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Abstract

The LU-Factorization of Totally Positive
and Strictly Totally Positive Matrices

by Anna Cooper Strong

A real matrix is totally positive “TP” (strictly totally positive “STP”) if
all its minors are non-negative (strictly positive). While singular and non-
singular matrices in general may or may not have an LU-factorization, itis a
fact that any TP matrix does have an LU-factorization and L and U can be
chosen to be TP also. Analogously, an STP matrix has an LU-factorization so
that L and U are triangular STP, i.e., each non-trivial minor of L and U is
positive. The converses follow easily by using the classic Cauchy-Binet
Theorem. These results are due to C. W. Cryer. This thesis contains a
detailed exposition of Cryer’s work and the necessary background, including

proofs of all supporting identities and lemmas.
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I Introduction

LA OVERVIEW

Let A be an nxn matrix. Then A is said to admit an LU-
factorization if there exist lower triangular L and upper triangular U such
that A =LU. This concept can be generalized to an m x n matrix A, but only
square matrices A will be examined in this paper. Assume henceforth that
all matrices are nxn.

Not every matrix A has an LU-factorization. However, if row
exchanges are allowed, then a permuted matrix A’ can be formed from A, so
that A’ will admit an LU-factorization.

This type of factorization has long been of interest for many reasons.
An LU-factorization can be used to solve a linear system Ax=b, and this
method is quite efficient. If row exchanges are allowed, it can be applied to

any linear system. One needs approximately n’ /3 operations to find L and

U, then approximately n° /2 operations each to solve Ly =b by forward
substitution and Ux =y by back substitution, making a total of
approximately (n’/3)+n" operations. The term operation is used here to
indicate a multiplication or a division. This method is more efficient than

calculating A™, a process requiring about »* floating point operations, then



multiplying A™ by b to get x, requiring n* more operations for a total of
n® +n* operations [Lay: 32].

An LU-factorization of A also gives insight about the properties of A
and its determinants.

Since not every matrix has an LU-factorization, as background the
conditions required to ensure the existence of such a factorization for
singular and non-singular matrices in general will be examined and proved
in Section (II) of this thesis.

The purpose of this thesis is to study LU-factorizations of two
particular types of matrices called Totally Positive (TP) and Strictly Totally
Positive (STP) matrices. The material here is based primarily upon two
papers by C. W. Cryer, dated 1973 and 1976, where he proves that there
exists an LU-factorization for any STP or TP matrix, whether singular or
non-singular, and regardless of singularity or non-singularity of leading
principal minors. The main results of the two Cryer papers will be proven in
detail, along with examples and proofs of all supporting lemmas and
identities, in Sections (IIT) and (IV).

Although it will not be detailed here, the reader may be interested to
know that an important area of application of such matrices is in the theory
of kernel functions, k(x,y), which comes from mechanics. A grid

approximation of the integral of a kernel function over the unit square s,



such as the classic H e ":ajvdr , yields a totally positive matrix. This is

discussed in detail in [GK: 1-9].



LB NOTATION AND DEFINITIONS

n will denote the ordered set (1,2,...,n).

QY™: If 1< p <n then Q'*” will denote the set of strictly increasing

sequences a =(a,,...,a,) of p integers chosen from n.

a<f: If a,feQ” then a < will refer to the partial ordering

where a, < 8, for k ep. a<p, >, and @ > § are defined analogously.

a: Ifa € Q" then a e Q" ?" is defined to be the ordered

complement of ¢ in 2.

aa: For the above @ and «, a« is defined to be their concatenation,

N N
(@),....@,,Q1,...,&np) , Which is a permutation of .

d(a): If @ €Q‘*”, the discrepancy of « is defined as

p-i
da)=Y(a..-a,-1).

=1



M, will denote the set of » x n matrices with real entries.

Ala; Bl or Ala,,....a,;B,,....5,1: If A€M, is a matrix and & eQ*”,
B eQ"™ thenAla; 8] or Ala,,....a,;p,,....5,] will denote the submatrix of A
fopmeq py taking the enfries in rows o ang columns S of A. A “k” may be
used in the row oy colpmn pgsitiap to indicate that initial rows or columns,

respective}y, | thyoygh & are peing selected.

A(a; B) will denqte det Aja; f] when a,8 Q™.

n

If B=A[a;/f], then ﬁ[a,;ﬂ,] or Ala,,..., a:,---,a,;ﬂl,--»,/},’---vﬂr] will
denote the submatrix of | which js formed by delefing row i and column j
from B. ﬁ[@; B ,] or lml[a,.;Q] indjcate that pq rows ar cajumns, pespectively,

are omitted.

A principal submatrix of A is a £ x k submatrix A[e; ] where

a €Q*™ for some k£ <n. The notation A[c] is also used.



Aleading principal submatrix of A is a k xk submatrix A[k;£].

The notation A[k] is also used.

A(a) and A(k)will denote det A[a] and det A[£], respectively.

a 00
diag(a,b,c) will denote the matrix |0 4 0| where @, b, and c may be
0 0 ¢

scalars or matrices.

(a),....a,)y: If a,,...,a, is an indexed set chosen from n, where p<n
and a,,...,a, are not necessarily in increasing order, then (a,,...,a,)y is the

corresponding ordered sequence in Q‘#™.

A minor of A is the determinant of some square submatrix A[a; 8] of

A real matrix is totally positive (TP) if all its minors are non-

negative.



A real matrix is strictly totally positive (STP) if all its minors are

strictly positive.

(Note that all the entries of a TP matrix must be non-negative and all

the entries of an STP matrix must be positive.)

A triangular real matrix is triangular strictly totally positive

(ASTP) if all its non-trivial minors are strictly positive. Specifically, if L is

an nxn lower triangular matrix, then the non-trivial minors of L are those

L(a;f) for which a,8 €eQ“*"”, and f<a [Cry73: 84].

(The TP and STP terminology is that used by Cryer [CRY73], [CRY76]
and Karlin [KAR], and is that which has been adopted here. Readers should
be aware, however, that other authors such as Gantmacher and Krein [GK]
use the phrases “totally non-negative” and “totally positive” to describe the

same concepts as TP and STP, respectively.)

A unit triangular matrix is a triangular matrix whose diagonal

entries are all ones.



II BACKGROUND

ILA OVERVIEW

To better understand LU-factorizations in general, a well-known
algorithm for computing such factorizations, when they exist, and the
standard existence theorems for general matrices will be presented first.

These theorems state conditions sufficient to ensure the existence of an
LU-factorization of a singular matrix, and conditions both necessary and
sufficient for an LU-factorization to exist for a non-singular matrix. A
modification of the algorithm is used by Cryer in his proof of the existence of

LU-factorizations for TP matrices.



ILB ALGORITHM

In order to understand why an LU-factorization can fail to exist in
some cases, first the basic LU-factorization algorithm will be discussed [Lay:
130-131], [HJ: 158-163].

The strategy is to reduce a matrix A to an upper triangular form U by
a sequence of row-replacement operations, if possible, and to store
“multipliers” (to be described momentarily) in a unit lower triangular square
matrix L.

This algorithm may be applied to any rectangular m x n matrix A, and
if it completes it yields a square m x m L and rectangular m x n U such that
A = LU is true. However, only square matrices will be of interest here.

An example will be helpful.

I1.B.1 Example:

2 4 5 =2
-4 -5 -8 1 . .
Let A= > s 1 8 be a 4 x 4 matrix. Perform a Gaussian row-
-6 0 =3 1

reduction upon A to yield an upper triangular U as follows:

2 4 5 2 2 4 5 -2
-4 58 1| |0 3 2 3
125 1 8 77 |o 9 <4 10

6 0 3 1 0 12 12 -5



2 4 5 2 2 4 5 2
0 3 2 -3 0 3 2 3
~ A" = ~ Anr - = U.
0 02 1 0 02 1
0 0 4 7 0 00 5
a, /a, 0 0 0 1 0 00
a, la, a.,la., 0 0 -2 1 00
Define L= - " * % = ,s0 L
a, la, ajla, aj;la 0 1 -3 10
lay/a, a,lan ajl/aj; aglap -3 4 2 1

is unit lower triangular. The entries below the diagonal of L are often
referred to as “multipliers”. Then A =LU.

To better understand why, when the algorithm does complete, these
multipliers work to create an L such that A = LU, consider how A is
transformed into U. In a standard Gaussian row-reduction, one works on
the columns of A one at a time from left to right, working in each from the
element below the pivot to the bottom of the column to “clear” entries, that is
make them zero. If at some stage there is a zero in the next pivot position,
but non-zero entries below it, the algorithm cannot proceed.

Specifically, in the example above, six separate entries are cleared
using six separate elementary row operations. This can be thought of as the

equation E,E.E E.E.E A =U, where

W o o -
o O
o —

—

10



1 1 1
E 01 E 0 1 E 01 d
= r = ’ = 7an
10 31 o 01 cjoo0 1
0 0 01 0 4 01 00 -2 1
A'=E,E,EA,
A"=E,EA’ ,
A"lesA”>
It is easy to consolidate the E, which clear a single column:!
: -
2 1
E,E,E, =L, =
3™z 1 "I 0 l
300 1
= -
EE, =L, = 0 1
§=s T M2 T 0 3 1
0 -4 0 1]
l _
01 - yas
Es=L;= 00 I , yielding L.L,L A =U.
00 -2 1

Since all elementary row operation matrices are invertible, their
products are also, hence A =(L,L,L,)"U=LL;LJU.
But the inverse of such a product of row-replacement matrices which

clear a column is simply the same matrix with sign changes in the off-

I
! Products of E, 's which clear entries in different columns are not so simple, c.g.: [o
0

11



diagonal entries of that column,? so:

1 1 1
R L oloo L lo
Ltz ) 7L2= ’L3=

I 0 1 ' 0 3 1 0 01

-3 0 0 1 0 4 0 1 00 2 1

The product of L'L7L7 is extremely simple?: itis
1

-2 1 ..
L= L3 . Thus A = LU, and the i,j entry of L for i>jis

-3 4 2 1

exactly the multiplier used in the elementary row-replacement operation
which pivoted on the j.j entry of A® to clear the i,j entry of A,
={, """
Notice that this algorithm creates a unit (thus non-singular) lower

triangular L. An analogous algorithm using column-replacement operations

to reduce A to a lower triangular L, would create a unit, non-singular U,

such that A =L,U,. Cryer used a column-replacement strategy to prove that

a totally positive matrix always has an LU-factorization. See Section (III).
Also observe that, although the algorithm described above did

complete for the particular example shown, the algorithm would halt if the

zl'heinvuseofaunitloweruimgularmixuﬁthoﬂ'-diagomlanrisindiﬂ'eruueohmisnotsosﬁnple,e.g.:

— <1

1 ! !

al =l-a¢ I =}|=zfj-a 1 .
[0 & 1] ah -b 1 0 b1

3 The consolidation of unit lower trianguiar matrices with entries in colunms from right to left is not so straightforward, e.g.-

1 T I 1
[ I 8 a I a I al
|0 c IJjb O I acth ¢ 1 b el

—

12



entry in the next pivot position were zero and a row-exchange type operation

were needed in order to proceed.

13



I1.C LU-FACTORIZATION OF SINGULAR MATRICES

It will be shown in this section that if A is an nxn matrix of rank r,
and all leading principal sub-matrices of size one through r have non-zero
determinants, then A admits an LU-factorization. If A is singular, this
factorization is highly non-unique; in particular, either L or U may be
chosen to be non-singular.

The converse is not true: When A is singular of rank r and some
leading principal minor of size one through r is zero, there may or may not

exist an LU-factorization of A .

