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ABSTRACT
A SURVEY OF POLYNOMIAL INVARIANTS OF KNOTS
by Rebecca G. Wahl

This thesis is a survey of polynomial invariants of knots which includes the classical
invariant, called the Alexander polynomial, as well as several modern knot polynomials.

The first half of this thesis is devoted to the development of the necessary preliminary
concepts of knot theory and to the description and definition of the Alexander polynomial
invariant of knots. This material is primarily based on Introduction to Knot Theory by
Crowell and Fox.

The contemporary polynomial invariants of knots described in the second half of this
thesis are of particular interest. Research conducted on this subject reveals a renewed
excitement in the field of knot theory which was fueled by the recent discovery of a new
knot invariant by V. F. R. Jones.
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INTRODUCTION

The classical problem of knot theory involves determining whether or not two knots are
the same. Much early progress toward this end came in 1928 when J. Alexander
discovered the Alexander polynomial invariant of knots. This polynomial is a mathematical
expression which depends only on the knot and does not depend on any particular picture
of the knot. That is, different pictures of the same knot yield the same polynomial and
knots with different polynomials actually are different knots. However, there are simple
knots that the Alexander polynomial cannot distinguish.

Knot theory has been the object of a recent resurgence of interest. In 1985 V. F. R.
Jones announced the discovery of a new polynomial invariant of knots now called the
Jones polynomial. Discovered while Jones was working on von Neumann algebras, the
Jones polynomial invariant of knots has revealed surprising connections between the
apparently disparate fields of knot theory and statistical mechanics. In addition, E. Witten
has found that the Jones polynomial invariant occurs in the setting of quantum field theory.

This thesis provides an introduction to the basic definitions and concepts of knot theory
as well as to the definitions and descriptions of the classical Alexander polynomial invariant

of knots, the Jones polynomial and several recently discovered polynomial invariants.



CHAPTER 1
BASIC KNOT THEORY

In this chapter we develop a minimal familiarity with the terminology, notation, and
cuncepts involved in the study of knots and links. We begin with preliminary definitions
of knots and their projections and then examine the various notions of equivalence of

knots. Finally, we examine a presentation for the fundamental group of a knot.
1.1 KNOTS
1.1.1 Definition. A knot K is the homeomorphic image in R3 of the unit circle S!.

Certainly, any two knots are homeomorphic since both are homeomorphic to the unit
circle S!. Thus, any useful notion of equivalence of knots must account for the way in
which the knots are embedded in R3. We have the following definition of equivalence of

knots:

1.1.2 Definition. Knots K, and K, are equivalent if there exists a homeomorphism

of R? onto itself which maps K, onto K,



a
J

This relation is a true equivalence relation on the set of all knots, and each equivalence
class of knots is referred to as a knot type. All knots equivalent to S! with the standard

embedding — called the unknot — are called trivial and constitute the trivial type.

We say that a homeomorphism of R3is orientation preserving if the image of a right-
hand screw is a right-hand screw. If, on the other hand, the image of a right-hand screw is

a left-hand screw, we say that the homeomorphism is orientation reversing.

1.1.3 Definition. An isotopic deformation of a topological space X is a family of

homeomorphisms ht, 0<t<1,of X ontoitself such that h0 is the identity and the

function defined by H(p,t) = h,(p) is continuous in both t and p, forall pe X.

1.1.4 Definition. Knots K, and K, are said to be of the same isotopy type if there
exists an isotopic deformation { ht} of R3 such that Vhl K, =K,. Equivalently, knots
K, and K, are of the same isotopy type if there exists an orientation preserving

homeomorphism of R3 onto R3 which maps K, onto K,. (Note that the equivalence

of these definitions is far from obvious. See, e.g., [6].)

1.1.5 Examples. The simplest possible knot is the overhand or trefoil knot. This knot

has three overcrossings and has either a left-handed or right-handed form.



lefi-hand trefoil right-hand trefoil

There is exactly one knot with four crossings and it is referred to by the following names:

the figure-eight knot, four knot, and Listing's knot.

figure-eight

1.1.6 Definition. A knot K is said to be amphicheiral if there exists an orientation

reversing homeomorphism h of R3 onto itself such that hK = K.

1.1.7 Definition. By the mirror image of a knot K we shall mean the image of K

under the reflection defined by (x, y, z) = (X, y, -2).



Note that since the reflection map is a homeomorphism of R3 taking K onto the

mirror image of K, every knot is equivalent to its mirror image.

1.1.8 Theorem. A knot is amphicheiral if and only if there exists an orientation

preserving homeomorphism of R3? onto itself which maps K onto its mirror image.

If K; and K, belong to the same isotopy type, then they are equivalent. The
converse, however, is false. It can be shown, although Fox [6] notes that this result is
hard, that the trefoil knot is not amphicheiral. Assuming this result, we have that the trefoil
knot and its mirror image are equivalent but not of the same isotopy type. Hence, isotopy

is a sufficient but not necessary condition for the equivalence of knots.

1.1.9 Definition. An oriented knot is a knot to which a direction of travel is assigned.

This preferred direction around the knot is called an orientation.

1.1.10 Definition. A knot K is invertible if there exists an orientation preserving

homeomorphism h of R3 onto itself such that the restriction hly is an orientation

reversing homeomorphism of K onto itself.

L1.11 Example. The trefoil and figure-eight knots are invertible. Suppose, for
example, that the figure-eight knot depicted in the previous figure is embedded in R so
that the positive z-axis of a right-hand system is oriented directly out of the page. Consider
rotating the knot through an angle of 7 about the y-axis. This rotation is an orientation
preserving homeomorphism of R3 onto itself which takes the figure-eight knot onto itself

while reversing the orientation.
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H. F. Trotter proves in [20] that an infinite family of non-invertible knots exist. The

simplest member of this family is the knot C7' 3,5

1.1.12 Definitions. A polygonal knot is a knot which is a finite union of straight line
segments in R3. The straight line segments are called edges and the points where the
straight line segments meet are called vertices. A knot is zame if it is equivalent to a

polygonal knot; otherwise it is wild. We will restrict our attention to tame knots.

1.1.13 Definitions. Knots are represented by their projections PK, where
P:R3 5 R3is given by P(x,y,z) = (x,y,0). A point p in the image of PK is said to be
a multiple point if the inverse image P'l(p) M K consists of more than one point. The

order of pe PK is the cardinality of P‘l(p) N K.

1.1.14 Definition. A polygonal knot is said to be in regular position if: (i) the only
multiple points of K are double points, and there are only finitely many of them; (ii) no

double point is the image of a vertex of K.

It is a known fact that any polygonal knot is equivalent under an arbitrarily small
rotation of R3 toa polygonal knot in regular position. Thus, we may assume any

polygonal knot to be in regular position.

Each double point of the projected image of a polygonal knot in regular position is the
image of two points of the knot. The point with the larger z-coordinate is called an
overcrossing, and the other point is called an undercrossing. A polygonal knot in regular

position is said to be alternating if the overcrossings and undercrossings alternate around



the knot. A closed arc segment of a projection of a polygonal knot in regular position
containing exactly one overcrossing and no undercrossings is called an overpass. An
underpass is similarly defined. For convenience we will refer to a closed arc segment of a
projection of a polygonal knot in regular position which contains neither overcrossings nor
undercrossings as a null overpass or a null underpass. This definition will allow us to

divide the projection of any knot into overpasses and underpasses which alternate around

the knot.

1.1.15 Definition. A link is the union of a finite number of disjoint knots
in R3, The mutually disjoint knots which make up a link are called the components of the

link. A link is called zame if all of its components are tame.

1.1.16 Definition. An oriented link is a link with a direction of travel assigned to each

component. This preferred direction around a component is called an orientation.

1.2 THE KNOT GROUP

The knot group of a knot K in regular position is the fundamental group of the space
R3 K, which is called the knot complement. A brief discussion of the notion of the
fundamental group of a space is given first, followed by an examination of a presentation
of the knot group. A complete exposition of the fundamental group of a space can be

found in [16].

1.2.1 Definition. Let X be a topological space and let be X. Aloop y in X
based at b is a continuous mapping y: [0,1] — X such that (0) =y(1) = b. The point

b is called the basepoint.



1.2.2 Definition. Two loops Y, and 7, based at b are homotopic with basepoint
Jfixed, denoted vy, = v,, if there is a continuous map F: [0,1] x [0,1] = X such that
F(s,0) =vy(s)y, O0<s<],
FGs, D =v,(s), 0Oss<1,
F@,t)=b, O0<t< 1,
F(1,t)=b, O<t< 1.
The map F is referred to as a homotopy between Yo and ;. Foreach te [0,1] the
map 7¥,:[0,1] -»X defined by
Y =F(s, 1), 0O0<s<1,
is a loop based at b. As the parameter t moves from 0 to 1, the loop Yo is continuously

deformed to the loop v, through the A

1.2.3 Lemma. The relation "homotopic with basepoint fixed" is an equivalence relation

on the set of all loops in X based at b.

The equivalence classes of loops in X based at b modulo this equivalence relation are
called the homotopy classes of loops based at b. The homotopy class of the loop y will
be denoted [y], and [yl = [y,] means Yo = V-

Multiplication of loops can be defined by concatenation for any two loops o, B based
ata common point b. Although the multiplication of loops is not associative, we can
define the multiplication of homotopy classes by noting that the class of a product of two
loops depends only on the classes of the given loops, and that this multiplication of classes
is an associative operation. In addition, the homotopy class [b] of the constant map b isa
multiplicative identity for the set of homotopy classes of loops based at b. Finally, given

any loop 7, let 'y‘l denote the loop defined by



Y'O=y1-9, tel[01]
that is, the loop 7y traversed in the opposite direction. Then if [y] and [y‘l] denote the
homotopy classes of y and 7'1 respectively, [Y][Y™ 1] = ['y“l] [y] = [b] so that each
homotopy class of loops based at b has an inverse. In summary, the set of all homotopy

classes of loops in X based at b satisfies the axioms for a group.

1.2.4 Definition. The class of all loops in X based at a point b under the
equivalence relation of homotopy yields a group, denoted by 7, (X, b), called the

Jundamental group of the space X based at b.

1.2.5 Definition. If K isany knotin R> and p; is any pointin R> - K, then the
fundamental group 1t1(R3 -K, Py is called the group of the knot K.

It can be easily shown that if X is path-connected, the fundamental group nl(X, b)

is independent of the choice of basepoint b. For this reason, we may omit reference to the

basepoint Py and refer only to 7c1(R3 —K) as the group of the knot K.

