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ABSTRACT

TREE DECOMPOSITION OF GRAPHS
by Tanya Boboricken

In this thesis we decompose cubic graphs, complete bipartite
graphs, and certain complete tripartite graphs into the minimum
number of trees T(G).

For cubic graphs we show that any 2-connected cubic graph G

of order p can be decomposed into T(G) SLE‘J trees. Also, we show
that for every p > 8, and 2 < k sL‘Z—J, there exists a 2-connected cubic

graph of order p such that t(G) = k.

We give Beineke's 1964 decomposition of complete bipartite

graphs into 7(K_ ) trees where the sizes of any two trees used in the

decomposition differ by at most one. We then extend Beineke's

result by decomposing K , into 7(K_ ) trees such that all but

perhaps one are spanning trees.

For complete tripartite graphs K we find upper and lower

m,n,p

bounds for T(Km,n’p). We then decompose a few families of Km’n’p

into (K, , p) trees and state a conjecture.
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Chapter 1

Definitions and Notations

A graph G is a pair of sets (V,E) where V is finite and
nonempty, and E is a set of unordered pairs of elements of V. The
elements of V are called the vertices (singular is vertex) of G and the
elements of E are called the edges of G. The empry graph is a pair of
sets (V,E) where V=E=@. The trivial graph consists of one vertex and
nc edges. A nontrivial graph has at least two vertices. We will write
V(G) for the set of vertices of G and E(G) for the set of edges of G. We
let [V(G)| denote the number of vertices in G, and |E(G)| denote the
number of edges in G. We say a graph G has order |V(G)| and size
|[E(G)l. Two graphs that have the same structure, differing only in the
way they are drawn or labeled, are said to be isomorphic. We use
the notation G;=G, to denote that the graphs G; and G, are
isomorphic. ~Two graphs G; and G, are said to be nearly equal in size
if [IE(Gp)| - |E(Gy)l|<1.

If {viw} = vw € E(G), we call v and w adjacent vertices and say
that v and w are joined by the edge vw. We call v and w the
endvertices of the edge vw. We say that v and w are incident to the
edge vw, and that vw is incident ro the vertices v and w. If uv, vw
€ E(G), we call uw and vw adjacent edges. The degree of a vertex v,
denoted deg(v), in a graph G is the number of edges of G incident to
v. The neighborhood of a vertex v, denoted N(v), is the set of

vertices adjacent to v. Thus, [N(v)| = deg(v). A graph is said to be
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regular of degree r if every vertex has degree equal to r. A regular
graph of degree 3 is called cubic.

A u-v walk is an alternating sequence of vertices and edges,
beginning with vertex u and ending with vertex v, where each edge
is incident to the vertices immediately before and after it in the
sequence. We normally list just the consecutive vertices in the walk

as the edges are implied. A u-v path is a u-v walk with no repeated

vertices. A cycle is a walk uju,..u_u, whose initial vertex is the
same as the terminal vertex and where each of the vertices u,..,u,
are distinct. An n-cycle is a cycle with n edges. A 3-cycle is called a
triangle. A vertex u is said to be connected to a vertex v if there
exists a u-v path in G. A graph G is connected if every two of its
vertices are connected, otherwise we say G is disconnected. The
connectivity «(G) of a graph G is the minimum number of vertices
whose removal from G results in a disconnected or trivial graph. A
graph is said to be i-connected,i 2 1, if k(G) 2 i.

A subgraph of a graph G is a graph H such that every vertex of
H is a vertex of G, and every edge of H is an edge of G. If X is a
nonempty subset of the vertex set V(G) of a graph G, then the
subgraph (X) of G induced by X is the graph with vertex set X and
whose edge set consists of edges of G incident with two elements of
X. Similarly, if S is a nonempty subset of E(G), then the subgraph
(S) induced by S is the graph whose vertex set consists of those
vertices in G incident with at least one edge of S and whose edge set

is S.



A component of a graph G is a connected subgraph of G not
properly contained in any other connected subgraph of G. A
disconnected graph consists of more than one component. A graph
without a cycle is called acyclicc We consider the empty graph to be
acyclic. A spanning forest of a graph G is an acyclic subgraph of G
that contains all the vertices of G. It does not have to be connected.
A tree is a connected acyclic graph. A spanning tree is a connected
spanning forest. A connected graph with p vertices has a spanning

tree with p-1 edges.

Let G; and G, be graphs. The union G=G; U G, has
V(G) = V(G,) U V(G,) and E(G) = E(G;) U E(Gy). A graph G is said to
be decomposable into subgraphs H;,H,,..,H, if any two subgraphs H;
and Hj have no edges in common, and the union of all the subgraphs
H; is G. More formally, a decomposition of G is a collection of
subgraphs of G such that each H, = (E;) for some subset E, of E(G)
where E; is a partition of E(G). If G is the edge-disjoint union of
H,,H,,..,H, and at least t-1 of the Hj are spanning trees, then we say
that G is decomposable into nearly all spanning trees. A factor of a
graph G is a spanning subgraph of G. A factor of a graph such that all
the degrees equal one is called a /-factor. A graph is called
I-factorable if it is decomposable into 1-factors.

The least integer k such that k>a is denoted by [al; the
greatest integer k such that k < a is denoted by Llal. The minimum
number of forests whose union is G is denoted by a(G). The

minimum number of trees whose union is G is denoted by T(G).



The complete biparrite graphs, denoted K,  , are the graphs
whose vertices can be partitioned into two sets, called partire sets,
U={u;,uy,..,u,} and V={1,2,3,..,n}, such that every vertex in one set
is adjacent to every vertex in the other set, but no vertices in the
same set are adjacent. The vertices in the set U will be depicted with
dark points, vertices in V with light points. We will assume that
m <n. The edges will be referred to by their endvertices.

The complete tripartite graphs, denoted Km’n’p , are the graphs
whose vertices can be partitioned into three partite sets:
U={u;,uy,...,u, }, V={v,vy,..,V, }, and W={w,,w,,..,w,} depicted with
dark points, light points, and dark centered points, respectively, such
that all possible edges between different type vertices exist, and
there are no edges with both endvertices of the same type. We
assume that m <n < p. Here also the edges will be referred to by

their endvertices.



Chapter 2

Introduction

Decompositions of graphs into various subgraphs with some
spécified property is a popular topic in graph theory. There are
essentially two types of decompositions: one decomposing the vertex
set V(G) of the graph G, and the other decomposing the edge set E(G)
of the graph G. In this thesis we are concerned with the
decomposition of the edge set of the complete bipartite and tripartite
graphs and of cubic graphs into the minimum number of sets such
that each set induces a tree. This decomposition is related to
arboricity which has been widely studied.

The arboricity of a nonempty graph G, is the minimum number
of subsets into which E(G) can be partitioned so that each subset
induces an acyclic subgraph. An equivalent definition of arboricity
of a graph G is the minimum number of spanning forests, denoted
a(G), whose union is G.

In 1960, Nash-Williams [12] determined the arboricity of any
graph.  Nash-Williams proved that given a nontrivial graph G with p

vertices and q edges where q, is the maximum number of edges in

q
any subgraph with n vertices, then a(G) = maxnl—n—_"'l‘-l . The fact that

q
a(G) 2 maxnl—'n‘jq'l‘—l can be shown as follows. Since G has p vertices,

the maximum number of edges in any spanning forest is p-1. Hence,

the minimum possible number of spanning forests required to



decompose G is at least ;)—(%—1 . By definition, a(G) is the minimum

number of spanning forests necessary to decompose G, from which it

follows that a(G)2 5‘%—1 Now, for any subgraph H of G, a(G) > a(H).

q
Therefore, a(G) 2 max, I—;‘_"—l‘_l .

Although Nash-William’s result gives us the value of a(G), his
proof does not provide a construction for the decomposition of the
graph G into a(G) forests. In 1964, Beineke [3] provided a
decomposition of the complete bipartite graph into a(G) forests.
Beineke’s decomposition is actually stronger than he states as his
method decomposes the complete bipartite graph into trees. In this
thesis we extend Beineke's results by characterizing the trees used in
his decomposition and by providing another decomposition of the
complete bipartite graphs where each of the trees, except possibly
one, is a spanning tree. We also provide a decomposition of several
families of the complete tripartite graphs.

We became interested in this topic as a result of decomposing
cubic graphs into the minimum number of trees. In 1992,
Boboricken and Valdés [4] showed that any 2-connected cubic graph

can be decomposed into I_%_jor fewer trees.  Furthermore,

Boboricken and Valdés showed that for every even p 2> 8, and for

every k, 2 <k SI_E'_] , there exists a 2-connected cubic graph G with

p vertices such that 7(G) = k. Similarly, Boboricken and Valdés

showed that any 3-connected cubic graph with p > 12 vertices can be
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decomposed into l—%—' or fewer trees; and for every even p > 12, and
for every k, 2 <k sl_%_l , there exists a 3-connected cubic graph G

with p vertices such that 7(G) = k. We include Boboricken and

Valdés' results concerning 2-connected cubic graphs in Chapter 3.
After decomposing cubic graphs into trees, we thought that it

would be interesting to decompose the complete bipartite graphs into

trees. We independently showed that the minimum number of trees

required to decompose the complete bipartite graphs Kn,nis

mn
l_m+n-1_] .  However, before we formally wrote the proof, we found a

reference to Beineke's paper, "Decompositions of Complete Graphs

into Forests," in the text book, Graph Theory, by Frank Harary [8].

We suspected that he might have decomposed the complete bipartite
graphs into the minimum number of trees. After reading Beineke's
paper we learned that Beineke had indeed solved this problem in
1964.  Surprisingly, our original method was very similar to
Beineke's method. Most of the results that follow in Chapter 4 are
proved in Beineke’s paper.

In Chapter 5 we decompose Kn n into (K, ) trees where all

but at most one tree is a spanning tree. In Chapter 6 we decompose
several families of the complete tripartite graphs into T(Km’n’p) trees.

Other work concerning tree decomposition include decomposing
the maximal planar and maximum projective planar graphs into the
minimum number of trees [10,13,15]. In particular, maximal planar

graphs can be decomposed into three edge-disjoint trees. At the
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24th South-Eastern International Conference on Combinatorics, Graph
Theory, and Computing, held in February, 1993, Pippert [7] discussed

his work with Chilakamarri, Hamberger, and Weakley on attempting

to determine which K, , can be decomposed into edge-disjoint paths

of each length from one to m+n. Also, Balakrishnan and Kumar [1]

recently considered the problem of decomposing K, , , into copies of

various specified subgraphs.



Chapter 3

Tree Decomposition of 2-Connected Cubic Graphs

In this chapter we show that any 2-connected cubic graph of

order p can be decomposed into L4R_l or fewer trees. We find it useful

to introduce the notion of a k-tree coloring.

A decomposition of a graph into trees will be called a k-rree
coloring if the edges of the graph can be partitioned into k sets in
such a way that the graph induced by the edges of each set is a tree
and k is minimal. It will be shown that any 2-connected cubic graph

with p > 8 vertices is k-tree colorable where k< L%J. Also, for every
even p 2 8 and for every 2 < kSLE‘J, there exists a 2-connected cubic

graph with p vertices that is k-tree colorable.
Throughout this chapter, we will consider cubic graphs where p
represents the number of vertices. Remember that in a graph, two

vertices are not allowed to be joined by more than one edge.

3.1 Decomposition of Cubic Graphs into T(G) S|_4B‘_| trees

We begin with the following four definitions.

Definition 3.1.1. A multigraph is similar to a graph but more

than one edge can join two vertices.
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Definition 3.1.2. In a multigraph, multiple edges are formed

when more than one edge joins two vertices.

Definition 3.1.3. Two graphs are said to be homeomorphic if
they can both be obtained from the same graph by a sequence of
subdivisions of edges. The graphs shown in Figure 3.1 are

homeomorphic to each other.

Figure 3.1

Definition 3.1.4. A critical edge e in a 2-connected cubic graph
G is an edge whose removal results in a graph with connectivity one.

An example of a critical edge e is given in Figure 3.2.

Definition 3.1.5. A removable vertex v is a vertex whose
removal from a 2-connected cubic graph G does not result in a graph
of connectivity one. An example of a removable vertex v is given in

Figure 3.2.

Figure 3.2
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The following theorem and three lemmas are required in

the proof of Theorem 3.1.9.

Theorem 3.1.6 (Whitney). A nontrivial graph G is
k-connected if and only if for each pair u, v of distinct vertices there
are at least k internally disjoint u-v paths in G.

Proof. A proof is given in [6] on page 159.

Lemma 3.1.7. Every two-connected cubic graph G has a

removable vertex.

