San Jose State University SJSU ScholarWorks

Master's Theses

Master's Theses and Graduate Research

1992

Lead-acid cell performance prediction using pattern recognition analysis

Robert M. Petesch San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Petesch, Robert M., "Lead-acid cell performance prediction using pattern recognition analysis" (1992). *Master's Theses*. 412. DOI: https://doi.org/10.31979/etd.qt4x-vr7r https://scholarworks.sjsu.edu/etd_theses/412

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 313/761-4700 800/521-0600 .

Order Number 1350106

Lead-acid cell performance prediction using pattern recognition analysis

Petesch, Robert Maurice, M.S.

San Jose State University, 1992

Copyright ©1992 by Petesch, Robert Maurice. All rights reserved.

.

LEAD-ACID CELL PERFORMANCE PREDICTION USING PATTERN RECOGNITION ANALYSIS

A Thesis Presented to the Faculty of the Department of Chemistry San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science

> by Robert M. Petesch August, 1992

APPROVED FOR THE DEPARTMENT OF CHEMISTRY

Rhin

Dr. Sam P. Perone

all Beach

Dr. Joseph Pesek

Herbert BSildes

Dr. Herbert Silber

APPROVED FOR THE UNIVERSITY

M. Jon Jewandowski

ABSTRACT

LEAD-ACID CELL PERFORMANCE PREDICTION USING PATTERN RECOGNITION ANALYSIS

by

ROBERT M. PETESCH Research Advisor: Dr. Sam P. Perone

Pattern recognition (PR) was used to correlate lead-acid cell capacity performance with battery fabrication data. Fabrication data consisted of detailed documentation of materials, electrolyte composition, and cell capacities during the manufacture and conditioning of 340 (2080 amp-hr) lead-acid cells. PR was used to determine if fabrication features could be used to classify individual cell performance. Cells were assigned to different performance classes based on capacities determined for a 121-cell subset after 7 years of operation. Training sets were constructed for PR studies, and feature elimination and statistical selection methods were used to develop classifiers which could accurately identify high, low and intermediate capacity cells. Accurate classifiers frequently consisted of electrolyte level measurements and adjustments to the latter at specific stages of fabrication. Accuracies of 95% for high-low and 86% for high-low-intermediate class recognition were obtained using K-nearest neighbor and cluster analysis methods.

© 1992, Robert M. Petesch

ACKNOWLEDGMENTS

I wish to express sincere gratitude to all those who helped with this project, and loving appreciation to my wife Marjorie and my friends for their endless support. Wholehearted thanks go to Dr. Herbert Silber and Dr. Joseph Pesek for their help with the manuscript and to San Jose State University for the use of the facilities. The Electric Power Research Institute, Dr. William Spindler, and Dr. Sanjay Deshpande' are also gratefully acknowledged for their contributions and for providing access to the GNB battery database. I am indebted to fellow research team member Pei-Hwei Chen for her discussions of the cell maintenance data, and finally, I would like to extend sincere appreciation to Dr. Sam Perone for his inspiration, guidance and many helpful discussions.

TABLE OF CONTENTS

I. Introduction1
II. Multivariate Analysis and Pattern Recognition
A. Pattern Recognition Methods3
1. Supervised Pattern Recognition4
a. Linear Discriminant Analysis4
b. Linear Learning Machine6
c. K-Nearest Neighbor Analysis7
2. Non-Supervised Pattern Recognition11
a. Cluster Analysis11
b. Non-linear Mapping14
B. Feature Selection Methods16
1. Correlation Analysis17
2. Fisher Ratio Analysis18
3. Univariate Discriminating Power18
4. Statistical Distributions21
5. Systematic Selection25
6. Sequential Feature Elimination25
III. Battery Description and Background28
A. Properties and Construction28
B. Fabrication Features32
C. History34

• •

IV. Experimental Methods	
A. Instrumentation, Database and Software	37
B. Procedures	
1. Database Information	
2. Data Preprocessing	
3. Definition of Class Boundaries	41
4. Feature Selections	
5. Training	47
6. Classification Accuracy	48
7. Mapping	
8. Pattern Reclassifications	49
9. Predictions	50
V. Results and Discussion	
A. Scope of Investigation	
B. 2-Class Study	53
C. 3-Class Study	61
VI. Conclusions	82
VII. Appendices	84
A. GNB Fabrication Data	A-1
B. 1990 Capacity Test Data	B-1
C. Correctly Classified Cells, Aberrant Cells and Replacement C	ellsC-1
D. Prediction Results for Prediction Set Cells	D-1
E. Prediction Results for Unknown Set Cells	E-1
VIII. Bibliography	

.....

LEAD-ACID CELL PERFORMANCE PREDICTION USING PATTERN RECOGNITION ANALYSIS

I. Introduction

Multivariate analysis and computerized pattern recognition have been shown to be useful tools in a variety of chemical analyses such as identification of amino acid sequences in polypeptides [1], classification of herbicidal activity for nitrodiphenyl ethers [2] and evaluation of several transition-metal ions as potential chemical ionization reagents [3]. Studies involving fundamental electrochemical measurements, such as those taken in voltammetric determinations [4-7], have been useful in understanding the factors that control electrochemical systems. Knowledge of electrochemical control factors is important in the design of electrochemical cells which can meet stringent demands.

The quest for alternate forms of energy, and energy storage methods, has sparked vigorous research into electrochemical cells. Of particular importance for energy storage applications are cell lifetime and efficiency, and we have investigated pattern recognition for prediction of these properties. The usefulness of pattern recognition has been demonstrated in studies involving the prediction of nickel-cadmium [8] and lead-acid [9, 10] cell lifetimes, based on initial acceptance test data. Results of these studies showed that a multivariate examination of easily measurable properties allowed for the accurate prediction of (87-100%) of battery lifetimes. Data collected from fabrication, testing, and operation of lead-acid cells [11] have been examined using cluster analysis to determine if natural subsets of cells with similar performance properties could be identified.

The ultimate goal of our research is to determine and evaluate the information content of electrochemical measurements, and to increase the understanding of chemical and physical processes underlying electrochemical cells. The purpose of this particular study was to determine if electrochemical and other measurements taken during lead-acid cell

fabrication contain the information content necessary for accurate prediction of cell performance during its lifetime. In this work, the performance of a battery cell is equated with its ability to deliver the rated capacity. The ability to distinguish between high and low performing cells is important for allowing prior selection of superior cells and exclusion of problem cells. This becomes particularly important for applications involving remote measurement, space travel or situations involving large energy storage systems where cell failure can be disastrous.

Factors which affect cell performance were determined and evaluated using pattern recognition methods to clarify multivariate relationships among electrochemical measurements taken during cell manufacture. This information was then used to classify individual cells as to their performance capability. This present work is related to another investigation that was conducted by our research group concerning pattern recognition analysis of lead-acid cell maintenance data for the purpose of lead-acid cell performance prediction [12, 13].

II. Multivariate Analysis and Pattern Recognition

Multivariate analysis can be defined simply as the analysis of a data matrix composed of multiple samples for which several independent features have been measured. Advances in instrumentation and hyphenated techniques have provided the ability to rapidly acquire vast amounts of data for several parameters within a single assay.

The basic premise of pattern recognition is that a multivariate data matrix of measurements on a system under study contains information that allows for the distinct classification of each item subjected to the analysis [14]. Multiple measurements made to characterize each item create a vector in multi-dimensional feature space which is located in the same region of space as other items of the same class.

It is difficult for most people to visualize beyond three dimensions; however, multivariate computational techniques can be used to examine pattern vectors in multidimensional feature space and are an invaluable tool in pattern recognition studies. Pattern recognition is used in multivariate analysis to classify items from several measurable features where the class distinction is not obvious from direct examination of the raw data. The computer techniques aid in the detection of groups with similar patterns and in the classification of items based on their proximity to items of known class in multidimensional feature space. Additionally, computer mapping techniques can help in the visualization of multi-dimensional feature space in two dimensions.

II.A. Pattern Recognition Methods

There exist many methods for pattern recognition, and much of the mathematical proof and treatment of such problems have been addressed [15-17]. Generally, pattern recognition methods fall into two categories: *supervised* and *unsupervised* pattern recognition [14, 18, 19]. Supervised pattern recognition methods involve the utilization of predetermined class models to enable the classification of individual items or unknowns. A

training set consisting of known items is used to develop suitable classifiers. The classifiers are then tested on a different set of known items, the *prediction set*. Worthy classifiers are then used to predict the class of each unknown item.

In contrast, unsupervised pattern recognition methods assume no prior knowledge of any classes. Unsupervised methods employ cluster analysis or mapping techniques which do not require *a priori* knowledge of the existence of specific classes. Clusters which form in multi-dimensional feature space, or are observed visually upon plotting data in two or three dimensions, are assumed to represent specific classes of items. Direct knowledge of the origins of the raw data and the significance of observed clusters is needed to accurately assess the identity and characteristics of a particular cluster. Some of the more common methods of pattern recognition, which have been used to study electrochemical cells [8-13], are discussed below.

II.A.1. Supervised Pattern Recognition

In supervised pattern recognition, items are classified based on their proximity to defined class models. There are several ways to perform these classifications, and the most common of these are discussed next.

II.A.1.a. Linear Discriminant Analysis

Linear discriminant analysis (LDA) was first developed by the statistician R. A. Fisher [17] as a means for classifying an object as belonging to one of two classes. Essentially, a mathematical discriminant function is sought (using a training set of knownclass patterns) which linearly separate the two classes in pattern space (Figure 1). Each item in the *ith* class can be described by a linear combination of feature elements, X_1 , X_2 , X_{12} , ..., X_N , which when multiplied by a weight vector, w_1 , w_2 , w_{12} , ..., w_N , w_{N+1} , yields a pattern vector located in the spatial region for class *i* [15, 17].

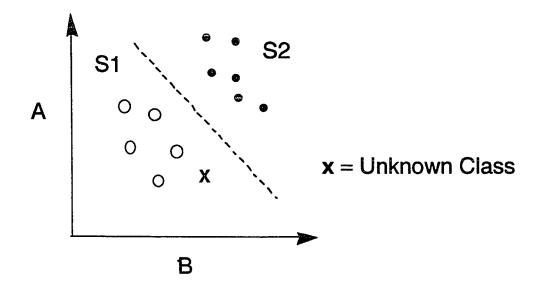


Figure 1. Linear discriminant analysis of unknown item X. A plot of feature A versus B produces two distinct groups, classes S1 and S2, which are separated by a linear boundary. The unknown X is located on the side belonging to S1 and hence is assigned as such.

The general pattern vector for class *i* takes the following form:

$$S_i(X) = \sum_{k=1}^{N} w_{ik} X_k + w_{i,N+1}$$
 where $i = 1, ..., m$ (1)

A similar generalized pattern vector, $S_j(X)$, can be written for items in class *j*. A decision boundary between the regions is defined by eq 2.

$$S_i(X) - S_j(X) = \sum_{k=1}^{N} w_k X_k + w_{N+1} = 0$$
 (2)

where $wk = w_{ik} - w_{jk}$

and
$$w_{N+1} = w_{i,N+1} - w_{j,N+1}$$
.

The discriminant function described by eq 2 is a line, plane, or hyperplane which divides feature space into two regions assigned to different classes. The computed value of the discriminant for each pattern is either positive (+) or negative (-) depending on whether the item belongs to one class or the other. LDA methods have been useful for electrical engineering applications which involve pattern recognition [16].

II.A.1.b. Linear Learning Machine

The linear learning machine (LLM) method is commonly used in chemical pattern recognition [12, 14, 18, 19, 17, 20]. The LLM method of classification involves repetitive calculations which seek to find a linear discriminant that can separate two clusters of training set objects in N-feature space. The discriminant function shown in eq 3 is similar to eq 2.

$$S = \sum_{i=1}^{N} w_i X_i + w_{N+1}$$
(3)

The discriminant, S, is > 0 on one side of the plane and < 0 on the other. An arbitrary decision plane is selected and each object in a training set is classified based on which side of the plane it is located. If any object is misclassified, the weight vectors, w,

are altered to adjust the decision plane, and the object is reclassified. This procedure continues iteratively to convergence until all training set objects are classified correctly, or until the LLM reaches maximum classification accuracy. The resulting discriminant function is then used to classify unknown objects. Training time can be extensive with the LLM method, but unknown pattern classifications are fast. Of course the underlying assumption in this method is that the two classes can be separated by a linear discriminant.

Sometimes linear separation is not possible, so one must use discriminants which give the highest possible accuracy, or use a least squares method to find the best line through the two groups. Another option is to define a "dead-zone" between the two groups, i.e. a region between the classes where objects cannot be unambiguously classified (Figure 2). Objects falling on either side of the dead-zone can be classified correctly. If the dead-zone is too large and many objects are within it, it may be beneficial to use a quadratic or other type of function to separate the clusters.

LLM methods have been used to classify and resolve voltammetric data [5, 21, 22] and have been applied in systematic approaches to pattern recognition analysis of chemical data [23]. LLM was found to be useful in screening out ineffective features prior to analysis by other classification methods.

II.A.1.c. K-Nearest Neighbor Analysis

Another commonly used method for making classification decisions is the K-nearest neighbor (KNN) method. This method is useful when no linear discriminant exists that will separate the clusters in a data set. It is also useful for multi-category classifications. The essential premise is that an unknown object X is assigned to the same class as that of its K-nearest neighbors, as illustrated in Figure 3 [15, 16, 23]. According to Patrick [16], similar KNN decision methods have been proposed [Fix and Hodges, 1951; Cover and Hart, 1966] known as the KNN₁ and KNN₂ decision rules.

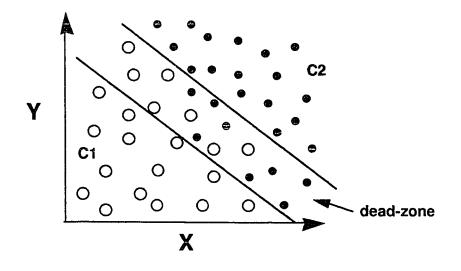


Figure 2. An example of two classes which cannot be separated by a linear discriminant. Designation of a dead-zone between the classes enables the distinction between classifications made outside and those made inside the dead-zone, where classification is ambiguous.

....

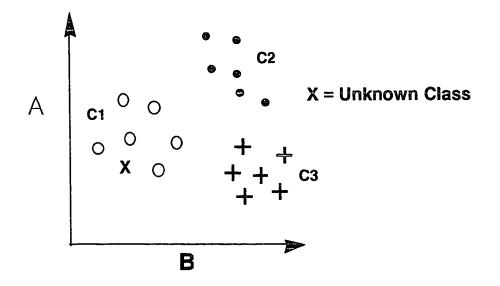


Figure 3. Nearest neighbor analysis of item X of unknown class. Item is classified based on the class of its nearest neighbors of known class. Note that there is no linear discriminant which can separate the classes.

Patrick introduced the third rule, KNN_3 , which is described above and will be referred to as the KNN method for simplicity. Distances, D_{jk} , between any two objects, j and k, are calculated using the Euclidean distance formula [19].

$$D_{jk} = \sum_{i=1}^{N} \left[\left(x_{ji} - x_{ki} \right)^2 \right]^{1/2}$$
(4)

where x_{ji} and x_{ki} are values for the i-th feature for items j and k. The distance measurements are compared and the unknown is assigned to the class of its K-nearest neighbors. The value of K can be greater than one; however, it is customary to choose an odd number to prevent an equally split vote. If an even number is picked for K, some sort of voting scheme must be used to prevent a split vote [20].

The main advantage of the KNN method is that it can be applied to non-linear classification problems and is suitable for multi-class identifications. There is no inherent training involved. All patterns, known and unknown, are analyzed simultaneously. One disadvantage of the KNN method is that all patterns must be examined for each unknown that is classified. This can result in long computer calculation times, in contrast to the LDA method, where classification is fast. The KNN method also fails to provide a way to screen out features which are less useful than others. Some prior procedures must be followed to determine which are the most effective features for accurate classification (See Feature Selection Methods, II.E). LLM methods may be suited for systematic elimination of features and are often used as a screening tool for dimensionality reduction prior to analysis by KNN.