1.3 THE PRESENTATION OF A KNOT GROUP

The following is a description of a method for deriving the over presentation of any
polygonal knot K in regular position. Fox proves in [6] that the over presentation is in
fact a group presentation of 71:1(R3 —K, py), the fundamental group of the complement
space of the knot K. A similar construction exists for deriving the under presentation of a
knot. Together, the over and under presentations constitute a pair of dual presentations;
that is, there exists a presentation equivalence from one to the other. Thus, we shall forgo

the latter and focus on the over presentation of a polygonal knot in regular position.
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1.3.1. The Over Presentation. Let K be a polygonal knot in regular position with
projection P. For some integer n, select a subset Q of K containing 2n points, none of
which is an overcrossing or undercrossing, so that these points divide K into overpasses
and underpasses which alternate around the knot. Note that this selection of the 2n points
can be done in many ways. However, if K is alternating and if the projection of K

contains double points, then a good choice for the number n is the number of double

points in the projection. Denote the overpasses by Al’ A2, vees An and their union

Al U A2 U...UA n by A; denote the underpasses by Bl’ B2, cee Bn and their union
B, UB,U...UB_ byB. For simplification we will assume that Q < R?,

(K\Q NR*>=Q and that all points in ANQ have positive z-coordinate and all points in

B\Q have negative z-coordinate.

We next choose an orientation for X and a basepoint Py lying above the knot. For
convenience, assume Py = (0,0,zo) for some positive zy Also, we choose a point

qp € R%-PK. We require the following definition.

1.3.2 Definition. We call a path a in R2 simple if it satisfies the following
conditions:
(i) a is polygonal,
(ii) neither the initial nor the terminal point of a belongs to PK, and
(iii) a intersects PK in only a finite number of points, no one of which is a vertex
of a ora vertex of PK.

A simple path is shown in Figure 1.3.1.
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Figure 1.3.1

Let a in RZ-PB be any simple path. The simple path a will intersect the projected

overpasses PA, ..., PA_ in a finite number of points. Let F(x) be the free group

generated by x = {x;,...,x_} with one generator for each projected overpass.

Since a is a path in R%-PB, a is necessarily oriented; let K have the previously

chosen orientation. Suppose the projected overpasses crossed by & are, in order,
PA;, PA;, ..y PA; . If a crosses under A, from the left (with respect to the

orientation of K), let & = 1, and if a crosses under Aik from the right, let e, =-1

Then to each simple path a e RZ_PB we assign a word a’ € F(x) defined by

# &

€
=Xx. l...x. m
a xll Xl .

m

For example, to the path a shown in Figure 1.3.1, we assign the word

# s product preserving,

a® = X3X; xz"1 xl"1 Xy xz—l. Note that the assignment a — a
(a;ay)*=a,"a,f,
but not necessarily onto F(x). For any point p € R?, let —E be the path which runs

linearly from Py parallel to R? to a point directly over p and then down to p. Now, if

a isapathin R2, we set

*a=a0)-a-[a) ]},
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where a(0) is the initial point of a and a(1l) is the terminal point of a. In this way we

produce a loop *a in R%-K, based at the point p,, which includes the path a.

We are now in a position to define a homomorphism of F(x), the free group of the
over presentation, onto 7t1(R3 — K, py) » the fundamental group of the knot complement
based at p,. Define the desired homomorphism ¢: F(x) — 7tl(R3 -K,py) as follows:
Let a be a simple path in R3-PB such that aj# =X; j=1,...,n. Define for
i=1,..,n,

o(x) =["a],
the equivalence class in 11:1(R3 - K, py) of the p, - based loop *aj. The homomorphism
¢ is then the unique extension of this assignment on the generators X1» ++» X tO the entire
group F(x). Thus,

o(a*) = ["al,
for any path a in R3_PB. That the q)(xl), ey q)(xn) generate 1t1(R3 -K, pO) is
proved in Fox [6]. However, this result seems plausible since it is geometrically evident

that every p,, - based loop in R3-K is equivalent to a product of the loops *aj and their

inverses forj=1, ..., n (see Figure 1.3.2 taken from [6]). Thus, we have generators

Xp>ooor Xp for the over presentation.
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Figure 1.3.2

Now we proceed to find relators for the over presentation. The images of the
underpasses PB,,i=1, ..., n, are disjoint arcs in R2. Thus, we may choose disjoint,

simply-connected, open sets V], . Vn in R? such that PBi c Vi, i=1,...,n,and
such that their boundaries are disjoint simple loops Vi» -+ v, Which run counterclockwise
(from above) around Vi, ...,V respectively. The only restriction placed on the choices
of the regions Vj is that the point q, e R2-K lie outside the closures of the Vj.

Select a set of simple paths Cprer €y i R? connecting the point ¢ to the initial
point of each of the loops v;. More precisely, select ¢, ..., ¢ ., such thateach c, has

initial point o )= dg and terminal point ci(l) =V, (0), with the provision that
n

¢ e R? - UJ cl (Vk) forall t< 1, where cl (Vk) denotes the closure of Vk'
k=1
Next, let r; = (ci-vi-ci'l)#. Then the over presentation of 71:1(R3 —-K,py) 1s
(xl, e XU T rn)¢.

To see that the assignment ¢(r)) =1 is reasonable, consider
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=[*(c.v..c.”]
¢(ri) =] (Ci Vi'Ci )]
the equivalence class of the p- based loop *(ci-vi-ci“l). It is geometrically evident that
the contraction to the point p;, of a typical loop *(ci-vi-ci‘l) in this equivalence class is

possible by sliding the loop below the underpass B,. Therefore, such a loop must be
homotopically trivial and, hence, can be taken to be a relator in the presentation of the
group. Moreover, the collection of relators obtained in this way suffices to generate the
kernel of ¢.

We will assume the proof that the over presentation is indeed a group presentation of

11:1(R3 —K,pg). Additionally, the proof in Fox [6] yields the following computationally

important fact.

1.3.3 Proposition. In an over presentation, any one of the relators T, fpisa

consequence of the other n— 1.

We now calculate the over presentations of a few knots using the method outlined in
1.3.1.
1.3.4 Example. Trivial knot (Figure 1.3.3). The projection of the trivial knot below

has one overpass shown as a heavy line and one underpass shown as a thin line. The path

v, is shown as a dashed line. By using the method described in 1.3.1, we follow \2

counterclockwise and note the overpasses which are crossed. Since no overpasses are

crossed, nl(R3 — K), for the trivial knot K, has no relators. Thus, TL'I(R3 -K)y=Ix:I

and so the group of the trivial knot is infinite cyclic.
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Figure 1.3.3

1.3.5 Example. Right-hand trefoil knot (Figure 1.3.4). Once the knot has been given
an orientation, we label any three consecutive underpasses B,. B, and B,. The
overpasses following B, B, and B; we denote by A;, Ay and A5 respectively and we

assign to these overpasses the generators X, y, z so that x = al#, y= a2# and z= a3#.

We mark x, y, z with arrows so that the generator crosses from the left with respect to the

orientation of the knot. Next, we find loops Vi Vg and V3 which run counterclockwise

around the open sets Vi, where PBi c Vi, i=1, 2, 3, as shown in Figure 1.3.4.

Figure 1.3.4

To simplify our computations, it is useful to note that a presentation involving only the

#

words v." assigned to the loops Vi

Ly B #
(xl, o Xpt VT, e, )¢,
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can be obtained from the over presentation
(xl, v Xpt T e rn)q).

This can be seen by noting that ¢(r) =1 where 1, = (Ci'vi'ci—l)#’ and since the

# #
i

assignment v, — v;" is product prescrving, any element v;" is also mapped into 1 by ¢.

With the above preparation complete, the relators can be arrived at by reading around

each loop v; and noting which of the generators x, y or z are crossed. Thus, we have

relators
# -1 -1
vV =Xx"yzy
#_ -1 -1
vy =y ZXZ
v3# =z Xy x~L.
With one relator dropped, (x,y, z: x! y zy"l, 7 1x y x1) isa group presentation and, if
we write these relators as relations, we have for the right-hand trefoil knot,

7r1(R3 -K)=1Ix,y,z: x =yzy'1, z =xyx"1 I

By substituting z=xy x71, we get
nl(R3 -K)=1Ix,y: x=yxyx‘ly‘1|
=%, y:xyx=yxyl,
and we see that for the right-hand trefoil knot K, the presentation of the group

nl(R3—K) is X, y:Xyx=yxy).

1.3.6 Example. Figure-eight knot (Figure 1.3.5) As in the previous example, we

assign an orientation to the knot, label the four underpasses and overpasses, and assign

generators X, y, z, and w to the four overpasses so that x = al#, y = az#: z= a3#, and

W= a4#. We then mark each of these generators with an arrow so that the generator
crosses from the left with respect to the orientation of the knot.. Next, we find loops v

Vo, V3 and v 4 which run counterclockwise around the open sets Vi’ where PBi c Vi’



17

i=1,..., 4, as shown in Figure 1.3.5.

Figure 1.3.5

The relators can now be obtained by reading around each loop v; and noting which of

the generators X, y, z or w, which are crossed.

v =xlywy!

# -1_-1
Vo =2y 20X
v3#=wyw_1

#_ -1
V4 =X

z—-l

zxw“l.

#

Dropping relator v, we get

7t1(R3 -K)=Ix,y,z,w: x! ywy zy 1771y, wyw“1 z1l.

Writing relations instead of relators yields

Ixz, z=wyw‘1 I

nl(R?’ -K)=Ix,y,z,w: x= ywy"l, y=2z"
Substitutingz=wy w1 in the other relations, we obtain

1 I

nl(R3—K)=lx, Y, Wi x=ywy"1,y=wy'1w' XwWyw™

From the first relation we have y"1 Xy =w and substituting this gives

TR -K)=lx,y: y=ylxyy Tty lxTyxyTxyyylxlyl



or
nl(R3 -K)=Ix,y: y x‘lyxy"1 =x"1 yxy"1 x|
Thus, the presentation of the group 1tl(R3 —K), where K is the figure-eight knot, is

x,y:y x‘lyxy"1 =x"1yxy"1x).

18



CHAPTER 2
THE ALEXANDER POLYNOMIAL OF A KNOT

In this chapter our aim is to describe the classical polynomial invariant of knots, the
Alexander polynomial. Introduced by Alexander in 1928, the Alexander polynomial is
effective in distinguishing specific knots.

Our work in Chapter 1 culminated with a presentation of the fundamental group of the
knot complement . Unfortunately, there can be no generic algorithm for determining
whether or not two presentations define isomorphic groups. This is the classic
isomorphism problem for finitely presented groups, first proved unsolvable by Adian
[1957] and Rabin [1958]. In fact, as noted in a paper by J. Stillwell [19] the problem
which led to the first statement of the word problem, given by Dehn [1910], is the problem
of deciding when two knots are the same. In hopes of generating useful invariants of knots
we must, therefore, derive some invariants of group presentation types. To this end, we
shall first consider the group ring of an arbitrary multiplicative group. Next, we define
formal derivatives on this group ring and define the Alexander matrix of a group
presentation. We arrive at a true invariant of group presentation type in the elementary
ideals which are defined on the Alexander matrix. Finally, the Alexander polynomial of a

knot is defined in terms of the elementary ideals.

19
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2.1 THE GROUP RING
We shall first define what is meant by a group ring and then consider some properties

of a particular group ring, Z[G], the group ring with respect to the integers.

2.1.1 Definition. Given a multiplicative group G and a commutative ring R with

identity, the group ring , denoted by R[G], consists of all finite formal sums Z a;0,

ceG

with addition given by

Z a0 + Z b0 = Z (ag + bc)o,

ceG oeG oeG
and multiplication given by
2 450 Z bt = z a;b.07,
oeG 17€G 0,1€G

where ag, bc, and b,c € R. These operations make R[G] into a ring. Furthermore, if 1R
is the identity in R and e e G is the identity in G, then lge is the multiplicative identity
in R[G].