Proof. Call the maximal connected subgraphs of G, which contain
no critical edges, blocks. Contract each of these blocks to a vertex.
The resulting graph will be a multigraph in which every edge is a
critical edge and in which every vertex is of even degree; i.e., a graph
in which each edge is on exactly one cycle, and in which no cycle is a
loop. There must be some vertex which is on exactly one cycle.
Consider the block to which it corresponds. This block consists of at
least four vertices, only two of which are of degree 2. So, at least two

vertices are not adjacent to critical edges and therefore are

removable.

Lemma 3.1.8. Let G be a cubic graph that contains a triangle and
which is k-tree colorable. Then the subdivision of any two edges of a
triangle and the joining of the two new vertices with an edge does

not change the tree colorability.
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Proof. Say the three vertices of the triangle are w, x, and y. Let
wx be subdivided with new vertex x' and edge wy be subdivided

with new vertex y'. (See Figure 3.1.3)

w
—_—
X y
x" y" x
Figure 3.1.3
We consider two cases:
Case 1. Edges wx and wy are assigned different colors, say red

and blue, respectively. Then edges wx' and x'x and x'y' can be
colored red and wy' and y'y can be colored blue. The red and blue
subgraphs are still trees as required. (See Figure 3.1.3.)
Case 2. Edges wx and wy have the same color, say red. Edge xy
cannot be red, thus let it be colored blue. In this case let x" be the
third vertex adjacent to x and let y" be the third vertex adjacent to y.
(See Figure 3.1.3) We then consider two subcases.
Subcase 1. Edges xx" and yy" are not both red. Without loss of
generality, assume yy" is not red. (See Figure 3.1.4.) Here
color wx', x'x, and wy' with red and x'y', y'y with blue. By
doing this, the blue tree now has two additional edges and the

red graph is still a tree.
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Figure 3.1.4

Subcase 1I. Edges xx" and yy" are both red. (See Figure
3.1.5) Here color wx', x'x, and wy' with red and color x'y' and
y'y with blue. After doing this the red graph is disconnected.
In the component of the red graph which contains y we recolor

each edge with blue. In the resulting graph both the red and

blue graphs are trees. °

Figure 3.1.5

Let G-v denote the graph G after the deletion of the vertex v

and all of its incident edges.
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Theorem 3.1.9. Any 2-connected cubic graph, p 2 8, can be

k-tree colored, k< LE‘J.

Proof. The proof is by induction on the number of vertices. All
cubic graphs with p vertices, 4 < p £ 14, can be found in [5]. There
are only five 2-connected cubic graphs with 8 vertices and each one
is 2-tree colorable as shown in Figure 3.1.6. In Figure 3.1.6, the solid
line represents one color, say red, and the dashed line represents
another color, say blue. Similarly, there are eighteen 2-connected

cubic graphs with 10 vertices and each one is 2-tree colorable.

Figure 3.1.6

Next, assume any 2-connected cubic graph with k vertices,

k
6<k < p, can be m-tree colored, m SLI_]. Let G be a cubic graph

with p 2 12 vertices. va' Lemma 3.1.7, there exists a removable
vertex v in G. Consider the cubic graph or cubic multigraph G*
homeomorphic to G-v. It has p-4 vertices.

If G* has no multiple edges, then, by the inductive hypothesis,

-4
we can m-tree color G* where m < |_B4_'J . In G, color the edges



G G*

Case 1. u W
u w
Case 2. v N
u w
\4
u w
Case 3.

Figure 3.1.7

15
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incident to v with a color not assigned in G* and color the edges
common to G* and G as they were colored in G*. Furthermore, each
edge of G which is formed from a subdivision of an edge e in G* is
assigned the color of e. Thus we have partitioned E(G) into m+1

trees. Therefore G can be k-tree colored, k £ m+] £ L% 1.

There are three cases where multiple edges are formed in G*.
These cases are shown in Figure 3.1.7. We will treat each of these

three cases separately.

Case 1. (See Figure 3.1.7.) In this case, edge e is not critical.

Consider the cubic graph G**, which is homeomorphic to G-e. G** has

-2
p-2 vertices. Therefore G** is k-tree colorable, k SLETJ. There are

two subcases to consider.

Subcase 1. If the edges v x and vjy (See Figure 3.1.9) are
colored differently in G**, say v;x is red and v;y is blue, then in G

color vyu, ux, and e red and color v;w and wy blue. Color the

remaining edge in G as they were colored in G**,

Figure 3.1.9
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Subcase __ II. If vix and vy are both colored the same
color, say red, then either (A) there is a red x-y path containing vy or
(B) there is a red x-y path which does not contain vj.

(A) If one of vv;y or v,v5 is not red, without loss of

generality, say vvs is blue. Then color vqw and uw blue and v,u, ux,

and wy red. (See Figure 3.1.10.) In doing this we have disconnected
the red tree. Color the remaining edges as they were assigned in G**.
Next, color the component of the red tree that contains y with blue.

Now the red and blue graphs are both trees.

Figure 3.1.10

If both vv; and v,v; are red, then vv, is not red, say it is blue.
Then exactly one edge of Vv, or v,v, is red; otherwise, we have a red
4-cycle. (See Figure 3.1.11.) Therefore, without loss of generality,
say v;v is not red. Interchange the colors assigned to vvy and vv,.
Next, color vyw, and uw blue, and viu,ux, and wy red. Color the
remaining edges as they were colored in G**, except color the
component of the red tree that contains y blue. The red and blue

graphs are still trees.
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Figure 3.1.11

(B) If neither vvz nor v,v5 is red then say vvs is blue.
(See Figure 3.1.12.) Color vyw and uw blue and color vyu, ux, and wy
red. Color the remaining edges as they were colored in G**. Both the

red and the blue graphs are still trees.

Figure 3.1.12

If both vvy and v,v5 are red, then v,v and VvV, are both not
red else there is a red cycle. However, by symmetry, this was
handled in the preceding paragraph.

If exactly one of vvy or vyvy is red, say vvy is red and v,v; is
blue. Now by symmetry and the preceding two paragraphs exactly
one of vvy or v;v, is red. In fact, viv, is red for otherwise there is a
red cycle. Similarly, vv, is not red. See Figure 3.1.13. Now recolor

v v, with red. Color vzW, uw with blue and Viu, ux, wy with red.
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Color the remaining edges as they were colored in G**. The resulting
red and blue graphs are still trees, as required. Thus case 1 is

proved.

Figure 3.1.13

-2
Case 2. Remove e and by the inductive hypothesis on ksl_pT—J,

k-tree color, the cubic graph G*** which is homeomorphic to G-e.

Replace e after subdividing the appropriate edges of G*** The

resulting graph is k-tree colorable by Lemma 3.1.8. Thus case 2 is
proved.
Case 3. Since v is removable, G-v is 2-connected. It follows from

Whitney's theorem, Theorem 3.1.6, that G-z is 2-connected and hence
z is a removable vertex. If no multiple edges are formed in cubic
G**** which is homeomorphic to G-z, then k-tree color, G**** uging

-4
the inductive hypothesis on kSLP4_J, and then in G color the edges

incident to z with a color not assigned in G****  Color the edges
common to G**** and G as they were colored in G****  Furthermore,
each edge of G which is formed from a subdivision of an edge e in
G**** is assigned the color of e. If multiple edges are formed by the

removal of z (see Figure 3.1.14) then remove e and proceed as in



Case 2. Thus Case 3 is proved. Therefore, any 2-connected cubic

graph, p > 8, can be k-tree colored, k< l_i)‘_l. e

Figure 3.1.14

3.2 Examples of k-tree colorable cubic graphs

of order p > 8, for every k, 2 <k < L‘E‘J

In the previous section we showed that all 2-connected cubic

graphs of order p are k-tree colorable where k SLE‘J. In this section

we show that the upper bound is tight, by giving an example of a

family of 2-connected cubic graphs that require LE‘J tree colors. In

addition, we show that for every even p 2 8, and for every k,

2 £k £ L%_], there exists a 2-connected cubic graph with p vertices

that require k tree colors.
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Theorem 3.2.1. For every even p 2 8, and for every Kk,

2 £k SLZ—J, there exists a 2-connected cubic graph G(p,k) with p

vertices that is k-tree colorable.

Proof. Form the graph G(p,k), p > 8, 2< k SLE‘J, as follows:

For 2 £i1< k, we have four distinct vertices Vi Vi Vi3 V4 and

five edges ViaVioe Vi2vie Vi2via ViavVid ViaVia (See Figure 3.2.1)

Figure 3.2.1

We have additional vertices Vi Vi, - Vi where s = p - 4(k-1).
These s additional vertices are joined by edges UTARTS! for j even
and 1 <j < s-2, edges Vi,iVi,j+2 for 1 <j < s-2, and edges Viavie

Vis1Vi,s (See Figure 3.2.2.)

Figure 3.2.2
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Graph G(p,k) consists of all vertices and edges listed above, and the
edges Vi Vo 15 Vo 4V3 15 V3 4V4. 10 > Yk ,4Vp,1- Each of these last k edges
are called joins. We illustrate G(26,2) and G(26,6) in Figures 3.2.3
and 3.2.4.

Figure 3.2.4
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For 1 <£i< k, the subgraph induced by all vertices with first subscript
iis called a hump. Graph G(p,k) is cubic. 2-connected with order p.

We show that it is k-tree colorable. Suppose we have a tree coloring
of G(p,k) with exactly g < k colors ¢, .., c, are used on the joins. If

c; is used on ¢ joins, then the joins must be consecutive and the (-1

humps in between require at least one additional color per hump

which is not used outside the hump. Let t,equal the number of joins
of color ¢;. Since G(p,k) has k joins, k=t; + ..+ ty-

1(G(p,k)) 2 g + (t-1) + .. + (tg—l) =h ottt So, 1(G(p,k)) = k.
But G(p,k) can be tree colored with k colors as follows. In the humps,
for 2 <i< k, the color edges v; 5v; 1, V; 2Vi 3, Vi 2Vi 4 With the color i,
and color the remaining edges with 1. Color join v; v, ; with color 2,
and the remaining joins are colored with 1. For j odd and 1 <j< s-3,
color edges vy vy ., With color 1, color edge v ( ;v .y with I, and
color the remaining edges of the form v, v, , with 2. Thus, G(p,k)

can be tree colored with k colors. Therefore, 7(G(p,k)) = k. So G(p.,k)

has p vertices and is k-tree colorable. °

Boboricken and Valdés [4] also showed that 3-connected cubic

graphs can be k-tree colored where k SI_%_I . We direct the interested

reader to [4], where the proof can be found.



Chapter 4

Tree Decomposition of the Complete Bipartite Graphs
into Trees of Nearly Equal Size

From Nash-Williams' famous result given on page 5, we know
m n
m+n-1

that (K ) 2 a(Kp ) 2 |— -] . In this chapter we show that

TKpo = a(Kp, ) =|— _I , and that the trees used in the

m+n-1

decomposition can be made to differ in size by at most one edge.
4.1 Preliminary Results

Lemma 4.1.1. Let m, n be positive integers, m < n, then

Ky, 2| ]

Proof. Ky ,n has mn edges. The maximum number of edges of a

tree contained in K_  is m+n-1. Hence, the minimum number of

trees required to decompose K  is at least men-1" Since 1(K is

1. o

m,n)

an integer, it follows that (K, ,) 2 I—m+n-1

Lemma 4.1.2. Let m>1 be an integer. The function f(x) = rmex_l‘l

is a nondecreasing function for all x > O.
Proof. Given that 0 < x; <X, and m > [,
it follows that x;(m2-m)<x,(m?-m).

Hence, m%x; - mx; + mx;x, < m?x, - mx, + mxx,



o
N

mx] mx2

and (mx;)(m+Xx,-1) < mx,(m+x,-1). So, mex;- 1 <m+x2- [

) m x; m X,
: : : e ———————— . J— < Y o
This implies I_m+xl- l_l < I—m+x2— l_l . Thus, f(x;) £ f(x,).

Lemma 4.1.3. Let x,y be positive real numbers.

Then, [x+y1-TyT=Lx] or [x1.

Proof. First, [x+yl-Ty1<xT1+[y1-Tyl=xT1.

Next, [x+yl-Ty12 Lx]+ [y 1-Tyl =[x]. So, [x]< |-x+y-| -Tyl< x1.
Since [x+yl-[y 1 is an integer, it follows that |—x+y_‘—ry-]=LX.J or[x].°

Lemma 4.1.4. t(K, ,) = m when n > (m-1)2.  Furthermore, the

trees used in the decomposition can be made to be the same size.

