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ABSTRACT
RANK REVEALING QR FACTORIZATIONS
by Lily L. Dalton

In the face of computer arithmetic errors or other errors in the entries in a matrix
it is difficult or impossible to accurately determine the mathematical rank of a matrix
A. Therefore. in practice. one must calculate the numerical rank not the mathematical
rank of a matrix. The numerical rank depends on a tolerance ¢ and it is best defined
using the singular values of A.

The singular value decomposition and QR with column pivoting are the two most
widely used algorithms for finding the numerical rank of an m x n matrix A where
m 2 n. Many mathematical programs like MATLAB have these algorithms built in
already. We will show that the singular value decomposition is fairly inefficient and
QR with column pivoting sometime fails.

As we will see. the Foster/Chan RRQR algorithm works well when used to find
the numerical rank of the matrices where QR with column pivoting fails. and the
algorithm is much more efficient than the singular value decomposition. We will
also present some applications of the singular value decomposition and QR with
column pivoting. and show that those applications can also be done using Foster/Chan

RRQR. Last, we will discuss the strong RRQR.
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1 Introduction and Basic Definitions
1.1 Introduction

In the face of computer arithmetic errors or other errors in the entries in a matrix
it is difficult or impossible to accurately determine the mathematical rank of a matrix
A. Therefore. in practice. one must calculate the numerical rank not the mathematical
rank of a matrix. The numerical rank depends on a tolerance € and it is best defined

using the singular values of A.

Let A be an m x n real matrix and oy > 03 > --- > o, be the singular values of
A. We say A has numerical erank rif givene > 0.0, 202> --- >0, >e> 0,4y >
--+20,20. Ahasrankrifo, 2062, >2---20.,>0and o,y =--- =0, =0. For

simplicity we will just say A has numerical rank r instead of numerical ¢ rank r.

Let Al = QR = Q (’%“ g”
22

m X n matrix A where R, is an r x r invertible upper triangular matrix. [T is a

) be a rank revealing QR factorization of a real

permutation matrix. and Q is an orthogonal matrix. Then the numerical rank of A
is r. A rank revealing QR factorization separates the linearly independent columns
from the linearly dependent ones.

The first rank revealing QR factorization algorithm was developed by Golub in
1965 [11]. This is the algorithm known as QR with column pivoting. It is an efficient
algorithm but. as we will see. it has the potential to incorrectly identifv the numer-
ical rank for matrices with small rank deficiencies. About ten years later a second
algorithm was proposed by Golub. Klema, and Stewart [10]. At almost the same
time a third algorithm was introduced by Gragg and Stewart {12]. In the middle 30's
Chan [4] and Foster [8] independently proposed another algorithm. which we call Fos-
ter/Chan RRQR. RRQR is an abbreviation for rank revealing QR factorization. The

algorithm is efficient and. under certain mild assumptions, guarantees the accurate



determinations of numerical rank for small rank deficiencies. In the practice it seems
also to work weil for matrices with large rank deficiencies. but the theory does not
guarantee this.

[n 1992. Hong and Pan [16] presented another rank revealing QR factorization
which is able to compute an estimated singular value that is accurate up to a factor
proportional to a polynomial function in the matrix size. Therefore it correctly de-
termines the numerical rank for matrices with large rank deficiencies. However. the
algorithm is not so efficient. [n 1994, Chandrasedkaran and Ipsen [2] introduced three
rank revealing QR factorization that potentially all compute an estimated singular
value that has about the same accuracy as Hong and Pan’s algorithm in practice but
they could not show it in theory. Recently an algorithm was proposed by Gu and
Eisenstat [14] in 1996. This is the algorithm we call strong RRQR. As we will see it
can be proven to be accurate and relatively efficient.

As we know the singular value decomposition and QR with column pivoting are
the two most widely used algorithms for finding the numerical rank of an m x n
matrix A where m > n. Many mathematical programs like MATLAB have these
algorithms built in already. We will show that the singular value decomposition is
fairly inefficient and QR with column pivoting sometime fails.

As we will see, the Foster/Chan RRQR algorithm works well when used to find
the numerical rank of the matrices where QR with column pivoting fails, and the
algorithm is much more efficient than the singular value decomposition. We will
also present some applications of the singular value decomposition and QR with
column pivoting, and show that those applications can also be done using Foster/Chan
RRQR. Last. we will discuss the strong RRQR. All the matrices we use in this thesis
have size m x n where m > n.

[n section 2. we will introduce the singular value decomposition and three of

(8



its applications. The applications are determining the numerical rank. the subset
selection problem. and the least squares problem. In section 3 we will present QR
with column pivoting, and show how to use it to find the numerical rank of A and give
an example where the algorithm fails. In section 4 we will introduce the Foster/Chan
algorithm. give some numerical examples. show how to use the Foster/Chan algorithm
to find the numerical rank. and solve the subset selection and least squares problem.
In section 5 we will present the strong RRQR algorithm.

Most of the theorems presented in Section 2 and Section 3 are proved in standard
numerical linear algebra textbooks. so if no proof is given please refer to any standard
numerical linear algebra textbook. My personal favorite is .Vumerical Linear Algebra

and Applications by Biswa Nath Datta.
1.2 Basic Definitions

o 2]l = (T £}/

lelh = 2|l

|zl = max(|z:]).
e (r), = the j-th component of x.

dist(y.S) = min{|ly - z|].: = € S}.

[4llp = maxexo | Azllp/|lzll,. wherep=1.2. 2.

The l-norm of A can be computed by || 4], = max;¢;<n T2, |aij]-

e A flop is a floating-point operation a o J, where a and 3 are floating-point
numbers and o is one of +. -, x. and +. Taking the absolute value or comparing

two floating-point numbers is also counted as a flop.



R.(A) = the numerical € rank of A.
V.(A) = the numerical ¢ nullity of A.
A real matrix A is called nonsingular if R,(A) = n. Otherwise it is singular.

A real matrix A is said to have full column rank if its columns are linearly

independent.

A real matrix A is said to have full numerical rank if it has full column rank. If A
does not have full numerical rank. it is numerical rank deficient. For simplicity

we will just say A is rank deficient instead of numerical rank deficient.

Angle between subspaces Let F and G be subspaces in ™ whose dimemsions

satisfy
p=dim(F) 2 dim(G) =q¢>1
The principal angles 4,. . ... 8, € [0. %] between F and G are defined recursively
by
cos(bk) = max max ulv = ulvg.
subject to
lullz = llvll = 1,

ulu; =0 fori=1.....k—1, '

vTe; =0 fori=1,....k—1.



2 Singular Value Decomposition

[n this section we will define the Singular Value Decomposition of an m x n matrix
A and three applications of Singular Value Decomposition. The applications are the
problem of determining numerical rank. the subset selection problem. and the least
squares problem. For simplicity we will denote the Singular Value Decomposition of

A as the SVD of A. Here is some notation that we will be using:
o oi(A) = the i-th largest singular value of A.
® Omax(-1) = the largest singular value of A.

® Omin(1) = the smallest singular value of A.

2.1 Definition of SVD

Theorem 2.1 (SVD) If A is a real m x n matrir then there erist orthogonal ma-

trices U .V and a diagonal matriz © such that
(TAy =% (1)

where ["is m x m. V is n x n. and the diagonal entries of < are o,..... on (0 >

0220, 20).

A=0USVT is called the SVD of A.
Let u; be the i-th column of U and v; be the i-th column of V. The o; are singular
values of A and the vectors u; and v; are. respectively the i-th left singular vector and

the i-th right singular vector. And for: =1..... n
.-lv,' =0o;u;.

The singular values of a matrix are unique but the singular vectors are not unique.

Suppose A has a multiple singular value & > 0. then the right singular vectors of o can



be chosen to be linear combinations of any orthonormal basis of the space spanned
by the eigenvectors associated with the multiple eigenvalue A = o% of 4AT.

The estimated total flop count for this algorithm is 2mn? + 4n3 [4].

2.2 Applications of SVD

[n this section we will first discuss how to find the numerical rank of A using SVD.
then use SVD to solve the subset selection problem. and finally solve the least squares

problem using SVD.
2.2.1 The Numerical Rank Problem

Calculating the SVD of the matrix is a pretty good method for finding the nu-
merical rank of a matrix A. In particular. many software packages such as MATLAB
have the SVD built in. SVD is known to be a stable and reliable algorithm when used
to find the numerical rank of A. In practical applications that use singular values.
we need to know when to accept a computed singular value to be ~zero™. Of course
we should also take into the consideration the “noise”(relative error) of the data.
There are many criteria to use to accept a computed singular value to be “zero™. A

particular one is as mentioned in [6]; a practical criterion would the following:

Accept a computed singular value to be zero if it is less than or equal to

€ = 107"\ ||, where the entries of A are correct to t digits.