In the study of knot invariants, we are solely concerned with group rings Z[G], group

rings with respect to the integers. Note that Z[G] is free abelian with a basis given by G.

The following theorem and its proof are due to Fox [6):

2.1.2 Theorem. An arbitrary function ¢ : G — A, where G isa multiplicative group

and A is an additive abelian group, has a unique extension to an additive homomorphism

¢ : Z[G] — A. Moreover, if A isaringand ¢ preserves products on G, the extension is

a ring homomorphism.
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K
Proof: Set ¢(0) =0. Every element of Z[G] has a unique expression Znigi, where

i=1
n; #0,i=1,...,k,and g,, ..., g, are distinct. To obtain the extension, we define
k
k
¢(2nigi) = Zniq)(gi)' (%)
i=1 i=1
Defined in this way, ¢ is trivially addition preserving. Since any extension of ¢ to an

additive homomorphism Z[G] — A must satisfy (%), the uniqueness of the extension is

assured. Finally, if A isaring and ¢ is product preserving on G,

“’(Z“igiZ“j' g J = ¢(Zninj'gigj' )
i J Lj

= D nib(e)oce))
L

= D nio(e) D o e
i j

1

= ¢(Enigi)¢(znj‘gj') q.e.d.
i ]

2.2 DERIVATIVES IN THE GROUP RING
Before defining formal derivatives in a group ring, we will need to consider two
important ring homomorphisms defined on the group ring of every group: the abelianizer

and the rrivializer.

2.2.1 Definition. For any group G, an element of the form aba~!b! is called a

commutator of the group.

2.2.2 Definition. For any group G, the commutator subgroup is the subgroup of G

generated by all the commutators of G and is denoted [G,G].



22

2.2.3 Definition. The quotient group G/[G,G] is called the commutator quotient
group or the abelianization of G, and the canonical homomorphism

d4: G- G/[G,G]
is called the abelianizer. We will also denote by & the unique extensionof & toa

homomorphism between group rings.

2.2.4 Definition. For any group G, consider the mapping {: G — Z defined by
f(g) =1, forall ge G. The trivializer is the unique extension of { to aring

homomorphism Z[G] — Z. Clearly,

¢ (2 n.g,) = Zni.
1 1

Now we consider the definition of a formal derivative in a group ring Z[G], as given
in Fox [6].
2.2.,5 Definition. Given a group ring Z[G], any function D: Z[G] — Z[G] which
satisfies
@) D(v1 + Vz) = Dv1 + sz
(i) D(vyv,y) = DvPE(v,) + v,Dv,,
is called a derivative in Z[G], where vy, Vo € Z[G] and { denotes the trivializer. As
Fox [6] notes, for elements of G, 2.2.5(ii) takes .the simpler form
(ii1) D(g,8,) =Dg; + gDg, forall g;,g,€G.
By theorem 2.1.2, an arbitrary function G — A, where A is abelian, has a unique
extension to an additive homomorphism from the group ring Z[G] into A. Infact, a
derivative may be defined as the unique linear extension to Z[G] of any function

D : G — Z[G] which satisfies (iii).
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2.2.6 Theorem. Let D be a derivative in a group ring Z[G]. Then

@ D(z n,g.) = 2 niDgi
i i

(ii) Dn=D(n-e)=0, for ne Z ande the identity in G
Gii) Dg'=-gIDg, geG.

2.2.7 Remark. Another useful fact, a formula for the derivative of a power, follows by

defining, for any ge G and n e Z, the group ring element
0 ifn=20

n-1
i
n_ zg ifn>0
< =0

-1
“Zgi ifn<0

- j=n

Using this definition we have:

2.2.8 Theorem. Let D be a derivative in a group ring Z[G]. Then

n
Dg" = gg—_:—lng forany ge G.

Derivatives in a group ring of a free group enjoy special properties:
2.2.9 Theorem. Let F be a free group with free basis Xy» Xp, -... To each free

generator X, there corresponds a unique derivative

d

i ax,
in Z[F], called the derivative with respect to X;, which has the property

oX.
5——' = 5i i where 8ij is the Kronecker delta function.
X,
J

This result and its proof can be found in Fox [6].
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2.2.10 Example. Right-hand trefoil knot. In 1.3.5 we found that for the right-hand
trefoil knot K, the presentation of the group nl(R?’ -K) is (x,y:xyx=yxy). As

Fox [6] notes, any relation =S corresponds to the relator risi“l. In fact, the derivative

of such a relator is
D(risi'l) = Dri - risi‘1 Dsi, by 2.2.5 (iii) and 2.2.6 (iii).
F(x)

Since v: F(x) — R = Ix : rl maps every relator onto 1, the calculation of the

derivative is further simplified by noting
v [Das™ ] =7 [Pr;-Ds; ],

and in terms of partial derivatives we have

-1
v Brisi y _225_ _ a_f_i_.
OX. axj ij

J

We shall now calculate the derivative of the relation xyx = yxy and each of the partial
derivatives.
By the above remark and properties of derivatives we have under ¥,
D[(xyx) (yxy)'1=D(xyx)-D(yxy)

=Dx + xDy x — Dy — yDxy

=Dx + x[Dy + yDx] — Dy — y[Dx + xDy]

=Dx + xDy + xyDx — Dy — yDx — yxDy.
Using 2.2.9 we see that the partial derivatives with respect to each variable under y are

ai[(xyx) (yxy)1=1+0+xy-0-y—-0
X

=1+xy-y,and

ai[(xyx) (yxy)"l]=0+x+0—l-0—yx
y

=x—-1-yx.
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2.2.11 Example. Figure-eight knot. As calculated in Example 1.3.6, if K is the
figure-eight knot, the presentation of the group n:l(R3 -K) is
x,y:y x1 y X y‘1 =x"1 yX y‘1 x). We now calculate the derivative of the relation

y x1 yx y"1 =x! yX y‘1 X, as well as each of the partial derivatives of this relation.

Under the map ¥ : F(x) —>E-l({9 = Ix: rl, we have

DIty xyxy™) lyxylx)™
=D(y x'yxy ) -Dxlyxylx)
=Dy + ny‘lyxy"1 - (—x"le + x"lDyxy‘lx)
=Dy —~ yx"le + yx"lDyxy"1 +x 1Dx — x'lDy - x"ly ny"lx
=Dy - yx’le + yx_lDy + yx"lnyy"1 +x1Dx — x'lDy - x’lny - x‘lnyy‘lx
=Dy ~ yx‘le + yx‘lDy + yx"lny + yx‘lnyy"1 +x"IDx - x‘lDy - x‘lny +
x"lyxy']Dy - x'lyxy'le
=Dy - yx“le + yx"lDy + yx'lny - yx"lyxy"lDy +x"1Dx - x‘lDy - x"lny +
x“lyxy"lDy - x‘lyxy"le.
The partial derivatives with respect to each variable undery are

0
p™ v xtyxy™h & lyxyTx) ™ =0-yx 1 4+0+yxly-0+x1-0-x"ly+0
X

_ x—lyxy—l

1

=— yx—l + yx‘ly +Xx - x_ly - x"lyxy"'l, and

0
5;[(y xlyxy Dy (xlyxy Tx) ) =1-0+yx ! +0—yxlyxy 1 +0—x"1-0

+ x'lyxy'l—— 0

1

=1+ yx"1 - yx"lyxy’1 -X + x"lyxy‘l.
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2.3 THE ALEXANDER MATRIX OF A PRESENTATION

2.3.1 Definition. Let (x:r) be a finite presentation of a group G. The Alexander

T.

matrix associated with this presentation is the matrix [a, i ] defined by ay; = : [B—’J )
X.

J

where & denotes the abelianizer and ¥ is the extension of the canonical ring

homomorphism induced by 7y: F(x) —-)-1:—(159 =[x : rl. Note that y takes elements of Z[F]

into ZIx : rl, where every consequence of r equals 1. More importantly, & then carries

everything into a commutative ring. That is,

doYo aa :Z[F] - Z[F] » ZIx : rl » Z[H],
X.
]

where H denotes the abelianized group of Ix : rl.

2.3.2 Definition. If A and A' are two matrices with entries in a commutative ring

R, we define A to be equivalentto A', denoted A ~ A, if there exists a finite sequence of

matrices A = Al, vees An = A' such that Ai +1 is obtained from Ai’ or vice-versa, by

one of the following operations:
(i) Permuting rows or permuting columns.
(ii) Adjoining a row of zeros, A — [6\ ]
(iii) Adding to a row a linear combination of the other rows.
(iv) Adding to a column a linear combination of the other columns.
(v) Adjoining a new row and column such that the entry in the intersection of the -

new row and column is 1, and the remaining entries in the new row and column are all 0,
A - [ 3 (1) ] . As noted by Fox [6],

v) A—> [ ': (1) ] can replace (v) since [ ﬁ‘ (1) ] may be obtained from A

by one application of (v) followed by n applications of (iv), where n is the number of



columns of A. Also, the familiar multiplication of a row or a column by a unit e € R

preserves equivalence:

A A A A A A
) [3] @— [a] (iii)— [a ](i) - [ea](iii) —| e ) e [ e ]
ca a

0 a-e¢ 'ea

o (ra1w-lg fyles[y G Glo-[y §

[0 5 %]

2.3.3 Example. Right-hand trefoil knot. In Example 2.2.10 we found that
d -
Yoo [xy®) yxy)'1=1+xy-y, and

Yoi[(XYX) yxy) J=x-1-yx
dy

By 2.3.1 we see that the 1 x 2 Alexander matrix is A = [a;; a;,] where 8= ay [6

So A= a(1+xy-y) &x-1-yx) ].

2.3.4 Example. Figure-eight knot. In Example 2.2.11 we found that

0
Yo I(y xTyxy ) lyxyTxy = —yx 4 yxly +x71

0 - 1\ o 1w - B S B B S
Yoé;[(yx lyxy ) (x lyxy 1x) 1]=1+yx 1—yx 1yxy L Iyxy L

The Alexander matrixis A= [ 2;; 235 ] where

1_ x‘ly - x‘lyxy"l), and

1

ay, =8a(- yx"1 + yx“ly +x”

a, =q(1 + yx'1 - yx"lyxy_l -X + x_lyxy'l).

i

- x"ly - x“lyxy'l, and

a

—€

N
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2.4 THE ELEMENTARY IDEALS

The invariance of the elementary ideals is the primary focus of this section. We first
give the definition of the k-th elementary ideal of an arbitrary matrix with elements in any
commutative ring with 1, followed by some immediate consequences of the definition.
Next, we define the k-th elementary ideal of a group presentation (x: r) in terms of the
Alexander matrix of (x : r). Finally, the invariance of the elementary ideals is proved by

examining the invariance of the elementary ideals under Tietze operations I and II.

2.4.1 Definition. Let R be an arbitrary commutative ring with a nonzero
multiplicative identity 1, and consider an m x n matrix A with entries in R. For a non-
negative integer k, we define the k-th elementary ideal E (A) of A as follows:

If 0<n—-k<m,then E,(A) is the ideal generated by the determinants of all
(n-k) X (n—k) submatrices of A.

