San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research
1989

DMX-1000 user guide and tutorials

Eric Gatzert

San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Gatzert, Eric, "DMX-1000 user guide and tutorials" (1989). Master’s Theses. 3069.
DOI: https://doi.org/10.31979/etd.zu8n-nqys
https://scholarworks.sjsu.edu/etd_theses/3069

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3069?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6” x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600

Order Number 13837803

DMX-1000 user guide and tutorials

Gatzert, Eric William, M.S.
San Jose State University, 1989

Copyright ©1989 by Gatzert, Eric William. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

DMX-1000 USER GUIDE AND TUTORIALS

A Thesis
Presented to
The Faculty of the Department of Music and
The Faculty of the Department of Cybernetic Systems

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Eric Gatzert

May, 1989

R THE DEPARTMENT OF MUSIC
ti7OF CYBERNETIC SYSTEMS

APPROVED
AND THE DEFRA

W

= —
1

Loia

Devayani”Smith

da, (Jedlf—

Larry Wendt

Allen Strange

APPROVED FOR THE UNIVERSITY
’,

/
g \-/ ~7 .
7} P DY Qé(.u—aacdaw«l«,

DMX-1000 USER GUIDE
AND TUTORIALS

Version 1.0

By
Eric Gatzert

(c) 1989

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

CONTENTS

Tllustrationsccececeeccseances iv

Introductionccvccervccncs 1
System Overview

How to Use This Manual

How to Listen to the DMX-1000
Examples

The Development of MUSIC 1000 ... 6
MUSIC 1000 Overview

System Timing Relationships
Flowchart Description

Basic Synthesis Conventions 12
Orchestra Conventions
Score Conventions

Additive Synthesis 22
Sine Wave Synthesis

Square Wave Synthesis

Sawtooth Wave Synthesis

Inverted Wave Synthesis

Subtractive Synthesis 35
Band~pass Filtering

High-pass Filtering

Low-pass Filtering

Modulation Synthesis 46
Frequency Modulation
Amplitude Modulation

Non-linear Waveshaping, Input,
and Reverbciceeeeneacecn 63
Non-linear Waveshaping
Input and Reverb
A Musical Examplecevveeeen. 73

File Manipulationcc.... 85

Appendices
Appendix A
Appendix B

Appendix C

Bibliography

ASOTE Documentation
MUSIC 1000 Summary

Audio Tape Contents

ii

ooooooooooooo

oooooooooooooo

92

ILLUSTRATIONS

Chapter 1

1.1 DMX-1000 Architecture
1.2 System Hardware Locations

Chapter 2

2.1 System Timing Relationships
2.2 Modular Flowchart Components
2.3 Unit Generator Components

Chapter 3

3.1 Score and Parameter Relationships
3.2 KLINE Envelope Diagram

Chapter 4

Flowchart Diagrams for Additive Synthesis
MUSIC 1000 Code for Sine Wave Generation

Sine Wave and FFT Results

Amplitude Envelope

MUSIC 1000 Code for Square Wave Generation
Square Wave and FFT Results

MUSIC 1000 Code for Sawtooth Wave Generation
Sawtooth Wave and FFT Results

MUSIC 1000 Code for Inverted Spectrum Waveform
Inverted Wave and FFT Results

b B B o b B
. L] ']
B WYWoo-J0OUd WK

o

Chapter 5

Flowchart Diagrams for Subtractive Synthesis
Band-pass Spectra (Ideal)

MUSIC 1000 Code for Band-pass Filtering
MUSIC 1000 Code for High-pass Filtering
High-pass Spectra (Ideal)

MUSIC 1000 Code for Low-pass Filtering
Low-pass Spectra (Ideal)

oot o,
NSO W

iii

10
11

12
17

23
23
24
26
30
31
32
32
33
33

36
36
37
40
41
43
44

Chapter 6

6.1 Flowchart Diagrams for Frequency Modulation
6.2 FFT Results and Waveforms

6.3 MUSIC 1000 Code for Frequency Modulation
6.4 Flowchart Diagrams for Amplitude Modulation
6.5 FFT Results and Waveforms

6.6 MUSIC 1000 Code for Amplitude Modulation
Chapter 7

7.1 Flowchart Diagrams for Non-linear Waveshaping
7.2 MUSIC 1000 Code for Non-linear Waveshaping
7.3 FFT Results and Spectra

7.4 Flowchart Diagrams for Input and Reverb

7.5 MUSIC 1000 Code for Input and Reverb
Chapter 8

8.1 Waveform and FFT Results, Rodgers Organ

8.2 Waveform and FFT Results, DMX-1000

8.3 Flowchart Diagrams for Organ Simulation

8.4 MUSIC 1000 Orchestra for Crgan Simulation
8.5 Menuet by J.S.Bach

8.6 MUSIC 1000 Score for Menuet

iv

47
50
51
56
59
60

€5
67
69
71
71

73
74
76
77
78
83

CHAPTER 1
INTRODUCTION

The purpose of this interactive tutorial is to
provide the user with useful information concerning the
DMX-1000 signal processing computer and its operation.
This guide describes the various functions and musical
applications of the DMX-1000 Digital Signal Processor and
its current controlling language, MUSIC 1000. The
content of this guide is not intended to replace the
present documentation. Rather it is to be used as a
supplement which may clarify certain areas of procedure.

2 number of different synthesis techniques are
supported by MUSIC-1000. These techniques include
additive and subtractive synthesis, linear frequency
modulation synthesis, and amplitude modulation synthesis.
While overviews of the above will be given at various
points within this manual, it is assumed that the user
possesses at least an intuitive understanding of the
mentioned synthesis techniques. If these processes are
not familiar, the included bibliography section provides
adequate resources for further inquiry.

MUSIC 1000 is a programming language which requires
two separate collections of textual information or files.
Together, these files contain information for the DMX-
1000 which allow for the generation of audio signals or
processing. The two files are named Orchestra
(ORCH.USR), and Score (SCORE.USR)}). The Orchestra is an
area in which instrument definitions are assembled to
create voices or patches. The Score represents a list of
events which are executed by the Orchestra section of
MUSIC 1000. The Score is a passive section containing
numbers which correspond to specific conditions which
exist in the active portion of the program, the
Orchestra.

SYSTEM OVERVIEW

The DMX-1000 is a sophisticated 16-bit computer
which has been designed specifically for digital
processing of audio signals. In a general sense, the
DMX-1000 can be compared to a synthesizer without any
keyboards, factory preset voices, or built in synthesis
schemes. The instrument is a blank slate waiting for
instructions. These instructions must be generated
elsewhere, by a "host" or master computer. The role of

=

the host computer is to send the programmed information
or instructions over to the DMX-1000. The program
contains the information that the DMX-1000 requires in
order to generate sound in real-time.

Real-time digital synthesis requires very high speed
computation, i.e., "number crunching." This process is
possible for the DMX-1000 due to its use of two separate
high-speed memories: the program memory and the data
memory. The host computer has the ability to write to
either memory at any time, and therefore it is not
limited to the sequential access of memory as with more
conventional computer architectures. The program memory
is used to hold the main program which operates the DMX-
1000 as it is sent from the host computer. The data
memory is used to hold the various constants, parameters,
waveform lookup tables, and numerical values in general.
This two memory parallelism is the most important factor
in the DMX-1000's ability to produce digital sound in
real-time. Illustration 1.1 is a diagram of the
simplified architecture of the DMX-1000.

D | Bus
X

Arithmetic-
Logical Unit
(ALU)

Y | Bus

‘ ‘ :

DAC Data Multiplier
Memory

Analog
Output

Illustration 1.1 DNMX-1000 Architecture

The DMX-1000 creates sound by executing a digital
calculation of waveform values. These values are then
converted to analog signals by means of one or more
digital to analog converters (DAC's). The host computer
provides the information required to assemble the desired
waveform which is then passed over to the DMX-1000 for
synthesis.

The host computer which is currently in use at San
Jose State's Music Department is a Terak 85101a
minicomputer running RT-11 Version IV as its operating
system. This computer is capable of running MUSIC 1000, a
language designed specifically to control the DMX-1000.
The programming must be done within the context of an
available text editor. The most accessible to use in the
present environment is A Screen Oriented Text Editor
(ASOTE) . Documentation concerning ASOTE exists as an
appendix within this manual (see Appendix A).

HOW TO USE THIS MANUAL

The organization of this manual is developed in such
a way as to allow the user to explore various
applications of the DMX-1000 by audio, program, and
flowchart illustrated examples. Spectra of the audio
examples obtained through Fast Fourier Transforms (FFT)
will also be used. For each of the examples included
within this manual accompanying information will exist in
the following format:

1. Two separate flowchart illustrations of the
llpatch . "

2. A listing of the appropriate Music 1000 program.

3. A disk which contains the Music 1000 program
for a real-time demonstration of the example.

4. A cassette of the audio example.

The sources listed above should provide the user
with adequate information regarding the basic functions
of the DMX-1000 and the MUSIC 1000 language. Additional
information will also be necessary at times and resources
will be included as needed.

HOW TO LISTEN TO THE DMX-1000 EXAMPLES

The DMX-1000 is currently rack-mounted with its
Terak host computer. There are three switches located on
the front panel: one for power to the DMX-1000, one for
power to the Terak, and the third switch is used to reset
the Terak. Two 8" disk drive units are also located on
the front panel of the rack mount case. As illustration
1.2 shows, the "A" drive is on the left and the "B" drive
is on the right.

Disk Drives ——»

Switches e DMX-1000 TeraX Reset

DMX-1000 — I I DMX-1000 I I

Illustration 1.2 System Hardware Locations

To boot the system, a MUSIC 1000 Systems Disk must
be placed in the "A" drive. The power may then be
switched on for both the DMX-1000 and the Terak. The
system will then boot itself. The appropriate example
disk is then placed in the "B" drive and the following
must be done in order to hear the example:

1. Be sure that the audio system is turned on.

2. Type RUN SINE SINE is only used for the
first example, other names
must be used for different
examples.

Press <{return>

3. Upon the prompt SCORE NAME?
Press <return>

4. Upon the prompt DO YOU WANT THE FUNCTIONS

DISPLAYED?
Type N
Press <return>

The audio example should then be heard. These
instructions will be the same for each diskette with the
exception of the program name. Each exanmple disk will be
labeled with the appropriate program name necessary for
execution.

There are several diskettes available for use which
include examples that will be described throughout the
remaining chapters of this manual. The examples can be
listened to at any time and the previous instructions
will apply for every diskette.

It may be useful to view the MUSIC 1000 code for the
various audio examples. Once the diskette is inserted in
the drive unit, the Score can be printed on the screen by
typing the following:

TYPE SCORE.USR <(return>
In order to view the Orchestra type:
TYPE ORCH.USR <return>

The textual files named SCORE.USR and ORCH.USR
contain the MUSIC 1000 code necessary for synthesis on
the DMX-1000. It is recommended that the audio examples
are run to provide a basic familiarity with the Terak
computer system, the audio system, and the DMX-1000
itself. The following chapters will provide both general
and detailed information regarding synthesis with the
DMX-1000 and the MUSIC 1000 language.

CHAPTER 2

THE DEVELOPMENT OF MUSIC 1000

A number of programming languages for computer
related musical instruments have been in existence since
the 1950's when experimental programs for musical
realization were initially developed. According to Dodge
(1985), the first of many general-purpose programs for
computer synthesis was generated at Bell Laboratories in
the early 1960's by Max V. Mathews. The language that
Mathews created was known as MUSIC 3, and was developed
from its predecessors MUSIC 1 and MUSIC 2. A fourth
version of the language titled MUSIC 4 was then created
and used by various universities throughout America.
MUSIC 4 was a language which made the first true
generation of computer related music possible as a wide
spread activity.

MUSIC 4 was generally considered to be a somewhat
definitive language. Further modifications, however,
were necessary and numerous updated versions of the
language surfaced at different locations. Princeton
University claimed MUSIC 4B and MUSIC 4BF while Stanford
created MUSIC 6 and MUSIC 10 (see page 6). Although
these languages shared a number of similarities, there
were drawbacks as well. The largest of these drawbacks
was the fact that none of these various MUSIC languages
supported real-time synthesis. MUSIC 1000 was created by
Dean Wallraff specifically for the DMX-1000 as a real-
time alternative to the earlier MUSIC language
environment. MUSIC 1000 has its roots in similar
languages including MUSIC V, MUSIC 11, and MUSIC 360.
Like the progranms. developed before it, MUSIC 1000 also
possesses some idiomatic problems which can make certain
musical procedures somewhat difficult. MUSIC 1000,
however, does provide the user with a tangible and useful
format for creative expression and real-time synthesis.

MUSIC 1000 OVERVIEW

(As stated in Chapter 1,) MUSIC 1000 is designed to
make use of two separate sections of textual information
which must be created independently. The interaction
between the two is critical. These independent sections
are known as the Score and the Orchestra. The Score
contains data for musical realization including pitch
specifications for the instrument(s), tempo and amplitude

values, and additional information such as location and
delay time parameters. The Orchestra section of MUSIC
1000 is used to create instruments in a fashion which is
conceptually not unlike creating an instrument by
"patching” on a traditional synthesizer. The instrument
must be defined according to the rules imposed by MUSIC
1000 but the flexibility is significant. The instrument
developed within the Orchestra section then looks for the
values (known as parameters) located within the Score
section and executes these instructions accordingly. An
analogous process might involve the construction of a
violin (the Orchestra), and the sheet music which
instructs the violinist what to play (the Score).