A variation to the KNN method has been proposed by Pichler and Perone [23] which performs one-dimensional KNN, i.e. examines each feature one at a time, for its ability to classify a training set of known objects. Only those features which are associated with high classification accuracies are chosen to perform multi-dimensional studies. KNN analysis has been applied to numerous chemical problems including the analysis of voltammetric data [4, 5, 21, 22], the identification of organic compounds [1, 2] and to lifetime [8-10] and performance [12, 13] prediction for battery cells.

II.A.2. Non-Supervised Pattern Recognition

Non-supervised pattern recognition is used to examine data where *a priori* knowledge of specific classes is unknown. Cluster analysis and non-linear mapping methods were used in this work and are discussed below.

II.A.2.a. Cluster Analysis

Cluster analysis is used to determine the existence of subsets in a group of patterns. The mathematical foundations of cluster analysis are very detailed, complex and well established [15, 16], and many techniques have been developed [14, 18, 19, 24-27]. Clusters can occur in a wide variety of shapes [16], and some examples are shown in Figure 4.

Three general steps are involved when performing cluster analysis [24]:

- 1. The items to be classified are characterized, and the analytical data are collected and preprocessed.
- 2. The similarity of each object is determined.
- Clustering algorithms are constructed to enable the development of classifiers which result in meaningful clusters.

It is important to note that computer-based clustering algorithms are generally applicable to multi-dimensional feature space, just like the LLM or KNN supervised learning algorithms. Generally, there are two main types of hierarchical clustering [18]: hierarchical agglomerative clustering and divisive hierarchical clustering. Hierarchical agglomerative clustering is most common and is based on the premise that each object starts

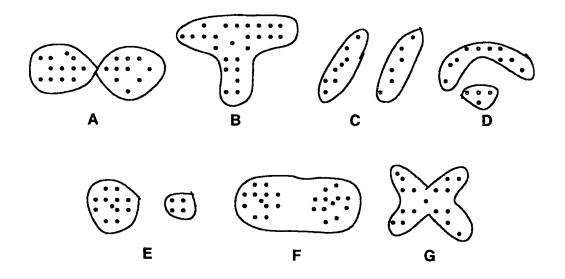


Figure 4. Examples of cluster types: (A, B) Bridges between clusters. (C) Parallel non-spherical clusters. (D) Linearly parallel clusters. (E) Unequal cluster populations. (F) Cluster with a hole [actually two clusters]. (G) The X.

as a cluster generating nucleus. The radius is iteratively increased by a fixed length to include neighboring objects or clusters which contain a smaller number of objects. This process is repeated until each of the smaller clusters progress to successively larger and fewer clusters. Agglomerative methods involve what is known as the SAHN technique.

S stands for "sequential" algorithm.

A stands for "agglomerative" where objects start out as single nuclei and are progressively built into larger clusters.

H stands for "hierarchical" meaning that each ascending level is composed of fewer clusters than the preceding level.

N stands for "non-overlapping", i.e. objects can never be assigned to more than one cluster centroid at a time.

Divisive hierarchical clustering is less common and essentially starts with all objects grouped into one large cluster and proceeds with iterative divisions into progressively smaller clusters. A third type of clustering is known as non-hierarchical clustering. A set of objects is divided into the most likely clusters and the distance between objects and the centroid of each cluster is used as criterion for the assignment of each object to a neighboring cluster [14]. The basic assumption is that similar objects will occupy the same region of feature space. The procedure is continued until convergence, i.e. until all objects have been assigned to a cluster.

Assignment of an object to a specific cluster is usually based on the distance between the two. There are several distance methods to choose from. The most popular is the Euclidean measurement which was previously described in eq 4. Non-hierarchical clustering methods usually involve the following steps [14]:

1. Select initial clusters.

2. Determine distances between objects and centroids.

3. Locate or assign each object to nearest centroid.

4. Compute new centroids and repeat to convergence.

Cluster analysis has found application in a variety of analytical chemistry problems such as GC-MS identification of organic esters [1], evaluation of transition metal ions as chemical ionization reagents [3] and in electrochemical cell studies [8, 11, 13].

Additionally, Massart and Kaufman [24] have discussed in detail the application of cluster analysis in analytical chemistry.

A fourth type of cluster analysis is simply "visual" detection. However, this requires that the objects be represented in 2- or 3-D feature space. When larger numbers of features are required for separation, visual cluster analysis is not directly applicable. Nevertheless, mapping techniques are available to display multi-dimensional space in two dimensions, as described below.

II.A.2.b. Non-linear Mapping

Non-linear mapping (NLM) is a method for plotting data which reduces N-dimensional feature space to two dimensions [14] and is illustrated in Figure 5. The NLM method, sometimes referred to as multi-dimensional scaling, essentially attempts to preserve inter-point distances in converting N-D to 2-D space. Several methods have been proposed, but most operate on the same principle by iterative minimization of the mapping error, E, which can take many forms [15, 18], one of which is

$$E = \sum_{i < j}^{P} \left[\left(d_{ij} - d_{ij}^{*} \right)^{2} / d_{ij} \right]$$
(5)

where d_{ij} = the original inter-point distance in N-dimensional space

 d_{ij}^* = the new inter-point distance in 2-dimensional space

and

P = the total number of patterns

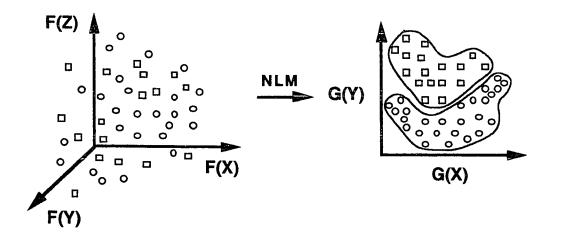


Figure 5. Non-linear mapping (NLM) is used to reduce multi-dimensional space to two dimensions. The example above illustrates the reduction of 3-D space to 2-D using NLM.

Some forms of the mapping error function are referred to as the stress function, but the principle is the same. The mapping error equation proposed by Sammon [28] is similar to that above but contains a weighting factor which can weight the N-dimensional term by different amounts relative to the 2-D term. Sammon's method was subsequently modified by Kowalski and Bender [29] and is expressed below.

$$E = \left\{ \sum_{i < j}^{P} \left[\left(d_{ij} - d_{ij}^{*} \right)^{2} / d_{ij} \right] \right\} \left(\sum_{i < j}^{P} d_{ij} \right)^{-1}$$
(6)

While the NLM method is very powerful for transforming and viewing multidimensional space in two dimensions, it suffers from the large amount of computer time needed to execute the transformation. It is prudent to utilize feature selection methods first to eliminate ineffective features and limit the NLM treatment to as few features as possible.

The NLM method has been used in many analytical chemistry applications [1, 3, 21, 22, 30] and is the only display method used as frequently as principal components analysis [24]. NLM is particularly useful in our work for the evaluation of fabrication features for lead-acid cells [11-13].

II.B. Feature Selection Methods

Feature selection is important and ideally will result in a minimum number of features being chosen so as to achieve the highest possible classification accuracy. A reduction in the number of features is sometimes referred to as a reduction in dimensionality. Feature reduction results in a smaller data matrix and subsequently much less data to process; therefore, processing time is reduced. Another advantage to eliminating unnecessary features is that the latter may contribute considerable "noise" to the multivariate data matrix, and may make it more difficult to distinguish among different classes. Elimination of unwanted, noisy features can render classification easier by reducing the degree of class overlap in N-D space. Another practical consideration is that feature reduction results in only the most important measurements being taken and thus, a reduction of the physical measurement time and effort involved. This, of course results in lower expenses incurred for a given assay. Several feature selection techniques exist, but common methods used for this study are described briefly below.

II.B.1. Correlation Analysis

Correlation analysis involves calculating the linear correlation coefficient for each pair of features in a multivariate data matrix. The Pearson correlation coefficient ($R_{a,b}$) between features a and b, for n items, is defined as follows [14]:

$$\mathbf{R}_{\mathbf{a},\mathbf{b}} = \left\{ \sum \left[(\mathbf{X}_{\mathbf{i}\mathbf{a}} - \overline{\mathbf{X}}_{\mathbf{a}}) \cdot (\mathbf{X}_{\mathbf{i}\mathbf{b}} - \overline{\mathbf{X}}_{\mathbf{b}}) \right] \right\} / \left[\sum (\mathbf{X}_{\mathbf{i}\mathbf{a}} - \overline{\mathbf{X}}_{\mathbf{a}})^2 \cdot \sum (\mathbf{X}_{\mathbf{i}\mathbf{b}} - \overline{\mathbf{X}}_{\mathbf{b}})^2 \right]^{1/2}$$
(7)

 X_{ia} and X_{ib} are the respective values of features a and b for item i, and \overline{X}_{a} and \overline{X}_{b} are the respective means of the values for features a and b. Summations are taken for all values of i ranging from 1 to n. The correlation coefficient, as defined in eq 7, lies within the range of +1 to -1. Values of R equal to zero imply that features from set A have no correlation to features from set B. Positive values indicate a positive correlation between two features, and negative values represent a negative correlation. R values equal to +1 or -1 indicate that there is a perfect correlation between the two feature sets. Negative correlations can sometimes be difficult to interpret, and while negative correlations suggest dissimilarity, this is not always true [31]. Therefore, the square of R is sometimes used to eliminate any negative value. R² would then range from 0 to +1.

Generally, high correlation values indicate feature pair similarity and one or other of the two features can sometimes be eliminated from the feature set. Elimination of highly correlated features results in a condensation of features with mutually large R values into a smaller set with statistically equivalent information. However, elimination of highly correlated features does not always avoid a loss of information. This is especially true if the distribution of the measured values of a given feature are non-Gaussian or if the effectiveness of a feature is dependent on the presence of another feature.

For example, assume feature A is highly correlated with feature B, but the effectiveness of C depends on the presence of feature B. Elimination of feature B based on its high correlation with feature A might actually result in a lower overall classification accuracy, due to the loss of synergistic interactions between features B and C. Therefore, it might be better to retain all three features for the analysis.

II.B.2. Fisher Ratio Analysis

The Fisher ratio is used to determine the ability of a feature (i) to distinguish between two different classes. Essentially, for a binary classification problem the Fisher ratio is given by eq 8.

$$F_{i} = (m_{1i} - m_{2i})^{2} / (V_{1i} + V_{2i})$$
(8)

The difference between the mean values (m_i) of feature i, for different classes 1 and 2 is squared and compared to the sum of the variance, V_i , for both classes. Values of the Fisher ratio, F_i , for a chosen feature can vary widely depending on the distribution of the values within each class. If the means 1 and 2 are nearly equivalent or equal, values of F_i will be quite small or equal to zero. Likewise, a large variance V_i for one or both classes can result in small Fisher ratios. As the distribution of values within each class narrows, or as the means get further apart, the Fisher ratio becomes larger. First, the Fisher ratios are calculated for each feature in a data matrix. The data set is then reduced in size by retaining features with larger ratios and rejecting those with smaller ratios.

II.B.3. Univariate Discriminating Power

The univariate distribution of values for a given feature can often provide insight on the ability of the feature to discriminate between classes [14, 32, 21]. The univariate discriminating power is determined for each feature, and features which provide a high degree of discrimination are selected for further study.

Figure 6 illustrates individual feature values with a single dimension vector. The univariate plot shown in Figure 6a indicates what appears to be two classes of items. However, knowledge of the class of each item could lead to the results as shown in Figure 6b. In this case each class of items contains an outlier, causing an overlap in the sets.

Knowledge of the class identity for each of the items within the feature set can significantly affect the interpretation of the results. Histograms are another, more sophisticated way of visualizing univariate data. Histograms allow visualization of the relative proportions of the number of items having a particular value. Histograms are discussed later in more detail.

Another method for measuring univariate data consisting of two classes involves the calculation of the ratio of the difference in the means of a given feature for two classes, 1 and 2, to the combined standard deviation of the two sets of features.

$$\mathbf{R} = |\mathbf{X}_1 - \mathbf{X}_2| / (\mathbf{S}_1^2 + \mathbf{S}_2^2)^{1/2}$$
(9)

Comparison of eqs 8 and 9 show that the quantity R in eq 9 is simply the square root of the Fisher ratio. Thus, substituting V for S^2 in eq 9 gives

$$\mathbf{R} = |\mathbf{X}_1 - \mathbf{X}_2| \div (\mathbf{V}_1 + \mathbf{V}_2)^{1/2} = (\mathbf{F})^{1/2} \quad \text{or } \mathbf{R}^2 = \mathbf{F}$$
(10)

Both F and R have similar properties in that they become larger as the distance between the average location of each class widens, and as the items within each class cluster together. Of course, values of R^2 will be more sensitive to changes in the means and standard deviations of each class. R and F ratios are useful for discerning the discriminating ability of individual features, but they do not reflect any feature to feature interactions. The rejected features may still be valuable for other feature group combinations and should not be exempt from further investigation by other methods.

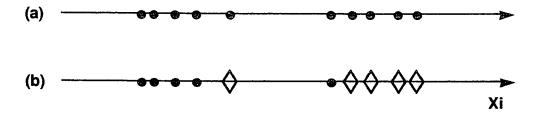


Figure 6. Univariate plots where plot (a) represents what appears to be two distinct groups. This would likely be the conclusion if the class identity of each item is unknown. Plot (b) illustrates what the distribution of items might really be if it were known that there are two distinct classes, represented by \bullet and \diamond .

II.B.4. Statistical Distributions

Often it is useful to group data into classes and group the measurements made for each class [14]. Data which are organized this way can be described graphically with a histogram (Figure 7). $F(x_i)$ is a measure of the relative frequency of occurrence of a measurement in the interval Δx_i . The probability of a measurement occuring within any interval Δx_i is the product of $F(x_i) \cdot \Delta x_i$. If large numbers of measurements are taken on infinitesimally small intervals of x, then the distribution of $F(x_i)$ is represented by a smooth, continuous curve. The area under the curve is just the integral of F(x) for all values of x, which equals 1, the total probability for the occurrence of values of x.

$$\int_{-\infty}^{+\infty} F(x) dx = 1 \tag{11}$$

The function in eq 11 is referred to as a continuous random-variable probability density function. When a continuous variable distribution is normal or normal-like, the values are distributed evenly about the mean in decreasing frequency as the distance from the mean increases. When the data are standardized, a special normal curve results (sometimes referred to as a z-curve) where the mean equals zero and the z_i are in increments equal to one standard deviation [32, 33] (Figure 8).

When a group of random variables consist of a finite number of values, or a countable sequence of an infinite number of values, the variable is known as a discrete variable. The probability function of a set of discrete variables can be depicted graphically as shown in Figure 9. The probability of a discrete variable Xi having a particular value is P(Xi). Similar to continuous distributions, the total probability, i.e. the sum of all P(Xi) equals 1.

$$P(X \le Xn) = \sum_{i=1}^{n} P(Xi) = P(X1) + P(X2) + P(X3) \dots P(Xn)$$
(12)

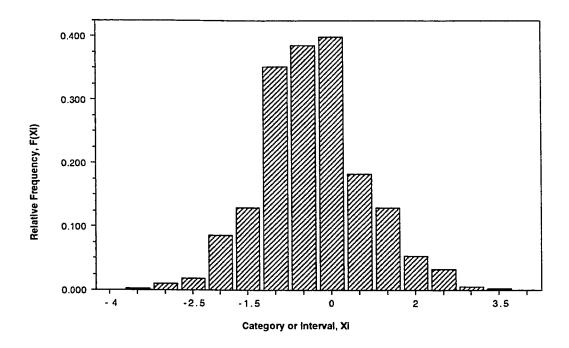


Figure 7. A histogram distribution of items having a relative frequency F(Xi) in the interval Xi. The distribution is not symmetrical throughout the entire interval defined by i = 1 to n.