Proof. Kn, o can be decomposed into m trees isomorphic to K, ..

Therefore, (K, ) <m. (K, )2 r —I by Lemma 4.1.1. When

m+n-1

> (m-1)2+1, then by Lemma 4.1.2, we know that

m+n- 1—l rm (mm2 iTIZ)_I fm -1+ l-l - m. Thus, when

F

n > (m-1)2, (K, o =m. The trees used in the decomposition are

each of size n as they are each isomorphic to K, . °

4.2 Construction of Array A

n
-], n < (m-1)2, Beineke shows

To show that (K )= rm+n_1

mn
<
that T(Km,n) < I—m+n-1—| . It then follows from Lemma 4.1.1 that

MKy o) = =]

m+n-1
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Beineke’s argument proceeds essentially as follows.  First, we

o] ~
let t= e Then, we define an m by t array A whose cells

contain finite sequences of consecutive positive integers modulo n.

n
We let a(i,j) = r(i+j)(rt]—)-l- r(i+j~1)(r)-] be the length of the sequence

in the (i,j) cell, 1 £i<m, 1 <j< t, of A. We place a(i,j) consecutive
integers, modulo n, into the (i,j) cell in the following way: The entries
in the first row are consecutive positive integers, modulo n, starting
at 1. Thus the entries in cell (1,1) are 1,2,..,a(l1,1), the entries in cell
(1,2) are a(l,1)+1,.., a(l,1)+a(1,2); and so on. Similarly, each row i is
filled with consecutive integers, modulo n, where the first integer in

row i, 2< i £m, is the last integer in cell (i-1,1).

An example of the array A and its corresponding

decomposition is given in Example 4.2.1.

Example 4.2.1: The complete bipartite graph Ks g can be

45
decomposed into 4 trees. We form array A, with t = |_-1—3 =4

columns, and show the decomposition that corresponds to the

array A.

a(l,1) = rz(z—)_l -r%-l =5-3=2.
|—3(Z—)1 -rz(i—)-|=7 -5=2.
a(1,3) = |-4(;9;)_| —rs(%)_l=9-7 =2,

A1) = a32) = a23) = a14) = [5(P1-T4(P1=12-9=3.

a(2,1) = a(1,2)

a(3,1) = a(2,2)

a(5,1) = a(4.2) = a(3,3) = a(24) = Fs(%ﬂ -Fs(%ﬂ: 14-12=2.



a(5,2) = a(4,3) = a(3,4) = F7(%)T - fé(%)W =16 - 14 = 2,
a(5,3) = a(4,4) = fs(%)] -F7(§-)1= 18- 16 = 2.
a(5,4) = F9(%)T -Fs(%ﬂ: 21 - 18 = 3.

T, T, T; T,
w[[ 12 34 56 789
ul 23 45 678 91

A=usl 34 567 89 12
u, 456 78 91 23
usL 67 89 12 345_

Figure 4.2.1

The columns in the array A correspond to the trees used in the

decomposition of Kgo. The entries in the i’th row correspond to
endvertices in V of edges incident to vertex u;. In Figure 4.2.1 each
tree Ti is shown together with the vertices of Kg 4 which are not in TJ-.

Notice that T, UT, U T3 UT, =K5'9. Also notice that T,, T,, and Ty
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each have 11 edges and T, has 12 edges. We will prove that, in

m,n

t
general, .Ul T, = K and that ||E(T;)| - IE(Tj)H <lforl<i,jst.
1=

4.3 Properties of Array A

Lemma 4.3.1. The array A has the following four properties:

I) The entries in each row are the n consecutive integers
modulo n.

II) The first entry in cell (i,j) is the last entry in cell (i-1,j) for
2 <i<mand 1 <j<t.

ITT) In each column, if the first entry of all cells except the first is
excluded, the remaining entries are consecutive integers
modulo n and there are at most n of them.

IV) The number of entries in any two columns differ by at most
one.

Proof.

1) Since the terms being summed telescope, for each i,
}ia(i,j)= (@1~ T =0+ T-THE 1= o This
i=1
summation shows that each row contains exactly n integers.
The fact that these integers are consecutive follows from the
construction of array A. This proves that A has property (I).

IT) We use induction on j. By our definition of array A, the first

entry in cell(i,1) is the last entry in cell (i-1,1), 2 <i< m-1.

That is (II) is true for j = 1. We assume that (II) is true for all
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i= 2,..,m and some fixed j, 2 <j<t. Let a(i,j) = a. Then by
definition a(i-1,j+1) = a(i,j) = a. Let the last entry in cell (i-1,j)
=x. Then by inductive assumption, the first entry in cell (i,j) is
x. See Figure 4.3.2. Since cell (i-1,j+1) contains a consecutive
integers starting with x+1, its last entry is x+a. Furthermore,
since cell (i,j) also contains a consecutive integers and cell (i,j+1)
begins with the next consecutive integer, the first entry in cell
(i,j+1) is x+a. Therefore the last entry in cell (i-1,j+1) is the first

entry in cell (i,j+1) and (II) is proved.

cell (i-1,j) cell (i-1,j+1)

« .., X) (x+1,...,x+a)

cell (i,j) cell(i,j+1)

(x,...,x+a-1) (x+a, ... )
Figure 4.3.1

Again, since the terms telescope, for each j, and by Lemma

4.1.3, Za(l,_])—l—(m"'])(—)_l [ T= T or L5

[’ m n ', . .
m+n-1. Subtracting the m-1 entries,

m+n 1)
corresponding to the first integers in each cell appearing in the
preceding cell, we have no more than n entries remaining in
column j. The fact that these are consecutive residue classes

follows from (II). Therefore, A also has property (III).
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IV) Since the number of entries in each column = ,"‘m't'ﬂql or l_'n'l't—n_l , as
shown in the proof of (III), we see that the number of entries
in any two columns differ by at most one. Thus, A has
property (IV).

4.4 Decomposition of K, p, into trees of nearly equal size
’

Theorem 4.4.1. For the complete bipartite graph Knn o

,‘ mn ‘, . -
) =t = i , and the trees used in the decomposition

can be selected so that their sizes differ by at most one.

-I. If m = 1, then

Proof. Let m and n be given and let t = rm+n-1

the graph is already a tree. If n > (m-l)z, then T(Km’n) = m, by
Lemma 4.1.4. In this case, K , can be decomposed into m copies of
the graph Kl,n. Hence we may assume 2 <m <n .<_(m—1)2. We
define t graphs T, T,, .., T, using the t columns of the array A.
Specifically T; is the subgraph induced by the edge set {u;x | x is in
cell (i,j), i = 1,..,m} The fact that "I} is acyclic follows from Lemma
4.3.1(IIT) as no number is repeated in a column, except in the first

entry of all cells after the initial cell in each column. Thus, no cycle is

formed. It is apparent from Lemma 4.3.1(II) that each TJ- is

t
connected and hence a tree. Also, U Tj=K , follows from Lemma
i=]

i= >

4.3.1(I), since it implies that each u; is adjacent to each h. Therefore
m n
m+n-1

(K, ») 1s at most t. However, Ky o) 2 r _l = t by Lemma
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[ ]
= = t. From Lemma 4.3.1(IV) we see

4.1.1. Hence, (K m+n-1

ﬂl,ﬂ)

m mn m
that a(i,j) =¢( rT_l or Lt_n_l ) . Therefore, | [E(Tj)l - |E(Ty)l | < 1, for

1=1

1 <j, k<t. Thus, the theorem is proved; that is, K o can be

decomposed into t trees such that all trees in the decomposition are

nearly equal in size. °

We thought it would be interesting to decompose Kn.n

into t trees such that all but at most one of the trees is a spanning

tree. These results follow in Chapter 5.
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Chapter 5§

Tree Decomposition of the Complete Bipartite Graphs
into Nearly All Spanning Trees.

We saw in Chapter 4 that K, , can be decomposed into

mn
m+n-1

Ky =t =/ | trees where the trees differ in size by at most

one edge. In this chapter we show that K, , can be decomposed into

t trees where at least t-1 trees are spanning trees. We start by

decomposing K, , when n 2 (m-1)2 into spanning trees, but first we

prove the following.

Lemma 5.0.1. For n > (m-1)?, 7K, ) = m. Forn = (m-1)2,

Ky ) = m-1. For n £ (m-1)%, 7(K, ) £ m-L.
Proof. For n > (m-1), @K, ) = m by Lemma 4.1.4. For
2 2
= (m-1)2 _r—m(m-1) _pm(m-1)%
n (m-1)%, by Theorem 4.4.1, ©(K ) r(m+(m-l)2- 1)]_['( L

=m-1. For n < (m-1)2, using Theorem 4.4.1 and Lemma 4.1.2, we
m n m(m-1)>2 m(m-1)2
< y =
m+n-l)-|' I—(m+(m-1)2- 1)-| ¢ m2- m )1

have that 1K p=t= [(

=m-1.



5.1 Tree Decomposition of K, [, n2(m-1 )2

into nearly all spanning trees

ILLemma 5.1.1. Km,n,nZ(m-l)z, can be decomposed into t-1
spanning trees and one additional tree.
Proof: For n = (m-1), (K, ;) = m-1 by Lemma 5.0.1. Since

)
m(gm 11)22 = m-1, the method used in Theorem 4.4.1 will decompose
m+(m-1)*°-

Km’(m_l)z into m-1 spanning trees. For n > (m-1)2, T(Km'n) = m by
Lemma 5.0.1. Therefore, we construct the following m by m array D
whose cells contain finite sequences of positive integers. Array D is

shown in Figure 5.1.1 on page 34. The entries in the i’th row

represent endvertices of edges incident to u,, and the columns

correspond to trees, T; through T, used in the decomposition. We
will show that the union of T, through T is Knn » and that indeed
each Tj, 1 <j< m is a tree. The notation a—b in cell (i,j) means that

the integers a through b inclusive are listed. This in turn means that

vertex u; is adjacent to vertices a through b inclusive in subgraph Tj.

Similarly, the notation a—b in cell (i,j) means the numbers 1
through n except a through b inclusive are listed. This in turn means
that in Tj, u;, is adjacent to all vertices in V with the exception of

vertices a through b.

To prove that the array D represents a decomposition of K,
into m trees where at least (m-1) trees are spanning trees, we verify:

(I)  the first (m-1) T;'s are spanning trees and T, is a tree, and

(11) 'Ul T, = K

m,n '’



o

U1+

w

...C - Ev

Al-w) < u

{1-w)p

W)l -w) [+ (g~ w)

—
ol

(C-w)(1~w)—|+ (T-w)

(T-w)

(¢-wyg

(T-w)g

oroym "My yum pejeioosse (q Aeny

Ve (T~ w)-w)y

(CT~w)— [+ (T-w)i-1

T+ (T-w)

(C-ut— 1+ (@-w)i-1

(I-D+(c-ug

(I-D+(T-uw)

-1

€+ (T-w( -w)wp

(T-w)g — [+ (c~w)g

£+ {T-w)

€+ (T -w)i-1

(T-w)eg—1+(c-wz

T+(T-w)y

o1

£L

1S oSy

TH(T-w)(i-w)y

(T~uT —1+(T-w)y

T+ (T-w)

TH(T-w)(i-1)

T+(T-w)g

C-wg—1+(c-w)

‘L

[+ (g-w)(] - w)]

P(T-w)—1

I+ (c-w)

T+(T-w(1-1

1+(C~uwg

T+(C-~w)

(T—w) 1

fn

5



35
) Clearly T, is a tree consisting of one vertex adjacent to exactly
n-(m-1)2 other vertices. To show that the first (m-1) columns
correspond to spanning trees, we show that all the vertices up,..,u,

and vy,..,v, are included and are not isolated vertices, and that there

n
are m+n-1 edges. Under these conditions the resulting graph must

be a spanning tree. Consider column j, 1 <j<m-1. First look at rows
j and m, between these two rows all of the numbers 1 through n are
listed, and there are n+l1 entries which correspond to n+l edges. The
other m-2 rows each have one entry, so there are an additional m-2
edges. Thus, there are m+n-1 entries in column j which represent

m+n-1 edges in Tj. Since none of the rows in column j are empty, all
of the vertices uy,..,u, are in Tj. Similarly, since all of the numbers

1 through n are listed in rows j and m, all of the vertices Vi,V are

in TJ Therefore, Tj has m+n vertices and m+n-1 edges. So, Tj is a
spanning tree for 1 <j<m-1.