SYSTEM PARAMETERS

The Score section of MUSIC 1000 contains various
parameters which are numerical values specified by a 2's
compliment depiction of a 16 bit number (within a range
of -32767 and +32767). Any values used in the Score must
fall within this range or an error message will result.
The Score appears as lines of text and each line of the
Score section is executed before the computer moves on to
the next. Each of these lines may contain as many as 50
parameters. The first three parameters (known as pl, p2,
and p3 respectively) are fixed with a specific meaning.
The remaining parameters, p4 through p50, are available
for user definition.

The first parameter, pl, refers to the instrument
reference number. The number of possible instruments
which can be used at any one time depends upon the
conplexity of the Orchestra and the available memory
space within the DMX-1000 itself. In general, the first
instrument used in the Score will be known as 1, the
second as 2 and so forth. This does not, however, imply
order of appearance since instrument numbers may be of
any value as long as duplication is avoided.

The second parameter, p2, represents the starting
time of the instrument in arbitrary units known as beats.
The instrument will not become active until it is
instructed to do so. Parameter p2 allows for a delay or
pause to be inserted before the instrument is made
active. If the value 10 for example is used at p2, a ten
second pause would occur before the instrument becomes
active.

The third parameter, p3, refers to the duration of

the event in beats. The instrument will become active
for the duration specified at p3 which defaults to time
in seconds. A value of 10, therefore, when used at p3
will create a duration of 10 seconds for the specified
instrument. The rest of the parameters, p4 through p50,
are available to the user for various implementations
which will be discussed in detail throughout the
remaining portions of this manual.

In order to illustrate the first three parameters,
an i (event) statement from the Score will be used. The
first character in the line is the opcode i which creates
an event (this will be elaborated upon in following
chapters). The three characters which follow the i are
the first three parameters, pl, p2, and p3 respectively.
The values used in the example below would create an
event for instrument number 1 which delays for 10 seconds
then becomes active for 10 seconds.

<i statement inst# delay duration>
i 1 10 10

SYSTEM TIMING RELATIONSHIPS

The DMX-1000 utilizes three separate timing features
which are available for use in both the Score and the
Orchestra sections of MUSIC 1000. These three timing
clocks are referred to as the I-rate, X-rate, and K-rate
variables. These variables can be used for different
types of instrument control computation according to a
selected rate. These clocks can also be used to trigger
certain events at specified times throughout the
execution of a MUSIC 1000 program.

The JI-rate variable refers to the initialization
rate of an event for any single instrument. This
initialization rate is executed within one millisecond at
the time that the instrument becomes active. I-rate
instructions allow for the computation of numerical
values before the instrument is made active. This may be
necessary for the calculation of envelope attack and
delay times, pitch parameters and so forth. I-rate
addition, for example, is accomplished with an IADD
statement which adds two values together and places the
sum in a specified location.

The X-rate variable represents the audio rate or the
sampling rate of the DMX-1000. Two sampling rates are

possible, either 20kHz or 40kHz. The X-rate clock runs
at the selected audio rate and can be used for various
high speed computations and changes effecting the audio
output of the DMX-1000. X-rate calculations such as XADD
can be used to add audio signals for various
implementations including additive and modulation
synthesis.

The third available timing clock is known as the K-
rate, or control rate. This clock has a frequency of 100
Hz and it is used for continuous control signal
generation. Envelopes for example can be created with
KLINE statements which produce line segments (linear
events with a starting point, an ending point, and a
duration). 1Illustration 2.1 shows the relationships of
the three timing clocks described above.

Instrument
Becomes Active ;

<1 millisecond

I-Rate Timing

100 Hz

K-Rate Timing

20k or 40k Hz

X-Rate Timing

Illustration 2.1 System Timing Relationships

FLOWCHART DESCRIPTION

In order to illustrate the instrument created on the
DMX-1000, two styles of flowchart representations will be
presented. These flowchart diagrams will be used to
display the patch for any particular instrument in
standard formats for audio synthesis. The various
instruments can then be studied and evaluated according
to their architecture as illustrated by the flowchart
diagrams.

The first method of illustration was codified and
published by Strange (1972), and has since become a well

recognized format for patch notation. This method
involves the use of various symbols which represent
conventional synthesizer modules such as oscillators,
function generators, and amplifiers. These modules are
then connected with lines which initially represented
physical patch cords. Digital synthesizers, however,
require no physical patching with cords as this process
is now simulated entirely with software. While
electronic instruments have evolved considerably in
recent years, this method of patch notation is still
valid regardless of the type of synthesizer (or computer)
involved. 1Illustration 2.2 includes symbols which will
be necessary for this type of illustration as well as an
example of a simple audio patch.

T function out

ignal
in%fi? signal out
fg
control control I
input input
OSCILLATOR AMPLIFIER FUNCTION GENERATOR
. 1 .
fogue [. 832:"1
—® filter | filter amp signal out
ch |
bw
fg
FILTER A BASIC AUDIO PATCH

Illustration 2.2 Nodular Flowchart Components

The second type of flowchart diagram to be presented
is currently the accepted format at computer music
institutions such as The Center for Computer Research in
Music and Acoustics (CCRMA) at Stanford University, and
the Institut de Recherche et Coordination
Acoustique/Musique (IRCAM) in Paris. This method of
instrument illustration is based upon accepted graphic
representations of mathematical processes and it utilizes

10

"unit generators," which are essentially modules or
digital signal processors. These modules exist only as
numbers within the digital computer and are not physical
elements. Each unit generator has at least one input and
one output and may perform signal generation,
modification, or a combination of the two. Unit
generators may also be patched together in order to
create complex synthesis algorithms. Illustration 2.3 is
an example of a unit generator patch notation.

amp
freg amp
duration
SIGNAL i
- v Y e X
. 1 .
oug suotion
UNIT GENERATOR FUNCTION GENERATOR
signal in A BASIC
'I!I' AUDIO PATCH
of filter bw
i 1
l out

filter

FILTER

lﬁ?ﬂ
Illustration 2.3 Unit Generator Components

The two methods of patch notation introduced above
will be used to illustrate the MUSIC 1000 code in a
graphic fashion. The illustrations are intended to
clarify the examples presented in following chapters.
Each example will be diagrammed with specific parameters
from the appropriate MUSIC 1000 code in order to provide
detailed information regarding the patch. Two styles of
graphic notation are used to reinforce the examples
construction and the relationship of the MUSIC 1000 code
to the actual software patch.

11

CHAPTER 3

BASIC SYNTHESIS CONVENTIONS

Additive synthesis, subtractive synthesis, and
modulation synthesis can be demonstrated with audio
examples programmed in MUSIC 1000 for the DMX-1000
computer. These synthesis techniques can also be
represented graphically with flowchart diagrams,
musically notated illustrations of the spectral content
of the example, and spectral analyses obtained through
fast fourier transforms (FFT). A number of MUSIC 1000
conventions will be used throughout the examples
presented in following chapters and these conventions can
be summarized in advance.

The Score section of MUSIC 1000 contains a set of
numbers which correspond with various parameters defined
in the Orchestra. These parameters are numerical values
which are assigned to specific functions or processes
such as modulation index, oscillator frequency. etc. The
Score is organized with parameters beginning at pl (or
parameter #1) on the ieft, followed by p2., p3, etc. with
a maximum limit of 50 parameters allowed. The Score is
executed one line at a time from the top down. A
different value for any parameter from one line to the
next will create a change in some aspect of the output of
the DMX-1000. The following illustration diagrams this
process.

Parameter Fields —§ pl p2 p3 pi . . . p50

Numeriocal Values —p nl n2 nd nd

. . . nb50
Instrument RNumber -——T ? ? T T
Starting Time __—-—l

Duration

Assignable Parameters

Illustration 3.1 Score and Parameter Relationships

12

The Orchestra portion of MUSIC 1000 is used to build
various instrument configurations. These instruments
then refer to the Score for parameters which represent
controlling aspects of the audio output. Only the first
three parameters of the score are not user definable.

The remaining parameters, p4 through p50, can be assigned
to control some part of the instrument. For example,
parameter p4 can be used to control the audio output of
the DMX-1000. As p4 is varied from one line of the Score
to the next, the amplitude of the audio output also
changes.

Both the Score and the Orchestra section require
that certain MUSIC 1000 words are included for proper
operation of the DMX-1000. In addition, a number of
words will be common to each example listed in subsequent
chapters. The following section addresses various MUSIC
1000 words necessary for the Orchestra and the Score.

ORCHEBSTRA CONVENTIONS
Orchestra Syntax

The Orchestra consists of a number of statements
which are executed sequentially in the following format:

ORCH [fast] [,lead]
functions
instruments

The MUSIC 1000 word ORCH is a required element of
the Orchestra. The word ORCH begins the Orchestra. Two
options (which are identified by brackets) are also
possible, [fast], and [,lead]. 'The word FAST, if
present, allows the DMX-1000 to operate at a sampling
rate of 40kHz which establishes a frequency range of OHz
to 20kHz (the maximum obtainable frequency equals one-
half of the sampling rate). If FAST is not present, the
DMX-1000 will default to a sampling rate of 20kHz
establishing a OHz to 10kHz range. The advantage of using
the default sampling rate, 20kHz, is improved frequency
resolution throughout the entire 10kHz range.

The second option [,lead] refers to a lead time for
processing in which numerical calculations can occur.
LEAD is represented by a numerical value preceded by a
comma. Lead time is necessary when there are large
quantities of numerical calculations required. Typical
lead values range from 10000 to 25000. The ORCH

13

statement may have the following format:
ORCH fast ,25000

Note: MUSIC 1000 does not make a distinction between upper
and lower case text formats. Both are acceptable.

Function Declarations

MUSIC 1000 uses functions that can generate
waveforms, envelopes, tables, and various types of
filters. Function declarations create the function by
setting up tables of numbers to be used for processing or
synthesis. The word FNCTN begins the function
declaration which has the following format:

FNCTN NAME, SIZE, TYPE [,NORMAL]
[Nargs, argument list]

NAME refers to a user selected title for the
function by which it will be referred to elsewhere in the
Orchestra. A function which generates a sine wave for
example could be named sine. A partial FNCTN declaration
with the NAME sine would look like this:

FNCTN sine,

Due to the fact that functions are essentially tables
of numbers, memory space must be reserved for each
function declaration. SIZE is the amount of memory which
will be allotted to an individual function. SIZE must be
a power of 2 between 8 and 2048, and the larger the size,
the better the resolution of its function. A maximum
limit of 4096 is imposed by the hardware, therefore, the
sum for all SIZEs used in any Orchestra must be 4086 or
less. Functions utilize both the DMX-1000 data memory
and the host computers internal memory. An incomplete
FNCTN declaration with the NAME sine and a SIZE of 1024
would appear as follows:

FNCTN sine, 1024,

TYPE refers to the nature of the function to be
generated. There are many TYPEs available which allow
for filtering, fourier synthesis, enveloping etc. (refer
to the MUSIC 1000 manual for a complete listing).
Fourier synthesis for example is achieved by selecting
fourier as the TYPE. The above FNCTN declaration with

14

the addition of fourier as TYPE would be:
FNCTN sine, 1024, fourier

The optional argument NORMAL is used to eliminate
aliasing or overflow by proportionally scaling numerical
values so they do not exceed 32767. The numerical
values, known as the argument list, are located on the
second line of the function declaration and can not
exceed 32767 when added together. If the sum of the
numbers in the argument list exceeds 32767, the word
NORMAL can be used to scale the values so overflow does
not occur. NORMAL, when added to the FNCTN declaration
from above would appear as follows:

FNCTN sine,1024,fourier,normal

Nargs represents the number of arguments, or the
number of elements which will be used to generate
specific functions. Nargs is a value followed by a comma
and the argument list. The argument list must contain as
many values as determined by Nargs, each of which must be
separated by commas. The argument list can be used to
specify individual harmonic amplitudes, the points of an
envelope, the contour of a filter, etc. The included
audio examples will provide additional information
concerning this process. The complete FNCTN declaration
including Nargs and an argument list would appear as
follows:

FNCTN sine, 1024, fourier,normal
1,32767

It is important to note that the argument normal is
not needed in this application since the wvalue on the
second line of the function declaration does not exceed
32767. It has been retained, however, for the sake of
continuity and it would not affect the operation of the
program.

Instrument Declarations

Instrument declarations are used to create sound-
generating instruments and are often referred to as one
voice or one part. Instruments are called upon to become
active or played by the Score. Instrument declarations
have the following format:

15

INSTR N

storage allocation statements
unit statements

ENDIN

INSTR designates the beginning of a user defined
instrument declaration. N refers to the number of the
instrument. Instrument numbers should not be repeated in
the Orchestra and they are usually consecutive in nature.
Consecutive numbers, however, are not imperative.

Storage Allocation Statements are used to set aside
memory space for variables which are identified by user
selected names. The variable names must begin with a
letter and be no longer than six characters. Variables
can be used to hold the output of certain I-rate or K-
rate computations as they are essentially memory
locations that hold the results of mathematical
operations.

Storage may be allocated for variables which can be
either local or global in nature. Local variables are
used only within the instrument for which they are
defined. Global variables may be used with any
instrument created in the Orchestra. The format for
storage allocation is as follows:

LOCAL <varl,var2,...>
GLOBAL <varl,var2,...>

The words in brackets, varl and var2, represent
variable names. The name for each variable should be
descriptive of its purpose. For example, an amplitude
envelope could be named ENV. A number of variable names
are reserved and must not be used (refer to the MUSIC
1000 manual for a complete listing). An example of a
LOCAL statement which reserves memory space for two
variables, envl and env2, is as follows:

LOCAL <envl,env2>

Unit Statements represent specific functions or
processes which generate and control sound. Units
consist of oscillators, modifiers, output control etc.
Unit statements are used to create audio patches by
connecting a number of units together with software.

