, where D = diag(A,,..., A,) is the diagonal matrix of eigenvalues of A (all positive)
and U is unitary. We define C = UD"2U", where D" = diag( 2., A2), and A)?
denotes the unique positive square root of A;, for each i. Since C = C* and each eigenvalue
A2 of C is positive, C is positive definite. Moreover,
c*c=C? =up"?u*up"?u* =UDU* = A.

Conversely, suppose A = C*C where C is positive definite. Then A* = A and since

det(C) >0, C s invertible. So if x #0, Cx # 0 and we have

x*Ax = x*C*Cx = (Cx)*Cx > 0.

The following is much like 7.6.5 in [HJ], but somewhat more specific.

2.2.2 Lemma. Suppose A and B are positive definite. Then there exists a nonsingular
matrix P such that P* AP and P*BP are both diagonal and det(P) = 1.
Proof. By the previous lemma, there exists a positive definite C such that A = C*C=
C*IC. ThenI=(C*)y1AC-1=(C)*ACL. Now (C-1)*BC-! is Hermitian so it can be
unitarily diagonalized. Let U be unitary such that U(C-1)*BC-1U™ is diagonal, and et Q =
C-1U*. Then Q*BQ = U(C-1)*BC-1U* and

Q*AQ = U(C-1)*AC-1U* = UIU* from above

=1 since U is unitary.
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Hence Q*BQ and Q*AQ are both diagonal. Letting P = (1/d)Q, where d? = det(Q), we
have det(P)= dindet(Q) =1, and P*AP and P*BP are diagonal.

2.2.3 Theorem. [GISW] The function f(Z) = logdet(Z) is strictly concave on S°. That
is, for positive definite A and B,and0<t< 1,
logdet [tA + (1 - t)B] > t-logdet(A) + (1 - t)logdet(B).
Proof. Let A, B € S°. By Lemma 2.2.2, there exists a nonsingular P such that P*AP =D
= diag(d,y,..., d,,) and P*BP = C = diag(c,y,..., C.,) and det(P) = 1. Then for any
te (0, 1), we have
logdet [tA + (1 - t)B] = logdet (P*[tA +(1-t)BJP) because det(P) =1
= logdet [tD + (1 - t)C]
= logIEI(tdﬁ +(1-t)c;)
i=1
= ilog(tdﬁ +(1-t)c;)
i=l
> i(tlogdii +(1-t)logc;) by the strict concavity of log(x)

tilog d,+(1- t)ilog C;
i=1 i=l

t-logdet(D) + (1 - t)logdet(C)
=t-logdet(A) + (1 - t)logdet(B) since det(P) = 1.

2.2.4 Henceforth, Z(k | p) will denote the (k, p)-minor of Z, i.e., the determinant of the
submatrix obtained by omitting row k and column p of Z. This is the notation used in
[GISW] and it works well. (The observant reader may recall that Z(klp) meant something

different in part one of this paper.)
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2.2.5 Theorem. [GJISW] Suppose Z is partial Hermitian, and for each free entry z,,,

Zy = 2, and we set z,, = Xy, + iy, as in 1.2.6, where x,; and y,, are real variables. Let

Z(k | p) denote the (k, p)-minor of Z. Then

idet(Z) =Zk | k),
OXy

and if k # p,

9 det(Z) = 2~1)**PRe(Z(k | p)) and
ox,,

—a—det(Z) = -2(~1)k*P Im(Z(k | p)),
9,

where Re and Im denote real and imaginary parts, respectively.

Proof. Observe that when k = p, Xy = 2z,,. Thus

0 0
mdet(Z) —a—Z:k-dct(Z)
= a_Zij( D¥*I(Z(k1j))  [expanding det(Z) about row K]
kk j=1

3.
= (-D*K(Z(K 1K) since a—z'i =1 when j = k and equals 0 otherwise
Zyy

=Z(k | k).
Now letk # p. Then x,;, and y,, appear only in z,;, and z,, which is a. Using the

Chain Rule [BL, 4. 4], we get

0
a r.s= l xkp
dz,, az
Observe that —+~ = (. Thus the above sum becomes
ax,q, ax ax,q,
%det(Z) + 83 det(Z). Expanding det(Z) about row k in the first summand and about
zkp pk

row p in the second, we get
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9 9 = O N Rtz i O :
o, det(Z>+aZpk det(Z) = . ézkj( D@k 1) + %, ;’z,j( D 1)

= (-D**PZk 1p) + ()P Z(p 1K)

= (-D¥*P[Zkk Ip) + Z*(p1K)]  since Z is Hermitian
= (-D**P[Zk Ip) + Z(pik)]

= (-D*"P[Z(k 1 p) + ZKTp)]

=2(-1)**PRe(Z(k I p)).

Now differentiating with respect to y,, (using the Chain Rule again), we get
d - d 0z
—det(Z)= ) —det(Z) - —=
Yy @ 2;1825 @ dy

0 d
o i, 2o —i, and all other ggi =0. Proceeding as before, the above
i Yy Yy

kp

Observe that

sum equals
—a—det(Z) i+ g
0z,, oz,

det(Z)- (i) = (~D**PZK 1 p))-i + (—DPT*(Z(p 1 K))-(-i)

=i(-D**P[Z(k 1 p) - Z(p 1 K)]
=i(-D**P[Z(k I p) - Z(KTp)
=i(-D¥*P.2Im(Z&I p)-i
= =2(-)**PIm(Z(k | p)).

The following theorem is stated in [GISW] and said to be well-known. Not finding it

explicitly stated in standard references, we include a proof.
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2.2.6 Theorem. Let g: U — R be a continuous function defined on an open subset U
of RM and let K < U be such that
(1) Kis convex, compact, and IKI > 1 (i.e., K has more than one element), and
(2) g(x) 20 forall x in K, and g is strictly log-concave on K (that is, log(g(x)) is
strictly concave on K where we agree that log(0) = -c0).
Then the following are true:
(i) There exists a unique b € K such that
g(b) = max{g(x): xe K}.
(i) If g is continuously differentiable, this maximizing point b is the unique element of
K satisfying g(b) > 0 and
(Vg),x-b)<Oforallx € K,
where Vg denotes the gradient of g and  , ) is the standard inner product on R®,
Proof of (i). Since K is compact and g is continuous on K, there exists b € K such that
g(b) = max{g(x): x € K}. Suppose there exists b, # b such that g(b,) = g(b). Then
because log(g(x)) is strictly concave on K, we have

log(g(:b, + b)) > L log(a(b, ) + ~log(g(b))= log(g(b).

This is a contradiction to the maximality of g(b) since %b, + %be K because K is convex,

and the log function is strictly increasing. Thus b is the unique element of K where
max{g(x): x € K} occurs.

Proof of (ii). Since IKI> 1 and g assumes its maximum only once, g is not constant;
also g(x) 20 on K, so g(b) > 0.

Let x € K. Then the segment joining x and b lies entirely in K since K is convex.
Hence by the Mean-Value Theorem [BL, 3.9.1], for every y # b on the segment, there
exists ¢ between y and b such that

g(y) - g(b) =(Vg(c), y - b).
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Since g(y) - g(b) < 0 by (i) and x - b is a positive scalar multiple of y - b, we have
(Vg(c), x -b) <0 as c —» b. Since g is continuously differentiable (i.e., Vg is
continuous), {Vg(b), x - b) <0. Hence we have shown that the maximizing point b
satisfies g(b) > 0 and (Vg(b), x - b) <0 forall x € K. We need only show that b is the
unique element of K satisfying these properties.

Letae K, g(a) >0, and a#b. Then g(a) < g(b). We want to show there exists
z € Ksuch that (Vg(a), z- a) > 0. (In fact, z = b will work.) We claim that g is strictly
increasing as you move toward b along the segment joining a and b. For otherwise, since

the log function is strictly increasing, log(g(x)) fails to be strictly concave which is a

contradiction. Letting h = “E;a" , we then have that the directional derivative g—ﬁ(a) 20,
-a
Since %(a) = (Vg(a), h) [BL, 3.8.6(ii)], it follows that (Vg(a), b - a) 2 0. It just remains

oh
to prove that, in fact, (Vg(a), b - a) > 0. To do this, we show that —g—}g;(a) > 0 which is an

immediate consequence of the following:

Lemma. Let 0 <p <qinR, g: (p, q) — R be differentiable, and g(x) > 0 for each
x € (p, q). Also suppose g is strictly log-concave and strictly increasing from p to g.
Then g'(x) > O for every x € (p, q).

Proof. Define G(x) = log(g(x)), so G'(X) = ﬁ g (x). Since g is strictly increasing from
X

p to q, and the logarithmic function is strictly increasing, G is strictly increasing from p to

q. Fixxin(p,q) and y in (X, ) sothat p<x <y <q. Let s be the slope of the line L

through (x, G(x)) and (y, G(y)). Then s = E(L;—-—iﬁ > 0 since G is strictly increasing

fromptoq. Letx <d <y. Then g(x) < g(d) < g(y) since g is strictly increasing from p to
q. Lette (0, 1) such that g(d) = t(g(x)) + (1 - t)(g(y)). The strict log-concavity of g
implies that log(g(d)) = log[t(g(x)) + (1 - 1)(g(y))] > t-log(g(x)) + (1 - t)log(g(y)), i.e.,
G(d) > tG(x) + (1 - t)G(y) which means (d, G(d)) lies above L. Thus
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G(d) - G(x)

2s>0.
d-x

> s for each d € (x, q) which implies G'(x) = }’im_G_(%:_c_;@
—>x -X

Since x was chosen arbitrarily and g(x) > 0, we have g'(x) = g(x)G'(x) > O for each

x € (p, 9

56



2.3 Convex Hulls and Compactness

The following basic theory about convex sets is important here so we include the

proofs.

2.3.1 Definition. For fixed me Nandi= 1,..., m, let A; be a nonnegative real
number, and suppose A, + A, +--+ A, = 1. Then A;X, + AX; ++ A X,, is called a

convex combination of the points x,,..., Xp.

2.3.2 Lemma. [Lay, 2.15] A subset K of R" is convex if and only if every convex
combination of points of K lies in K.
Proof. («) is immediate from the definition of convex.

(=) Suppose K is a convex subset of R? and let x be a convex combination of r points
of K. We will show x € K by induction onr. When r =2, x € K by the definition of
convex. Let p be a positive integer such that every convex combination of p or fewer
points of K lies in K. Let x = A;X; ++ A X, + Ay Xp Where & +-+ A, =1, 4,20
and x; € K foreachi. If A, = 1, then A, = A, == A, = O since A; +---+ A,,; = 1, and
A; 20 foreachi. Thus x = x,,, € K. IfA,,; < 1, we have A, +--+ A=1-A,,>0.

Hence

A
X= (ll +-- '+A.p )[m
1

p

A
Xphob x|+ A, X,
AittA

By the inductive hypothesis, the point

|4

= --.+_________x
Y Ajteetd, P

1
Mty T

belongs to K. Thus x = (1 - A,,,;)y + A.iX,, Which must lie in K since K is convex.
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2.3.3 Definition. The convex hull of a set K < R2 is the intersection of all convex

sets which contain K. We will write conv(K) to denote the convex hull of K.
Observe that the convex hull of a set is convex.

2.3.4 Lemma. [Lay, 2.22] Let K be a subset of R, Then the convex hull of K
consists precisely of all convex combinations of elements of K.
Proof. Let T denote the set of all convex combinations of elements of K. Since conv(K) is
convex and K < conv(K), Lemma 2.3.2 implies that T < conv(K).

Conversely, let x = a,x; ++ o.x, and y = By, +--+ B.y, be two elements of T and
A€ (0,1). Then

Ax + (1 -N)y = Aoux; ++ AoX, + (1 - M)Byy, ++ (1 - ARy,
is an element of T since each coefficient is between 0 and 1 and

imi +2(l—7t)l3,~ =?»2r,oci +(1—7L)ZS‘,,B,- =AMD+(A-MI=1
i=] i=l j=1

j=1
Thus we have shown that T is a convex set. Since K < T, it follows that conv(K) c T.

Therefore, conv(K) = T.

2.3.5 Definition. A finite set of points x,,..., X, is affinely dependent if there exist

real numbers A,,..., A, not all zero, such that A, +--+ A, = 0 and A,x; ++ Ay X, = 0.

2.3.6 Lemma. [Lay, 2.18] Any subset of RP consisting of at least n + 2 distinct points
is affinely dependent.

Proof. Suppose x,,..., X, are distinct points in R? with m =n + 2. Then the m - 1 vectors
X2 = X}, X3 - X1,..., Xy - X) are linearly dependent. Thus there exist scalars oy, 0,..., O,

not all zero, such that o;(x; - X;) + 043(X3 - X;) 44 O(Xp, - X;) = 6.
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That is,
=(02 + 03 4+ Olp)X; + OX, +ooo+ X, = 6
or OX) + 00Xy 44 OpX, = 0,

where o, = -(0, + O3 +--+ 01). Thus Zoci =0, and the points x,, X,,..., X, are affinely

dependent.

2.3.7 Theorem. [Lay, 2.23] If K is a nonempty subset of R®, then every x in
conv(K) can be expressed as a convex combination of n + 1 or fewer elements of K.
Proof. Letx € conv(K). Then Lemma 2.3.4 implies that x = A,x, +---+ A,X,,, Where m s
a positive integer, A} + A, ++ A, =1,and \;20and x; € K foreachi=1,...,m. We
will show that such an expression exists for x withm <n + 1.

If m>n + 1, then by Lemma 2.3.6, the points x,,..., X, are affinely dependent, i.e.,
there exist scalars o,,..., o, not all zero, such that

o, +-+ 0o, =0 and OXy +oot O X, = 6.
So we have

AX) +ot A = X
and

O X; +4 Ol X, = 0.
We will now eliminate one of the x; by subtracting an appropriate multiple of the second
equation from the first, yielding a convex combination of fewer than m elements of K
which is equal to x.

Since not all of the o are zero, and zai =0, at least one of the o; must be positive.

We may assume without loss of generality that o,,>0. Then -}:'-'l 20 since A, 20.
o

m

Consider the set {—': o; >0¢. Since this set is finite, it must contain a minimal element.
o
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Q|>’

We may assume without loss of generality that %:—— < —% for all those i for which o; > 0.

i

Fori=1,...,m,let B, =4, —(%"—)Oti- Then B, =0 and

We claim that each §; 20. If o; <0, then ;2 A; 2 0. If o; >0, then

B, = a(?:—-x—)>0 Thus we have

1 m

gﬁi ZB Z(M "%’lai}(s

Hence we have expressed x as a convex combination of m - 1 of the points x,,..., X,,. This
process may be repeated until we have expressed x as a convex combination of n + 1 of the

points X,,..., Xp,.

2.3.8 Lemma. [Lay, 2.30] The convex hull of a compact subset of RP is compact.

Proof. Let K be a (nonempty) compact subset of RP. Define a subset B of R+ by
B={(a),..., Opey): O ++ 0y =landa; 20for 1 <j<n+1}.

We claim that B is compact. From the definition of B, each entry of any element of B lies
between 0 and 1, inclusive. Hence B is bounded. Let (a(”) ((oc"’ a"’,)) bea

convergent sequence in B with limit a®. We will show a©® e B which implies any limit
point of B lies in B, i.e., B is closed. Since (a®) converges to a®, we have limo” = o

i—ee

foreachje {1,...,n+1}. Thus
OL(O) +oc‘°’+ 4o? = hma"’+llmo:“’+ +hmoz"’

+ +
n+l = i—yo0 n+l

= hm[oc"’+ +0L(",]

i—oo

=lim(1);, =

i—doo
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Alsosince o’ 20 foreachie Nandje {1,....,n+1}, a!” 20 foreachje {1,...,n + 1}.
Hence we have shown that a® € B and that B is compact.

The function f defined by

f(ah-'-’ an+h Xi1srees Xins X215000s Xapyeens xn+l.l9---’ xn+l.n)
n+l

= ) 04 (Xipeeer Xiy)
i=l

is a continuous mapping of R+1 x RA x--x R0 = R™D? jneo Re,
We claim that f(B X K x:--x K) = conv(K). Let x € f(B x K X---x K). Then by

the definition of f, X is a convex combination of elements of K which must be in conv(K)

by Lemma 2.3.4. Now let x € conv(K). Then by Theorem 2.3.7, x can be expressed as a

convex combination of n + 1 or fewer elements of K, i.e.,

n+l n+l
x=2ai(xi,,...,xin), where zai =lando;20for1<i<n+1.
i=1

i=l
The function f maps (0,..., Olyeis Xi1sees Xins X21seees Xanse-vs Xnsl lseeer Xnsrn) €
BxKx-xKc R(""'”l)z to x; thus x € f(B X K x..-x K). Hence we have shown that
f(B x K x:-:x K) = conv(K).
Since B and K are compact, so is the finite direct product B x K x---x K by

Tychonoff's Theorem [Pat, 6.50]. It is not hard to prove this compactness here as

follows. Since B and K are both bounded, it follows that B x K x---x K is bounded.