,

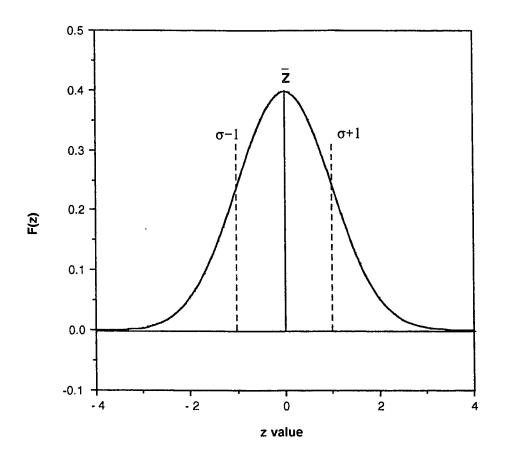


Figure 8. An illustration of a symmetrical continuous probability distribution of the number of items n having a particular value z. Items having values lying within ± 1 standard deviation are present in greater numbers as z approaches the mean, but diminish in numbers at the extremes of the distribution, in this case outside ± 1 standard deviation from z.

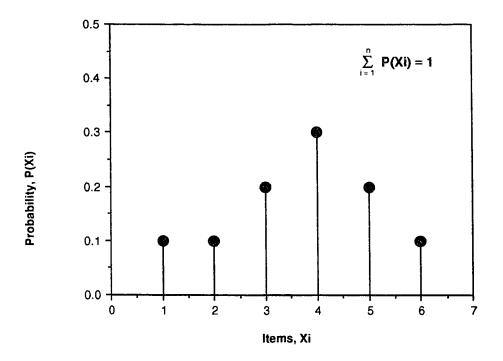


Figure 9. A probability density function composed of discrete variables, Xi. The summation of P(Xi) for all values of i equals unity.

or
$$\sum_{i=1}^{n} P(X_i) = 1$$
 (13)

When a particular feature is composed of X_i patterns belonging to more than one class, class-conditional probability density curves can be constructed to determine the ability of the feature to discriminate between classes. Ideally, features with high discriminating ability result in a bimodal distribution of X_i values for each class (Figure 10) with a minimum amount of overlap. A large difference between means $\mu 1$ and $\mu 2$, and a small variance within each peak, the less overlap, α , and the greater the discriminating ability of the chosen feature.

II.B.5. Systematic Selection

Systematic feature selection, while not very scientific, can often provide fruitful results and should not be overlooked. Smaller feature groups are randomly chosen from either the original data matrix or from feature groups obtained through other feature selection methods. The selection can be completely random and non-biased, or specific feature groups believed to contain useful features can be selected. Other feature selection methods are often applied to the final feature groups selected by this arbitrary, trial-and-error method [19]. Systematic feature selection methods have been shown to be effective in theoretical and experimental studies of overlapped voltammetric data [21, 22].

II.B.6. Sequential Feature Elimination

Sequential feature elimination involves the arbitrary deletion of a feature after a given feature set is evaluated for classification accuracy. If elimination of the feature results in a drop in the overall classification accuracy with subsequent pattern recognition analysis, the feature is added back into the feature set. If the classification accuracy is not degraded or is improved by removing the feature, then the feature remains excluded from the feature set. Regardless of the outcome, another feature is then selected to be deleted from the feature

Figure 10. Probability density curves illustrating the ability of feature i to differentiate classes 1 and 2. The probability that an item belonging to class m has a value for feature i in the interval ΔX is $P(Xi)m \cdot \Delta X$.

set, and a subsequent evaluation of the effect of its deletion is done. This procedure is continued until no further deletions are allowed, and the maximum classification accuracy is achieved with minimum features. The order in which the features are examined can change the outcome of the results. The subject of sequential feature analysis and how it applies to pattern recognition and linear learning methods has been treated in detail [17].

The advantage of using sequential elimination methods are that they can be applied to feature groups which have been selected by any other means and can be used to develop other feature groups which may be useful. Computerized sequential methods provide an automated way of establishing the relative importance of each feature and have been shown to be effective in many applications [12, 13, 21-23].

III. Battery Description and Background

III.A. Properties and Construction

The typical lead-acid cells used for this study are much like those found in automobiles. They consist of negative and positive electrodes which are made of sponge lead and lead peroxide, respectively, and are immersed in an electrolyte of sulfuric acid and water [34] (Figure 11a).

A typical cell is represented by:

 $Pb(s) | PbSO_4(s) | H_2SO_4(aq) || PbSO_4(s), PbO_2(s) | Pb(s)$

and the cell (a) and half-cell (b and c) reactions are:

(a) $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \longrightarrow 2PbSO_4(s) + 2H_2O$	Cell Reaction
(b) $Pb(s) + SO_4^{-2}(aq) \longrightarrow PbSO_4(s) + 2e^{-1}$	Negative Electrode
(c) $PbO_2(s) + 4H^+(aq) + SO_4^{-2}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	Positive Electrode

Electrochemical storage cells do not actually store electrical energy. Actually, they convert electrical energy applied to the electrodes into chemical energy; the *state of charge* of the cell refers to the percent of the total available capacity. When a load is placed on the charged cell, the chemical energy is converted, or discharged back into electrical energy.

A fully charged cell has an open circuit voltage just slightly greater than 2 volts (2.06 V), and may be as high as 2.10 to 2.70 V when being charged. The specific gravity, or density of the electrolyte relative to water, is usually between 1.20 and 1.29 at the highest state of charge. A cell constructed this way delivers a 2-volt potential regardless of size; however, size does affect the amount of current (measured in amperes) that a cell can deliver.

When a cell is discharged, the electrodes each react with the sulfuric acid electrolyte to form a lead sulfate coating (Figure 11b). As the sulfuric acid is consumed, the specific

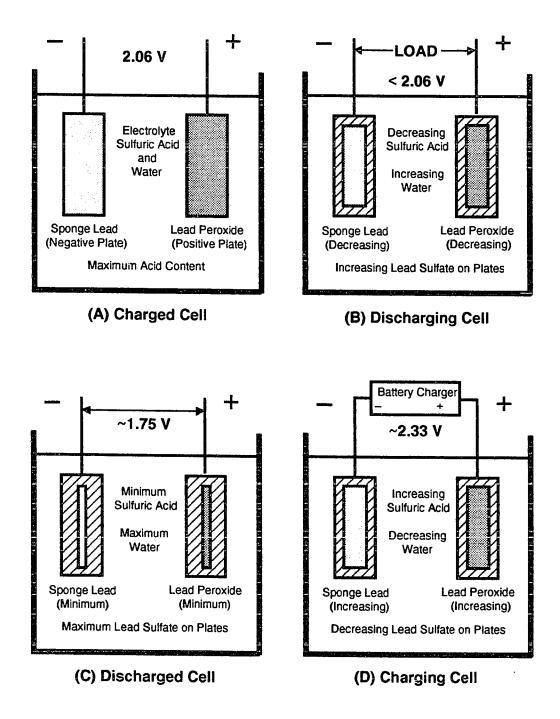


Figure 11. Physical chemical states of a typical lead-acid cell.

gravity gradually approaches that of water (1.00) and the cell voltage drops to zero volts when completely discharged. Cells are not usually discharged below about 1.7 V to prevent irreversible damage to the electrodes (Figure 11c). Thus, the *nominal capacity* of a cell is the charge delivered (in amp-hr) from a fully charged state to a 1.7 V cell voltage. In practice, lead-acid cells are usually required to deliver a small fraction of their actual capacity before recharging. In fact, cells discharged to a 1.7 V cutoff are described as undergoing *deep discharge*.

The discharged cell can be recharged by applying a charging current (in reverse direction of the discharge current) across the electrodes (Figure 11d). The lead sulfate coated electrodes react with water to produce sulfuric acid and each electrode is restored to its original state. The cell voltage gradually increases back to 2 volts, and the specific gravity increases as more sulfuric acid is formed.

Single cells are not sufficient for large power requirements and several cells are often connected in series to increase the battery voltage. Therefore a 36-volt overall requirement would need a battery consisting of 18 serially connected cells at 2 volts per cell. The capacity of a battery is measured in ampere-hours (amp-hr) and is defined by the total charge that the battery can provide before its voltage drops below a specified cut-off value. It is dependent only on the size of the cells and is independent of the number of cells connected in series. Battery capacity can also be expressed in kilowatt-hours, which is the product of the average voltage per cell and the amp-hr rating of the battery. Battery capacity measured this way is dependent on the size and number of cells in the system.

Battery construction is quite detailed and, for the sake of brevity, will only be summarized here. Generally, a cell is constructed from lead alloy grids which have been impregnated with a paste made of lead oxide (PbO) or a combination of the former with lead sulfate (PbSO₄) to form a plate [34, 35]. Grids which will be positive are made

30

thicker than those which will be negative since charge and discharge cycles are more detrimental to the positive plates. The pasted plates are carefully dried and cured under strict tolerances of humidity and temperature. The cured positive plates are wrapped with protective, porous fiberglass and are grouped alternately with negative plates to form an element. The alternating positive and negative plates are separated by porous electrically insulating material to prevent contact between plates but allow free flow of electrolyte. Ultimately, the completed element is assembled into a protective casing; at this point the cells have no electrical characteristics and no capacity.

To energize the battery, a low-rate *forming charge* is applied for a specified time under a controlled battery temperature level. The forming charge produces the positive and negative polarity of the corresponding plates in the cell. The lead oxide and lead sulfate are converted to lead dioxide in positive plates and to elemental lead in negative plates. Water is consumed during the formation process and sulfuric acid is formed. The relevant formation reactions could be represented as follows:

Positive Plate: $PbO(s) + PbSO_4(s) + 3H_2O(1) \rightarrow 2PbO_2(s) + SO_4^{-2}(aq) + 6H^+(aq) + 4e^-$ Negative Plate: $PbO(s) + PbSO_4(s) + 2H^+ + 4e^-(aq) \rightarrow 2Pb(s) + SO_4^{-2}(aq) + H_2O(1)$ Net Reaction: $PbO(s) + PbSO_4(s) + H_2O \rightarrow Pb(s) + PbO_2(s) + H_2SO_4(aq)$

The forming charge also helps to establish the amp-hr capacity of each cell, which will depend on the final amounts of lead and lead dioxide and the specific gravity of the electrolyte. If several cells are connected in series, the forming charge is applied until all cells have reached the rated capacity. This process is called *formation equalization*. Some cells reach capacity sooner than others during formation equalization and undergo a short period of overcharging while the other cells catch up.

III.B. Fabrication Features

Cell material changes, measured and recorded at the time of fabrication, are summarized in Table 1. It should be noted that no effects on cell performance due to material changes were expected, as all materials met specifications. However, unsupervised cluster analysis studies [11] showed that groups of cells with different materials had different properties.

TABLE 1

FABRICATION MATERIAL CHANGES FOR LEAD-ACID CELLS

Subset	Circuit	Cells	Grid	Paste
а	1	1-15	old	old
b	1	16-80	old	new
С	2	81-160	old	new
d	3	161-218	old	new
е	3	219-240	new	new
f	4	241-320	new	new
g	5	321-340	new	new

Subset a: Pasted plates from inventory. Subsets b, c, and d: Plates freshly pasted on grids from inventory. Subsets e, f, and g: Newly cast grids and freshly pasted plates.

Battery cell fabrication features for this study include 13 electrochemical and physical measurements taken at various stages of production (Table 2). Feature 1 (SG2) is the specific gravity of the cell prior to formation equalization. The amount of acid added during formation equalization is represented by Feature 2 (EQWF). Cell formation equalization often involves several charge/discharge cycles to condition the cells.

Measurements can be made on the cell at different stages of a cycle. Two such measurements are the specific gravity (Feature 3, SG4) and the amount of acid added (Feature 4, EQWC) prior to the fifth equalization cycle. Feature 5 (ASHP) is a measure of the final acid adjustment before shipping, and Feature 6, RELFRMA, is a transformation which is calculated by dividing the EQWF by the difference between the total weight of the cell after formation equalization (FINLWT) and the dry weight of the cell before the addition of acid (DRYWT, Feature 11). Feature 7 (SHPSLFA) represents the total acid in the cell as shipped.

Each cell was subjected to a test involving 5 charge/discharge cycles. Feature 8 (AVSB) is the average specific gravity before cell discharge for all 5 cycles. The capacity of each cell was measured for each cycle and Feature 9 (AVCAP) represents the average capacity. The average specific gravity after each of 5 discharge cycles is represented by Feature 10 (AVSA) and Feature 12 and 13 are the maximum capacity (MXCAP) and maximum specific gravity (MXSA), respectively, over the 5 test cycles.

III.C. History

It is important to note that the manufacturer of the batteries has performed all experimental procedures relating to battery fabrication and capacity testing, as well as all measurements for each feature being studied. This research originally began in June 1983 with the construction of 340 large lead-acid cells by GNB, Inc., located in Kaukakee, Illinois [36]. Each cell was assigned a number and information about fabrication materials

TABLE 2

FABRICATION FEATURES OF LEAD-ACID CELLS

ID # 1	Feature SG2	Description Specific gravity prior to formation equalization
2	EQWF	
۲	CQVVF	Acid added in formation equalization step
3	SG4	Specific gravity prior to 5th cycle equalization
4	EQWC	Acid added (equalization) before 5th cycle
5	ASHP	Final acid adjustment before shipping
6	RELFRMA	EQWF ÷ (FINLWT - DRYWT) where FINLWT = total weight of cell after formation equalization
7	SHPSLFA	Total acid in cell as shipped
8	AVSB	Average specific gravity before discharge (5 cycles)
9	AVCAP	Average capacity over 5 test cycles
10	AVSA	Average specific gravity after discharge (5 cycles)
11	DRYWT	Cell weight before acid addition
12	MXCAP	Maximum capacity over 5 test cycles
13	MXSA	Maximum specific gravity over 5 test cycles

and measurements were recorded. The cells were arranged in series into four circuits of 80 cells each and a fifth circuit of 20 cells, for a total of 340 cells. These circuits were labeled 1 through 5 and the cells in each were conditioned by operating the cells for 5 or more charge/discharge cycles.

A total of 324 cells were constructed into 6-cell modules (54 in all) at the Battery Energy Storage Test (BEST) Facility operated by Public Service Electric and Gas Co. for the Electric Power Research Institute (EPRI). Acceptance tests were conducted and completed in December 1983. Requirements were that the cells deliver 500 kW for 1 hour at a capacity limit of 1040 amp-hr. A 5-hour discharge of 2080 amp-hr was to deliver at least 1.2 megawatt-hour of energy. The battery was given an eight year warranty. Modules were tested as 3 parallel strings (labeled A, B, and C) of 18 serially connected modules each and as a single string of all 54 modules. Two-hundred periodic test cycles were performed over a 4-year period for a variety of industrial applications. Periodic maintenance and capacity tests were performed during that time and a database was assembled from the data measurements.

The battery was shipped to Stateville, North Carolina in the Fall of 1987 and installed at Crescent Electric Membership Corporation (CEMC), a local area power plant. Since then the battery has functioned as a peak-shaving device, discharging at a minimum of 200 kW for 3 hours and at a maximum power of 500 kW for 1 hour. Several capacity tests have been performed on a selected subset of 121 cells since installation at CEMC. Capacity testing is performed by taking each of the selected cells through 5 charge/ discharge cycles at a load of 450 or 900 amperes until they reach a voltage cutoff level of 1.7 volts. Capacity tests were performed in March 1989, April 1990 and September 1991. The September 1991 event was a full capacity test, monitoring all cells. As of July 1991, only one cell (# 241) has been excluded due to low capacity [11, 37].

IV. Experimental Methods

IV.A. Instrumentation, Database and Software

Three IBM/AT compatible computers were used for all data storage, manipulation and pattern recognition studies. Each contained a minimum configuration of 1 megabyte (MB) RAM (random access memory) and a 20 MB hard disk. Two computers were equipped with 286-type microprocessors, running at 4 and 12 megahertz (MHz), respectively, and the third used a 386/12 MHz microprocessor equipped with an 8087 math coprocessor. Each computer contained copies of the database composed of GNB battery fabrication data and capacity testing data. Database management and spreadsheet software programs called SYMPHONY[™] (Lotus Corp.) and QuattroPro[®] (ver. 3.0; Borland International) were used to perform all statistical computations on the database.

All experimental results were analyzed using the same three IBM PC's and software listed above plus a Macintosh IIcx equipped with Excel® spreadsheet software (ver. 3.0; Microsoft Corp.) and Cricket Graph[™] graphing software (ver. 1.2; Cricket Software, Inc.). Pattern recognition software programs were written "in house" using a compiled BASIC programming language (Microsoft Corp.) and were used to perform all multivariate analysis and pattern recognition procedures.