Unit Timing refers to the rates at which various
units operate, (See Chapter 2, page 3). There are three

16

timing rates available, I-rate; K-rate and X-rate. I-rate
occurs only once during each event. K-rate is executed
every 10ms while the instrument is active and is similar
in nature to a control voltage. X-rate code occurs at
the sampling rate of the instrument, either 25 or 50
microseconds (20kHz or 40kHz). X-rate events generate
audio rate signals.

Unit statements are preceded by a letter which
designates its timing frequency, either K, I, or X. The
following section is a list of unit statements are used
in the examples to be presented later. Refer to the
MUSIC 1000 manual for a complete listing of unit
statements.

KLINE ROUT, Istart, Idur, Iend
KLINE is a unit statement which is used to generate
a single line segment. This line segment begins at the
value Istart, travels to value Tend over a time specified

by Idur. Simple envelopes can be created with KLINE as
shown in illustration 3.2.

Iend

Idur

Istart

Illustration 3.2 KLINE Envelope Diagram

A simple KLINE statement which begins at 0, (Istart)
travels to 100, (Iend) over a duration of 10, (Idur)
would have the following format, while the output of the
KLINE statement is placed at KOUT, or in this example,
placed into the variable envl.

KLINE envl, #0,#10,#100

Note: the <#> symbol must be used in front of numerical
values in the Orchestra section of MUSIC 1000.

The OSCIL statement is used to generate either

17

audio-rate or sub-audio oscillators. The OSCIL component
contains four elements which determine the overall output
of the designated oscillator. The first element, XOUT,
refers to the register or location of the oscillators
signal. XOUT is typically assigned to a register within
the DMX-1000 such as x6 or x7. IFUNC represents a
function generated with the FNCTN statement. The function
name must be preceded by the # symbol. XKSI refers to
the frequency of the oscillator as specified by either an
X-rate or a K-rate value. XKVOL also may use an X-rate
or a K-rate value to specify the amplitude of the
oscillator.

OSCIL XOUT, IFUNC,XKSI,XKVOL

The following is an example of the OSCIL unit
statement as it may appear in the Orchestra using x7 as
an output location, (x7 is a memory location or register
within the DMX-1000), the FNCTN sine, the parameter p4
for frequency input, and p5 for volume {p4 and p5 are
located in the Score).

OSCIL x7,#sine,pd,p5

An XNICE statement is included mainly to eliminate
"elicks" at the beginning and end of a sound. This is
achieved by the generation of very short ramps (50ms
unless otherwise specified by [IDUR]), at the start and
end of the output. The signal is brought into XNICE at
XIN, and is placed at the location specified by XOUT.

XNICE XOUT,XIN, [IDUR]

The XNICE unit statement might appear in the
following manner using register x7 for both the input and
output locations:

XNICE x7,x7

Note: Registers may be compared to patch cords as various
signals can be routed through the available zegisters
in the same way a signal can be transferred through a
wire. The available registers which appear to work
with most applications are x6, x7, x8 and x9. Other
registers do exist, but they may be in use, depending
‘on the complexity of the instruments in the Orchestra.

OUT is used to place the signal located at XIN at

the specified channel(s). Channels are determined by the
value ACHNL. 1If ACHNL = 1, output occurs through channel

18

A only. If ACHNL = 2, output is at channel B only. If
ACHNL = 3, output occurs at both channels.

our XIN,ACHNL

An example of the OUT statement which uses register
X7 as its output, and the value 3 for channel location
would appear in the Orchestra as follows:

ouT x7.,3

A comment statement is technically not a unit
statement since it has no effect on the DMX-1000. The
semicolon (;) is used in the Orchestra for documentation.
Anything following the semicolon is ignored by the DMX-
1000. Comments are for informative purposes only and
they do not affect the operation of the MUSIC 1000
program.

COMMENT STATEMENT ; comment
A COMMENT statement for example may be:
H Frequency Modulation Voice 1

ENDIN is a word which must conclude each instrument
created in the Orchestra. ENDIN signals the end of an
instrument and it is an essential element.

SCORE CONVENTIONS

The Score section of MUSIC 1000 contains information
which is used to control various events. Events must
have at least three properties: an instrument number, a
starting time, and a duration. These properties are
listed in the form of parameters and as many as fifty
parameters can be associated with any single event.

The Score is organized in a sequential manner with a
single alphabetic character (or opcode), followed by
parameter fields, or pfields. Pfields may be positive or
negative numeric values and floating point numbers are
allowed. The format for score is as follows:

opcode pl p2 p3 ... p50
The following Score Statements are used throughout

the examples presented in following chapters. For a
complete list of possible score statements refer to the

19

MUSIC 1000 manual.

COMMENT STATEMENT C comment

Tiie Score uses the C character to identify comment
statements. Anything following the C will have no effect
on the operation of the MUSIC 1000 program. Comments are
essential sources of documentation and may be used at any
point within the Score.

An example of a COMMENT statement as it might appear
in the Score is this:

c Frequency Modulation Scorel

SCALING STATEMENT X pl p2 p3...p50

The X statement is used to scale various numerical
values to make them more manageable by multiplying the
numbers by some factor. This process is important when
certain conditions, such as the expression of oscillator
frequency in Hertz, is desirable. Scaling statements are
used to make this possible. The X statement may contain
numerical values or any of the MUSIC 1000 scaling values
which are provided for the user. The following MUSIC
1000 scaling values are used in following chapters:

SCPS This scaling value allows for the
specification of oscillator frequency
in Hz.

DB The value DB allows for the specification

of amplitude in decibels.

A scaling statement which uses the scaling wvalue
SCPS at p4 and dB at p5 would appear as follows:

X 1 - . SCPS dB
Note: The dots located at p2 and p3 are characters which
are used to fill the space at these parameters since
the scaling statement ignores them. Any character
should work: however, the locations must be filled.
EVENT STATEMENT I pl p2 p3...p50

Event statements are used to call upon a certain
jnstrument to become active for a specified duration.

20

The I statement may include values for oscillator
frequencies, amplitudes, modulation frequencies, etc.
These values are placed in the various pfield locations
and used in connection with the Orchestra. An I
statement might appear as below:

<opcode pl p2 p3 pé p5>
I 1 . 10 -25 100

Note: The words enclosed in brackets above the I statement
are for reference only.

REST STATEMENT R pi p2 p3

The REST statement is used to create a rest for
instrument pl. The R statement creates a timed silence
by adding the duration, p3, to the p2 value of the next I
statement. A ten second REST for instrument 1 would have

the following format:

<opcode pl p2 p3>
R 1 . 10
END STATEMENT E

This statement signifies the END of a Score. All
Scores must end with the E statement on the final line of

code.

The conventions described above are common to the
examples which will be presented is the following
chapters. The definitions of these conventions will be
reinforced by applications appearing in the various
demonstrations. The examples are intended to jllustrate
general operations of the MUSIC 1000 language.

21

CHAPTER 4

ADDITIVE SYNTHESIS

.The demonstrations of additive synthesis are located
on Disk #1, titled Additive Synthesis Examples. Four
examples are included: Sine, Square, Saw, and Invert.

Additive, or Fourier synthesis is achieved by
combining sine waves with different frequencies and
amplitudes. This process enables the generation of
complex waveforms by the addition of simple sine tonmnes.
As more frequencies are added to the fundamental, the
resulting spectrum changes thereby varying the overall
timbre of the sound. By combining the proper frequencies
and amplitudes, additive synthesis can be used to create
basic waveforms such as the square wave, and the sawtooth
wave.

The following example demonstrates a sine tone at a
frequency of 220 Hz for a duration of ten seconds. The
flowchart patches are shown in illustration 4.1 while
illustration 4.2 is the MUSIC 1000 code for the patch.
Tllustration 4.3 shows the spectrum (or lack thereof) and
the waveform of the first example.

Ps Po
p4

x6

x6

xnice

x6

Out A Out B

22

x6

x6

env

¥

pS p3

f

PS5

—& Out A

x6

xnioe

i—p Out B

Illustration 4.1 Flowchart Diagraes for Additive Synthesis

SINE WAVE SYNTHESIS

The Orchestra

<1

<2

<3
<«

<5
<6>
<
<8
<9>
<10’
11)

The Score

1)

2)
<3

<4
5>
6>

orch

fnctn

instr
local
kline
oscil
xnice
out

endin

0 kM

Sine Wave Demonstration

sine,1024, fourier
1,32767

1

<env)
env,p5,p3,p5
x6,#sine,pd, env
x6,%x6

x6,3

Fourier Synthesis Example

pl
ins#

1
1

p2 p3 pé p5
start time freg ampl

. scps dB
o 10 220 -20

Illustration 4.2 MNUSIC 1000 Code for Sine Wave Generation

23

XAmplitude

1008 Fregquency NAmplitude

1. 219.88hz 1008

508

on

Frequency (Hz)

Illustration 4.3 Sine Wave and FFT Results

The Orchestra section which is used to create the
sine tone consists of eleven lines of code. The numbers
at the left in brackets are for reference only and are
not a part of the MUSIC 1000 language. The Score section
contains six lines of instructions and, like the
Orchestra, the numbers are for identification purposes
only. A line by line analysis of these two sections will
assist the user in developing a basic understanding of
the MUSIC 1000 format.

The Orchestra
<1> ; Sine Wave Demonstration

Line #1 of the Orchestra section is a comment which
provides a title for the example. The semicolon is used
for comment statements in the Orchestra.
<2> orch

Line #2 activates the Orchestra section with the
word orch. This is a required element of the Orchestra

and it must not be omitted. It is important to note that
both upper and lower case text formats are allowed.

24

Function Declaration

<3 fnctn sine,1024, fourier
<4 1,32767

Line #3 begins the FNCTN statement. These function
declarations are used to build numerical tables which, in
this case, represent wavetables. The function generated
in lines three and four of the code is that of a sine
wave. Line #3 is used to declare the name, size, and
type of function. In this example the name of the
function is sine, its allotted memory size is 1024, and
its type is fourier.

Line #4 is used to create the number of arguments,
(Nargs), and an argument list. The sine wave is a single
element and is generated through the Fourier process.
When the type is Fourier, the argument list refers to the
individual harmonics and their relative amplitudes. 1In
order to create a sine wave a single argument is needed;
therefore, the number of arguments must equal one. The
value 32767 refers to the amplitude of the sine wave.
Since 32767 is the maximum value allowed due to a 16 bit
limit, the sine wave will be at its maximum possible
amplitude. The output of the sine wave, however, may
still be attenuated by other parameters before reaching
the loudspeaker.

Instrument Declarations
<5> instr 1

Line #5 uses the word INSTR to refer to the selected
instrument and reference number. INSTR must be followed
by a numerical value which corresponds to a certain patch
or voice. This value is then used in the Score section
when the instrument is called upon to become active.

<6> local <env>

The LOCAL statement is a storage allocation
statement which allocates a storage area for the variable
named env. The variable env is local and will be
recognized and used only by instrument #l. The brackets
which enclose the word env are essential.
<7> kline env,p5,p3,p5

Line #7 is used to create a function or envelope by
generating a line segment. The envelope generated in

25

this example uses the variable name env established in
the previous line (notice that no brackets are used in
this statement). This envelope is used to control the
output of the instrument by generating an amplitude
function.

In the sine wave example a simple on-off type of
envelope is created with the KLINE statement. The
function titled env uses only two parameters from the
Score section. The parameters which are a part of the
Score, p3 and p5, represent numerical values. Parameter
p3 is a duration which in this case equals ten seconds
and the value, 10, can be found under p3 in the Score.
Parameter p5 is an amplitude value expressed in decibels
in the Score. This example uses an amplitude value of -
20 dB which is found under pS. Illustration 4.4 shows
the envelope env with the values from the Score section.

p5 -20dB p5 ~20dB

| p3 10sec ‘

I1llustration 4.4 Amplitude Envelope
<8> oscil x6,#sine,pd.,env

Line #8 contains the word OSCIL which is used to
generate an audio-rate oscillator. The OSCIL component
contains four elements which determine the overall output
of the designated oscillator. The first element, XOUT
refers to the output location of the oscillator. Xour
has been assigned to x6 which is a register within the
DMX-1000. These registers may be compared to traditional
patch cords which are used to transfer signals to and
from various units.

The second component of the OSCIL statement is
reserved for IFUNC. The function titled sine is preceded
by the number symbol (#) and used for this example. The
number symbol is used in the Orchestra to signify
constant numerical values, or functions, and it can not
be omitted. The frequency of the oscillator is
determined by the third element of the OSCIL unit. The

26

tone to be produced is to have a frequency of 220 Hz.
The value, 220, is located within the Score section of
the example at parameter p4. The Orchestra looks for p4
in the Score, finds a value of 220 in this location, and
applies it accordingly.

The final portion of the OSCIL statement represents
the amplitude of the oscillator. The XKVOL component
determines the output amplitude. The output of this
oscillator is controlled by the envelope env.

<9> xnice x6,x6

The ninth line of the Orchestra section uses the
word XNICE. The XNICE statement is included mainly to
eliminate "clicks" at the beginning and end of the sound.
Register x6 serves as both an input and output location
for the signal. :

<10> out x6,3

OUT places the signal x6 at the specified channel(s}).
The value 3, which follows x6 allows for audio output
through both channel A and channel B.

<11> endin

The final line of the Orchestra is ENDIN which
signifies the end of an instrument. ENDIN is a required
final statement for each instrument developed in the
Orchestra section.