Let

o e o o
() = (@ 0 XD, XD X X XX 0)

*An+l120 " p+ln

be a convergent sequence in B X K x---x K with limit y©, We will show
y® e B x K x---x K. Since (y‘”) converges to y©, we have limo.{” = o{” and

1=->00
1i_£nx§:‘) =x{ foreachje {1,...,n+1} andeachk € {l,..., n}. From the argument

above showing B is closed, we know (a”,...,0% ) € B. Also since K is closed, it

(0)

follows that (x!",...,x!?’) € K for 1 <j<n+ 1. Thus we have shown that
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y@ e B x K x---x K which implies that B x K x---x K is closed.

Since the continuous image of a compact set is compact [Pat, 4.19], it now follows

that (B x K x---x K), which is conv(K), is compact.
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CHAPTER 3
MAXIMIZING THE DETERMINANT OF THE COMPLETION

3.1 Preliminaries
The following lemma brings together two statements from [GISW]. The first is
needed in the proof of their Theorem 2 (our 3.2.1), and the second is the reason for

development of their Theorems 4 and 5 (our 3.3.3 and 3.3.5).

3.1.1 Lemma. Let G be a graph, and let A(G) be a G-partial matrix having a positive

semidefinite completion. If G contains all possible loops, then S(A(G)) is bounded and
closed, hence compact. If one or more loops is missing in G, then S(A(G)) is closed but
not bounded.

Proof. Suppose G contains all possible loops. Then every diagonal entry a; of A(G) is
specified. Let m = max{,/a;a;: 1<ij<n}. If Y € S(A(G)), then every principal

submatrix of Y is positive semidefinite by Theorem 1.1.9; in particular, the 2-by-2
q;

principal submatrices of Y are positive semidefinite. Let [ ] be an arbitrary 2-by-2

i B

principal submatrix of A(G) with a; (and hence a;) unspecified. If [yii Vi ] is the

i Yi
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corresponding submatrix in Y, then we must have y;y; - y;y; 2 0, i.e., y;y; 2 ly;2. Thus
each entry of Y satisfies ly;l <m. Since Y was chosen arbitrarily, we have shown that
S(A(G)) is bounded. We have already seen that S(A(G)) is closed in H (see 1.2.6); thus
we conclude that S(A(G)) is compact.

Suppose the loop {k, k} in not an edge in G. Let Y be a positive semidefinite
completion of A(G). Obtain Y, by adding a positive real t to the (k, k)-entry of Y. Then
for any nonzero complex vector x = [X;,..., X,]t, x*Y[x =x¥Yx + tx—kxk 2x*Yx 2 0;s0 Y,
is positive semidefinite. Since Y, is a completion of A(G), Y, is in S(A(G)). And because

t can be arbitrarily large, S(A(G)) is not bounded.

Notice that in the course of proving Lemma 3.1.1, we have also proved the following:

3.1.2 Lemma. [H], p. 398] Given a positive semidefinite matrix A, each entry a; of A

satisfies laijl2 < azay. If A is positive definite, the inequality is strict.



3.2 Theorems in which the Graph Contains all Possible Loops

3.2.1 Theorem. [GISW] Suppose a graph G = (V, E) contains all possible loops and
let A(G) be a G-partial matrix having at least one positive definite completion. Then there
exists a unique positive definite completion By of A(G) such that

det(Bp) = max{det(Z): Z e S(A(G))}.

Furthermore, By is the unique positive definite completion of A(G) whose inverse,
C = [¢,], satisfies

¢y, =0forall {k,p} e E.

Proof. Let W be a positive definite completion of A(G) and let 0 < & < det(W). We will
apply Theorem 2.2.6, so we need a convex, compact set in S(A(G)) which contains W and
on which logdet is defined and strictly concave. Define K¢ = {Z € S(A(G)): det(Z) 2&}.
We will see that conv(K¢) has all the necessary properties. The K. notation was not used
in [GISW], but is helpful in substantiating some of the claims there.

We first show that K¢ is compact. Since the determinant function is continuous and
[€, =) is closed in R, it follows that {Z € H: det(Z) = £} is closed in H. Thus K¢ =
S(A(G)) N {Z € H: det(Z) > €} is the intersection of closed sets in H; hence K, is closed
in H. Since S(A(G)) is bounded by Lemma 3.1.1, K; is bounded.

Now since K¢ is compact, conv(Ke) is compact by Lemma 2.3.8. Also by virtue of its
definition, conv(K¢) is convex. In addition, we claim that K¢ has more than one element
since it contains W, and a small enough change in an entry or entries of W corresponding
to free entries in A(G) results in another positive definite completion X of A(G) with
det(X) > €. One way to see this is to use the fact that the roots of a polynomial are
continuously dependent on the coefficients [HJ, Appendix D] which implies that the
eigenvalues of a matrix are continuously dependent on the entries. This assures the

existence of another positive definite completion of A(G) in addition to W. Since (g, o) is
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open in R and det is continuous, det-1(g, o) is open in H. Thus any positive definite
completion of A(G) sufficiently close to W will have determinant greater than €. Hence we
conclude that K¢ has more than one element which implies conv(K¢) has more than one
element.
3.2.2 IfU,Y e S°(A(G)) and t e (0, 1), then tU + (1 - t)Y is positive definite since
tU + (1 - )Y is Hermitian and x*(tU + (1 - ) Y)x = tx*Ux + (1 - )x*Yx >O when x # 6.
In addition, tU + (1 - t)Y is a completion of A(G). Hence tU + (1 - t)Y € S°(A(G)) which
proves SC(A(G)) is a convex set. Since S°(A(G)) contains K¢, it now follows that
conv(Ke) < S°(A(G)). Thus det(Z) > 0 for Z € conv(K¢) and by Theorem 2.2.3, the
determinant function is strictly log-concave on conv(K¢). Therefore the hypotheses of
Theorem 2.2.6(i) are satisfied; so there exists a unique Bg € conv(K¢) such that
det(Bp) = max{det(Z): Z e conv(K¢)}.

If X € S(A(Q)) - K¢, then det(X) < €; hence the above matrix By is the unique matrix

in S(A(G)) with maximum determinant. Since Bg € conv(K;), Bg e SO(A(G)), the

interior of S(A(G)) relative to H(A(G)) [Theorem 1.2.7]. Thus we must have

(m}(Bo) =0= [?_Q‘E](BO) for all {k, p} ¢ E, where x,, denotes the real part and
ox dy
kp kp

Yip denotes the imaginary part of the (k, p)-entry.

Hence by Theorem 2.2.5, Bo(k | p) = 0 for {k, p} ¢ E. Letting Bal = C = [c,], we have
C= 1
det(B,)

adj(B,) (see Part One, 2.1.4 - 2.1.5). Hence

_(=)M*PB (plk)
® T det(By)

2

and thus ¢,, = 0 for all {k, p} ¢ E. It just remains to show that By is the only positive

definite completion of A(G) with this property.
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3.2.3 Definition. If we let Z = [xip + iyyp] represent a general element of S(A(G)),
then the (k, p)-entries of Z and A(G) agree for {k, p} € E, i.e., x,;, and y,,, are fixed for
{k,p} € E. Accordingly, we denote by (Vdet)(Z) the gradient of the function
det: H(A(G)) — R, evaluated at Z, where det is a function of the real variables Xip and Yy,
for {k, p} ¢ E. In particular, (V, det)(B;) will denote V; det evaluated at the matrix Bo.
Observe that the following are equivalent, where C = [c,,] is the inverse of By:
1. ¢p,=0for{k,p}e E
2. 0=By(plk)= B,kIp) for {k,p} ¢ E

3. Bok Ip)=0for {k,p} ¢ E

ddet ddet _

5. (Vgdet)(By) =0

6. (Vdet)(By) =0

7. {(Vdet)(Bg), Z - Bg) =0 for every Z € S(A(G)).
To see that item 7 implies 6, recall that By lies in the open set SO(A(G)); thus Z can be
chosen in S°(A(G)) so that Z - By points in any direction. So we have

{(Vdet)(Bo), Z - Bp) = 0, where Z - By can point in any direction, which implies
(Vdet)B,) = 0.

Suppose B' is another positive definite completion of A(G) whose inverse has zeros in
the positions corresponding to unspecified entries in A(G). Let 0 < €' < det(B") and define
K¢ as before. Then det(Bp) and det(B') are both positive and from above,

((Vdet)(Bo), Z - Bo) = 0 = {(Vdet)(B'), Z - B") for every Z € S(A(G)).

But by Theorem 2.2.6(ii), By is the unique element of conv(K¢') which satisfies
det(Bo) > 0 and ((Vdet)(Bo), Z - Bp) < 0 for every Z € conv(K). Since B' also satisfies

these properties, we have a contradiction. Thus we conclude that By is the only positive
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definite completion of A(G) whose inverse has zeros in the positions corresponding to

unspecified entries in A(G).

3.2.4 Example. LetG =
Q Q Q

1 2 3
2 1 x
and A(G)=|1 2 1|, where x denotes an unspecified entry.
X 11
210 2 1 1/2
ThenW=|1 2 1]isapositive definite completion,andBy=] 1 2 1 |isthe
011 172 1 1

unique positive definite completion with maximum determinant on S(A(G)). Furthermore,

2/3 -1/3 0
B(')'l =(-1/3 7/6 -1}, and itisnot hard to check that the inverse of any other
0 -1 2

positive definite completion will not have zeros in the (1, 3) and (3, 1) positions.

In the previous theorem, we considered what happens to the determinant function on
the set of all positive definite completions of a fixed G-partial matrix A(G). Now in
addition, suppose for each unspecified entry in A(G), we require that any number to fill the
position must lie on a fixed straight line in the complex plane. Even though this is a strong
restriction, the following theorem establishes a similar result to the unrestricted case.

We identify C with R2? by (x + iy) < (X, y).
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3.2.5 Theorem. [GISW] Suppose a graph G = (V, E) contains all possible loops and
suppose there exists a G-partial matrix A(G) having a positive definite completion
W = [w,;]. Foreach {r, s} ¢ E, fix a straight line L in R2 such that w, € L. Then
there exists a unique B in S(A(G)) such that

det(B) = max{det(Z): Z € S(A(G)), z, € L foreach {r,s} ¢ E}.
This matrix B is the unique positive definite completion of A(G) whose inverse, C = [Cipls
satisfies

¢, is orthogonal to L, for each {r, s} ¢ E. *)

(This means orthogonality in R2, i.e., ¢ = a + bi corresponds to the point (a, b) in the
complex plane, and to say ¢ is orthogonal to L;; means (a, b) * (e, f) = 0, whenever the
line segment joining (e, f) and (0, 0) is parallel to L and * denotes the standard inner
product on R2.)
Proof. Define K = {Z € S(A(G)): z,€ L foreach {r,s} ¢ E}. Let 0 < & < det(W).
We will apply Theorem 2.2.6, so we need a convex, compact set in S(A(G)) which
contains W and on which logdet is defined and strictly concave. Define
Ke={Z e K: det(Z) 2&}. We will see that conv(K) has all the necessary properties.

Since W € K¢ and a small change in an entry or entries of W results in a small change
in its eigenvalues, any M = [m,;] with the properties that m,, € L for each {r,s} ¢ E,
my, = W, for {k, p} € E, and which is sufficiently close to W will also be a positive
definite completion of A(G) with determinant greater than € (because W € det-I(g, =0), an
open set in H). Hence K¢ has more than one element.

To show K¢ is compact, we will show K is closed. Then because K is a subset of
S(A(G)), which is compact by Lemma 3.1.1, it follows that K is compact. And since det
is continuous, K¢ is a closed subset of K; hence K¢ is compact. To see that K is closed in

H, let A), AQ),... be a convergent sequence of matrices in K with limit M = [m,]). This
means }Lm Re(Ag‘s)) = Re(m,,) and 1Lm Im(A(,is)) =Im(m) where A?s) denotes the (r, s)-
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entry of A®. In addition, for each {r,s} ¢ Eandie N, Ag) € L. Hencem,, € L
since L is closed. Furthermore, M € S(A(G)) since S(A(G)) is closed in H. Thus
M € K which proves that K is closed in H.

Now since K¢ is compact, conv(K) is compact by Lemma 2.3.8, is convex by virtue
of its definition, and has more than one element since K¢ does. Since SO(A(G)) is convex
(see 3.2.2 in the proof of Theorem 3.2.1) and K¢ c SO(A(G)), it follows that
conv(Ke) © S°(A(G)). Thus conv(Ke) is a compact, convex set satisfying the hypotheses
of Theorem 2.2.6(i); so there exists a unique B € conv(Kg) such that

det(B) = max{det(Z): Z e conv(K,)}.
If X € S(A(G)) - K¢, then det(X) < €; so det(X) < det(B). Hence B is the unique matrix in
S(A(G)) such that

det(B) = max{det(Z): Z e S(A(G)), z,, € L for each {r, s} ¢ E}.
Since B € conv(K¢), B must be positive definite.

Now we will prove that B is the only positive definite completion of A(G) whose
inverse C has the property (*). By Theorem 2.2.6(ii), B is the unique element of conv(Ky)
satisfying det(B) > 0 and ((Vdet)(B), Z - B) <0 for all Z € conv(K;). Since € can be
chosen arbitrarily close to zero, B is in fact the unique element of SO(A(G)) satisfying
((Vdet)(B), Z- B) < 0 for all Z € K N S°(A(G)). Let by, = B, + iy,; denote the (r, s)-entry

of B, and let 39€¢ aq 2det
ox dy

IS s

denote the partial derivatives of the determinant function with

respect to the real part and imaginary part of the (r, s)-entry, respectively. Then
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((Vdet)(B), Z - B) = Z[( %ie‘ )(B)][Re(z.o B+ [( %‘;e‘ ](B)][Im(z,s) —
7,5=1 s rs

= 3 2= [Re(BEI)IRe(z,,) — B, 1+ (~2)=1)*[Im(BE | [Im(z,) —7,.]

rs=1

by Theorem 2.2.5

=2 Y (-D)"[Re(B(I )][Re(z,,) - B, ] - (D" [Im(B(r! 9)][Im(z,.) ~ V,,]

{r.s}¢E

since when {r, s} € E, Re(z,) = B; and Im(z,,) = ..

Thus {(Vdet)(B), Z - B) < 0 is equivalent to

Y (~D)T[ReBI9Re(z,, ) ~ B, ]— (—) [Im(Be9)][Im(z,) - y.] <O.
{r.sjeE
_ (=) *P(B(pIK)

If we let C = [c,;] be the inverse of B, then ¢, = det(B) , and the above can be
e

written as

det(B) Y [Re(c, )IRe(z,) - B, ] - [Im(c,)Im(z,,)~7,1<0 or

{r.s)eE

(**) Y [Re(c)IRe(z,,) - B, ]+ [Im(c,)l[Im(z,) — 7,]< 0
e for every Z = [z,,] € K N SO(A(G)).
Fix {r,s} ¢ E. Consider Z in K N S°(A(G)) for which z,, = by, except in the (r, s) and
(s, r) positions. Then (**) becomes
[Re(cr)][Re(zy) - Br] + [Im(c,)1[Im(z,,) - %]
+ [Re(c)][Re(z,) - By] + [Im(c,)]Im(z,,) - 1] <O
or 2{[Re(ci)][Re(zy) - Bs] + [Im(c,)][Im(z,,) - ¥,]} < 0.

Thus we have

(crs’ Zy - br_f,) <0. (***)
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For each {r, s} ¢ E, (***) holds for all matrices Z in K N S°(A(G)) for which Z,=by,

except in the (r, s) and (s, r) positions and where z, lies on an open segment of Ly,
containing b,. Let z',s, z',; € L;s with b, between them. Then the cosine of the angle

between c,; and z_, — b__ is nonpositive as is the cosine of the angle between c,and z, ~b_.

Hence each angle must be at least 90° which means each angle must be 90° (see picture).