From [11] we can say:
R.(A) = r if the computed singular values &,,....5, satisfy d, > --- >
Gy > €2 G4 > > 8,20,

Theorem 2.2 For an m x n matrir A

o V.(4) = max{dim(5) : SisasubspaceofR suchthatr € S.r # 0 = il < ¢}

llrll2



o V. (A) = number of singular values of Athatare <e.

R.(A) = min{dim(S) : S is a subspace of R™ such thatr € R*.r # 0 =

dist(Ar.S)
A S €

o R.(A)= numberof singular valuesof A thatare > e.

R(A)=n— N.(A4).

Proof:  Please see [8] o.
As we can see it is fairly easy to find the numerical rank of a matrix using SVD.

but do keep in mind that it may not be easy to find the numerical rank of a matrix

when there is no sufficiently large gap between the singular values.
2.2.2 The Subset Selection Problem

[n this section we will discuss solving the subset selection problem using the Sin-
gular Value Decomposition. Subset selection is the problem of determining r linearly
independent columns of a given matrix A where R,(4) = r. One approach would
be examine all (:) possible combinations but there are more efficient algorithms
that choose either the best set or a good set of linearly independent columns. One
approach is to find a permutation matrix II such that the submatrix consisting of the

first r columns of AIl is as well-conditioned as possible.

Theorem 2.3 Let A = U'SVT be the SVD of A, and define the matriz B, € R™*"

by
All = [By, By]

where the numerical rank of A is r and Il is an n x n permutation matrir. If

HTV = (“’:ll ‘:-12)

Vo Va2

-



where Vi, s r x r and nonsingular. Viy is r x (n-r). Vo is (n-r) x r. Vs is (n-r) x
(n-r). then

o) a.(By) < o A).

izt = -

The above theorem suggests that in order to obtain a sufficiently independent
subset of columns of A, we choose [T such that the resulting Vi, is as well conditioned
as possible. One way to obtain this matrix I is to use QR with column pivoting
which will be discussed in a later section.

The following algorithm for solving subset selection using SVD can be found in

[L1]:

Algorithm 2.1 Given a real m x n matriz 4 and R.(A) = r, the following algorithm

computes a permutation Il such that the first r columns of AIl are independent.

[. Compute A=USVT, the SVD of A. and save V.

2. Determine R.(A) of A and partition

. Vin W
V=i i)
where Viy is rx r. Vig is r x (n-r). Vyy is (n-r) x r. Vyy is (n-r) x (n-r).
3. Use QR with column pivoting to compute
QWL VAl = [Ru. Rua

where Q is orthogonal, Il is a permutation matriz, and Ry, is upper triangular
and nonsingular, and set AIl = [By.B;] where B, has r columns and B, has

n —r columns.

From equation 2 we have:



Since

VWl = (RLQTURLQT)T = R,QTQRy = RL Ry

we have

(V) = o-(R[,QT) = a( Ryy).
This implies that Vi is nonsingular (since Ry, is nonsingular). Since o,(V,) =
o.(Riy). we have |[Vi7!ll. = ||R!|l>- From [11]. we know: -heuristically. column
pivoting tends to produce a well-conditioned R);. and so the overall process tends to
produce a well-conditioned Vl 1"- Therefore the matrix B, above is just what we are

looking for.
2.2.3 The Least Squares Problem

[n this section we show how solving the least squares problem allows us to deal
with the rank-deficient case using the Singular Value Decomposition. The general
context of a least squares problem is: Given an m x n matrix A and an m-vector b.
we want to find an n-vector x such that the 2-norm of the residual vector. ||Ar — b|[..

is as small as possible. It is usually written as:
Ir(z)llz = min{[Az — b]|2. (3)
Let A = U'SVT be the SVD of A, then we have

Ar=b6 = USVvTr—p
= U(SVTe)=U(UTh)

= U(Sy-o)

where y = V'Tr and ¢ = U'Tb. Since U is an orthogonal matrix, U preserves lengths.

That is. [|[[(Sy = ¢)ll2 = Sy = cll2- Then ||4z — bl|2 = ||Sy ~ c||2. So the use of the



SVD of A has reduced the least squares problem from a full matrix A to one with a
diagonal matrix E: Find y such that |Sy — c|f; is minimum.
The reduced problem is very easy to solve. We have:

r

ISy —cll=> lowi—cl*+ Y [l (4)

=1 i=r+l

where R.(A) =r. The vector

)
Y2
y= .
Yn
is given by:
- _fcilo ifi <r
vi= {arbitrary ifi>r"

As we can see the y; for > r do not appear in equation 4. Therefore they have no
effect on r. The y; for / > r are chosen arbitrariiy: therefore in the rank-deficient case
we have infinitely many solutions to the least squares problem.

The calculation above is summarized in [6] as follows:
Algorithm 2.2 Least Squares using SVD

1. Find the SVD of A:

<
c
2 Forme=UThb=| 2
Cn
n
Y2 .
3. Compute y=| °" | . choosing
Yn
ci/o; ifi<r
¥ = { / /

arbitrary ifi>r’

10



{. Compute the family of least squares solutions:

r=V1y.

From step 3 we can say that in the rank deficient case. the minimum 2-norm
solution is the one by setting y; = 0 for { > r. Therefore we can express the solution

as follows:

=1

As we can see. using SVD to solve the least squares problem is fairly simple and
it works for matrices with full numerical rank and rank deficient matrices. We will

present QR with column pivoting in the next section.

11



3 QR Factorization with Column Pivoting

In this section we will define the algorithm QR with column pivoting developed
by Golub in 1965. We will show how to use it to find the numerical rank of an m x
n matrix A and give an example where the algorithm fails. QR with column pivoting
is a fairly efficient algorithm. but it does not always determine the correct numerical

rank for matrices of a certain type.

3.1 The QR Factorization with Column Pivoting Algorithm

Let u € R™ be nonzero. An n x n matrix H of the form

is called a Householder matrix. H has the following properties:
l. |Hcz|l2 = [|z]|; for every r € R".

2. H is an orthogonal matrix.

3. H* =[.
1. H has a simple eigenvalue —1 and (n-1)-fold eigenvalue 1.
5. det(H) = —1.

Lemma 3.1 Given a nonzero vector z # e, there always erists a Householder matriz

H such that Hr is a multiple of e;.

Theorem 3.1 Let A be an m x n matrizr with numerical rank r. Then there erists

an n x n permutation matrir [1 and an m x m orthogonal matriz Q such that

T4 _ ( Bu 312)
@ AH—( 0 Ry

where Ry is an r x r upper triangular matriz with nonzero diagonal entries. If

(math) rank of A is r. then Ry = 0.



Proof:  Since the numerical rank of A is r. we can find a permutation matrix II such

that

All = (.'11. ".2)

where 4, is m x r and has linearly independent columns. Let
r, _(Ru
" =("g)

be the QR factorization of 4;. where R;; is an r x r upper triangular matrix with

nonzero diagonal entries. Then

Rll RIZ) °.

T - T T —
QT Al = (QTA,.Q .42)—( 0 R

Now we are ready to present the algorithm QR factorization with column pivoting.

The following algorithm was presented in [6].

Algorithm 3.1 (QR Factorization with Column Pivoting) Let 4 be a real m
X n matriz. The following algorithm computes the QR factorization with column

pivoting of A.

[. Find the column of A having the mazimum norm. Form a permutation matric
[Ty such that first column of AIl; has the marimum norm. Form a Householder

matrir Hy, such that

AW = H A,
has zeros in the first column below the (1.1) entry.

). Find the column of the marimum norm of the submatriz A1) obtained jrom A
by deleting the first row and the first column. Form a permutation matriz [i,

such that the first column of .-lz”fig has the marimum norm and then construct

13



the permutation matrir where

I,
Now construct a Householder matrir H, so that

A® = £, AN, = Hy H AL,
has zeros in the second column of A; below the (2.2) entry.

o The kth step can now easily be written down.

® The process is continued until the entries below the diagonal of the current

matriz all become zero.

Suppose r steps are needed. Then at the end of the rth step. we have

Ry, 312) .

(r)y _ =07 = =
AV = L H AL T = QT Al = R (0 R

The preceding method requires 4mnr — 2r?(m + n) + 4r3/3 flops [11]. which is a

lot cheaper than the SVD that requires 2mn? + 4n3 [4] flops.

3.2 Methods and Problems with Using QR with Column Piv-
oting to Find the Numerical Rank

In this section we discuss how to find the numerical rank of a matrix A by using

QR with Column Pivoting and show an example where it fails to reveal the correct

numerical rank of a certain type of matrix.

Let 41 = @ (I e
22

where Ry; is r x r and Ry is "small” in some measure. Then we can say the

) be the QR factorization with column pivoting of A.

numerical rank of A is r. As we can see calculating the QR with column pivoting is

much cheaper than calculating the singular value decomposition.

14
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Figure 1: Kahan's example : n=30. ¢=0.2

* : the absolute values of the diagonal entries of the matrix R of QR with column
pivoting, o : singular values.