The Orchestra is used to generate instruments by
connecting a series of modules together with software.
The type of synthesis to be used is based entirely upon
the instrument definition developed in the Orchestra.

The Score is then used to control and manipulate the
instrument according to the configuration created by the
user. The Score can not define synthesis schemes, it can
only control the instrument(s) in the Orchestra. The
following section describes the Score, and its
interaction with the Orchestra deiined above.

The Score

The Score section for the first audio example
consists of six lines of MUSIC 1000 code. Lines #1
through #3 are comment statements as designated by the
first character in the line, c.

27

<1> c Fourier Synthesis Example

<2> c pl p2 p3 p4 p5
<3 c ins# start time freq ampl

The above comment statements provide information for
the user which help to clarify the construction of the
Score. Line #1 is used as a title for the example, while
lines #2 and #3 document the parameter numbers and their
assigned applications.

<opcode pl p2 p3 pd p5>
<4> x 2 . . scps dB

Line #4 is a scaling statement which is identified
by the opcode x. Scaling statements allow for the use of
manageable numerical values for various types of
operations. In this example two pre-determined scaling
factors (scps and dB) are used for frequency and
amplitude. Parameter pl refers to instrument number and
since only one instrument is necessary for this example,
the number 1 is located under pl.

The x, or scaling statement ignores parameters p2
and p3. These parameters in the Score must be filled
with a character such as the period demonstrated here.

The MUSIC 1000 words scps and dB are scaling values
for oscillator frequency and overall amplitude. The
value scps, located at p4, allows for the specification
of oscillator frequency in cycles per second or Hertz.
The numerical equivalent for scps is 3.2768. The value
dB, located at p5, refers to an amplitude attenuation
value scaled in decibels. The range for the dB value is
from -96 (no output) to -0 (maximum output). The scaling
statements do not generate audio data but rather provide
a format for subsequent score lines.

<opcode pl p2 p3 p4 p5>
<5> i 1 0 10 220 -20

This i, or event statement is used to call upon a
specified instrument and activate it for a certain
duration. The first parameter always refers to
instrument number.

The second parameter is for starting time of the
instrument in arbitrary units known as beats. The
default time for one beat is one second. The value O is

28

used because it is not necessary to generate a pause
before the instrument is made active.

Parameter p3 represents the duration of the event.
This corresponds directly with the Orchestra and the
envelope created known as env. Parameter p3 was used to
specify the duration of the envelope. The duration of p3
is expressed in beats, therefore, under default
conditions the value 10 represents ten seconds.

The fourth parameter in this example is used for
oscillator fregquency, and the scaling statement in line 4
allows for it to be specified in cycles per second. The
p4 value of 220 is used to generate an oscillator
frequency of 220 Hz. This is possible due to the scaling
factor scps, which generates the proper numerical wvalue
for frequency expressed in Hertz.

The fifth parameter, p5, is used here to represent
amplitude attenuation and according to the scaling
statement is expressed in dB. The dB value of -20 is
applied to the envelope env. The value -20 when scaled
by the dB factor is 3277. This generates a moderately
loud output.

<6> e

The final line of the Score, line #6, is an end
statement. The opcode e is required to signify the end
of the Score. All scores must end with this line.

The above example for sine tone generation can be
easily modified in order to produce more complex
waveforms. The Score which has been used for the first
example will work equally well with the following Fourier
synthesis examples. Modification of the Score is
therefore unnecessary. The Orchestra section requires
only slight changes in the FNCTN portion of instrument
definition. The harmonic content of the generated sound
is the only element which will be effected by alteration
of the FNCTN statement.

SQUARE WAVE SYNTHESIS

In order to generate a square wave lines 1, 3, 4,
and 8 of the Orchestra must be changed. Lines 3 and 4
are used to create the harmonic content for the selected
instrument. The square wave contains only odd-numbered
harmonics and the amplitude for each harmonic within the

29

spectrum decreases as the harmonic number increases.
Illustration 4.5 shows the MUSIC 1000 code necessary for
square wave generation while illustration 4.6 shows the
FFT results and waveform.

The Orchestra

1> s Square Wave Geperation

2> orch

3 foctn square, 1024, fourier,normal
P $,100,0,33,0,20,0,14,0,11
5 instr 1

6> local <env>

<7 kline env,p5,p3,p5

8 oscil x6,#square,pd, env

P xnice X6,%x6

10> out x6,3

11> endin

Illustration 4.5 MUSIC 1000 Code For Square Wave Generation

Line #1 in the above example has been changed for
informative purposes only. Line #3 requires two
alterations while line #4 has been expanded by the
addition of numerical values. Line #8 has been changed
to include the FNCTN name SQUARE.

The FNCTN name in line 3 has been changed from sine
to square. This line also contains the additional MUSIC
1000 word NORMAL. The statement NORMAL is used to
proportionally scale the harmonic amplitudes of the
function. The NORMAL statement also fills the table
which creates the function in a proportional manner.

This allows for the insertion of values based on
percentages of amplitude as demonstrated in this example.
The fundamental frequency has a value of 100, which means
that the fundamental will have 100% amplitude. The third
harmonic has the value 33 assigned to it, therefore, the
third harmonic will possess 33% of the amplitude of the
fundamental frequency.

Line 4 of the Orchestra contains the values

necessary for the development of the waveform. The first
value, nArgs, is equal to 9 and it represents the number

30

of arguments or harmonics to be used. The following
chart refers to the individual harmonics and relative
amplitudes of each as generated by the argument list.

Relative Amplitude Frequency, Amplitude Percent
Value #1 = 100 --- Fundamental frequency, 220 Bz
Value #2 = 0 -—— 2pnd Harmonic #, no amplitude
Value #3 = 33 -—~ 3rd Harmonic #, 660 Hz, 33%
Value #4 = 0 ~—— dth Harmonic #, no amplitude
Value #5 = 20 ~-- 5th Harmonic #, 1100 Hz, 20%
Value #6 = 0 -—— 6th Harmonic #, no amplitude
Value #7 = 14 ~=~ 7th Barmonic #, 1540 Hz, 14%
Value #8 = 0 ~—- 8th Harmonic #, no amplitude
Value #9 = 11 -—— 9th Barmonic ¥, 1980 Hz, 11%

The spectrum resulting from the information above
approximates that of square wave. The Fouriex process of
additive synthesis allows for the development of
different waveforms with very few alterations to the
MUSIC 1000 code. The following examples will reinforce
this process.

Ly M| - /\NJM P

%Amplitude

100% Frequancy SAmplitude

219.88hz 100%
660.88hz 33.2%
1100. 66hz 20.6%

S0 1541. 66hz 14. 4%

n A W N e

1981.44hz 11.9%

L .) .| ;

Frequency (Hz)

Illustration 4.6 Square Wave and FFT Results

31

SAWTOOTH WAVE SYNTHESIS

The Orchestra

<1> : Sawtooth Wave Generation
2) orch

3 fnctn saw, 1024, fourier,normal
') 7,100,50,33,25,20,16,14
<5 instr 1

6> local env>

7> kline env,p5,p3,p5

8) oscil x6,#saw,p4,env

9> xnice x6,x6

<10 out x6,3

11> endin

Illustration 4.7 MUSIC 1000 Code For Sawtooth Wave Gemeration

!
' |
!
o A LS \
I 4
ANz \ 1
_/'/ ol
v V Y Y !
SAmplitude
mmp Frequency SAmplitude
1. 219.88hz 1008
2. 439.77hz 36.7%
3. 660.98hz 33.2%
so% 4. $80.77hz 27.9%
5. 1100.66hz 20.5%
6. 1320.55hz 14.3%
7. 1541.66hz 12
1 2 3 4 S| 6l 7|
o

Frequency (Hz)

Illustration 4.8 Sawtooth Wave and FFT Results

32

INVERTED WAVE SYNTHESIS
The Orchestra-

1> ; Inverted Spectrum WNaveform

2> orch

3 fnctn invert,1024, fourier,normal
4> 7.1,5,10,20,40,80,100

<5 instr 1

6> local env>

7> kline env,p5,p3,p5

8> oscil x6, #invert,pd, env

<9 xnice x6,x6

<10) " out x6,3

11> endin

Illustration 4.9 MUSIC 1000 Code For Inverted Spectrum WNaveform

by —+ A, A
Y LT Yy T PR ALL Y
AT A L A
XAmplitude
- Prequoncy NAmplitude
. o e
3. 660.e8hz 9.9%
4 ©00.77hz . 22.1%
" S. 1100.66hz €0.7%
6. 1320.55hz 60.4%
o8 1 2y 3| ..J s 6 2 7. 1541.66hz 100%

Frequency (Hz)

J1lustration 4.10 Inverted Wave and FFT Results

33

Additive synthesis is a useful tool for creating
various steady-state timbral configurations by altering
the components that generate the waveform. MUSIC 1000
allows this to be accomplished on the DMX-1000 using the
word FOURIER, or by building numerous, discrete
oscillators.

34

CHAPTER 5

SUBTRACTIVE SYNTHESIS

The models for subtractive synthesis are located on
disks #2, #3, and #4 titled Subtractive Synthesis
Examples. There are three examples, one on each
diskette: Band-pass Filtering; Hi-pass Filtering; and Lo-
pass Filtering.

Subtractive synthesis involves the removal of
unwanted frequency components from a complex source by
the use of filters. Digital filters such as those found
in the DMX-1000 are created by numerical calculations
known as filter coefficients. The following subtractive
synthesis example involves the use of a band-pass filter
with variable center frequency and band width. The
complex source to be filtered is a pseudo-random noise
generator which allows filter changes to be easily
recognized.

The first subtractive synthesis example produces a
noise source and a band-pass filter. This example
generates 5 separate 5 second events in which the center
frequency of the filter changes with each event. A one
second rest is used to separate the events. The band
width of the filter is set at 20 Hz, while the center
frequency assumes 100 Hz, 500 Hz, 1000 Hz, 3000 Hz, and
5000 Hz. Illustration 5.1 shows the flowchart patches
for this example while illustration 5.2 shows the ideal
(not actual) spectra of this example. Illustration 5.3
is the MUSIC 1000 code for the band-pass filtering
demonstration. '

~—ap Out A
x8 | amp x8 filter x9 & xnioe x9
* ’ L__p» Out B

p5> p6

env

p4 p3 P4

35

p3

A,

x8

PS> —¥

filter

4— pb

I

xnioe

x9

Out A Out B

Illustration 5.1 Flowchart Diagrams for Subtractive Synthesis

fAmplitude
1003

SOV

0%

Frequency (Hz)

I1lustration 5.2 Band-Pass Spectra

36

(Ideal)

Frequency

100hz cf
SO00hg cf
1000hz ct
3000hs cf
5000hz cf

[A

SAmplitude

1008
1008
100%
100%
100%

cf = center frequancy

BAND-PASS FILTERING

The Orchestra

<1 7 Band-pass Filtering Demonstration
<2) orch

<3 instr 1

<4 local <env,coefa,coefb, coefc>
<5 kline env,p4,p3,.pd

<6) rand x8,env

<7 ixrco coefa, coefb, coefc,p5,pb6
<8) dreson x9,x8, coefa, coefb, coefc
9 xnice x9,x9

10> out x9,3

<11) endin

The Score
1> c Band-pass Filtering Demonstration

2 pl p2 p3 pé p5 p6

a

&) c ins§ start time ampl cfrqg bwidth
> X 1 . . dB scps Scps
5> i 1 . 5 -20 100 20
6> r . . 1

<7 i . . 5 . 500 .
<8 r . . 1

9> i . . 5 . 1000 .
10> r - . 1

11 1 . . 5 . 3000 .
12> r . . 1

13 b1 . . 5 . 5000 .
14> e

I1lustration 5.3 MUSIC 1000 Code For Band-pass Filtering

The Orchestra section of the above examnple contains
no FNCTN statement. This statement can be omitted
because the noise generator is created by using the word
RAND, and no FNCTN declaration is necessary. There are
only a few important alterations existing between this
subtractive synthesis example and the additive synthesis
examples previously presented. These changes will be
noted below.

37

The Orchestra
<4> local <env,coefa,coefb, coefcd

The LOCAL statement is used to allocate storage for
the variable env, which will perform the same task as it
did in the example presented in the previous chapter.
The new variable names are used to allocate storage for
three filter coefficients which are required for the
implementation of this particular filter; coefa, coefb,
and coefc.

<6> rand x9,env

The MUSIC 1000 word RAND is used to generate pseudo-
random noise. The format for RAND is:

RAND XOoUT, [xkvol]

This format requires a register from which the noise
generator may be ocutput, and an optional amplitude value
or envelope. The simple envelope eav can be used and x8
will serve as the XOUT register.

Note: Registers x6 and x7 can not be used with the DRESON
filter component (described below) as these registers
are reserved for filter implementation.

<7> ixrco coefa, coefb,coefc,p5,pb

IXRCO represents a mathematical process which is
used to calculate filter coefficients for the band-pass
filter. Parameter p5 is used to control the center
frequency of the filter, while p6é is used for band width
control. The numerical values to be used for these
parameters are located in the Score section of this
example. The bandwidth and center frequency of the
DRESON filter are not k-rate units. Dynamic filtering is
therefore not possible using DRESON.

<8> dreson x8,x9,coefa,coefb,coefc

DRESON is a double precision (32 bit), second-order
recursive audio-rate band-pass filter. (A 16 bit filter,
RESON, is no longer a part of the current version of
MUSIC 1000). DRESON uses the filter coefficients which
have been calculated by the word IXRCO, and generates a
digital filter. Register x9 represents an output
register which is where the filtered signal will be

38

placed. Register x8 represents the input signal to the
filter. The noise generated by the word RAND in line #6
is used as the input signal. The filter coefficients
complete the DRESON format.