Tj = K, , consider row i, 1 <i<m-1. We must

m
II) To see that U
i=1

show that there are exactly n distinct entries. In row i the entries in
columns 1,2,..,i-1,i+1,..,m-1 are simply the missing entries from

column i. Thus all entries 1 through n exist. In row m it is clear that

m
all entries 1 through n exist. Therefore, U T,=Ky. - °
i=1 ’

Notice that we can decompose K (m-1)2 into m-1 spanning

trees using the array D as column m will be empty in this case.

Example 5.1.2. We show the decomposition of Ks ,, into 4

spanning trees and one tree with 4 edges. We use the decomposition
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given in array D, where the entries in row i represent endvertices in

V of edges incident with u;, and columns correspond to the trees

used in the decomposition,

T, T, T T, Ts

Y1 T 4-20 1 2 3 - ]
us 4 1-3&7-20 5 6 -
D= U, 7 8 1-6&10-20 9 -
uy 10 11 12 1-9&13-20 -

ug - 1-3&13  4-6&14 7-9&15 10-12&16 17-20 -

. . i
5.2 Preliminary results for K, . when n < (m-1)
.

Before we begin to decompose K, n < (m-1)2 into t trees
where at least t-1 trees are spanning trees, we need some

preliminary results.

m+
m

Lemma 5.2.1. Given b(i,j) = [ (i+j)( ?;2)1- r(i+j-1)(mn:?{2ﬂ ;

=|- mn

_l,and 1 £r<m< n, then
m+n-1

(I for 1 £i< (m-1) and j £ t-1,

o) = (LD ] o [(E2F1) 5 2

T -9 _
) Yo =TT [HEEH]

j=1

l m+ m +

=L(r)( ?;Z)J or [(r)( f’izﬂ fori, 1 <i< m-l.

m m



37

2
(1) max {Zb(m)} JZ b(m- 1,1)-—F<r>( 1)1.
t-2
(IV) Y b(i,j)<n, fori, 1 <i< m-1.
ot
‘:-1
(V) Y b(i,j)2n-2, fori, 1 <i< m-l
o
! m- 1
(VI) for j, 1 £j< t-1, ¥ b(i,j) = m+n-2.
i=1
Proof.
(I)  b(,j) = (L(m L 2)J or f(m LN 2)1) by Lemma 4.1.3. Since
2 £m £ n, it follows that |_( _]> 2. Therefore
2 2
b(i.j) = ( L) orr<"‘ S 22

(11)

(111)

Since the terms being summed telescope, it follows that

Z b(l,J)—l-(1+r)( 2)1 - r(i)(ml:f)'l . By Lemma 4.1.3,

-2 +n-2
5 Lor [ (=91 for

r(m)( ﬂ- o
i,1<i< m-1.

-2 m+n-2
L or T

By (II), we know that Y b(i,j):L(r)(mn:f] )1

j=1

! . m+n-2
Therefore, max Z b(i,j) <(r)( — )1 . Also by (II) we

1Si<m-1 2

-2 +n-2
- I'(m-l)(mmf]1

know that ¥ b(m-l,j)=|_(m-1+r)(mr;f1 )1

j=1
-2 -2
=F(m-1)(mr:f'1 ) +r( 1 5. F(m-l)(mr;?l )1

)] -rm+n—21=r(r)(mr;fliz

=Tmen2 + O 1.



(IV)

V)

(VI)

Hence, max {Z b(i,j) }= F(r)(———ﬂ- Z b(m-1,j).

1€i€m - 1 i=1
We know from (II) that
t-2
n-2 m+n-2
Z b(i,j) =l(i+t- 2)( - )1 - T(i)¢ — )1 fori, 1 €i< m-l.
j=
t-2 )
and that, le b(i.j) < [(1-2) ﬂ = [(—1-9 )]
mn m+n-2 -2
< I-(m+n—1} m-1 1 )-I
mn m+n-1 m+n 2 mn-m- n+2
PG ) 1’1 [ 1= fnde 2751
t-2
< n. Therefore, Z b(i,j) <n, for1 <i< (m-1).
j=1
We know from (III) that
t-1
m+n 2
JZ b(m-1,j)= [ (t- 1)( )1 ﬁmm T - ) |
mn-m-n+1 m+n 2 (m-1)(n-1) m+n-1 -1
2T ( m+n-1 ) ( 1)-| ¢ m+n-1 )(m-l +m-1}—I
=l (1) - — l_l_nlform>1
t-1
Y, b(m-1,j)2 n-1. Since, for 1 <i< m-1, the sum of the
j=1
first r = t-1 terms of any two rows, excluding row m, differ by
t-1
at most 1 by (II), it follows that ) b(i,j)2 n-2 for 1 <i<m-1.
j=1

Since the terms being summed telescope,

m-1 n-2 -2
T o) =lm- 1) O 1- THETT

)
“Tmn2) + GEEDHTTHEEDT - (men2)

Thus (VI) is proved. °
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Next, we use the preliminary results to construct an array B

which we use to find a decomposition of K,  into trees, nearly all of

which are spanning trees.

5.3 Construction of Array B

To decompose K n < (m-1)2, into t trees where at least t-I

m,n ?*
trees are spanning trees, we start by defining an m by t array B

whose cells contain finite sequences of consecutive positive integers

+n-2 +n-2
mm?l )1- F(i+j-1)(mmf]1 ) for

modulo n. We let b(i,j) = [(i+j)(

1 £i<m-1, and 1 £j< t. We place b(i,j) consecutive integers,
modulo n, into the (i,j) cell for each pair (i,j), 1 £i< m-1, 1 <j< t-2,
in the following way: The entries in the first row are consecutive
positive integers, modulo n, starting at 1. Thus the entries in cell
(1,1) are 1,2,..,b(1,1), the entries in cell (1,2) are b(1,1)+1,...,
b(1,1)+b(1,2); and so on. Similarly, each row i is filled with
consecutive integers, modulo n. The first integer in row i,
2 <1< m-l, is the last integer in cell (i-1,1), and each cell (i,j),
1 <£j £ t-2, receives b(i,j) integers. At this point the first m-1 rows
of the first t-2 columns are filled. The fact that each row has less
than n entries at this stage is shown by Lemma 5.2.1(IV). In order
t-1

to complete the array, we find it useful to calculate Z b(m-1,j). We
i=1

choose i = m-1 because we showed, in Lemma 5.2.1(III), that the
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t-1
sum Z b(i,j) is largest when i = m-1. To complete the definition of

j=1

array B, we consider two cases.
t-1
Case 1. If Z b(m-1,j) > n, then place the numbers 1

j=1

through n in cell (m,t-1) and calculate the last two columns as
follows: In column t-1, for 1 £i< m-1, the i’th cell begins with one
more than the last entry in the i’th cell of column t-2 and continues
modulo n until one less than the first entry in the i'th cell in column

1. Column t is left empty. We illustrate this case in Example 5.3.1.
t-1
Case 2. If E b(m-1,j)< n, then place the numbers 1

j=1
through n in cell (m,t), and calculate the last two columns as follows:
In column (t-1) use the same formula and process as used for the
preceding columns. That is each cell (i,t-1) receives b(i,t-1)
consecutive integers modulo n, where the first integer is one more,
modulo n, than the last integer in cell (i,t-2). In column t, for
1 < i <m-1, the i’th cell begins with one more than the last entry
in the i’th cell of column t-1 and continues modulo n until one less
than the first entry in the i'th cell in column 1. We illustrate this
case in Example 5.3.2.

We can view b(i,j) as the capacity of cell (i,j). For 1 £i< m-I]

t-1
and 1 <j< t-2, each cell is filled to capacity. When Z b(m-1,j)< n,
j=1
then each cell (i,t-1), 1 <i< m-1, is also filled to capacity. When
t-1
Z b(m-1,j) > n, some cells in column t-1 are not filled to capacity.
j=1
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Also, in this case, cells (i,t-1) and .(i+1,t-1) may not have a common
element.

We can view the entries in cell (i,j) as endvertices in V of edges

incident with u;, and we can view columns as defining subgraphs
H;, .., H, used in a decomposition. Specifically, H; is the graph
induced by the edge set {u,;p | where p is in cell (i,j), 1 <i< m}. We
find it convenient to label column j in array B with HJ., and row i with
u.. In the subsequent figures we show HJ- together with vertices of

1

K o not included in Hj. The decomposition is not yet into spanning
trees. The next step is to use this decomposition to obtain a
decomposition into spanning trees. The decomposition at this stage is

shown in Examples 5.3.1 and 5.3.2.

Example 5.3.1: We show the decomposition of Ks 7 given by the

array B. 1(Kg5 ;) = 4, so there will be 4 columns in the array B.

3
For i = 4, E b(i,j) = f(5-1+3)(2—0ﬂ— |-(5-1)('lz0')—l= 8>n="7.
=t

So, column 4 will be empty, and column 3 is calculated separately.

b = [2(591- T(5H) T=5-3=2.
b(2,1) = b(1,2) = I—s(%)-l - rz(-%g)'|= 8-5=3.
b3,1) = b(2,2) = r4(170)-| - f3('4—°)—| =10-8=2.

b(4,1) = b(3,2) = rs(—l;;g)-l ; f4(14—°)_| =13-10=3.

b(4,2) = fs(-lz(-)-)_l - rs(lfﬂ =15-13=2.



ui 12 345 67 -
up| 234 56 71 -
B= u3| 45 671 23 -
ugl 567 12 34 -

usbt. - - 1—-7 -

1 o1
u, u, @

2 02
U2 U2@

3 03

4 o4
U4 U4@

5 05
U5® USQ

6 06

7 o7

H H Hy H,

Figure 5.3.1

Example 5.3.2: We show the decomposition of K¢ g given by

array B.  1(Kg g) = 4, so there will be 4 columns in array B.

3
Fori=5 Y b(ij)=[(61:3(DT-[6-nED1=8=n.
=1

Therefore, column 4 is nonempty and is calculated separately.

b = [2(5D7- [H2]=5-3=2

b2,1) = b(1,2) = fs(ls-z-)_l : rz(%)_l —8-5=13,



b(3,1)
b(4,1)
b(5,1)
b(5,2)

b(5,3)

b(2,2)

]

b(3,2)

b(4,2)

b(4,3) =

It

b(1,3) =

b(2,3) =

[4¢DT-T3(D T=10-
|_5( )—I |'4(1“)1 12-10 = 2.
b33) = [6(% ﬂ F5<’52)T_1s-w_3

|—7( 157 . |—6(—‘)_| 17-15=2

Hy
u[ 12
us| 234
uj 45
uyl 56
us| 678
ugl. -

I‘S(LSZ)_I - r7(%)—| =20-17 = 3.

Hy Hy
67 8
78 1
8§12 3
23 4
345 -
- 1-8

Figure 5.3.2

8=2.
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5.4 Properties of Array B

t-1 t-1

Let ¢ = (t-1) if ¥ b(m-1,j)< n or (t-2) if Y b(m-1,j)>n.
j:] J:I
Theorem 5.4.1. The array B has the following four properties:

(I) The entries in each row are the n consecutive integers modulo

n.
m-1

(II) For 1 £j<¢, Z b(i,j) = m+n-2. Therefore, in each column j,
i=1

1 < j < ¢ there are m+n-2 entries.

(ITI) The first entry in cell (i,j) is the last entry in cell (i-1,j) for
2<i<m-1land 1 <j<4

(IV) In each column j, j < ¢, if the last entry of each cell (i,j),

1 <1< m-1, is excluded, then the remaining entries are the n
consecutive integers modulo n.

Proof.

(I) By the construction of array B, and Lemma 5.2.1(IV), it is
apparent that each row has n entries. The first row has
consecutive integers 1,2,..,n and by construction each
subsequent row has entries which are consecutive integers
modulo n. Thus (I) is proved.

(II) This result follows from the definition of array B and Lemma
5.2.1(IV). Thus (1I) is proved.