R2

Since z — b,, and z',; - b,, have opposite directions along L, it follows that c, is
orthogonal to L for each {r, s} ¢ E, i.e., C = B-1 satisfies property (*).

The fact that B is the unique element of S°(A(G)) whose inverse satisfies property (*)
follows because condition (***) occurs if and only if ((Vdet)(B), Z - B) <0 for all
Z e K N S9(A(G)). (The work above establishes this.) And since condition (¥¥*) js

equivalent to property (*), and B is the unique element of S9(A(G)) satisfying -
((Vdet)(B), Z - B) < 0 for all Z € K N SO(A(G)), it follows that B is the unique element of

S°(A(G)) whose inverse satisfies property (*).
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3.3 Theorems in which the Graph May be Missing a Loop

3.3.1 So far we have considered only graphs which contain all possible loops. Now
suppose we are given a graph G = (V, E) in which the loop {k, k} is not in E for some
ke {1,...,n}. Suppose A(G) = [a,] is a G-partial matrix with a positive definite
completion W = [w,], so SO(A(G)) # . Let 0 <& < det(W). We showed in Lemma
3.1.1 that S(A(G)) is not bounded, hence not compact. Recall that we defined
Ke = {Z € S(A(G)): det(Z) 2 €} in Theorem 3.2.1. The compactness of K¢ was important
in establishing the earlier results. However when G is missing a loop (say, {k,k}), K¢ is
no longer compact. To see this, let Wy be obtained from W by adding x to wy, where x
can be any positive real number. Then expanding det(W,) about row k, we have

det(Wy) = w,, (D IW(K | 1) + w,, (-DKZW(K 1 2) +--r

+ (W + X)DFRWEK 1K) ++ W, (-DEFPW(K I n)
=det(W) + xW(k | k).

Since x > 0, xW(k | k) > 0 because W(k | k) is a principal minor of the positive definite
matrix W; thus det(Wy) > det(W). So Wy € Kg; and since x can be arbitrarily large, K¢ is
not bounded and det does not have a maximum on S(A(G)).

However if we restrict attention to a closed and bounded subset K of S(A(G)) which
contains a positive definite completion of A(G), then det will have a maximum at some
positive definite B in K. Such B cannot be in the interior of K since that would mean

(Vdet)(B) = 0 which implies, since the (k, k)-entry is free, that (-g—(—lg—t-)(B) =0. But by
X

kk
ddet
X,

Theorem 2.2.5, ( )(B) is just Bk | k), a principal minor of the positive definite B,

which must be positive. So when K is any compact subset of S(A(G)), the determinant-

maximizing B must occur on the boundary of K. Now fix positive constants T and L and
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consider {Z € S(A(G)): tr(Z) <T} or {Z € S(A(G)): tr(Z?) <L}. These are compact sets
and we will show in each case that the determinant-maximizing B is unique and, as before,

that its inverse has an unexpected property.

3.3.2 Lemma. [HJ, p. 398] The diagonal entries of a positive (semi)definite matrix A
are all positive (nonnegative).
Proof. Suppose A is positive definite. Let e, be the n X 1 vector with 1 in the kth position
and zeros elsewhere. Then for each k € {1,..., n},
0<e Ae, since A is positive definite
= Ay

Replacing < by < above gives the proof for positive semidefinite A.

3.3.3 Theorem. [GISW] Suppose G = (V, E) is a graph in which at least one loop is
missing. Fix T >0 and suppose A(G) is a G-partial matrix with a positive definite
completion Zg such that tr(Zg) < T. Let K= {Z € S(A(G)): tr(Z) £ T}. Then there exists
a unique positive definite B with maximum determinant on K. Furthermore, tr(B) =T and
B is the unique element of {Z € S°(A(G)): tr(Z) = T} whose inverse, C = [c,,], satisfies
cp=0forall {k,p} e E, k=p,
Cu = Cpp for all {k, k}, {p, p} ¢ E.
Proof. Let 0 <€ < det(Zp). We will apply Theorem 2.2.6, so we need a convex, compact
set in S(A(G)) which contains Zy and on which logdet is defined and strictly concave.
Define K¢ = {Z € S(A(G)): det(Z) = € and tr(Z) < T}. We will see that conv(K¢) has all
the necessary properties.
We claim that K¢ has more than one element. Recalling that the eigenvalues of a matrix

are continuously dependent on the entries and det is a continuous function, it follows that
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we can make small changes in entries of Z corresponding to unspecified positions in A(G)
to obtain another Hermitian completion X of A(G) with positive eigenvalues and

det(X) > &. Since the eigenvalues of X are positive, X is positive definite. Since there is
an unspecified diagonal entry in A(G), and the corresponding entry in Z is positive by
Lemma 3.3.2, we may obtain X from Z, by decreasing this entry slightly. Then

tr(X) < tr(Zp) < T so that X € K. Thus we have shown that K¢ has more than one
element.

We claim that K; is compact. Since Trace: H — R is continuous and (-0, T] is closed
inR, {Ze H: tr(Z) <T} is closed in H. Since K=S(A(G)) N {Z e H: t(Z)<T}, the
intersection of closed sets in H, K must be closed in H. Now
Ke =K N {Z e H: det(Z) = €} is the intersection of closed sets in H; hence K¢ is closed in
H. If Z = [z,;] € K, Z is positive semidefinite so its diagonal entries are nonnegative by
Lemma 3.3.2. Thus z, < tr(Z) < T. Furthermore, each entry z; of Z satisfies lzijl2 <2z
by Lemma 3.1.2. Hence lz;l < T, i.e., each entry of Z is bounded. Thus K must be
bounded which implies its subset K¢ is bounded. Therefore we have shown that K¢ is
compact.

So conv(K¢) is compact by Lemma 2.3.8, is convex by virtue of its definition, and has
more than one element since K¢ does. Since S°(A(G)) is convex (see 3.2.2 in the proof of
Theorem 3.2.1) and K¢ < S°(A(G)), it follows that conv(Kg) < S°(A(G)). Thus conv(Ke)
is a compact, convex set satisfying the hypotheses of Theorem 2.2.6(i); so there exists a
unique B € conv(K¢) such that

det(B) = max{det(Z): Z € conv(K;)}.

We claim that tr(B) < T. This follows if we can show that the set
F={Z e S9(A(G)): tr(Z) <T} is convex. Then because F contains K¢, F must contain
conv(Ke), hence tr(B) < T. To see that F is convex, let U, Y € Fand te (0, 1). Then

trtU + (1 - )Y) =ttr(U) + (1 - Ot(Y) < tT + (1 - )T = T. Since SO(A(G)) is convex,
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tU + (1 - )Y € F which implies F is convex.

If X € S(A(GQ)) - K¢, then det(X) <&; so det(X) < det(B). Hence B is the unique
matrix in S°(A(G)) with maximum determinant among those satisfying tr(Z) < T.

To show that tr(B) = T, suppose tr(B) < T. Then we could increase any diagonal entry
of B corresponding to an unspecified position in A(G) until the trace of the resulting matrix
Bj equals T. By the discussion 3.3.1 preceding this theorem, det(B) > det(B); but
B; € S°(A(G)), and B has maximum determinant on {Z € S°(A(G)): tr(Z) < T}. Hence
we conclude that the trace of B must be T.

So B is on the boundary of K relative to H(A(G)) (where the equation describing the
boundary is b(Z) = tr(Z) - T = 0). We wish to apply the Lagrange Muitiplier Theorem
[BL, 4.9.7]. Observe that b and the determinant function are differentiable at B. In

db

addition, because b(Z) = (ini) ~T, [-a——)(B) =1 foreach {k, k} ¢ E. Thus
i=] X kk

(Vb)(B) #0. So because B is an extremal point of the determinant function on K, and
hence on the boundary of K, B satisfies

(Vdet)(B) = A(Vb)(B) for some A € R [BL, 4.9.7].
Since B is the unique extremal point of the determinant function on
{Z € S°(A(G)): tr(Z) < T}, B is the unique element of S°(A(G)) among those satisfying
tr(Z) < T such that (Vdet)(B) = A(Vb)(B). In particular, this equality is true for all the real

variables corresponding to unspecified positions in A(G), i.e., using our earlier notation,
(Vg det)(B) = A(V;b)B).
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Thus for each {k, k} ¢ E, we have

Bk k) = (g:et
kk

AR

=A since b(Z) = (ixii)—

i=]

J(B) by Theorem 2.2.5

Furthermore for each {k, p} ¢ E, k # p, we have

@) 2(-D¥*PReB(k I p)) = (gd"‘ J(B) by Theorem 2.2.5
Xip
ob
&
=0, and
() -2(-D*PImB(K | p)) = (adet)(B) by Theorem 2.2.5

B
[aykp )( )

Hence B(k | p) = 0 for each {k,p} ¢ E,k #p.

-D¥*PBEIK.
det(B)

The (k, p)-entry of B-1 = C = [¢,,] is ; therefore we must have

wp = 0 for each {k, p} ¢ E,k#p, and
6]

Cux = for each {k, k} ¢ E.

A
det(B)
In particular, if k # p, and {k, k}, {p, p} ¢ E, then ¢, =c,,.

Recalling that B is the unique element of {Z € S%A(G)): tr(Z) < T} satisfying
(Vg det)(B) = A(V;b)(B), and tr(B) = T, it follows that B is the unique element of
{Z € S°(A(G)): tr(Z) = T} whose inverse satisfies (§).
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3.3.4 Example. LetG =

Q . .

1 2 3
1 1 x
and A(G)=|1 y 1|, wherex,y and z denote unspecified entries, and let T = 5.
X 1 z
1 10
ThenZo=|1 2 1] isa positive definite completion such that tr(Zo) < T, and
01 2
1 1 —1+42
B= 1 1+42 1 is the unique positive definite completion with

-1+4/2 1 3-42

maximum determinant on {Z € S(A(G)): tr(Z) <T}. Furthermore, tr(B) =T and

1+L L 0
N2 N2
B-l= ——\/1—5 -;-+ 5% —-2—\1/7 , and it is not hard to check that B is the unique
0 1.1
i 242 2 242

element of {Z € S9(A(G)): tr(Z) =T} whose inverse satisfies conditions (§). We note that

other positive definite completions exist with trace less than T and whose inverses satisfy

1 1 0.5
conditions (§). For instance, consider the positive definite completion | 1 2 1
05 1 125
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In the final result of this chapter, we characterize the determinant-maximizing matrix

over another compact subset of positive semidefinite completions with a trace constraint.

3.3.5 Theorem. [GISW] Fix L >0. Suppose G = (V, E) is a graph, and A(G) is a G-
partial matrix with a positive definite completion W = [w,,] subject to tr(W2) < L. Let K =
{Z e S(A(G)): tr(Z2) <L}. Then there are three possibilities.

(1) If G has all possible loops and the matrix By from Theorem 3.2.1 is in K, that is,
tr( Bg) <L, then det(Bgp) = max{det(Z): Z e K}.

(2) If G has all possible loops, By from Theorem 3.2.1 is not in K, Wy, = 0 for all
{k, p} € E, and tr(W2) = L, then K = {W}. In this case, the entries of W-1 corresponding
to unspecified positions in A(G) need not be zero.

(3) Ifcases (1) and (2) do not hold, then the maximum determinant on K occurs at a

positive definite B = [b,;] uniquely determined by

(B2) =L and
kap
= forall {k, p} ¢ E,
% = Gercp) OF 2 (k- P} @

where A is a positive constant and C = [ci,] is the inverse of B.
Proof of (1). Suppose G has all possible loops and the matrix By from Theorem 3.2.1 is

in K. Recall that the matrix Bg from Theorem 3.2.1 has the maximum determinant over all

positive semidefinite completions of A(G). Since By e K and K < S(A(G)), it follows
that By has the maximum determinant on K.

Proof of (2). Suppose case (1) does not hold, G has all possible loops, Wy, =0 for all
{k,p} ¢ E,and tr(W2) = L. Let X € S(A(G)) and X # W. We will show X ¢ K.

Because X is Hermitian, tr(X2) = tr(X*X) which is the sum of the squares of the moduli of

the entries of X. Hence since w,, = 0 for all {k, p} ¢ E, tr(X2) > tr(W2) = L.
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Thus K = {W}. To see that the entries of W-! corresponding to unspecified positions in

A(G) need not be zero, consider the following example.

6= Q Q QO

1 2 3
2 1 x 210
AG)=|1 2 1|, where x denotes an unspecified position, W= |1 2 1[;and
Xx 11 011
1 -1 1
L =13. Then W is positive definite and W-1= | -1 2 -2/|.
1 -2 3

Proof of (3). Suppose cases (1) and (2) do not hold. Recalling that we are given a positive
definite completion W = [w,,] of A(G) subject to tr((W2) < L, let O < € < det(W). We will
apply Theorem 2.2.6, so we need a convex, compact set in S(A(G)) which contains W and
on which logdet is defined and strictly concave. Define

Ke = {Z € S(A(G)): det(Z)=2eand tr(Z2)<L}.

We will see that conv(KGg) has all the necessary properties.

We first show that K¢ contains more than one element. Recalling that the eigenvalues
of a matrix are continuously dependent on the entries and det is a continuous function, it
follows that small enough changes in entries of W corresponding to unspecified positions
in A(G) will yield another Hermitian completion X of A(G) with positive eigenvalues and
det(X) > €. Since the eigenvalues of X are positive, X is positive definite. We claim that
such an X exists which satisfies tr(X2) < L. Since we are assuming case (2) does not hold,
there are three possibilities.

(1) Suppose that {k,k} ¢ E forsomek € {1,..., n}. Then we obtain X from W by
decreasing the (k, k)-entry of W.

(ii) Suppose G has all possible loops and Wi # 0 (hence wy, # 0) for some {k, p} ¢ E.
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Then we obtain X from W by changing w,, and wy, so that their modulus is decreased.
(iii) Suppose G has all possible loops, wy, = 0 for all {k, p} ¢ E, but tr(W2) <L.
Then we may obtain X from W by making small enough changes to w,, (and wy,) for any

{k,p) ¢ Esothat tr(X2) < L.
In each of (i)-(iii) above, we obtained an X satisfying tr(X2) L. Thus X € K; which
implies that K, has more than one element.

Next we show K¢ is compact. The function tr(Z2): H — R is continuous since the
trace of the square of a Hermitian matrix is just the sum of the squares of the moduli of its
entries. Thus {Z e H: tr(Z2) <L} is closed in H since (-eo, L] is closed in R. Hence K =
S(A(G)) N {Z € H: tr(Z2) <L} is the intersection of closed sets in H which implies K is
closedin H. So K=K n {Z e H: det(Z) 2 €} is also the intersection of closed sets in
H; thus K is closed in H. Since tr(Z2) is the sum of the squares of the moduli of the
entries of Z, each entry z;; of Z satisfies Izy2 < tr(Z2) < L. Thus K is bounded and so s its
subset K. Hence we have shown K, is compact.

Therefore conv(Ke) is compact by Lemma 2.3.8, is convex by virtue of its definition,
and has more than one element since K¢ does. Since SO(A(G)) is convex (see 3.2.2 in the
proof of Theorem 3.2.1) and K, < SO(A(G)), it follows that conv(K¢) < SO(A(G)). Thus
conv(Ke) is a compact, convex set satisfying the hypotheses of Theorem 2.2.6(i); so there
exists a unique B € conv(K¢) such that

det(B) = max{det(Z): Z € conv(K)}.

To see that tr(B2) < L, we will show K is convex; then since K¢ c K, it will follow

that conv(K,) < K which implies tr(B2) < L. To show K is convex, we will use the

Frobenius norm on the n X n matrices. This is defined for an n x n matrix A = [a,,] as

1/2

L 2

Al = ( Zla,q,I J where the nonnegative square root is taken on the right-hand side.
k.p=1
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The Frobenius norm satisfies all matrix norm properties [HJ, pp. 290-1]. Also since
Z 2
tr(A*A) = D'la,|", we have

k,p=1

IAlE = [tr(A*A)1? which equals [tr(A2)]1/2 when A is Hermitian.
LetU,Ye K,te (0,1),and0=x e Cn. Then x*(tU + (1 - )Y)x =
tx*Ux + (1 - )x*Yx 2 O since U and Y are positive semidefinite. Hence
tU + (1 -)Y € S(A(G)). Also we have

(tr{[tU + (1 - OYPPI2 = iU+ -0 Y]

< tUlg +[1-)Y||z  matrix norm property
= Ul + (1= 0] Y] matrix norm property
= i (UD] 2 + (1 - Yltr(Y2)} 12
StLY2+(1-0LY2  since tr(U2), tr(Y2) <L
=L172,

Hence tr{[tU + (1 - )Y]2} < L. SotU+ (1 - t)Y € K which implies K is convex.