If n—k>m, then Ek(A) =(.

If n-k<0, then E (A)=R.

2.4.2 Theorem. The elementary ideals of A form an ascending chain
E((A)cE/(A)c...cE (A)cE_ ,(A)=...=R.

2.4.3 Theorem. Equivalent matrices define the same chain of elementary ideals.

2.4.4 Theorem. Let ¢ be an arbitrary ring homomorphism ¢: R — R', where R and

R' are any two commutative rings with multiplicative identities, and define for any matrix
A= [aij] ) 3 € R, the image matrix ¢A = [¢(aij)] . If ¢ is onto, then

0, (A) =E, (0A).
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2.4.5 Definition. For any finite group presentation (x : r) and non-negative integer
k, we define the k-th elementary ideal of (x : r) to be the k-th elementary ideal of the

Alexander matrix of (x:r).

2.4.6 Definition. A mapping f:(x:r) — (v :8) of presentations consists of the two
presentations (x:r) and (y:s) and a homomorphism f: F(x) — F(y) which satisfies
the condition that the image f(r) of r under f is contained in the consequence of s.

Every presentation mapping f: (x:r) — (y :s) induces a group homomorphism

fo:Ix:rl— ly : sl satisfying f,y = vf, where the canonical homomorphisms

F(x) — Ix : rl and F(y) — ly : sl are both denoted by Y.

F(x) —— F(y)
T

Ix :rl—= ly : sl

2.4.7 Definition. Presentation mappings fi.f,: (x:r) > (y:s) arecalled

homoropic, fl =~ f2, if for every x € x, the element f I (x)fz(x‘l) belongs to the

consequence of s.

2.4.8 Definition. Presentations (x:r) and (v:s) are said to be of the same type if

there exist presentation mappings (X : r) {__;, (y:s) suchthat gf~ 1and fg~ 1. The pair

of mappings f, g is called a presentation equivalence.

The following definition of the Tietze equivalences 1, I', I, II' is given in Fox [6].
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2.4.9 Definition. Let (x:r) be an arbitrary presentation, and let s be in the
consequence of r. Consider the presentation (y:s) madeupof y=x and s=rus.
In this case the consequence of r equals the consequence of s since s isin the
consequence of r. Hence (x:r), (y:s), and the identity automorphism

I: F(x) — F(y) define a presentation mapping I:(x:r)— (y:s). Similarly,
(y:s), (x:r), and the identity 1 define a presentation mapping

I': (y:8) > (x:r).

Again, let (x:r) be an arbitrary presentation, let y be any member of the underlying
set of generators that is not contained in X, and let z be any element of F(x). Consider
the presentation (y :s) madeupof y=xUy and s=ru yz‘l. The homomorphism
II : F(x)— F(y), defined by the rule II(x) =x for any xex, maps r into the
consequence of s sothat (x:r), (y:s), and II : F(x) — F(y) define a presentation
map II:(x:r)— (y:s). Also, the homomorphism II': F(y) = F(x) defined
by the rule II'(x) =x forany xex and II'(y) =z maps s ontor U 1 and hence into
the consequence of r. It follows that (y:s), (x:r),and II': F(y) = F(x) define
a presentation map II':(y:s) — (x :r). The composition II'Il is the identity.
Also, for every xex, IIII'(x)x! =1 and IIII'(y)y"1 = II(z)y'1 = zy‘1 =
(yz‘l)‘1 which belongs to the consequence of s, so that ILII' ~ 1. Thus the pair II, IT'
is a presentation equivalence. The presentation equivalences I, I', I, II' defined above

are called the Tierze equivalences.

We shall require the following classic result by Tietze, a proof of which is given in

Fox [6].
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2.4.10 Theorem. (Tietze) Suppose that (x :r) f:‘;, (y : s) is a presentation

equivalence and that the presentations (x:r) and (y:s) are both finite. Then there exists

a finite sequence Tl’ Tl'; el Tk, Tk' of Tietze equivalences such that f = T1 Tk and

g=T .. T,"

The following lemma due to Fox [6].

2.4.11 Lemma. If the pair f, g is a presentation equivalence, then each of f,, and
S« 1S an isomorphism and the inverse of the other.

Proof: If f:(x:r) — (y:s) is an arbitrary presentation mapping, there is induced a
homomorphism f,: Ix : rl — ly : s| on the groups of the presentations. This mapping

induces a homomorphism f,, from the abelianization of Ix : rl into that of ly :sl. If

(x:r) and (y:s) are known to be of the same type, there exists a presentation
equivalence (x:r) 5 (y:s) 5 (x:r)and
figx = (fg)« = identity,
fuxBux = (£484)x = identity.

Similarly, g,.f.« is the identity. g.e.d.

2.4.12 Theorem. (The invariance of the elementary ideals) If (x :r) and
(y : s) are finite group presentations and

f:(x:r)—>(y:s)
is a presentation equivalence, then the k-th elementary ideal of (x: r) is mapped by f.

onto the k-th elementary ideal of (y :s), where f,, is the extension of the above f.x to
the group ring.

Proof: As aresult of Theorem 2.4.10, the proof reduces to checking only the invariance of

the elementary ideals under the Tietze equivalences I, I', I, II'. Since I'T ~I I' ~ 1 and
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II'II ~ ITII' ~ 1, by Lemma 2.4.11 it suffices to check only Tietze equivalences I and

II.

Tietze I. Let (x:r)= (xl, e KT rm) be any group presentation. Let s be in the
consequence of r. A Tietze equivalence of type I, is a mapping I: (x: 1) > (y :8),
where s=rUs and y =x. Since s is in the consequence of r,and I: F(x) — F(y)
is the identity mapping, the induced homomorphisms I, and I, are also identities.
Thus, by Theorem 2.4.3, we need only to check that (x:r) and (y:s) have equivalent
Alexander matrices. Consider the Alexander matrix of each of these presentations. If A

denotes the Alexander matrix of (x:r), and if A' denotes the Alexander matrix of

(y:s) then A isthe mXxn matrixA=[a'y(5—‘H and A' isthe (m+ 1) X n matrix
X.
J

A= [& y(;—:”ﬂ Since (y : s) has the same generators as (x:r), A' has the same
J

number of columns as A and A' will have identical rows with the exception of the

addiﬁonél row of A' corresponding to the relator s. However, since s is in the

consequence of r, the additional row will only amount to a linear combination of the rows

of A. This fact can easily be seen by writing the new relator s as a product of conjugates

of powers of the relators L, i=1, .., n,and calculating the (m + 1)-st row of the matrix

A'. For j=1,...,n,let

p

s = h rakh ~1 where h € Fx)and o ,B, € Z
E E kB, 'k k k Pk € &
k=1

Then,

P
ds 0 |
== E Ehr h

k k
ox; x| L 1 By



Since y(r;) = 1, we have

Now, by 2.2.5(iii), 2.2. 6(iii) and 2.2.8,
0 _1] ah ) [ 0y _1]
h,r,~h —K h — h
Bx [ ax kax Bk

ah a ch
k k -1 k

= —X4n hl—k
axj * [ Bk:l B ij

L [ﬁk] h akh —1——.
ox. k __1 x KB axj

) I'

By Definition 2.2.7,
r;"—l | %l % 0,1
i E :
: i=0
er -1 i=0 i=0 =
Hence,

ar
8 a ah K [0 Bh
— [hah 1| = h h) Y, Hyth, Ty —*
Y[axj ( g, Tk )] Y[axj]“Y( 1 O Y[a x - k)Y(er)Y( " )Y[axj

ar
=0 Yh) Yy — |
J
Setting o, dy(h,) = c,, we obtain



34

as p arﬁ
Pl PSR E k
aY[ ] ck& Y .

il k=1 axj

Thus, the Alexander matrix of (y :s) is the same as the Alexander matrix of (x:r)
except for having an additional row which is a linear combination of the other rows, and so

the two matrices are equivalent.

Tietze II. Consider the presentation (y:s) where y=xUy and s=ruy z7! for any
z e F(x) and where y is any member of the underlying set of generators that is not
contained in x. By Tietze, (x:r), (y :s) and the homomorphism II: F(x) — F(y)
given by II(x) =x forevery x € X, define a presentation map IL: (x:r) — (¥ :5)
where II is the inclusion homomorphism. Setting G=Ix:rl and G'=ly:sl and H
and H' equal to the abelianizations of G and G' respectively, we have the following

commutative diagram:

ZF(x) —s ZE(y)
y y'

72G6—1*, 75

e

A BRLLLN ZH'

where y'II =ILy, and €'II, =I,,4. Let A denote the Alexander matrix of (x:r) and

let A'denote the Alexander matrix of (¥ :s). Then

or.
A=(dy[—||, i=1,...mj=1,..,n
axj



The group presentation (y :S) contains a new generator y and relator y z~1 for some

z € F(x), so that

or; .
—=0, i=1,.,m,
dy
and
-1 -1
dy  dy dy
Hence,

A'=[II"A 0],
* 1

X.
J

2.3.2(v"), A’ isequivalent to II,,A. Thus, by theorems 2.4.3 and 2.4.4 we have
Ek(A') = Ek(II,,,,, A) = II,,.,,Ek(A). g.e.d.

where * denotes the row of elements & 'y ' [56——- yz‘lj, j=1, ..., n. By definition

2.5 THE ALEXANDER POLYNOMIAL
In this section we define a sequence of knot polynomials, one of which is the
Alexander polynomial of a knot.

Recall that for a finite presentaton (x :r) of a group G, the Alexander matrix

1
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0
associated with this presentation is the matrix [a..] defined by 8= qy (a—’-J We will see
X

i

that the Alexander polynomial of a knot is defined in terms of the Alexander matrix of the

presentation (x : r) of the knot group and consequently, the knot polynomial depends on
the abelianization of the knot group. Our next result, due to Fox [6], examines the

structure of the abelianized group of the knot group.

We require the following preliminary algebraic lemma.
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2.5.1 Lemma. Any homomorphism of a group into an abelian group can be factored

through the commutator subgroup.

2.5.2 Theorem. The abelianization of any knot group is infinite cyclic.

Proof: Let G be a knot group and (C ST S TR rn)¢ an over presentation of G.

Consider a typical region of the knot as shown in Figure 2.5.1. This region of the knot

shows an underpass followed by a null overpass followed by an underpass.

-----------

Figure 2.5.1

Let Xe(i) and XAG) be the generators corresponding to the two overpasses adjacent to the
underpass and assume that, with respect to the orientation of K, the generator Xye(i)
precedes the generator XAG) Calculating the relator r; by reading around the underpass,
we find that r; = xK(i)xa‘lexMi)'le'lxa‘ If 6 is any homomorphism of G into an
abelian group,
1= 0(r) = B0x, ) 0, ™" dxg %y ™" 0% 0]
= 0(0xy) 00, ~") B(9xR) (0, ™) B(9x™1) B(0x,)
= 0(9x,.) 00 ).