(IIT) We use induction on j. By our definition of array B, the first

entry in cell(i,1) is the last entry in cell (i-1,1), 2 £i< m-1.
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That is (III) is true for j = 1. We assume that (III) is true for
all i = 2,..,m-1 and some fixed j, 2 <j< ¥4 Let b(i,j) = b. Then
by definition b(i-1,j+1) = b(i,j) = b. Let the last entry in cell
(i-1,j) = x. Then by inductive assumption, the first entry in cell
(i,j) is x. Also, the last entry in cell (i-1,j+1) = x+b and cells
(i-1,j+1) and (i,j) have the same number of entries. Therefore
the first entry in cell (i,j+1) is x+b. (See Figure 5.4.1.) Thus
(ITII) is proved.

cell (i-1,j) cell (i-1,j+1)
« .., X) (x+1,...,x+b)
cell (i,j) cell(i,j+1)

(x,...,x+b-1) (x+b, ... )

Figure 5.4.1

By (III), the first entry in cell (i,j) is the last entry in cell (i-1,j)
for 1 <i<m-1, and 1 <j<{ and there are m+n-2 entries by
(IT).  Therefore, after excluding the m-2 repeated entries, there
are n entries. By the choice of the first entry in each cell, the

entries are the n consecutive integers modulo n. Thus (IV) is

proved. e
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5.5 Properties of the subgraphs defined by array B

Lemma 5.5.1. The subgraphs H,, .., H, are all trees of order
m+n-1.
Proof. The graphs are connected by Lemma 5.4.1(III) since the

last entry in cell (i-1,j) equals the first entry in cell (i,j) for

2 <i< m-1, and 1<£j<¢ The fact that each H; has m+n-1 vertices
follows from Theorem 5.4.1(IV) and the fact that u_, is the only
vertex in U not adjacent to an element in V. Since, according to

Theorem 5.4.1(Il), each column j, 1 < j < ¢ has m+n-2 entries, it

follows that each H; has exactly m+n-2 edges. Therefore, since each
HJ- has m+n-1 vertices and m+n-2 edges, it follows that each Hj,

1 £3<¢,is a tree.

To make Hj, 1 £j< ¢ a spanning tree, an edge of the form u k

must be added to Hi'

Let H,", and H| be the subgraphs induced by the edges of H,_,

and H,, respectively, excluding the edges, if any, incident to ug.

It is possible for Ht’fl to be disconnected. An example of this

case is shown in Example 5.3.1.

Lemma 5.5.2. The subgraphs H,”, and H| are acyclic.

Proof. There are two cases to consider depending whether or

not column t has any entries.
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(1) If column t has no entries, then H’: is acyclic. Also, if column 't
t-1

has no entries, then Z b(m-1,j) > n by construction. So cell
j=1

(m-1,t-1) has fewer than b(m-1,t-1) entries. Since the total number

of elements in any two rows differ by at most one entry by Lemma
t-1
5.2.111), Y b(i,j)2 nfor 1 <i< m-2. Hence each cell (it-1),

=1

1 < i <m-2, has fewer than or equal to b(it-1) entries. If each cell

has b(i,t-1) entries, then Hl’fl has m+n-2 edges by Lemma 5.2.1(VI).

The vertices uy,..,u, _; are all included in Ht’fl as no row in column

t-1 is empty by 5.2.1(IV). Also, if each cell (i,t-1) has b(i,t-1) entries,
then the first entry in cell (i+1,t-1) is the last entry in cell (i,t-1) for
1 £i< m-2 since cell (i+1,t-2) also has b(i,t-1) entries. After
eliminating the m-2 repeated entries, the remaining n entries are the
n consecutive integers modulo n. So all the vertices v,..,v, are

included in Ht”fl. Hence Ht’fl has m+n-1 vertices and m+n-2 edges,

and thus is a tree. If some cell (i,t-1) has fewer than b(i,t-1) entries,

then H,*, is still acyclic.
t-1

(IT) If column t has some entries, then Z b(m-1,j)<n, so H,’fl is a
=1

tree and hence acyclic by Lemma 5.5.1. If each cell (i,t), 1 <i< m-1

has b(i,t) entries, H’: is a tree by the same argument as (I). Again,

since removing edges from a tree cannot form cycles, it follows that

Hy is acyclic. Thus, it follows from (I) and (II) that both H*, and H?

are acyclic. °
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5.6 Decomposition of K, , into nearly all spanning ftrees
t-1
when 2 < n < (m-1)? and E b(m-1,j)> n
i=1

t-1
Lemma 5.6.1. Let 2 < n < (m-1)2. If Z b(m-1,j)> n, then K, |

i=1
can be decomposed into t trees such that at least t-1 of them are
spanning trees.

t-1

Proof. Since 2 b(m-1,j)> n, then by construction column t is
j=1

empty.  Therefore H, is the empty graph. By Lemma 5.2.1(1V), for

I <i £ m-1, each cell (i,t-1) of column t-1 is nonempty, and thus
each y; is in H,_;. Note H,*, is acyclic by Lemma 5.5.2. H,", has no
more than m-1 components as each edge has an endvertex in the set
U. Say H,”, has p £ m-1 components. Then, we need p edges of the
form u k to connect these components to u . For each component
select an edge to join that component to u_ . Place the selected edges
into H,*,. Thus, we have changed H,", into a tree. Next, add an
appropriate set of edges, if any, of the form u_ k to change Ht"_‘l into a

spanning tree. Now we argue by contradiction that there are enough

edges of the form u k remaining to change the first t-2 trees into

spanning trees as well. So, for the sake of obtaining. a contradiction,

assume there are not enough edges of the form u k remaining to

change the first t-2 trees into spanning trees. Place one edge of the

form u_ k into each tree until the edges of the form u_ k run out. In
this fashion, K has been decomposed into t-1 trees. This

contradicts the fact that t is the minimum number of trees required
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to decompose K . Hence, there must be enough edges to change
H;,..,H,_; into spanning trees and there must be at least one edge of

the form u k to place in the tree H,. We place all of the remaining

edges of the form u, k into H,. °

5.7 Decomposition of K. [ into nearly all spanning trees
t-1

when 2m-3 < n < (m-1)? and Y b(m-1,j)< n

i=1

We showed in Lemma 5.6.1 that K, n can be decomposed into t

trees such that at least t-1 of them are spanning trees when
t- 1

b(m-1,j) > n. Therefore, to decompose K, , into almost all
=1

J
t-1

spanning trees, we need only consider the case where Zb(m—l,j)s n.
i=1

The next step is to use the array B and the subgraphs H,, .. , H,
to form a decomposition into new subgraphs T, .. , T, of Ky .o Where
all of the T, are trees and at least t-1 of the T, are spanning trees.

Before continuing, we consider the array B and subgraphs

Hy, .. . H; for K¢ given in Example 5.7.1.
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Example 5.7.1. We show the array B associated with Kg o.

H, H, H; H,
u[ 123 45 678 9
u,] 34 567 89 12
us| 456 78 912 3
uf 67 891 234 5
usl 789 123 45 6

U6_ - - - 1""9 -

Notice there exists a cycle in H,. The cycle is 1uy,2 ygl. In

order to make the last subgraph a tree, one of the edges ugl or ug2

will need to be moved to an earlier subgraph. We also need to move

two other edges of the form ugk to the other two earlier subgraphs in

order to make them spanning trees. These changes are given in

Example 5.7.2.

Example 5.7.2. The following array D represents a decomposition of

K¢, into 3 spanning trees with 14 edges and I tree with 12 edges.

T, T, T, T,

u[ 123 45 678 9 ]

u,| 34 567 89 12

us| 456 78 912 3
D=l 67 891 234 5

us| 789 123 45 6

ugb 2 4 7 135689 -
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Definition 5.7.3. Let C denote the least number of edges of the

form u_k whose removal from H, eliminates all cycles.

A 4-cycle is formed in H, when two integers are in cell (i),
1 £i< m-1. For example, say rs is in the k'th cell of H,, then the

4-cycle ru.su r is formed.

t-1
Lemma 5.7.4. Given 2 <m< n < (m-1)?, Y b(m-1,j)< n, and the

=1

array B associated with K Let d equal the number of cells (i,t),

o
1 <i< m-1, with exactly two entries. Then C = d.

Proof. By Lemma 5.2.1(V), the last column of array B has at
most 2 elements in any cell (i,t), 1 <i< m-1. By Lemma 5.2.1(I), the
number of elements in any two cells (i,t), (j,t), 1 <1i,j< m-1, differ by

at most one. Therefore if any cell (i,t), 1 <i< m-1, contains 2

elements then no cell (j,t), 1 £j< m-1, has zero elements. If all cells

(i,t), 1 £i< m-1, have 0 or 1 element then no cycle is formed in H,.
To see this fact, say cell (i,t) has 1 element, then deg(y;) = 1 and
therefore u; is not part of a cycle. So, cycles are only formed when
cell (i,t) has 1 or 2 elements for all i, 1 £i< m-1. Therefore, H, has
order m+n as u, is adjacent to vertices 1,..,n in V by the

construction of array B, and uy,..,u,_; are all vertices in H, as there

are no blank cells in column t of array B. The number of edges in H,
equals (m-1) + d + n = n+tm-1+d as the first m-1 cells of column t

have at least 1 entry, d cells have 2 entries, and cell (m,t) has n

entries.  Subgraph H’f is acyclic by Lemma 5.5.2. Therefore all cycles
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in H; contain edges incident to u . By the construction of array B,
n>d. So we can make H, into a tree of order m+n by removing d
edges of the form u,p. Removing fewer than d edges of the form
o

u,p will leave at least one cycle in H,. Therefore, C = d.

Next, we show that C < t-1.

t-1
Lemma 5.7.5. Given 2 < m< n < (m-1)2 and Z b(m-1,j) < n, then
j=1

C< t-1; that is, H, can be made into a tree by moving t-1 or fewer

edges of the form u_ k to the first t-1 trees.
t-1

Proof. Since Z b(m-1,j)< n, the integers 1 through n are listed
J=1

in cell (m,t). Therefore all of the edges of the form u,k are placed
into the subgraph H,. This construction often forms cycles in H, as
was shown in Example 5.7.1. We need to show that C < t-1. By
Lemma 5.2.1(V), we see that the last column of array B has at most
two elements in each cell (i,t), 1 £i< m-1. For the sake of obtaining

a contradiction, we assume that C> t-1. It follows from Lemma 5.7.4

that | E(Hf) | =(m-1) + C. Now we count the number of edges
excluding the edges incident with u_. The number of edges in the
first t-1 trees plus the number of edges in H’: equals mn-n. So,
(m+n-2)(t-1) + (m-1) + C = mn-n. Since C > t-1, it follows that
(m+n-2)(t-1) + (m-1) + (t-1) < (m+n-2)(t-1) + (m-1) + C = mn-n.
Therefore, (m+n-2)(t-1) + (m-1) + (t-1) < mn-n.

But, (m+n-2)(t-1)+(m-1)+(t-1)=(m+n-1)(t-1)+(m-1)
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mn
m+n- 1

= (m+n- 1) ] - (m+n-1) + (m-1) > mn - n. We have reached a

contradiction. Hence, C < t-1.

t-1
Lemma 5.7.6. When ¥ b(m-1,j)< n and 2m-3 < n < (m-1)%, then
i=1

Kn, o iS decomposable into t trees where nearly all of them are
spanning trees.

Proof. By Lemma 5.2.1(V), the last column of array B has at
most 2 elements in any cell (i,t), 1 <1< m-1. Let d equal the number
of cells (i,t), 1 £1< m-1, with 2 elements. Then d < t-1 by Lemmas
5.7.4 and 5.7.5. Let k = (t-1)-d. Thus there are at most (m-1) + d
distinct integers listed in the first m-1 rows of column t. We know

that n2 2m-3 = (m-1) + (m-2) 2 (m-1) + (t-1) by Lemma 5.0.1. So,
n 2(m-1) + d + k. (5.7.1)

Since there are d cells (i,t), 1 £i< m-1, with 2 entries, then there are

d edges of the form u p that must be removed from H, to eliminate
cycles by Lemma 5.7.4 and by the definition of C. Remove these
edges from H, and place one edge into each H;, 1 <j< d< t-1. Now
the first d H;'s are spanning trees. From inequality (5.7.1) we have
that there are also at least k 2 O distinct integers that are not listed
in the first m-1 rows of column t. Each of these integers, ¢, 1 <i< Kk,
represents an edge ug e; whose removal from H, forms a trivial

component. Remove the edges u e, 1 <i< k, from H,. The
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remaining edges of H, induce a tree. Place one edge u e; into each
Hj,d<j.<_ t-1. Thus each Hj, [ £j< t-1 is a spanning tree and the
resulting H, is a tree. Hence, when 2m-3 <n < (m-1)2, Ky o is
decomposable into t trees where nearly all of the trees are spanning

L]

trees.

Definition 5.7.7 Let M be the maximum number of edges of

the form u k that can be removed from H, without forming

nontrivial components in H,.

In Lemma 5.7.6 we essentially showed that M 2 t-1 when

2m-3 <n < (m-1)2.  Unfortunately, when n < 2m-3, we are not

guaranteed that M 2t-1. For instance, M < t-1 for H, associated with
K5 5. Other examples include K4 ;5. Ky 13 Kjp 15 and Kyg o5 The

array B for Ks 5 is given in Example 5.8.4 and the array B for K;, ;5 is

given in Example 5.8.6.