Unfortunately. this algorithm does not always give the correct numerical rank.
An example given by Kahan (1966) shows that a matrix can be nearlv rank-deficient
without having small || Ra2||, at all.

Consider

A =diag(l.s.---.s"Y) |

with ¢? + s =1, ¢,s > 0. When n=50. c¢=0.2, we have g,(4) = 10~*. Let All = QR
be the QR factorization with column pivoting of A. Since r,, =~ 10! which is not
small. it has no small R,; block for any value of p where R,; is p x p. Figure 1
compares the absolute values of the diagonal entries of the matrix R of the QR with

column pivoting algorithm with the singular values.

13



4 Foster/Chan Rank Revealing QR Factorization

The singular value decomposition and the QR factorization with column pivoting
are the two most widely used methods for determining the numerical rank of an m
x n matrix A. But as presented in the previous sections. QR with column pivoting
does not always work and the singular value decomposition is fairly expensive. In this
section we will present an algorithm that we call Foster/Chan RRQR and some of its
applications. This algorithm was proposed by Chan and Foster independently and it
works well with Kahan's example. In Section 4.1 we present Foster's algorithm: in
Section 4.2 Chan'’s algorithm: in Section 4.3 some numerical examples: and in Section
4.4 some applications of the Foster/Chan RRQR and numerical examples.

The proofs of the first two lemmas will not be presented since they can be found

in most numerical linear algebra textbooks.

Lemma 4.1 Let 4 be an m x n real matrir with singular values oy, >0, > --- > o,
and B a matrir consisting of any n-1 columns of A with singular values 6, > 6, >

«e- 2 Gn-y. then

0,20, 202262> -2 68p1 > On.

From the above lemma we can say that if B is a matrix consisting of any k columuns

of A then onin(B) = ox(B) < or(A).
Lemma 4.2 (Courant-Fischer) Let A be an m x n real matriz, then
Tn-k+1(-1) = min (max lAz]l2/ | zll2)-

where the minimum is over subspaces S of dimension k.

Rll Rl2
0 R

matrir 4 where m > n. Il is a permutation matriz, Q is an orthogonal matrir. and

Lemma 4.3 Let AIl = Q( ) = QR be a QR factorization of a real m x n

Ry, is an upper triangular matriz. Then A and R have the same singular values.

16



Proof:  Since Q and II are orthogonal matrices. QQT = QTQ = [ and M7 =
7 = . Since

(QRT(QR) = RTQTQR = RTR.
QR and R have the same singular values. Since

(AM)(AMT = AONTAT = 44T,

we can say that (AII)7T and A7 have the same singular values. This implies that A
and AII have the same singular values (since a real matrix and its transpose have the

same singular values). Since
l. AIl = QR and

. R and QR have the same singular values and

(8]

3. A and AII have the same singular values,

we can conclude that A and R have the same singular values o.

4.1 Foster’s Algorithm

[n this section we present Foster's algorithm for determining the numerical rank
of a matrix A and compare the accuracy of this algorithm to the singular value
decomposition.

The algorithm computes approximate singular vectors wi for k =n.n—1..... and
corresponding approximate singular values e, defined by

_ Al

= .withe, <epy <---.
w2

Let € > 0. If the first ex less or equal to € is €;_p41. SO that

ex<ek=n-p+l.....,nande,_, >e. (3)

then .V,(4) = p is determined by the algorithm. For the approximation to be satis-

factory from this point of view. the following two conditions must be satisfied. First

ex Lvor(A)fork=n—-p—1,..., n (6)



with some fairly modest value y. Secondly. since the true singular vectors are orthogo-
nal(i.e., maximally linearly independent). the approximate singular vectors must also

be far from linear dependence. To insure this. it must be true that

-1
~—

cond\(Wn_ptp----. wn) = condy (W) < C. (
where C is a modest constant.

Theorem 4.1 Let L, be the number of singular values of A less than or equal to
. and let Ly be the number of singular values less than or equal to vnCe. If the
conditions (5) and (6) are satisfied. then p > L,. If conditions (5) and (7) are
satisfied. then p < Ly, where p is as defined above. If (5). (6), and (7) are true and

A has a gap in its singular values with no singular values in
€
—<s<nCe (8)
Y

then p = N,(A4).

Proof: (i) We want to show that (5) and (6) imply that p > L,.
Since €n_p < YO0n—p. €ap/7 < Taop. Since € < enpand €np/v < Oney . /v <
€n-p/7 < Onp. S0 €/v < gn—p. Therefore p > L,.

(11) Now we want to show (3) and (7) imply p < L,.

Let S be the subspace spanned by wn_ps1....,w,. Then for w=Wye S

”.-hL"”z = ]IAWy”z = ”.'{(wn_p+1y1 + -4+ wnyp)”2

IN

lyAwn—psilla + - + llypAwa|l
p
z | Awn—p+i ¥ill2

=1

p
< Dol Awnpwill2llyill2
=1
P
< max{[|Awn_psilla: fori=1,....p} 3 |yl
=1

13



max{|[Awn_psill2: fori=1..... pHlylh

= max{|lwn_psillo€nopte: fori=1..... pHiyll
< max{llwnpudhe: fori=1.....pHgl
= e(max{|lwn-psllz: fori=1.....pHllylh

using (5) and properties of matrix norms. Since cond; (W) = [|W||; max(||z||,/I|% =|j:)
(where = # 0) is a property of condition numbers. C > (||W|[,||yll1/llwili). This
implies that 1/[jw]ly < (C/|IWhlyll1). We know ”\—j%'— < |lzfl2 for any n-vector x.

Therefore for any w € S.

IAwlz/llell: < Vee(max{llwapeillz = fori=1.....p})lylli/llwll,

< Vae(max{||wapsillz : fori=1.....pHllylLC/UW i ll)
vne(max{||wn-psilla: fori=1..... p}HC
(maxlllenplls - for i= Lo .p})
< VneC.

Since S is a subspace of dimension p. by the Courant-Fischer theorem the singular
value 0n_py) of A satisfies 0,41 < \/nCe. Therefore A has at least p singular values
less than or equal to \/nCe. So p < [,.

(ii1) Finally we want show that if (3), (6). (7). and (8) are true. then p = V,(1).
If (5). (6). (7). and (8) are true. then L; = [yand p= L, = L, = V,(4) o.

[f the rank determination is based on approximate singular values and (1) is true.
then the estimated ¢ nullity determined by this algorithm should be p. If (3). (6).
and (7) are true and ¢ is chosen to be in a sufficiently large gap between the singular
values of A as it is in (8). then the e nullity calculated by this algorithm and the €
nullity calculated by the singular value decomposition are the same. Even if there
is no sufficiently large gap between singular values. Foster felt this would not be a
serious limitation in his algorithm since in this situation even using the singular value

decomposition the € nullity is unclear [10].

19



Now we are ready to present Foster's algorithm. In order to present Foster’s

algorithm. we must assume that a parameter ¢ is given. The following algorithm was

proposed in [3].

Algorithm 4.1 (Foster’s RRQR) We want to determine the ¢ nullity p of an m

x n matriz 4 and an € null space S of A.

[

Let An = A, k =n. p=0. Calculate A = QR the QR factorization of A. Use
the LINPACK subroutine SQRDC [7] (with or without the pivoting option)- or.

the case of a sparse matrir 4. the algorithm of [9]. Let R, = R.

Compute wy the approrimate singular vector of Ry corresponding to e. Use the
LINPACK subroutine STRCO [7] -or., in the case of sparse matrices. its sparse
modification [13].

[fex <€ let p=p+ 1. and let Wi be an n-vector formed by erpanding w;
putting zeros in elements corresponding to columns of A dropped in forming 4.
Now drop the column of Ry (and Ay) corresponding to the component of wi with
largest magnitude. and retriangularize the result using Givens transformations

to form Ri_,. Let k =k — 1 and go to 2.

If ex > €. stop. Let the current p be p. the calculated nullity of A. and let

W =wy fori=n—p+1,....n. then S = span {wWapsrs---. Wn}.

Sine R.(A) =n — N/(4)and .V, = p. R(4) = n — p. In a later section we show

that this algorithm will work with Kahan's example.

When A is a sparse matrix. the SVD is inefficient since excessive fill-in occurs.

Excessive fill-in is also often a problem with the QR with column pivoting algorithm.

Foster’s algorithm preserves the sparsity of the matrix. Therefore. Foster believes

that in the case of sparse matrices when p is not too large, his algorithm will be more
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efficient than SVD and QR with column pivoting. In the case of dense matrices.
he believes his algorithm would be ~more efficient than the SVD and comparable
to (small p) or somewhat less efficient than (p not small) SQRDC [7] with column

interchanges™.

4.2 Chan’s Algorithm

Chan’s algorithm is basically the same as Foster's algorithm with a few minor
differences. In Chan's paper. he first presented the numerical rank one deficiency

case and then described an algorithm for the general rank deficiency case.