Since the projection of any knot is connected, for every pair of generators x;, x; we then

have



8(0x)) = 8(0X,).
Thus any element of the image group 6(G) is a power of the single element t = G(Q)xj),
j=1,...,n. In particular, since the abelianizer € : G = G/[G,G] takes G onto an abelian
group, G/[G,G] is cyclic.

To see that G/[G,G] is infinite, let (t) denote the infinite cyclic group generated by t
and let ¢: F(x) —» TCI(R3 -K, po) given by q)x_i = [*aj] be an over presentation of G.

Since F(x) is a free group, the assignment yx; = t,j=1,...,n, can be extended to a

homomorphism of F onto (t). Define 6: G — (1) by G(q)u) =yu, forall ue F(x).

. S. .
Notice that yr, =t1,i=1, ..., n, where s, —Et(ax'J Z( ok J x(l)) Thus,

Wr, = ¥=1fori= 1, ..., n, and the consequence of Ty eeen T which is in the kemel of
o, is contained in the kernel of . Since ker¢ c kery, 6 is well-defined. For if for some
x€ G, x=Ru =Ru', where u, u'e F(x) and R denotes the consequence of

r , then v =n"' for some r € R. Hence,

P Ty
yu =yru' = yryu' =1 yu' = yu'.

Also, since y is onto, sois 6, and the following diagram commutes:

F——-—> ®

¢L/

Next, consider the abelianizer & : G — G/[G,G]. By Lemma 2.5.1, there exists a

homomorphism 6 G/[G,G] — (1) such the following diagram commutes:
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G————e—> Q)

|

G/[G,G]

Since O isontosois 6'. Since a function whose image is infinite cannot have a finite

domain, G/[G,G] must be infinite and the result is proved. q.e.d.

In view of Theorem 2.5.2, the image of any generator X; j=1, ..., n, under the
composition of maps € oY: Z[F] — Zix : rl — Z[H], where H denotes the abelianization
of Ix:rl, can be set equal to t. Thatis, ﬁyxj =t for every generator xj,j =1,...,n
Hence, the elements of the Alexander matrix are elements of the group ring of an infinite
cyclic group with generator t. The elements of such a group ring are finite formal sums

with possible negative exponents and thus are Laurent polynomials in t.

2.5.3 Definition. Anelement d of a commutative ring R is called a greatest common

divisor, abbreviated g.c.d., of a finite set of elements ap,...a € Rif dlay,i=1,...,n,

and, for any e e R, if elai, i=1, ..., n, then eld.

2.5.4 Definition. Aring R is called a g.c.d. domain if it is an integral domain and

every finite set of elements has a g.c.d.
2.5.5 Theorem. The group ring of an infinite cyclic group is a g.c.d. domain.

2.5.6 Theorem. The group ring of an infinite cyclic group has only trivial units, i.c.,

the powers of a generator t and their negatives.
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2.5.7 Definition. Let R be a commutative ring with multiplicative identity 1. The

ideal E generated by a subset S is the set of all finite sums ‘Z,aibi where a, € S,
i

b, € R. Anideal is called a principal ideal if it is generated by a single element.

2.5.8 Theorem. Ina g.c.d. domain with identity, the g.c.d. of any finite set of

elements is the generator of the smallest principal ideal that contains them.

With the above preparation complete, we are finally in a position to define a sequence

of knot polynomials of the knot group, one of which is the Alexander polynomial.
2.5.9 Definition. For any integer k = 0, the k-th knot polynomial Ay of a finite

presentation (x:r) = (xl, v X iTgs rm) of a knot group is the g.c.d. of the
determinants of all (n —k) X (n — k) submatrices of the Alexander matrix of (x : r).

Moreover,
Ak=0 if n-k>m,

Ay=1 if n-k<O.
The first knot polynomial A, is called the Alexander polynomial of the knot group and is

usually written without the subscript.

2.5.10 Definition. We shall say that a knot polynomial Ay has been normalized if A

has no negative powers of t and has a positive constant term.

By their definitions, the knot polynomials are Laurent polynomials in t. Note that a

representation of an element of the group ring of an infinite cyclic group has two
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representations as a Laurent polynomial, depending on which of the two generators of the

group is set equal to t.

2.5.11 Example. Right-hand trefoil knot. In 2.3.3 we found the Alexander matrix for

the right-hand trefoil knot to be
A=[ a1 +xy-y) ax-1-yx) ].

Now, setting 8yx =dyy =t we have A = [ 2-t+1 —t2+t-1 ] By Definition
2.5.9, the Alexander polynomial is the g.c.d. of the determinants of all 1 x 1 submatrices

of the matrix A, so we have

A1=t2—t+1,and

Ak= 1, fork =2 2.

2.5.12 Example. Figure-eight knot. In Example 2.3.4, we found that the Alexander
matrix for the figure-eightknotis A= [ a;; 2;, ] where

1 x‘ly - x‘lyxy'l), and

1

a;, =4 yx‘1 + yx"ly + X~

a;,=8(1 + yx"1 - yx‘lyxy”l -X + x’“lyxy‘l).

Setting dyx =dyy =t, we have
A=[ 3+t+l 3¢ 1]

Again, the Alexander polynomial is the g.c.d. of all 1 x 1 submatrices of A, or

A1=—3+t+t‘1and
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Ak= 1, fork = 2.

Upon normalizing we have
Ay=t2-3t+1.

2.5.13 Theorem. The knot polynomials are unique to within + t", where ne Z and
t is the generator of the infinite cyclic abelianization of the presentation (x: r) of the knot

group.

Together with the definitions of the knot polynomials A, and the elementary ideals
E,, Theorem 2.5.8 gives us the following theorem.
2.5.14 Theorem. Each knot polynomial A, is the generator of the smallest principal

ideal containing the elementary ideal E,.

Since equivalent matrices have the same elementary ideals, it is a corollary of Theorem
2.5.14 that the knot polynomials of a presentation can be calculated from any matrix

equivalent to the Alexander matrix.

2.5.15 Theorem. Ap 1B
Proof: Let (A) and (A, ;) denote the principal ideals generated by A, and A,
respectively. Then since the elementary ideals form an ascending chain,
Ey cEp € By
By Theorem 2.5.14, (A,) is the smallest principal ideal containing E,,
B € A,y
Thus, A, = aAy ., for a e Z[G], where G is the abelianization of (x : r), and so

A, Ll Ay g.e.d.

k+1
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The next result which is of fundamental importance implies that the knot polynomials
are invariants of knot type.
2.5.16 Theorem. (The invariance of the knot polynomials.)
Let f,, be the induced linear extension to the group ring of an isomorphism of the
abelianization of Ix : rl onto thatof ly:sl. If (x:r) and (y:s) are finite presentations
of knot groups and f: (x : r) — (y : s) is a presentation equivalence, then, to within
units, the k-th knot polynomial A, of (x:r) is mapped by f, onto the k-th knot
polynomial A,' of (y :s). '
Proof: Let (4,) and (A) denote the principal ideals generated by A, and A,
respectively, and let Ek and Ek' denote the elementary ideals of (x:r) and (y:s),
respectively. Then
E, c (A E ' (A), and fo. (B =E
by 2.5.14 and the invariance of the elementary ideals. Itis a known algebraic fact that the
isomorphic image of a principal ideal is principal, and
By = fuu(Bp) © (Ein(A).
Since (Ak') is the smallest principal ideal containing Ek‘,
B) © EnlBy).
By the same argument,
E = fuu (E) C (Fuu”"(A)), and since (A,) is minimal,
B € (A
Thus,
D) = (A).
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Since (f**(Ak)) is generated by f,**(Ak), and (f,,,,,(Ak)) = (Ak') we see that f**(Ak) and
A’ generate the same principal ideal. Thus for some unit u € Z[G], where G denotes
the abelianization of (x:r),

fun(Bp) =ud '
Hence, to within units, the k-th knot polynomial Ak of (x:r) is mapped by f,, onto

the k-th knot polynomial A of (y:s). g.e.d.

A significant computational aid is given in the following theorem.
2.5.17 Theorem. If a finite presentation of a knot group satisfies
qyx, =ayxj, i,j=1,...,n,
then the Alexander matrix A is equivalent to the matrix obtained by replacing any column
of A with a column of zeros.
(Note that although the hypothesis of this theorem may seem strong, the condition is

satisfied by any over presentation.)



CHAPTER 3
THE JONES POLYNOMIAL

In 1985, V. F. R. Jones [11] announced the discovery of a new polynomial invariant
for knots, which led in part to his being awarded the Fields Medal in 1990. Jones used a
representation of the braid group to the group of units of a Hecke Algebra on which he
defined a trace function. This trace function resulted in a (Laurent) polynomial invariant for
knots. After a brief description of braids and representations of the braid group, we shall
examine in this chapter the Jones polynomial and calculate the Jones polynomial for the

right-hand trefoil knot.

3.1 THE BRAID GROUP
We shall first define what is meant by an n-braid and show that, modulo a certain
equivalence relation, we can define a group structure on the set of all n-braids. The

resulting group is the n-th braid group.

3.1.1 Definition. A (tame) n-braid or a braid on n strings is any structure in R3 given

by the following data:
@) let Pl’ ..., P_ be the n points in R3 given by Pi = (1,0,1);

(ii) let Q. ..., Q, bethe n pointsin R given by Q, = (1,0,0);

44
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(iil) for every i=1, ..., n, let there be a polygonal path joining P, to Qo(i)’ where ¢ isa

permutation of {1, ..., n}, such that along the path from Pi to Q 56) the z-coordinate

strictly decreases and such that no two of the distinct paths intersect.

The reader is encouraged to visualize the abstract notion of an n-braid — as in Figure
3.1.1 showing the common 3-braid used to braid hair — and we shall adopt the convention

that our viewpoint is from the negative y-axis.

N

e

Figure 3.1.1

3.1.2 Definition. For any n-braid, the polygonal path joining P, to Qc(i) is called the
i-th string and the permutation G is called the permutation of the braid. The straight line
segments of any string are called edges and the points where the straight line segments meet

are called vertices.

3.1.3 Definition. Two n-braids are called equivalent or string isotopic if and only if

there exists an isotopic deformation of R3 fixing the points P; and Q,i=1,..,n,
which takes one n-braid onto the other n-braid and which satisfies the condition (iii) of

Definition 3.1.1 throughout the deformation.
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3.1.4 Definition. For 1 <i < n-1, we define the elementary n-braid , denoted by o;, 10

be that braid in which the i-th string crosses over the (i + 1)-th string (when viewed from
the negative y - axis) exactly once and in which all other strings go directly from top to
bottom. (See Figure 3.1.2.)

1 2 3

X |

P
G

n 1 2 3 4 n 1 2 1 i+l i+2

Figure 3.1.2.

Braids, like knots, are represented by their projections PB, B e B, where
P:R3 5 R3is given by P(x,y,z) = (x,0,z). A point p in the image of PP is said to be
a multiple point if the inverse image P‘l(p) N B consists of more than one point. The
order of pePK is the cardinality of P"l(p) M B. A multiple point of order two is called

a double point.

3.1.5 Definition. An n-braid B is said to be in regular position if:
(1) the only multiple points of B are double points;
(ii) no double point is the image of a vertex of B.