II.C.1 Example:

00 ..
The matrix I: : ,,:, hasrank 1, andA(1)=0. An LU-factorization is not

guaranteed by the result above, but in this case one does exist. In fact, for

0 0f1 2-a
any scalar g, A = =LU.
1 ajo 1

It is easy to see that even though LU-factorizations exist for this A , L

must be singular for each such factorization.

4



I1.C.2 Example:

011
The matrix A=|0 | || hasrank 2 and A(l)=A(2)=0, so an LU-
1 00

factorization is not guaranteed, and in fact does not exist.

Proof:

Suppose there were an LU-factorization. Then
011 a 0 Ollg A i ag ah
01 1|\=A=LU={b ¢ 00 j ki=|bg
1 00 d e f|0 0 /]| |dg

Since a,, =uag =0, either a or g must be zero. But a,, =ah=1 and

a,, =dg =1 require that neither a nor g be zero, a contradiction. Thus A has

no LU-factorization.

Q.E.D.

I1.C.3 Example:

2 4
The matrix A = [0 OJ has rank 1 and A(1) #0, so by the result quoted

above there exists an LU-factorization for A. Here are some of them:

2 4] [1 0f2 4
A= = , with L chosen to be non-singular
0 0] |0 1}O OJ
10Tz 4] ith Uchosen to be singular
= , ose non-
o oJo 3™
2 o1 2]
= , with both L and U singular
|0 00 O]

15



1 02 4
= , for any a
{O a][o 0}
2 0f1 2
= , for any a
{o o}[o a}
Notice that although LU-factorizations are guaranteed where one of

L or U may be chosen to be non-singular, it is possible in this example to find

A = LU where neither L nor U is non-singular.

I11.C.4 Theorem: When A is singular of rank r and A(s) #0 for s=1,...,r,

then A has an LU-factorization. Furthermore, either Lor U may be

chosen to be non-singular.

Proof:

This proof is an adaptation of one used in [HJ: 160-161].

Suppose A is an n xn singular matrix, A has rank r, and A(s) #0 for
s=1,...,r.

A constructive proof will be presented to show that there exist a non-
singular unit lower triangular L and a singular upper triangular U such
that A =LU.

All sz

Let A,, = A[r] and partition A as A =l: :' Suppose one has

21 A22
an LU-factorization of A, A,, =L, U, where L, is unit lower triangular

and U,, upper triangular. Then L,, and U, are both invertible since A, is.

16



L 0 U, U
Now one needs to construct L =|_ " and U=| " "|sothatL, is

unit lower triangular, U,, is upper triangular, and A = LU is true, that is:
A, A L 0 U, U
,: u ‘2} =[ H j[ . u:l, which means the following must be true:

A, A, L, L,j o0 U,
A,=L,U0,
A,=L,U,
A, =L,U,

A,=L,U,+L,U,.

From these equations it is clear that U,, and L,, are now determined,
since U, =L;}A,, and L,, =A,,U;]. As will be seen below, L, and U,, can
be chosen in many different ways.

Here is a way to construct L, and U,,.

First define /, =1fori=1,..,r,/, =0fori<j, andu; =0 for i > j. Using
the matrix equation A, = L, U,, and the hypothesis that 0 = A(s) = L(s)U(s)
for s=1,...,r, entries /, and u, will be calculated one-by-one in the rx r leading
principal L[r] and U[r] blocks.

Now [, =1 has been set. Then by the definition of matrix multiplication,

a; :lekulj =l,u; since [, =0 for k>1
k=t

=u,, since [, =1.
Thus the first row of U[r] equals the first row of A[r].

Also by the definition of matrix multiplication,

17



r
a, =ZI,.,,u“ =l,u,, , since u,, =0 for k>1.
k=1

Since u,, =a,, = A(1)#0, this gives [, =a, /u, .
Thus the first column of L[r] has been determined.

Next consider row 2 of Ufr]:

r
a, = b, =hu, +L,u, because L, =0 when k>2
k=1

=Lu, +u,, since b, =1.

Thus u., =a,, - L, forj=2,.,r and row 2 of U[r] has been found.

2
Also, a,, = il,.,‘u,‘z =lu, +1l,u, since u,, =0 for k>2.
k=1

This gives /, = (a,, - /,u,,)/ u.,, where u,, =0 since block multiplication

of the leading 2 x 2 blocks of L and U yields L[2]U[2]= A[2] and the

hypothesis 0 = A(2) implies there can be no diagonal zero entry in

U[2].

Thus column 2 of L{r] has been determined.

Continue solving for the next row of U[r], then the next column of L[r],
each time using one equation in one unknown. Each equation will be
solvable since each u_ # 0, because the non-zero determinant of A[s] requires
a non-zero determinant in U[s], thus requiring non-zero diagonal entries u_ .

This completes the factorization of submatrix Af{r] into L{rJU[~]
yielding A, =L ,U,;; A,;,L,;,U,, €M,

If r=n, the construction of L. and U is complete. Suppose r<n and let

L, =L[r],U,, =U[r], and A,, = A[r]. Since A, is non-singular, by hypothesis,

18



and A, =L, U,,, then both L, and U,, must be non-singular as well. As noted
earlier, one must define L,, =A, U;; and U, =L;}A,,. To see how to define
L., and U,,, observe the following.

Since rank A equals the dimension of the row space of A, and this
equals rank A, each row of [A,, A,] is a unique linear combination of the

rowsin [A,, A,, ]. Thatis, for some unique (n-r)x r matrix B
A, =BA,andA, =BA,. So
Ap=L,U,+L,U,
=A,ULLLA, + LUy,
=A,(L,U,)"'A,+LyU,
= (BAu)A;xlAtz + Lz:Uzz
=BA,+L,U,,
=A,+LyU,.
Therefore one can now choose L,, and U,, to be any matrices of shape
(n—r) x(n-r) whose product is 0. For example, to obtain a unit lower

triangular L, one could let L,, =I___; then U,, must be 0, and one now has
L, 0

and a singular upper
AZIU;: In-r:l gul pp

a non-singular unit lower triangular L = |:

U 11 L-IllA 12

0 ]suchthatA=LU.

triangular U =[

Q-E.D.

19



To obtain a non-singular unit upper triangular U, either apply the
above process to A", or carry out an analogous proof by first defining , =1
for i=1,...,r, then alternately solving for columns of L[r] then rows of U[r],

and finally setting U,, =1, and L, =0.

20



II.D LU-FACTORIZATION OF NON-SINGULAR MATRICES

It follows at once from (II.C.4) that if an » < #» matrix A is non-
singular, thus having rank n, and A(s) =0 for s=1,...,n, then A admits an
LU-factorization.

It will be shown in this section that the converse is true as well for a
non-singular A : if A has an LU-factorization then all leading principal
submatrices of A have non-zero determinants. Furthermore, L and U are
“essentially” unique. Specifically, this means that A = LU can be factored
further to yield A=L'DU’, where L’ and U’ are unit lower and upper
triangular matrices, respectively, D is a diagonal matrix, and all are unique

to A.

IL.D.1 Example:

0 1
The non-singular matrix A = [

) 0]hasA(1)=0,andhasnoLU—

factorization.

Proof:
l 0 ” 0 1
Suppose there were one. Then A =LU =| "' UL X
Ly I, 0 u, 1 0
Then /,,u,, =0 implies either /, or u,, is zero, which would make either

L or U singular, but A is non-singular. Thus there does not exist an LU-

factorization for A.

21



Q.E.D.

I1.D.2 Example:

1 1
2 1{has A(2) =0 and has no LU-
I 1

-
(28]

&

The non-singular matrix A =

——
—

factorization.

Proof:
Suppose there were one. Let A,, = A[2], L,, =L[2], U,, = U[2] and

A, A L o fu, U,] e .
- R S ' "2 |-LU. By block multiplication
AZI AZZ LZI Ln 0 Un

A, =L,U,, thus O=detA , =detL,detU, . Soeither L, or U,, must have
a diagonal entry of zero since one of these must have a zero determinant.
But then L or U must have determinant 0, implying that A is singular, a

contradiction. Thus, there does not exist an LU-factorization for A.

Q.E.D.

I1.D.3 Example:

Let A={4 7 2|,s0 A has A(1),A(2),A(3)#0. Then A has an LU-

3 6 2
factorization.
1 0 o1 1 2
Infact A={4 1 0|0 3 -6
3 1 1§06 0 2



1 0 of1 1 2]
={4 3 00 | =2
3 3 2]0 0 1]
1 0 o1 1 2]
={4 3 0f0 1 -2|
3 3 1J0 0 2

The first LU-factorization is the one which would be obtained using
the algorithm presented in Section (IL.B). An analogous algorithm using
column operations to reduce A to a lower triangular L would produce the
second LU-factorization. The third factorization is one of an infinite number
of further possibilities for LU-factorization.

Observe that each of the LU-factorizations above could be further
1 0 Of1 O Oft 1 2

factored into A=L'DU’'=(4 1 0|0 3 0|0 1 -2}
3 1 1|0 0 210 0O 1

In fact, in all LU-factorizations of this A, the non-unit diagonal
entries in L and U can be factored out into diagonal matrices on the right
and left, respectively, leaving L’ and U’. The product of the diagonal

matrices is D, and this is why the factorization A =L'DU’ is unique.

I.D4 Theorem: Suppose A is non-singular of order nxn. Then

A(s) 20 for s=1,...,n if and only if A has an LU-factorization.

Furthermore, when A has an LU-factorization,



(1) L and U must both be non-singular, and
(1) there exist L’,D,U’ such that L'DU’ is a unique factorization of
A , where L’ and U’ are unit lower and upper triangular matrices,

respectively, and D is a non-singular diagonal matrix with D(s) = A(s)

for s=1,...,n.

Proof:

Suppose A is a non-singular » x » matrix with A(s) =0 for s=1,...,n. It
follows immediately from results of Section (II.C) that A has an LU-
factorization, showing sufficiency of the hypothesis.

Now suppose a non-singular n xn matrix A admits an LU-
factorization A = LU. Then because A is non-singular, its determinant is
non-zero. Hence the determinants consisting of the products of the diagonal

entries of L and U are non-zero. Partition A, L, and U so that

A, A L 0 |U, U
A=|n 2 _|*n u 2 1=LU, where A,,L,,and U,, are
AZI An L21 Ln 0 Un

square s x s blocks. Then A,, =L,U,,, and
A(s)= det A, = det L det U, = L(s)U(s) #0 for s=l,...,n. This shows necessity

of the hypothesis and proves @i).

To show (ii), suppose A is non-singular and A =LU is an LU-

factorization of A. Let L'=[L,//, L,/L, ... L, /l,], where the L,are

the columns of L. Let D, = diag(/,, L, ... /,,) and D, = diag(u,, 4., ... #,,) .



Finally, let U'---[Ul lu, U,/u, ... U, /u,,,,]T where the U, are the rows of
U. Then L=L'D, and U=D,U’. Allentriesin L’ and U’ are well-defined
because the non-singularity of L and U guarantees that column and row
divisors /, and u, are non-zero. Let D=D,D,. Then
A=LU=L'D,D,U’=L'DU’. Partition these matrices so that A,,, L], D,,,
and U;, are the leading principal s x s blocks for s=1,...,n. Then

A, =L;D,,U;], , hence detA  =det(L{ D, U; ). Since L' and U’ are unit
triangular matrices, both det L; and det U;, equal one, so detA,, =detD,,, or
A(s) =D(s) for s=1,...n.

To see that L’,D, and U’ are unique, suppose there were two such
L'DU’ factorizations for A: A =L!D,U;, and A =L;D,U,. Let D,U; =0,
and D,U; =U,, so the factorizations may be restated A =L!U, and A =L;U,
where L and L; are unit lower triangular and U, and U, are upper
triangular. Then L{U, =L;U,, hence L;'L; =U,U;'.