IV.B. Procedures

IV.B.1. Database Information

The raw GNB battery fabrication and test data for all 340 cells are summarized in Appendix A. The fabrication features were discussed in Section III.B and defined in Table 2. Each feature was assigned a number for convenience. Although capacity tests have been performed annually for the last three years, only the capacity data from the test performed on April 3, 1990 were used for this study. This was because ~7 years had passed since manufacturing, and this marked the beginning of the final phase of cell life (the last year of the warrenty period). Only 121 of the 323 cells operating at CEMC were monitored for their capacity. The test was performed under a 450-amp discharge until the cells dropped to an average cut-off of 1.7 volts. Results of the test are listed for each cell in Appendix B (by increasing % capacity, corrected for temperature).

It is desirable to have a maximum number of patterns relative to the number of monitored features of interest. The ratio of number of patterns to features should be ≥ 3 to keep the results statistically valid [19], and measurements must be taken with enough sensitivity to allow for a detectable degree of variance in the data. Otherwise, the feature may not have any effect on the ability to discern different classes.

IV.B.2. Data Preprocessing

Multivariate data measurements are often presented as a data matrix (Figure 12) in which each row represents a different sample, and each column represents the data for a given measurement for each sample. When structured in this manner, it is often most useful to examine the relationships between samples within each column. However, multivariate data can rarely be analyzed in its raw state, and some type of preprocessing is usually necessary [18]. Preprocessing of raw data is important in order to preserve or enchance the information content for further analysis. For example, preprocessing may involve computing key characteristics (i.e., peak heights, widths, areas, ratios, etc.) or it may involve numerical transformations (time domain converted to frequency domain).

Preprocessing frequently involves scaling of the data. Otherwise, measurements for a given feature may be left significantly greater or smaller in magnitude than neighboring features, and may lend an unrealistic weight to a feature set and its variance. Scaling can be performed on measured features for a given sample (rows) and on individual features for a collection of samples (columns).

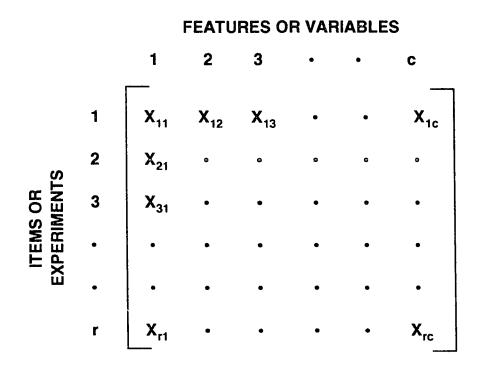


Figure 12. Graphical representation of a multivariate data matrix. Rows represent individual items or experiments. Individual features or variables are presented in columns for each item.

Scaling of feature sets (or rows) helps preserve the relative geometrical distances between feature sets. These distances are sometimes referred to as Euclidean distances. It is especially important to maintain the relative geometry of feature sets when subjecting the data to a reduction of dimensionality; otherwise, inaccurate evaluations of the inter-feature relationships might occur.

One popular way to transform data is to normalize it. This involves scaling the measurements to a constant total, usually 100%. The method has limitations in that for some cases, normalization can result in a minimization or loss of variance. An example of this is shown in Table 3. Features F1, F2, and F3 are presented in raw and normalized form for patterns A and B, where features are normalized so that the sum of all features for each sample equals 1.

Table 3Raw and Normalized Data Sets

	R	Raw Data		Normalized Data		
Sample	F1	F2	F3	F1	F2	F3
Α	50	100	50	0.25	0.5	0.25
В	9	10	1	0.45	0.5	0.05

Note that each feature set for the raw data contains a large variance; however, normalization of the features for each sample results in a loss of the variance observed for F2. In situations such as the latter, it may not be wise to normalize the data if subsequent analysis depends on there being a reasonable degree of variance within each feature.

Scaling down a column or feature set is usually performed to reduce all feature sets to the same range of values. *Standardization* is a way of normalizing each feature set, so that normalized feature values are expressed relative to the inherent variance in each variable. One method of accomplishing this is to *autoscale* the measurements within a column. The autoscaled value (Xa) is calculated as the difference between the raw data item, Xr, and the mean of the feature column (\overline{X}) divided by the standard deviation, s, of the column.

$$Xa = (\overline{X} - Xr) / s$$
(14)

Caution is advised when autoscaling data where the relative noise for highly intense measurements is less than that for low intensity peaks; standardization can actually increase the noise in the data.

The choice of scaling methods and the decision of whether or not to scale the data is often a subjective choice, and each data set must be examined carefully before applying a scaling method. For this work, all capacity values were normalized to the rated capacity of 2080 amp-hr and the data measurements were autoscaled for each feature.

IV.B.3. Definition of Class Boundaries

The class of a particular item may be a qualitative property that is known *a priori*. For example, a chemical compound may belong to one of various structural or functional groups (alcohols, ketones, aliphatics, aromatics, *etc.*). For our work, however, the class of each item is based on some quantitative property (*e.g.*, cell capacity). The definition of class boundaries can be performed using different criteria in evaluating the quantitative property of choice (figure of merit). One method assumes that a distribution of this property follows a continuous probability function, one form of which is the Gaussian distribution [32] (Figure 13).

The number of items, Y, that have a value of X_i are assumed to fall symmetrically about a mean \overline{X} . Items which lie at the extremes of the distribution are considered to be of different classes. Items that lie to one side of an arbitrary boundary, such as one or more standard deviations from \overline{X} , are assigned to a different class from those items lying on the other side. For example, objects that lie outside 1 standard deviation to the left of \overline{X} could be classified as class 1, and those positioned outside 1 standard deviation (σ) to

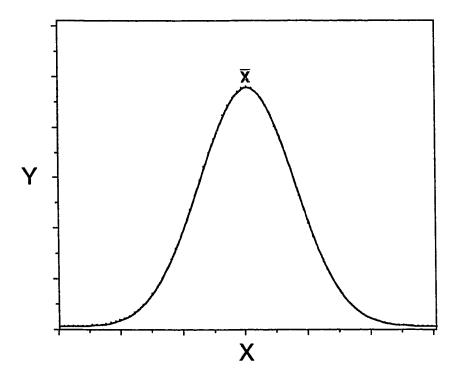


Figure 13. A Gaussian distribution curve. Y is the response for value $X\overline{X}$ is the average of all values of X.

the right of \overline{X} could be labeled as class 2. The intermediate items falling within $\pm 1 \sigma$ of \overline{X} could be classified as a third class, 3.

Another method for viewing the distribution is the histogram approach. The number of items n having a particular value X_i are plotted as shown in Figure 14. The distribution of items along the x-axis may not be Gaussian, but the class criterion is similarly based on where the item falls within the distribution. The boundaries that separate classes can be set using the natural breaks or minimums that occur between clusters in the distribution of the data.

Capacity values from the 1990 capacity test were used to determine the class assignment of the corresponding patterns (cells) in the fabrication database. The nominal capacity for each cell is 2080 amp-hr, and measured values are expressed as a percentage of this value. High capacity cells were assigned to Class 1, low capacity cells to Class 2 and intermediates to Class 3. All capacity test cells were sorted from lowest to highest capacity (Appendix B). The average capacity, \overline{X} , was computed for all 121 cells as well as the standard deviation, σ . High capacity cells were defined as those with capacities greater than ($\overline{X} + \sigma$) and low capacity cells as those with capacities less than ($\overline{X} - \sigma$). Intermediates were defined as those cells with capacity values within the range ($\overline{X} \pm \sigma$). For the 1990 capacity test cells, \overline{X} equals 101.5%, and σ equals 2.8%. Using this criterion (the standard deviation classification method, STDEV) the class assignments were as follows:

Class 1; 17 cells, capacities > 104.3%

Class 2; 22 cells, capacities < 98.7%

Class 3; 82 cells, capacities \geq 98.7% but \leq 104.3%

A histogram distribution of the 1990 capacity data is shown in Figure 15. Capacity values have been rounded off when assigning cells to a particular category on the

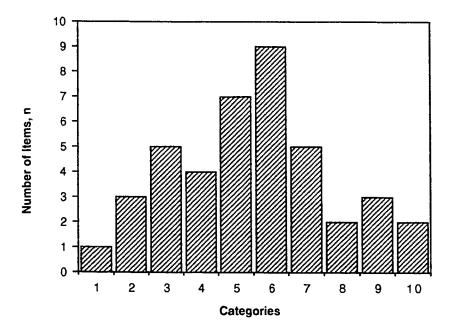


Figure 14. A histogram distribution of categories consisting of n-number of items each.

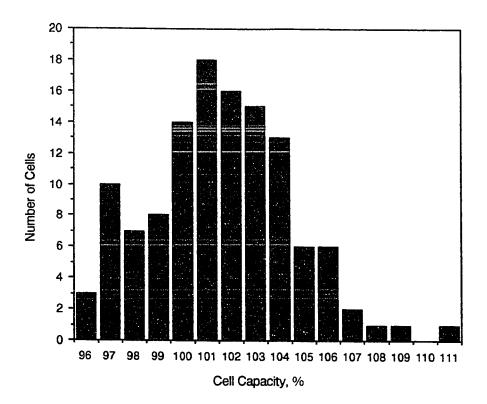


Figure 15. Histogram distribution of cell capacity data collected by CEMC on April 3, 1990.

graph. For example, cells labeled with a capacity of 101% represent capacity values which range from 100.5% to 101.4%.

The training set for the 2-class problem was constructed with Classes 1 and 2. The 3-class study also used the same cells/classes as for the 2-class problem plus about onethird of the cells from Class 3. Thus, the training set for the 2-class problem contained 17 Class 1 cells and 22 Class 2 cells for 39 cells total, and the 3-class training set contained the same 39 cells plus an additional 20 cells from Class 3 for a total of 59 cells. The other 62 intermediate cells (Class 3) were designated as the "Prediction Set" for the 3-class problem. The remaining 219 cells (340 - 59 - 62 = 219) were assigned to the "Unknown Set", designated Class 0.

IV.B.4. Feature Selections

After the raw data are accumulated and preprocessed, the assembled database is examined using different feature extraction methods. Individual features and feature groups are chosen based on statistical, mathematical, and systematic selection methods. Features are considered useful for pattern recognition if they exhibit a large amount of variance or for their ability to accurately distinguish between two or more classes.

Groups of fabrication features were selected from those presented in Appendix A based on selection criteria outlined in Section II.B. Feature groups were selected by correlation methods, Fisher ratio analysis, relative standard deviations, arbitrary selection and sequential feature elimination.

Fabrication measurements were examined using correlation analysis, and features were eliminated to provide a set containing only poorly correlated features. Selected feature groups were then tested for their ability to accurately classify cells belonging to the training set. Fisher ratios and relative standard deviations were calculated from the training set data for each fabrication feature for both the 2-class and 3-class training sets. Features yielding the largest ratios and relative standard deviations were selected and analyzed for their classification ability. These select feature groups were also subjected to sequential feature elimination.

Systematically chosen feature groups were also examined for their ability to accurately classify cells from each training set. While systematic selection may appear unscientific, it is not practical to investigate all possible feature group combinations from the entire set of 13 features. The number of possible combinations of Z features from a total of M features can be determined using the following formula [23]:

$$M! \div [Z! (M - Z)!]$$
(15)

If M = 13 features and Z_i represents equally-weighted Features 1, 2, ..., 13, as i is incremented from 1 to M, the total number of all possible feature groups, T, becomes:

$$T = \sum_{i=1}^{M} \{ M! \div [Z_i! (M - Z_i)!] \} = 8,191 \text{ possible feature groups}$$
(16)

When weighted features are taken into account, the possibilities are enormous. Even with the availability of high-speed technology, it is unproductive to examine all combinations.

For our purposes, the various feature selection methods described here proved very satisfactory. Sequential feature elimination was by far the most productive way to discover suitable classifiers. The method has the powerful advantage of being applicable to feature groups selected by any other method. Using this approach increases the likelihood of the evaluation of a large number of the total possible combinations of feature groups.

IV.B.5. Training

The training procedure involved the LOO-KNN (leave-one-out k-nearest neighbor) classification algorithm combined with sequential feature elimination [38]. The procedure

begins with the selection of a particular feature group using methods described above. All data values for the chosen features are autoscaled as described in Section IV.B.2. Then, each pattern is "left out" of the training set and classified using KNN as if it were an "unknown". This procedure is repeated for all patterns in the set and the classification accuracy is determined (overall and by class). In this procedure, training involves the systematic selection of different groups of features for trial classification runs (LOO-KNN), until the optimum feature set is found.

The algorithm also allows the user a choice of whether or not to optimize the feature weights and perform *forward or backward* feature elimination. The forward and backward direction refers to which way through the data matrix the sequential elimination is proceeding. That is, columns of feature data are sequentially eliminated from left to right for forward elimination and from right to left for backward elimination. The entire process can be quite time-consuming depending on the computer speed, the number of patterns and features, and whether feature weight optimization is selected. It is often prudent to select feature weights of "1" for preliminary training sessions. Feature weight optimization is then performed only on those feature groups which are superior classifiers. This results in the use of much less computer time.

IV.B.6. Classification Accuracy

Classification accuracy can be expressed in several ways. The overall accuracy, A, is the ratio of the number of patterns classified correctly, P, to the total number of patterns, P_t, in the set, expressed as percent.

$$A = 100 (P / P_t)$$
(17)

The class-specific accuracy, A_c , (expressed as percent) is defined as the number of correct classifications, P_c , for patterns within a specific class, m, divided by the total number of patterns in the class, P_m .

$$A_{c} = 100 (P_{c} / P_{m})$$
(18)

The average accuracy, \overline{A} , is the ratio of the sum of the individual class-specific accuracy to the total number of classes, P_n .

$$A = (\sum A_{ci}) / P_n$$
 for $i = 1, ..., n$ (19)

IV.B.7. Mapping

Feature groups which provided the highest degree of classification accuracy (as determined by training) were then analyzed using a non-linear mapping (NLM) method as described earlier. The NLM procedure autoscales all feature values for each pattern and then seeks to convert the resulting N-dimensional feature space into an accurate representation in 2-dimensions. Sometimes feature groups fortuitously give high classification accuracy when examined with the LOO-KNN training method. NLM plots using these same feature groups and weights often indicate a fortuitous distribution of the patterns such that no real clusters of specific classes exist. This is undesirable because it gives false credence to the accuracy and reliability of the classifier. NLM plots which result in separate clusters of specific classes are an accurate, independent measure of classifier effectiveness. This method was useful as a critical step for identifying feature groups which were not valid for classification purposes, despite fortuitously high accuracy.

IV.B.8. Pattern Reclassifications

If an item is consistently found to be misclassified during the training phase, it may be that the item actually belongs to a different class. NLM plots can often elucidate this, especially if the pattern is always found to reside within a cluster of patterns which belong to a different class. This occurred for the 3-class problem, and it was beneficial to "reclassify" some items, and repeat the training phase over again. As expected, this approach often led to a higher classification accuracy for each classifier than was obtained before. Pattern reclassification also yielded classifiers which were comprised of different feature groups than were originally discovered. These groups were then evaluated again by NLM for their validity.

IV.B.9. Predictions

When a collection of classifiers is obtained from the training set, each classifier is evaluated on its ability to accurately identify the class of each pattern contained in the prediction set [15]. The prediction set is ideally composed of patterns which have the same origins as those in the training set, but which are not part of the training set. The accuracy of classification produced by a classifier which has been applied to a prediction set is referred to as the *prediction ability*.

Calculations of classification accuracies for the prediction set are similar to calculations for the training set (eqs 17-19). Testing the prediction ability of the classifier is a way of validating the high classification accuracies obtained from the training procedure. The higher the classification accuracies for both training and prediction studies, the greater the confidence that the data matrix contains the desired information regarding the particular classification in question, and that an analysis of an unknown data set would yield valid classifications. This assumes that data for the unknown items are treated similarly as the training and prediction sets and that the class(es) of the unknown items are real classes which also exist within the training and prediction sets.