Each double point of the projected image of an n-braid in regular position is the image
of two points of the braid. The point with the larger y-coordinate is called an
undercrossing, and the other is called an overcrossing. Standard arguments show that any
n-braid is equivalent to an n-braid in regular position and thus we will assume any n-braid
to be in regular position. Also, we will assume that we get transversal crossings of the

strings if we project the braid orthogonally onto the xz-plane and we will indicate these
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over and under crossings in our diagrams. Also note that (up to equivalence) we may
assume that the crossings of the strings occur at different levels with respect to the z-axis.
By isolating these crossings, any n-braid may be resolved into a concatenation of

elementary n-braids. For example, the common hair braid of Figure 3.1.1 can be resolved

into the concatenation 051 o; (551 o, 0‘51 of elementary n-braids, as shown in Figure 3.1.3.

o2 3.
\\ %
I AN &
7
Figure 3.1.3

This leads to the following definition:
3.1.6 Definition. Let B, denote the set of all equivalence classes of n-braids. Let Bl

and B, beelements of B . The product of B, and B, is defined to be the vertical

concatenation of B, and B, formed by glueing the n points Qi1 of B, tothe n points

Pi2 of B2 followed by a vertical deformation so that the product lies between the planes

z=1 and z=0.

3.1.7 Definition. The trivial braid, 1, is the n-braid in which all strings go straight

down from the plane z=1 to the plane z =0.
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3.1.8 Definition. The inverse braid , (3‘1, of the braid B is defined as the mirror

image of B with respect to the plane z = % For the elementary n-braid G;,
1 €i<n-1, the inverse braid o‘i'l is obtained by changing the overcrossing of the

(i + 1)-th string by the i-th string to an undercrossing. The projection of the common

hair braid, its inverse and their product are shown in Figure 3.1.4.
/7 k<‘/’
/ Q\ P

S

L) S
/ \< \J p
B pt ppt
Figure 3.1.4

Figure 3.1.5 shows an isotopic deformation of the product BB‘I to the identity braid 1.

S5 835
=g}

< <

Figure 3.1.5
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With the above defined product, identity element 1, and inverse elements, the set B,
of equivalence classes of geometric n-braids forms a group called the Artin braid group of
braids on n strings. In his paper on braid groups, Artin [2] proved that the group B_
admits a presentation with generators: G}s .-+» O _ 1» and defining relations:

(i) 0;0,,,0;,=0,,,0;C;,for1<i<n-2

(i) Gi-csj:Gj-ci forli-jl22,1<1i,jSn-1.
Note that (ii) is readily visualized, since if |1i—j|2= 2, then the strings involved in each of
the factors of the products 0;'C; and 0;C;, are isolated with respect to each other and so
the products are easily seen to be equivalent. The reader may also note the similarity
between the generators and relations given above for B, and those for the symmetric
groupon n letters, S . This similarity can be seen by recalling that S, is generated by
the n— 1 transpositions T, = (12), Ty = (23), ..., T = (n -1 n), and that these
generators satisfy (i), (ii), and the additional relation Tiz =1,i=1,...,n-1. Infact, Sn
is the quotient of B by the subgroup generated by the relators o*iz. Moreover, the

canonical map m: B, — S_ actually associates to each braid the permutation of the braid,

o, as defined in 3.1.2,

3.2 THE BRAID CORRESPONDING TO A LINK
After a few preliminary definitions, we shall examine how an n-braid can be derived

from a given link and how a link can be derived from a given n-braid.

3.2.1 Definition. Given an n-braid B e Bn, let / be an axis parallel to the x-axis

placed behind [ so that / has a greater y-coordinate than any point on any string of B and

so that / has a z-coordinate of 1/2. The closure of B, denoted by ﬁ is the unoriented link

formed when the braid B is closed around the axis ! by identifying the points P, with the
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points Q, fori=1,...,n. The link formed by closing an n-braid in this manner is called

the corresponding link and is denoted by L(B).

3.2.2 Example. In this example we examine the closure of the 3-braid B used to braid
hair. To visualize the closure of a particular n-braid [, draw the plane projection of 3
horizontally as in Figure 3.2.1. Next, wrap the projection of  around a cylinder which
has been placed behind the n-braid and join P, to Q,i=1,...,n, by a path on the
cylinder along the n-th circular section (see Figure 3.2.2). Note that this is equivalent to
Definition 3.2.1. Finally, remove the cylinder and simplify the resulting link projection of

L(B) by isotopic deformation as in Figure 3.2.3.
N\ / \/:
1 AN AN

Figure 3.2.1

™~

o >

-
"

AT
AN A

Figure 3.2.2
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Figure 3.2.3

In the study of links, we wish to use braids to gain information about a particular link.
Thus, our interest here is to describe the process that reverses the closure operation; that is,
we want to obtain from a link K a corresponding n-braid B so that L(B) is string

isotopic to K. The following description of this process is due to Hansen [9].

3.2.3 Definition. Let K be alinkin R3 and let / be an arbitrary but fixed line which

does not intersect the link K. The line / is called the axis for K.

3.2.4 Definition. Alink K is said to be in general position with respect to the axis [

if none of its edges are coplanar with [,

3.2.5 Notation. We shall use the notation [a b] to denote an edge of a link with

vertices a and b.

3.2.6 Definition. Let K be a link in R? which is in general position with respect to
an axis /. Suppose K is oriented and fix an orientation of . Anedge [ab] on K is said

to be positive when the half-plane P determined by / and a point on the edge [ab] turns



on aright-hand screw around /, when the point on [a b] moves along the edge in the
positive direction determined by the orientation of K. Similarly, an edge is said to be
negative when the half-plane P turns on a left hand screw around / when [ab] is

traversed in the positive direction.

3.2.7 Definition. A closed braidin R is an oriented link K which admits an
oriented axis / such that all edges are positive. Less formally, the closed braids are exactly

the links in R3 which arise by closing braids.

An important theorem due to Alexander [1] states that every link in R3 is isotopic to a
closed n-braid. Thus, in the following discussion of a method for obtaining the braid
representation of a link we will assume that every link is a closed n-braid. (The reader
should note that although Alexander's theorem guarantees that an axis / can be placed so
that K is a closed braid, finding the correct position for / can be difficult in practice.)

Let K bealinkin R3 with axis /. Suppose that both K and / are oriented and that
K is in general position with respect to . Choose a plane T in R3 which is orthogonal
to [ The orientation of / induces an orientation of the plane T, so that with respect to /
the orientation of the plane 7 turns on a right-hand screw. Denote this orientation around
the point where [ intersects by {D Next, project K orthogonally onto 7
indicating the over and under crossings as usual.

Since we are assuming that K is a closed braid, every edge of K is positive. A braid
word representing K can be read from the projection as follows. We will rotate a half-line
in 7, originating from the point of intersection of the axis / and the plane =, one full turn
in the direction of the orientation of the plane & and in the process, read off the braid

word.
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First, choose an initial position of the half-line arbitrarily with the exception that it
cannot intersect any double point of the projection of the link K. Once the initial position
is chosen, the points of intersection between the half-line in initial position and the
projection of the link K are numbered 1, ..., n. The point of intersection farthest from the
line / islabeled 1, the point of intersection next farthest from the line ! is labeled 2, etc.

Next, rotate the half-line in the direction of the orientation of the plane 7. As the half-
line rotates, afier each crossing in the projection of the link K draw a half-line so that after
one full rotation m half-lines have been indicated where m is the number of crossings in
the projection of the link K. Once this family of m half-lines has been indicated, the
projection of the link is cut open along the initial position half-line and the family of half-
lines is bent into parallel position yielding a projection of a braid. Taking into account the
over and under crossings of the strings, a braid representation of the link can be read from

the resulting braid projection.

3.2.8 Example. Borromean Rings. We shall calculate the braid word representing the
link known as the Borromean Rings, pictured in Figure 3.2.4. This three component link
has the property that if any one of the components is removed, then the remaining two

components form a link composed of two disjoint unknots.



".;.1 oy "51 Oy "21 oy
3: A N7 O\ !
JEANY. / :
1; NN N

Figure 3.2.5

The braid word for the Borromean Rings can be read directly from Figure 3.2.5 and is

-1 -1 -1 -1 43
¢, 0,0, 0,0, G, or (cs2 cl).



55

1t is interesting to note that this braid is a section of the common braid used to braid hair
(see Figure 3.1.1). In addition, note that the closure of another section of the common hair

braid in Example 3.2.2 yielded a two-component link.

3.2.9 Example. Right-hand trefoil knot. Next, we will calculate the braid word for the

right-hand trefoil knot.

Figure 3.2.7

Finally, we are able to read the braid word for the right-hand trefoil knot as 01‘3.

As we have stated, Alexander proved that every oriented link in R3 is isotopic to the
closure of some braid. Thus, we can represent any oriented link in R> by the pair (B, n)

where [ is a braid in B - Unfortunately, the correspondence (3, n) — /B\is many-to-one.

For example, using this notation, the unknot can be written as (6,0,...0,_nor
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(csl"l 02’1 O 1"1, n) since the closures (3.2.1) of both of these elements yield the

unknot. The following theorem due to Markov provides the necessary and sufficient

conditions for braids v € B_ andf e B, to have isotopic closures. We shall first define

the two Markov moves.

3.2.10 Definition. A Markov move of type 1 is changing o e B, t0 B(xB‘l € B,

forany Be B, and a Markov move of type 1l is changing a. e B, to occnil € B, . p

or the inverse of this operation.

3.2.11 Theorem. For o e B and Be B, o and B have isotopic closures if and

only if there exists a finite sequence of Markov moves of type I and II (followed possibly

by an isotopic deformation) which takes o to P.

Although the question of equivalence has been decided within each braid group [8], no
algorithm has yet been found to decide when o e B and Be B, are equivalent for
n#m. For this reason, attempts to use braids directly to study links are unsatisfactory.
Recently, much progress in the study of links has been made by using representations of

the braid group and we shall devote the next section to this topic.

3.3 GROUP REPRESENTATIONS

The Jones polynomial invariant for links uses a representation of the braid group
described in 3.1 into the group of invertible elements of a quotient of a Hecke algebra. A
trace function is then defined on this quotient algebra. The value of this trace function is

then used in defining the resulting Laurent polynomial invariant for links. In this section
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we shall develop a minimal familiarity with group representation theory and define the

Jones polynomial via a representation of the braid group.

3.3.1 Definition. Let G be a finite multiplicative group with identity element 1 and
let V be an n-dimensional vector space over a field K. A representation © of G isa
homomorphism 7 : G — Aut(V) where Aut(V) denotes the set of all vector space
isomorphisms of V onto V. (Recall that Aut(V) forms a group under the operation of
composition of functions which is isomorphic to GL,_(K), the general linear group.) The
vector space V is called the representation space and the dimension of V over K is

called the degree of the representation.

We have the following analogous definition for the representation of an algebra.

3.3.2 Definition. Let A be a finite dimensional algebra over a field K and M a
finite-dimensional vector space over K. A representation of A with representation space
M is an algebra homomorphism T: A — HomK(M,M).

The Jones polynomial uses a representation of the braid group into a certain operator
algebra. Thus, we will consider a representation of B, to be the restriction to the group
B, of arepresentation of the group algebra KB,.