Because both inverses of and products of unit lower triangular
matrices remain unit lower triangular, and the product of upper triangular

matrices is upper triangular, the above equation in matrix form looks like
I O * *

this: "-. |. Therefore L;'L; =U,U;' =1, ie, L, =L} and
* I 0 *

U, = U,, so the factorization A =L'DU’is unique.

Q-E.D.



11 LU-Factorization of Totally Positive Matrices

IILA OVERVIEW

It will be shown in Section (III.H) below that for a square real matrix
A, A is totally positive (TP) if and only if A has an LU-factorization such
that L and U are TP (main theorem). Several substantial theorems about
determinants will be used in the proof of this result and these are described
and proven in Sections (III.B) through (IL.F).

A lemma by Cryer, also used in the proof of the main theorem, is
presented in Section (III.G). The main theorem was first presented in a
paper by C. W. Cryer, “Some Properties of Totally Positive Matrices” [Cry76].
Among other things, the theorem guarantees that there exists an LU-
factorization for every TP matrix, singular or non-singular, whether or not its
leading principal minors are non-zero.

His constructive proof of the theorem provides an algorithm for
computing TP matrices L and U that give an LU-factorization of a TP
matrix A; and if A is not TP, the algorithm will detect that at some point
and halt. Thus the algorithm provides an efficient means for testing the total
positivity of A .

Both of these features of the algorithm are significant. The well-

known algorithm for finding L. and U presented in Section (II.B) is
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guaranteed to work only when all leading principal minors of size one
through rank A are non-zero. Although some singular matrices have LU-
factorizations when the condition on leading principal minors is not satisfied,
there is no general algorithm guaranteed to find such a factorization in such
cases. Cryer has provided such an algorithm for singular TP matrices.

To determine if a matrix is TP, Cryer’s algorithm is considerably more
efficient than testing all minors. It is also more efficient than earlier special
tests which allow some proper subset of all the minors of a matrix to be
examined for positivity in order to determine the total positivity of that
matrix. Thus this algorithm vastly reduces the amount of work required to

test whether a matrix is TP.

27



I11.B ZERO LEMMA

Recall from Section (I.B) the definition of a TP matrix: “A real matrix

is totally positive (TP) if all its minors are non-negative.”

I111.B.1 Examples:

The following are TP matrices:

I11.B.2 Examples:

The following matrices are not TP:

11 1t i r1frio
o 170 17[1 1
, , (1 0 1,1 0 1,{0 0 1,0 1 1L|1 1 1
1 off1 1ff1 O
11 1{]joo 1|1 o 1}{1t 1 1{{0 11

The last example is particularly interesting: it has a negative

determinant, but all its proper minors are non-negative.



III.B.3 Zero Lemma. Let A = [a,.j] be an nxn TP matrix with a, =0
for some 1<i,j<n. Then at least one of the following is true:
(i) row iiszero
(i1) column j is zero
i) A[lL...,i7,...,n] is zero

av) Al,...,n/1,...J] is zero

J J J J
0 0
i |00 0 i o | i 00 |00
0 00
® (ii) (i) (iv)

Proof:

Suppose row i is not zero and column j is not zero. Since a, =0, only

the following two cases are possible.

Case 1: a, >0 for some k>i.

Consider the following diagrams:

a, a, 0 a,
0 a, a 0
(a) ) ©



0
Then for any m>j (a) det[a

J=O—a,.mab >0 and a, >0,s0 a, =0.
. a i
-] m

So row ¢ is zero from j to n. But since not all of row i is zero, there exists

. . a a . .
a, >0 for some I<j. Then for any p<t (b) det[ g 5’ ] =0-a,a, 20 implies
a,

that a, =0. Thus column j is zero from 1 to ;. Then for p<i and m>j,

0 a
(©) det[a a” "'} =0-a,a, >0 implies that a,, =0 because a, >0. Thus

-] km

00

All,...,..7,....,n] iszero: A= 0 0}

Case 2: a, >0 for some k<:.

Consider the following diagrams:

a,, a, a,, a,
am: O O ail
aPJ aP’ a pm 0
(a) () (c)

An argument analogous to Case 1 can be made to conclude that

Ali,....ml, ..., jliszero: A={0 0
00

Since Cases 1 and 2 are mutually exclusive and exhaustive, the proof

is complete.

Q.E.D.



Observe that, indeed, one of the four structures outlined in the Zero
Lemma is present in each of the examples of TP matrices in (III.B.1). As
seen in the proof, one of these structures is required to ensure that no 2x2
submatrix has a negative determinant. However, the existence of one of
these structures is not sufficient to guarantee total positivity in a square
matrix of order 3 or larger. The last example in (II1.B.2) exhibits this fact.

A Zero Lemma also applies to an mxn TP matrix, m#n, and such a
variation will be used in Section (III.G). The proof is analogous to that

above.
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1.C CAUCHY-BINET THEOREM

Let C be an # xn matrix, and suppose C= AB where A is nx p and
B is pxm. Suppose 1<r < min{n,p,m}. The Cauchy-Binet Theorem gives a
formula for calculating the determinant of any r x r submatrix ([a; 5] where
a Q"™ and B Q™. This will prove especially useful in the sequel.

The Cauchy-Binet Theorem states that such a determinant C(«;f) is
equal to the sum of the products of all possible matched pairs of » x » minors
taken from rows a of A and columns S of B, where “matched” means the
columns of the minor of A match the rows of the minor of B. That is, the
formula states:

Cla;h) = D A(a;7)B(y;h)

IEQ"'”

When a and B are sets of consecutive numbers, the following picture

illustrates the r xr submatrix (Qa; f], and the sources of » xr minors from

A and B used in the Cauchy-Binet sum:

F e o

) e o
o @ =!® e e o o e o
e o ¢ o o ¢ o e o

o

- ® o -
C = A B
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A specific example illustrating the formula will be described after some

background on determinants is presented.

III1.C.1 Definitions:

If A isannxn matrix, then the term elementary product refers to

any product of 2 entries of A, no two of which are from the same row or

column [AR: 68].

Let o =(o5,,...,0,) be a permutation of n. An inversion in o is

defined to be a pair (o,,0,) where i<j but o, >o,. Let s(o) be the total

number of distinct inversions in . Then the sign of o, sgn o is defined to

be (+1) if s(o) is even and (-1) if (o) is odd [AK: 118-125].

Remark. Some authors define sgn o differently, as follows.

A transposition is defined to be a pair-wise interchange of elements
in an ordered set. When o is given, count the minimum number of
transpositions necessary to produce o from n and define sgn o to be (+1) if

that number is even, and (-1) if that number is odd [FRA: 172], [HJ: 8].

It is true that these two definitions of sgn o agree with one another.
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I1.C.2 Example:

Let 0=(6,5,1,3,2,4) be a permutation of 6. The inversionsin o are
(6,5), (6,1), (6,3), (6,2), (6,4), (6,1), (5,3), (56,2), (5,4), and (3,2). Their number,
s(0)=10, so sgn o =+1.

Now sgn o will be computed using transpositions. Using cycle
notation, the permutation of (1,2,3,4,5,6) to (6,5,1,3,2,4) is (1643)(25). This
can be re-expressed as a product of transpositions (13)(14)(16)(25)

[FRA: 105], whose number is even so sgn o=+1.

Let A eM_. In elementary linear algebra texts, det A is usually

defined in one of the following ways.:

I11.C.3 Definition of det A using signed elementary products:

detA = ) (sgn a)ll[awl
oS, 1=l

I11.C.4 Definition of det A using the Laplace Expansion about row i:

detA =Y (-1)"’a,det A, where A, = A[i; ]

=1

An analogous expansion can be performed about column ;.



There is also an axiomatic definition of the determinant function; it
can be proved that the axioms are satisfied by at most one function, and the
two definitions above both yield functions which do satisfy the axioms, hence
they are equivalent [APOS: 71-79].

Before proving the Cauchy-Binet Theorem, here is an example and

some preliminary information that will be helpful in the proof.

II1.C.5 Example:

Consider the matrices A,B,C eM,, with

2 I 0 1 0 1§f1 -1 O
C=|2 -2 6{=(2 3 0)J0 0 2|=AB. Let a=(12) and #=(2,3). Then
1 2 2 01 1§41 2 0
= %= d the determinant of ;8] will b
da; fl= 5 6 2 3 0 an e determinant o da; f] e

computed in two ways:

1 0
Directly: C(a;f) =C(1,2:2,3) =l . 6l=6

Using Cauchy-Binet:
Cla;f) = 2 Alxy)B(r;h)
rchzJp
=A(1.2:12)B(1,2;2,3) + A(1,2,1,3)B(1,3;2,3) + A(1,2:2,3)B(2,3;2,3)

oo Ak 2 Ak

2
= (-2 +¢2)-0 +3))

35



-6 +0 + 12

= 6
The proof given below for the Cauchy-Binet Theorem is an adaptation
of one presented in Broida and Williamson [BW: 208-213].

The following notation and observations will be used in the proof.

I1.C.6 Notation:

Let < p<n , and recall from (I.B) that n=(1,...,n) and p=(i,...,p). A
mabp, or function a:p—n will usually be denoted by a={a,,....a,}, where
a, =a().

MAP(p,n) is the set of all mappings from p to n.

INC(p,n) is the set of all strictly increasing functions from p to n.

INJ(p,n) is the set of all one-to-one functions in MAP(p,n), i.e., all

permutations of elements of INC(p,n).
PER(p) = INJ(p,p). This set is more commonly called S ,.

Note that INC(p,n) is the same set that is called Q*™ elsewhere in
this paper, but for purposes of clarity in this proof only, the Broida-
Williamson INC(p,n) notation will be used.

The orders of these sets are:

OMAP@,n)) =n*,
O@NC(p,n)) = @ :



O(PER(p)) =p!,
ONJ(p,n)) = nl/(n-p)! = OINC(p,n))O(PER({®))-

IH1.C.7 Observation:

For any integers p,n>1 and scalars x,, I<i<pandl<j<n,

[IC5= T Io)-

=1 =i yeMAP(p,n) 1=1

Proof:

[1E5) =[Tr+-x)

=l =l
= () X, )X+ Xy, oo (X, X ,)

= Z Xy Xay "X,
yEMAP( p.n)

Z (l—[ x‘ﬁ ) i

yeMAP(p.n) =1

HI1.C.8 Observation:

Ifl<psn.and AeM,, then Y A(r;p)= Y A:p)

yeMAP( p.n) yeiNK p.n)

Proof:
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If y={y,.....y ,} eMAP(p,n) is not an injection, then the submatrix
A[y; p] has a repeated row, so A(y;p) =det A[y;p]=0. Thus
YAFp = D2 A@:p)-

reMAP( p.n) reNI(p.n)

Q.E.D.
II1.C.9 Observation:

Let #— Q, be a function from INdJ(p,n) to the real numbers, and when
o €PER(p) and y €INC(p,n), let yo denote their composition. Then

2= 2 32Q,.

BelNI(p.n) 7 €INC( p.n) c€PER( p)

Proof:
Let 8 €INJ(p,n). Then 8= yo for some y eINC(p,n) and o ePER(p):

Let o permute p so that fo is increasing, and define y = po~'. Then
yo = f. Thus the map INC(p,n) x PER(p) -» INJ(p,n) defined by (y,0) = yo

is onto. The domain and range have the same order, hence this map is 1-1.
That is, each A equals yo for unique y and o.
Q.ED.