If training or prediction procedures yield poor results, then other classifiers must be developed by choosing different feature groups, by including other features not previously investigated, or by transforming the data. Combinations of the above methods may also prove useful. Based on classification algorithm results, the feature groups which appear to have the greatest capacity for distinguishing classes are then used to categorize items of

unknown classification. In this work, the classification decision is made by assigning the unknown item to the same class as its nearest neighbor(s) of known class.

Fabrication feature groups and their weights which gave high classification accuracies and resulted in NLM plots of distinct class clusters were used for the purposes of prediction. No prediction set was available for the 2-class study due to the limited number of cells of high and low capacity. For the 3-class study, the most useful classifiers obtained from the training and mapping procedures were used to classify the Prediction Set and Unknown Set cells.

V. Results and Discussion

V.A. Scope of Investigation

For this study we were primarily concerned about the information content of the fabrication data, i.e. do the data contain the information necessary for the accurate distinction of good and poor performing cells? One of the difficulties, as discussed in IV.B.3, is that class assignments for the training set cells are based on a Gaussian distribution of the cell capacity data. In fact, this is not so; however the distribution is close enough (Figure 15) that the natural breaks and the mean of the distribution are close to the Gaussian results. The Gaussian model is quite adequate for determining whether or not the information content is there. Some erroneous classifications can occur due to the differences between the natural breaks in the distribution and the boundaries that are assigned based on a Gaussian spread of the data.

Another point of concern is the question of false-positive identifications, especially their frequency of occurrence for each class. If a good performer is falsely classified as a bad performer, it will be excluded from the set and little harm will have been done. However, if a poor performer is misclassified as being good, it will be included with the other good cells and this may lead to disastrous consequences for the battery. Therefore, from the standpoint of false-positives, accurate classification of poor performers is much more critical than that of good performers.

Finally, determination of which groups of features provide meaningful classifiers gives information about the relationships between fabrication features and how they influence the battery system. This information can be used to design experiments to optimize the fabrication materials to produce better batteries.

V.B. Two-Class Study

A summary of the pattern recognition training results for the 2-class problem is presented in Table 4. Overall and individual class accuracies are listed for each classifier along with the corresponding features of importance. Extensive training was performed on the 2-class training set, and many useful feature combinations were obtained. A summary of only the superior classifiers are shown here (overall accuracy $\geq 92\%$). Many other classifiers were obtained which gave good results, but those in Table 4 are a good representation of the most useful feature combinations.

Table 4 lists each classifier by its feature code which is expressed as a 13-digit number. Each digit, reading from left to right, represents the corresponding feature ID number. The magnitude of the digit represents the weight given to that feature. Features which have a 2-digit weight are enclosed in hash marks. For example, a feature code of F-0004000101004 would represent a classifier composed of features 4, 8, 10 and 13, which correspond to EQWC, AVSB, AVSA and MXSA, respectively (Table 2). Features AVSB and AVSA are each assigned a weight of "1" and EQWC and MXSA are each given a weight of 4. A feature code of F-200/16/040100011 includes features SG2, EQWC, RELFRMA, AVSB and MXCAP (1, 4, 6, 8, 12 and 13), and utilizes a weight of 16 for EQWC.

Each of the promising classifiers was examined by NLM to determine which feature groups actually resulted in a separation of Class 1 and 2 cells in N-feature space. Classifiers were graded as to their quality, and those which gave good results were noted. Feature groups which gave fortuitously high classification accuracies were rejected if their non-linear maps were poor in quality. Mapping errors were used as a measure of how well the 2-dimensional maps represented their N-dimensional counterparts.

TABLE 4

2-CLASS STUDY SUMMARY OF BEST TRAINING RESULTS

Classifier F-0004000101004	% Classification Accuracy Overall/Class 1/Class 2 95/94/96	Features Used 4,8,10,13
F-4001100210000	95/94/96	1,4,5,8,9
F-4001120210000	95/94/96	1,4,5,6,8,9
F-4020101100010	95/94/96	1,3,5,7,8,12
F-4001041201000	95/94/96	1,4,6,7,8,10
F-4001010200101	95/94/96	1,4,6,8,11,13
F-2001000100100	92/94/91	1,4,8,11
F-0008000100011	92/82/100	4,8,12,13

		Frequently
Feature ID	Feature	Observed
1	SG2	✓
3	SG4	
4	EQWC	✓
5	ASHP	✓
6	RELFRMA	✓
7	SHPSLFA	
8	AVSB	✓
9	AVCAP	
10	AVSA	
11	DRYWT	
12	MXCAP	
13	MXSA	

The 2-class training procedures developed many good classifiers which collectively utilized each of the 13 fabrication features. Those classifiers which gave both high classifications and good quality non-linear separations frequently contained one or more of the following features: SG2, EQWC, ASHP, RELFRMA and ASVB. This suggests that measurements of the specific gravity prior to formation equalization and discharge are important for accurate cell classification, as well as acid additions made during formation equalization. The final acid adjustment before shipping, and the ratio of acid added in the formation equalization step to the total acid present in the cell are also important factors for 2-class (high/low) distinction.

Examination of the fabrication database (Appendix A) shows that many poor performing cells have a lower than average value for SG2, AVSB, and AVCAP than do cells which are good performers. Values of EQWC are greater than or equal to zero for poor performers, whereas values for good performers tend to be large and negative (negative acid adjustments correspond to additions of water). Generally, ASHP values are relatively negative in magnitude for poor performers as opposed to positive for most good performers.

The results clearly suggest that acid adjustments during the formation cycles are crucial to performance capability. Cells which have lower than average specific gravities before dishcarge and demonstrate low capacity performance during testing will likely be poor performing throughout their lifetimes. Also suggested is that addition of acid, rather than water, during the EQWC step may result in premature formation of lead sulfate on the plates and result in lower capacities [34].

When mapping, cells 105 and 109 always appeared as outliers, together in their own cluster and far away from all other cells (Figure 16). Values for SG2, AVSB, AVCAP, EQWC, and ASHP are more deviant for these two cells than for other cells. Because the

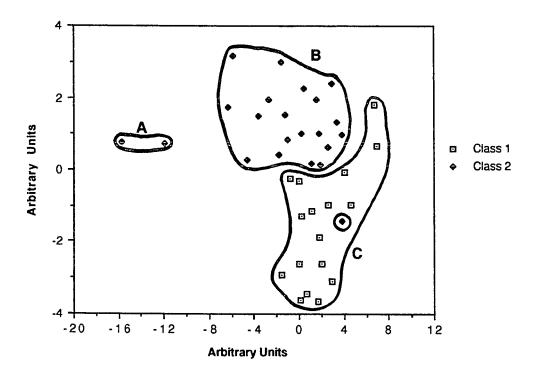


Figure 16. Non-linear mapping (NLM) of five-dimensional feature space for fabrication data; 2-class Training Set cells. STDEV classification criteria. A: Class 2, cells 105 and 109. B: Class 2 cells. C: Class 1 cells with Class 1 false-positive cell 225. Features: SG2, EQWC, ASHP, AVSB, AVCAP.

inclusion of cells 105 and 109 distorted the NLM and pattern recognition analysis results, subsequent NLM's and pattern recognition classifiers were graphed without cells 105 and 109. The classifier used to generate this map yielded an overall accuracy of 95% for the 2-class Training Set cells.

Representative non-linear maps from the 2-class study (less cells 105 and 109) are depicted in Figures 17 and 18. Each map was generated from two different classifiers each yielding 95% overall accuracy, just as for the map in Figure 16. Individual class accuracies were 94% for Class 1 and 95% for Class 2 (96% if cells 105 and 109 are included). The maps in Figures 16-18 illustrate the effective separation of Classes 1 and 2 into distinct regions of N-space.

The map in Figure 17 was generated from the 6-dimensional classifier F-4001041201000, which corresponds to features SG2, EQWC, RELFRMA, SHPSLFA, AVSB and AVSA. Three distinct clusters are produced. Cluster A consists of all Class-1 cells plus one Class 2 cell (#225). Most of the Class 1 cells in Cluster A (13 out of 17) are from Circuit 4. It is interesting to note that all of the Class 1 cells from Circuits 3 and 4 in Cluster A were fabricated with plates consisting of new grids and new paste (Refer to Table 1).

The Class 2 cells are divided into two clusters, B and C. Cluster B is composed of cells from Circuits 2, 3 and 4, while Cluster C is exclusively composed of cells from Circuit 1, which were fabricated from old grids and new paste. Many of the cells in Clusters B and C were found to correspond to cells which have been observed to expand, thus causing the battery casing to swell [26]. Five cells have actually separated between the jar and lid, but the cells are still in service since they continue to function well.

The observations for features SG2, EQWC, RELFRMA, and AVSB were the same as those noted above for good vs. poor performing cells. The SHPSLFA values tended to

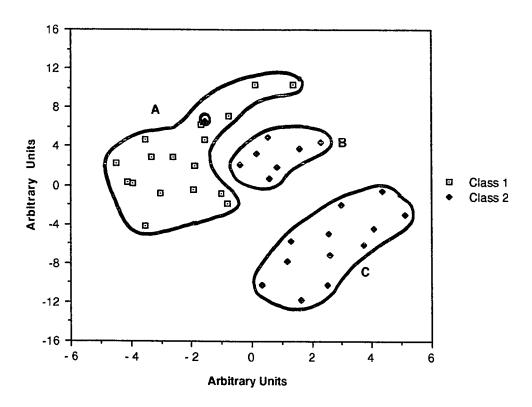


Figure 17. Non-linear mapping (NLM) of six-dimensional feature space for fabrication data; 2-class Training Set cells (less cells 105 and 109). STDEV classification criteria. A: Class 1 cells, Circuits 3 and 4, new grids/new paste. B: Class 2 cells, Circuits 2-4, old grids/new paste and new grids/new paste. C: Class 2 cells, Circuit 1, old grids/new paste. Features: SG2, EQWC, RELFRMA, SHPSLFA, AVSB, AVSA.

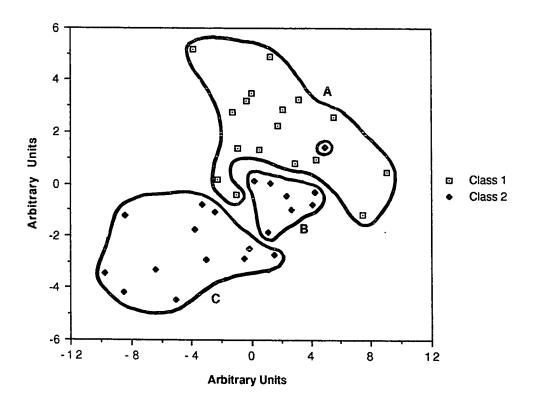


Figure 18. Non-linear mapping (NLM) of six-dimensional feature space for fabrication data; 2-class training set cells (less cells 105 and 109). STDEV classification criteria. A: Class 1 cells, Circuits 3 and 4, new grids/new paste. B: Class 2 cells, Circuits 2-4, old grids/new paste. C: Class 2 cells, Circuit 1, old grids/new paste. Features: SG2, SG4, ASHP, SHPSLFA, AVSB, MXCAP.

be lower for poor performers than those for good performers, and good performers generally had lower AVSA values than poor performers. The map in Figure 18 is an example of less well-defined clusters in spite of a 95% overall classification accuracy. The classifier is composed of features SG2, SG4, ASHP, SHPSLFA, AVSB, and MXCAP. Observations made for SG2, ASHP, SHPSLFA, and AVSB continued to hold true for the observed clusters of Class 1 and 2 cells. Class 1 cells are dispersed more; however, the cells are still the nearest neighbors to other Class 1 cells, and may actually be small isolated clusters. Cluster C is composed exclusively with cells from Circuit 1, whereas Cluster B contains cells from Circuits 1 through 4. It may be that B and C are really one large, dispersed cluster for this particular classifier, the fourth listed in Table 4.

Values for SG4 and MXCAP are lower than average for poor performers and are higher than average for good performers. MXCAP values change remarkably, from 96% average for poor performing cells to 100-105% for good performers. It should be noted though that MXCAP values alone are not sufficient for a high degree of distinction between high and low capacity cells.

A very important aspect of cell classification involves the identification of false positives. False positives are cells which have been incorrectly identified as belonging to the desired class. For the 2-class problem there are two possibilities: Class 2 cells which have been falsely identified as Class 1, and of course Class 1 cells which have been classified as belonging to Class 2. The former case has far greater potential for unfortunate consequences than the latter. Incorrect classification of Class 1 cells simply results in their non-use, whereas Class 2 cells which have been classified as Class 1 would likely (and erroneously) be placed into operation, and could result in undesirable consequences. Class 2 false positive classifications occurred most frequently for cells 146, 236, 239, 243 and 303. More importantly, the most frequently encountered Class 1 false positives were

cells 225 and 299; cells 91, 228, and 249 were also occasionally identified as Class 1. All Class 1 false positives were characterized by low capacity values for the 1990 Capacity Test (Appendix B), but have fabrication data values for one or more of the features SG2, SG4, EQWC, ASHP, RELFRMA, SHPSLFA, AVSB, ASHP, AVSA, and MXCAP which are consistent for good performing cells. The results suggest that the cells may have performed poorly as a cause of something other than that which is represented by the fabrication data.

Cluster A in Figure 18 was also found to contain cells only from Strings B and C and none from String A (Section III.C). Cluster B contains cells from all three strings and Cluster C contains cells only from Strings A and B and none from String C. All cells in Class 2, Cluster C are from modules 1, 6, 20, and 22 exclusively, and none of the cells in Clusters A or B are from those stored in these four modules.

Perhaps the most encouraging result obtained from the 2-Class study is that the battery fabrication data appear to contain the information content necessary for distinguishing between high and low performing cells. Although the 2-Class classifiers have not been tested on a prediction set, the NLM maps shown in Figures 16-18 indicate real class separation which is consistent with earlier independent findings [10-13, 37]. Additionally, the pattern-to-feature ratios are between 7 and 10, which is greater than the minimum recommended ratio of 3, and whose high value lends statistical validity to the results [19].

V.C. Three-Class Study

Results from the initial round of 3-class training and mapping are summarized in Table 5. It is not surprising that the overall and individual cell classification accuracies are lower than what was obtained from the 2-Class studies. Overall classification accuracy generally fell between 71 to 75%, and the highest individual accuracies obtained from

TABLE 5

3-CLASS STUDY SUMMARY OF BEST TRAINING RESULTS

Classifier F-0420101000000	% Classification Accuracy Overall/Class 1/Class 2/Class 3 75/71/86/65	Important Feature Groups 2,3,5,7
F-0411111000000	72/82/77/60	2,3,4,5,6,7
F-0410121000100	73/71/86/60	2,3,5,6,7,11
F-0420102000000	71/65/86/60	2,3,5,7
F-0041012010120	71/65/77/70	3,4,6,7,9,11,12

Feature ID	Feature	Frequently Observed
2	EQWF	✓
3	SG4	✓
4	EQWC	
5	ASHP	✓
6	RELFRMA	✓
7	SHPSLFA	✓
9	AVCAP	
11	DRYWT	
12	MXCAP	

meaningful classifiers were 82%, 86% and 70% for Class-1, -2 and -3 cells, respectively. Initial training and mapping results indicated that Features 2 through 7, followed by 11 seemed to be the most useful for separating all three classes. Acid adjustments at various fabrication stages (EQWF, EQWC, RELFRMA) the total acid in the cell as shipped (SHPSLFA) and, to a lesser extent, the dry weight of the cell (DRYWT) were found to play an important role in the classification process for training cells classified by the STDEV method.

The 3-class training set contained 59 cells, but only 50 cells could be mapped at any one time since the non-linear mapping program was written for a maximum capacity of 50 patterns. Cells which were always classified incorrectly were identified as aberrant cells and were initially excluded from the mapping data. The maps were plotted, and cells which consistently fell deep within specific clusters were identified and replaced with the aberrant cells after which the maps were plotted again. This step was necessary to determine the relative placement of each of the 59 cells in N-feature space.

Although the absence of the aberrant or non-aberrant cells had some effect on the mapping errors and relative cell placement in pseudo 2-dimensional space, it was very minor. Cells 105 and 109 also appeared as outliers in maps prepared for the 3-class study and were removed to improve map quality. Cells which were most frequently aberrant and the cells which were exchanged with them for mapping purposes are indicated in Appendix C. Aberrant cells and their exchanges for mapping purposes are indicated with a check mark (\checkmark) and all cells which were always classified correctly are marked with a "c".