Thus we have shown that B is the unique matrix with maximum determinant in
conv(Ke) and tr(B2) < L. If X € S(A(G)) - K, then det(X) < €; so det(X) < det(B).
Hence B is the unique matrix in S°(A(G)) with maximum determinant among those
satisfying tr(Z2) < L.

To see that tr(B2) = L, suppose tr(B2) < L. If G does not contain all possible loops,
then we could increase a diagonal entry of B corresponding to an unspecified position in
A(G) obtaining a positive definite completion By with tr( B?) = L. Then by the discussion
3.3.1, det(B;) > det(B), a contradiction. If G contains all possible loops, then By from
Theorem 3.2.1 exists, and tr( B(z)) > L since we are proving case (3) of this theorem (hence
assuming case (1) does not hold). Recalling that K = {Z € S(A(G)): tr(Z2) <L}, the
boundary of K relative to S(A(G)), bd(K), is {Z € S(A(G)): tr(Z2)=L}. Since K is
closed, K = int(K) U bd(K) where int(K) denotes the interior of K relative to S(A(G)).
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Since we are assuming tr(B2) < L, B € int(K). But the proof of Theorem 2.2.6 implies
that the determinant function is strictly increasing as you move from B to B along the
segment {tBg + (1 - t)B: 0<t<1}. So there would be B on this segment and in K with
det(B;) > det(B), a contradiction. Thus tr(B2) = L. Hence B € bd(K) (where the equation
describing the boundary is b(Z) = tr(Z?) - L = 0).

We wish to apply the Lagrange Multiplier Theorem [BL, 4.9.7]. Observe that the
determinant function and b(Z) = tr(Z2) - L are differentiable. Because tr(B2) =L and we
are proving case (3) of this theorem (hence assuming case (2) does not hold), we must
have condition (i) or (ii) from above (see bottom of p. 80). That is, there exists
{k, k} & E, or there exists {k, p} ¢ E with b,, # 0. This allows us to conclude that
(Vb)(B) # 0, where b(Z) = tr(Z2) - L, by the following calculations.

For each {k, k} ¢ E (if any),

(—al)(B) = F—a—[tr(zz)-u](s)

0%,y | 90Xy

[ &,

= _mélzml ](B)
) 2

= _mlld ](B)

= —E—xi](B)

OX,,

= 2bkk-
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Also for each {k,p} ¢ E,k#p,

axkp ax,q,

[ e, p
=3¢ leml ](B)

kp r.s=1

[—ab—J(B) - L[tr(zz)—L]](B)

B 2 2
= _m(lzk,,l +lew )}(B)

= ai-(xzkp + yfp + xfk + yfk ):|(B)
| 9% kp
= |2 2xfp](B)

ox,

L P

4Re(b,,).
Similarly, for each {k, p} ¢ E,k#p,

( aab ](B) - [i[mzz)—L]](B)
Yip 0o

= [aa 2x2 + 2yfp)J(B)

Yy kp
= 4Im(by,).

If there exists {k, k} ¢ E, then since B is positive definite, b,, >0 by Lemma 3.3.2. Thus

(———aab )(B) > 0 from above. If there exists {k, p} ¢ E with by, # 0, then Re(b,,) # 0 or

X ik
db

Im(b,,) # 0 (or both). So at least one of (
ox,,

](B) or (_311_}(13) is nonzero from above.
9y,

Thus (Vb)(B) = 0.

Therefore, because B is an extremal point of the determinant function on K, and hence
on the boundary of K, B satisfies
(Vdet)(B) = A(Vb)(B) for some A € R [BL, 4.9.7].
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Since B is the unique extremal point of the determinant function on

{Z € S°(A(G)): (Z2) <L}, B is the unique element of S°(A(G)) among those satisfying
tr(Z2) < L such that (Vdet)(B) = A(Vb)(B). In particular, this equality is true for all the real
variables corresponding to unspecified positions in A(G), i.e., using our earlier notation,
(Vs det)(B) = M(V;b)(B).

Thus for each {k, k} ¢ E (if any),

Bk k) = (gde‘
X

)(B) by Theorem 2.2.5

kk
db
oo

= A-2b,, from above.
Note that since B is positive definite, A must be positive.

In addition, for each {k, p} ¢ E,k #p,

2(-1)¥*PRe(B(k | p)) = (g:et }(B) by Theorem 2.2.5

kp

db
A

= A-4Re(b,,) from above.
Similarly, for each {k, p} ¢ E,k#p,

2(-)**PImB(k | p)) = (g;e‘ ](B) by Theorem 2.2.5
kp

db
= A —|[(B
(ay,q,)( ‘

= A-4Im(b,,) from above.
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If B-1 = C = [c,], then for each {k, p} ¢ E,

=1 pk+p : , -1_
= det(B)( )" " [Re(B(p!k)) +iIm(B(p ! k))] since B det(B)

(see Part One, 2.14 - 2.1.5)

adj(B)

Ckp

=L kP i . J—
= det(B)( 1)""P[Re(B(k I p)) - ilm(B(k | p))] since B(plk) = BkIp)

1 .
= det(B) . 27»[Re(bkp) + llm(ka )] from above
2A

b, .
det(B) *

1
det(B)

Notice that this holds even whenk =p: ¢, = (—l)k'*'kB(k | k) which equals

1
det(B)

-2Ab,, from above.

Finally, since B is the unique positive definite element of K satisfying
(Vg det)(B) = M(V;b)(B), and tr(B2) =L, it follows that B is the unique positive definite
2A

element of K satisfying tr(B2) =L and ¢, = m -b,, for all {k, p} ¢ E, where Ais a

positive constant and C = [c,,] is the inverse of B.
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CHAPTER 4
CHARACTERIZATION OF COMPLETABILITY

4.1 Completable Graphs

4.1.1 Given a graph G = (V, E), recall that a clique is a subset C of V for which
{x,y} € Eforall x,ye C, including all loops {x, x} for x € C. The graph G is called
complete if V is a clique. A subgraph of G is a graph (V', E'") where E'c Eand V' c V.
Also recall that a G-partial positive (semi)definite matrix is a G-partial Hermitian matrix in

which every completely specified principal submatrix is positive (semi)definite.

4.1.2 Definition. A graph G is completable if every G-partial positive definite matrix

has a positive definite completion.

4.1.3 Definition. Given a graph G =(V, E) and A c V, the graph on A induced by G
is the subgraph G(A) = (A, E(A)), where E(A) = {{x,y} € E: x,ye A}.
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4.1.4 Lemma. [HJ, p. 399] Let A be an n X n complex matrix. Then A is positive
definite if and only if C*AC is positive definite for some invertible C.

Proof. If A is positive definite, let C = 1. If C*AC =B is positive definite for some
invertible C, then A = (C*)-1BC-1 = (C-1)*BC-1. Hence A is Hermitian because B is. If x
is a nonzero vector in C?, C-1x # 0 because C-! is nonsingular, and we have

x*Ax = (C-1x)*B(C-1x) > 0.
The following result justifies a claim from [GISW].

A B
4.1.5 Theorem. Let M(x)= [B* H+ xI]’ where A is positive definite, H is
Hermitian, and B is any complex matrix of appropriate size. Then there exists a positive y

such that M(y) is positive definite.

1 -A"'B * I 0
Proof. Let C= . Then C" =
roof. Le [0 I ] en l:-—B*A'l I] and

C*Mx)C = A 0* i
0 H+xI-B'A™'B

]. Since H and B*A-1B are Hermitian, H - B*A-1B is
Hermitian. Let y be a positive number greater than the absolute value of the minimal
eigenvalue of H - B*A-1B. Then (H - B*A-1B) + yI has all positive eigenvalues, hence is
positive definite.

Since the eigenvalues of a block diagonal matrix are the eigenvalues of its diagonal

blocks taken together, and A is positive definite by hypothesis, C*M(y)C is positive
definite. Hence M(y) is positive definite by Lemma 4.1 .4.
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4.1.6 Proposition. [GISW] Let L be the set of vertices of a graph G = (V, E) which
have loops. Then G is completable if and only if the graph on L induced by G is
completable.

Proof. Suppose G is completable. If L = J, the conclusion is true vacuously. Otherwise,
let G' denote the graph on L induced by G. We may suppose L = {1,..., k} for some

ke {1,...,n}. (If the vertices start out ordered differently, a suitable permutation
similarity of any G-partial Hermitian matrix A(G) is equivalent to reordering the vertices of
GsothatL = {1,..., k}. This yields a new G-partial Hermitian matrix A(G) whose
leading k X k principal submatrix is G'-partial Hermitian. And since similar matrices have
the same eigenvalues, A(G) will have a positive definite completion if and only if A(G) has
a positive definite completion.)

Let A’ be a G'-partial positive definite matrix. We want to show that A' has a positive
definite completion. Let A = [a;] be the G-partial matrix with A" as its leading k x k
principal submatrix and a; = 0 for every {i,j} € E such that max{i, j} > k. Since any
clique must be contained in L, all completely specified principal submatrices of A must be
principal submatrices of A', hence must be positive definite because A' is G'-partial
positive definite. Thus A is G-partial positive definite. Since G is completable, A has a
positive definite completion whose leading k x k principal submatrix is a positive definite
completion of A". Since A' was chosen arbitrarily, we conclude that G' is completable.

For the converse, suppose G', the graph on L induced by G, is completable. Let A(G)
be a G-partial positive definite matrix. If L = &, let H be any Hermitian completion of
A(G). Then H + xI is positive definite whenever x is greater than the absolute value of the
minimal eigenvalue of H. Hence for such x, H + xI is a positive definite completion of
A(G) which implies that G is completable.

If L # &, we may assume without loss of generality that L = {1,..., k} for some

89




ke {1,..., n} by the permutation similarity argument above. Then the leading k xk
principal submatrix of A(G) must be G'-partial positive definite. Let A' be a positive
definite completion of this leading principal submatrix. Let A be any Hermitian completion

B
of A(G) with A’ as its leading k x k principal submatrix. So A =[ * H:I where H is

B

A B
Hermitian. By Theorem 4.1.5, there exists a positive x such that A(x) = [B* H+ xl] is

positive definite. Since A(x) is a completion of A(G), we conclude that G is completable.

In view of Proposition 4.1.6, we will henceforth assume L = V, i.e., that every vertex

in a graph G has a loop.

Our presentation of the previous results is essentially the same as that in [GISW].
However, in that paper the authors claim in Proposition 1 that the analogue of 4.1.6 is true
for completions of partial positive semidefinite matrices, but that is not entirely true. Here
is a counterexample. Let G and A be as follows:

1

G=

X
and A= 1 |, where x and y denote unspecified entries.

* O =

0
0
1y

Then A is a G-partial positive semidefinite matrix, L = {1, 2}, and the graph on L induced
by G is complete, hence positive semidefinite completable. But A cannot be completed to a

positive semidefinite matrix.
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4.2 Extension of Banded Matrices

4.2.1 Definition. A k-banded matrix A = [a;] satisfies a; = 0 whenever li - jl > k.

This means the middle 2k + 1 diagonal bands in A may have nonzero entries while the rest

of A must be zero:
At Ak O
A= Al Ay kon
L 0 a'n n-k ann B

4.2.2 Definitions. A lower corner k-banded matrix A = [a;] satisfies a;; = 0 whenever
i-j<k. This means the n - k - 1 diagonal bands in the lower left corner of A may have

nonzero entries while the rest of A must be zero:

A = 3x+2.1 O

a3, 4

Similarly, an upper corner k-banded matrix A = [a;] satisfies a;; = 0 whenever j - i <k. The
n -k - 1 diagonal bands in the upper right corner of A may have nonzero entries while the

rest of A must be zero:

Q2 7 Ap

A = an-k—l.n .

0
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Assume henceforth that n and m, 0 <m <n - 1, are fixed. Given an n X n matrix
R =[r;], R, will denote the lower corner m-banded matrix whose diagonal bands in the
lower left corner match those of R, entry for entry. That is, whenever i - j > m, the (i, j)-
entry of R, is r;, and the remaining entries of R are all zero. Similarly, Ry will denote the
upper corner m-banded matrix whose diagonal bands in the upper right corner match those
of R, entry for entry. In other words, whenever j - i > m, the (i, j)-entry of Ry is r;;, and
the remaining entries of Ry, are all zero.

We say A admits a UDL factorization if there exist an upper triangular U, a diagonal D,

and a lower triangular L such that the diagonal entries of U and L are all 1, and A = UDL.

4.2.3 Definitions. Given an m-banded matrix A = [a;], an extension F = [f]of Aisa
matrix where f; = a;; whenever li - jl Sm. A UDL extension is an extension which admits a

UDL factorization.
4.2.4 Notation. Given a matrix A, A(j,..., k) will denote the principal submatrix of A

composed of rows and columns j through k. We sometimes refer to such submatrices as

principal block submatrices.
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4.2.5 Theorem. [DG] LetR = [r;] be an m-banded matrix. Suppose all the following
are nonsingular:

@ RG,...,j+m),j=1,...,n-m (all (m+1)-by-(m+1) principal submatrices
within the middle 2m + 1 diagonal bands of R),

() RG+1,...,j+m),j=1,...,n-m-1 (all m-by-m principal block submatrices
within the middle 2m + 1 diagonal bands
of R, except the leading and the trailing),

and (¢) R(,...,n),j=n-m+1,...,n (all trailing principal submatrices within the
middle 2m + 1 diagonal bands of R of size
m X m or smaller).

Then there exists a UDL extension F of R such that
F=(X.VX,)l,
where X. is lower triangular and m-banded,
X, is upper triangular and m-banded,
V is diagonal and invertible,

and the diagonal entries of X, and X. are all 1.
Furthermore, given oo=o0(j) =j+1forj=1,...,n- 1, and B = B(j) = min{j + m, n} for

j=1,..., n, the entries of X. in the m bands below the diagonal (column by column) are
Xoj r

oj
4.2.6) | i |=-[R(et,...B)] | i | forj=1,.,n-1;

XB-

i} rB'

)
similarly, the entries of X, in the m bands above the diagonal (row by row) are

@27 [%0 - xp|={re - 1p]RO..0)]" forj=1,..n-1;

and the diagonal entries of V are
(4.2.8) v, =([R(j,...,|3)]“) forj=1,..., n.

1
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Proof. Define a lower triangular m-banded matrix Z = [z;] as follows. Letz;=0ifi<jor
if i > j + m; further, for j = 1,..., n, define B = B(j) = min{j + m, n}. Then R(j,..., B)is
invertible by hypothesis (a) or (c), and define column j of Z from the (j, j)-entry through
the (B, j)-entry as

1
Z..
i)
k . -1/0
f=[RG.LGBTT |
Zg; 0
We claim that Z is invertible. Since det(Z) = Hz j» if we can show each z; is nonzero, the
j=1
1
Zy
claim will follow immediately. For j =1, we can block R(l,...,B) = as
Zg, 0
Iy, r',2 [zll]=[1]
r'z, R'22 Z 0]
) Zy
where r,, =[r12 rm], r,=| |, R, =R(2,....B), z,,=| ! |, and Ois the
Iy, 2,

(B - 1) x 1 zero vector.
Hence r,z, + r'IZZ'Zl =1 1)
and r'2|z” + R'zzzlzl =0. )]

Since R'22 is nonsingular by hypothesis (b), equation (2) above is equivalent to
1 _l L}
Zy = ‘(Rzz) IyZy.
Substituting this in (1) we get

L} —1 1]
r,z, + r,z[—(Rzz) rz,z,,:l =1, ie.,

1 _1 *
[r,, - r,z(Rn) Ty ]zn =1 which implies z,; # 0.
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Now for any j, we can block R(j,..., B) as l:r,” r’;z ],

I Ry
Tiarj '
where I =[rj'j+, rm], Iy = : |,and R,, =R(j+1,...,B).
Ty
1
Z..
’1 o . 1
Then R(j,....B)| i |=| . | becomes [r,” ' ][ .”]:[ ],
: r,. R, | 2 0
zy 0 2j 22
Zju1
where z'2j =| : andOisthe (B -j)x 1 zero vector.
Zp;

Reasoning as before, using hypothesis (b) or (c), we get

' v\l '
z,;=-{Ry LhiZjj
]

N I
and [rjj - rJZ(Rzz) fzj]zjj =1 which implies z; # 0.