5.8 Decomposition of Kn,n into nearly all spanning trees
t-1
when 2 < m< n < 2m-3 and ) b(m-1,j)<n
j=1

Lemma 5.8.1. Consider K,  where t = (K, ), m< n <2m-3, and
t-1 "

Z b(m-1,j)= n. Let b = number of cells in column t with O entries,
j=1

let ¢ = m-b-1, and let z = t-n+m-b-2. Then z < q-2.



Proof. By Lemma 5.0.1, t £ m-1 < n-1. So, z = t-n+m-b-2

< m-b-3 = g-2. °

t-1
Lemma 5.8.2. When 2 <m < n < 2m-3, and Z b(m-1,j)= n, we

J=1

into t-1 spanning trees and one additional tree.
t-1
Proof. Cell (m-1,t) has no entry since Z b(m-1,j)=n.

J=1

can decompose K

Therefore, cell (i,t), 1 <i< m-1, has 0 or 1 element by Lemma 5.2.1
(I and IHI). Let q represent the number of cells in column t with I
entry, and b represent the number of cells in column t with 0 entries.
It follows that q+b = m-1 since cell (m,t) has n entries. Let

S = {s],sz,...,sq_l,sq} be the ordered set of singleton entries in column
t where s; is in row i}, s, is in row iy, .., s, is in row i, and

q q

1[<i,< ...<iq< m-1. The singleton entries Sp»-mesSq are all distinct since

for 1 <r<q, s +1 equals the first entry in cell (i.,1) by the
construction of array B. Furthermore, the first entry in each cell (i,l),
1 £i< m-1, is distinct as each cell has at least two entries by Lemma
5.2.1(T) and if we exclude the last entry of each cell (i,1), 1 £i< m-2,
the remaining entries are the n consecutive integers 1,2,..,n by
Theorem 5.4.1(IV) and the construction of column 1. Hence, the first
entry in cell (i,1), 1 £ i < m-1, is less than the first entry in cell (j,1),

1 £i<j< m-1. So if s; # n, then S] <8 <. <8g <. If s, = n, then,
similarly, s, < .. < Sq < S1- Since the graph induced by the edges of H,

with the removal of an edge u 1 €£j< q, results in a disconnected

msj’
graph, while the graph induced by the edges of H, with the removal
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of some edges of the form u p, p # s;, results in a tree, it follows that

M = n-q. See Figure 5.8.1.

Figure 5.8.1

Also, since @ = m-b-1, M = n-m+b+1. If M 2 t-1, we move an edge of
the form u_p, where p # 5; for j = 1,2,..,q, to each of H, ..., H,_;.
Adding an edge u,p to H, 1 <j< t-1, makes H; a spanning tree. The
edges were chosen so that the remaining edges of H, induce a tree.

So, we may assume M < t-1. Let z = (t-1) - M = t-n+m-b-2. We need

to reduce the number of edges of the form “ijsj to gain z edges of the

form Upp, S 1 <j< q, that can be removed from H,. To do this we

perform z or z+1 interchanges of pairs of edges between H, and the

other Hy's. For j = 1,2,.. we exchange a pair of edges incident to 5

between H; and some ij until in H, deg(uiq) + deg(uiq_l) = z+1 or z+2.
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We know that each of s;,s,,..,5,. are in row iy by Theorem
5.4.1(1). Since m <n £2m-3, each cell(iq,j), 1 <j<t1, has 2 or 3
entries by Lemma 5.2.1(I). So at most 3 of the s  are in any one cell
is in

. For j = 1,2,...,q-1, ;

Hp . for some kj < t, where H; is a tree of order m+n-1 by Lemma
j i

in row i is adjacent to u; in H, and u s
j

oS

5.5.1. We consider the sequence s;,s,,..,8,_;. We first consider all s
which occur as the first element in their cell in row iq, then those
which occur as the middle element, and then those which occur as

the last element in their cell in row ijj.

Figure 5.8.2

If S is the first entry in cell (iq’ki)’ then S, 1s necessarily the

last entry in cell (iq-l ,kj). So edge uiq_lsj is also in ij and in ij ,
deg(sj) = 2. (See Figure 5.8.2.) From the definition of array B it

follows that tree Hy, has a path from u; to u; which contains the
i i q

edges uiq_lsj and “iqu- Thus there is a “ij' uiq_l path which does not
contain S;. Move edge U S from H, to Hy . This creates a cycle
i j

Sj“ij' “iq- 18; in ij. Move edge “iq-ls_i from ij to H;. (The
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interchange of edges between H; . and H; is shown in Figure 5.8.3.)
i
This exchange leaves H, a tree of order m+n-1, and in H, we have
i

increased deg(uiq_l) by 1 and made uij into an isolated vertex. The

edges of H, still induce a connected graph.

Hy Hy
J
u.. u..
L 1j
(1)
S. S
“iq. j i
Uiq
u
m
u.. u. o,
J ot
(1)
u S g
-1 J
ig J
Ui,
u
m
uij@
S
u. 9 j
um

Figure 5.8.3
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If 5, is the middle entry of cell (iq,k]-), then in Hy deg(si) = 1.
o J o

There exists a u; - s; path in Hy which must contain edge u; $; as
i j q -

deg(sj) = 1. Move edge Uijsj from H, to ij. This creates cycle sjuij-sj

in H,.. Move edge y; s; from Hy to H,. This leaves H, a tree of order
j q j j

m+n-1. In H;, we have increased deg(y; ) by 1 and made u; into an
q j
isolated vertex. Again, the remaining edges in H, induce a connected

graph.

If s is the last entry in cell (iq’ki)’ then S is the first entry in

cell (iq+1, kj). So edge “iq+15j is also in ij and in ij deg(sj) = 2. At

most two exchanges have been made between tree Hy and H,. If S
J o

was the middle entry of cell (iq,k.) then deg(si) =1, so Si-1 will not be

contained in a uijsj path.

If no exchange has been made using the first entry of cell

(iq,kj), then, again by the definition of array B, there exists a “ij' uiq+l

path which must contain u, s;u;, ,,. (See Figure 5.8.4.) Hence there
i) 1q+1

exists a u, -u, path that does not contain s;. Move edge y;.s; from H,
J q j

to ij. This creates a cycle Sj“ij' Uiqu in ij. Move edge uiqu from
Hy  to H,. This leaves Hy . a tree of order m+n-1. In H,, we have
i j

increased deg(uiq) by 1 and made uij into an isolated vertex. Thus

the edges of H, still induce a connected graph.
If an exchange has been made using the first entry of cell

(1q,kj), then that entry is S;_1 O §;_5. Call it S - Then uij,sj, 1S an edge

in H, because of the previous exchange. (See Figure 5.8.5.) In Hy .

j j

there also exists a u; - u,, path that does not contain S; as s; is only
il

i . . i..<i.<..<i <i + i
adjacent to ulq and ”1q+1 and <1 Ig < g 1 by the construction
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of S. Form path uij- uij,sj,uiqu.

This addition forms cycle su;-u s.u. s.. Move edge u s, from Hy .
I ) g tq J j

to H,. Hy. is now a tree of order m+n-1. In H,, we have increased
i

Now add edge u;s

S from Ht to ij.

deg(uiq) by 1, and made W, into an isolated vertex. Again, the edges

of H, induce a connected graph.

Hy

J

Figure 5.8.4 Figure 5.8.5

Perform z edge exchanges unless in so doing deg(uiq_l) has

changed from 0 to positive. In which case do z+1 exchanges. The z

exchanges can be done because z < ¢-2 by Lemma 5.8.1. The z+1

exchanges can be done because z+1 £ g-1 as cell (iq-l,t) is empty.

We consider 2 cases:



61
Case 1. Suppose z exchanges have been made and in H, the

current deg(uiq_l) = 0. Consider the subgraph of H, induced by

{uiq,um} U N(uiq). It is isomorphic to K, ,,;. Hence we can remove z

edges incident to u, without disconnecting H,. Therefore, there are
z+M = t-1 edges that can be removed from H, without forming two
nontrivial components. We remove the z edges of the form Up, S5
1 <j £z where z < g-2 by Lemma 5.8.1, and M edges of the form
Up,p, P * s, 1 £j<q, from Hy. The remaining edges of H, induce a
tree. We use these t-1 edges to make H,,..,H, | into spanning trees

and the graph induced by the remaining edges of H, is a tree.

Case 2. Suppose z+1 exchanges or z exchanges with current
deg(u; _4) 2 1 in H, have been made. In this case, in H,,
q

deg(uiq_l)+deg(uiq) =7z+2. Say deg(uiq) = a for some a, 1 <a < z+1,
then deg(uiq_l) =z+2-a. Consider the subgraph of H, induced by
{uiq,um} V] N(uiq). It 1s isomorphic to K, » Hence we can remove a-1
edges incident to u_. Similarly, consider the subgraph of H, induced
by {uiq_l,um} U N(uiq_,). It is isomorphic to K, ,,,_,. Hence we can
remove z+l-a edges incident to u, without disconnecting H,.
Therefore there are a-1+z+1-a+M = t-1 edges in H, that can be
removed without forming nontrivial components in H,. We remove z

edges of the form u 1£j< z+1, where z+1 < q-1 by Lemma 5.8.1,

m S
leaving one edge u,s. where U -15r is an edge in H; and leaving
another edge, u

where u; s, is also an edge in H,. We also
q

mSq q
remove M edges of the form u,p,p = $i» 1<j< q, from H,. We use
these z+M = t-1 edges to make H,,..,H, ; into spanning trees. The

graph induced by the remaining edges of H, is a tree.
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Therefore, we are able to decompose Km’n, m< n < 2m-3 into
t-1

t-1 spanning trees and one additional tree when b(m-1,j)=n. °
=1

J

t-1
Lemma 5.8.3. When 2 <m < n < 2m-3 and Z b(m-1,j)< n then

J=1

K, n is decomposable into t trees such that at least t-1 of them are
spanning trees.

Proof. From 2 < m £ n < 2m-3, it follows that m > 4. Cell (m-1,t)
has 1 entry by the proof of Lemma 5.2.1(V). Therefore cell (i,t), 1 <i
< m-2, has 1 or 2 entries by Lemma 5.2.1(II and III). Let q

represent the number of cells in column t with one entry, and d
represent the number of cells in column t with 2 entries. It follows
that q+d = m-1 since cell (m,t) has n 2 4 entries. As in Lemma 5.8.2,
let S = {sl,sz,...,,sq} be the ordered set of singleton entries in column t
where s, is in row i}, s, is in row i, ..., Sq is in row iq and

1< Ip< .< iq=m-l. The singleton entries SpseesSq arE all distinct by

the construction of array B. The construction of array B guarantees
that if s;# n, then sl<sz<...<sq<n—1 because cell (m-1,1) definitely
contains n-1 and n. If s, = n, then, similarly, 89<... <8 <8 =N.

Claim: In array B, at least one integer k, 1 < k < n, is not listed in
the first m-1 rows of column t.

Proof of Claim: We know from Lemma 5.2.1(I) and the fact that

m < n < 2m-3 that cells (1,1) and (m-1,1) have 2 or 3 entries. From

Lemma 5.2.1(1II), we know that the maximum number of entries in

column 1 occurs in cell (m-1,1).
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If cell (m-1,1) has 3 entries, then by the construction of array

B, they are n-2, n-1, n. So sq cannot equal n-2. The integer n-2

cannot be in cell (1,t) as that would mean cell (1,t) has entries n-2,
n-i, n, and cell (1,t) has at most 2 entries by Lemma 5.2.1(V). By the
construction of array B, n-2 cannot be in any other cell (i,t),
2 £i<m-2. Therefore, if cell (m-1,1) has three entries, then the
integer n-2 is not listed in the first m-1 rows of column t.

If cell (m-1,1) has two entries, then by the construction of
array B, they are n-1, n. Furthermore, all cells (i,j), 1 £i< m-1 and

I £j< t-1, have 2 entries since cell (m-1,1) has
5 = I—m+n -2
' m-

-l entries by 5.2.1(III), and each cell (i,j), 1 £i< m-1,

+n-2 m+n-2
1 £ j £t-1, has I_m L _| r _|> 2 entries by Lemma 5.2.1(I).

t-1 t-1
Therefore, E b(i,j)= n-1 for all 1 £ i< m-1 since Z b(m-1,j)
j:l J=1

= 2(t-1) = n-1. Hence each cell (i,t), 1 <i< m-1, has exactly 1 entry.
Thus s; = n. The remaining S; 2 <)< q, are less than n-1. Hence, if
cell (m-1,1) has 2 entries, the integer n-1 is not listed in the first
m-1 row of column t in array B. Therefore the claim is proved.