The Score

The Score used to demonstrate subtractive synthesis
is very similar to the Score used for the additive
synthesis examples. The first example generates a band-
pass filter with a center frequency and band width
controllable through the Score. A few modifications will
allow the Score to generate either hi-pass or lo-pass
filtering. Illustration 5.5 shows the necessary code for
hi-pass filtering, and jllustration 5.6 shows the ideal
results for the filter. A listing of the code for band-
pass filtering will first be presented for the purpose of
comparison. Note the changes occurring at parameters p5
(cfrqg), and p6 (bwidth).

1> c Band-pass Filtering Demonstration

2> c pl p2 p3 pé pb5 p6
&P, c ins#§ start time ampl cfrq bwidth
'¢')) x 1 . . dB scps scps
5> i 1 . 5 -20 100 20
6> r . . 1

<7 i . . 5 . 500 .
8> r . . 1

<9 i . . 5 . 1000 .
<10 r . . 1

11> I . . 5 . 3000 .
12> r . . 1

13 i . . 5 . 5000 .
<14 e

Note: The dot character used in lines 5 through 13 allows
the value from the previous line and same parameter
nunber to be carried over to the next line. This
eliminates the need to type the same value on each
line of code. ‘

39

HI-PASS FILTERING

The Orchestra

1> H Hi-pass Filtering Demonstration
<2) orch fast

<3 instr 1

C- % local <env, coefa,coefb,coefc)
5> kline env,pd,p3,pd

<6 rand x8,env

<7 ixrco coefa, coefb, coefc,p5,pb
<8 dreson x9,x8,coefa, coefb,coefc
9> xpice x9,x9

<10) out x9,3

<11 endin

The Score
1> c Hi-pass Filtering Demonstration

2> pl p2 p3 p4 p5 pé

(2]

3 c insf§ start time anmpl cfrq bwidth
'y x 1 . . dB fcps fcps
5 i 1 . 5 -20 10500 19000
6> r . . 1

<7 i . . 5 . 12500 15000
8 r . . 1

9 i . . 5 . 15000 10000
10> r . . 1

<11 i . . 5 . 17500 5000
12> e

Illustration 5.4 MNUSIC 1000 Code For Hi-pass Filtering

40

%Amplitude

Prequency SAmplitude

1008
1. 1000hs cf 100%
cf = cutoff frequency
Sos
o
° 20K
Frequency (Hz)
%Amplitude
1008 Frequency SAmplitude
2. SO0O0hz cf 100%
cf = cutoff frequency
$0%
2
ox
0
Frequency (Hz)
¥Amplitude
1008 Frequency SAmplitude
3. 10000hz cf 1008
cf = cutoff frequency
so%
3
os
° 20x
Frequency (Hz)
FAmplitude
1008 Frequency SAmplitude
4. 15000hz ctf 100%
cf = cutoff frequency
508
4
os
0 . 20k

Frequency (Hz)

Illustration 5.5 Hi-Pass Spectra (Ideal)

41

In order to generate Hi-pass filtering, the band-
width is used to determine the amount of signal which is
to be passed. For example, the first of the four events
presented above passes frequencies between 1 kHz and 20
kHz. This is achieved by specifying a band-width of 19
kHz, i.e., 20k - 1k = 19k. The center frequency must
then be calculated in order to pass all frequencies from
1kHz to 20 kHz. The value is 10.5 kHz, and it allows
one-half of the band-width (9.5 kHz) to pass both above
it and below it. Mathematically, the filter passes the
following:

10.5 kHz - 9.5 kHz

1l kHz

10.5 kHz + 9.5 kHz 20 kHz

Note: 1In order to specify frequencies above 10kHz, the
scaling value fcps must be used, and, the Orchestra
must contain the word fast following orch. (See
above).

The remaining three events were calculated in the
same manner and the results of the hi-pass example are as
follows:

1. 1 kHz to 20 kHz

2. 5 kHz to 20 kHz

3. 10 kHz to 20 kHz

4. 15 kHz to 20 kHz

Lo-pass filtering is also possible with the band-

pass filter DRESON by reversing the process described in
the previous example. In this case, the frequencies to
be passed will range from 0 Hz to the specified cutoff
frequency. The MUSIC 1000 code necessary for lo-pass

filtering is listed in illustration 5.6 and illustration
5.7 is a diagram of the ideal results from the filter.

42

LO-PASS FILTERING

The Orchestra

<1 ; Lo-pass Filtering Demonstration
79 orch fast

3 instr 1

4 local <env,coefa,coefb,coefc)
5 kline env,pd,p3,.p4

6> rand x8,env

7> ixrco coefa,coefb, coefc,p5,pb
8> dreson x9,x8,coefa, coefb, coefc
€2 xnice x9,x9

10> out x9,3

11> endin

The Score

1> c Lo-pass Filtering Demonstration

2 c pl p2 p3 p4d p5 j:13
<3 c insf§ start time ampl cfrq bwidth
'y x 1 . . dB fcps fops
<5 i 1 . 5 -20 500 1000
6> r . . 1

<7 i . . 5 . 2500 5000
(8> r . . 1

9> i . . 5 . 5000 10000
10> r . . 1

<11 i . . 5 . 7500 15000
15> e

Illustration 5.6 MNUSIC 1000 Code For Lo-pass Filtering

43

%Amplitude

1008

Proquency SAmplitude
1. 3000hz cf 100%

cf = cutoff frequency

S0
1
oy
20k
Frequency (Hz)
XAmplitude
1008 Proquency SAzplitude
2. 5000hz cf 100%
cf = cutoff frequsncy
So%
o8 E:
0 20k
Frequency {(Hz)
litude
?::p Frequency SAmplitude
3. 10000hz cf 100%
cf = cutoff frequency
s00
3
1]
4 20k
Frequency (Hz)
fAmplitude
1008 Prequency SAmplitude
4. 15000hz cf 100%
cf = cutoff frequency
so8
[]
° 20x

Illustration 5.7 Lo-Pass Spectra (Ideal)

Frequency (Hz)

44

The results
1.
2.
3.

4.

of the
0 Hz
0 Hz
0 Hz

0 Hz

above example are the following:
to 1 kHz
to 5 kHz
to 10 kHz

to 15 kHz

45

CHAPTER 6

MODULATION SYNTHESIS

The demonstrations of frequency modulation are
located on disk #5, titled Frequency Modulation Examples.
The examples of amplitude modulation are located on disk
#6, titled Amplitude Modulation Examples.

Modulation synthesis is achieved by changing or
modulating one signal with another signal. Sub-audio
rate modulation can be used to create effects such as
vibrato and tremolo. Audio rate modulation can be used
to build timbral spectrums which may be easily altered
through dynamic processes. Both frequency modulation
(FM) and amplitude modulation (AM) are possible on the
DMX-1000, and examples of each will be included in this
section.

FREQUENCY MODULATION

Frequency modulation synthesis was extensively
explored by John Chowning (see bibliography) at
Stanford's CCRMA. Chowning proved that frequency
modulation can be used to generate realistic instrument
timbres by varying the modulation index over time. The
DMX-1000 is capable of similar complex modulation
configurations. MUSIC 1000 includes the word FRQMOD
which is used for linear frequency modulation. FRQMOD is
capable of producing either audio-rate synthesis or sub-
audio modulation. Illustration 6.1 shows the flowchart
patches for an FM voice. The FFT results and waveforms
are shown in illustration 6.2. Illustration 6.3 is an
example of the MUSIC 1000 code which uses the word FRQMOD
to generate a signal with a modulation frequency that is
changed via software every 5 seconds.

46

p?

p Out A
x6 x6 . x6
g xnioce -_——{
Out B

env
pS amp
Fre
péd p3 pd
indx
¥
#0 p3 pb
p3

xnice

x6

‘o

Out A Out B

Illustration 6.1 Flowchart Diagrams for Fregquency Nodulation

47

N IN/ T NS

¥Amplitude
100% Frequency SAmplitude
1. 219.88hz 1008
so%
$UB-AUDIO
1
oy

Frequency (Hz)

%Amplitude
Frequen:] 1itud

1008 R quency Amp o

1. 109.94hz 56.3%

2. 219.88hz 100%

3. 329.63nz 58.1%

4. 439.77hz 15.3%
508

.5:1 RATIO 5. 549.72hz 2.4%

1] 2] 3] 4} 5

Frequenoy (Hz)

48

$Amplitude
Frequency SAmplitude
100%
1. 219.88hz 1008
2. 439.77hz 41.8%
3. 660.68hz 11.18
4. $80.7%z 2.4%
508
1:1 RATIO
1 3 4
os 2 l]
Frequency (Bz)
A Al A A
CALV R A A DA AN
i \/ \/ v \/ V / \/
!
litude
T:::P Frequancy SAmplitude
1. 219.e8hsz 100%
2. 660.86hz 25.7%
3. 1100.66hz 12.2%
S0%
2:1 RATIO
1 2 3
ox]

Frequenocy (Hz)

49

:::phtuda froquency SAmplitude
1. $0.40hz 57.28%
2. 219.88hs 1008
3. 400.69hz 15.0%
son 4. 530.18hz s7.98
1.41:1 RATIO S. 710.97hsz 2.3
6. 840.46h3 15.2%
7. 1150.75hs 2.6%
w B2 3 4 56 7

Frequency (Hz)

Illustration 6.2 FFT Results And Waveforms

50

The Orchestra

1>

2

3
)

5>
6>
7>
8

P

<10
<11
12>

The Score

<1

2>
3

ey
5
6>
7>
<8
9
<10’
11>
12>
13>
14>

H Frequency Nodulation Demonstration
orch
fonctn sine,1024, fourier

1,32767
instr 1
local <env, indx)
kline env,pd,p3,p4d
kline indx, #0,p3, p6
frgmod x6,#sipe,p5,indx,p7,env
xnice x6,x6
out x6,3
endin
c Frequency Modulation Demonstration
c pl p2 pJ p4 p5 Pb
c insf start time ampl @mfrq indx
x 1 . . dB scps scps
1 1 . 5 =20 5 5
r . . 1
i . . 5 . 110 110
r . . 1
i . . 5 . 220 220
r . . 1
i . . 5 . 440 440
r . . 1
i . . 5 . 310 310
e

Illustration 6.3 MUSIC 1000 Code for Frequency Modulation

51

p7
cfrg

scps
220

Analysis of the FM instrument patch utilizes many
MUSIC 1000 words which have been used in the previous
examples. This FM instrument uses a sine wave for both
the modulating signal and the carrier signal. Five
different modulating frequencies are used in order to
jllustrate both sub-audio and audio-rate modulation.

The Orchestra

<1 ; Frequency Modulation Demonstration
<2> orch

The Orchestra begins with the word ORCH located at
line #2.

3> fnctn sine, 1024, fourier
<4 1,32767

Lines 3 and 4 begin the function declaration. This
FM example uses a sine wave for both the modulating
signal and the carrier signal. The function statement
therefore will be identical to the sine wave generated in
the additive synthesis example.

<5> instr 1

The instrument number is assigned in line 5 of the
Orchestra. Like the previous examples, the instrument
reference number 1 is used.

<6> local <env, indx>

The LOCAL statement is used to allocate storage
space for two variables, env, and indx. These variables
will be used to create envelopes for amplitude and
modulation index.

<7> kline env,pd,p3,.pd

The amplitude envelope env is generated in line 7
and it uses parameters p3 and p4 from the Score.
Parameter p3 determines the duration of the event while

parameter p4, specified in dB, determines the output of
the instrument.

<8 kline indx,#0,p3,p6

KLINE is used to generate a linear slope to be
applied to the modulation index. This will create a

52

modulation index which gradually increases over the five
second duration of each event. The #0 represents a
constant value of zero. All constants must be preceded
by the # symbol. This index envelope begins at zero and
increases over the time specified by p3 to the value
located at p6 in the Score. Parameter pé is specified in
scps, or cycles per second.

<9> FRQOMOD Xx6,#sine,p5,.indx,p7,env

FROMOD is a MUSIC 1000 word which allows for the
generation of linear frequency modulation. FRQMOD
requires that a modulation frequency (mfrg), an index
(indx), a carrier frequency (cfrq), and an amplitude
value or envelope be specified. The proper syntax for
the word FRQMOD is as follows:

FRQMOD XoUT, IFUNC,XRMSI,XRNDX, XKCSI, XKAMP

.This frequency modulation component creates an FM
oscillator pair. Modulation occurs as the output of the
modulation oscillator is added to the frequency input of
the carrier oscillator. Both oscillators function in a
way which is similar to the OSCIL unit. The following
chart defines the format for FRQMOD:

XOUT = The register or location of the signal
IFUNC = The function to be used for synthesis
XKMSI = The modulation frequency
XRNDX = The modulation index
XRCSI = The carrier frequency
XKAMP = The amplitude of the signal

An equivalent version of FRQMOD could be constructed
in MUSIC 1000 code in the following fashion:

oscil x6,#sine,p5,indx
xadd x6,p4
oscil x7,#sine,x6,env

The results from the above would be identical to the
use of FRQMOD. The output of the first oscillator (the
modulator), which is located at x6, is added to the
carrier frequency parameter, p4. This signal is then
used to control the frequency of the carrier oscillator.