Thus we have shown that Z is nonsingular. In fact, we have shown a more general resuit:

1
z, 0

Forany ke N,if | : |=A . b and A and A(2,..., k) are nonsingular, then z, # 0. *
z, 0

Now define an upper triangular m-banded matrix W = [w;] as follows. Let w; =0 if
i>jori<j- m; further, fori=1,..., n, define Y= Y(i) = min{i + m, n}. ThenR(,..., )
is invertible by hypothesis (a) or (c), and define row i of W from the (i, i)-entry through the
(i, y)-entry as

[wi - w,]=[t 0 - OJRG,... ]

Then W is invertible since each w; #0. To see this, note that

[wy - wiy]t=[[R(i,...,'y)]—l]t[l 0 - 0], ie.,
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1
w

" = [[R(i,...,'y)]_I]t 0 . Thus by (*) above, w;; # 0.
W, 0
Observe that (RZ), Z! is a lower corner m-banded matrix. (This follows at once
from the fact that (RZ), is lower corner m-banded and Z-! is lower triangular.) Similarly,
w! (WR),, is an upper corner m-banded matrix.
Define an extension F = [f;] of Rby F=F_+R +F,
where F| = —(RZ),_Z'l and F, = —W"I(WR)U.
Note that f;; = r;; when |i - jl < m, as required for an extension. We will show that F admits
a UDL factorization.
First note that (FUZ)L = 0 since Fy is upper corner m-banded and Z is lower triangular
and m-banded. So
(FZ), =((F. +R+F,)Z), =(F.Z+RZ+F,Z),
=(F.Z), +(RZ), +(FyZ),
=(-(r2),27'Z) +(RZ), +0

= (_(RZ)L)L + (RZ)L

=-(RZ)_ +(RZ),
=0.
We also have
(WF), = (W(F_ +R+Fy)), =(WF_ + WR+WF,),
=(WF_), +(WR), +(WFy),

=0+(WR), +(W(-W(WR),))_
= (WR), +(=(WR), ),
=(WR), —(WR),

=0.
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We claim that FZ is upper triangular with 1's on the diagonal. Since (FZ), = 0, we

need only show that the (i, j)-entry of FZ, (FZ),, is zero whenever j + 1 <i < B, where

B = min{j + m, n}, i.e., FZ is zero in the diagonal bands below the main diagonal.

First note that forj+ 1 <i< B,

B
(FZ); = Zf iwZi since Z is lower triangular m-banded
k=j

8
= z:rikzkj since [fij fiﬂ]=[rij riﬁ].
k=j
1
Recall that R(j,....B)| : |=|. |foreachj=1,...,n (from how we defined Z), i.e.,
Zy; 0
1
Iy I z.jj 0
o TeliZ] g

B
Hence for each j = 1,..., n, we have 1= Tzt e+ 2 = kzrj"z"j = (FZ)ij from above;
=)

thus we have shown that each diagonal entry of FZ is 1.
In addition, foreachj=1,..., n - 1, we have

B
O=r 25+ T jnZin e+, 525 = Erjﬂ.kzkj =(FZ),,,; from above.
k=j

Thus (FZ); =0 wheni-j=1.
Similarly, for eachj=1,...,n - 2, we have
B
0= TjnZ;t LivgjaZjatee .-§-rj+2$zBj = ern.kzkj = (FZ)J_“'j from above.
k=j
Hence (FZ); = O wheni-j=2.
Continuing in the same way, it follows that (FZ);; = 0 whenever 1 <i - j £ m which,

together with (FZ), = 0,imply that FZ is upper triangular.
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A similar argument can be applied to show that WF is lower triangular with 1's on the

diagonal; we supply the following details. Since (WF), = 0, we only need to show that
(WF); =0 whenever i + 1 <j <+, where Y= min{i + m, n}, i.e., WF is zero in the
diagonal bands above the main diagonal.

Fori+ 1<j<Y, we have

b
(WF); =Y w,f,  since W is upper triangular m-banded

k=i

Y
=2‘wikrkj since [fij f’d]=[rij rﬁ].
k=i

Recall that [wii wiy]R(i,...,'y)=[l 0 --- O] foreachi=1,..., n(from how we
defined W), i.e.,
Ly o0 Ty
[wii ceowp bt ot =1 0 -+ 0]
r'Yi cee rw

Hence for eachi = 1,..., n, we have

¥
I=wr;+ 4w, r, = zwikrki = (WF), from above;
k=i

so every diagonal entry of WF is 1.
In addition, for eachi=1,...,n - 1, we have
¥
0=w;r; ;. + WiistTivnin o tWy Ly = Zwikrk,m = (WF), ;,, from above.
k=i
Thus (WF); =0 whenj-i=1.

Similarly, foreachi=1,...,n - 2, we have
¥
O=wyr ., + Wiinliaiae Wl o = Zwikrk,i+2 = (WF),;,, from above.
k=i
Hence (WF);; =0 when j-i=2.

Continuing in the same way, it follows that (WF);; = 0 whenever 1 <j - i < m which

»

together with (WF),, =0, imply that WF is lower triangular.
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LetU=FZ and L = WF. Then U and L are invertible since each has only 1's on its
diagonal, and LZ = WFZ = WU. Since L and Z are both lower triangular, so is L.Z; also
since W and U are both upper triangular, so is WU. Therefore, LZ = WFZ = WU is
diagonal and also invertible since L and Z are both invertible. Furthermore,

F=W-1(WU)Z-1
is invertible and

Fl=ZWU)-lw

=X.VX,,
where

X. =Zdiag(1/zy,,..., 1/2,,) is lower triangular m-banded with 1's on the diagonal,

X, = diag(1/wy,,..., 1/w,,)W is upper triangular m-banded with 1's on the diagonal,
and V = diag(z,,,..., Z,)(WU) ldiag(w,,,..., W,,) is diagonal and invertible.

To complete the proof, we verify the formulas (4.2.6) - (4.2.8). First note that
F = (X.VX,)-limplies FX.V = (X,)"l. Writing out the jth column of this identity from the
(4, j)-entry through the (B, j)-entry, we get

1
X; o

(**) F(j,....B) : |vy=|. | wherep =B()=min{j+ m, n} and x,; is the (k, j)-entry
Xgi 0

of X.. The right-hand side in (**) follows because X, is upper triangular with 1's on the

diagonal; hence (X,)-! must have the same properties. Since F is an extension of R and

B - j <m, F(j...., B) = R(...., B); thus

1
X..
i} . -1 0
vy =[RGyeoP)] |, |
Xp; Y

Then since x; = 1, it follows that vj is the (1, 1)-entry of [R( j,...,[?))]"l which proves
(4.2.8).
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Since V is invertible and diagonal, its diagonal entries must all be nonzero; hence (**)

also implies
fo - fop | %5 [O
P : i |=|:|forj=1,...,n-1wherea=0()=j+1.
fy; fos X | LO

Then since x; = 1, we have
O0="f+ 1 Xot -+ Xy

= Ty + TyoXoH -+ X, since F is an extension of R and B - o< m.

Xoj
Thus [rtm ruB] N s
Xpj
Similarly, fork € {a,..., B}, we have
O=f;+ 1, Xg5+-+f 8 Xp;

= rkj + rmxuj+---+rk5xﬁj.

Xqj
Thus [r,, -~ T : |=-r, foreachke {a,...,B}andj=1,...,n- 1.
kot kB K
X5
xuj rmj
Hence R(a.,...,B)] : |=—| ! |foreachj=1,...,n-1 which is equivalent to (4.2.6).
Xp; Tgi

Finally, a similar argument can be applied to verify (4.2.7); we supply the following
details. First note that F = (X-VX,)-1 implies VX,F = (X-)-l. Writing out the jth row of
this identity from the (j, j)-entry through the (j, B)-entry, we get
(FH%) vﬂ[xjj ij]F(j,...,B) =[1 0 - 0],
where B = B(j) = min{j + m, n} and x is the (j, k)-entry of X,. The right-hand side in
(***) follows because X. is lower triangular with 1's on the diagonal; hence (X.)-1 has the

same properties. Since the diagonal entries of V are nonzero, (***) implies
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fju ij
[x; - xg] ¢ . i|=[0 -+ O]forj=1,..n-1whereo=o()=j+1.
fﬁu

fBﬁ

Fork € {a,..., B}, we have
0= fjk +xjafo.k+"'+xjﬁfpk since x; = 1

=Tj + Xjol g+ o +X g since F is an extension of R and B - o <m.

Tax
Thus -1, =[xja xjﬂ] : |foreachk e {a,...,B}andj=1,...,n-1.
Tg
Hence —-[rjcx rjﬁ]=[xjcl ij]R(oc,...,B) foreachj=1,...,n-1whichis

equivalent to (4.2.7).

4.2.9 Theorem. [DG] LetR =[r;] be an m-banded matrix. Then the following are
equivalent:

(1) R admits a positive definite UDL extension F.

(2) Each of the principal submatrices R(j,..., j + m), j=1,..., n - m, is positive
definite. (That is, any principal (m + 1)-by-(m + 1) submatrix contained within the middle
2m + 1 diagonal bands of R is positive definite.)

Proof. (1) = (2) Suppose R admits a positive definite UDL extension F. Then for each
j=1,...,n-m,R(,...,j+m)=F(,..., j + m) which is positive definite since it is a
principal submatrix of the positive definite F.

(2) = (1) Suppose foreachj=1,...,n-m, R(j,..., j + m) is positive definite. Then
each principal submatrix of each R(j,..., j + m) is positive definite, hence nonsingular.
Thus conditions (a), (b), and (c) of Theorem 4.2.5 are satisfied, and so there exists a UDL
extension F of R with F-1 = X_VX,, where X_, X, and V are as described in

Theorem 4.2.5. We will show that F-1 is positive definite which implies that F is.
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To see that F-! is Hermitian, let = a((j) =j+ 1 forj=1,...,n- 1, and B = B(j) =
min{j+m,n} forj=1,...,n. Then foreachj=1,...,n- 1, R(c,..., B) is one of the
matrices assumed to be positive definite or is a principal submatrix of one of these matrices.
Hence R(c,..., B) is positive definite which implies [R(c,..., B)]-! is positive definite.

Also by assumption, R is Hermitian within its middle 2m + 1 diagonal bands, i.e., E =T

foreveryk € {a,..., B} and every j € {1,...,n-1)}). Thus we have foreachj=1,...,n-1,

Xgj " . _ I
3 rpj]([R(a,---,B)]") by (4.2.6)
Xg;
=—[rjul er][R(oc,...,B)]_l from above
=[X,-u xja] by (4.2.7).

Therefore X.* = X, and so X, = X.. Now we have

FH* = (X-VK)* =X VX

=X_VX, from above
=F-1,
Hence F-! is Hermitian.

To see that F-1 is positive definite, we first show that V is positive definite. For each
j=1,...,n, R(...., B) is one of the matrices assumed to be positive definite or is a
principal submatrix of one of these matrices. Hence R(j,..., B) is positive definite which
implies [R(,..., B)]1 is positive definite. Thus each diagonal entry of [R(j,..., B)I-! is
positive which implies each diagonal entry of V must be positive by (4.2.8). Hence since
V is diagonal, V is positive definite.

Now let y # 6. Since X, is nonsingular, x=X,y #6. So

y'Fly =y*X.VX,y
=x"Vx

>0 since V is positive definite.

102



Thus F-1 is positive definite which implies F is positive definite.

Notice the preceding theorem can be restated in terms of partial matrices.

4.2.10 Corollary. [GISW] Fix an integerm,0<m<n- 1. Suppose A = [a;] is a
partial matrix in which a; is specified if and only if li - jl < m (i.e., just the middle 2m + 1
diagonal bands in A are specified). Then the following are equivalent:

(1) There exists a positive definite completion of A, i.e.,
{B: B is positive definite and b; = a; forall li - jl < m} # Q.

(2) Any principal (m + 1)-by-(m + 1) submatrix contained within the middle 2m + 1
diagonal bands of A is positive definite (i.e., any completely specified (m + 1)-by-(m + 1)

principal submatrix of A is positive definite).

Note that (2) is equivalent to

2" Every completely specified principal submatrix of A is positive definite.
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4.3 Band Graphs

4.3.1 Definitions. Given a graph G = (V, E), an ordering of V is a bijection

c: {1,2,...,n} = V. We sometimes indicate an ordering by using the notation

V= {x;}i,. If Visordered by G, then G = (V, E, 0) is an ordered graph associated
with G.

4.3.2 Definition. A graph G = (V, E) is called a band graph if there exists an ordering
¢ of V and an integer m, 0 < m < n - 1, such that

{x,y) € Eifand only if lo-1(x) - o-1(y)| S m.

Notice that if G is a band graph as above, then any G-partial matrix has just its middle

2m + 1 diagonal bands specified. Hence we have the following:

4.3.3 Corcllary. [GISW] If G is a band graph, then G is completable.

Proof. Suppose G is a band graph and let A(G) be a G-partial positive definite matrix.
Then every completely specified principal submatrix of A(G) is positive definite, i.e., (2)
holds in Corollary 4.2.10. Thus by Corollary 4.2.10, A(G) has a positive definite

completion which implies G is completable.
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4.4 Perfect Elimination Orderings and Chordality

4.4.1 Definitions. Given a graph G = (V, E) and a vertex x € V, the set

Adj(x) = {y € V: {x,y]} € E} is the set of vertices adjacent to x. For distinct vertices
X,y € V, achain from x to y (of length m) is an ordered set of distinct vertices

W = [P}, P2s+-+> Pms+1] Where p; = x and py,,; =y, such that p;,, € Adj(p;) fori=1,...,m.
Similarly, a cycle (of length m) is an ordered set L = [py, P2,--., Pm» P1] Such that

[P1,..., Pm} is a chain and p; € Adj(p.). A graph G is connected if for each pair of distinct

vertices X, y € V, there is a chain from x to y.

4.4.2 Definition. A graph G is chordal if for every cycle p = [p,.-., Pm» P1] Of length
m 2 4, there is an edge of G joining two nonconsecutive vertices of |i; such an edge is
called a chord of the cycle.

Chordal graphs have also been called triangulated in [Ros] and [LRT].

The main result of this chapter will be proved in section 4.5 and says that if Gis a
graph which contains all possible loops, then G is completable if and only if G is chordal.
Notice that this is an extension of Corollary 4.3.3 since band graphs are chordal.

To prove this major result requires a good deal of preliminary work which we outline
here. It turns out that given any chordal graph G, it is possible to add one edge at a time to
get a sequence of chordal graphs culminating with the complete graph. Given any G-partial
positive definite matrix, this sequence of chordal graphs provides an order for specifying
entries in the matrix so we end up with a positive definite completion.

However, it is also possible to add edges so that one of the graphs in the sequence is
not chordal. Therefore, it is necessary to add edges carefully to get a sequence of chordal

graphs. In section 4.7, we provide an algorithm for doing this which relies on a special
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ordering of the vertices called a perfect elimination ordering. It turns out that a graph has a
perfect elimination ordering if and only if it is chordal, which provides the foundation for
proving that the sequence of chordal graphs exists. The remainder of this section is

devoted to establishing the perfect elimination ordering-chordal equivalence.

4.4.3 Definitions. A separator of a connected graph G = (V, E) is a subset S of V
such that the induced subgraph G(V - S) consists of two or more disjoint connected
subgraphs of G, say C; = (V;, E;). We will call such C; components of G(V - S). The
leaves of G with respect to S are the induced subgraphs G(S U V;). A minimal separator is
a separator no subset of which is also a separator. Givena,b e V withag Adjb),

an a, b separator is a separator S such that aand b are in different components of G(V - S),

say C, and Cy, respectively. A separation clique is a separator which is also a clique.

Note that a minimal separator is a minimal a, b separator for some a,b e V, buta

minimal a, b separator is not, in general, a minimal separator.