I11.C.10 Observation:

Let Isp<n, o €PER(p), y eINC(p.n), and A €M, ; then

A(yo; p) =(sgn 0)A(7;p) -

38



Proof:

The conclusion follows when one recalls that A[yo; p] can be obtained
from A[y;p] by a sequence of row-exchange operations, each of which alters
the determinant by a factor of (-1), until the rows of A[y; p] have been
rearranged to get A[yo; p]. Thus A(yo;p) =(-1)"A(y; p) where r is the
number of transpositions (pair-wise interchanges) in the permutation ¢
({I11.C.1), and (-1)" =sgno.

QED.

II1.C.11 Theorem: Cauchy-Binet Theorem. LetA M, , BeM, ,
C=AB, |<r<min{p,n,m}, a e INC(r, p), and f§ € NC(r,m); then

Cla;pf= Y Alxr)B(;p).

y€INC(r.n)

Proof:

First, consider a special case. Suppose A =[a,]eM,, and
B=[b,]1eM,,, p<n, sothat C= AB=[c;]isinM,. The Cauchy-Binet

Formula will be shown to hold for det C:
P
det C= Y (sgno)[ [ . » by the definition of det C (II1.C.3)
OES,

-1

).d n
= Y (sen o)[ [ X a,b,,, , by the definition of matrix multiplication,

aes, =l k=i
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=Y6mo) T [la,b,, by@CD

aé, yEMAP(p.n) i=1

= 2 Ymo)]a, ]t
YEMAP(p.n)oeS, =1

= Z ((I_Ia‘h )( Z (Sgn a)l_[brm
yeMAP(p.n) 1=l i=l

(Ha ,. J(B(¥; p)) , by the definition of det Bfy;p] (IIL.C.3)

reMAP( p.ny =l

) (Ha.-,‘ XB(7;p)) , by (IL.C.8),

yeNI(p.n) =1

> B(; p)I'Ia,,

yeNX p.n)

3 Y B p)['[a,(,,, , by (I1.C.9), letting Q, = B(y; p)[_[am

ryeINC( p.n) €S,

> B(r;p) Y. (sgn cr)l_[a,.(m , by AI1.C.10),

r€INC( p,n) ges,

> B(7; p)A(p;7), by the definition of det A[p;y] (IIL.C.3).

y€INC(p.n)

Thus, detC= > A(p;7)B(r;p).

reINC( p.n}

"

Nowlet AecM,,,BecM,  ,C=ABecM,  , I1<r<min{p,nmi,

pn>
a €eINC(r,p), and B €INC(r,m).

Since (a; ] = Ala;n]B[r; f], by the identity proved above
Clap)= D A@r)B(:f).

yeINC(r.n)

Q.E.D.
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IIL.D EXPANSION OF THE DETERMINANT ACROSS ROWS 1 TO

K.

The next theorem is less well-known than the two definitions for
det A . I1.C.3) and (IT1.C.4), given in the previous section. But this is also

valid, and will be needed in proofs of several subsequent theorems.

Recall from (I.B) that, when @ e Q*™, a denotes the increasing
sequence in Q"*” which is complementary to a, and aa is their

concatenation, (a,,....&, ,a1,...,an-¢), Which isin § .

II1.D.1 Theorem: Expansion of the Determinant across Rows 1 to k.

Let A be an # «n matrix, and 1<k <n. Then

detA= D sgnia é)A(g;a)A(k +1,....m, &),

athl.m

Proof:
Y sgn(a QA Q)AK + ... ma)

REQ("'”

T sgnaa)Tsen Al o, ap N 2 SER rl’[a . ), by AIL.C.3)

aeQq®” Bes, 1=l 752 e

= 3 ¥ 3 (sn(aa))sgn S)sgn 7)(H a,, H

aeQt® fes,reS, =i

(le+t )-Rn

™

A A
Foreach ¢ eQ“”, feS,,andy €S, ,,let o=(ay,...a,.ax.,...ar,,) -

When k& is fixed, there is a one-to-one correspondence between each o in S,
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and each possible concatenation a a formed with all selections of such g and

7 . Thus the triple sum in (*) can be consolidated to give Z sgn ana,.m , and

aE€S, =1

this equals det A by (II1.C.3).
QE.D.

In words, the formula states that det A is equivalent to the sum of the
signed products of all possible 4 x £ minors A(%;a) multiplied by the
(n— k) x (n— k) minors of their complements A(k + 1,...,n;2z).

This formula extends the idea of the Laplace expansion about a single

row. Indeed, observe that if 2=1, then expansion of the determinant across

rows 1 to 2 becomes
detA= Y sgn(z@)A(L@)A,....na)

BGQ(RJ)

=Y (-1Y"a,AQ2.....m]L,.... j,...,n), where j-1is the number of
1

=

transpositions or inversions (the numbers match when k=1)in a«.

This equals ) (-1)"*/a,,det A, , which is the Laplace expansion of det A

=t

about row 1.

2



1 20 3
4 50 . .
Let A = - e Using a standard Laplace expansion about
[7 8 0 9

column 3 it can be seen that det A =0. To calculate det A by expansion
across rows 1 to 2, recall that Q** ={(1,2),(1,3),(1,4),(2,3),(2,4).(3,4)}, and if

a eQ¥Y, aa €S,. By Theorem (II1.D.1):
detA = Y sgn(a@)A(2a)A(342)

QEQm)
ay  Q,|(d; Ay ay, Qs i
=sgn(1,2,3,4) +sgn(1,3,2,4)
2 An|d@s Ay h Au|dsn dy
Ay Q|3 Ai3 a,, Qglds; ay
+sgn(1,4,2,3) ala. 4 + 58“(13,1,4)61 ala 4
2 Aagf@sn Ay m Axn|@y Ay
A, Aslds; Ay a3 Qu|d; 4ad;
+sgn(2,4,1,3) +sgn(3,4,1,2)
A Au|dy Ay Ay Ayujdy Ay

= (-3)(9) — (0)(8) + (-6)(-8) +(0)(25) — (-3)(-7) + (0)(16)
=0.
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IILE GANTMACHER-KREIN IDENTITY

Gantmacher and Krein discovered a determinantal identity [GK: 345] which
is a major tool for their and Karlin’s theorems about TP and STP matrices.

Cryer also makes essential use of this identity. The identity, which is for

certain minors in an » <« (n+1) array will be stated, then an example given

before its proof..
IILLE.1 Theorem: Gantmacher-Krein Identity. Let CeM,,.,, n22,
and fix k,iso 2<k<n and 1<i<n. Then

Cli:1,k)C(D;n + 1)~ C(i:Ln+ 1) C(@: k) + Cli- k,n + 1) C(S:1) = 0.

Cryer remarks that sometimes in the literature the middle term is

moved to the other side of the equation and the identity is written as

dd, =dd, +dd, [CRYT6: 2].

II1.E.2 Example:

Let C=|c, ¢, ¢n ¢, |€M,, andleti=2,k=3.

€3 €3 G Cy



The Gantmacher-Krein Identity says:

C(2:13)C(@:4) - C(2;1.4) C(D:3) + C(2;3,4) C(2;]) must equal zero, or

C (4 C
il 12 13
C» €y

Cn Caf =

on the left in (*) is

1 2 3

5 6 -
9 0 1

2 4
'oo

23’

C, C
n G
Cs
c Cn Cn
33

5
9

S O
o0
+

[« )
o O
[oan B T VS |
2]

=(0)(—40) — (2)(—T72) + (—18)(8)

= 0.

Proof of Theorem (II1.E.1):

X, X
1 12
Construct X =

_xzx X,

r ~
| C dg;L,k,n+1
| a

Kelx7 0

Ci =t G Oy

cnl - cnk - cnn
% = Sy vt O

N N al

Cit Cik Cin

__cnl oo cnk bt cmr
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Because of repeated rows, the first n+1 columns of X have rank<n,

hence det X =0. Expand det X across rows 1 to n as defined in (II1.D.1).
Then 0= Z sgn(a gz)X(r_z; a)X(n+1,...2n—-1; &) . Notice that if X[#;a] does not

RSQM-I)
include all n-2 columns of X,,, the submatrix formed with the
complementary columns a will have a zero column, and thus a zero

determinant, and so that term will drop out of the expansion. If the
remaining two columns of X[n;a] are not chosen from {1,k,n+1} then the
submatrix X[n;a] will have a repeated column, and thus a zero determinant,
so that term will drop out of the expansion. Therefore there are only three
possibly non-zero terms in the sum, those for &' = {l,k,n+2,...2n-1},
a*={ln+1n+2,..2n-1},and &’ = {k,n+1Ln+2,..2n-1}.

Thus 0 = sgn(a’ c;‘ X(n;a" )X(n+1,...2n - I;a;‘)

+sgn(a’ aAz)X(g;az)X(rH- I....2n- l;o;Z)
rsgn(@ &)X (ma)X(n + 1, 2n~La).

To determine the signs, count the number of inversions. See (II1.C.1):
sgn(a’ o;[) =sgn(Lk,n+2,...2n— 1,2,...,;:,,..,n+ [) = (-D*EDEDD = ()2 = (-])*
sga(@’ a*) = sg(ln+ Ln+2,...2n = 12,...1) = (=)D = (1)
sen(@ @) = sgalk,n+ L+ 2,...2n — UL, kyeym) = (()ED = (1) =y

Now, observing that the submatrices of X which appear in the

equation above are also submatrices of C, and letting / refer to the

complement of ¢ in n, the identity can be restated:
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0 = (-I)kC(Q;lvkrzv>->72’---7")C(l;;2""7£7-""l + l)

H=D)"'CmLn+12,... k.....mC{i2.....n)
H=D)™ Cmk,n+12,... k... .n)CUL, . K.....)

The columus of the first minor in each product may be reordered to
become strictly increasing by a series of column exchange operations whose

number s is the same as the number of transpositions. The resulting minor

is the same as the original minor multiplied by (-1)*. Thus:
0= (-1 (=) 2 Clmn)C(i2,... k....n+1)
H=1)" (=1 CEL, ... k... n + DC( 2, ... 1)
H=1)E (=)D g2 g+ )CGL,. . k....n)
= é(@;n +1) é(i;l,k) - é(@;k) é(i;l,n +1)+ é(@;l) é(i; k.n+1)

= C(i:1, k) C(D;n +1) - Ci:1,n + 1) C(D; k) + Cl: k,n + 1) C(S;1).

Q.E.D.

II1.E.3 Corollary: Alternate version of the Gantmacher-Krein Identity.

Let CeM,,,,,n22,andfixk,iso 2<k<n and 1<i<n. Then

C(1, k:1)C(n + 1: D) ~ C(L, n + 1.i) C(k: D) + Ck,n + L) C(L. D) = 0.

Proof:

47



Construct X = [A c ae.i and if columns and rows are

ClLkn+L@] 0

interchanged, the proof follows in a form analogous to that of (IIL.E.2).
Q.E.D.
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IILF SYLVESTER’S IDENTITY

In this section, Sylvester’s Identity will be presented and proven in two
forms: “special,” and “general.” The general form of this identity is used in

the proof of Cryer’'s Lemma in the next section, III.G.

HLF.1 Theorem: Sylvester’s Identity, Special Form. Let A be an nxn

matrix and fix  so 1 < £ <n. Define CeM,__, thus: for each i,/ such

that 1<i, j<n—k, c, = AQ,...kk+il,.. kk+j). Then

det C= A(k)"*"'det A (where, by convention, 0° denotes 1, if A(n-1)

happens to be zero).

Each c, is called a “bordered minor” since it is the determinant of a

submatrix of A which is a leading principal & x k¥ submatrix bordered by row

k+i and column k+j.

Proof:
A, A
Partition A :[ " ‘2] so that A, eM,, hence A(k)=detA,.

21 22

Case 1: A(k)=0.