53

The Score

<1> c Frequency Modulation Demonstration
<2> ¢ pl p2 p3 p4 p5 pb6 p7
<3> ¢ ins# start time ampl mfrq indx cfrq

Lines 1 through 3 of the Score are comment
statements which clearly identify the various parameters
and their applications for this specific example. The
words below the parameter number refer to its application
as illustrated here:

pl = ins# (instrument number)

p2 = start (starting time in beats)

p3 = time (overall time or duration of an event)
p4 = anmpl (the amplitude of an event)

p5 = nfrq (the modulation frequency)

p6 = indx (the modulation index)

p7 = cfrq (the carrier frequency)

<opcode pl p2 p3 p4 p5 pé p7>
<4> x 1 . . dB scps Scps Scps

Line 4 is a scaling statement which provides
multipliers for various operations. The instrument
number is identified first by the value 1. The two dots
which follow are characters which £i11 the locations for
p2 and p3 since the X statement ignores these parameters.
The scaling value dB is used for output amplitude as in
the previous examples allowing for the instrument's
loudness to be specified in decibels. The scps scaling
factor is used for the next three parameters which
include the modulation frequency. the carrier frequency,
and the modulation index. Specification of the
modulation index in Hz is appropriate as various indices
can be easily achieved.

The audio result of this example will consist of five
FM events with different modulating frequencies for each
event. The five i or event lines provide the numerical
values necessary for this process. A rest of one second
separates the events as determined by p3 in each r
statement. The modulation index is specified in hertz
and its value equals the modulation frequency, therefore,
producing an index of 1. The Score, once again, is the
following:

54

<4> dB scps scps scps

X 1 . .
<6> 1 1 . 5 ~-20 5 5 220
<6> r . . 1
<7> i . . 5 . 110 110 .
<8> r . . 1
<9> 1 . . 5 . 220 220 .
<10> r . . 1
<11> i . . 5 . 440 440 .
<1l2> r . - 1
<13> 1 . - 5 . 310 310 .
<14> e

The audio result of this example can be listed as
follows:

cfrq = 220hz mfrq = S5hz = sub-audio

cfrq = 220hz nfrq = 110hz = .5 to 1 ratio
cfrq = 220hz mfrq = 220hz = 1 to 1 ratio
cfrq = 220hz nfrq = 440hz = 2 to 1 ratio
cfrq = 220hz mnfrq = 310hz = 1.41 to 1 ratio

AMPLITUDE MODULATION

Amplitude modulation is achieved by altering the
instantaneous amplitude of a carrier signal with a
modulating signal. The result can be used to generate
sidebands as well as create effects such as tremolo
(using a sub-audio modulating wave), and ring or balanced
modulation. AM is similar to frequency modulation except
that AM can only be used to generate one set of
sidebands, and not multiple sidebands as with FM.

MUSIC 1000 does not include a word which creates AM.
This voice must be configured according to the elements
necessary for amplitude modulation. Illustration 6.4
shows the AM patch with flowchart diagrams. Illustration
6.5 shows the FFT results and waveforms. This patch is
shown in MUSIC 1000 code in illustration 6.6. The
example generates a tone with a modulation frequency that
changes every five seconds.

55

4 p3 pd
vV e
env
x7 x7 . x7 Out A
p? g xnice
L Out B
5 x6 amp x6
indx
FF
#0 p3 pb
p3

xnice

‘'

Out A Qut B

I1lustration 6.4 Flowchart Diagraes for Amplitude Modulation

56 .

7N -

¥Arplitude
1008 Frequency MAmplitude
1. 219.88hz 1008
so%
SUB-AUDIO
1
os
Frequency (Hz)
N [[\\
J/ \ /f\\A// \\// \\ ,f\ /
%Amplitud
1008 race Prequsncy SAmplitude
1. 109.9¢hz 29.78
2. 329.83hz 1008
S0%
.$:1 RATIO
1 2
os

Frequency (Hz)

57

Frequency SAmplitude

X::plitude
AN TAAT AAL NS
NIV EAATIVANEAY
VAVERAVIVERVIVIERTA
Wy YNV V[VUV
i::plitude Proquency

2:1 RATIO

Frequency (Hz)

58

100%

SAmplitude

1008

XAmplitude ,

1008 requency SAmplitude
1. 90.40hz 98.778%
2. 530.17hz 1008

so8

1.41:1 RATIO
h 2
oN

Frequency (Hz)

Illustration 6.5 FFT Results And Waveforms

59

The Orchestra

1> K Applitude Nodulation Demonstration
2 orch

3 fnctn sine, 1024, fourier
D) 1,32767

(5) instr 1

6 local <env, indx)

7> kline env,p4,p3,p4

8) kline indx, #0,p3,p6

9 oscil x6,#sine,p5,indx
<10> xaul x6,env

11> oscil x7,#sine,p7,x6
12> xnice x7,x7

13> out x7,3

14> endin

The Score

1> c Applitude Nodulation Demonstration

2> c pl p2 p3 p4d p5 pé p7
&M c ins§ start time ampl mfrq indx cfrq
'y x 1 . . dB scps dB scps
5> i 1 . 10 -5 5 -10 220
6> r . . 1

<7 i . . 1n . 110 . .
8> r . . 1

9> i . . 10 . 220 . .
<100 r . . 1

11> i . . 10 . 440 . .
12> r . . 1

13> i . . 10 . 310 . .
<14 e

Illustration 6.6 MUSIC 1000 Code For Amplitude Modulation

60

Since MUSIC 1000 provides no word for AM (such as
frgmod for FM), the AM voice must be physically patched
through software. This is the reason for the word XMUL,
which allows for the multiplication of one signal by
another signal. The AM voice is achieved through this
process.

The Orchestra section which is used for this AM
example should, at this point, be relatively familiar as
it utilizes much of the same material required for the
previous examples. There are only three lines, 10, 11,
and 12, which may be somewhat unclear. These three lines
are used to create AM. The modulation process begins at
line 10.

<9 oscil x6, #sine,p5,indx

Line 9 is used to create a sine wave oscillator with
its signal placed at register x6. Its amplitude is
determined by the envelope indx.

<10)> xmul x6,env

Line 10 of the Orchestra is a multiplier which takes
the signal located at x6 and multiplies it by the
function env. This process essentially creates an
oscillator with a simple envelope.

<11> oscil x7,#sine,p7,x6

This oscillator uses the signal at x6 as an
amplitude input which creates the amplitude modulation.
It is important to note that the multiplication process
which has been executed in line 10 will produce an output
only if the values to be multiplied are greater than
zero. 1If either value equals zero, no output will be
the result. This is the reason for a gradual increase in
amplitude as well as modulation as the index grows
larger.

The Score section of this example is similar to the
previous Score examples. Five events are created through
the i, or event statements located in lines 4 through 8
of the Score. Each event lasts ten seconds as the
modulation frequency (p5) varies with each event. A one
second rest is also applied at the end of each event.

It has been shown that modulation synthesis is a

useful tool for the generation of various timbral
configurations with an output which can be dynamically

61

controlled over time. Complex AM and FM algorithms are
possible using MUSIC 1000 and the DMX-1000; however, the
examples presented above are not intended to be complex
in nature. The following chapter illustrates some
aspects of the musical capabilities of MUSIC 1000 by
demonstrating a musical example to be played by the DMX-
1000.

62

CHAPTER 7

NON-LINEAR WAVESHAPING, INPUT, AND REVERB

The demonstrations of non-linear waveshaping are
located on disk #7, titled Non-Linear Waveshaping
Examples. The input and reverb demonstration is located
on disk #8, titled Input and Reverb Example.

NON-LINEAR WAVESHAPING

Non-linear waveshaping is a method of distorting a
signal in order to alter the timbral quality of the
sound. This technique is based upon a mathematical
formula from which a table of weighted sums is generated
by Chebycheff polynomials. These polynomials are created
in MUSIC 1000 by using the Cheby function type. The
spectrum resulting from this distortion process depends
upon the number and amplitude of the various components
entered into the Cheby table.

The process for this demonstration begins with the
generation of a sine wave. The amplitude of the sine
wave is used to determine the amount of distortion that
takes place. As the amplitude of the sine wave
increases, the spectrum changes as a result. MUSIC 1000
requires that the output of the sine wave is first placed
into a scaling function, xfscal, in order to scale the
oscillator signal for the appropriate table size. This
signal is then placed into the Cheby table where
transformation takes place, and finally routed to an
output location. The MUSIC 1000 word mixer is included
to allow for final attenuation of the signal.

The following four examples are different only in
the Orchestra section where the Cheby function table is
created. Line #4 of each Orchestra is used to specify
the content of the Cheby table. The first example begins
with a sine wave at a frequency of 220 Hz which is
gradually transformed into its third harmonic
(approximately 660 Hz). The third harmonic is selected
in the argument list on line #4 of the function named
poly. The value 100 is placed in the third location of
the list and the first and second arguments are assigned
the value 0. This allows 100% of the third harmonic to
be generated while the first and second remain at zero
amplitude. In a similar manner, the second example
generates the fifth harmonic, the next generates the

63

seventh harmonic, and the final example combines all of
the above. The flowchart patches for non-linear
waveshaping are shown in illustration 7.1 while
illustration 7.2 shows the MUSIC 1000 code necessary for
the process. Illustration 7.3 shows the FFT results and

spectra of the above.

x6 x6

indx

F 57

#0 p3 pS5

xfsoal

x6

poly

x7

xnice

x7

mixer

x7

—® Out A

64

pé

——% Out B

xfscal

b

poly

I

xnioe

x7

p6——®| mixer

Illustration 7.1 Flowchart Diagrams for Non-Linear Waveshaping

65

NON-LINEAR WAVESHAPING

The Score
o))

2>
3

>

<5
<6
<D
8>

The Orchestra
<1>
2>

3
4

<5
6>

<7

8>

9>

<10
11>
12>
13
14>
15>
16>

c Non-Linear Waveshaping Demonstration
c pl p2 p3 p4 p5 pé
c insf start time freq indx anmpl
x 1 . . Scps 1 dB
i 1 . 10 220 16000 -20
r - . 1
i . . 10 . 32767 .
e
; Non-Linear Waveshaping Demonstration
orch
foctn poly, 2048, cheby,normal
3,0,0,100
fnctn sine, 1024, fourier
1,32767
instr 1
local <indx>
kline indx, #0,p3,p5
oscili x6,#sine, pd,indx
xfscal x6,=5,#poly, bipol
table x7,#poly,x6
xnice x7,x7
mixer X7, <<x7,p6>>
out x7,3
endin

66

Function for Example 2

&P fnctno poly, 2048, cheby,normal
4> 5,0,0,0,0,100

Function for Example 3

<3 fnctn poly, 2048, cheby,normal
P 7,0,0,0,0,0,0,100

Function for Example 4

&P fnctn poly, 2048, cheby,normal
4 7,0,0,100,0,100,0,100

Illustration 7.2 MNUSIC 1000 Code for Non-Lipear Waveshaping

KAmplitude Frequency SAsplitude
1008
1. 219.98hz 1008
2. 660.80hx 1008
s08%
1 2
o8

Frequency (Hz)

67

NAVAVAVINAVAVAV/\VATAVAY

XAmplitude
1008 Proquency SAmplitude
1. 219.08hz 1008
2. 1100.66hz 100%
So%
1 2
o%
Frequency (Hz)
Y \,f\/ JARATARTAVAVRY
XAmplitude
1008 Frequoncy SAmplitude
1. 219.%8hx 100%
2. 1541.66hz 100%
s0%
1 2
[

Frequency (Hz)

68

fAmplitude
Prequency SAmplitude

1008

1. 219.88hz 99.9%

2. 660.88hz 31.6%

3. 1100.66hz S1. M

4. 1541.66hz 22.5%
so8
o 1 2 3 4

Frequency (Hz)
Illustration 7.3 FFT Results and Spectra

The above MUSIC 1000 code generates two ten second
events for each of the 4 examples. Each event is
followed by a one second rest. The index begins at zero
and gradually increases to 16000 in the first of the two
events. The value of 32767 is used in the second event,
which creates both maximum index and amplitude. As the
index approaches 32767, the fundamental frequency is lost
and the specified harmonic(s) are generated.

The sine wave used above is created by the
oscillator, oscili, which is an interpolating oscillator
capable of smoothing the function for a more accurate
waveform. This oscillator component also allows for a
smaller function size to be used if memory shortage
becomes a problem. The output of the oscillator is
routed into the scaling component, xfscal, by means of
register x6. The appropriate table size is determined by
xfscal as it reduces the size of the input signal to
equal that of the assigned function, poly. This allows
for the scaled input signal to act as a pointer to values
located in the function table. The optional word, bipol,

69

is included if the input signal is both positive and
negative, as with an oscillator. Input signals which are

only positive or negative in nature do not require the
word bipol.

The word table is where the actual waveshaping
process occurs. The scaled input signal is the pointer
to the function table and its amplitude determines how
much of the table will be accessed. The deeper the
pointer is placed into the function table (by increasing
the amplitude of the signal), the greater the amount of
transformation. In the above MUSIC 1000 code, x7
represents the output of the table, poly refers to the
function name, and x6 is the pointer. The result is a
non-linear waveshaping instrument with a timbral quality
which is dependent upon the amplitude of the sine wave.