Recall that the braid group B, has a presentation with generators: Gy -+ Oy _ s and

defining relations:

@) 6;0;,10;=0;;1°0;0;,; for1 €i<n-2
(ii) ci-oj=oj-ciforli—j 122,1<i,j€<n-1.
The key to seeing that the representation of B, into the group of units of a certain Hecke

algebra could be useful, is to notice the similarity between the presentation of the braid

group and the following presentation of the Hecke algebra of type Ay
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3.3.3 Definition. For each q € C, the Hecke algebra H(q,n) of type A n.1 hasa
presentation with generators g, ..., g, _ ;, and defining relations:
() g2=@Q-Dg+qi=1,..,n-1
(1) 8; .18 =8+ 188+ pi=1....n=-2
(iii) 88 = 88 li-jl=2.
We will consider H(q,n) as embedded in H(q, n + 1) by identifying the gi’s. For q=#0,
we obtain a representation of B, inside the Hecke algebra H(q,n) by sending o, to g,

foreach i=1,...,n-1.

Jones [12] originally discovered * - algebras A, with generators 1,e,,...,e_and

relations

* = @, L =e.
e*=e, e°=e
€€+ 18 =7

e.=ce. ifli—jl2>
€& = &&; ifli—jl=22,
where T is a real number.

These relations do not yield a presentation of A, forall . Rather, the structure of A

depends on the existence of a trace, denoted by tr, on An. For our purposes, it is enough

to know that this trace is uniquely defined by the following property:
tr(xen +p=Tuk) ifxe An (*)
tr(1) = 1.

As noted by Jones [12], this property is similar to the Markov moves of type II, ( changing

o€ B to occnil € B, ; orthe inverse of this operation). We shall call traces which

exhibit this similarity Markov traces.
The algebra A is actually a quotient of the Hecke algebra given in 3.3.3.
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Let te R besuchthat T1=2+t"1+t We may note that the assignment
no(ci) = te; — a- ei) gives a representation of Bn into An -1 and may now define the
Jones polynomial V, (t) via this representation Ty
3.3.4 Definition. Given Be B, let e denote the exponent sum of B when B is
written as a word in the generators ;s i=1, ..., n- 1. Define the Jones polynomial
VL(® by

wO=(~ 7T ) [m® ]

3.3.5 Example. In this example we shall use the techniques developed in this chapter

to calculate the Jones polynomial of the right-hand trefoil knot. We have already calculated
the braid word for the right-hand trefoil knot to be 0‘1‘3 € B,. Using the representation of

B, into A, given above, we see that

10, )= [tle; -1 -ep]?
=t -317% (1 —e)) +3t"le,(1 —e)? - (1 —e)’.
Since € is idempotent, 1 — €, must also be idempotent. Moreover, e (1- el) =€~ el2
=e;—¢; = 0. Thus, we have
n0(01‘3) = t‘3c:l -(1- 61)3

— =3

=t7e, - 1- el)

=3

=t7e +e — 1.

Next, we calculate the trace of n0(01'3) = t"3e1 + e, — 1 by using (%).

r [ my(0,7) ] =@ e, +e,-1)
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=t S+ 1 1.

Sincet= Z——-—t—l——z—, we have
t+

(t + 1)2

The exponent sum for 0’1"3 is —3, so we have for the right-hand trefoil knot 3l

V3 O = (‘ t :;?l)z_ : (\/t_)_3“[“0(°1_3)]
(e 1)[ t

2

Writing t3 + 1 as (t + 1)(t2 ~ t + 1) yields

1 t+ 1
V3l(t)=—;a-(t2—t+ 1)+ 2
-1
= 2

and finally,
Vi () =- 4+ -3+ -1,
1

3.3.6 Remarks. We shall see in Chapter 4 that both the Alexander and the Jones
polynomials are special cases of a more general polynomial invariant called the HOMFLY
P-polynomial. However, the Jones polynomial already gives us new information; for

example, as remarked by the authors of [15], the Alexander polynomial fails to distinguish
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the rather complicated pretzel knot C__3 5 7 from the unknot, while the Jones polynomial

for the same knot is nontrivial.



CHAPTER 4
OTHER POLYNOMIAL INVARIANTS

We now examine several polynomial invariants of knots which are calculated using the

projection of a knot. Each invariant is defined inductively by considering the planar

projections, K, K _, and K of three oriented links that are exactly the same except

near one crossing, where they are as depicted in Figure 4.1.1.

A XX

K+ K_ 0

Figure 4.1.1

Conway [5] was the first to develop this combinatorial approach and he showed that the

normalized Alexander polynomial ( A(t) = A(t"l) and A(1) = 1) satisfies the formula

Ag =A@+ @211 Ag (0 =0.

I 12 -1/2 . .
By substituting z = (t /2_-V ), A can be expressed as a one variable polynomial,

62
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VK(z), called the Conway potential function. When the Jones polynomial was discovered

in 1985 and shown to be given by the recursive definition

Vg ©-tVg 0 =" =17 v o,

four independent teams of six individuals, Freyd-Yetter, Hoste, Lickorish-Millett, and
Ocneanu (7] realized that the Jones and Conway polynomials were both particular cases of
a new polynomial invariant, called the HOMFLY polynomial after their initials. Shortly
thereafter, Brandt, Lickorish, Millett [4] and Ho [10] discovered yet another new invariant
for unoriented links, distinct from the HOMFLY polynomial, which was generalized to the
Kauffman polynomial. In the following sections we will examine each of these invariants

and give a few elementary calculations.

4.1 PRELIMINARIES
In the combinatorial approach of this chapter it is useful to take as the definition of

equivalence of knots the equivalence of isotopy given in Definition 1.1.4.

4.1.1 Definition. A Reidemeister move of type I, II or III (shown below), is a
deformation performed on the projection of a link where no other strands of the projection

are present locally other than those depicted in the moves.

L YO — T — 7O

7

no Ty = T = T

O T X
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4.1.2 Definition. Two projections P and P' are topologically equivalent if there exists

a homeomorphism of R? which maps P onto P'.

In [18] Reidemeister proves the following theorem:
4.1.3 Theorem. Two links are equivalent if and only if their projections differ by a
finite sequence of Reidemeister moves combined with planar topological equivalences of

their projections.

4.2 THE CONWAY POLYNOMIAL V

This pioneering diagrammatic approach to finding useful invariants of links was

introduced in 1970 by Conway [5]. In his paper, Conway describes a variation of the

classical Alexander polynomial called the Conway potential function, denoted Vi (@).

4.2.1 Definition. The Conway polynomial is the polynomial satisfying the following
three axioms:

Axiom 1: To each oriented link X there is associated a polynomial VK(z) e Z[z],

where Z[z] denotes the ring of polynomials in z with integer coefficients. Equivalent
links receive identical polynomials: K ~ K' = VK(Z) = VK. (2).

Axiom 2: If K is equivalent to the unknot, then VK(z) =1,

Axiom 3: Suppose that three links K 4+ K_, K, differ at the site of one crossing as shown

in Figure 4.1.1. Then VK+(z) - VK_(z) =zV Ky(2) This is called the exchange identity.

A proof of the consistency of these axioms can be found in Kauffman [13] and it can also
be shown that the polynomial is uniquely defined.
The exchange identity given in Axiom 3 is the foundation for all of the inductive

calculations of the Conway polynomial. For a given link K, we will describe a triple of
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links which differ at the site of one crossing only, where K is one of the links in the triple

and the other two links in the triple have known Conway polynomials. Then it is possible

to calculate V(z) for the given link by using the exchange identity. Since all calculations
of the Conway polynomial are inductive, we shall take as our starting point the following

example.

4.2.2 Example. If L is the union of two disjoint unknots, then V| =0. To see this,

choose for K, and K_ the projections of the unknot as shown below.
K, K_ L

Since are both K, and K_ are projections of the unknot, we have Vi =V =1.
-+ -—

Then, using the exchange identity
— =2Z y
V K, Vg =2V

we have

and so

4.2.3 Example. We now calculate the Conway polynomial of the right-hand trefoil
knot. Let K, be the right-hand trefoil knot and let K_ and K, be as shown on the next

page.
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To calculate VK+, we need to know VK~ and VKO. By inspection, K_ is a projection of

the unknotand so Vi = 1. However, VKO is not known and will require a separate

calculation.

4.2.4 Example. Let K, K_ and K, be given as below.
K, K_ K,

Clearly, K, is a projection of the unknot and so VKO = 1. By Example 4.2.2, Vi =0.
Thus, using the exchange identity Vi —Vy =2V,
+ - 0

we have

and finally,



Returning to the calculation of the right-hand trefoil knot, we have

v -V, =2V,
KRHwefo K- 7 K
SO
VKRH —1=2z2)
-trefoil
and
VK = 2.2 + 1.
RH-trefoil

43 THE HOMFLY POLYNOMIAL P(K)

Shortly after Jones' first announcement, a polynomial for oriented links, called the

67

HOMFLY P-polynomial and denoted by P(K), was discovered almost simultaneously by

four independent teams of six authors, Freyd-Yetter, Hoste, Lickorish-Millett, and

Ocneanu [7]. This new polynomial generalized both the Alexander-Conway and the Jones

polynomial and it can be described as follows.

4.3.1 Definition. The HOMFLY P-polynomial is the unique Laurent polynomial in

commuting variables / and m, such that equivalent links have the same polynomial and

(i) P(unknot) = 1.

(i) If K, K_ and K|, are any three oriented links that are identical except near a point

where they are as in Figure 4.3.1, then

IP(K,) + IV P(K ) + mP(Ky) = 0.
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K

+ -

AKX
K K
Figure 4.3.1

4.3.2 Example. We first calculate P(K) for two oriented disjoint unknots (compare
with Example 4.2.2). Let K + K_ and K, be as depicted in Figure 4.3.2.

K, K_ K,
Figure 4.3.2

Since K_and K_ are projections of the unknot, P(K,) =P(K) =1. By 4.3.1.(1i) we

have
1) +171) +mP(Ky) =0

mP(Ky) =—1-1""1
P(Ky) =-m~ (1 +171).

4.3.3 Example. Next, we calculate P(K) for the right-hand trefoil knot (cf. 4.2.3.).
Consider K, K_ and K, depicted in Figure 4.3.3.

K+

Figure 4.3.3
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We wish to calculate P(K +) for the right-hand trefoil knot K " Clearly, K _
is a projection of the unknot so P(K ) = 1. However, we do not yet know P(Ky). To

calculate P(K), let K, be K_ in Figure 4.3.4 and consider the trio of links in

Figure 4.3.4.
K, K_ Kq
Figure 4.3.4

As calculated in Example 4.3.2, P(K ) = ——m’l(l + I l) and P(KO) =1, since Ky isa

projection of the unknot. Thus,

IPK)+ 1 m g+ 1] +m@) =0
IPK)-m7'Q+12)+m=0
IPK)=m1+I%)-m

$0 that
PK)=m (7 +17%) —mi L.