Since A(k) =0, the k rows of A,, span R*, so multiples of rows 1 to &

in A can be added to each of the last n-k& rows to obtain a zero block in the

(2,1) block position. Let A? be the new matrix, where q indicates the
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number of row-replacement operations required to obtain the zero block.
Such replacement-type elementary row operations do not change the

determinant, so det A'” =detA .

. A A . .

So A~ AW =[ 0" A‘l:’} where A =[a}?,.,]. Notice that
22

A, Aplkk+j]

c, =AQ,... .k k+il,. kk+))= det[ }: Aba,., - Thus

(q)
0 ak+l.k+]
(9) (q)
Akt =" Neotn
C=AK)| : P |=AMAY, hence
(q) (¢)
Aok 7 Ay

det C=det[ARAL]=AK))" " det AY, since A, eM, _,. (®)

Also,
det A =det A‘” = A(k)det A'Y by expansion across rows 1 to 2 (II1.D.1). So
det A'? =det A/ A(k), and substituting into (*) yields
detC=A(k)"*detA/A(k) = A(k)"*'detA.
Case 2: A(k)=0,hencerank A, <k-1.
Case 2.a: k=n-1.

In thiscase CeM,_, =M,,s0 C=[c, ]anddetC=c;, =det A. Using the

convention that 0° =1, det C = A(k)"*'det A is true.

Case 2.b: k<n-1.

Here C has size at least 2 x2.

Case 2.b.i: Rank A, <£-1.



Because bordering A, with one row and one column can add at most
two to the rank, then rank A[l,....k k+il,... k.k+ j]< k +1. Therefore,
¢; =A(L....kk+il, . kk+j)=0foralliandj. Thus C=0,, and detC=0.
Also A(K)™*" =0 since A(k)=0 and n—k-121. Thus
detC= A(k)™'det A is true.
Case 2.b.ii: Rank A, =k -1.
Asin Case 2.bi, A(k)"*"' = 0. It must be shown that det C=0.
Because A, has a (k - 1) x (£ - 1) invertible submatrix, one can use the
rows of A,, to do row-replacement operations on the last n-k rows of A to
reduce A,, to a matrix with at most one non-zero column m. Similarly, use
the columns of A, to perform column replacement operations on the last n-k
columns of A to reduce A,, to a matrix with at most one non-zero row /. If p
A, e,vr]

is the total number of operations in both sequences, A ~ A" = [ N
xe 4

for some columns x,v eC™ and columns e, e, of the & x £ identity matrix.
Because A was reduced to A‘”’ with only rows and columns of A,

added to other rows and columns, the bordered minor from A which is c;,

equals that same bordered minor from A‘”. A Laplace expansion (II1.C.4)

. A eV, .
across the last row of the bordered submatrix [ T, ’} gives
xl em

¢, = i-x,det[z,\&u[ﬁ;m] eV, :} +(*)(detA ;)

=+x,v det Aull;m].
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Similarly, for any row p and any J,

¢, = i-xpvldetAu[l;m] = i(xp /x,)cu -

Therefore, each row of C is a multiple of the first row of C. Thus rank

C<1. Herein Case 2.b, C has size at least 2x 2, hence detC=0 as

-

required.

Q.E.D.

The proof presented in Case 2 is constructive and was supplied in
private communication by C. K. Li and Steve Pierce. It is also possible to
prove Case 2 by using a limit argument and Case 1.

IIL.F.2 Example:

To illustrate the constructions in the proof above of the special version

21 3 0
) 4 I .
of Sylvester’s Identity, let A = 01 0 0 and k=1, son-k=3 and 1<i,j<3.
1 2 3 4
2 I 30
-4 -10 4
0 -2 -5 2
Then A = 0 . 0 ol® C=ADAY =| 2 0 0f. On the other
3 3 8
0 3/2 3/2 4 =

hand, C=[c;]eM,
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c‘.’[ c’.‘: CB
€31 €32 €3
rA(l,2;1,2) A(1,2;1,3) A(1,2;1,4)
={ A(1L3;1,2) A(3L3) A(L3L4)
A(L4;12) A(1413) A(1414)

(12 1| 2 3 ]2 4
4 0 4 N 4 2

kYR 3R
“llo 1] o o lo

2 1l 2 3 2 o

_,121314'_
(4 -10 4]
=2 00
3 3 8]

Direct calculation shows det A =46, det C =184, and also
A(1)*"'det A =2° -46 = 184, thus verifying Sylvester’s Identity for this

example.

IILF.3 Theorem: Sylvester’s Identity, General Form. Let A be an

nxn matrix, fix kso 1<k <n, and fix a,f €Q*"”. Recall from (I.B)

that ¢ and ,b denote the elements of Q“"** which are

complementary to @ and S. Define CeM,_, asfollows: for each i,j

such that [ <i,j<n-k,let (’\Zi,ﬁj be the i and j* elements of the
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strictly increasing ordered sets a, B, respectively, and let

¢, =A((au{2z,})N;(ﬂu{bj})N). Then det C = A(e; /)" *'det A.

Proof:

Let Pand Q be permutation matrices so that A= PAQ has
Afla; f]= A[I_c] . Let a and b, respectively, be the total number of inversions
in the concatenations ac; and 8 ﬁ . Then det P =(-1)° and det Q =(~1)°, so
det A = (-1)"*detA .

For 1<i,j<n-k, define r:'., = A(l,,,.,k,k +il,....k.k + j). Then by the
Special Form of Sylvester’s Identity (III.F.1) and the above equation,
det C= A(@""‘"det A=A B det A= A(a; ) (-1)*""det A..

Recall that ac;. denotes the concatenation of « and {&,} , 1.e., the
element of Q**'” which has a,,...,a, as its first k components and a, asits

A Fal
(k +1)" component. Let a, denote the number of inversions in aa.. Since a

is in order, this is the same as the number of inversions associated with «, in

aa,, thatis: a =aq,+.+a, ,. Similarly, for 1< j<n-#k,let b, denote the
number of inversions in S ﬂ ,»and then =5 +.+b,_,. Also one has
cr = Al@a; f8,) = ()" A(@u e, Du: (BY (B, )).-

Therefore, C looks like C after multiplying row i by (-1)* and column
jby (-1)”, for each i and j. It follows that det C=(-1)"*det C. Therefore

det C=A(a; ) " 'det A as claimed.
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Q.E.D.

IILF.4 Example:

Let A be as the example in (II1.F.2) above, £ =2, =(24), and
B=(34). Then a =(13) and B=(12), s0 aa = (2,4,,3) with =1+2=3 and

BB=(3412) with b=2+2=4. Thus

1 2 40 01 0 02 1 3 0§40 01 O
- 341 2 0 0 0 tl4 01 2010 0 01
30 21 1 0 0 OfJ0 1 0 Ot 0 O O
0 0 01 0 01 O)J1T 2 3 4f0 1 0 O
12 4 0
@ 13 4 1 2 - - -@ [-46 10
A = .and C=AQ)A = . Thus
0 0 23 -5 -2
00 0 1

det C = (~)**det C = (-1)**(92) =-92. On the other hand,

C= [Cn cxz:l
Cy Cam
[A((2.4.)y:(34.D)y) A((2,4,1)N;(3,4,2)N)]

|A((24:3):(34.D)y)  A((24.3)4;(3:4.2)y)

(A(12,41,34) A(12,4:2,34)

- _A(2,3,4;l,3,4) A(2,3,4;2,3,4)]

12 a |1 0]

4 210 2

I 4 2 3 4

W o~ W
W —~ W

o
W) O
o
—
W O r—
()

s§



{—46 10
,S0 detC=-92.
L 2

As was seen before, det A =46, and A(2,4;3,4)=-2, so

A(2,43.4) det A = (-2)' -46 = -92 also, as Sylvester’s Identity asserts should

be true.

56



LG CRYER’S LEMMA

To prove his LU-factorization theorem for a TP matrix, Cryer created
the following essential result [Cry76: Lemmas 3.1 and 3.2]. It shows that
some very restrictive things are true about an m x (n+1) matrix B if certain
conditions are met. This was undoubtedly inspired by the Gantmacher-Krein
Identity and the way Gantmacher, Krein, and Karlin applied it to get results
about STP matrices (see the next section here for some of that work), but

Cryer’s contributions are very intricate and original.

II1.G.1 Lemma. Cryer's Lemma. Let B be an m x (n+1) matrix with

m2n22, such that:

(1) the first n columns of B form a TP matrix, and

(2) the last n columns of B form a TP matrix.

Also suppose there is some a ¢Q"™™ and some k with 2 <k <n such
that

3) B(a;l,...,ic‘r,...,n+ 1)<0.

Then

Fal

(i) columns 2,....k,....n of B have rank n-2,

(i) when n=2, column k=2 is zero; when n>2, column k& of B is

linearly dependent upon columns 2,...,lAc,...,n , and
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(i) all minors of B of order less than n are non-negative.

If, in addition, when n>2 one also assumes

) B(al,....j,..n+1)>0if2< j<nandj=k,
then

(av) column % of B is zero.

When n=2, all of (@) to (iv) follow from conditions (1) to (3). When n>2,
result (iv), which is needed for Cryer’s main theorem, requires all conditions

(1) through (4).

I11.G.2 Example:

1 0
Let B =[ o é-l, then n=k=2. Observe B(1,2;1,2) = B(1,2;2,3) =0 but
L 1

B(1,2:1,3) =-1L. Cryer’s results follow: column 2 is zero, and B(i; j) >0 for all

iJ.
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I11.G.3 Example:

1
1
1

Let matrix B = and

p— p— e
e pmem pendt

0 1
lleM,,,,, where B[3;3]=| |
1 0

S =
—

110
B[3;234]={1 1 1| are TP. However, for a = (1,2,3) eQ®* and k=2,
I 11

11
B(aiL... k,...n+1) = BG134) =1 1 1|=-1<0.
01 1

This matrix satisfies conditions (1) to (3) of Cryer’s Lemma. It can be

seen that results () to (iii) follow:

A

(i) columns 2,....k,...,n,i.e., column 3, has rank 1 =n-2,

(i) column k2 =2 of B is linearly dependent on columns 2/cn ,

i.e., column 3, of B, and

(i) all minors of order 1 and order 2 are non-negative by the Zero
Lemma (II1.B.3), since any zero entry in B creates either an upper right or

lower left corner of zero.

Condition (4) is not satisfied because B(a;l,..., /,...,n+1)=-1<0 if j=3.

And, indeed, the fact that column 2 of B is not zero shows result (iv) fails.
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I1.G.4 Example:

I 0
I 1]|eM,,, where B{3;3] and B[3;2,34] are TP,
I 1

o © O

1
Let matrix B=| 1
0

and for a =(1,2,3) eQ®* and k=2,

1 19
Bl k,...n+1)=B(3134)=[1 1 1l=-1<0. Furthermore, for 2< j<n
01 1
1 o
and j =k, thatis j=3, B(&L.... j,...n+D)=BG124)=]1 0 1l=020. All
00 1

conditions (1) to (4) of Cryer's Lemma are satisfied. And indeed all results (i)

to (iv) follow. In particular, (iv) column k=2 of B is zero.

Proof of Cryer’s Lemma (II1.G.1):
Let « €Q"™, and define C =B[e;n+1]eM,,,, so C consists of rows a

of B andis nx(n+1). Then by the Gantmacher-Krein Identity (IIL.E.1),
C(i:1, k) C(@:n +1) - Ci:L,n + 1) C(D: k) + Clis k,n + 1) C(S;1) = 0 for 1<i<n.
Condition (3) says that é(@; k) <0. Conditions (1) and (2) imply that every
other minor appearing in the identity is non-negative. Therefore

é(a,. :1L,n+1)=0. Thus columns 2,...,n of C have rank less than n-1 if row «,
is omitted. This is true for each row a, of (11,...,7;2,...,n], hence the rank of
columns 2,...,n of C is less than n-1. But é(@; k) <0 implies columns

L...k.....n of C are linearly independent, thus have rank n-1. So columns



2Ln of C have rank n-2, and column k of C depends linearly upon

A
columns 2,....k,.