INPUT AND REVERB

In order to use the input and reverb example on
diskette #8, a line level signal must be routed into the
DMX-1000 at channel 1 with an appropriate cable. This
demonstration allows for the original signal to be heard
through channel A, while the same signal with reverb is
realized at channel B. The reverb time is variable as it
is defined within the Score as a parameter. Illustration
7.4 shows the flowchart patches for this example and
illustration 7.5 is a listing of the MUSIC 1000 code.

in

x6

v
pd reverb
l x7
pS—¥| mixer pb mixer
l x6 l <7
Out A Out B

70

N\ 6
in ﬁ‘s ¥ mixer)_x_’ Out A
pS
x7 x7
L—p!{ reverb —® mixer —® Out B
P4 p6

Illustration 7.4 Flowchart Diagrams for Input and Reverb
INPUT AND REVERB

The Score

1) c Input and Reverb Demonstration

2) c pl p2 p3 p4 p5 pb
3 c ins# start time reverb ampll ampl2
4 x 1 . . 1 dB dB
<5 1 1 . 1 4000 -20 -5
6> e

The Orchestra

D> H Input and Reverb Demonstration
2> orch

3 instr 1,noauto

4> in x6,1

5 mixer X6, (¢(x6,p5>)

6> out x6,1

<7 reverb x7,x6,p4

8 mixer x7,¢(x7,p6>>

9 out x7,2

<10 endin

Illustration 7.5 MUSIC 1000 Code for Input and Reverb

71

The Score above uses a reverb time of 4000 which is
located at p4. Parameter p5 is used to attenuate the
loudness of the original signal which is output at
channel A. The component mixer, found in the Orchestra,
allows for this attenuation to occur. In the same
manner, pS is used to attenuate the reverberated portion
of the signal which is output at channel B.

The MUSIC 1000 word noauto, found in the instr line
of the Orchestra, is used to keep the instrument active
until a koff command is executed. Once the Orchestra
begins running it will continue to do so until koff
occurs. The word noauto makes this possible.

The signal is brought into the DMX~-1000 through the
word in, which accepts a signal at either input channel 1
or input channel 2. The above example uses channel 1 as
its input channel and the signal is placed at register
x6. The signal is then attenuated through the
mixer component and output to channel A. The MUSIC 1000

word in has the following format:
IN XIN[,ACHNL]

Reverb occurs as the signal located at x6 is placed
into the reverberation component and output to location
x7. Parameter pd4 is used to control the reverb time.

The reverberated signal is then placed into a mixer for
attenuation and then output through channel B. Reverb is
used in the following way:

REVERB XOUT,XIN,REV.TIME

The above example for input and reverb demonstrates
a process with numerous possibilities. 1In the following
chapter, some of the musical potential of the MUSIC 1000
language will be explored by the generation of a musical
example.

72

CHAPTER 8

A MUSICAL EXAMPLE

The purpose of this chapter is to illustrate the
simulation of an organ tone as well as its control by
gencrating a Score which plays Menuet by J.S. Bach. The
spectrum of a Rodgers electric organ was obtained by a
Fast Fourier Transform (FFT) on the instruments audio
signal. This spectrum was then entered into the DMX-1000
for fairly accurate reproduction. Four drawbars are
included in the organ simulation and the amplitude of
each of the four can be varied from one note to the next
through software. Timbral evolution is therefore
possible by altering the loudness of the drawbars as this
example illustrates.

The following spectrum illustrations were taken from
both the Rodgers organ and the DMX-1000. The spectrums
were sampled at a rate of 200us and a frequency of
approximately 261Hz (middle C). Illustration 8.1 is the
spectrum obtained from the Rodgers organ while
illustration 8.2 was obtained from the DMX-1000. Slight
differences are most likely the result of phasing.

XAmplitude
1 Proquercy SiAmplitude
1008
1. 262.65hz 1008
2. 524.07nx 58.9%
3. 718571z $0.48
4. 1049.36hz 29.8
$08
S. 1312.01ihx 11.6%
6. 1573.42hx 3.9
1 2 3 4 5| 6
os

Frequenocy (Hz)

Tllustration 8.1 Wavefore and FFT Results, Rodgers Orgaco

73

f::pllt“de Prequency Simplitude
1. 261.42hx 100%
2. 522.85hs 52.6%
3. 765.49nx S1.28%
508 4. 1046.91hz 2.n
S. 1308.33hz 16.5%
6. 1569.76hz 6.2%
o 1 2 3 4 s| e,

Frequency (Hz)

Illustration 8.2 Waveform and FFT Results, DMX-1000

The Orchestra for the organ simulation is relatively
simple as the spectrum is not dynamic and may be built by
using Fourier (additive) synthesis. The percentage of
amplitude values extracted from the Rodgers organ sample
are used as an argument list for harmonic amplitudes.

Two identical voices are used for this example in order
to play two separate parts. Illustration 8.3 shows the
flowchart patches for the organ voice while illustration
8.4 shows the MUSIC 1000 Orchestra code.

74

16’ 6
pt #organ x

8’ x7
PS dorgan

4 x8
pé #organ

2’ x9
p1 f#organ

envl

FF e

p8 p3 #0

x7
app

env2

F T ¥

p9 p3 €0

x6
>‘

e

>

env3

Fr¥

plo p3 &0

env4

Fr ¥

pll p3 &0

}i

xa

75

xnice

—® Out A

—= Out B

#organ

x6

Illustration 8.3 Flowchart Diagrams for Organ Simulation

76

The Orchestra

<1
2>

<3
(P

5
6>
<7
<8
9
10>
<11)
12>

13
14>
15>
16>

17>
18>
19
20)

(217
225
23
24>
25>
(26>

27>
<28

29>
(30
3
32>

33
34>
35
<36’

H Organ Simulation
orch
foctn organ, 512, fourier,normal

instr
local
idiv
isub
klnseg
kinseg
klnseg
klnseg

oscil
escil
oscil
oscil

aixer
xnice
out

endin

instr
local
idiv
isub
kinseg
klnseg
klnseg
klnseg

ogcil
oscil
oscil
oscil

aixer
xnice
out

endin

6,100,589,504,297,116, 39

1

<decay, sustn,envl,env2,env3,envd>
decay,p3,#50

sustn,p3,decay

envl, <p8,sustn,p8,decay,#0> ; 16’
env2, (p9,sustn,p9,decay,.#0> ; 8’
env3, (pl0,sustn,pl0,decay, $0> ; 4’
envd, <pll,sustn,pll,decay, #0> ; 2'
x6,#organ, pd, envl ;s 16°
x7,#organ, p5,env2 : 8
x8, #organ, p6,env3 ;4
x9,#organ,p7,envd > 2°

xa, (<x6,8000>, <x7,80005, <x8,8000), <x9,8000>>

Xa,xa

xa,3

2

<decay,sustn,envl,env2,env3,envd>
decay,p3,#50

sustr.p3,decay

envl, <p8,susta,p8,decay,.#0> ; 16°
env2, p9,sustn,p9,decay, #0> ; 8’
env3, (p10,sustn,pl0,decay,#0> ; 4'
envd, <pll1,sustn,pll,decay,#0> ; 2’
x6,forgan, pd,envl s 16°
x7,#organ, p5,env2 ;s 8
x8, forgan, p6,env3 2 4
x9,#organ,p/,envd ;s 2

xa,(<x6,8000>,<x7,8000),(x8,8000),(x9,8000))
xa,xa
xa,3

Illustration 8.4 MNUSIC 1000 Orchestra for Organ Simulation

77

The Score

The Score section of this example is divided into
measures, and two identical instruments are used. The
MUSIC 1000 word SNOTE is used to control the frequency of
the oscillators. There are four different pitch values
for each instrument which create the drawbar effect.

Each of the drawbars also have separate amplitude values
which allow for the loudness of each to be varied from
one note to the next. Illustration 8.5 shows the musical
notation of Bach's Menuet while illustration 8.6 is the
MUSIC 1000 Score which is used to generate the
composition.

{ﬁ:m — === e ey

== T = 4

IS NS - ' t

{$=? ;A Py & b3

P [—— a

[=== == e

5 £ ;= =

o4 —————

] : = = = —
{’ MR N N v o

o =i —f—

Illustration 8.5 Henuet by J.S.Bach

78

The Score

c Organ Simulation
c Menuet --- J.S. Bach
t 0 120 43 120 48 80

c pl p2 p3 p4d p5 p6 p7 p8 p9 pl0 pli
c insf strt time fc/2 fc fc*2 fc*4 envl env2 env3 envd

c drawbars = 16' 8’ 4 2'

c levels = 16" 8’ 4’ 2'
c instrument 1 -
x 1 . . Ssnote snote snote snote dB dB dB dB
c measure 1 16* 8' 4’ 2' 16" 8’ 4’ 2'
i 1 . 1 d7 d8 d9 dio0 -20 -20 -20 -20
i . . .5 g6 g7 g8 g9
i . . oD a6 a7 a8 a9
i . . .5 b6 b7 b8 b9
i . . .5 c7 c8 ¢9 «cl10

c measure 2 16' 8° 4’ 2' 16" 8’ 4’ 2'
i . . 1 d7 d8 d9 dio
i . . 1 g6 g7 g8 g9
i . . 1 g6 g7 g8 g9

c measure 3 16°' 8' 4 2' 16’ 8’ 4’ 2'

1 . . 1 e7 e8 e9 el0 -25 -20 -15 -15
i . . .5 c7 ¢8 ¢9 «cl10
i . . .5 d7 d8 d9 dio
I . . .5 e7 e8 e9 el
1 . . 5 fs7 fs8 [fs9 [fs10

c peasure 4 16’ 8' 4’ 2' 16" 8’ 4’ 2'
g7 g8 ¢g9 gi10 -15 -20 -25 =25

1
i . . 1 g6 g7 g8 g9
2 g6 g7 g8 g9

79

a P Y P P P) [PR W VR N

[T T TR R N

e, W, by N

M. (>

2]

b, b, by e, R

measure 5
. . 1
. . .5
. . .5
. . 5
. . .5
measure 6
. . 1
. . <5
. . .5
. . .5
. . .5
measure 7
. . 1
. . .5
. . .5
. . 5
. . .5
measure 8
. . 1
. . 2
measure 9
. . 1
- . b
. . .5
- . .5
. . .5

measure 10

. . 1
. . 1
- . 1

measure 11

. 1
. .5
. .5
. .5
. .5

L] + L] . .

16"

c7
d7
c7
b6
aé

16"
b6
c7
b6

aé
gé

16*

b6
a6

16’
d7
aé

b6
c7

fs7

8'

c8
ds
c8
b7
a7

80

b7
c8
b7
a7
g7

fs7
g7
[- %2

b7
g7

8'

b7
a7

‘8
a8
a7
b7
c8
80
d8
g7
8'
e8
c8
ds

e8
fs8

4'

c9
d9
c9
b8
a8

4’

b8
c9
b8
as
g8

4'
fs8

a8
b8

g8
4'

b8
as

4'
ds9
a8
b8
c9
4'
d9
g8
4'
e9
c9
d9

e9
fs9

2'

cl0
d1o
cl0
b9
as

2'

b9
clo
b9
asg

g9
2'

fs9

as
b9

g9
2'

b9
a9

el0
clo
d1o
el0

£fs10

80

16’

=20

16°

L I T SR B)

16'

16"

8'

a P P P P T) (R R PRy P ¥

W, b bl e

measure 12

- . 1
P |
- . 1

mpeasure 13

S |
- . .5
. . .5
- . .5
. . .5

measure 14

. .1
. . .5
. . .5
. . .5
. . .5

measure 15

. . 1
. . .5
8 . .5
. . .5
. . .5

measure 16

. .3
instrument
2 . .
reasure 1
2 . 2
. . 1
measure 2
O |

16 8' 4' 2' 16’ 8" 4 2
g7 g8 g9 gl0-15 -15 . .
g6 g7 g8 g9 -20 -20 . .
g6 g7 g8 @9
16* 8' 4' 2' 16' 8 4 2
c7 ¢c8 ¢9 cl10
d7 d8 d9 dio . . -15 -15
c?7 ¢c8 «¢9 «cl0 - . . .
b6 b7 b8 b9
a6 a7 a8 a9
16 8' 4' 2' 16' 8 4 2
b6 b7 b8 b9 -20 -20 -20 -20
c7 c¢c8 «c¢c9 «cl0 - . - .
b6 b7 b8 b9
a6 a7 a8 asd
g6 g7 g8 ¢g9
16* 8° 4' 2 16' & 4 2’
a6 a7 a8 a9 -15 -15 . .
b6 b7 b8 b9
aé a’l a8 asg
g6 g7 g8 g9
fsé6 fs7 fs8 fs9 - . . .
16' 8' 4' 2 16' 8 4 2'
g6 g7 g8 g9 -20 -20 -20 -20

2

spote snote snote spote dB dB dB dB
16 8' 4°' 2' 16’ 8" 4 2
g5 g6 g7 g8 -20 -20 -20 -20
as a6 a7 a8
16' 8' 4 2 16 8 4 2
b5 b6 b7 b8

81

Reasure
;eas;re
;eas;re
;eas;re

measure

measure

measure

measure
Reasure
Beasure

measure

W LN W W

by W AN G kRl N

o

11

12

13

3

16
cé
16"
b5
16
as
16°
[*£]
16’
dé
b5
g5
16"

ds
cb

16

a5
16’
b5
16°
cé
16’
b5
16’

a5

c?
8’
b6
8’
a6
8"
gé
8’
a7
b6
gé
8’

da7
c7

8'

bé
8.

aé

c8
4’
b7
4’
a7z
4’
g7
4’

ds
b7
g7

4'

a8
c8

4'

c8
4’
b7
4’

a7

82

b8
2°
a8
27
g8
27
d9
b8
g8
27

ds
c9

2'

a8
29
b8
20
c9
2¢
b8
2

aé

16* &'

16 &'

-20 -20

4!