Maps for two superior classifiers (based on STDEV classifications) are presented in Figures 19 and 20. The map shown in Figure 19 was generated using a 7-dimensional classifier represented by feature code F-0041012010120, which corresponds to features SG4, EQWC, RELFRMA, SHPSLFA, AVCAP, DRYWT AND MXCAP. The

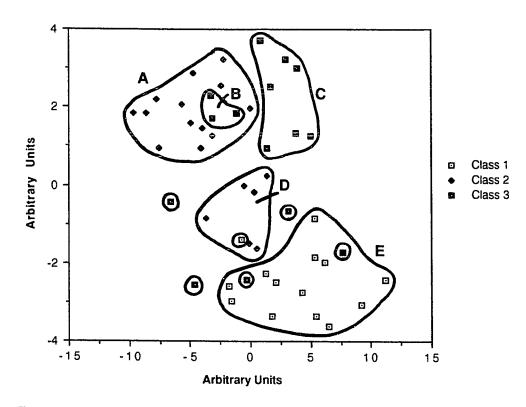


Figure 19. Non-linear mapping (NLM) of seven-dimensional feature space for fabrication data; 3-class Training Set cells (without aberrant cells). STDEV classification criteria. A: Class 2 cells, Circuit 1, old grids/new paste. B: Class 3 cells, Circuit 1, old grids/new paste. C: Class 3 cells, Circuit 2, old grids/new paste. D: Class 2 cells, Circuits 3 and 4, old grids/new paste and new grids/new paste. E: Class 1 cells, Circuits 3 and 4, new grids/new paste. Class 3 cells which are dispersed and individually circled are from Circuits 3 and 4, old grids/new paste (1 cell) and new grids/ new paste (4 cells). Features: SG4, EQWC, RELFRMA, SHPSLFA, AVCAP, DRYWT, MXCAP.



Figure 20. Non-linear mapping (NLM) of six-dimensional feature space for fabrication data; 3-class Training Set cells (with aberrant cells). STDEV classification criteria. Much overlap is observed between classes due to the presence of aberrant cells. A: Primarily Class 1 and Class 3 cells, Circuits 3 and 4, new grids/new paste. B: Mostly Class 2 and Class 3 cells, Circuits 2-4, old grids/new paste and new grids/new paste. C: Class 2 and Class 3 cells, Circuit 1, old grids/new paste. Features: EQWF, SG4, ASHP, RELFRMA, SHPSLFA, DRYWT.

overall classification accuracy was 71% and the individual class accuracies were 65, 77 and 70% for Classes 1, 2 and 3 respectively.

As expected from the training accuracies, the clusters in Figure 19 are not well separated, and there is some degree of overlap. If each of the points from the Class-3 cells were removed from the map in Figure 19, Classes 1 and 2 would very nearly be separable. The overlap is likely due to the arbitrary nature of the boundaries established between the capacity values for Class 3 and those for Classes 1 and 2, within a nearly continuous distribution. That is, the boundaries which have been established using the STDEV criterion may not provide an adequate means of identifying different cell subsets with different properties.

It is interesting to observe that virtually all of the points lying above zero on the Y-axis are from Circuits 1 and 2 and those below are predominately from Circuits 3 and 4. This suggests that differences in fabrication conditions from one batch to another produce real differences in measurable cell properties. Some of the fabrication differences from batch to batch are documented (e.g., material changes, Table 1) and are cited in the figure legends. However, other fabrication changes may simply be associated with a learning curve in the manufacture of these cells. The fact that cells from Circuit 3, which came from two different groups of fabrication materials, have statistically significant differences in capacity [13] suggests that fabrication materials are a determining factor in cell performance, even after 7 years of operation.

Results from the 6-dimensional map in Figure 20 were similar to Figure 19 in that low capacity cells from Circuit 1 are well resolved from the Class 1 cells, but cells from Class 3 are found within each of the three clusters, A, B and C. Cluster B contains cells predominately from Circuits 2 and 3 while Cluster A primarily contains cells with the highest ID numbers, i.e. cells from Circuits 3 and 4 which were made from newer

materials. These observations are supported by a dichotomy of performance observed for the cells from Circuit 3 (Appendix B). The results suggest that measurements during initial cell operation reflect the influence of plate and grid materials, and that these materials, along with other factors, determine cell performance well into battery life.

The histogram distribution of the 1990 cell capacity data (Figure 15) shows that the data do not conform exactly to a Gaussian distribution. Therefore, the boundaries assigned between Class 3 and each of the other two classes, based on the Gaussian σ -value, may not be appropriate. The NLM clusters of Figures 19 and 20 illustrate the existence of subsets of cells with common properties. Unfortunately, these subsets may not reflect only performance differences. However, by first dividing cells into performance subsets by the STDEV criterion, then applying KNN training to find feature sets which separate these classes as well as possible in feature space, the NLM display should illustrate cell grouping reflecting primarily performance differences. Thus, if cell classes are then re-defined based on their observed clustering in performance-based feature space, optimized definition of performance subsets might be achieved.

Table 6 summarizes the results of re-classifying cells based on their consistent occurrence within clusters of different STDEV assigned classes for various feature sets considered good 3-class classifiers (Table 5). Table 6 lists each cell classification based on STDEV criteria and based on the NLM cluster analysis criteria. Remarkably, many of the Class 2 cells were usually classified correctly and very few were reassigned to another class. Many of the Class 3 cells and some of the Class 1 cells were reassigned to other classes. The differences that occur underscore the need for examination of more than one classification system.

After each cell was assigned to the majority class of its nearest or surrounding cluster, the training procedure was repeated on the newly classified cells. As expected, higher

TABLE 6

3-CLASS STUDY TRAINING SET CLASSIFICATIONS

	Class by	Class by		Class by	Class by
Cell ID	STDEV	NLM Clusters	Cell ID	STDEV	NLM Clusters
146	1	1	105	2	2
230	1	3	109	2	2
236	1	3	192	2	2
239	1	3	197	2	2
243	1	3	199	2	2
245	1	1	225	2	3
246	1	1	228	2	2
251	1	1	249	2	3
252	1	1	299	2	2
254	1	1	16	3	2
262	1	1	18	3	2
265	1	1	70	3	3
267	1	1	71	3	2
273	1	1	83	3	3
276	1	3	99	3	3
297	1	1	128	3	3
303	1	3	131	3	1
20	2	2	132	3	2
21	2	2	133	3	3
22	2	2	135	3	3
23	2	2	136	3	3
25	2	2	172	3	3
28	2	2	185	3	1
29	2	2	219	3	3
59	2	2	221	3	3
60	2	2	235	3	3
62	2	2	263	3	3
63	2	2	307	3	3
65	2	2	316	3	2
91	2	2			

overall classification accuracy was obtained for each classifier and new classifiers were discovered which were not obtained in the first round of training (Table 7). Overall classification accuracy ranged from 78% to 86%, with greatest improvement obtained for Class 3 cells which increased from a high of 70% for classification boundaries determined by STDEV criterion to 81% using NLM. The use of NLM classification criteria also produced high accuracies for Class 1 and Class 2 cells (85% and 92%, respectively).

Reclassifications based on NLM clusters resulted in the frequent appearance of features SG2, EQWF, EQWC, ASHP and RELFRMA. So, in addition to features and classifiers which were initially found to be important, SG2 was also found to be a useful feature. The classifiers chosen for the NLM assigned cells are able to separate cells on the basis of their fabrication materials. This observation is based on the formation of clusters which contain cells exclusively from a particular circuit, or cells which are made from the same fabrication materials. Representative maps for the reclassified cells are shown in Figures 21 and 22 and depict very good separation of the three NLM-based classes of cells.

A thorough analysis of all useful classifiers generated by 3-class training and mapping showed that the cells most frequently identified as false positives for Class 1 were cells 133, 135, 225, 263 and 299. Cells 225 and 299 were also the most frequent Class 1 false positives encountered during the 2-Class studies. Examination of the data in Appendix A showed no obvious reason for the continuous incorrect classification of these cells. This suggests that the cells were fine during manufacture, but were likely in poor condition at the time the 1990 capacity tests were performed. Examination of capacity slope trends [13] for each cell indicates that many cells have changed their capacity levels over the years. Cells which originally possessed low capacities gradually increased in capacity over the years (1983 to 1990), whereas high capacity cells actually lost some

TABLE 7

3-CLASS STUDY SUMMARY OF BEST TRAINING RESULTS AFTER NLM RECLASSIFICATIONS

Classifier F-0201010000000	% Classification Accuracy Overall/Class 1/Class 2/Class 3 78/69/80/81	Important Feature Groups 2,4,6
F-0/16/11110000000	85/77/92/81	2,3,4,5,6
F-1420110100010	81/85/84/76	1,2,3,5,6,8,12
F-1001020001000	81/77/88/76	1,4,6,10
F-011001000000	86/85/92/81	2,3,6

Feature ID	Feature	Frequently Observed
1	SG2	
2	EQWF	✓
3	SG4	✓
4	EQWC	√ ?
5	ASHP	
6	RELFRMA	✓
8	AVSB	
10	AVSA	
12	MXCAP	

.....

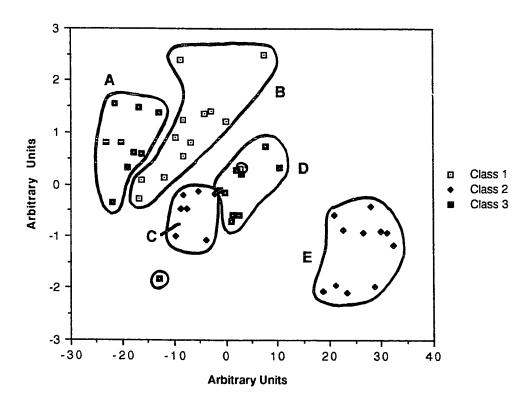


Figure 21. Non-linear mapping (NLM) of five-dimensional feature space for fabrication data; 3-class Training Set cells (with aberrant cells, without exchange cells), NLM cluster classification criteria. A: Class 3 cells, mostly Circuits 3 and 4, new grids/new paste. B: Class 1 cells, primarily Circuit 4, new grids/new paste. C: Class 2 cells, mainly Circuits 2 and 3, old grids/new paste. D: Class 3 cells, Circuits 2 and 4, old grids/new paste and new grids/new paste. E: Class 2 cells, Circuit 1, old grids/new paste. Features: EQWF, SG4, EQWC, ASHP, RELFRMA.

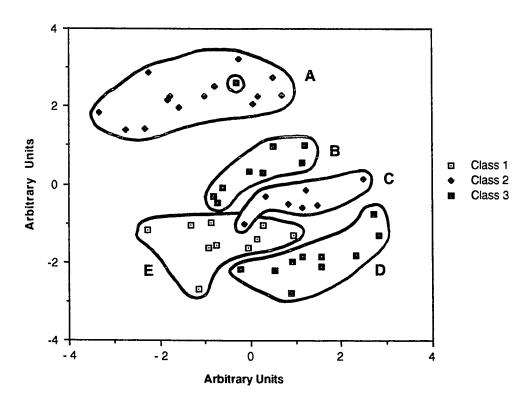


Figure 22. Non-linear mapping (NLM) of five-dimensional feature space for fabrication data; 3-class Training Set cells (with exchange cells, without aberrant cells), NLM cluster classification criteria. A: Class 2 cells, Circuit 1, old grids/new paste. B: Class 3 cells, primarily Circuit 2 (old grids/new paste) and Circuit 4 (new grids/new paste). C: Class 2 cells, mainly Circuit 3, old grids/new paste. D: Class 3 cells, mostly Circuit 3 and 4, new grids/new paste. E: Class 1 cells, Circuit 4, new grids/new paste. Features: SG2, EQWF, EQWC, ASHP, RELFRMA.

capacity over the same time period. This supports the suggestion that cells can markedly change in performance after manufacture.

Feature groups which afforded the most accurate training results were used to perform prediction studies on the remaining Class 3 cells which were not part of the training set. Individual cell classifications for each classifier and each method (STDEV and NLM) are presented in Appendix D. Classes which were most frequently chosen are listed for each method and for both methods considered equally. Cells which underwent a splitvote have both assigned classes listed, separated by a slash (solidus). This information is summarized in Table 8, where the class is assigned using the best training feature groups from each of the criteria for a total pool of 10 classifiers. Cell classifications utilizing the best training classifier from each type of classification treatment are also presented.

Prediction "accuracy" was generally poorer than expected (max. ~48%). However, the large number of apparent misclassifications may be attributed to the arbitrary STDEV criterion used to assign all of the Predication Set cells to Class 3. It is possible that a Class 3 designation for many of the cells in the prediction set is incorrect, and that the NLMtrained classifiers provide a more accurate assignment of cells to subsets with overall common properties.

The same best feature groups were also used to classify the remaining 219 cells assigned to unknown Class 0. Due to the large number of cells, only summarized predictions are shown in Table 9, while detailed prediction results are presented in Appendix E. Results show that the assigned classes are again consistent with expectations given the knowledge of fabrication material changes made during manufacture. Most cells made early (those will smaller ID numbers) tend to be assigned to Class 2, which would be expected of cells made with old grids and paste. Many Class 3 designations occur for cells lying in the middle and later part of the database (consistent with old grids and new paste).

TABLE 8

SUMMARY OF CLASSIFICATION RESULTS FOR PREDICTION SET, CLASS-3 CELLS USING STDEV AND NLM CLASS-ASSIGNMENT CRITERIA

	Majority Vote Result for Best n Classifiers Result for Best									
			STDEV	NLM	BOTH	Training C				
Index	Cell ID	Circuit	n = 5	n = 5	n = 10	STDEV	NLM			
1	2	1	3	3	3	3	3			
2	9	15	3	2	2 or 3	3	3			
3	12	11	2	2	2	3	3			
4	13	99	2	3	2	2	3			
5	14	*1	3	3	3	3	3			
6	15	11	2	З	2 or 3	2	3			
7	17	11	3	2	2	3	2			
8	24	11	2	2	2	2	2			
9	40	n	2	2	2	2	2			
10	41	"	2	2	2	2	2			
11	64	17	2	2	2	2	2			
12	78	"	2	2	2	2	2			
13	84	2	3	3	3	3	3			
14	85	11	3	3	3	3	3			
15	86	IJ	2	2	2	2	2			
16	87	**	2	2	2	2	2			
17	90	n	2	2	2	2	2			
18	9 3	11	1	3	3	3	3			
19	97	n	2	2	2	3	2			
20	101	n	3	3	3	3	3			
21	102	**	3	2	3	3	2			
22	106		1	3	3	3	3			
23	129	11	3	3	3	3	1			
24	130	**	1	3	1	1	3			
25	137	97	2	З	2 or 3	3	3			
26	138	n	2	2	2	2	3			
27	139	H	3	3	3	1	3			
28	140	**	2	2	2	2	3			
29	141	**	3	2	3	3	3			

			-	ity Vote I			
			for Be STDEV	st n Clas NLM		Result fo	
Index	Cell ID	Circuit	n=5	n = 5	BOTH n = 10	Training C STDEV	NLM
30	142	2	3	3	3	2	3
31	143	n	3	2 or 3	3	3	3
32	145		2	3	3	3	1
33	147	89	2	2	2	2	2
34	174	3	2	2	2	3	2
35	177	11	3	2	3	3	2
36	195	**	2	1	2	2	1
37	196	n	2	2	2	3	2
38	212	*1	3	3	3	3	3
39	217	11	3	3	3	3	3
40	222	*1	3	1 or 2	3	3	3
41	223	n	3	1	3	3	2
42	224	11	1	1	1	3	1
43	226	11	3	3	3	3	3
44	231	"	3	З	3	1	3
45	232	81	1	1	3	3	1
46	233	n	1	1	1	1	2
47	234	**	1	1	1	1	1
48	237	11	3	3	3	1	3
49	238	n	1	3	1	1	3
50	241	4	3	1	1	3	1
51	242	**	2	1	1 or 2	1	2
52	244	11	1	1	1	1	1
53	247	F1	3	1	1	1	2
54	248	99	1	1	1	1	1
55	250	11	2	1	1	2	3
56	253	n	2	1	3	2	3
57	266	99	1	1	1	1	3
58	278	**	2	1	1	2	1
59	286	"	1	1	1	1	1
60	294	**	2	1	1 or 2	2	1
61	298	n	1	1	1	1	2
62	319		1	3	3	3	3