Let r equal the number of integers not listed in the first m-1
rows of column t. By the claim, r 2 1 as either n-1 or n-2 is not listed
in the first m-1 rows of column t. We know C < t-1 by Lemma 5.7.5.

If C+r 2 t-1, select C edges of the form u_p in such a way as to

remove all cycles in H,. Next select (t-1) - C edges of the form u, k

such that k is not listed in the first m-1 rows of column t. The

removal of these edges from H, will form trivial components in H,.
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At this point t-1 edges have been selected. Place one of the selected
edges in each Hj, 1< j <t-1. Adding an edge of the form u p to
HJ-, 1< j £ t-1, makes Hi a spanning tree. The selected edges were

chosen in such a way that the remaining edges of H, induce a tree.

If C+r < t-1, then by Lemma 5.7.4 and the fact that r > 1, we
have that C+r 2 d+1. Sot-1 > C+r2 d+1. Let z=(t-1) - (C+r). Using
the technique used in the proof of Lemma 5.8.2, move z edges uj Sj,
1 <j< z, to the other Hy's, k < t, and move z edges of the form uilsi

( R

or u; _s;, 1 £j<z toH, from the H's. The Hy's remain trees of
q
order m+n-1, and the edges of H, induce a connected graph. The fact

that z < q-2 can be shown as follows. By Lemma 5.0.1, we know

t-1 <m-2. This implies t-1-m+ q < q-2. Also, z=(t-1) - (C+1)

< (t1) - (d+1) =t- I-m+1+q-1 = t-1-m+q. Therefore, z<q-2. Before
exchanging the z edges, in H, deg(uiq) = 1 and deg(uiq_l) =1or 2.
Therefore, after exchanging z pairs of edges, in H,

deg(uiq) + deg(uiq_l) = z+2 or z+3. All of the edges Up Sjs 1 <j< z can
now be removed without forming a nontrivial component in H, as the
edges u, s

and Ui Sq are still in H, and the edges (uiq_lsq_1 and

q q
umsq_l) or (uiq_le, e* s, 1 £j< q, and uge) are also still in H,. (See

Figure 5.8.6.) We select C edges of the form u_p whose removal
from H, before exchanging edges destroy all cycles in H,. We select r
edges of the form u_ k where k is not listed in the first m-1 rows of
column t, and the z edges of the form Up, S5 1 £j< z. Thus we have
selected C+r+z = t-1 edges incident to u_. Place one of the selected

edges in each H;, 1< j < t-1. The addition of an edge incident to u,
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changes Hi into a spanning tree. The edges were selected in such a

way that the remaining edges of H, induce a tree.

H, before H, after
exchanging z edges exchanging z edges

Figure 5.8.6

t-1
Therefore, when Z b(m-1,j)<nand 2 <m<n<2m-3, K s
=

decomposable into t trees where at least t-1 of the trees are

spanning trees.
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Example 5.8.4. We show the array B associated with Kj .

H  H; Hj
u[ 12 34 5 7
u,| 23 45 1
B= us| 34 51 2
uy 45 12 3
Uso - - 15

Notice that there are no cycles in Hj, but edge us4 is the only
edge of the form u p that can be removed from H; without forming

two nontrivial components. Therefore, C= 0 and M = 1. However,

we need to move 2 edges of the form usp from H; to make H, and H,

spanning trees.

Notice edge u,5 is in H;. Therefore add edge u;5 to H; forming
cycle 5u;2 uy3 uz4 u,5 in H;. Next, remove u,5 from H; and place it in
H;. H; is now a tree of order 9. The subgraph H; now contains the
cycle 3u,5 ug3. Thus, in H;, C=1 and M=2 as we can remove the edge

us4 and either us3 or us5 from H; without forming nontrivial

components.

We give a decomposition of Ks 5 into 2 spanning trees with 9

edges and 1 tree with 7 edges in Example 5.8.5.
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Example 5.8.5. The array D shown below represents a

decomposition of Kg s into 2 spanning trees and one tree with 7

edges.

u, 125 34 -

usL. 4 5 123

Example 5.8.6. We show the array B associated with K, s .

H, Hy Hg H, Hs Hg Hy
w [ 1,2 3,4 5,6,7 8,9 10,11 12,13 14,15
u | 23 45,6 7,8 9,10 1,12 131415 1
u | 3,45 6,7 8,9 1011 121314 15,1 2
u | 56 7.8 9,10  1L12,13 14,15 1,2 3,4
u | 6,7 89 101112 13,14 15,1 2,3 4,5
u | 7.8 91011 1213 14,15 1,2 3,4,5 6
u, | 89,10 1L12 1314 15,1 2,3,4 5,6 7
u | 10,11 1213 1415 1,23 4,5 6,7 8,9
B=u, | 1L12 1314 1512 3,4 5,6 7,8,9 10
up| 1213 14,151 23 4,5 6,7,8 9,10 1
u, 13,1415 1,2 3,4 56,7 8,9 10,11 12
u,l - - - - - - 1- 15

The subgraphs H;, .. ,Hg each have 25 edges. A spanning tree needs

26 edges. Notice that H, has cycles, HS has 10 components, C =4,
7 Yy 7

and M = 5. Therefore, in order to decompose K;, ;5 into nearly all
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spanning trees, we must first move edge u,! from H;to H,and edge
u;ol from Hyto H; . We give the array D which represents a

decomposition of Ky, ;5 into 6 spanning trees and one tree with 24

edges in Example 5.8.7.

Example 5.8.7. We show the array D associated with K, ,5 . Array

D represents a decomposition of K12,15 into 7 trees, 6 of which are

spanning trees.

T4 Ty Ty T, Ts Ts T,
u [ 1,2 34 56,7 8,9 10,11 12,13 14,15
u, | 23 4561 78 9,10 1112  1314,15 -
u | 345 67 8,9 10,11 12,1314 15,1 2
u | 56 7,8 9,10  1L12,13 14,15 1,2 3,4
u | 67 89 101112 1314 151 2,3 4,5
u | 7,8 91011 1213 14,15 1,2 3,4,5 6
w | 89,10 1,12 1314 15,1 2,3,4 5,6 7
u | 1011 12,13 14,15  1,2,3 4,5 6,7 89
D= vy | 1,12 1314 1512 3,4 5.6 7,8,9 10
ue | 12,03 14,15 23 4,5 67,8 9,10 11,1
u, [1314,15 1,2 3,4 56,7 8,9 10,11 12
u, | 14 3 5 8 11 13 1,2,4,6,7,9,10,12,15]
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5.9 Decomposition of K, , into nearly all spanning trees
.

for 1 < m< n

Theorem 5.9.1. Knn 1is decomposable into t = (K, ) trees
where at least t-1 of the trees are spanning trees.

Proof. There are several cases to consider:

I) If m=1, then KLn is already a tree.

II) If2<m<n< (m1)? and
t-1
A) ) b(m-1,j)< n and

=1

1) 2<m< n < 2m-3 and

-
s

a) 2 b(m-1,j)< n, then apply Lemma 5.8.3.

~
[

b) Z b(m-1,j)= n, then apply Lemma 5.8.2.
j=1
2) 2m-3 < n < (m-1)2, then apply Lemma 5.7.6.

t-1
B) If ) b(m-1,j)> n, then apply Lemma 5.6.1.

j=1
IT1) If n > (m-1)2, then apply Lemma 5.1.1.

Thus, K is decomposable into t trees where at least t-1 of

the trees are spanning trees. .

Theorem 5.9.1 proves that all complete bipartite graphs Knon
can be decomposed into t trees where at least t-1 of them are
spanning trees. In Chapter 6 we consider the minimum number of

trees required to decompose the complete tripartite graphs.
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Chapter 6

Tree Decomposition of the Complete Tripartite
Graphs

In Chapter 6, we find an upper and lower bound for T(Km’n‘p)
for all m,n,p. We then decompose a few families of Km,n,p into

T(Km,n,p) trees. We close by summarizing our results and stating a

conjecture.

6.1 Preliminary Results

Without loss of generality, we assume that m < n < p, and we

mn+mg+ng
let t=[ )

m+n+p-1

LLemma 6.1.1. The minimum number of trees, T(Km,n p), required
to decompose Km’n,p is at least t.

Proof. Kn n p contains mn+mp+np edges and m+n+p vertices.

Therefore, the maximum number of edges in any tree contained in

Knnp 18 m+n+p-1.  Hence, the minimum number of trees required to

mn+mp+n
decompose K is at least m_mAonp

m.n,p men+p-1° Since (K

m‘n,p) 1S an integer,

it follows that 7(Ky, , ) 2 t. °
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Lemma 6.1.2. m+l1 ST(Km'n,p) < m+n.
Proof. To see that m+l ST(Km,n,p, consider the subgraph H of
K n,p that is isomorphic to K ., . Since H is a subgraph of Kiap

3 m2 m
TH) < 1Ky, ,,p). By Lemma 6.1.1, ©(K, )2 [ T 1—|=|_m+ T 1]

=m+]1. Therefore, m+1 < T(Km’n,p). To see that T(Km’n’p) < m+n,
notice that we could easily decompose Km,n’p into m+n trees in the
following way: for 1 <i< m, let uy; be adjacent to all vertices in V
and W. (See Figure 6.1.1) Then for 1 <j< n, let v; be adjacent to all
vertices in W. (See Figure 6.1.2) In this fashion Km'n,p has been
decomposed into m+n trees. Since T(Km’n,p) is the minimum number
of trees required to decompose K it follows that

m,n,p °
(K

Yy m+n.

m,n,p

Figure 6.1.1 Figure 6.1.2
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Proposition 6.1.3. When p > (m-1)2+(n-1)2+mn, then

T(Km’nyp) = m+n.

Proof. Since p > (m-1)2+(n-1)2+mn-1 = m2-2m+n2-2n+mn+1, it
] , 5 m2+mn+n®-m-n
ollows that m“+mn+n“-m-n < m+n+p-1. So, m+n+p-1 < 1. By
2 2
definition, t = r%‘p'1=l-m+n .o ;Tlnninp:]m-n_l = m+n
m2+mn+n2-m-n
when m+n+p-1 < 1. Hence T(Km,n’p) 2m+n = t when

p2 (m~1)2+(n-1)2+mn by Lemma 6.1.1. But, T(Km’n’p) < m+n by
Lemma 6.1.2.  Therefore ©(K, , ) = m+n when

p 2 (m-1)2+(n-1)2+mn.

Proposition 6.1.4. (K n,p) S min { MKy nep * MKy p)s

T(Kn,n1+p) + T(Km’p ) T(Kp,m-f-n) + T(Knl,n) }‘
Proof. Consider K with partite sets U, V, and W. Let

m,n,p
G = (UUV)UUUW) =K, 4., and G, =(VUW) =K, . Then,
G, U G, =Km,n'p. See Figure 6.1.3. Using Beineke's method, given

in Chapter 4, we can decompose G, into (K ) trees and G, into

m,n+p
T(Kn’p) trees. Using this decomposition, we can decompose Km,n,p
into Ky, ;. p) +7(K, ) trees. Similarly, let Hj = (VuU)uvuw)

= Ky mspand Hy = (UUW) =K, . Then H; UH, =K, , . Again

using Beineke's method, we can decompose K into T(K

m,n,p n,m+p)
+ T(Km,p) trees. Likewise, we can decompose Km,n,p into T(Kp'm+n)
+ 7(K,, ) trees. Therefore, WKy p,p) < min { Ky nep) * K, o)

Ky mep) * Ky o) WKy ) + 7Ky D) ) °
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Figure 6.1.3

The following well known theorem and its corollary will be

used in the subsequent sections.

Theorem 6.1.5 (Konig). Every regular bipartite graph of degree
r2 1 is 1-factorable.

Proof. A proof is given in [6] on page 235.

Corollary 6.1.6. K, o is I-factorable.
Proof. Observe K, p 1s n regular and apply Theorem 6.1.5. ©



6.2 Tree decomposition of Km_n.p ,1<n-1 <m <n <p <n+l

We show that K 1<n-1 <m <n <p <n+l, can be

m,n,p°’
decomposed into t trees by providing the decomposition. Then, by

Lemma 6.1.1, T(Km‘n’p) =tfor1<n-1 <m <n <p <n+l. The possible

cases are: Kn-l.n,n’Kn-l.n,nH ’ Kn,n,n ’ and Kn,n,n+l :

Proposition  6.2.1. (K, ; , ) =n, foralln2 2,

2 2 2
-n+nc-n+n 3n“-2n
1=r 1 =n. Let

Proof. By definition, t = [ T )
H = (VUW) =K, . By Corollary 6.1.6, form n edge-disjoint
1-factors, Fj,..,F , of H. Next, form the following n subgraphs
T, .., T, whose union will be shown to be Kn_l’n'n. (For n = 4, the
decomposition is given in Figure 6.2.1.)