Theorem 4.2 Let 4 be a real m x n matrir. Suppose that we have a vector r € R"
with ||z|[2 = | such that ||Ar|l; = 4. and let II be a permutation matriz such that if
O7r = y. then |yn| = |lyllw- Then if ATl = QR is the QR factorization of AIl, then

[ran] < Vn4.

Proof:  Since ||[ITz]|; = ||zf|]2 and 1Tz = y. we have ||y|2 = [|z|l2- Since [y, =
yit-+yl=1loyi+ - +yi =1L Since |ys| = |lyll» and y? +--- + y2 = L. we
have |y,| > \/%. So we have

QTAr = QTANN s = Ry = ( E ) .
FanlYn
Therefore.
l
§ = flAzll: = 1QT Azll2 = |Ryll2 = [ranynl = [Fanllynl = \/;lrnnl-

Then we have |r,,| < /ré o.
When A is numerical rank one deficient, let v € R™ with ||v|l2 = 1 be the right
singular vector of A corresponding to the smallest singular value o,. Then we have
lAellz = on.
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Therefore by the theorem above. if we define the permutation [I by
(I e)al = flefl«

then AIl has a QR factorization with a pivot r,, at least as small as \/no, in absolute
value.

Since we only need the permutation matrix [T and v. we don't need to calculate
the SVD of A in order to find v. There are methods to compute an approximated v
from which the permutation matrix II can be determined. but we won't discuss those
methods here. See [1.15] for the methods.

Now we are ready to present Chan's algorithm. As with Foster's algorithm. in
order to present Chan's algorithm we must assume that a parameter € > 0 is given.

The following algorithm was proposed in [4].

Algorithm 4.2 (Chan’s RRQR) Let 4 be a real m x n matrir. We want to find
the € rank of 4.

~

. Compute a QR factorization of A: AIl = QR.

Q2 Lleti=np=0 Q,=Q.II, =1 and R, = R.

Rll RIZ

3. Let R; =( 0 R

) where Ryy is i x { and Ry, is (m-i) x i, and Ry is (m-i)

X (n-i).

4. Compute the singular vector v; € R' of Ry, corresponding to omin(Ry1) with

”U,’”z =1, and set §; = Omin( R11).

[famin(Rll) S €. let p=p+ L.

St

6. Compute a permutation matrir P; such that |(PFv;)i| = || PFvill = [[ill -
7. Assign w; = <L0‘) € R" to the ith column of W.
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P, 0

8. Compute W = PTW . where PT = ( 0 I

) and W = [w,.-- - . w,)].
9. Compute the QR factorization: R, P, = Ql[f“.
10 Hl’_[ = H,P‘

11. Qi—l =Qi(Q01 ?)

f{u Q{RIZ

12 B = (g Raz

). Let i = i-1 and go to 3.
13. If omin(Ry1) > €. stop and let R = R;. 1 = I1;, and Q = Q;.
Then R.(A)=n —p.

Theorem 4.3 The matrit W = [wp_ps..... ws] € R**? computed by Algorithm

4.2 satisfies ||Allwills =96, < o;(A) fori=n..... n—p+1.
Proof:  We will prove this theorem by induction on p: when p=1.

[Allwallz = (QQ:Rua]l2
= ||Ruall2

= amin( R)

where the last bound is arrived at by the fact that R has the same singular values as
A. Suppose for some p=k. | Allwn—ts1llz = Snoks1 < Fnks1(A). Then for p=k+1,

first note that the permutation matrix I[I = Hn_kpn_k. so we have
[Allwn—kllz = || ADnek Paokwn_kl|2
< Ak Pack PT i il2
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= || Aln—ktin_f2

= NQuosBaci () I

= 1% R (7w
= |[Ruvall

= Omin(R11)

= Jn—k

IA

an-k( "l)

where the last bound is arrived by using Lemma 4.1 and the fact that R and A have

the same singular values. This completes the proof o.

Theorem 4.4 Let AIl = QR be the RRQR of A computed by Algorithm 4.2 where
the numerical rank is n-p. Then the elements of the lower p X p upper triangular

block of R satisfy

J~1
Iril < o i+ 2ok (9)

k=t
< 27g/n forn—-p<i<j<n. (10)

Proof:  From the theorem above, we have. forn —p < i< j < n.

oj(4) 2 [|Allwjll. = [|QRuwjll

| Ruw;ll2
2> I(ij)il
= | ri(w; )k

k=i

g-1

rij(w;); + 3 riw)el
k=i

J—1
= [rij(w)); = (=Y ri(w;)e)l

k=t

24



71—t
2 frylwy),| = - Z"ik(“-

k=i
1~1
Iri.l(wj)Jl - Izrik(u- )k
k=it
This implies |ri,(w;),] < o; + | 12! ric(w;)x|. Since [(w;);| = llw;l|e 2 -‘717 we have
riy ()] < Z lm (w,
l(wj)jl ( .I L_, J)J'
< 0’,\/;+ Z friel.
k=t

Now we will proof (9) by induction on j: when j=i. Iril € o0Vi = oiV/i +
izt 2% g /k: when j=i+1.
Iricetl] < oipVi+ 1L +|ry
oirivi+1 +Za'k\//;

k=t
= oiVi+l +Z‘2i—k0’k\/z
k=:
(s+1)~-1
= oavi+l+ Y iA1=k /.
k=t

Suppose for some j=m. |rim| < omy/m + 05 2™ %0 /E for all | where n — p <
t £ j. Then for j=m+1. we have
IFimet] < OmaVm+ L+ ri| +- + [rim]
= OmpVm+l+toVitouVitl+3Y 2750 VE

k=i
m—1
e OmVm+ Y m-l-ko VE
k=t
t+1
= OmpVm+ 1+ 2% %0 Vk 4 o1 VT + 2 +Z7‘+‘ “*oVk
k=t k=t

c+omV/m + Z m-lkg Vk

k=t

(™M)
1]



42 42
/ , ) Ji+2-k . /3 E . -k T
= Omearvimn—r I + ..).‘+ 0’/\.\/51-0',‘.(.,3\/[ + 3 + E 2'+2 kO'kVL’

r=t k=2

+

’~

m-—1

+ - +G‘m\/-r;+ Z 2m-l—k0';\-\/};

k=1

= OnuVm+ 1+ 2" %o Vk

k=:
(m+1)-1

= OmuVvVm+1+ Z Amt -1k /h

k=1

Therefore. we have shown the bound in (9). Using the bound oxvk < gi\/n in each
term in the sum in (9). we get the bound in (10) o.

The bound for the element |rn_,41.a| grows like 2°. For large values of p. this

bound can be quite large in theory but numerical examples have shown otherwise

[4]. When a matrix A with small p. the bound in the theorem above should be quite

reasonable. For example. if p=3. then we have. forn -3 < i < j < n,
max |r;;| < 2/no; = 8y/no;.

So the small singular values of A will be revealed in the triangular factor R. Chan
believes for matrices of low rank deficiency. his RRQR is guaranteed to produce rank
revealing QR factorizations.

Chan’s algorithm consists of three main parts: the computation of the initial
QR factorization, the computation of the singular vector v; of R, corresponding to
Omin( R11) at each iteration. and the computation of the QR factorization of RP, at
each iteration.

[n Chan’s algorithm the permutation P; is needed at each iteration. In order to
find P, we need to compute v;. One can use a few steps of inverse iteration [3. 15] to
compute an approximated v;. Then it is not necessary to compute the SVD of Ry,

in order to find v;. By ignoring the lower terms. the computation of the initial QR
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factorization takes n?(m — n/3) flops (supposing that Q need not be accumulated) 4]
and the computation of v; at each iteration takes /n’p flops where [ is the number
of inverse iterations used at each iteration (usually [ = 2 is sufficient in practice) [4].

[f we use the Householder transformations to factor R,; P at each iteration. then
the algorithm would be extremely inefficient. Givens rotation is much more efficient.
Supposing the worst case in each iteration. i.e.. that the first column of Ry, is to
be permuted to the last column every time. this takes 2np flops [4]. The total flop
count for Chan’s algorithm is n*(m — %) + 4n®p(supposing [ = 2) [4]. In the worst
case where p=n. the total flop count for Chan’s algorithm is mn? + %n? [4]. It is still

much smaller than the computation of SVD which takes 2mn? + 4n® flops [4].

4.3 Numerical Examples

In this section we will show some examples to illustrate that RRQR does reveal
the numerical rank of an m x n matrix where m» > n. All numerical examples were
done using MATLAB. The MATLAB program RRQR was written by Bischof and

Hansen in 1991. We will present eight examples:
o Matrix A is a random 50 x 30 matrix.

Matrix B is a 30 x 50 Kahan's matrix with ¢ = 0.2.

Matrix C is a 50 x 50 Hilbert's matrix (*).

e Matrix D is a 50 x 50 Lotkin's matrix (*x*).
e Matrix E is a 50 x 50 random svd matrix (* = *) with one large singular value.