4.4.4 Definitions. Given an ordered graph G4 = (V, E, 6) and a vertex x € V, the set
of vertices monotonely adjacent to x is MAdj(x) = Adj(x) N {z € V: o'1(z) > 6-1(x)}. The
deficiency of x, D(x), is the set of all pairs from Adj(x) which are not themselves adjacent,
e, D(x) = {{y, z}: y,ze Adj(x) andy ¢ Adj(z)}. Note that D(x) is a set of edges
missing from G. Similarly, the monotone deficiency of x, MD(x), is the set

MD(x) = {{y, z}: y,z € MAdj(x) and y ¢ Adj(z)}. Note that MD(x) < D(x).
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4.4.5 Definition. Given a vertex y of a graph G = (V, E), the graph Gy obtained from
G by

(1) deleting y and its incident edges
and (2) adding edges so that all vertices in the set Adj(y) are adjacent to each other

is the y-elimination graph of G. Thus
Gy=(V-{y},E(V - {y}) v D).

4.4.6 Lemma. If G is connected, then Gy is connected.

Proof. Letx,w € V - {y}. Then thereis a chain [x, v,,..., v,, W] in G which either
contains y or does not. (Case 1) If the chain does not contain y, then v; #y fori=1,..., k,
and so [x, vy,..., Vi, W] is also a chain in Gy. (Case 2) If the chain contains y, theny = v;
for some j € {1,..., k}; and because v;,, v;,; € Adj(y), { Vi.1» Vis1} is an edge in Gy. Thus
[X,...s Vi1s Viui,..., W] is a chain in Gy. Hence in each case, we have shown that Gy
contains a chain from x to w. Therefore, since x and w were chosen arbitrarily, Gy is

connected.

4.4.7 Definition. For an ordered graph Gg = (V, E, ©),

the order sequence of elimination graphs Gi,..., Gy. is defined recursively by
G, = Gy, and
G,=(G,,), fori=2,.,n-1.

4.4.8 Definitions. The elimination process on an ordered graph Gg = (V, E, 0) is the
ordered set [Gg = Go, Gi,..., Gn.1]. An elimination process is perfect if

G, = GO(V— L'j{xj}) fori=1,...,n- 1. Insuch a case, we will also refer to ¢ as a
j=1

perfect elimination ordering.
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It may be helpful at this point to quickly review the various notations on G that we
have introduced:

* Ggis a graph whose vertices are ordered by ¢

. ka is the x,-elimination graph of G; see 4.4.5

* G;is the ith element of the order sequence of elimination graphs for Gg; see 4.4.7.
Note that G; = G,(i when i = 1 but not otherwise.

The following lemma brings together observations from [LRT] and [Ros].

4.4.9 Lemma. Given an ordered graph G = (V, E, ©), the following are equivalent:

(1) ois aperfect elimination ordering.

2) Dx)=DinGjyfori=1,...,n-1.

(3) MD(x) =D foreachx e V.

(4) Foreachx e V,if w, z e MAdj(x), then w € Adj(z) or w = z. This will be
called the monotone transitive property, and any graph with this property will be called
monotone transitive.

Proof. (1) => (2) Suppose G is a perfect elimination ordering. Then
le =G, = GO(V —{x,}).
But by definition, le =(V-{x,}, E(V - {x;}) U D(x,)) which means D(x,) = @ in G.

Similarly, G, = GO(V —g{xj}) fori=1,.,n-1. ButG,= (Gi_1 )Xi by definition,
i-1

which equals (GO(V - Ufx j})) since G is perfect. But again by definition, this is just
j=1 X;

(V - U{xj}, E(V - U{x j}) v D(xi)) where D(x;) denotes the deficiency of x; in G;..
j=1 j=t
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Thus, fori=1,...,n- 1, we have

G, = GO(V - LiJ{xj})= (v - Utx,), E(V - O{x,.})u D(xi)) which implies that
=) Pt =l

D(x;) =D in G;.;.

(2)= (3) Suppose D(x,)=DinG;;fori=1,...,n-1,andletve V. Ifvisx,,
then by its definition, MD(v) is empty. Otherwise, v=x;forsomeje {1,...,n-1}; and
since MD(x;) = D(x;) in G;j.;, MD(v) = MD(x;) = &.

(3) = (4) Suppose MD(v) = foreachve V. Letx € V and w, z e MAdj(x).
Then since MD(x) = &, w € Adj(z) or w = z by the definition of monotone deficiency.

(4) = (1) Suppose for each x € V, if w, z € MAdj(x), then w € Adj(z) orw =z.

We use induction to show ¢ is a perfect elimination ordering. First, by our assumption and
the definition of monotone deficiency, MD(x,) = &. Then since MD(x,) = D(x;) in G;_;,
we have D(x,) = @ in Go. Thus G, =(V —{x,}, B(V-{x,) UD(x,)) = G (V - {x,}).

Letk - 1 be a positive integer less than n - 1 such that G, = GO(V - LlJ{xj}) for
j=1

k-1
i=1,...,k-1. Then G, = (Gk_l )x = (GO(V— U{xj}D by the inductive hypothesis,
k j=1 x

k k
which, by definition, equals (V - Uix;} E(V - U{xj}) V) D(xk)) where D(x,) denotes
j=1 j:]

the deficiency of x, in Gk.;. But by our assumption and the definition of monotone
deficiency, MD(x,) = & which implies that D(x,) = & in Gy_;. Hence
k i
G, = GO(V— U{xj}). Thus we have shown that G, = GO(V— U{xj}) fori=1,...,n-1,
j=1 j=1

ie., o is a perfect elimination ordering.

Recall that our immediate goal is to show that a graph G has a perfect elimination
ordering if and only if G is chordal. The following theorem together with Lermnma 4.4.9

establish this for a connected graph.
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4.4.10 Theorem. [Ros] For a connected graph G = (V, E), the following statements
are equivalent:
(1) There exists an ordering ¢ of V such that G4 = (V, E, &) is monotone
transitive.
(2) The graph G is chordal.
(3) Foreacha,be V withag¢ Adj(b), every minimal a, b separator of G is a

clique.
We will prove Theorem 4.4.10 in stages, using a series of lemmas.

4.4.11 Lemma. [Ros] A monotone transitive graph is chordal.
Proof. Let G be a monotone transitive graph and let p be any cycle of length £ > 4. Let
p* € W be the vertex such that 6~/ (p*) = rm:) o”'(p). Since p* is adjacent to two

pe
nonconsecutive vertices in the cycle p (because [ 2 4), and 6! maps each of these to
integers greater than 6-1(p*), both are in MAdj(p*). Since G4 is monotone transitive, these

two vertices must be adjacent to one another which means y has a chord.

4.4.12 Lemma. [Ros] In a connected chordal graph G = (V, E), for each a, b € V with
a & Adj(b), every minimal a, b separator of G is a clique.

Proof. Let G = (V, E) be connected and chordal, and let a, b € V with ag Adj(b). Let S
be a minimal a, b separator of G, and let C, and Cy, be the components of G(V - S)

containing a and b, respectively. If IS|= 1, we are done. (Recall we have assumed that our

graphs contain all possible loops.) Otherwise, since S is minimal, each q € S is adjacent to

some vertex in C, and some vertex in C,. (For if not, then S - q would be an a, b separator

of G.) Letx,y e S and let i, be a shortest chain of the type [x, Ci1s Cizoeees Cpp s y]

where each c;; € C, and p, = 1. Similarly, let p, be a shortest chain of the type
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[x, Cats €3-005 Cp s y] where each ¢ € Cpand p, 2 1. The cycle

[x, Citseees Crps Vs Coposeves Cops x] has length = 4 and the only possible chord is {x, y}
since 1, and W, were chosen to be shortest. Since x and y were chosen arbitrarily, we have

shown that S is a clique.

The following three lemmas build one on the next and culminate in establishing the
integral part of proving (3) = (1) in Theorem 4.4.10. It appears necessary to involve
significant insight and a good number of steps to prove that a graph has a perfect
elimination ordering when starting without an ordering. While it may not be clear from
their statements that the lemmas build one on the next, the proofs will demonstrate that they

do in small but significant ways.

4.4.13 Lemma. [Ros] Let G = (V, E) be a connected graph with separation clique S.
Let G(V-8)= UCi where m 2 2, C; = (V;, E;) is the ith component of G(V - S),

i=l

Vin V= fori#j, and no two vertices in different components are adjacent to each
other. Let L; = G(S U Vj) be the leaves of G with respect to S.

(i) Let Sq be a separator of an L, for somer € {1,..., m}. Then Sy is a separator
of G.

(i) Furthermore, if a,b € L; with a¢ Adj(b), and Sy is a minimal a, b separator of
L., then Sp is a minimal a, b separator of G.
Proof of (i). Suppose Sy is a separator of an L, for some r € {1,..., m}. Then
SocS U V. LetDy, j = 1,..., p, be the components of L((S U V) - Sg). Since the
vertices of S are among those of Ly, and S is a clique, the vertices of S must all be in

So U V(D) for some fixed k € {1,..., p}, where V(Dy) denotes the vertices of Dy.
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Since p22, let x € V(D) and lety € V(Dy), t #k. We claim that any chain from y to
X must contain a vertex of Sg. Any chain from y to x which leaves L, contains a vertex of
S because y € V, and S separates V; from the other vertices of G. Consider the part of
such a chain from y to S and lying in L;. Since S ¢ Sg L V(Dx), the chain must contain a
vertex of Sg or a vertex of V(D). In either case, because Sy separates y from V(Dy) in L;,
the chain must include a vertex of Sy. Thus we have shown that any chain from y to x
which leaves L; contains a vertex of Sg. And since any chain from y to x lying in L;
contains a vertex of Sp, we conclude that any chain from y to x includes a vertex of Sg.
This implies that G(V - Sp) is not connected, i.e., Sg is a separator of G.

Proof of (ii). Suppose a,be L,forsomere {1,..., m} witha ¢ Adj(b), and
suppose that Sg is a minimal a, b separator of L;. Let D; be defined as in part (i) and
suppose a € V(D) and b e V(Dy). Since S < So U V(Dy) for some fixedk € {1,..., p},
and p 2 2, we may assume that k # 2.

We claim that Sy is an a, b separator of G. Consider any chain in G fromatob. We
will show that it includes a vertex of Sy. If the chain lies entirely in L;, then it must contain
a vertex of Sg because Sy separates a from b in L;. Otherwise, some vertex of the chain is
notin L;. Then by the argument from part (i), the chain must contain a vertex of Sg. Thus
we have shown that any chain in G from a to b includes a vertex of Sy which implies Sg is
an a, b separator of G.

Finally Sg is a minimal a, b separator of G since any a, b separator S; < Sg of G is an

a, b separator of L, and Sy is a minimal such separator of L.,.
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4.4.14 Lemma. [Ros] Let G = (V, E) be a connected graph such that

foreacha,be V witha ¢ Adj(b),
every minimal a, b separator of G is a clique. (4.4.15)

Then either V is a clique or given any clique C c V, there exists a vertex x ¢ C such that
D(x) = D (in G).
Proof. The proof is by induction on the number of vertices, VI, and the case IVl =1 is
clear. Suppose the Lemma is true for a graph which has at most k vertices. Let G = (V, E)
be a graph with k + 1 vertices which satisfies the hypotheses of the Lemma, and let C be
any clique in G. (A clique will always exist because G contains all possible loops.) We
need to prove that V is a clique or there exists a vertex x ¢ C such that D(x) = & in G.
Suppose V is not a clique. Leta,be V withag Adj(b). Let C; be a minimal a, b
separator of G. Then by (4.4.15), C; is a clique. LetD,, Dy and L,, Ly, be the
corresponding components of G(V - Cy) and leaves of G with respect to C; containing
aand b, respectively. Since C is a clique, the vertices of C - C; (if any) can be in at most
one component of G(V - C;). Suppose such vertices are not in V(Dy), where V(Dy)

denotes the vertices of Dy, (see picture).

Ly
| i
©a \ / Dy
Da . G(Cl) —___ | eb
| ]
L,
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Let W be the set of vertices of L, Then IWI<k because a € V(D,) which implies
a¢ V(Lp). We claim that L, satisfies the hypotheses of this Lemma. It is connected
because W = C; U V(Dy), Dy, is connected, and each vertex in C, is adjacent to a vertex in
Dy, since C; is minimal. Also for eachc,de V(L) withc ¢ Adj(d), any minimal ¢, d
separator of L, is a clique because it is also a minimal c, d separator of G by
Lemma 4.4.13(ii), hence is a clique by (4.4.15). Thus we have shown that L, satisfies
the hypotheses of this Lemma and has at most k vertices.

Since C; is a clique in G and C; € V(Ly), C; is a clique in L. Thus the inductive
hypothesis implies that either W is a clique or there exists a vertex x € W - C; such that
D(x) =@ in Lp. If W is a clique, we have D(b)= @D inL,andbe W - C; (because
b e V(Dy)). Hence whether W is a clique or not, there exists a vertex x € W - C 1 with
D(x) =D in L,

Since x € W -Cjand W = C; U V(Dy), x € V(D). This means x is not adjacent to
any vertex of V - V(L) because such a vertex would be in a different component of
G(V - Cy). Thus D(x) = @ in G since D(x) = @ in Ly,. Since x ¢ C; and we assumed the

vertices of C - Cy were not in V(Dy,), we conclude that x ¢ C.

4.4.16 Lemma. [Ros] Let G = (V, E) be a connected graph such that

foreacha,be V withag Adj(b),
every minimal a, b separator of G is a clique. (4.4.17)

Then there exists an ordering & of V such that for all x € V, MD(x) = & (in Gg).

Proof. The proof is by induction on the number of vertices, IVI, and the case [VI=1 is true
vacuously. Suppose the Lemma is true for a graph which has k vertices. Let G = V,E)
be a graph with k + 1 vertices satisfying the hypotheses of the Lemma. If G is complete,
note that for any ordering ¢ of V and any x € V, MD(x) =@ in G5. So suppose G is not

complete.
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By Lemma 4.4.14 and hypothesis (4.4.17), there exists a vertex x; with D(x,) =& in
G. Let G be the x,-elimination graph. It is connected by Lemma 4.4.6. We claim that G
satisfies hypothesis (4.4.17). Since D(x;) = @ in G, Adj(x,) is a clique in G. Thus
Adj(x;) LU {x,} is a clique in G which implies V - (Adj(x,) U {x,}) # & since V is not a
clique. So Adj(x,) separates x, from each vertex in V - (Adj(x,) U {x;}). Hence Adj(x,) is

a separation clique in G (see picture).

Xy

G(Adj(x,))

G(V - (Adj(x)) © {x:}))

Since D(x;) =@ in G, Gy =(V - {x;}, E(V - {X,])). So the leaves of G with respect to
Adj(x,) are G(Adj(x,) U {x,}) and G,. Thus, if a and b aré vertices in G; witha ¢ Adj(b)
in Gy, then any minimal a, b separator of G is also a minimal a, b separator of G by
Lemma 4.4.13(ii), hence is a clique by (4.4.17). Thus G; satisfies hypothesis (4.4.17)
and has k vertices. So by the inductive hypothesis, there exists an ordering T of the
vertices of Gp such that forallx € V - {x,}, MD(x) = @ (in (G))1)- Let 1(i) = xyy, for
i=1,...,k

Now in G choose the ordering 6(i) =1(i- 1) = x;fori=2,...,k + 1 and o(l) =x,.
Since D(x,) = @ in G, MD(x,) = @ in G4. Furthermore, since ¢ preserves the order of the

vertices established by 1, and G; = G(V - {x,}), and for eachx € V - {x,}, MD(x) = & in
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(G,)y, it follows that MD(x;) = & in G for i = 2,..., k + 1. Thus we have found an

ordering G of the vertices of G such that for all x € V, MD(x) = & in Gg.

Proof of Theorem 4.4.10. (1) = (2) by Lemma 4.4.11; (2) = (3) by Lemma 4.4.12;
and (3) = (1) by Lemma 4.4.16 and Lemma 4.4.9.

4.4.18 Corollary. A graph G has a perfect elimination ordering if and only if G is
chordal.

Proof. If G is connected, this corollary follows at once from Theorem 4.4.10 and
Lemma 4.4.9.

Otherwise, G has two or more components. If G is chordal, then each component is
chordal which implies each component has a perfect elimination ordering from above. If
we sequentially list the vertices of each component according to its perfect elimination
ordering, then any concatenation of these lists defines a perfect elimination ordering of the
vertices of G.

Conversely, suppose G has a perfect elimination ordering 6. Then G4 is monotone
transitive. Since monotone transitivity is passed on from ordered graphs to subgraphs
inheriting the same ordering, if we sequentially list the vertices in each component
according to their order in o, this defines a perfect elimination ordering for each component
by Lemma 4.4.9. Thus by the first part of this proof, each component is chordal which

implies G is chordal since any cycle must be contained within a single component.
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4.5 Completable Graphs and Chordality

In this section, we will prove the following major result.