...nof C.

Conclusions (i) and (ii) have thus been shown for matrix C and

A

condition (i) for B because the rank n-2 of columns 2,....4,....,n of C cannot

be decreased by adding additional rows from B, nor can it be increased

beyond the number of columns (n-2).

Conclusions (ii), (iii), and (iv) will now be shown for matrix B in two

cases: n=2 and n>2.

Case 1: n=2.

Then 2 =2 and a has order 2 so C=B[a;n+1] is a 2 x3 matrix with

each entry non-negative and column 2 of C equal to zero. Since

B(a,.a.;1,3) <0 by assumption (3), and each 5, 20 by assumptions (1) and

(2), then B(a[~a2;173) = ba,,lbc:,l

-b, b, ; <0 with a non-negative first

summand implies b, ,b, ; is strictly positive; thatis 5, , >0 and 5, ; >0. So

B has the form

b}[ bl.Z bt3
bis0 o b,
ba b b

Thus, by the Zero Lemma (ITI.B.3) applied to the TP matrix B[m;1,2],

column 2 is zero above 5, ,, and applied to the TP matrix B{m;2,3], column 2

is zero below &,

2~

So, when n =2, column 2 =2 of B is zero, showing (iv)
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A

and (i1). Notice that the rank of columns (2,....%,....n) =& of B is indeed 0=n-
2 showing (i). Finally, (iii) follows immediately from assumptions (1) and (2)
since n = 2 requires only that all minors of order one be non-negative.

Case 2: n>2.
Condition (i) has been proved already, that is, columns 2,.,.,Ié,...,n of
B have rank n-2. Since m2n, there exist o, and @, with a, <, such that

A A

B(a,,,..,&u,..,,av,...,a,,;z,...,k,...,n) = g # 0. Furthermore, assumption (1)
shows g>0.

Let a’ =(a[,..,,&u,...,c:tv,...,a,,) and g’ = (2,.,,,/\&,,,.,n) so a’,f Q" .
Spna) =a’ eQ™ ™" andlet ¢, =1, 1, =k, t,=n+1. Define an
(m—-n+2)x3 matrix D by d,, = B{(a’' v {s,});(f’w{t.})y]. Thus D isa

matrix whose entries are bordered minors from B, corresponding to the

matrix C defined in Sylvester’s Identity (III.F.3).
Observe that each 4,, >0 by hypothesis (1) or (2), because each

B{(a’ w{s,Dy;(B v {t,})y] is a submatrix of the first n or the last n columns

of B.

Apply Sylvester’s Identity (IIL.F.3) to the n xn matrix

Bl(a'wis,,s, Dy, (' {t,,t,})y] to see that, for I<sp<g<sm-n+2
D(p.q:12) = gB((a’ v (s,,5,))n;(B" v (1,,1,))y) , again non-negative by

hypothesis (1).

Therefore the first two columns of D are TP.
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Repeating this argument using hypothesis (2) and z.,7, shows that the

last two columns of D are also TP.

A

Apply Sylvester’s Identity once more, to B[a:l,....k,...,n+1], which has

a negative determinant by hypothesis (3), to get
D(u,v;1,3) = gB(a;I,...,I:',...,n+l) <0. Since D is an m’' x (n’ +1) matrix with

n’=2 and m’ =m—(n-2) 22, it can be seen that D itself satisfies conditions

(1), (2), (3) of the present lemma, and since (iv) has already been shown for

the case n =2, it may be concluded that column two of D is zero.

Now let B, = ﬁ[@;l,n+ 1]. Since

~ 2

A A K N
g=B(a,,..au,....av,....a, ;2,...k,...n) 0, r0WS a,...,Q&u,...,av,...,a, of B, are

n

linearly independent. But since column two of D is zero,
d, =B((a,,....aqu,...,av,...,a,,5);2,...,n) = 0 for every

A A N ~
sef{a,,....au,....av,...a,}, L<s<m,sorows a,,...,&u,...,av,...,a,,s of B, are

linearly dependent. Thus B, has row rank, and hence column rank, of n-2,

that is, columns 2 through n of B have rank n-2.

A

Columns 2,...,4,...,n of B are independent by (i). Thus, column & of B

A

must be linearly dependent upon columns 2,....%,....n, showing (ii).

A contradiction argument will be used to show (iii) for the case n>2.
Suppose B(y;v) <0 for some 4 Q™ veQ®™" with I<g<n. By

assumptions (1) and (2) one sees that g>2 and v, =1, v, =n+l.
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Let [ be anindex notin v.so 2</<n. Let r=(v,,...v,.]),; then

r,=l<l<r,,=n+l. Let E=B{mr]eM, . Then the first g columns of E

are a subset of the first n columns of B so form a TP matrix, by assumption

(1), and similarly, by assumption @), the last g columns of E form a TP

matrix. Finally E(y;7,,....1....,7,.,) = B(45v) <0. Since E now satisfies

conditions (1), (2), (3) of the present lemma, one may conclude (ii) that

A

column ! of E is linearly dependent upon columns z,,..../,...,7,, implying the

same is true for the same columns in matrix B. Since this is true for each [
such that 2 </<n and / ¢ v, it follows that columns 2 through n of B have

rank at most g-2<n-2. this contradicts the previous conclusion from (i) and
(ii) that columns 2,...,n of B have rank n-2. Thus all minors of B of order

less than n are non-negative, hence (iii) is true.

Finally, conclusion (iv) will be shown for the case n>2, assuming now

(1) through (4).

By (ii) column % of B is a linear combination of columns 2,....%,....n, or

b, = ) ub, where each # is a constant and b, denotes a column of B. If all
=2,Ixk

u, are zero then column b, is zero.

Assume u, =0 for some j such that 2< j<n,j# k. Then

ub; =b, —ub,—_~ub,, so multiples of columns other than b; may be added

nn?’r

to column b, so that u b, is the new column k. The value of the determinant

is unchanged because these are replace-type elementary column operations.



The coefficient u, may be factored out in an expansion down the column in

position 2 when computing the determinant. Finally, placing column b, in

order through column exchange operations would alter the determinant by

the multiple (-1)**', where (k-/)+1 is the number of inversions (I1.C.1).

These facts yield the following equalities:

A

B(a;lv--7}7'>vk7"vn + I) = u]B(a;l,..,},..,j,...,n + l) = (_]')(k_j)-"l ulB(a;Ir--vjr-vkr"rn + I)>

Because the first minor is non-negative, while the last is strictly negative,

and u, #0, it can be seen that (-1)""'», <0.

Al

By @), columns 2,....%,...,n of B have rank n-2, so there exists

y €Q“*™ such that B(y:2,....k,....n) = g # 0, and g>0, by (iii). Now

A

B(y:2..... /,....n) = (=)*"""u B(¥:2,..., j,...,k,...,n), as above. But here the
minor on the left is non-negative, while that on the right is positive, so
(-1)**"'u, >0, a contradiction.

”n
Thus, the assumption that 4, = 0 for some indexjin b, = ) ub, is
e
1=2.1=k

false, and column k& of B is zero, hence (iv) has been proved.

Q.E.D.
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IIL.H CRYER’S LU-FACTORIZATION OF TOTALLY POSITIVE

MATRICES

IIL.LH.1 Theorem. Let Abenxn. Then A is TP if and only if there
exist TP lower triangular L. and TP upper triangular U such that

A=LU.

Proof:

First suppose such L and U exist. Let a,8€Q%™, 1<k <n so A(z; )

is an arbitrary minor of A. By the hypothesis that A = LU and the Cauchy-
Binet Theorem (IIL.C.11), A(a.f) = D L(a;7)U(y;f); this is non-negative

reQ't™
since all minors of L and U are non-negative by hypothesis. Thus A is TP.
For the converse, suppose A is TP. If A is already lower triangular
the proof is done. If not, then A has the following form, which will be called

“form (k,m)":
[a,, 0

Precisely, form (k,m) means A satisfies:

1) the first k-1 rows are in lower triangular form (where 2 may be 1),

2) in row k&, a,, >0 for some m>k and if m<n, a,,,,,....a,, =0 and



3) if a, >0 for some ! with k£ </ <m and a =0 for some j between / and m,

then column j is zero.
Condition 3) follows from the Zero Lemma (II1.B.3), because A is TP.

An overview with two examples will be presented before completing

the proof of the converse.

I11.H.2 Overview

A Gaussian column reduction will be performed on A, starting with
the topmost row which has any nonzero entry to the right of the diagonal,
and starting from the rightmost entry in that row. At each step one such
entry will be eliminated by using an elementary column operation yielding a
new matrix A and a TP upper triangular U so that

@) A=AU,
(i1) A has form (p,q), where p >k and if p=k, then g<m, and Qim = 0,

(iii) Ais TP.

Cryer’s Lemma is the essential tool for proving (iii).

The next step will eliminate an entry aew for which either m’ or k' is
larger than k&, or both, and this guarantees the algorithm will eventually stop

with a lower triangular A which will be called L, and which is TP. It will

also be shown that at each step i, an upper triangular TP U, can be defined

so that ultimately A =LU _U_ ,---U,U,. The product U of the U,’s is upper
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triangular and is TP, by Cauchy-Binet (IIT.C.11). This will complete the
proof that A has an LLU-factorization with L and U TP.

When A has form (k,m), it is not too hard to find a column operation
that yields Aand Usothat UisTPand A=AU. This is particularly easy
when the column operation is a column replacement using adjacent columns,
because the inverse of the elementary matrix E which does the column

replacement has a TP inverse. Then AE = A,so letting U=E™ yields
10 o]' [too

A=AU. Forexample, U=E"'=(0 1 -2| ={0 1| 2|isclearly TP and
00 | 0 0 1

upper triangular.
However, to eliminate a,_, it can happen that one needs to do a
column replacement type operation using nonadjacent columns. In this case

the inverse of the associated elementary matrix E will be upper triangular

i

1 0 21 1 0 2
but not TP. For example, E* ={0 1 0| ={0 I 0|isnot TP. One of
00 1 0 01

Cryer’s essential contributions was seeing how to get around this difficulty:
instead of letting U=E™, he alters E™' a little to get an upper triangular U

which is TP and so that A = AU will be true.

The new U includes an i <r diagonal block F.(c) = in which
1

r represents the order of F, ¢>0, and all unmarked entries are zero.
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Specifically, suppose A has form (k,m) and column ! is used to eliminate a,,
getting A. For A of the same size as F, AF, (c) will always equal AE™

since each column of A between columns [ and m 1s zero.. If A is larger

than F, (c), let U=diag(I,,F,(c),I,) where 0<p,g<n-r and p+q=n-r.

II1.H.3 Example:

2 2 01 2 2 0 0 1 0 0 0
1 1 01 - 1 1 0 1/2 01 0 -1/2
Let A= ~A= . Here E= is used
1 1 01 1 1 0 1/2 0 0 1 0
1 1 01 I 1 0 1/2 0 00 1
I 00 O
~ ~ 01 0 1/2
to obtain AE=A,s0 A=AE" is true. However, E™' = 601 0 is not
0 0 0 1
1 0 0 O
. -1 . 01 0 t/2
TP. Instead of using E™', define U = diag(I,,F,(1/2)) = 000 o ; then
0 0 0 1

A =AU is also true and this Uis upper triangular and TP.