Matrix F is a 50 x 50 random svd matrix (* * *) with geometrically distributed

singular values.

(8]
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o Matrix G is a 50 x 50 random svd matrix (* * =) with uniformly distributed

logarithmic singular values.

e Matrix H is a2 50 x 50 random svd matrix (* * ) with a large gap between

singular values.

+ Hilbert’s matrix is a square matrix with elements 1/(i+j-1). It is a famous example
of a badly conditioned matrix.

** The Lotkin’s matrix is the Hilbert matrix with its first row altered to all ones.
This matrix is unsymmetric. ill-conditioned, and has many negative eigenvalues of
small magnitude. [ts inverse has integer entries and is known explicitly.

* * * A\ random svd matrix is a random matrix with pre-assigned singular values.



-2 QR with column pivoting. = : Foster/Chan RRQR. o : singular value.
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Figure 2: 50 x 50 random matrix



-2 QR with column pivoting. * : Foster/Chan RRQR. o : singular value.
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Figure 3: 50 x 50 Kahan's matrix c=0.2
Note that the absolute value of the smallest diagonal entry of R of QR with column
pivoting is 0.4, and of Foster/Chan RRQR is 107, which is approximately the smallest
singular value.
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-2 QR with column pivoting. * : Foster/Chan RRQR. o : singular value.
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Figure 4: 50 x 50 Hilbert's matrix
For n > 19. the values are limited to 10~'€. the machine precision.
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-2 QR with column pivoting. = : Foster/Chan RRQR. o : singular value.
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Figure 3: 50 x 50 Lotkin's matrix
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log of singular value or abs(diag(R))

-t QR with column pivoting, = : Foster/Chan RRQR. o : singular value.
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Figure 6: 50 x 50 random svd matrix with one large singular value
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- QR with column pivoting. # : Foster/Chan RRQR. o : singular value.
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-2 QR with column pivoting, * : Foster/Chan RRQR, o : singular value.
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-: QR with column pivoting. * : Foster/Chan RRQR. o : singular value.
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From the graphs we can see that RRQR works for Kahan's matrix where QR with
column pivoting fails. and works for other matrices as well. Therefore. RRQR is a
good alternative to SVD since it is cheaper. In next section we will discuss some

applications of RRQR.

4.4 Applications of Foster/Chan RRQR

As we saw in the previous sections, the Foster/Chan RRQR algorithm is a good
alternative for finding the numerical rank of a matrix A since it is more efficient than
the SVD and works where QR with column pivoting fails. In this section we will
show that in addition to determining the numerical rank of A. Foster/Chan RRQR

can be used to solve the subset selection problem and the least squares problem.
4.4.1 The Least Squares Problem

In this section we will discuss solving a least squares problem using Foster/Chan
RRQR where the matrix A is ill-conditioned. When A is well-conditioned. the stan-
dard method would be a good way to proceed. Therefore. we not consider the well-
conditioned matrices here. We also compare the solutions given by SVD and Fos-

ter/Chan RRQR. Since we compare the two solutions, we use the following notation:

I,.q4 = solution - using SVD,

® ., = solution - using Foster/Chan RRQR,
® r,.q4 = residual corresponding to r,.q,

® r..qr = residual corresponding to z,rq.
In a previous section, we showed that

r Tb
Tspd = Z g‘fz’;. where R,(A) =r.

=1 L

The r,.q can always be computed from the SVD of A, but it is too expensive since

only a fraction of the information provided by the SVD is used. In [3]. it was shown
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that z,.4 can be computed efficiently by the Foster/Chan RRQR algorithm. We want
to show that instead of using the Foster/Chan RRQR algorithm to compute r,4. one
may define a least squares solution in terms of the Foster/Chan RRQR algorithm.

The following algorithm was presented in [3].

Algorithm 4.3 Least Squares using Foster/Chan RRQR

I. Find the Foster/Chan RRQR of A:

- Ry Rl2)
.m_Q( oAl

2. Find a right orthogonal transformation P to annihilate R,,, i.e.

(RuR12) P = (R),0) where size(Ryy) = size(Ry,).

Rit 0
3. rq,=HP( 1 O)be.

Let r be the numerical rank of A and q be the number of inverse iterations used to
compute accurate singular subspaces (usually q is less than 4 [3]). [t takes (2m +4n +
2q(n—r)+1)n* flops [5.11] to compute ry4 and (2m —2n + Y (n—r)+1)n? flops [3] to
compute I,.... For the case of m = n. it takes about (6m+3(m—r)+1)m? (when q=4)
flops to compute z,,4 which is more expensive than the cost of (3m + t(m —r)+1)m?
flops for computing the r,.,. In the case where m > n. the computing of ry.q is
about (2m +38(n — r) + 1)n? flops which is about the same as the computing of Lrrgr
((2m + Y(n = r) + 1)n?). In the extreme case of r = n. it takes (2m — 2n + 1)n?
to compute r,., which is still cheaper than the cost of (2m + 4n + 1)n? flops for

computing the ry.4.

Theorem 4.5 The SVD and Foster/Chan RRQR solutions are related by

Irsvall2

r

).

12sed = Lrrrllz < | R22ll2l| B 22l 2s0all2 +
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The residuals satisfy

”rsvd”'.’

).

”rsud - rrrqr”‘z S ”82'2“2(”‘[31-‘4“2 +

r

Proof:  Please see [3] o.

. W .- .
Let W = (W’l) = (woer-.... w,] where W5 is an n-r x n-r upper triangular
2
matrix and w; for i = n —r...., n are as calculated in step 8 of Chan’s algorithm.

From [3] we know ||Rz|l2 < oreiv/n = rl|W5 Y2 and W5t is well-conditioned (in
theory W;! could be ill-conditioned when there is no significant gap between the
singular values. but not so in practice). Since W;' is well-conditioned. ||[W; |, is
not too large. Then as long as .4, is small, the theorem above guarantees that
SVD and Foster/Chan RRQR will produce the solutions with the same magnitudes
residual norm and solution norm. Therefore. we can conclude that both methods
work equally well in many circumstances for solving the rank deficient least squares
problem with well-determined ¢ rank. but using Foster/Chan RRQR is cheaper than

using SVD.
4.4.2 The Subset Selection Problem

As we mentioned in a previous section in order to solve the subset selection prob-
lem the approach of finding a permutation matrix [T such that the submatrix consist-
ing of the first r columns of AIl is as well-conditioned as possible where the R,(1) = r
is more efficient than examining all (:) possible combinations of the columns of A.
The Foster/Chan RRQR algorithm produces such a permutation matrix I[I. In this
section we compare the subspace spanned by the basis produced by using the Fos-
ter/Chan RRQR to solve the subset selection problem and the subspace spanned by
the basis produced by using the SVD to solve the same problem that we presented

in a previous section.
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Theorem 4.6 Let S(U'y) denote the subspace spanned by {u;.. ... u-}. the left singu-
lar vectors corresponding to singular values o,. . ... o.. and let Byy and B,.,. denote

the submatrices consisting the first r columns of All,.q and All, 4 respectively. Then

sin8(S(L7). $(Boa)) < orp||Vi7 207 (11)

sin H(S(U,).S(B,.rqr)) < a',.HHRI_ll”g (12)

where 4 = U'S (‘.“ ‘.‘2) is the SVD of A. and (‘-.“ ‘.}2) = ., (‘,“ ‘.”).
Var Vi Vo 22 Vo V22

R R
and All,.,, = Q ( . RZ) .

Proof: Please see [3] o.

From [3] we know Foster/Chan RRQR tends to produce a well-conditioned V7.
so [[Vi7"]l2 is not too large. Since Foster/Chan RRQR guarantees a well-conditioned
Riy and ||R} |2 is of the order o7 [5] and || Vi7" ||, is not too large. the theorem above
ensures that the sine of both subspace angles is of the same order as o,,,/c, [53]. If
o-+1/0, is small. then from the theorem above we can say both S(B.q) and S(B,r,r)
will be close to the subspace S(L%.). and the angle between S(B,.4) and S( B, ) will
be small. Therefore, we can conclude that even though the SVD and Foster/Chan
RRQR subset selection algorithms may not produce the same set of columns. the
subspaces spanned by these two sets of columns will be almost the same as long as

Or+1/0- is small.
4.4.3 Numerical Examples

The Least Squares Problem
[n a previous section we showed that the Foster/Chan RRQR can be used to
compute the least squares problem. and as long as o, is small. SVD and Foster/Chan

RRQR will produce the same solutions. In this numerical example we want to show
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that the theory is accurate. Let € = 10~'°. \Ve generated a rank deficient matrix A
with numerical rank 5 and og =~ 107'2. We first computed the Foster/Chan RRQR
and SVD of A. and then displayed the singular values and the absolute value of the

diagonals of R:

Singular Values  Abs(diag(R))
4.4092 2.1622
1.5086 1.13862
1.0178 9.0364 x 10!

7.8377 x 107t 7.9071 x 10!