For 1 £j< n-1, let E(Tj) = {ujvi |1<i<n} U E(Fj)
U {uiwi—j+l(modn) l1<i<n-l,i#j} and let E(T,) = E(F,)
U {wu; | 1<i<n1} U {yw,,,11<i<n-1}.

Each Tj has 3n-2 edges and 3n-1 vertices and is connected and
therefore each Tj, 1 £j< n, is a spanning tree. We must show that

each edge of K is in one of the Ti's. Any edge joining V and W

n-1,n,n

is in a 1-factor, F;, and hence in a T;. Each edge of the form WV is in

T; only. Consider edges of the form u w,. Ifs =1, then uy w, isin T,.
If s > 1, then u Wy =W ry1)(rs1-5))(modn) that is in T i1 s(modn) -

Thus, Ty, .., T,
T(Kn-l,n,n) = I °

are a spanning tree decomposition of K, _;, | . and



75

Figure 6.2.1

Proposition  6.2.2. (K, ; ;1) =t =n+l, foralln2 2.
3n?-1
3n_1-|=|_n ¥

Proposition 6.2.1 we proved that 7(K

n-1
Proof. By definition, t = [ 0 ] =n+1. In

3n-1
n_l'n’n) = n. Therefore, to
decompose K, .i,n,n+1 INto n+l trees we use the n trees given in
Proposition 6.2.1 and E(T,,,) ={w,,u;|1<i< n-1}

U {w,,vi| I <i < n}. In this fashion Ky 1.n,n+1 18 decomposed

into t = n+1 trees. °
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Proposition 6.2.3. For n 2 1, 'r(Kn n,p = t=n+lL

Proof. First notice that t = r -| [ n +‘“‘““-| =n+l. Forn = I,

3n 1
the proposition is obvious. For n > 2, notice that in Proposition 6.2.1

we proved that 1(K = n. Therefore, to decompose K, oo into

n-l,n,n)
n+]1 trees we use the n trees given in Proposition 6.2.1 and we let
E(Ty, ) ={uv;11<i<n} U {uw; | 1< i< n+1}. In this fashion

K, n,n is decomposed into t = n+l trees. °

Proposition  6.2.4. Forn =1, (K, , ) =t=n+l

3n +2n

Proof. By definition, t = [ ——1=[n +—_| n+l. For n = 1 the

proposition is obvious. For n 22, let H=(UUV)= K, .. By
Corollary 6.1.6, form n edge-disjoint 1-factors, F,, ..,F , of H. Next,
form the following n+1 subgraphs T, .., T,,, whose union will be

shown to be K (The decomposition of Kj 3 4 into t = 4 trees is

n,n,n+1°
given in Figure 6.2.2.)
For 1 <j< n, let E(T;) = {wjui [1<i<n} u E(F;)
U {Viwi+j-l(modn) |2<i< n} and let E(T,, ;) = {w,,u; | 1<i<n}
U {wp, vyl 1gi<n}u {viw,[1<i<n}.
TJ-, 1 £j< n, has 3n-1 edges, 3n vertices and is connected.

Therefore, Ti’ l1<j<n,isatree. T

n+1 has 3n edges, 3n+1 vertices,

n+l

and is connected. Thus T,,, is a spanning tree. Y E(Tj)
=1

= (3n-1)n + 3n = 3n2 + 2n as required. We must show that each
edge of K  ,,yisina T, 1 <j< n+l. Any edge joining U and V is in

a 1-factor, F‘-, and hence in a Ti‘ Each edge of the form wiu; is in Ti .
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Consider edges of the form vow. If r=1 or s=n+l, then v, W is in
T Ifl<r<nand1<s < n+l, then vw, = VeW((r-1)+(s+1))(modn) 1S

in Ty, Thus, Ty, .., T, are a tree decomposition of K, , ., and

n+1l-

hence, T(Kn,n’n”) = n+l. e

Rov,
NN Y2
©
%3 V3
@w4
Figure 6.2.2

6.3 Tree Decomposition of K, ; ., 0<a< 4

We show that K, ; ,,,, 2<a< 4, can be decomposed into t tree
by providing the decomposition. Then, by Lemma 6.1.1, (K, 4oned)

=t for 0 £a< 4. The case when a = 0 was done in Proposition 6.2.3,
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and the case when a = | was done in Proposition 6.2.4. In both of

these cases t = n+1.

Proposition  6.3.1. 7(Kj , ;.0 =t=n+l

Proof.  Fi ce that t = [ 22540y oy —1—1 fLN
roor. irst notice tha = In+ 1 n 3n =n ext,

form n edge-disjoint 1-factors, F,, ..,F,, between sets U and V. Then,
form the following n+1 subgraphs T,,.., T, ,; whose union will be

shown to be K (We give the decomposition of K335 into t =4

n,n,n+2
trees in Figure 6.3.1.)
Let E(T)) = {w,v; | 1<i<n} U EF) U fuyw;,, 11<i<n}.
For 2 <j< n, let E(Tj) = {wjvi [1£i<n} U {wn+2vj} U E(Fj)
U {uiwi+j(modn+l) |1<i< n}. Let E(T,, ) = {fw, . v; I 1 i< n}
U {wyou; 11<i< n}u {wy v} U {uw; | 1<i<n}.
T, has 3n edge, 3n+1 vertices and is connected. Thus T, is a

tree. Tj, 2 <j< n+l, has 3n+1 edges, 3n+2 vertices and is connected.

n+l

Thus each Tj, 2 <j< n+l, is a spanning tree. Y E(Ti) = 3n + n(3n+1)
=1

= 3n? + 4n, as required. Next, we need to check that each edge is in
a TJ-, 1 <j< n+l. An edge joining U and V is in an F, and hence is in a
Tj. An edge of the form WV, 1< j< n+l,is in Tj . An edge of the
form wy,ovi,j# 1, isin Ty , while w,, ,vy isin T, ;. For I <s< n+l,
edge U W = U W (i r))(modn+1) iSin Ty, (mod n+1) - AD edge

Whigtj, 1 i<, isin Ty, . Thus T, .., T,

n+1 are a tree

decomposition of K, , ;.o and (K, | ..o =n+l =t
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Figure 6.3.1

Proposition 6.3.2. Forn > 2, Ky non+3) =t =n+2,

3 n?+6n 2n+4

Proof. First notice that t = l-"‘3n—+2".]=r n+2 - 3In+l

] = n+2 when

n > 2. In Proposition 6.3.1 we proved that ™Ky n,n+2) = 0+L
Therefore, to decompose K, , /.5 into n+2 trees we use the n+l trees
given in Proposition 6.3.1 and we let E(T,,,) = {w, ,u; | 1 <i< n}

U {wy,,v; | 1 <i < n}. In this fashion K, n.n+3 1S decomposed into

t = n+2 trees. @



6.3.2

80
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Proposition 6.3.3. Forn 2 2, T(Kn n,n+q) =t =n+2

3 n%+8n n+6
» : : — o —— —
Proof. First notice that t = [ - 3n+3 1 =[ n+ 30+ _] n+2 when

n22. Whenn=2,t=4 and therefore K, 26 can be decomposed into

4 = m+n tree by Lemma 6.1.2. For n > 2, first form n edge-disjoint

| -factors, F,, ..,F,, between sets U and V. Then, form the following

n+2 subgraphs T,,.., T, ,, whose union will be shown to be Kn non+a

(We give the decomposition of K; 37 into t = 5 trees in Figure 6.3.2.)
Let E(T)) = {w;v; [ 1£i<n} U {w,,3v,W,,4Vp} U E(F))

U {uw; 13<i<n}. Let E(T,) = {w,v;|1<i<n}u {Wh43V0. W, 4vs}

U E(Fy) U {yw;,, 13<i<n}. For3<j< n, let E(T)) = {wjvi |1<i<n}

U {wn+3vj’wn+4vj+l(modn)} U E(F) u {ujwl,ujwz} u

{“W.+J 1 I3 <0 <n-j+3} U {y Witj-p-n | MJ*4 Si<n}. Let E(T,, )

= {wypvi11<i<n} U {uyw; | 1<i<n+4} U {w,,5u; [3<i<n}. Let

E(Ty,p) = {Waov; 1 1€i<n} U {u,w, |1 <i<ntd} U {wp 4 qu; | 3<i<n}.
T, and T, each have 3n edges, 3n+1 vertices, and are

connected. Hence T, and T, are trees. T;, 3 <)< n+2, has 3n+2 edges,

3n+3 vertices, and is connected. Hence, Ti’ 3<j< n+2, is a tree.

n+2

y E(Tj) =6n + n(3n+2) = 3n? + 8n, as required. Next, we need to
1

check that each edge is in a T,, 1 <j< n+2. An edge joining U and V

is in an Fj and hence is in a Tj. An edge of the form WiV, , 1 £i<g n,

1 £j< n+2,is in Tj . An edge of the form Wp 43V is in Tj . An edge of

the form wy,4v; isin Tj_j 04n) - An edge of the form ujw,

I i <n+d, is in T

n+i - An edge of the form u,w;, 1 <i< n+4, is in

T An edge of the from W or uw,, 3<j<n,isin Ti . An edge

n+2 °* ]

of the form uw 35i <n,isin T,,,; . An edge of the form

n+3
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U;W, .4 351 <n, is in Toeo. Ifs2r1,3<1r<n 3<s< n+2, an edge

UWg =UW o gy(eorey i8N T fs<n3<r<n 3<s< n+2, an

edge U W, =UW( . niyecsrsn+1)iSi0 Tgpypyy. Thus each edge is in

a T, 1 £j< n+2. Therefore, the edge-disjoint union of T, through

Thip =K pon+g and oK 100 = 042

[

6.4 Closing Remarks

In Chapters 4 and 5, we showed that it was possible to
m n

m+n-

q into (K ) =t=aK, ) =[ 1_| trees. Recall

decompose K,

that (K, ) had to be greater than or equal to t in order to insure

that no subgraph used in the decomposition contained a cycle. In

Chapter 4, we described Beineke's result that K]m’n can be

decomposed into t trees where the trees are nearly equal in size. In

Chapter 5, we showed that Kp, n can be decomposed into t trees

where all but perhaps one of the trees are spanning.

In Chapter 6, we considered complete tripartite graphs K_ _ p

and found upper and lower bounds for T(Km’n’p). We then
mn+mp+np

decomposed a few families of K , . into t=[ m+n+p-1 | trees. Here

also t is the minimum possible number of subgraphs such that no
subgraph contains a cycle.

In addition to the families given in Chapter 6, we also
considered Kl’n’p ,Kz’n,p ,K3,n,p , and a few other families of Km,n’p.

We were able to decompose K; , ,into (K, ,,;) + 1 trees by
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considering Kl,n,szn’erl U Kl,p and by decomposing Kn,p+l into
T(Kn,p+l) trees using Beineke's method. We also found that
(K| 4 p) 2 1K, p+l) by direct calculation or by noticing that Kn,p+1 is
a subgraph of K; _ p Similarly, we were able to prove that
T(Kn+l‘p+l) < T(Kz’n’p) < T(Kn+l,p+1)+l, and T(Kn+l’p+2) +1< T(K3'n,p)

< UKpyy ped) * 2

VVUu:,‘Uu3 VUul WUu:,_Uu3

Figure 6.4.1

However, for some values of m,n,p, t equals the lower bound
and for some values t equals the upper bound. When t equals the
upper bound we are easily able to decompose Km'n’p into t trees.
However, when t equals the lower bound, in order to decompose
Km']n,p into t trees it is necessary to show that p edges of the form
UmWj, 1 £j< p, and sometimes n edges of the form up,_ ,v;, 1<j< n,
can be added to the first t trees. For all particular values of n and p
that we tried, we were always able to decompose Km'n'p, 1<m <3,
into t trees, but we were unable to generalize the results. This

method of partitioning the smallest partite set into the other two

partite sets (See Figure 6.4.1 for an example of K3 ,n,p) seems to be
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promising for 1 < m < 4, but the method does not seem to extend for
m 2 5.

At present we feel that it is relatively easy to decompose other

families of K into t trees, but we are unaware of a method that

m,n,p
will work for all m,n,p. Still, we conjecture that Km,n,p can be

MNPMP*APY 4 ees

We leave it as an
mn+p-l e as an open

decomposed into t = [

question whether K can be decomposed into t trees where at

m,n,p

least t-1 of the trees are spanning.
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