-

TABLE 9

SUMMARY OF CLASSIFICATION RESULTS FOR UNKNOWN SET USING STDEV AND NLM CLASSIFICATION CRITERIA

				rity Vote R est n Class		Result	for	
			STDEV	NLM	BOTH	Best Cla		Unanimous
Index	Cell ID	Circuit No.	n = 5	n = 5	n = 10	STDEV	NLM	Vote
1	1	1	3	2	3	3	2	
2	3	•	3	2	3	3	2	
3	4	=	3	2	3	3	2	
4	5	•	3	2	2	3	2	
5	6	•	3	2	2	3	2	
6	7		3	2	3	3	2	
7	8	-	2/3	2	2	1	2	
8	10	•	3	2	3	3	2	
9	11	•	2	2	2	2	2	~
10	19	•	3	2	2	2	2	
11	26	•	2	2	2	2	2	~
12	27	•	3	2	2/3	3	2	
13	30	•	2	2	2	2	2	~
14	31	•	2	2	2	2	2	
15	32	-	2	2	2	2	3	
16	33	٠	2	2	2	2	2	✓
17	34	•	2	2	2	2	2	> > > >
18	35	•	2	2	2	2	2	~
19	36	•	2	2	2	2	2	✓
20	37	•	2	2	2	2	2	✓
21	38		2	2	2	3	2	
22	39	•	2	2	2	2	2	✓
23	42	•	2	2	2	2	2	✓
24	43	•	3	2	2/3	2	2	
25	44	•	2	2	2	2	2	✓
26	45	•	2	2	2	3	2	
27	46	•	З	2	З	3	2	
28	47		2	2	2	2	2	✓
29	48	•	2	2	2	2	2	✓
30	49	•	3	2	2	3	2	
31	50	•	2	2	2	2	2	✓
32	51	•	2	2	2	2	2	✓
33	52	•	3	2	3	2	3	
34	53	•	2	2	2	2	2	~
35	54	•	2	2	2	2	2	* * * *
36	55	•	2	2	2	2	2	✓
37	56	•	3	3	3	3	3	~
38	57	-	2	2	2	2	2	✓
39 40	58	-	3	2	2	2	2	
40	61	•	2	2	2	2	2	~
41	66	-	2	2	2	2	2	✓
42	67		3	2	2	2	2	
44	69 70	-	2	2	2	2	3	
45	72	-	2	2	2	2	3	

76

-

				rity Vote R est n Class		Result	for	
			STDEV	NLM	BOTH	Best Cla		Unanimous
Index	Cell ID	Circuit No.	n=5	n = 5	n = 10	STDEV	NLM	
46	73	1	2	2	2	2		Vote
40	74		2	2			3	
48	74				2	2	2	
40 49	75 76		2	2	2	2	2	.
			2	2	2	2	2	✓
50	77	-	2	2	2	2	2	~
51	79	-	3	2	2	2	2	
52	80		2	2	2	2	2	<u> </u>
53	81	2	3	3	3	3	3	✓
54	82	•	3	1	3	3	3	
55	88	•	3	2	2/3	3	2	
56	89		1	3	3	2	3	
57	92	•	1/2	2	2	3	2	
58	94	٠	2	2	2	2	1	
59	95	•	2	2	2	3	1	
60	96	•	1	3	3	3	3	
61	98	•	З	1/2	2/3	3	3	
62	100	•	3	3	3	3	3	~
63	103		2	2	2	3	2	
64	104		2	2	2	3	2	
65	107	•	3	3	3	3	3	
6 6	108		2	2	2	1	2	•
67	110		2	2	2	2	2	4
68	111	•	2	2	2	2	2	*
69	112		2	2	2	2	2	↓ ↓ ↓
70	113		2	2	2	2	2	
71	114	•	2	2	2			~
72	115	•	2	2	2	3	2	
73	116					3	1	
73 74	110		2/3	1	1	3	1	
74 75	117		3	2	3	3	3	
		-	2	2	2	2	2	~
76	119		1	3	3	3	3	
77	120		3	2	3	3	3	
78	121	-	1/3	2	2	3	2	
79	122	•	2	2	2	3	2	
80	123		3	3	3	2	3	
81	124	•	2	2	2	2	2	✓
82	125	•	1	3	3	1	3	
83	126	*	1	3	1/3	3	1	
84	127	•	3	3	3	3	1	
85	134	•	3	3	3	3	3	✓
86	144	•	3	3	3 3	3 3 3	3 3	~
87	148	•	2	2	2	2	2	~
88	149	•	1/2	2	2	3	3	
89	150	•	1	1	1	2	1	
90	151	•	2	2	2	2 2	2	~
91	152	•	3	3	3	2	2	-
92	153	•	3 3	2/3	3	3	2	
93	154	•	2	2	2	1	3	
					-		•	

			Resul					
			STDEV	NLM	BOTH	Best Cla	ssifier	Unanimous
Index	Cell ID	Circuit No.	n = 5	n = 5	n = 10	STDEV	NLM	Vote
94	155	2	2	2	2	3	2	
95	156	-	2	2	2	3	2	
96	157		1	1	1	1	1	✓
97	158	•	3	3	3	3	3	✓
98	159	•	2	2	2	2	2	~
99	160	•	3	1	3	3	2	
100	161	3	3	1	1/3	3	1	
101	162	•	1/3	3	3	3	1	
102	163		3	3	3	2	3	
103	164	•	3	3	3	3	3	~
104	165		3	3	3	3	3	
105	166	•	1	1	1	1	1	<i>· · · ·</i>
106	167	•	3	1	1	3	1	~
107	168	•	3	3	3	2	3	
108	169	•	1	3	1	1	3	
109	170	•	2	2	2	3	2	
110	171		2	2	2	2	2	. 4
111	173		3	2	2	2	2 3	•
112	175		3 1	2	3 1	2 3	3	
113	176		3					
114	178			2	2/3	2	2	
115	179		3	1	3	3	1	
116			3	1	3	3	2	
	180	-	2	2	2	2	2	~
117	181		2	2	2	2	2	~
118	182		1	1	1	3	2	
119	183	•	1	2	1/2	2	2	
120	184		2	2	2	3	2	
121	186	•	2	3	2/3	2	3	
122	187	•	2	2	2	2	2	✓
123	188	•	2	3	3	3	1	
124	189		2	2	2	2	3	
125	190	•	2	3	2	2	3	
126	191		2	2	2	3	2	
127	193	•	2	2	2	2	2	~
128	194	•	3	3	3	З	3	~
129	198	•	2	2	2	2	2	~
130	200	•	2	1	2	2	1	
131	201	•	2	3	2	2	3	
132	202	•	3	1	1/3	3		
133	203	-	3	1	3	3	2	
134	204	-	3	1	3 1	3	1 2 2	
135	205	•	1	2	2	3	2	
136	206	•	2	2	2	3	2	
137	207	-	2 2	2	2	2	2	
138	208	•	2	2	2 2	2	2	* .1
139	209	•	2	2	2	2 3	2	*
140	210	•	3	1	3	2	2	
141	211		3	3	3	2		
			3	3	3	2	3	

				ority Vote R est n Class		Reen	it for	
			STDEV	NLM	BOTH		assifier	Unanimou
Index	Cell ID	Circuit No.	n=5	n = 5	n = 10	STDEV	NLM	Vote
142	213	3	3	2/3	3	3	2	1010
143	214		3	1	1/3	3	3	
144	215	•	2	2	2	3	2	
145	216	•	2	2	2	2	2	1
146	218	-	3	1	1/3	2	2	•
147	220	•	1	3	1	- 1	1	
148	227	•	3	3	3	1	3	
149	229	•	1	3	1/3	1	3	
150	240	•	3	3	3	3	3	✓
151	255	4	3	3	3	3	3	
152	256		1	1	1	1	1	
153	257	•	1	1	1	1	1	, , , , , , , , , , , , , , , , , , ,
154	258	•	3	3	3	1	3	•
155	259	•	3	3	3	1	3	
156	260	•	2	1	1	2	3	
157	261		1	1	1	1	1	
158	264	•	1	1	1	, 1	1	~
159	268		1	1	1	1	1	
160	269		3	1	1/3	3	1	•
161	270	•	1	1	1	1	1	~
162	271	•	3	1	1/3	1	1	•
163	272	•	1	1	1	3	3	
164	274		2	1	1	2	1	
165	275	•	1	1	1	1	3	
166	277	•	1	2	1	3	1	
167	279	•	1	3	1	1	3	
168	280	•	1	1	1	1	1	
169	281	•	1	1	1	1	1	*
170	282		1	3	1	1	3	•
171	283	-	1	1	, 1	1	1	•
172	284		3	2	1	3	2	~
173	285	•	2	2	2	3 2	2	
174	287	•	1	2	1	1	2	~
175	288	•	3	2	3	3	2	
176	289	•	2	2	2	3 1	1	
177	290	•	1	3	2	2	3	
178	291	•	2	2	2	2	2	
179	292	•	2	2	2	1	2 1	
180	293		1	1	2	•	•	•
181	295	•	2	2	2	1 2	1	~
182	296	-	3	2	2	2 3		
183	300	•	2	2	3		1	
184	301	•	1	1		2	1	
185	302	•	3		1	3	1	
186	302	•	3	1	1	3	1	
187	305			3	2	2	3	
188	305 306		3	3	3	2	3	-
189	308	•	3	3	3	3	3	~
103	300	-	1	1	1	1	1	<u> </u>

· --··

				rity Vote R				
				est n Class		Resu		
	• •• •=		STDEV	NLM	вотн	Best Cla		Unanimou
index	Cell ID	Circuit No.	n = 5	n = 5	n = 10	STDEV	NLM	Vote
190	309	4	3	3	3	2	3	
191	310	•	1	1	1	3	3	
192	311	•	1	1	1	3	3	
193	312	•	3	2	3	3	2	
194	313	•	2/3	1	1/2	1	1	
195	314	•	1	1	1	2	3	
196	315	•	1	1	1	3	3	
197	317	•	1	1	1	1	1	~
198	318		3	1	3	3	3	
199	320	•	2	1	1	1	2	
200	321	5	1	1	1	3	1	
201	322		1	3	3	1	3	
202	323	•	2	1/2	2	3	3	
203	324	•	1	1	1	1	1	~
204	325	•	1	1	1	3	3	
205	326	•	3	3	3	3	3	~
206	327	•	1	1	1	1	2	
207	328		1	1	1	1	3	
208	329	•	3	3	3	3	3	~
209	330	•	2	3	3	3	3	
210	331	•	1	1	1	1	3	
211	332	•	1	1	1	1	1	~
212	333		2	3	3	3	3	
213	334	•	1	1	1	3	3	
214	335		3	1	1/3	1	1	
215	336		1	1	1	1	1	
216	337		1	3	1	1	1	•
217	338	•	3	3	3	3	3	
218	339		1	1	1	1	1	, v
219	340		3	1	3	3	3	•

- 1997 B

Cells which were made later with new grids and paste have many more of the Class 1 designations than any of the earlier cells.

Comparison of the results in Table 9 with class assignments based on 1991 capacity data for 202 common cells showed that the predictions are consistent with the actual cell performance for Class 3 cells (~85% correctly classified); however, the correlations between the predictions and the class assignments (based on 1991 performances) for Class 1 and 2 cells were not as high (~25% and ~20% for Class 1 and Class 2, respectively). The poor correlation is likely due to the changes observed in the performance of the cells over time [13]. Cells which have large capacity slope trends will likely be misclassified when comparing the class assignments based on currently measured performance relative to performance soon after the date of manufacture.

In summary, results from the 3-class studies again indicate that battery fabrication data contain the information necessary to distinguish between high and low performing cells. Identification of Class 3 cells is more difficult. Better classifiers were obtained by reclassifying cells based on their nearest NLM cluster, and the cell-class majority within that cluster, than relying entirely on the STDEV criterion. Many of the useful classifiers were composed of only 4 to 7 features. For 59 total cells, the pattern-to-feature ratio lies somewhere between 8 and 15 which is large enough to permit statistical confidence in the results.

VI. Conclusions

The results of this multivariate pattern recognition investigation clearly illustrate the usefulness of battery fabrication data for predicting lead-acid cell performance. Measurements of specific gravity, acid levels and adjustments to these levels appear to be among the most important for accurate cell classifications. Results showed that high and low performing cells could be distinguished quite accurately, demonstrating clearly that performance prediction information is contained within the fabrication measurements. Attempts to predict three different classes of cell performance were not completely satisfactory. It appears that further work is needed regarding more effective definitions of cell performance classes.

One potential benefit from this work may be the ability to isolate poor cells from good ones which are needed for demanding applications. Another benefit would be the ability to assign better-matched cells to energy storage batteries using long strings, where one "weak link" can bring down the whole string. Finally, the ability to reject cells which will degrade performance, fail early, or require exceptional maintenance, provides a significant economic benefit for large energy storage batteries.

In addition to the benefits related to cell pre-selection, we hope the results of our work will help illustrate how changes in manufacturing procedures might lead to improved quality cells. For example, it is now clear from our work that subtle differences in grid and paste materials have a prolonged effect on performance of lead-acid cells. Knowledge of which fabrication features are the most important may also provide information on the observation and adjustment of these features in an effort to produce superior batteries.

Finally, it may be possible that a combination of fabrication and maintenance data measurements, raw or transformed, may yield even greater classification accuracy, and hence more reliable performance predictions. Such studies are in progress. Ultimately,

these studies will include correlation with cell lifetimes, when the CEMC battery goes through its complete life and cell failure data becomes available.

This work has demonstrated that pattern recognition techniques are useful for prediction of lead-acid cell performance. Pattern recognition and other chemometric techniques will continue to play an important role in electrochemical research and in other chemical applications such as spectroscopy [39-41], chromatography [42-44], biochemistry [45], thermodynamics [46], statistical analysis [47-49], QA/QC [50, 51], environmental testing [52-54], food science [55], and in manufacturing and process control [56-58].