6.0433 x 10!
1.5441 x 10-12
2.1799 x 10~

7.0184 x 10t
1.0000 x 1012
1.0000 x 10—

Next. we computed the solution by using both SVD and Foster/Chan RRQR and

computed their difference. We used

(4.6445 x 10~t

9.4098 x 10!

5.0084 x 1072

7.6131 x 107!

b= 7.7020 x 10!
] 8.2782 x 107!

1.2537 x 10!

1.5868 x 102

6.3864 x 10~

\3.6825 x 10-! /
Here is the display of our results:

Lsvd Lrror Lsvd = Lrrgr
—1.6106 x 10! | —1.6106 x 10~ | —6.6613 x 10~'®
3.9657 x 10~! 3.9637 x 10~! 3.1641 x 10~%°
4.3621 x 10~! 1.3621 x 10! 3.1641 x 1079
—6.7157 x 1072 | —-6.7157 x 10~ | 5.8009 x 10~5
3.8446 x 1072 | 3.8446 x 1072 | —1.3892 x 10~
1.2140 x 10~! 1.2140 x 10! S.1879 x 10~
2.6964 x 10~! 2.6964 x 10~' | —1.2604 x 10~

As we can see. since o was small (107'?) the solutions computed by SVD and Fos-

ter/Chan RRQR are approximately the same. We can say that in addition to finding
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the numerical rank of A. the Foster/Chan RRQR is also a pretty good alternative to
SVD for the least squares problem.
The Subset Selection

In the previous section we showed that even though the SVD and Foster/Chan
RRQR subset selection algorithms may not produce the same set of columns. the
subspaces spanned by these two sets of columns will be almost the same as long
as 0,41/0, is small. In this numerical example we want to show that the theory
is accurate. The matrix A used in this example was collected by a consulting firm
to determine the customer satisfaction for a company which makes computer file-
servers. Because of the issue of confidentiality involved in the study. we were not
allow to discuses the study in detail. .

The survey consisted of nine sets of problems. The sets range from service, to
warranty. to cost. Each person included in the survev must be familiar with the
manufacturer and was asked whether or not the manufacturer is the most familiar
brand. They were divided into two groups accordingly. The size of the matrix was
63 x 63. It just happened that the number of people who are familiar with this
manufacturer the same as the number of questions asked.

Let ¢ = 107°. We first applied the Foster/Chan RRQR and found that the
numerical rank of A is 53. Second. we found the set consisting of the 53 linearly
independent columns of A relative to e. Third, we found the mean for each person for
each set of questions. Fourth, we ran correlation on the means computed in step 3.
Fifth, we found the mean for each subject for each set of questions using all problem.
Finally, we ran correlation on the means computed in step 4. These correlations
should help us to see if there are any interactions between the problem sets. Below

are the results of the correlations:



problem set

1

2

2

1

-

2

1

l

0.7160032

0.6150475

0.48327015

0.54976939

0.7160032

l

0.71499467

0.45387582

0.63878132

0.6150475

0.71499467

1

0.34518908

0.63272482

0.48327015

0.45387532

0.34518908

l

0.32479652

0.54976939

0.63878132

0.63272482

0.32479652

L

0.61997587

0.60592528

0.5235081

0.57001882

0.53173926

=1 O Ut} ] 0}

0.42843306

0.61169924

0.43606047

0.17085136

0.61047936

0.45911352

0.42890526

0.40485433

0.40732047

0.47192961

Ol

0.52013991

0.55428718

0.40097988

0.69079514

0.54311736

-

Problem Set

6

]

3

9

—

0.61997587

0.42843306

0.45911352

0.52013991

0.60592528

0.61169924

0.42890526

0.55428718

0.5235081

0.43606047

0.40485433

0.40097988

0.57001832

0.17085136

0.40732047

0.69079514

0.58173926

0.61047936

0.47192961

0.54811736

0.32805572

0.32727623

0.639572

=IO Ut | o] 1

1

0.37113679

0.41469339

0.37113679

l

0.48714539

Nel e

0.41469389

0.43714539

l

Table 1: Correlation of the linearly independent columns relative to ¢

Since the data was first cleaned and analyzed by a professional consulting firm.
we should not expect too much "noise’. As we can see, the results of the two sets of
correlations above have no significant difference. If this set of data had not been first
cleaned and analyzed, then we would expect bigger differences between them.

We showed in a previous section that even though the SVD and Foster/Chan
RRQR subset selection algorithms may not produce the same set of columns. the
subspaces spanned by these two sets of columns will be almost the same as long as
or+1/0- is small, where r is the numerical rank of A. This is the case here. Since
it takes too much space to list the two sets of columns produced by SVD and Fos-

ter/Chan RRQR. we will solve for the angle between the two subspaces spanned by
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log of singular value or abs(diag(R))

-20 A n 2 —

10" ’-u\gh. ]
n
-]
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0 10 20 3o 40 50
singuiar value number or diagonal index

Figure 10: Data of the customer satisfaction for a company which makes computer
file-servers

= : Foster/Chan RRQR. o : singular value.

these two sets of columns. We found that 6 = 6.3220 x 10~3. Since the angle between

the two subspaces is small. we can say the two subspaces are approximately the same.

14



problem set

1

2

2

1

D

1

0.71638414

0.60798981

0.4907319

0.54448708

0.71638414

l

0.71927995

0.47020048

0.6400209

0.60798981

0.71927995

l

0.37647685

0.63733332

0.4907319

0.47020043

0.37647685

l

0.35604182

54448708

0.6400209

0.63733332

0.35604182

1

0.61433934

0.60824254

0.52703724

0.61798613

0.5800749

0.43482289

0.6162206

0.44465903

0.1896265

0.60998379

0.45935835

0.42985359

0.40861494

0.40579574

0.47376792

O] ) ~1| O] Oy b o) 1] —

0.5167409

0.55310963

0.40444098

0.7236291

0.54497613

Problem Set

6

{

8

9

l

0.61433934

0.43482289

0.45935835

0.5167409

0.60824254

0.6162206

0.42985359

0.55810963

0.52703724

0.44465903

0.40861494

0.40444098

0.61793613

0.1896265

0.40579574

0.7263291

0.5800749

0.60998379

0.47376792

0.54497613

l

0.33064481

0.33449965

0.63914147

= OO O] W= ] 1

0.33064481

1

0.36794556

0.41171898

0.33449965

0.36794536

1

0.49405885

=) N

0.63914147

0.41171898

0.49405835

1

Table 2: Correlation of all the data



5 Strong RRQR

In 1992. Hong and Pan introduced a rank revealing QR factorization such that

Tmin( Rut) \/r(n = r) + min(r.n = r) 2 o,(A).

Tmax( Raz) < 0r41(A) \/r(n = r) + min(r.n — r)

where AIl = Q (%“ gu
22

by Hong and Pan’s algorithm and r is the numerical rank of A [16]. As we can see.

) is the rank revealing QR factorization of A calculated

the bound computed by Hong and Pan’s algorithm is polynomial. whereas the bound
computed by the Foster/Chan RRQR is exponential. However the computer time
required by Hong and Pan’s algorithm could in principle grow exponentially in n [16].
[n 1994. Chandrasekaran and Ipsen presented three rank revealing QR factorizations
which all have approximately the same bound as Hong and Pang’s algorithm and
appear to be efficient in practice [2]: however Chandrasekaran and Ipsen could not
prove that the algorithms require a polynomial number of operations.

[n this section we will discuss an algorithm called strong RRQR. The algorithm
was proposed by Gu and Eisenstat in 1996. This rank revealing QR algorithm not
only reveals the numerical rank of an m x n matrix A where m > n. it also satisfies
the following three conditions:

L ai(Rn) 2 oi(A)/qu(r,n).
0;(Ra2) < 0j41(A)qu(r, n).

-V (RG Ri2)ij IS qa(r.n),

for ]l <i<rand 1< j<n-—randsome modest value f. where the numerical rank

of Aisr. qi(r.n) = \/1 + f2r(n —r), q2(r.n) = f. and Al = Q (ROH Z;:) is the

rank revealing QR factorization of A. For some rank revealing QR factorizations the

(8]
.

[V

elements of R}' Ri2 can be very large. In many of the applications, it is necessary

16



to find a basis for the approximate right null space of A. Since II (‘[F‘lﬁl'ﬁ is an

n—r
approximate right null space. if the elements of Ry} Ry, are very large. it can lead to
an unstable algorithm [14].

A strong RRQR satisfies the following: every singular value of R, is sufficiently
large: every singular value of Ry, is sufficiently small: and every element of Ry R», is
bounded. Also Gu and Eisenstat proved that a strong RRQR algorithm was at most
50% more expensive than QR with column pivoting when m = n.