Returning to the calculation of P for the right-hand trefoil, we now know the polynomials

of two of the three links shown in Figure 4.3.3. thus,

IPK )+ 17 +m [l + 173 - mi171] =0
IPK ) =~1"1— 7 + 13y + m217],

and finally,
PK,)=-212-1"4%+m?"2,
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4.3.4 Examples. Similar calculations yield P(K) = m~1(/3 + ) =Im. where K is the
link formed by two interlocking unknots as in Figure 4.3.5 (compare with Example 4.2.4),
and P(K) = ~212—1* +12m? for K the left-hand trefoil knot.

GD

Figure 4.3.5

At this point we have calculated the following P-polynomials:

P( O O )=-m*1(1+1-1)
P(©©)=m'l(l3+l)—1m
P(©©)=m"l(l"3 e

P[(%J=—212—14+12m2

These results illustrate the following properties of the P-polynomial as stated by the

authors of [15]:
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1. If K is the mirror image of a link K, then PI—((I, m) = PK(I "1, m). Thus, for a link to be

of the same isotopy type as its mirror image its polynomial must be symmetric in / and
1

2. If we consider each summand as having a factor mX, then the lowest powerof m in
P(K) is equalto 1—c, where c is the number of components of K.

3. The powers of [ and m are either all even or odd depending upon whether the number

of components of K is odd or even, respectively.

44 THE JONES POLYNOMIAL V(t)

Recall that V(t) is a Laurent polynomial in the variable t1/2 satisfying

V(unknot) = 1, and
t-1V(EK D —tV(EK) + (t—12 —¢172) V(K,) = 0

where K, K_ and K, are oriented links as in Figure 4.1.1. In this section we outline a

proof of the existence of V() which is due to Kauffman [13].

4.4.1 Definition. For each link projection K define a Laurent polynomial (K) in one
variable A by the following:
(1) (unknot)=1
(i) {K U unknot)=—(A"2 + A%) (K)
(iii) (X) =A < ><>+A"1 () ()
This (K) is called the bracket polynomial of K.
Note that in 4.4.1 (i), K U unknot denotes the projection that consists of K and

another component that contains no crossing, and 4.4.1 (iii) refers to projections of three
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links which are exactly the same except where they are as shown. The first projection in
the triple of 4.4.1 (iii) shows a crossing, the other two pictures in 4.4.1 (iii) show this
crossing eliminated. Given a picture of a crossing, the other two pictures can be
distinguished by the following: if, when moving along the underpass towards the crossing
one swings to the right,up onto the overpass, one creates the second projection of the triple

in 4.4.1 (iii). Notice that no arrows are required for this determination.

4.4.2 Example. As an example, we calculate (K) where K is the projection of the link

formed by two interlocking unknots as in Figure 4.4.1.

QD

Figure 4.4.1

(@D Y-n(@DY(CO)
AHED) (D))
(Y (OO))

=A?[-(A2+ AD] +2+ A2 (A2 + AD)]
=—(A2+A)2 42

Note that in the calculation of (K}, each use of 4.4.1 (iii) reduces the number of
crossings in the projection until there are no more crossings; then 4.4.1 (i) and (ii) finish

the calculation. Also, though no proof will be given here, the choice of the order in which
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the crossings are eliminated is irrelevant, so 4.4.1 defines unambiguously a polynomial for
each unoriented link projection. In addition, it can be checked that the bracket polynomial is
invariant under Reidemeister moves II and III. However, the bracket polynomial fails to be
invariant under Reidemeister move I:
(8)=a(8)+47(¥)

=A@+ AH A+ AT

=[-AA2+ A% + A7)

= _A3 ().

Similarly, < 5) = —A‘3( “—). To correct the failure of invariance of the bracket

pelynomial under Reidemeister move I, give the link projection K an orientation and

consider the following definitions.

4.4.3 Definition. For any crossing in the projection of an oriented link K, a crossing
which obeys the right-hand rule convention is called positive and a crossing which does

not obey the right-hand rule is called negative.

K A
KX X
positive  negative
4.4.4 Definition. The writhe of an oriented link K, denoted by ®(K), is the algebraic

sum of the crossings of K, counting +1 for a positive crossing and —1 for a negative

crossing.
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4.4.5 Example.

w(left-hand trefoil) = o ((93) =3
w(right-hand trefoil) = m(é-\)_)) = 3.

Now, ®(K) isinvariant under Reidemeister moves II and II:

et o o 1-0-o 9C)
Move III: m(%)=—1—1+1=-1=‘°(%)

However, under Reidemeister move I, ®(K) is not invariant:
m(%):—l #0= m('> )

Finally, we arrive at a polynomial which is invariant under all three Reidemeister moves by
defining

X(K) = (-A)y>O0(x).
In this new polynomial the non-invariant behaviors of w(K) and (K) ‘cancel' so that
X(K) is invariant under Reidemeister move I. Also, any combination of ®w(K) and (K)
is invariant under Reidemeister moves I and ITI. Thus, X(K) is a well-defined invariant
of oriented links where { ) ignores the orientation of K.

Next we find the normalization of X(K) which yields VK(t). Using 4.4.1 (iii) twice,

we have

Oy =a XY a1 (O,
Oy =a1 XY+ D).
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Multiplying the first equation by A"l, the second by A, and then subtracting the first from
the second gives

a(C)-a1(OX)=w2-a50 0.

Call the projections in the above equation K . K_ and K, and give them the following

A XX

K+ K 0

orientations:

Then w(K +) =1,0(K)=-1 and (o(KO) = (. Substitution of the bracket polynomials

into (*) gives

X(K X(K X(K
A[———( ) J—A"l [,_____( ) J: (A%2-A7) [—( 10)], or
_ AS30(K,) _ A-3O(K ) -

—AYX(K,) + ATIXK) = (A2 - ADX(K ).

Letting A = ~1/4 we have
~ XK + XK ) = (V- V) X(K ),

and finally,
XK - tXEK) + -2+ ) X(K ) = 0.

Thus, under the substitution A = '1/4, X(K) is the original Jones polynomial VK(t)

since they satisfy the same defining formula.

Lickorish and Millett remark in [15] that the Jones polynomial, VK(t), and the

Alexander polynomial, AK(t), are related to PK(I, m) by



76

Vie® =P Gt i(2 - t12)), and

Ag(t) =Py (G, i ("% — £12)), where i? = —1.
Since Jones used the presentation of the Artin braid group generated by the inverses of the
elementary n-braids given in Chapter 3, the polynomials calculated by the method of
Chapter 3 will be equivalent to the polynomials obtained via the above relation upon

substituting t for 1,

4.5 THE Q-POLYNOMIAL

The Q-polynomial invariant for unoriented links is a Laurent polynomial in one
variable and was discovered independently by Brandt, Lickorish and Millett [4] and by
Hof[10] as an extension of the ideas of the P-polynomial.
4.5.1 Definition. For any link K there exists a unique Laurent polynomial Q(K) in
one variable x called the Q-polynomial, such that equivalent links have the same
polynomial and
(1) Q(unknot) =1

ai if K, K, K, and K_ are any four links that are identical except near a point where

they are as in figure 4.5.1, then

QK,) + QK = x(QKy + QK_)).

X X X X

K K_ K, K

4 o0

Figure 4.5.1
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4.6 THE KAUFFMAN F-POLYNOMIAL F(K)

In 1986 Kauffman [13] discovered how to insert a second variable into the Q-
polynomial, producing a new two-variable polynomial invariant for oriented links called the
F-polynomial. The development of the F-polynomial is similar to that of the Jones
polynomial in section 4.4 and begins with the definition of a Laurent polynomial A(K) for
unoriented links in variables a and x. This polynomial is invariant under Reidemeister

moves Il and III. Giving A(K) an orientation and adjusting A(K) by a power of a will

result in a polynomial invariant for oriented links called the Kauffinan F-polynomial.

4.6.1 Definition. For a projection of an unoriented link K, define a Laurent
polynomial A(K) in two variables a and x by

(i) A(unknot) =1;

di) A(Kpo ) =aAK), A(Kpa )= a"!A(K) (where [K] denotes the portion of the
projection of the link K not involved in the crossing depicted), and A(K) does not
change under a Reidemeister move of type II or III;

(iii) AK D HAK) = x[A(KO) + A(Koo)] where K o Ko, KO and K__ are projections
of unoriented links that are exactly the same except near a point where they are as given in

Figure 4.5.1.
Note that 4.6.1 (ii) means that if a positive kink ¥ is removed, the A-polynomial is

multiplied by a (and similarly by a~l fora negative kink »)). Thus the A-polynomial is
not invariant under a Reidemeister move of type I. Note also that the ambiguity involved in

the labeling of the crossings in Figure 4.5.1 is irrelevant due to the symmetry of 4.6.1 (iii).

We now arrive at a true polynomial invariant of oriented links.
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4.6.2 Theorem. For any oriented link K, let
F(K) = a~ QKA (K).
This F(K), called the Kauffiman F-polynomial, is a well-defined invariant of oriented links

in R3,

4.6.3 Remarks. The F-polynomial is sometimes called 'semioriented' since although
K must be oriented to define F(K), changing the orieniation only changes F(K) by
multiplication by a power of a. Note that when a=1 the resultant polynomial is the Q-

polynomial.

4.7 CONCLUSION
We present here a summary of the individual characteristics of the polynomial

invariants presented in this chapter.

4.7.1 The Alexander Polynomial AK(t).

Although effective in distinguishing many knots, the Alexander polynomial invariant

cannot distinguish a knot from its mirror image. In addition, as mentioned at the end of

Chapter 3, it fails to detect knottedness in the complicated pretzel knot C 357 The

authors of [15] also note that of the 84 knots having less than 10 crossings, three pairs

have the same Alexander polynomial.

4.7.2 The Conway Polynomial Vi (t).

Discovered in 1970, the Conway polynomial, VK(t), is related to the Alexander

polynomial by
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1/2

Ve® =A™,

The Conway polynomial can distinguish many links with an even number of components

from their mirror images.

4.7.3 The Jones Polynomial Vi (t).

The discovery of the Jones polynomial, Vi (1), in 1985 brought new excitement to the

subject of knot theory. Most surprising were its connections with the fields of statistical
mechanics and quantum field theory. In addition, it proved to be better at distinguishing
knots than previous knot polynomials. For example, it is capable of distinguishing the

pretzel knot C_3 57 from the unknot. In fact, no knot has been found for which VK(t)

cannot detect knottedness.

4.7.4 The HOMFLY Polynomial P(K).

The HOMFLY Polynomial, P(K), is a generalization of the Jones polynomial which
specializes to both the Alexander and the Jones polynomials by the relations given at the
end of Section 4.4. The authors of [15] point out that P(K) is better than both of these in
detecting the difference between a knot and its mirror image, for P(K) can distinguish the
mirror image of the knot 11388 but both AK(t) and V(t) fail to do so. Although it
distinguishes the left and right trefoil knots, it cannot detect the reversal of orientation of a

knot [15].

4.7.5 The Kauffman F-Polynomial F(K).

The Kauffman F-Polynomial, F(K), can detect the difference between a knot and its

mirror image [14]. In addition, it is capable of distinguishing the knot 85 from the knot



10,59 (the HOMFLY polynomial cannot [15]). However, the F-polynomial cannot

distinguish 1 lyss from 11257 but both the Alexander and the P-polynomial can.

80
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