4.5.1 Theorem. [GISW] Let G be a graph which contains all possible loops.
Then G is completable if and only if G is chordal.

From section 4.4, we know chordal graphs are exactly those graphs which have
perfect elimination orderings. Here we show that given any chordal graph G, it is possible
to add one edge at a time to get a sequence of chordal graphs culminating with the complete
graph. The following four lemmas provide the foundation for this result. As discussed
toward the beginning of section 4.4, we will use the sequence of chordal graphs to
establish an order for specifying entries in a G-partial positive definite matrix, and will
show that numbers can always be found to substitute into the unspecified positions so that

the completion is positive definite.

4.5.2 Lemma. [LRT] Let ¢ be a perfect elimination ordering of a chordal graph
G=(V,E),andlet x € V. Then ¢ is also a perfect elimination ordering of
G'=(V, Eu D®x)).
Proof. Consider the ordering 6 on G'. To see that this is a perfect elimination ordering of
G', we will show G'G is monotone transitive. Lety € V and suppose w, z € MAdj(y) in
G'0 with w # z. We will now show that {w, z} € E U D(x).

There are three cases. (Case 1) Suppose {w, y}, {z,y} € E. Then w, ze€ MAdj(y)
in Gg, and since G is perfect in G, G4 is monotone transitive. Thus w € Adj(z) in G, i.e.,

{w,z} € E.
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(Case 2) Suppose {w, y}, {z,y} € D(x). Thenw, z € Adj(x) in G which implies
{w,z} € Eor {w, z} € D(X).

(Case 3) Suppose without loss of generality that {w,y} € E and {z, y} € D(x). Then
z,y € Adj(x)inG and {z,y} ¢ E. If w=x, then {w, z} = {x, z} € E since z € Adj(x)
in G. So suppose w # x. We will show {w, x} € E which, together with the fact that
{z,x} € E, imply {w, z} € E U D(x).

We claim first that x € MAdj(y) in Gg. Since {x, y} € E by assumption, we need
only show 6-1(x) > 6-1(y). Suppose on the contrary that 6-1(x) < 6-1(y). Since
z € MAdj(y) in G by hypothesis, 6-1(z) > 6-1(y). So 6-1(z) > 5-1(x). Since we know
z € Adj(x) in G, it follows that z € MAdj(x) in G5. So we have y, z € MAdj(x) in Gg,
and y # z by their definitions. Since ¢ is perfect in G, G is monotone transitive. So
y € Adj(z) in G, i.e., {z, y} € E which contradicts the fact that {z, y} ¢ E. Therefore, we
conclude that 6-1(x) > 6-1(y) and x € MAdj(y) in G.

Now we have x € MAdj(y) in Gy, and by assumption, w € MAdj(y) in G'o (and
hence in G4 because {w, y} € E) and w # x. Thus since ¢ is perfect in G, Gg is
monotone transitive; so w € Adj(x) in G, i.e., {w, x} € E. Finally, since we also know

{z,x} € E, we must have {w, z} € E or {w, z} € D(x).

4.5.3 Lemma. [LRT] If G = (V, E) is chordal and x € V, then the elimination graph

Gy, is chordal.

Proof. Let G = (V, E) be chordal and let x € V. Then by Corollary 4.4.18 and Lemma
4.5.2,G'=(V, E U D(x)) is chordal. The elimination graph Gy is equal to

(V- {x}, E(V - {x}) U D(x)) which is obtained from G' by eliminating x and its incident
edges. Suppose Gy is not chordal. Then it contains a nonchorded cycle [ of length > 4.

Since x ¢ W, and the edges of G' are just those of G, together with any edges incident to x
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(in G), it has no chord in G'. This contradicts the fact that G' is chordal. Hence we

conclude that G, is chordal.

4.5.4 Lemma. [LRT] Let G = (V, E) be a chordal graph, and let x be any vertex such

that D(x) = &. Then G has a perfect elimination ordering ¢ with (1) = x.

Proof. Let IVl =n. By Corollary 4.4.18, there exists a perfect elimination ordering T of V,
say T(k) = x for some k € {1,..., n} and 1(i) = x; fori # k. Ifk = 1, we are done.
Otherwise, by Lemma 4.4.9, G, is monotone transitive; so for each v e V, if

w,y € MAdj(v) in G., then w € Adj(y)orw =y.

Now define a new ordering o by o(1) = x, 6(i) = x;, for 2 <i <k, and 6(i) = x; for
i>k. Foreachve V- {x},if w,y € MAdj(v) in G, then w, y € MAdj(v) in G; hence
we still have w € Adj(y) orw =y. If w, y € MAdj(x) in Gg, then w, y € Adj(x); and
since D(x) = &, we must have w € Adj(y) or w =y. Hence G4 is monotone transitive; so

G is another perfect elimination ordering of V.

4.5.5 Lemma. [LRT] Let G = (V, E) be a chordal graph. Suppose F is another set of
edgessuchthat F# &, ENF=, and G' = (V, E U F) is also chordal. Then there exists

some f € Fsuchthat G'- f=(V,EUF - {f}) is chordal.

Proof. The proof is by induction on n = IVI, the number of vertices. If n < 3, the result is

immediate since any graph with three or fewer vertices is chordal. Suppose the Lemma is

true for chordal graphs satisfying the hypotheses of the Lemma with n, or fewer vertices.

Let G and G' be chordal graphs satisfying the hypotheses of the Lemma with n = ny+ 1.
LetR = {x € V: D(x) = @}, where D(x) is the deficiency in G. Let
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S={xe€ V: D'(x) = J}, where D'(x) is the deficiency in G'. Since G is chordal, there is
a perfect elimination ordering ¢ of the vertices of G; suppose @(i) = x; fori = 1,..., n.
Then by Lemma 4.4.9, D(x,) =@ in G. Hence R # &. A similar argument shows that

S # . There are now two cases to consider.

(Case 1) Suppose for some x € S, there exists an edge f = {u, x} € F. Since
D'(x) = &, G' has a perfect elimination ordering T with (1) = x by Lemma 4.5.4.
Therefore G'T is monotone transitive and x ¢ MAdj(y) in G'.c for any y. So deleting f from
G’ preserves monotone transitivity relative to 7; hence 7 is also a perfect elimination
ordering for G' - f. Thus by Corollary 4.4.18, G' - { is chordal.

(Case 2) Suppose Case 1 does not hold. Then both endpoints of any edge in F must
have nonempty deficiencies in G'.

We first prove that there exists an x € S such that F ¢ D(x), i.e., there is an edge in F
that is not in D(x). Pick any z € S. Because D'(z) =&, D(z) cF. If F ¢ D(2), let x = z.
Otherwise, since D(z) c F, F = D(z). In this case, let x be any vertex in R, i.e., with
D(x) =@. By Lemma 4.5.4, G has a perfect elimination ordering ¢ with (1) =x. In
addition, since F = D(z), o is also a perfect elimination ordering for G' by Lemma 4.5.2.
Since 6(1) = x, D'(x) = @ by Lemma 4.4.9, i.e., x € S. Since D(x) =@, and F # @ by
assumption, F ¢ D(x).

Let x € S with F ¢ D(x). Let F' be the set of edges in F that are not in D(x); so
F=D(x) UF'. Note that Gx = (V - {x}, E(V - {x}) U D(x)) and
G'x =(V - {x}, EUF)V - {x}) u D'(x)) are chordal by Lemma 4.5.3. We claim G'x is
obtained by adding the set of edges F' to Gy. Since x € S, D'(x) = &; furthermore, since

we are in Case 2, no edge incident to x can be in F. Thus the set of edges of G, is
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EVF(V-{xD=EV-{x})UF=E(V - {x}) U D(x) UF'. Hence G, and G'x satisfy
the hypotheses of this Lemma and each has n, vertices. So by the inductive hypothesis,
there exists an f € F'= F - D(x) such that G, - f is chordal.

We claim that G' - f is chordal. For otherwise G' - f would contain a nonchorded
cycle p of length [ 24. Since G' is chordal, removing f causes this cycle to be
nonchorded, which means / must be 4. (Otherwise G' would contain a nonchorded cycle
of length at least 4.) Suppose x is in the cycle, i.e., it = [X, ¥,, V3, V4, X]. Since we are in
Case 2, f is not incident to x; so f= {y,, y,}. Since ENF=, f ¢ E;sofe D(x) which
contradicts the fact that f € F - D(x). Hence x is not in L. So removing x and its incident
edges from G’ - f does not affect i. But removing x and its incident edges from G' - f
yields G, - f which means G, - f contains y, i.e., G, - fis not chordal, a contradiction.

a £

Thus we conclude that G' - f is chordal.

4.5.6 Corollary. [GISW] Let G = (V, E) be a chordal graph which is not the
complete graph, and let s be the difference between the number of edges in the complete
graph on IVl vertices and the number of edges in G. Then there exists a sequence of
chordal graphs G, i =0, 1,..., s, such that GO = G, G® is the complete graph, and G
is obtained by adding an edge to G{i-1 foreachi=1,...,s.

Proof. Let G(® =G and let G®) be the complete graph on VI vertices. Then G© and G
satisfy the hypotheses of Lemma 4.5.5; hence there exists an edge f; in G® and not in G©)
such that G- 1 = G - f; is chordal. Now G- 1) and G(® satisfy the hypotheses of
Lemma 4.5.5 and we may continue the process, eventually obtaining the desired sequence

of chordal graphs.
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4.5.7 Lemma. [GISW] Let G = (V, E) be a graph containing all possible loops. If
{u, v} ¢ E, let G + {u, v} denote the graph G with the edge {u, v} added. Then each
cycle of length 4 in G has a chord if and only if the following holds.

For any pair of distinct vertices u and v with {u, v} ¢ E, the union of all cliques in

G + {u, v} which contain both u and v is a clique in G + {u, v}.

Proof. (=) Suppose each cycle of length 4 in G has a chord. Let u and v be distinct
vertices with {u, v} ¢ E. Then the set whose elements are u and v is a clique in

G + {u, v} containing u and v. If this is the only such clique, we are done. Otherwise let
C and C' be cliques in G + {u, v} each of which contains u and v. We will show that
CuCisaclique in G + {u, v}. It then follows that the union of all cliques in G + {u, v}
each of which contains u and v is a clique in G + {u, v}.

Letze Cand z'e C'. We will show that {z,2'} is an edge in G + {u, v}. There are
three cases. (Case 1) Suppose z =z'. Then {z, z'} is a loop, hence an edge in G, hence
an edge in G + {u, v}. (Case 2) Suppose z equals u or v. Then z and z' are both in C'
which implies {z, z'} is an edge in G + {u, v} since C' is a clique in G + {u, v}.
Similarly, if z' equals u or v, then z and z' are both in C which implies {z, z'} is an edge in
G + {u, v} since C is a clique in G + {u, v}. (Case 3) Suppose u, z, v, and z' are four
distinct vertices. Then [u, z, v, Z', u] is a cycle in G of length 4, and it must have a chord.
Thus either {u, v} or {z, z'} must be an edge in G. Since {u, v} ¢ E by assumption,
{z,z'} € E; hence {z, 2'} is an edge in G + {u, v}. Since C and C' are both cliques in
G + {u, v}, and z and 2’ were chosen arbitrarily, we have shown that C U C' is a clique in
G + {u, v}.

(<) Conversely, suppose there exists a nonchorded cycle i in G of length 4, say
p=I[x,u,y,v,x]. Then {x,y}, {u,v} e E. SoC= {x,u,v}and C' = {y, u, v} are

cliques in G + {u, v} which contain u and v, but C U C' is not a clique in G + {u, v} since
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{x,y} ¢ E. Thus the union of all cliques in G + {u, v} which contain u and v is not a

clique in G + {u, v}.

4.5.8 Remark. [GISW] Observe that Lemma 4.5.7 can be restated as follows:
When G = (V, E) has all possible loops, each cycle of length 4 in G has a chord if and
only if for any pair of distinct vertices u and v with {u, v} ¢ E, there is a unique

maximal clique in G + {u, v} which contains both u and v.

The previous result is important because cliques in a graph G correspond to completely
specified principal submatrices in any G-partial matrix. Suppose G is chordal, and we
complete some G-partial positive definite matrix using a sequence of chordal graphs shown
to exist in Corollary 4.5.6. Then 4.5.8 tells us that at each step, we will complete a unique
largest principal submatrix. We will show that at each step, this largest principal submatrix
can be made positive definite, which is enough to guarantee a positive definite completion
of the original G-partial positive definite matrix.

So far in this section, we have concentrated on preparing to prove that chordality
implies completability in 4.5.1. The following lemma will be used in proving the

converse, i.e., if G is completable, then G is chordal.

4.5.9 Lemma. [GISW] For eachk € N, there is a unique k-by-k positive semidefinite

matrix A which has 1's down the main, sub-, and superdiagonals. This matrix A is the
matrix of all 1's.

Proof. Letk € N and let A be the k-by-k matrix of all 1's. Ifk = 1, we are done. If

k 22, then A is positive semidefinite since A is Hermitian and the eigenvalues of A are
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Oand k. (To see that k is an eigenvalue of A, consider the k-by-1 vector of all 1's. Also
note that the rank of A is 1 which implies that the nullity of A is k - 1.)

Thus we need only show that A is the only k x k positive semidefinite matrix with 1's

down the main, sub-, and superdiagonals. If k = 2, the result is immediate. For k = 3, let

I 1 x
Apg={1 1 1] be positive semidefinite, where x € C. Then
X 11

0=det(Ag) = ~(1-X)+x(1—-X) = (-1+x)(1—-X)
= ~(1-x)(1-%) = ~(1-x)I=x) = -1 -x.
Thus |1 - x| = 0; hence x = 1. Thus we have shown that the matrix of all 1's is the only
3 % 3 positive semidefinite matrix with 1's down the main, sub-, and superdiagonals.

Now letk >4 and let Ag be k x k positive semidefinite with 1's down the main, sub-,
and superdiagonals. Since Ag is positive semidefinite, each 3 x 3 principal submatrix
Ao(i, i+1,i+2),i =1, 2,..., k - 2, must also be positive semidefinite. In addition, since
Aq(i, i+1, i+2) has 1's down its main, sub-, and superdiagonals, it must be the 3 x 3
matrix of all 1's. Hence [Ag];; = 1 for li - jl =2, i.e., the second superdiagonal in Ag and
the second sub-diagonal in Ag must be all 1's.

It now follows that each Ag(i, i+1, i+3) is a 3 x 3 principal submatrix of Ag with 1's
down its main, sub-, and superdiagonals. Hence the same argument as above shows that
its (1, 3)- and (3, 1)-entries must also be 1 which implies [Aglij=1forli-jl=3.
Continuing step-by-step in order for p = i+4,..., k, the same argument can be applied to
each 3 X 3 principal submatrix Ag(i, i+1, p) to show that [Aolij=1 foralliand j. Thus Ag

is the matrix of all 1's which completes the proof.

We are now ready to prove the main result of this chapter.
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4.5.1 Theorem. [GISW] Let G be a graph which contains all possible loops.

Then G is completable if and only if G is chordal.

Proof. (=) Suppose G is completable. To obtain a contradiction, assume that G is not
chordal. Then G contains a nonchorded cycle p of length k = 4. Let G' be the graph on
the vertices of i induced by G. Then G' contains all possible loops. We may assume that
the vertices of G' are numbered 1 through k, in the same order that they appear in p. (If
the vertices start out numbered differently, a suitable permutation similarity of any G-partial
Hermitian matrix A(G) is equivalent to renumbering the vertices of G according to the
desired order. This yields a new G-partial Hermitian matrix A'(G) whose leading k x k
principal submatrix is G'-partial Hermitian. And since similar matrices have the same
eigenvalues, A(G) will have a positive definite completion if and only if A'(G) has a
positive definite completion.)

Now, in any G'-partial matrix, the only specified positions are the (1, k) and (k, 1)
positions and those on the main, sub-, and superdiagonals. Let € >0 and define a
G'-partial Hermitian matrix A(G") as follows:

[AG)Hlii=1+efori=1,..,k;

[AG)]ii+1 = [AG)]isri=1fori=1,...,k- 1;
and [A(G)]1k = [A(G)]k1 =-1.