One other difficulty can occur when A is singular; if a, =0 and there
isone a,, >0, m>k, then a column exchange will be needed in order to

create zero in the (k,m) position. The inverse of this type of elementary

1 00

matrix is neither upper triangular nor TP. For example, [0 0 1] isitsown
01 0
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inverse and is clearly not upper triangular or TP. Cryer overcomes this by

substituting for the inverse of such an elementary matrix a TP U which
r 1q

includes a diagonal bleck G, = that has zeros in every position

except the upper and lower right corners. Again it is easy to see that U is

TP, upper triangular and A = AU.

II1.LH4 Example:

200 200 1 00
Let A=|1 0 3|~A=|1 3 0|. Here E=|0 0 1|yields AE=A, and
1 0 3 1 30 010
1 00
E" ={0 0 1|is neither upper triangular nor TP. However, if one lets
0t o0

1
U = diag(1,,G,) =( 0
0

o O O

0

1{, then Ain,andthis U is both upper
1

triangular and TP.

So it is not too hard to produce U so that A = AU satisfies (). If (iii)
is known then it is easy so see that A satisfies @ii). Thus, the major work

required is to prove (iii), that the new A at each step is TP. Once that is

done, there will exist an algorithm for Gaussian column reduction of a TP
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matrix A to a lower triangular TP matrix L, which also produces a TP upper
triangular U so that A=LU.

End Overview

Here begins the proof that if A is TP and has form (k,m) then there
exists a TP upper triangular matrix U such that

@ A=AU,

(i) A has form (0,q), where p >k and if p=k, then g<m, and dim =0,

Gi) A isTP.

Let a,, in matrix A of form (k,m) be the entry to be zeroed. Search to
the left of a,, in the same row for the nearest non-zero entry a,,. Two cases
exist: (1) all entries a,, through a,, , are zero, in which case columns & and
m will be exchanged to create zero in the (k,m) position, (Cryer performs
multiple column exchanges upon columns m and m-1 in successive iterations

of the process; here a single exchange of column 2 with column m will be

done), or (2) there exists a,, >0,k </ <m, in which case a multiple of column [

will be added to column % to create zero in the (k,m) position.

Case 1: All entries a,, through a,,, , are zero.

n



In this case, let A be obtained from A by exchanging columns m and

If one lets U =diag(I,_,,G,_..,.I,...). a TP upper triangular block

diagonal matrix, then A = AU.
Furthermore, since columns k& to m-1 are all zero by the Zero Lemma
(I11.B.3) (a lower left block of zeros would also create a zero column since

rows 1 to k-1 are zero above the diagonal), exchanging columns 2 and m in A
to create A does not alter the non-negative value of any minor. Thus A is

TP and also A now has form (0,q) with dim = 0, which completes Case 1.

Case 2: There exists a, >0, £ </<m.

Let A be obtained from A by subtracting a,_ /a,, times column [ from

column m. Letting U = diag(I,_,,F, _,.,(a,,/a,).1,_.), a TP upper triangular

block diagonal matrix, then A = AU satisfies (i) and (i1) as well as the
requirements of U .

[I-l

1
If I=m-1, U =diag(1,_ .,F.(a,,/a,),1_.)= [0 ::' where

c=a,la,.
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Ifl<m-1, U= , where c=a,, /a, and all

unmarked entries are zero.

Now, it will be shown for Case 2 that (ii1) A is TP, by induction on the

size of minors.

Define H(s): A(a;ﬂ) 20 forall a.f Q" where | <r<s, thatis, all
minors of size sx s and smaller are non-negative.

First, H(1) is true: that is, A(a; B) =0 for all @, Q"™ . To prove
this, observe that A and A differ only in column m, so ;1.,- =a, 20ifj=m.

Within A, columns / and m are zero above row &, so a replacement-type

operation involving these two columns still has zeros in column m above row
k. By construction, Qim = 0. Finally, if 1>k, then because a multiple of
column [ was subtracted from column m, @ = a, —(a,,/a,a,

=(l/ayXa,a,, —a.a,)

=(1/ a,,,)det{:" a""'] >0 since A is TP. Thus all minors of size 1 in

il i

A are non-negative.
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Now let r >2 and assume H(¢-1) is true: thatis, A(a; f) =0 for all
a,f Q"™ where 1<r<r-1.

Suppose H(t) is not true; that is, there exist o, €Q"“"” such that
A(a; B) <0. Since only column m has been changed in A , m € B; otherwise
the submatrix zi[a; F1=Alx; 5], hence A(a; B)=A(a;p)20.

Also / ¢ f#; otherwise the submatrix A[a; B] would be directly obtained
from A[a;f] by a replacement-type elementary column operation, which does
not change the determinant, so A(a; B)=A(a; ) 20. Since mep, [ ¢f, and
I<m, either /< g, or B, <l < f, for some least g2>2. If I<pB,,let g=1.

Deﬁne v= (ﬂlv"-vﬂgyl)N GQ("“[-") -

Since / <m €3, then ¢ <¢. Examine the two mutually exclusive and
exhaustive cases: (a) g=1 (.e.:/<f,),and (b) 2sg=1t
Case 2.a: Let g=1,1i.e., v=(/5,,....5,).

Then a, > &, for / <8, means all f is to the right of /, so if @, <k then
the first row of A[a; A is zero since A has form (k,m); but this makes

A(a; ) =0, while it is required that A(a; p) <O.
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Let u={k,a,,...,a,} €Q“"" and expand about the first row of A[,u; v]
to obtain A(,u; vi=a, A(a; f), since all entries beyond column [ in row & of A

are zero. But since A[,u; v] contains both columns [ and m and was obtained

from A[y;v] by a replacement-type elementary column operation involving
columns / and m, A(,u; v) = A(u;v). Thus, A(u;v)=a, A(a; f), hence
A(a;ﬂ) =A(u;v)/a, 20 since A is TP and a,, >0 in the present Case 2.

This contradicts the assumption that .;(a; B) <0; thus H() is true

when g=1.

Case 2.b: Let 2<g<r,ie,v=(4,,...0,..0.8,.-..5.) -

Let B be the ¢ x (¢+1) array B = z;[a; v].
First it will be shown that B satisfies the four conditions in Cryer’s

Lemma (II1.G.1):
(1) the first ¢t columns of B form a TP matrix,

(2) thelastt columns of B form a TP matrix,

~

3 B(a;v,,....V4q,...,V,,;) <0 forsome @ e Q" and some g with 2< g <t, and

@) B(a;v,,...,;',,..,,vm)20 if2<j<tandj=gq.
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Since v, =/, then ﬁ(@; v,)= A(a;ﬂ) <0 by assumption, so Cryer’s

condition (3) is true.

Furthermore, if j # g4, meaning v, [, then either both columns / and
m arein ﬁ[@; v,]= A[a; Vioos v, v,.;] and the replacement-type

elementary column operation required to obtain A[a; VyyersVineis Ve ] from

A

Ala;v,,...,v,,....v,,, ] does not change the determinant; or v,=m and no

A

column of Ala;v,,...,v,,...,v,,,] gets changed, so
f][@; v, ]= A[a; Vi v, v..1=Alav,,..., v, v,..], and the determinants
are the same. In either case
ﬁ(@; v,)= A(a; Vi :/, V) =Ala;v,..., ;, v,..,) and this is non-negative
because A is TP. Thisis true foranyj, 1< j<t+1, j=¢q, soin particular,
Cryer’s condition (4) is true.

Finally, by the inductive hypothesis H(¢-1), all subdeterminants of B
of order less than ¢ are non-negative, and fl(@; v,..)20 and ﬁ(@; v,)20 from
the preceding paragraph, hence the first and last ¢ columns of B are TP, i.e.,

Cryer’s conditions (1) and (2) are true.
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Thus, it may be concluded by Cryer’s Lemma, that column v, =/ of B
is zero, thatis, a, =0 if /i . Hence Aim =a,-(a,/a)a,=a,20ifica.

Since only column m of A could differ from the corresponding column of A,

and since In rows a,,...,a, column m had no changes, then

A(a; B) =A(a; ) 20. This contradicts the assumption that A(a; f) <0; thus
H(t) is true when 2<g<t.

This completes the proof of (iii) for Case 2.

Now the Gaussian column reduction described above can be repeated
until A is TP lower triangular, because at each step the new A is TP and
has form (4’,m’) where either the row index £’ is higher, or if the row index
is not changed, the column index m’is lower. Thus the process is guaranteed
to stop eventually with a lower triangular TP matrix. One may then write
A=A U,U,,--U,U, where U, is the TP upper triangular matrix created at

step i. By the Cauchy-Binet Theorem (III.C.11), U=U U __,---U,U, is TP; it

is also upper triangular. Renaming AtoL , this completes the proof that, if
A is TP then there exist TP lower triangular L and TP upper triangular U

such that A=LU.

Q.E.D.
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vV LU-Factorization of Strictly Totally Positive Matrices

IVA OVERVIEW

Recall from Section (I.B) the following definitions:
A real matrix is strictly totally positive (STP) if all its minors are
strictly positive.
A triangular real matrix is triangular strictly totally positive
(ASTP) if all its non-trivial minors are strictly positive.
Although by definition every minor of a matrix A must be positive for
A to be STP, various criteria have been discovered which reduce the number
of minors requiring testing. An example is a result cited in [KAR: 60] which
states that for an # < n matrix A, if all minors formed from % consecutive
rows and consecutive columns are positive for 1 < £ <n, then A is STP.
It will be shown in Section IV.C) below that for a square real matrix
A, A is STP if and only if A has an LU-factorization such that L and U are
ASTP. This yields a more efficient test for the STP property, and is the main
theorem in C. W. Cryer’s paper, “The LU-Factorization of Totally Positive
Matrices.”
Cryer’s proof of this factorization theorem employs an important test

for triangular strict positivity, which will be presented first, in Section (IV.B).
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IV.B TESTS FOR TRIANGULAR STRICT TOTAL POSITIVITY

The main theorem of this section (IV.B.6), which is needed for Cryer’s
theorem in the next section, demonstrates special criteria for determining
whether a lower triangular matrix is ASTP . namely: if every minor formed
from consecutive initial columns of a lower triangular matrix A is positive,
then A is ASTP. (Analogously, if every minor formed from consecutive
initial rows of an upper triangular matrix A is positive, then A is ASTP.)

Six lemmas which are used in the proof are presented first.
Recall from (I.B) the definition of discrepancy in indices: if @ €Q'*",

p-l
the discrepancy of « is defined as d(a) = Z (a,,, —a, -1). Discrepancy can

=1

be thought of as a measurement of consecutivity in a string. If d(a) =0 then

a 1is a string of consecutive integers; if d(a) >0, there is a gap in the string.

IV.B.1 Lemma: Let A be an m x p matrix, m > p, such that
(1) A(a;p)>0 forevery = Q™ with d(a)=0, and
2) A(a;p—1)>0 for every a e Q"™ .

Then A(a;p) >0 for every a eQ*™.

Proof:
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The proof will be by induction on the discrepancy of . Let a €Q»™.

If d(a) =0, then A(e;p)>0 by (1). Suppose the result is true for d(a) <5,

where 5§21, and let  €eQ'*™ have d(a)=46.
Since § 21, let o, be the first integer omitted which is greater than

@,. Define C=A[(au{a,})y;pleM, . Then by the Gantmacher-Krein
Identity (IL.E.3), letting ,,a,,a,be rows 1, k, p+1, respectively and p be
column : é(l,k;p) é(p +1,0) - é(l,p + I;p)é(k;@) +é(k,p+ L; p) é(l;@) =0, or
A(@,,....a,; p-DA(a,,....¢,... 0 s P) — A, Ay, @ s P~ DA(2; p)
+A(Qy,....a, ; p-DA(a,,....aq,...,a,; p) = 0.