-15

2'

~15

c measure 14 16 8* 4* 2' 16' 8 4’ 2’
i . . 3 gs g6 g7 g8 -20 -20 -20 -20

c measure 15 16 8' 4 2' 16’ 8’ a¢ 2’

i N | c6 ¢7 ¢8 c9 -15 -15 . .

i N | d6 d7 d8 d9

i . . 1 ds d6 d7 d8

c measure 16 16* 8' 4* 2 16 &' 4’ 2
i . . 3 g5 g6 g7 g8 -20 -20 -20 -20

e

Illustration 8.6 MNUSIC 1000 Score for Menuet

The Score above contains a TEMPO statement which is
represented by the opcode T, and it controls the tempo of
the entire score. A slight deceleration of tempo is
executed at the end of the example and it is done with
the T statement. The TEMPO statement has the following
format:

t pl p2 p3 ... p50
pl ignored
p2 initial tempo in beats per minute

p3.p5.p7 ... p4% referenced times in beats
p4,p6,p8 ... p50 tempi for the referenced times

Exaimple:
t 1 120 43 120 48 80

The initial tempo is 120 beats per minute. The
example has a total of 48 beats, and the deceleration is
to begin at beat 43. The tempo will gradually change
from 120 to 80 between beat 43 and beat 48. The process
works like this:

Tempo at beat 1 = 120
Tempo at beat 43 = 120
Tempo at beat 48 = 80

The tempo slows from 120 to 80 beats per minute between
beat 43 and beat 48. :

83

The drawbar effect is achieved by using four
different SNOTE values as well as four separate dB
values. Each corresponds to one of the drawbars; l6°’,
8', 4', or 2'. By altering the SNOTE values to change
pitch, and the dB values to change loudness, the organ
simulation is possible. The note lengths are determined
by p3. The value 1 represents a quarter note, .5 equals
an eighth note etc.

The MUSIC 1000 word SNOTE allows for the
specification of oscillator frequency by the assignment
of a pitch letter and an octave number. For example,
middle C is represented by the code c¢8, the octave above
it would be ¢9, and so forth. Sharps and flats are
represented by the characters s and f, therefore, cs8 is
the C sharp a semitone above middle C.

The process of translating a score from traditional
notation into MUSIC 1000 code is unusual, but not
difficult. The Score for this example is an
illustration of the musical potential of the MUSIC 1000
language. Although the required method of notation is
different than more traditional types of musical
notation, MUSIC 1000 does provide the user Wwith an
acceptable format for musical generation. There are many
possible ways to generate sonic information with MUSIC
1600 and the DMX-1000, and this example represents one
method for entering musical data under the rules of MUSIC
1000.

84

CHAPTER 9

FILE MANIPULATION

The basic operation of the Terak computer system
will be addressed including the creation of a new work
disk, the basic operations of ASOTE, and the manipulation
of files. The following instructions can be used to
create Score and Orchestra files, and edit them as
necessary.

The Creation of a Work Disk

1. Insert a MUSIC 1000 System Disk into the
A (left) drive unit.

2. Place a write enable sticker on a new 8"
diskette and place it in the B (right)
drive unit.

3. Turn the computer system on.

4. Type the DATE as prompted, e.g., 01-jan-89

5. Type @A:NEWDSK followed by <return>.

6. The computer will now prompt for disk type;
Type 1

This corresponds with single sided/double
density diskettes.

7. The computer will now prompt for drive unit;
Type 1

This corresponds with drive unit B (or 1).

8. When the format is complete
Type S

This corresponds with Stop.

9. The disk will be complete and ready for use
after the diskette has been formatted and
the necessary #iles are copied to it. The
process is complete when the dot (.) prompt
appears.

85

File Conventions

There are four necessary files for the execution of
any MUSIC 1000 program. These files include SCORE.USR
and ORCH.USR. Both of these files are in ASCII and are
created by the user. Once compiled, the additional files
named SCORE.SRT and ORCH.SAV are generated by the
compiling process. ORCH.SAV is an executable file which
reads SCORE.SRT. 1In order to execute ORCH.SAV the
command RUN ORCH is entered by the user. The name of the
program may also be altered as in example 4.1 when
ORCH.SAV has been changed to SINE.SAV, and RUN SINE is
used to execute the program.

The SCORE.SRT file can not be changed and is unique
to each diskette. This creates a problem when more than
one score is desirable. While numerous XXX.SAV programs
may exist on one diskette, only one SCORE.SRT program may
exist. It is not possible to use more then one SCORE on
any one diskette.

Compiling Times

The compiling process requires a SCORE.USR file and
an ORCH.USR file on the same diskette. 1In order to
compile both the Score and the Orchestra the following
command must be typed:

@NEWSO followed by a <return>
The compiling process may last from 5 to 15 minutes.

It is possible to compile either the Score or the
Orchestra independently of the other. This will save a
notable amount of time if the Score requires modification
rather than the Orchestra. The Score compiles rather
quickly depending upon its length. Typical times range
from 1 minute to 4 or 5 minutes. The Orchestra sections
will require a minimum of five minutes to compile. 1In
order to compile the Score only type:

@NEWS followed by a <return>
In order to compile the Orchestra only type:

@NEWO followed by a <return’>

(4]
[d))

File Manipulations

A few easy to use file manipulations will provide
great assistance during the course of program
development. These processes include RENAME, DEL, and
COPY.
RENAME Used to change the name of files.

To rename files type the following:

RENAME filename.old filename.new <return’>
For example:

RENAME ORCH.SAV SINE.SAV <(return>

ORCH.SAV would now be titled SINE.SAV on the
diskette.

DEL Used to delete files.
To delete a file type the following:
DEL filename.ext <return>
For example:
DEL ORCH.SAV <(return>
The file ORCH.SAV will be erased from the diskette.
BE CAREFUL, once files are deleted they are gone.
Exercise extreme caution when using DFEL.

COPY VUsed to copy files, and backup diskettes.

To copy a file from the A drive unit to the B drive
unit do the following making sure that the diskette to be
copied onto is a formatted work disk:

COPY/WAI A:filename.ext B:*.%* <(return>

The system will then prompt the user to mount the
input volume (the diskette with the files to be copied),
in drive A (drive 0). Remove the MUSIC 1000 System Disk
from drive A and replace it with the diskette containing
the files to be copied. Press Y and then <return>. The
system will next prompt for an output volume in drive B
(drive 1). Place the destination diskette into drive B,
press Y and then <return>. The file(s) will then be

87

copied to the diskette in the B drive unit. Once the
process is complete, the system will prompt the user to
mount the system volume in drive A (0). Remove the disk
from drive A and replace the MUSIC 1000 System Disk.
Press Y and <return> to finish the procedure. The *
symbols represent wildcards which can be used in place of
file names. In order to backup an entire diskette by
copying every available file type:

COPY/WAI Az % B:* . % (return>

ASOTE Basics

The available text editor ASOTE (A Screen Oriented
Text Editor), is not a difficult package to learn.
Appendix A includes complete documentation concerning
ASOTE and it should be referred to as necessary. The
following procedure is a format for the creation of a
text-file using ASOTE.

1. Boot the system with a MUSIC 1000 Systems
Disk placed in the A drive unit.

2. Place a formatted work diskette in the B
drive unit (making sure that a write enable
=tickser is on the diskette).

- e 412

3. Type the date as prompted.

4. Type R ASOTE
Press <return>

5. ASOTE will then ask for a file name. To
create a new file such as SCORE.USR type the
name, SCORE.USR as prompted and press

<return>.
6. The ASOTE menu will then appear on the top
of the screen. IMPORTANT... Type an I

before typing text. I allows the INSERT
mode to be used.

7. Type the file. NOTE... 1In order to type
lower case characters the DC2 key must be
pressed. It is located on the lower right
side of the keyboard just above the ETX key.

8. When the text-file is complete the ETX
(accepts) key must be pressed to exit the

88

10.

11.

insert mode.

Press Q to QUIT the edit mode.
Press U to UPDATE the file and save
it, or press B to save the file and

create a backup.

Press X to exit ASOTE. The file is now saved
to the B diskette.

Modifying Existing Files

The following instructions allow for the copying of
a file from the A drive unit to the B drive unit and for
its modification using ASOTE. The file to be used in
this example will be the SCORE.USR file on the
Subtractive Synthesis Examples Diskette #2. Any file may
be modified in the same manner.

1.

Boot the system in the usual fashion.

Copy the files onto a work diskette by doing
the following:

Type COPY/WAI A:*.%* B:*_ *
Press <return>

Note: It is not necessary to copy files in order

to modify them, it is done here to preserve
the original diskette.

When the process is complete and the MUSIC
1000 Systems Disk is returned in the A drive:

Type R ASOTE
Press <return>

Type SCORE.USR when prompted.

The SCORE.USR file will then be listed on the
screen.

Using the cursor keys (arrow keys), move the
cursor to the first i statement. Place the
cursor directly on top of the 2 in the valiue 20
located at the end of the line. This value
controls the filter bandwidth.

89

10.

11.

12.

13.

14.

Type X ({exchange text).
Type 1 followed by pressing the SPACE BAR.

Press ETX (accept text). The 20 should now
be changed to 1.

Press QO to QUIT the edit mode followed by

U to UPDATE the file and an

X to EXIT ASOTE.
Type RENAME BAND.USR ORCH.USR <(return>
To re-compile the Score type @NEWS <return>.
Type RENAME ORCH.USR BAND.USR <returmn
Once the compiling process is complete the
results may be heard by running the Orchestra

(RUN.BAND). The filter now has a
bandwidth of 1hz (maximum Q).

90

CONCLUSION

This interactive tutorial is designed to illustrate
the various applications of the DMX-1000 and its control
under the language MUSIC 1000. By demonstrating a number
of synthesis techniques, it has been shown that MUSIC
1000 does support various forms of synthesis. While this
manual is not intended to be an exhaustive list of
synthesis schemes, the demonstrations inculded in this
tutorial prove the flexibility of MUSIC 1000 and the
ability to generate numerous synthesis formats on the
DMX-1000.

The musical applications of the language MUSIC 1000
have been explored only briefly due to the aesthetic
implications involved with the generation of "music”.
The focus of this tutorial is placed on the creation and
processing of audio signals, while the musical
applications of the sonic information are left up to
the user.

The purpose of this manual is to demonstrate that
various synthesis techniques are possible on the DMX-
1000, and the examples which support this intention are
not meant to be interesting in a musical sense. The
examples presented in this tutorial are demonstrations of
a few basic building blocks which are important to the
field of electro-acoustics.

91

PLEASE NOTE:

Copyrighted materials in this document have
not been filmed at the request of the author.
They are avallable for consultation. however,
in the author's university library.

These consist of pages:

92-98, Appendix A

99-104, Appendix B

UMI

APPENDIX C

Audio Tape Contents

Side A
1. Audio Demonstration Number One

Additive Synthesis

Example One: Sine Wave Synthesis

Example Two: Square Wave Synthesis
Example Three: Sawtooth Wave Synthesis
Example Four: Inverted Spectrum Synthesis

2. Audio Demonstration Number Two

Subtractive Synthesis

Example One: Band Pass Filtering

Examnple Two: High Pass Filtering

Example Three: Low Pass Filtering
3. Audio Demonstration Number Three

Modulation Synthesis

Example One: Frequency Modulation Synthesis

Example Two: Amplitude Modulation Synthesis
4. Audio Demonstration Number Four

Nonlinear Waveshaping Synthesis

Example One: Third Harmonic

Example Two: Fifth Harmonic

Example Three: Seventh Harmonic

Example Four: Third, Fifth, and Seventh Harmonics
5. Audio Demonstration Number Five

Input and Reverb
Example One: Input and Reverb

6. Audio Demonstration Number Six

A Musical Example
Example One: Menuet by J.S. Bach

Side B
1. ocps Reflections

Eric Gatzert
Copyright 1987

105

BIBLIOGRAPHY

Texts

Dodge, C., and Jerse, T.A. Computer Music Synthesis,
Composition, and Performance. Schirmer, New York, 1977.

Howe, H.S. Electronic Music Synthesis. Norton, New
York, 1875.

Mathews, M.V., with J.E. Miller, F.R. Moore, J.R. Pierce,
and J.C. Risset. The Technology of Computer Music.
The MIT Press: Cambridge, Mass., 1969.

Roads, C., and Strawn, J. eds. Foundations of Computer
Music. The MIT Press: Cambridge, Mass., 1985.

Roads, C. eds. The Music Machine: Selected Readings from
Computer Music Journal. The MIT Press: Cambridge, Mass.,
1988.

Strange, J.A. Electronic Music Systems, Techniques,
and Controls. Wm. C. Brown Company Publishers: Dubuque,
Jowa., 1983.

Articles

Arfib, D. "Digital synthesis of complex spectra by
means of multiplication of nonlinear distorted sine
waves." Journal of the Audio Engineering Scciety 27(10):
757~768, 1979.

Chowning, J. "Computer synthesis of the singing voice."
In Johan Sundberg (ed.), Sound Generation in Winds,
Strings, and Computers. Royal Swedish Acamedy of Music:
Stockholm, 1980.

LeBrun, M. "Digital waveshaping synthesis." Journal of
the Audio Engineering Society 27(4):250-266, 1979.

Roads, C. "A tutorial on nonlinear waveshaping
synthesis." Computer Music Journal 3(2):29-34, 1979.

106

Manuals

Wallraff, D. MUSIC-1000 Manual. Digital Music Systems
Inc.: Boston, Mass., 1983.

Wallraff, D. DMX~-1000 Hardware Manual. Digital Music
Systems Inc.: Boston, Mass., 1983.

Wallraff, D., and Marshal, P. Computer Music Catalog.
Digital Music Systems Inc.: Boston, Mass., 1983.

107

	San Jose State University
	SJSU ScholarWorks
	1989

	DMX-1000 user guide and tutorials
	Eric Gatzert
	Recommended Citation

	tmp.1290447007.pdf.5aaHD