Then A(G') is G'-partial positive definite since its only completely specified principal

. I+ 1 I+ -1 .
submatrices are and , both of which are positive definite.
1 1l+e¢ -1 l+¢

Extend A(G') to a G-partial Hermitian matrix A¢(G) as follows. Let A(G') be the
leading k x k principal submatrix of A¢(G); let [Ae(G)];; = 1 + € fori > k; and let
[Ae(G)];; = 0 whenever {x;, x;} is an edge in G but not in G', where x; and X; are the
vertices numbered i and j, respectively. We claim that A¢(G) is G-partial positive definite.

Any completely specified principal submatrix of A¢(G) has one of three forms: (1) It is
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a principal submatrix of A(G'), hence positive definite since A(G') is G'-partial positive
definite. (2) It is a principal submatrix of (1 + €)1, hence positive definite. (3) It has the

o [B 0
Mo (1+e)1]

X
positive definite, B is positive definite. Let [y] be any appropriately blocked, nonzero

, Where B is a principal submatrix of A(G"). Since A(G') is G'-partial

complex vector of appropriate size. Then

x* y*][lg a f S)I][;] =x"Bx+y"(1+e)ly

which must be positive because both summands are nonnegative, and at least one is

X
positive since [y] # 0. Thus we have shown that each completely specified principal

submatrix of A¢(G) is positive definite, i.e., Ag(G) is G-partial positive definite.

Since G is completable, there exists a positive definite completion B¢ of A<(G) for each

€ >0. Consider the sequence <B1 /i>°°

i=

| in S, the set of all positive semidefinite n X n

matrices, where B, ;; 18 a positive definite completion of A,,(G)foreachie N. Since

each diagonal entry of each matrix in the sequence is specified and lies in the interval (1, 2],
the sequence is bounded by Lemma 3.1.2. Thus it has a convergent subsequence whose
limit, By, is such that Bo(k) has 1's down its main, sub-, and superdiagonals and -1 in its
(1, k) and (k, 1) positions. Since S is closed (in H) by Theorem 1.1.11, By must be
positive semidefinite which implies B(k) is positive semidefinite. But no such positive
semidefinite matrix exists by Lemma 4.5.9. Thus we have a contradiction, and we
conclude that any cycle of length = 4 in G has a chord, i.e., G is chordal.

(<) Suppose G = (V, E) is a chordal graph. If G is the complete graph, we are done
since any G-partial positive definite matrix has all entries specified, and is therefore positive
definite. So assume G is not the complete graph, and let s be the difference between the
number of edges in the complete graph on [V vertices and the number of edges in G. By

Corollary 4.5.6, there exists a sequence of chordal graphs, G = G©, G),..., G(), where
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G® is the complete graph on IVI vertices, and G() is obtained by adding an edge to GG -1
foreachi=1,..., s.

Let A = [a,,] be any G-partial positive definite matrix. We must show that A has a
positive definite completion. We will show that there exists a G()-partial positive definite
matrix Aj = [afp’] such that af(‘p’ = a, for each {x,, x,} € E, where x, and x, are the
vertices numbered k and p, respectively. (So A will be the same as A, except A will have
two more entries specified--those corresponding to the added edge in G(1).) Once we
know such A, can be found, the same argument can be used to show that if
ie {1,...,s- 1} and A is a G®-partial positive definite matrix, then there exists a
G + D-partial positive definite matrix A;;; such that ag" = a{? for each edge {x,, x,} in
GO, Since a G®)-partial positive definite matrix A has all entries specified, it follows that
A, will be a positive definite completion of A. So we just need to establish the existence of
amatrix A; as defined above.

Let {u, w} be the edge of G(1) that is not in G. Then by 4.5.8, there is a unique
maximal clique C in G(I) which contains both u and w. By the permutation similarity
argument given in the (=) part of this proof, we may assume without loss of generality
that the vertices of G have been numbered so that C = {x,,..., Xq}, u =X, and w = x,. The
only edge missing in G(C), the graph on C induced by G, is {x,, X,} since C is a clique in
G =G + {x,, x,}. Hence for 1 £i,j <q, {x;, x;} is an edge in G(C) if and only if
li - jl<q -2. Thus G(C) is a band graph which implies it is completable by
Corollary 4.3.3. Any completely specified principal submatrix of A(l,..., q) is also a
completely specified principal submatrix of A, hence is positive definite. So A(l,..., q) is
G(C)-partial positive definite, thus has a positive definite completion because G(C) is
completable. Let A;(1,..., q) be a positive definite completion of A(l,..., q).

Let A; be the G()-partial matrix whose leading q X q principal submatrix is
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A(1...., q), and whose (k, p)-entry equals a,, for each {x,, Xp,} € E. We claim that A is
G(D-partial positive definite. Any completely specified principal submatrix of A is positive
definite. Thus, since A and A, differ only in the (1, q) and (q, 1) positions, we need only
check that any completely specified principal submatrix of A; which includes rows 1 and q
is positive definite. Since C is the maximal clique in G(D containing x, and x,, and cliques
correspond to completely specified principal submatrices, any completely specified
principal submatrix of A; which includes rows 1 and q is a principal submatrix of

Aj(1,..., q), hence must be positive definite because A;(1,..., q) is positive definite. Thus

we have shown that A is G(-partial positive definite which completes the proof.
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4.6 An Algorithm for Constructing a Perfect Elimination Ordering

4.6.1 LetG=(V,E) be achordal graph. We begin with all vertices unnumbered. The
following algorithm from [LRT] will number the vertices from n to 1. The algorithm also
assigns to each vertex v a sequence s(v) which is a subset of {1,..., n}, listed in decreasing
order. We will order the set of sequences lexicographically, i.e., given two sequences

s(v) = [Py, P2»--.-» Pu] and s(w) = [q,, Qz,..., G:), we define s(v) < s(w) if, for some /,
p=qifori=1,2,..., 1 and either p,,; <qu,ork=7/andk <r. Ifk =rand p; =g,

1 £1i 2k, then s(v) = s(w).

4.6.2 ALGORITHM LEX P: begin
assign the initial sequence & to all vertices;
for i =n step -1 until 1 do begin
select: pick any unnumbered vertex v with maximal sequence;
comment: assign v the number i, 6(i) = v;
update: for each unnumbered vertex w € Adj(v) do
adjoin i to the sequence of w;

end end LEX P,

4.6.3 Notation. It will be helpful to let s,(v) denote the sequence assigned to v by

LEX P just before the number k is assigned to a vertex. Note that s, (v) = & for all v.
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4.6.4 Example. Consider the graph

Two examples of perfect elimination orderings and the associated sequences are given
below. Both orderings are generated by running through LEX P. Differences arise when
two or more unnumbered vertices have the same (maximal) sequence at a given step.
Numbering a different vertex at this step yields a different perfect elimination ordering.
Note that it is not the final sequences but the sequences at each step which are important in

determining the ordering.

$4(X) = I = 54(y) = 54(2) = 54(W); c;(4) =x

83(¥) = [4] = 55(2) = s5(W); c.(3) =y
s$:(wW) = [4, 3], s5(2) = [4]; ci(2)=w
si(z) = [4, 2]; o(l)=z
$4(X) = D = 84(y) = 54(2) = 54(W); o, (4)=z
$3(X) = [4] = 83(W), s3(y) = T 0y(3)=x
s:(wW) = [4, 3], so(y) = [3]; o,(2)=w
si(y) =[3, 2; o () =y
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4.6.5 Theorem. Given a chordal graph G = (V, E), the algorithm LEX P yields a
perfect elimination ordering of V.
Proof. Apply LEX P to G and let ¢ be the resulting ordering of V. Foreachv e V, we
will show MAAj(v) is a clique which implies MD(v) = &, hence 6 is a perfect elimination
ordering of V. Let x, be the vertex assigned the number k by LEX P (or equivalently, by
0). Observe that after LEX P has run its course, the following is true [LRT].

Foreach v e V, k € s(v) if and only if x, € MAdj(v). (4.6.6)

Suppose, trying for a contradiction, that MAdj(x o ) is not a clique for some x i, € V-
Then there exist two vertices X;» X;, € MAdj(xjo) such that {le, sz} ¢ E. Assume
without loss of generality that j, > j,. Then j, > j; > jo, and by (4.6.6), we also have
j2 € s(x; ) and j, & s(xjl ).

Observe that the following is true.

Foranyve V, x, € MAdj(v) if and only if foreachk <m, m € s,(v). (4.6.7)
Note that if x,, ¢ MAdj(v), then there exists k < m such that m ¢ s,(v) which implies
m¢ s(v) foreachi<m.
(Case 1) Suppose s;, (x; )2 s;, (X, ). Because X;, is adjacent to X,
Si,-1(Xj,) =1[8;,(%; ). 3.1
> 85, (%)
2 S5, (x jl)
= 85, .(%;))-
Once the sequence of one vertex is greater than the sequence of another as LEX P runs its
course, it will be greater thereafter, i.e., if v and w are in V and s,(v) > s,(w) for any k,
then s,(v) > sy(w) for all p <k. Thus S;, (x o )> S5, (le) which implies x iy would not
receive the number j,, a contradiction. So Case 1 cannot happen because of the way

LEX P assigns labels and numbers.
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(Case 2) Suppose Sj, (x iy )> Si, (x i ). We will see that this case is impossible because
G is chordal and finite. For some nonnegative integer /, the first / elements of 5, (x j,) and
S, (x j0) agree, and either the (/+1)st element of s iy (le ) is greater than the (I+1)st element
of Sj, (xjo), or s; (x jl) has an (/+1)st element but Si, (xjo) has only / elements. In either
case, the (I+1)st element of S;, (le ) belongs to s;, (le) but not to S;, (xjo). That is, there
exists j; > j, such that j, € s;, (le) but j; & Sj, (xjn). Thus j; € s( X;, ybut j, & s( xj“),
hence {x iy sz} € E, but {x iy xh} ¢ E by (4.6.6). We may assume without loss of
generality that j, is the largest number that appears in s( x j,) but not in s(x i ) 1€
sk(xjl )= sk(xjo) for k 2 j;. Because {le, X;, 1, {xjo,xjj} ¢ E, we cannot have
{x i i, } € E because that would yield a nonchorded cycle of length 4 in G (see fig. 1;
loops have been left out for easier viewing).

xj,

12 .
le

fig. 1

Because j, > j;, we must have Sj, (xj2 )= S, (le ). Since X;,€ MAGdj( X;, ) but
X, € MAdj( X;, ), it follows that j, € Si, (le) but j, ¢ S5, (sz) by (4.6.7). Thus
S;, (xj2 )# S;, (le ) which implies s;, (sz )> Si, (le )- So as before, there is a largest j, in
S5, (x5, ) which is not in S5, (x iy ). If iy <js, j» must belong to both sequences, but it does
not. Soj,>j;. Since j,€ s( X;, Ybutj, & s( X5, ), {sz, xj4} € E, but {le, xh} ¢ E by

(4.6.6). From above, we have sk(le )=s, (xjo) fork 2 j;, and j, & s( X;, ). So we must
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have j, & s(x j, ) Which implies {x i Xi, } ¢ E by (4.6.6). Therefore we cannot have

{x iy X } € E since that would create a nonchorded cycle of length 5 in G (see fig. 2).

Ja

J2 .
le

on

fig. 2

i itive i > =[x, ,X, . : . .
Now suppose m is a positive integer >4 and p [x; . Xin® Kimea s Xigrooo Xj o %)

is a chain such that j; < j;,, foreachi € {0,..., m - 1}, and any two nonconsecutive vertices

in Y are not adjacent in G.

6)] Suppose further that for eachr € {0,..., m - 3}, j,; is the largest number that
appears in s( X; “) but not in s( xj,)’ ie., sk(xj o )= sk(xjr) fork 2 j,.s.

Because j,..; > jm.2, We must have 5; l(xj :
m=- m=

)Zsjm_I (xjm_2 ). Since X; € MAdJj( X; _2)
but X, € MAdJj( X; ), it follows that j,, € Si. (xjm_z) but j, ¢ Si. . (xj -|) by (4.6.7).

Thus s; (x; )#s; (x; ) whichimplies s (X )>s

X; ).
A met 7 T Vi (x;_,)- Soas before,

j m-1

there is a largest jp,; in S;. | (xj -.) which is not in S, (xj " ). If jmer < jms jm must belong

to both sequences, but it does not. SO juy; > jm SinCE jyruy € s(xj _‘) but jo., € s( X; )

b

{x. ,x. }e€E, but {xj X +l} ¢ E by (4.6.6).

jm-l’ Jm+l

Since s, (xjm_2 )=s, (xjm_s) fork 2 j, by (8), and ju.; & s( xjm_z) from abox;e, we must
have ju. & s( xjm_s) which implies {xjm_s, xjm+|} ¢ E by (4.6.6). Similarly,
sk(xjm_3 )=s, (xjm_4) fork 2j,, by (§), and j,., & s( xjm_a) from above; SO jn. & S( xjm_d)

which implies {x i o X jm+l} ¢ E by (4.6.6). The same argument can be repeated to show
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that {xj[, X; “} & E for [=0,..., m - 3. Therefore we cannot have {xjm, x. }eE

jm«ﬂ
because that would create a nonchorded cycle of length >4 in G.

Nowwehaveachain[xj X X X X, ,X
m

+ jm—l’ jm-S" [ Jm-4

i X jm] which is one link
longer than p and which shares the same characteristics, allowing the preceding argument
to be applied again. Thus by the principle of induction, G must contain a chain of infinite
length which contradicts the fact that G is finite. So in Case 2, we have also reached a

contradiction. Hence we conclude that MAdj(v) is a clique for each v in V which completes

the proof.
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4.7 An Algorithm for Construcﬁng a Sequence of Chordal Graphs

Let G = (V, E) be a chordal graph which contains all possible loops, and let A be a
G-partial positive definite matrix. Let s be the difference between the number of edges in
the complete graph on [Vl = n vertices and the number of edges in G. Then A has 2s
unspecified positions. The proof of Theorem 4.5.1 showed that A can be completed to a
positive definite matrix by filling in its unspecified positions two at a time, using a
sequence of chordal graphs, G = GO, G(,..., G6), shown to exist in Corollary 4.5.6.
This results in a sequence of matrices, A = Ag, Aj,..., As, where A; is GO)-partial posifive
definite, and A is the desired completion.

We will now show how to actually construct a sequence of chordal graphs which
satisfies the conditions of Corollary 4.5.6. First use the algorithm from the previous
section to obtain a perfect elimination ordering ¢ for G. For k = 1,..., n, let x, be the
vertex numbered 6-1(k). Using the notation from Corollary 4.5.6, define inductively the
following sequence of graphs, G = (V, ED),..., G® = (V, E®), where E() denotes the
edges in G():

GO = G, (4.7.1)
and fori=0,...,s-1,

GG+ =G + {x,, X}, 4.7.2)

where k; = max{k: {x, X,} ¢ E® for some m}, and

r=max{r: {x,x, } ¢ EO},

Note that r; <k;, i =0,..., s - 1, since if r; were larger, it would have been chosen as k;, and

1; # k; because we are assuming G contains all possible loops.
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4.7.3 Theorem. [GISW] If G is a perfect elimination ordering for G = GO, then ¢ is
a perfect elimination ordering for each of the graphs G(1),..., G©) defined inductively by
(4.7.1)-(4.7.2). (Hence G® is chordal fori = 1,..., s by Corollary 4.4.18.)

Proof. Letie {1,...,s} andk € {1,...,n}. We will show that MD(x,) = @ in G,
which implies 6 is a perfect elimination ordering for G) by Lemma 4.4.9. Ifi =s, the
result is immediate since G®) is the complete graph, so the deficiency (and hence monotone
deficiency) of each vertex is empty.

For i # s, we proceed by induction. Since o is a perfect elimination ordering for G(
by hypothesis, MD(x,) = @ in G{* by Lemma 4.4.9. Letje {0,...,s - 2} such that
MD(x) =@ in G¢. Then MAdj(x) in G¢ is aclique. If x, # X, , MAdj(x) in G’ and
MAdj(x) in GY*Pare the same since GG+D = GO) + Xy, X;,) and k; > ;. Thus MAdj(x,)
in Gg,j“)is a clique which implies MD(x,) = & in Gg“). If x, = Xy s then
MAdj(x, ) in Gi*= (MAdj( x;)in GP) U {x,,}. Since MAdj(x,,) in GY is a clique
by the inductive hypothesis, we need only show that Xy, is adjacent to each vertex in
MAdj( X;,) in Gg). But this follows at once from how k; and r; are defined. Hence

MAdj(x, ) in G§*Vis a clique which implies MD(x,) =@ in Gy*h,
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