We first present two algorithms that compute a strong RRQR factorization. as-
suming that the numerical rank r of A is known and f > 1. Then we present a third
algorithm that computes both r and a strong RRQR factorization. Here is some
notation that we will be using:

e Ri. R € R denote upper-triangular matrices with nonnegative diagonal
elements.
e Ri2, Ry € R™*(*~") denote general matrices.

o Ray. Ry € RIM=r)x(m=r) denote upper-triangular matrices.

e [n a QR factorization X = Q (ROH z:) . we denote R.(X) = (lf)“ g;)
and C.(X) = Ry, where X € R™*" and the numerical rank of X is r.

o Let B be a nonsingular £ x ¢ matrix, 1 /w;( B) denote the 2-norm of the i-th row
of B! and w.(B) = (w1 (B)....,w(B))T.

¢ Let C be a matrix with ¢ columns, v;(C) denote the 2-norm of the j-th column
of C and 7.(C) = (m(C),....7(C)).

e Let II;; denote the permutation matrix that interchanges the i-th column and

j-th column of a matrix.

The following three algorithms are presented in [14].

Algorithm 5.1 Compute a strong RRQR factorization , given r.
Let R:=R.(A)and 1 :=1I.



while there exist i and j such that (let(fill)/det(R“) > f.
. — Rll RIZ ) _ Rn f?rz
where R = ( ; Rﬂ) and R.(RTL;,,.) = ( ; Rn). do
Find such an i and j:
Compute R:= R.(RI;,4.) and Il := [T [1; j,.

endwhile

Gu and Eisenstat argue that since the algorithm above interchanges any pair
of columns that sufficiently increases det(R,;). there are only a finite number of
permutations and none can be repeated. Therefore the algorithm above eventually
halts. Since computation of determinants can be inefficient. the algorithm above may
not be very efficient.

The following theorem is true for every pair of R and Ri(RIL;,+.) with corre-

sponding i, j computed in the while-loop in the algorithm above.

Theorem 5.1 Let

_(Ru R [ DI _(Ru f?u)
H—(O R'zz) and R(RIL0) = (0" 52).

where Ry, has positive diagonal elements. Then

det( Ru)
det(Ryy)

= \/(Rl—lan)?_j + (7j(Ra22) / wi( Ruy))2

Proof (i) First we want to consider the special case i = r and j = 1.

G RG AR A
Let R-_1(R) = . and R, (R) = ; . Now parti-
1(R) ( 0 R(n 1)) +1(R) < 0 Rgzﬂp) p
tion (r—1)
erf b1 b2 B
J cr
Rr+l(R)= N ~ %'
¥2 Cy )
r+l
RS,
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Since R, = R,.y;. we know that det(R,,) = det(R(r Dy 7). wi(Ryy) = 71. 5, (Re) =
Y2- and (R Riz)i; = 3/
RTY b1 52 B

~ T
Ry (R i, = Jonq

2 0 Czr
A
. R(r 1) * R
Use any QR factorization. we have R;; = ( 1 —~|. Then det(Ry,) =
0 3%+ 43

det(RT')\/3? + v3. Therefore

det(R _
d:i( R:i ﬁ/ )+ (2/n)? = \ﬂRﬁl Ri2)?; + (7j(Ra2) [ wi( Rup))2.

(it} Now suppose that i < r or that j > r. Let R, Il;, = QR;, be the QR fac-
torization of R“H,’_,-. Let ng = QTngﬂl,,. Rzz = Rgng,j. and fI = diag(H,—,l’Il,,).
Then

R['I - (Rll RlZ) ['-'I = (R[[H,’_,. Rl'ZHl.J)

0 Rgz 0 R‘.Z'an J
- ( QR Q_Rlz )
0 R

SPRICI

0 R
is a QR factorization of RII. Since Ry 11, = QR,;. det(Ry 11, ) = det(QRy,). Since
Q@ and II;, are orthogonal matrices. det(Q) = +1 and det(Il,,) = +1. Since R,.
R,; both have positive diagonal entries and R,,. R,; are upper triangular matrices.
det(Ry,) > 0 and det(R,;) > 0. Since
. det(Ry)det(Il;,) = det(R\11;,) = det(QR1,) = det(Q)det(R,,;) and
det(Q) = +1 and det(I1;,) = +1 and

3. det(Ry,) > 0 and det(Ry,) > 0.
therefore we can say that det(R,,) = det(R;,;). Since

l. R =(Q 'Rl )"t = IT_R;'Q and

2. Ryl Rip = DL R QQT RNy, = IF R ReILL 5,

49
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we have (R{' Ri2)i; = (R7' Ri2)k.1. Since Ryl = M7 R;!'Q and postmultiplication by
an orthogonal matrix leaves the 2-norms of the rows unchanged. we have «i(Ry) =

«r(Ryy). Finally. we have vi(R22) = 11 (R2).

1 R o
R22)Hl.k+_l]

Ry, (Hi.r ) .
322) H[_J' Hr'r+l]

1 Rz
[222) era]

Ru B _ oy —
(5" 22) = R(RIL.,) = R((

It

&

=
ofo'o,_.;u oEU

From (i) we have

a

i) = VBT Rt + (B o R
Therefore
det(Ry;) det(Ryy)
= VRT Ri2)2y + (ni(Ra2)for (R0
= V(BT Rw)?, + (1,(Raa) fwi( B2 o -
Let

p(R.r)= _ max  \(R7'Ri2), + (7,(Raz)/wi( Rur))2.

1<i<ri<;<n—r

Then we can rewrite the algorithm above as the following:

Algorithm 5.2 Compute a strong RRQR factorization . given r.
Compute R = (R“ R”) .= R.(1) and I1 = I.
0 Ry
while p(R,r) > f do
Find i and j such that \/(RT} R12)?; + (%j(Ra2) Jwi(R11))? > f;

Compute (Rou g;:) = R (R 4) and 1 := 1111, j4,:

endwhile



Since the second algorithm is equivalent to the first algorithm. the second al-
gorithm eventually halts and will produce a permutation matrix IT which satisfes
p(R-(AIl).r) < f. This satisfies the third condition for being a strong RRQR with
q2(r.n) = f. Since in the second algorithm we no longer compute determinants in
the while-loop and there are r? possible pairs of i's and j's to choose from. the work
required for each step of the while loop is bounded by a polynomial function of the
matrix. We discuss the efficiency in more detail later in the section. but first we show

that the algorithm satisfies the conditions of a strong RRQR algorithm.

Theorem 5.2 Let

— (RBu R\ _
R= ( ; Rn) = R.(Al)
satisfy p(R.r) < f. Then
oi(Ryy) > 7i(4) Lforl<i<r,

- \/1+f2r(n —r)

and

7;(R22) < 0,0 (AW + f2r(n~r). for 1< j<n—r.

Proof For simplicity we assume that A (and therefore R) has full column rank. Let

Imax(R22)

O = n(Ri1)

(1) We want to show that

0','(.-1)
i(Ru) 2
U( l) \/I.*_f?r(n_r)

_ ( Ru )(L RﬁlRm) - P
R —( R??/a a[n—r - RIILI'

Then by [17. Thm. 3.3.16].

forl <i<r.

Let

oi(R) < ai( R)IWl2. forl < i<
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Since omin(R11) = am—";R—n‘) = amax(%z). we have 0',-([?1) =o0i(Ry)for 1l <i < r

Moreover

g = (0 AR

al,_,

=15 o)+ (@ "5™)=( )

< 1(5 o)l+1(g Bl ien(S 2 )
= 1+||RRi2|)? + &°

= L+ ||R[ Risll} + (0max( R22)/Omin( R11))?

= L+ IR Rl + | RelBIRTS

< L+IRY RiollE + RN EIRY 1

= 1+ZZ Rl—lRu,J‘*‘ZZ R"2);J+ZZ ll lJ
=1 y=1 =1 =1 =1 =1

= 1+ D> (R{'Ri2)? i+ 20 (i(Re)? fwi( Ruy )
=l y=1 =t j=1

= l+ZZ{ RT Ri2)?, + (v,(Ra2)?/wi( R )?)}
=1 =1

< L+ fir(n~-r).

So that [|Wil2 < /1 + f2r(n —r). Since

i R) < oi(R)IWill2 € ou(R)YL + for(n =),
we have
oi(R)
\/1 + f?r(n— r)

Since oi(R,) = 6(Ry1) for 1 <i <r and R and A have the same singular values. we

oi(Ry) >

have
oi(4)

>
- \/l+f2r(n -r)

oi(Ryy) for1<i<r.

N
o



(i1) We want to show that

0,(R2) < oAW1+ f2r(n—=r). forl < j<n-r
Let
R, = ("R“ R, ) = (fn g;z) (o "E‘ifz”) = RW.
Then by {17. Thm. 3.3.16],
oi(R2) < 0i(R)||Wallzy forl <i<n.

Since Tmin(aRi1) = @ Tmin( R11) = Omax( R22). wWe have oy (Rs) = 0i(Ray) for 1 < i <

n — r. Moreover
- I. -R{'R :
ey = (0 e
al, 0 0 —R'Ry 0 0\,
(% o)+ (o 7™+ (o ()
al,
0

0\ ,: 0 —R;'R - 0 0 -
< (% o)+ (g T e (g 0 )

= o’ +| - R{/ Rzl + 1

= o’ +||RT Rl + 1

IN

1+ fr(n —r) (from (i)).