The first factor in each term is positive, by (2). The second factors in

the first and third terms are positive by the inductive hypothesis, since

inserting o, in a reduces the discrepancy among any p consecutive indices
in (au{a,})y. Thus, the second factor in the middle term must also be
positive, i.e.: A(«; p)>0.
Q.E.D.
IV.B.2 Corollary: Let A be an m~ p matrix, m > p, such that
(1) A(e; p) >0 for every @ Q"™ with d(e)=0, and
(2) A(a;2,...,p) >0 for every a sQ#™,

Then A(a;p) >0 for every a eQ*™.

Proof:
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This corollary (IV.B.2) differs from (IV.B.1) only in that assumption (2)
regards minors formed from the last p-1 columns, rather than the first. This
proof lets 1 be column : in the Gantmacher-Krein Identity (II1.E.4), and is

otherwise identical to the proof of IV.B.1).

Q.E.D.
IV.B.3 Corollary: Let A be a pxm matrix, p <m, such that
(1) A(p;p)>0 for every Q™ with d(f)=0, and
(2) A(2,...,p; ) >0 for every f Q™.
Then A(p;f) >0 for every S eQ*™.
Proof:
Apply Corollary TV.B.2) to A".
Q.E.D.

IV.B.4 Lemma: If A eM, is lower triangular and
(*) A(a; p) >0 for every p en and for every a eQ‘*” with d(a)=0,then

(@) A(a;p)>0 for every p en and for every @ eQ'*”, and
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(i) z’\[l;l] satisfies (1): i.e., A(a;2,..r +1)>0 forevery r en—1 and

a €Q“" such that @, >2. In particular, zA\[l;l] satisfies (*).

Note again that d(a) =0 means that « is a string of consecutive

integers, here yielding a set of consecutive rows.
Proof:

(i) The proof will be by induction on the size of minor. p. A(a;l) >0 by
(*). Let p22 and g= p-1 and assume (a) A(a;9) >0, where « €Q“" . Note
also () if @ eQ'*” and d(@) =0 then A(a;p)>0 by (.

By (b) and (a), A[z; p] satisfies hypotheses (1) and (2) of Lemma
(IV.B.1). Thus A(a;p) >0 for every a eQ'*™”, showing ().

(i) Let @ €Q"”, r en—1, such that 2 < a,. It must be shown that

A(a2,...,r+1)>0. Let a’'={l}ua. By @), a,, >0 and A(a’;r+1)>0 are

0 ] thus
Ala;2,..,r+1]

a,

true. A islower triangular, so A[a’;r +1] =[ N

A(a’;r+)=a,A(a2,...,r +1). Therefore, A(a;2,....,r +1) >0, i.e., A[L;I]

satisfies (i), showing @i).
Q.E.D.

Recall from (I.B) that if a,8 €Q‘*”, the notation a > § means «, 2 5,

for each i, 1<i< p. The notation 2> #, a < § and a < # are defined

analogously.



IV.B.5 Lemma: Let a,f €Q”™ with a > . Suppose there exists £ >2

SuCh that ﬁ': (l,...,k - Ivﬂk"»vﬂp)r ﬂk >k.
Define n=(2,....k- Lk, B,,....8,) €Q*”.

Thena =17.

Proof:
Ifr=1,..k-1thena, >8, =rsoa, 2r+l=n,.
Ifr=k,..pthena, >4 =1,.

Q.E.D.

B 0
IV.B.6 Lemma: Let A = [C D]’ where A, B, and D are square

matrices. Then detA =detB-detD.

Proof:
Let p be the order of A, and k be the order of B, for I<k<p.

If k=1, perform a Laplace expansion (II1.C.4) across row 1 to get:
4
det A=Y (-1)"a, detA,

1=t

[ A
=Y (-D)"a, A(L;))

=t
=(-1)""a, A(L])

=detB-detD.



If k>1, perform an expansion of the determinant of A across rows 1 to

B
k (II.D.1). Because A = [C }, columns k+1 to p are zero in rows 1 to k.

D

Thus all terms of the expansion but one are zero, and the expansion becomes:
detA = Y (sgny PAKY o JAK+L DY Y o)

y EQ“""

=+Ak KAk +L,....pk+1,....p)

=det B-detD.
Q.E.D.

IV.B.7 Theorem: Consecutive Leading Columns Theorem. Let A be an
nxn lower triangular matrix. Then A is ASTP if and only if

*) A(a;p)>0 forall a eQ”” 1< p<n,such that d(a)=0.

Proof:

The sufficiency of the hypothesis is clear. The necessity will be shown
by induction on n, the size of A. If n =1 or 2 the result, A is ASTP, follows
immediately from (*). Now let » >3 and suppose the result is true for
smaller matrices. This will be referred to as “the inductive hypothesis on
size.”

Observe that A[n;n] and A[I;l] are ASTP. Clearly (*) is true for :\[n;n].

Because (*) holds for A, minors formed from consecutive initial columns in



A[l;l] are also positive by Lemma (IV.B.4.1i). Thus, by the inductive
hypothesis on size, both these lower triangular matrices are ASTP.
Now let ¢, Q"™ , 1< p<n, a>f. The arbitrary non-trivial minor

A(a; f) will now be evaluated for strict positivity. Three exhaustive cases

will be considered.

Case 1: A[a;f] is a submatrix of A[@;l] or of A[n;@].
If Ala;A] isin A[@;l], then 8, >1 and a, 28, >1 so Af[z;f]isin
A[I;l], which is ASTP. If A[z; 8] isin A[n;@], then @, <nand g, <a, <n

so Ala.f] isin A[n:n] , which is ASTP. Thus for each, A(a:f)>0.

Case 2: A[e;fl has a, =3, forsomer, I<sr<p.

Recall that A[a; ] is a submatrix of order p, and let r be the first
index where a, = 3,.

If r=1. then A[a;/f] is a principal submatrix of A, hence its
determinant is positive because :\[n;n] and A[I;I] are ASTP, so all diagonal
entries are positive.

If 1<r < p, then because A is lower triangular,

;L Alay,....a, ; By 4] 0 P
A[a’ﬂ]-[ * A[a,,..-,a,;ﬂ,,--.,ﬂ,]J' Then A(@.f) is

the product of the determinants of the diagonal blocks, by IV.B.6), and each

of those is positive because A[n;n] and A[I;I] are ASTP.



Therefore A(a;f)>0.
Case3: f,=1,a,=nand a>f.

An induction on the length of «,f will be performed to show that a
submatrix A [a;f] of any order with the above conditions has positive
determinant.

Recall that a.8 Q™. If p=1, then A(a;S)>0 by the hypothesis (*).
Suppose p>1 and A(a’;8') >0 for all a’,’ €Q"*” where s<p and a'2 f'.
This will be referred to as the “inductive hypothesis on length.”

Now induct on column discrepancy. If d(8) =0, then A(a;f)>0 by (*).
Suppose that d(f) >0 and assume that A(a; B) >0 whenever a, /_9 eQ™
l<sp<n with a zb and d(,&) <d(B). This will be called the “inductive
hypothesis on discrepancy.”

Because f§, =1 and d(f) >0 there exists a least k such that £ <, and
k >1. Constructa p x (p+1) matrix C= A[a;(Bu {k})y]. It will now be
shown that C satisfies hypotheses (1) and (2) of Corollary (IV.B.3). Once this
has been done, C(p;y) will be positive for every y eQ#*" in particular
C(5, Bs-onrk s BrrsBy) = Al ) > 0.

Let y €Q***" such that d(¥)=0. Then y =(I,...,p) or 2,...p+1). In
the first case, C[p;7] = Iz pl = Ala; f] where B=(Brr--erk.BrersBpr) - Then
a> ;3 is clear because a > 8 and, because of the insertion of column &,

d( B) <d(f), so A(a;ﬁ’) =C(p;7) >0 by the inductive hypothesis on



discrepancy. Similarly, in the second case ([p;y]1=Cp;2,....p +1] = Ale; f]
where /}= (B2, k,Bs,....B,) and again a2 /} is true, by Lemma (IV.B.5) this
time (since « > £ here in Case 3), and d(ﬁ) <d(f), so A(a;ﬁ) =C(p;7)>0.
Thus hypothesis (1) of AV.B.3) is satisfied.

Now let y eQP"#" so that (02,...,p;¥]1= Ala’; #’] where
a’=(a,,...,a,) and 4’ is some (p-1)-tuplein (B {k})y.- Observe that,
whatever 8’ is, @’ > f’ is true. For a > 8 (in Case 3) and Lemma (III.B.5)
imply @ >(B,.....k,B,.....5,) , hence a’ 2(8;,....k.B,,....B,) (Where k would
not appear if £ <f,). Since (8;.....£,B,.,....B,) is the largest (p-1)-tuple
possible, (B;,....k,B,,....8,) 2 B’ . Therefore, by the inductive hypothesis on
length, A(a’;8") = C(2,...,p,7) > 0. Thus hypothesis (2) of (IV.B.3) is also
satisfied.

Therefore Corollary (IV.B.3) applies here, i.e., C(p;7)>0 for all
y €Q##Y . In particular C(g;ﬂx,...,l;,ﬂk,...,ﬂ,) = A(a; §) > 0.

This completes the induction on discrepancy and that in turn
completes the induction on length. Thus the non-trivial minors A(a;f) in all
three cases have been shown to be positive. Hence, the induction on size is

complete and it may be concluded that A is ASTP.
Q.E.D.
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IV.B.8 Corollary: Consecutive Leading Rows Theorem. Let A be an
nxn upper triangular matrix. Then A is ASTP if and only if

A(p;f)>0 forall BeQ™, 1< p<n such that d(p)=o0.

Proof:
Apply (II.B.7) to A”.

Q.ED.



Iv.C CRYER’S LU-FACTORIZATION OF STRICTLY TOTALLY
POSITIVE MATRICES

IV.C.1 Theorem: Let A be a Square matrix. Then A is STP if and
only if there exist ASTP lower triangular L and ASTP upper

triangular U such that A =Ly .

Proof-

Let A be nxn.

First suppose such ASTP L and ¢ exist. Let o, Q" | < p<n,so
A(a; f) is an arbitrary minor of A . Then by the Cauchy-Binet Theorem
(III.C.11), since each non-trivial minor of L and U is positive,

Al f)= Y L(ay)U(y;p)

reQtt”
2 L(a;, p)U(p; B)
>0.
Thus A is STP.
For the converse, Suppose A €M, is STP. Then all minors are
positive; in particular, A is non-singular and all leading principal minors are
non-zero. Thus, by Theorem (II.D.4) A has an LU-factorization, and by

(1.C.4) L may be chosen to be unit lower triangular.



To show that U is ASTP let B,y €Q"™ and apply a Cauchy-Binet
expansion (III.C.11) to A( 2; ), considering only the terms formed with non-
trivial minors of L and U, Le., L(p;7)U(y; ) with ¥ < B.p (I.B). Because
¥ < B refers to the partial ordering where Ye 2B, for k e(l,..., p) IB), y<p

thus means y = p- So
O<A@:B)= Y Lpy)U(y.8) = L(g;p)U(p:8) = U(p; ) . because L has a

7<Q* repp

unit diagonal. Thus an arbitrary minor formed from consecutive initial rows
of U is positive, so by Theorem (IV.B.8), the Consecutive Leading Rows
Theorem, U is ASTP.

Analogously, to show that L is ASTP , this time let & € Q" and apply

the Cauchy-Binet expansion (I.C.11) to A(a; D) to get
0<A(a; p) = ZL(a; Y)U(y; p) = L(a; 2)U(p; p). Since U( p;p) >0 by above,

reQ¥ ™ r2pp

it must be true that L(a; p)>0. Thus, by Theorem AVB.7), L is ASTP.

Therefore if A is STP then A has an LU-factorization with L and U

ASTP.
QE.D.
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