So |Walf2 < /1 + f2r(n —r). Since

oi(R2) < a(R)|Wallz for 1 <i < n,

we have

oi(Rs) € oi(RWL + fir(n —r) for 1 <i < n.
Therefore
0i(R2) = 0ipr(Ra)
< G RW1+ for(n —1)

= a,—+,(.-l)\/1 + ferin=r)forl1<i<n-r.

33



where the last bound follows since R and A have the same singular values o.

With the completion of the proof of this theorem. we have shown that the two
algorithms above compute strong RRQR factorizations. The purpose of presenting
the first two algorithms is to prove the existence of a strong RRQR factorization.
Therefore they might not be useful in practice since the numerical rank must be
given.

Next we present an algorithm that when given f > 1 and a tolerance ¢ > 0
compute R.(A) and a strong RRQR factorization. Gu and Eisenstat combine the
ideas in the second algorithm and QR with column pivoting for the third algorithm.
but use

p(R.r) = max max{| (R} Ri2)i, |, 7 R22)/«wi( Ri1)}

1<i<riig)<n—-r
instead of p(R.r) and computes w.(Ry), v.(Ra2). and Rp}'R.; recursively. These

modifications yield greater efficiency.

Algorithm 5.3 Compute r and a strong RRQR factorization.
ri=0:R=Ryp:=A:0:=1I:
Initialize w.(Ry1). v.(R22). and R{' Ry,
while max;¢,<n—r 7,(R22) 2 € do
Jmax 1= argmar|<;j<n-r vi(Ra2);
r:=r+1;
Compute R = (%“ g;:
Update w.(R11), v-(R22). and Ry} Ry,
while p(R.r) > f do
Find i and j such | (R Ri2)i; |> f or vj(Ra2)/wi(Ru1) > f:
Compute R = (RO“ g;;) = R(RI 4 ) and M := T 1T, .,
Modify w.(R11). 7.(R22). and R} Ri2:

) t= R(R T pijmnecs) and o= M Mpy, oo s
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endwhile

endwhile

Since the inner loop of the third algorithm is essentially equivalent to the second

algorithm. this algorithm must eventually halt.

Example
1 2

Let A= |2 3). € = 0.3 (we choose € relatively large to keep our calculations in
3 4

this example simple). and f = 1. We want to find the numerical rank r of A and a

strong RRQR factorization using algorithm 3.
L 2

LetR:Rggz.-l:(?. 3),r=0.andﬂ=(l 0).
. 0 1
3 4

N(R2) = V14

72(R2) = V29
Since maxXycj<n v,(R22) = %2(R2n) = V29 > €. we have r = | + theoldr = 1. Since

Jmax =2 and r =1, we apply [1,, to R:

_(Ru Rl2) _
R=(" R,) = il

fI = H H[_z
u}[(Rll) = .3.38'
Y1(R22) = 0.4549

A

~/

B

O
Ut



Ry Riz = 0.6897 < f and v1(Raz)/w1(Ryr) = 0.0845 < f

Since maxigj<1 7,( R22) = 0.45349 < €. stop. Therefore we have r = | and R =

53852 —3.7139
( i g}‘“-’) =| 0  —0459
1(A) = 6.5468. o2(A) = 03742, 1(1.2) = V3. ga(1.2) = L. ay(A)/qu(1.2) = 1.6293.

Since
. o(Ry) =6.5468 > 4.6293 and
0'1([222) = 0.3742 < 0.5292 and

3. |(RyY Raz)1.1] = 0.6897 < q2(1.2),

P~

o

we have computed a strong RRQR.

Since the inner loop of the third algorithm is essentially equivalent to the second
algorithm. the number of flops calculated in each inner loop in the third algorithm are
bounded by a polynomial function in the matrix size. In order to show the number
of flops calculated in the overall algorithm for the third algorithm is bounded by a
polynomial function in the size of the matrix we must exam the total number of flops
required by the loops in the third algorithm. Let f > 1. (k) be the number of
interchanges performed for a particular value of k within the inner while-loop and
be the determinant of R, after these interchanges are complete. Since det(R;;) =
Ak=1Vjmax (Ck-1(4)) before interchanges and each interchange increases det(Ry;) by

at least a factor of f. we have
Ak 2> Mo 1Y Crt (A) 75

From [l14] we know 0141(4) < Omax(Ci(4)) for 1 < [ < n. Since NG (Ae =

VouCA)? + -+ 0at(CANE. Omac Ci(A)) < [ICUA)lF for 1 < I < n. Since

IC(A)]lF is equal to the square root of the sum of the squares of all entries of C(4)
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and C(A) consists of n — [ columns. [|[C/(A)||F < Vn =1+, (Ci(A)) for i < < n.

Therefore for 1 <! < n we have

O141(A) £ Tmax(Ci A)) S NCUANIF < ViR =17, (Ci(A)).

We also have

g

where t(k) = Y% (i) is the total number of interchanges up to this point. From

v

v

\Y

v

v

Aot Vmae (Crmr (A)) f7H
VAR

— or(A) f7)
A\;%l ai(A) f7H
L Ak-g T(k—1) (k)
—= 7 Tro1(A) 5 o (A)f
(%)m_z Frar(A) ap(4) frk=D F
(inw A\;g" T2 (A) fTED) gpsy (A) gp(A) frE-D prik)

—}Z)"{Efﬂu)}ﬁ“’ e
—Iﬁ)"{ﬁm—(.{)}f“"’

=1

[11] we know o;(Ry;) < 6i(A). Then we have

Combining the inequalities above. we have f'*¥) < (,/n)*, then ¢(k) < k log, /n. We
may conclude that the third algorithm can not have exponential complexity.
Let r be the final value of k when the third algorithm halts, then ¢(r) < r log; \/n.

Gu and Eisenstat carry out a more careful analysis as to the cost of the third algorithm

k k
A = [ oi( Ri) < [T ai( ).
=1 =1
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and argue that the total cost is at most around 2mr(2n — r) + 4t(r)n(m + r) flops
[14]. Gu and Eisenstat showed that ¢(r) is normally very small [14] (in practice ¢(r) is
even smaller), therefore the cost is about 2mr(2n —r) [14]. In the case when m > n.
the total cost of the third algorithm is about the same as QR with column pivoting

[14]: when m = n the third algorithm is about 50% more expensive [14].

(]
[04]



6 Conclusion

Algorithm Flop Count
SVD 2mn? + 4n3
QR Column Pivoting | 4mnr — 2r(m + n) + 4r°/3
Foster/Chan RRQR | 2mn? — 2n°® + In?(n — r) (max)
Strong RRQR imnr — 2mr? + 4t.n(m + n)

Table 3: Computational Effort (r is the numerical rank)

[n this thesis we have presented four algorithms that reveal the numerical rank
of an m x n matrix A where m > n. They are SVD. QR with column pivoting.
Foster/Chan RRQR. and Strong RRQR. Even though SVD is a very reliable algo-
rithm. the table above shows that it can be expensive. QR with column pivoting is
an inexpensive alternative. but it can fail to determine the correct numerical rank for
some matrices. As we have shown in a previous section, QR with column pivoting
fails to determine to correct numerical rank for Kahan's matrix.

The table above shows that Foster/Chan RRQR is a less expensive alternative
to SVD. Even though it is a little more expensive than QR with column pivoting,
it works where QR with column pivoting fails. In theory the Foster/Chan RRQR
algorithm can have exponential bounds in accuracy for large rank deficiencies but it
is not so in practice. From the table above we can see the Foster/Chan RRQR is
cheaper than the strong RRQR. Last. in the case of m > n. the strong RRQR is
almost as fast as QR with column pivoting and 50% more expensive when m = n
(since ¢, is usually small).

We also showed that in addition to determining the numerical rank of A. SVD and
Foster/Chan RRQR can be used to solve the subset selection problem and the least
squares problem. Since QR with column pivoting and strong RRQR are both rank

revealing QR factorizations. we can use the same methods as Foster/Chan RRQR to
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solve the subset selection problem and least squares problem. In a previous section.
we showed that even though SV'D and Foster/Chan RRQR subset selection algorithms
do not necessarv produce the same set of columns of A. the subspaces spanned by
these two sets of columns should be almost the same when 0r+1/0- is small. We have
also shown that in many situations SVD and Foster/Chan RRQR are both well suited
to solve the least squares problem.

The Foster/Chan RRQR is not only a reliable and less expensive algorithm for
determining the numerical rank of A compared to SVD. it can also be used to solve
other problems like subset selection and least squares. For MATLAB users. the
algorithm can be downloaded from the internet free of charge. It can be found at
[19]. Therefore. we believe it is a good alternative to SVD in many ways since it is

more efficient and can be used in many applications.
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