VII. Appendices

- A. GNB Fabrication Data
- B. 1990 Capacity Test Data
- C. Correctly Classified Cells, Aberrant Cells and Replacement Cells
- D. Prediction Results for Prediction Set Cells
- E. Prediction Results for Unknown Set Cells

APPENDIX A

GNB FABRICATION DATA FOR 340 LEAD-ACID BATTERY CELLS

CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
1	1.249	1258	1.286	-48	0	11.02	25.06
2	1.245	1274	1.290	-246	586	11.43	25.31
3	1.258	1402	1.290	-246	0	12.49	24.21
4	1.232	1501	1.288	-146	0	13.37	24.43
5	1.248	1570	1.284	0	0	13.47	25.69
6	1.245	1583	1.286	-48	0	14.21	24.46
7	1.260	1429	1.290	-246	0	12.77	24.13
8	1.260	1809	1.293	-398	0	15.35	25.11
9	1.256	1801	1.289	-196	-195	15.02	25.58
10	1.265	1450	1.288	-146	0	14.83	21.24
11	1.253	1287	1.282	0	0	11.00	25.80
12	1.248	1406	1.280	0	220	11.93	26.47
13	1.269	1391	1.281	0	220	12.78	24.49
14	1.254	1766	1.284	0	977	16.94	25.14
15	1.265	1323	1.281	0	757	12.27	25.44
16	1.264	1501	1.283	0	562	13.77	25.28
17	1.251	1668	1.283	0	757	15.77	24.99
18	1.266	1365	1.283	0	708	12.84	25.00
19	1.253	1925	1.283	0	977	18.80	24.73
20	1.266	1583	1.280	0	586	14.89	24.73
21	1.261	1944	1.280	Ō	391	18.61	23.89
22	1.251	1745	1.280	0	464	16.36	24.54
23	1.236	1900	1.280	0	488	18.31	23.95
24	1.239	2186	1.279	96	49	19.83	24.62
25	1.232	1838	1.276	172	49	16.68	24.79
26	1.261	1456	1.280	0	1270	13.63	26.35
27	1.252	1760	1.282	0	562	16.35	24.98
28	1.242	1520	1.276	172	146	13.60	25.34
29	1.255	1961	1.282	0	146	17.96	24.40
30	1.246	1635	1.269	413	171	14.26	26.56
31	1.246	1934	1.280	0	293	17.85	24.53
32	1.260	1980	1.281	ō	342	17.74	25.35
33	1.244	1875	1.279	72	391	17.20	25.06
34	1.248	2022	1.281	0	635	19.49	24.27
35	1.243	1766	1.280	õ	537	16.75	24.43
36	1.236	2167	1.277	146	195	20.09	24.53
37	1.230	1904	1.276	147	0	18.94	22.49
38	1.258	1851	1.284	0	220	20.04	20.85
39	1.240	1735	1.274	249	122	18.78	21.18
40	1.248	1992	1.283	0	49	21.53	20.51
41	1.256	1865	1.282	ŏ	45 98	21.53	20.51
42	1.251	1712	1.280	Õ	708	17.00	20.02
43	1.251	1823	1.282	ŏ	513	17.12	23.76
44	1.260	1764	1.280	0 0	220	16.38	24.87
45	1.260	1875	1.283	0	195	16.80	24.22 25.03
		10/0	1.200	v	190	10.60	20.03

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	46	1.260	1848	1.284	0	342		
491.25217021.281070816.1424.81501.24515851.200065915.4824.03511.24515201.2797251314.5124.39521.26317871.281053716.0125.78531.25216431.27617265915.4124.63551.24616201.281053715.1224.81561.2601.8931.284061016.2425.52581.24517491.281061016.2425.08591.25115971.281075714.2025.07601.25219991.273223016.2524.87621.26418111.275223016.2524.87631.23614111.275223016.2523.84641.25018011.282024416.8924.05651.24617991.283061017.3724.18671.25018061.27812148816.6925.19681.25214271.281056217.0624.94701.26018341.281057223.2316.8025.82691.25918911.27714617117.1824.9670 <t< td=""><td>47</td><td>1.258</td><td>1584</td><td>1.280</td><td>0</td><td></td><td>14.55</td><td></td></t<>	47	1.258	1584	1.280	0		14.55	
501.24515851.280065915.4824.03511.24515201.2797251314.5124.39521.26377871.281055916.6125.78531.25216431.27617265915.4125.34541.23617991.27325122016.8124.63561.26018391.284051316.5625.62571.25716331.280092815.3425.28581.24517491.281075714.2025.07601.25219991.2797214617.6725.42611.23717971.27522319512.9824.88641.25018011.2252956217.6323.89631.23614111.27522341515.9523.64651.24616091.27622341515.9523.64661.24617991.283066612.8325.82691.25214271.283056612.8325.82691.25918911.27714617117.1824.94711.26019021.281039117.7824.13721.26019021.281039117.7824.54741.252		1.248	1839	1.281	0	24	16.14	25.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1.252	1702	1.281	0		1 6 .14	
	50	1.245	1585	1.280	0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1.245	1520	1.27 9	72		14.51	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	52	1.263	1787	1.281	0	537		
541.23617991.27325122016.8124.63 55 1.24616201.281053715.1224.81 56 1.25716331.280092815.3425.52 58 1.24517491.281061016.2425.08 59 1.26115071.281075714.2025.07 60 1.25219991.2797214617.6725.42 61 1.23717971.275223016.2524.87 62 1.23614111.225052417.6323.88 63 1.23614111.27522319512.9824.88 64 1.25018011.282024416.8924.05 65 1.24616091.27522311515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25918911.27714617117.1824.94 71 1.26018341.281053217.6224.94 71 1.26018341.281039117.7624.54 73 1.26217331.2752237315.9924.54 74 1.25118031.27714636617.6625.0	53		1643	1.276	172	659	15.41	
551.24616201.2810 537 15.1224.81 56 1.26018391.2840513116.5625.62 57 16331.280092815.3425.52 58 1.24517491.281061016.2425.08 59 1.26115071.2810757144.2025.07 60 1.25219991.2797214617.6725.42 61 1.23717971.275223016.2524.87 62 1.25418111.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 66 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26019021.281039117.7824.45 73 1.2621331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23616421.2752237315.9924.54 74 1.25218821.280065917.9624.55<	54	1.236	1799	1.273	251	220	16.81	
561.26018391.2840 513 16.5625.62 57 1.25716331.280092815.3425.52 58 1.26115071.281075714.2025.07 60 1.25219991.2797214617.6725.42 61 1.23717971.275223016.2524.87 62 1.26418111.282056217.6323.89 63 1.23614111.27522341515.9523.64 64 1.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283056612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26018341.281039117.7824.54 74 1.26217331.2752237315.9924.54 74 1.26217331.2752237315.9924.54 74 1.26218661.27522329316.8025.63 76 1.24319031.27714636617.562			1620	1.281	0	537		
581.24517491.281061016.2425.08 59 1.25115071.281075714.2025.07 60 1.25219991.275223016.2524.87 62 1.25418111.282056217.6323.89 63 1.23614111.27522319512.9824.88 64 1.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283056612.8325.82 69 1.25918911.27714617117.1824.46 70 1.26019021.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.6625.02 76 1.23618661.27522329316.8025.63 77 1.26118861.27522329316.8025.63 77 1.26118661.27522329316.8025.63 77 1.26118661.27522329316.802			1839	1.284	0	513	16.56	
581.24517491.281061016.2425.08 59 1.26115071.2797214617.6725.42 61 1.23717971.275223016.2524.87 62 1.25418111.282056217.6323.89 63 1.23614111.27522319512.9624.86 64 1.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283056612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26019021.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522329316.8023.54 71 1.25117701.282026616.6824.69 80 1.25019871.27714643917.8325		1.257	1633	1.280	0	928	15.34	25.52
591.26115071.281075714.2025.07601.25219991.2797214617.6725.42611.23717971.275223016.2524.87621.25418111.282056217.6323.89631.23614111.27522319512.9824.85641.25018011.282024416.8924.05651.24616091.27522341515.9523.64661.24617991.283061017.3724.18671.25018061.27812148816.6925.19681.25214271.283056612.8325.82691.25918911.27714617117.1824.96701.26019021.281039117.7824.45731.26217331.2752237315.9924.54741.25218821.280065917.9624.55751.24319031.27714636617.5625.02761.23618661.27522358616.8023.54781.23616421.27522358616.8023.64791.282026816.6824.69801.25019871.				1.281	0	610	16.24	
611.23717971.275223016.2524.87 62 1.25418111.282056217.6323.89 63 1.23614111.27522319512.9824.88 64 1.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.94 71 1.26018341.281073217.2325.13 72 1.26019021.281039117.7824.54 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522358615.2025.60 79 1.25217701.282058616.8023.54 78 1.23616421.27522358615.2025.60 79 1.25219871.2771463991.6824		1.261	1507	1.281	0	757	14.20	
621.25418111.282056217.6323.89 63 1.23614111.27522319512.9824.88 64 1.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26018341.281073217.2325.13 72 1.26019021.281039117.7824.54 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23616421.27522358616.8025.63 77 1.25117491.282058616.6824.69 80 1.25019871.2771463911.8824.00 71 1.25117491.282058616.2025.60 79 1.25217701.282058616.2025.6		1.252	1999	1.279	72	146	17.67	
631.23614111.27522319512.9824.83 64 1.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26018341.281056217.0624.94 71 1.25418381.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522329316.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282026916.8023.54 78 1.23616421.27714643917.8325.85 81 1.2771.28403918.8924.00 84 1.2838501.28602691.6824.44 <t< td=""><td></td><td></td><td>1797</td><td>1.275</td><td>223</td><td>0</td><td>16.25</td><td>24.87</td></t<>			1797	1.275	223	0	16.25	24.87
		1.254	1811	1.282	0	562	17.63	
641.25018011.282024416.8924.05 65 1.24616091.27522341515.9523.64 66 1.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26018341.281056217.0624.94 71 1.25418381.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522329316.8023.54 78 1.23616421.27522358616.6224.69 80 1.25019871.27714643917.8325.85 81 1.2771.282058616.6824.69 80 1.25019871.27714643917.8325.85 81 1.2771.28403918.8924.00 82 1.2881791.28803918.8924.04 83 <td></td> <td>1.236</td> <td>1411</td> <td>1.275</td> <td>223</td> <td>195</td> <td>12.98</td> <td></td>		1.236	1411	1.275	223	195	12.98	
661.24617991.283061017.3724.18 67 1.25018061.27812148816.6925.19 68 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26018341.281073217.2325.13 72 1.26019021.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23616661.27522329316.8025.63 77 1.25117491.282026916.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.69 80 1.25019871.2771464391.6824.44 83 1.2701.28602011.0125.65 81 1.2771.28602697.6425.12 85 1.26812771.286022011.0125.65 84 1.2709331.28603918.8924.00 84		1.250	1801	1.282	0	244	16.89	
671.25018061.27812148816.6925.19 68 1.25214271.283058612.8325.82 69 1.25918911.27714617117.1824.96 70 1.26018341.281056217.0624.94 71 1.26418381.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522329316.8025.63 77 1.25117491.282026916.8025.63 77 1.25219871.2771464391.78325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28803918.8924.00 84 1.2838501.28603918.8924.00 84 1.28312601.28603918.8924.00 84 1.283128603918.8924.00 84 1.283128603918.8924.00 84 1.283128603918.8924.00 84 1.2840 <td< td=""><td></td><td></td><td>1609</td><td>1.275</td><td>223</td><td>415</td><td>15.95</td><td>23.64</td></td<>			1609	1.275	223	415	15.95	23.64
68 1.252 1427 1.283 0 586 12.83 25.82 69 1.259 1891 1.277 146 171 17.18 24.96 70 1.260 1834 1.281 0 562 17.06 24.94 71 1.254 1838 1.281 0 732 17.23 25.13 72 1.260 1902 1.281 0 391 17.78 24.45 73 1.262 1733 1.275 223 73 15.99 24.54 74 1.252 1882 1.280 0 659 17.96 24.55 75 1.243 1903 1.277 146 366 17.56 25.02 76 1.236 1866 1.275 223 293 16.80 23.54 78 1.236 1642 1.275 223 586 15.20 25.60 79 1.252 1770 1.282 0 586 16.68 24.69 80 1.250 1987 1.277 146 439 17.83 25.85 81 1.277 124 1.287 0 0 10.15 24.41 82 1.288 179 1.286 0 391 8.89 24.00 84 1.283 850 1.286 0 220 11.01 25.65 86 1.270 933 1.286 0 220 11.01 25.65 <		1.246	1799	1.283	0	610	17.37	24.18
68 1.252 1427 1.283 0 586 12.83 25.82 69 1.259 1891 1.277 146 171 17.18 24.96 70 1.260 1834 1.281 0 562 17.06 24.94 71 1.254 1838 1.281 0 391 17.72 25.13 72 1.260 1902 1.281 0 391 17.78 24.45 73 1.262 1733 1.275 223 73 15.99 24.54 74 1.252 1882 1.280 0 659 17.96 24.55 75 1.243 1903 1.277 146 366 17.56 25.02 76 1.236 1866 1.275 223 293 16.80 23.54 78 1.236 1642 1.275 223 586 15.20 25.60 79 1.252 1770 1.282 0 586 16.68 24.69 80 1.250 1987 1.277 146 439 17.83 25.85 81 1.277 1124 1.287 0 0 10.15 24.41 82 1.288 179 1.288 0 391 8.89 24.00 84 1.283 850 1.286 0 220 11.01 25.65 86 1.270 582 1.284 0 317 5.26 24.74 <			1806	1.278	121	488	16.69	25.19
691.25918911.27714617117.1824.96701.26018341.281056217.0624.94711.25418381.281073217.2325.13721.26019021.281039117.7824.45731.26217331.2752237315.9924.54741.25218821.280065917.9624.55751.24319031.27714636617.5625.02761.23618661.27522329316.8023.54781.23516421.27522358615.2025.60791.25217701.282058616.6824.69801.25019871.27714643917.8325.85811.27711241.2870010.1524.41821.2881791.28803918.8924.00841.2838501.28603918.8924.00841.2838501.28603918.8924.00841.2838501.28603918.8924.00841.2838501.28603175.2624.74851.26812571.28603175.2624.74861.270582 <td></td> <td>1.252</td> <td>1427</td> <td>1.283</td> <td>0</td> <td>586</td> <td>12.83</td> <td></td>		1.252	1427	1.283	0	586	12.83	
711.25418381.281073217.2325.13 72 1.26019021.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522329316.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.55 81 1.27711241.2870010.1524.41 82 1.2881791.282058616.6824.69 80 1.25019871.27714643917.8325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28803918.8924.00 84 1.2838501.286022011.0125.65 86 1.2705821.28403175.2624.74 88 1.2802601.2821373422.1527.68 90 1.2685441.28401715.0624.08 91 1.2745241.28401715.0624.08		1.259	1891	1.277	146	171	17.18	
721.26019021.281039117.7824.45 73 1.26217331.2752237315.9924.54 74 1.25218821.280065917.9624.55 75 1.24319031.27714636617.5625.02 76 1.23618661.27522329316.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.59 80 1.25019871.27714643917.8325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28803918.8924.00 84 1.2838501.28602697.6425.12 85 1.26812571.286022011.0125.65 86 1.2705821.28403425.4224.42 87 1.2745741.28403175.2624.74 88 1.2802601.2821373422.1527.68 90 1.2685441.28401715.0624.08 91 1.2745241.28403175.2625.48 93 1.2846551.28403175.8025.60 9		1.260	1834	1.281	0	562	17.06	24.94
73 1.262 1733 1.275 223 73 15.99 24.54 74 1.252 1882 1.280 0 659 17.96 24.55 75 1.243 1903 1.277 146 366 17.56 25.02 76 1.236 1866 1.275 223 293 16.80 25.63 77 1.251 1749 1.282 0 269 16.80 23.54 78 1.236 1642 1.275 223 586 15.20 25.60 79 1.252 1770 1.282 0 586 16.68 24.69 80 1.250 1987 1.277 146 439 17.83 25.85 81 1.277 1124 1.287 0 0 10.15 24.41 82 1.288 179 1.288 0 391 8.89 24.00 84 1.283 850 1.286 0 269 7.64 25.12 85 1.268 1257 1.286 0 220 11.01 25.65 86 1.270 582 1.284 0 317 5.26 24.74 87 1.274 574 1.284 0 171 5.06 24.74 88 1.280 260 1.282 137 342 2.15 27.68 89 1.284 708 1.284 0 171 5.06 24.74		1.254	1838	1.281	0	732	17.23	25.13
74 1.252 1882 1.280 0 659 17.96 24.55 75 1.243 1903 1.277 146 366 17.56 25.02 76 1.236 1866 1.275 223 293 16.80 23.54 77 1.251 1749 1.282 0 269 16.80 23.54 78 1.236 1642 1.275 223 586 15.20 25.60 79 1.252 1770 1.282 0 586 16.68 24.69 80 1.250 1987 1.277 146 439 17.83 25.85 81 1.277 1124 1.287 0 0 10.15 24.41 82 1.288 179 1.288 0 391 8.89 24.00 84 1.288 179 1.288 0 391 8.89 24.00 84 1.283 850 1.286 0 220 11.01 25.65 86 1.270 582 1.284 0 317 5.26 24.74 85 1.268 1257 1.284 0 317 5.26 24.74 86 1.280 260 1.282 137 342 2.15 27.68 89 1.284 708 1.284 0 171 5.06 24.08 91 1.274 574 1.284 0 317 5.80 25.60 92			1902	1.281	0	391	17.78	24.45
751.24319031.27714636617.5625.02 76 1.23618661.27522329316.8025.63 77 1.25117491.282026916.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.69 80 1.25019871.27714643917.8325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28803918.8924.00 84 1.2838501.28602697.6425.12 85 1.26812571.286022011.0125.65 86 1.2705821.28403175.2624.74 88 1.2802601.2821373422.1527.68 89 1.2847081.28401715.0624.08 91 1.2745241.28401715.0624.08 91 1.2745241.28403175.2625.48 93 1.2846551.28403175.8025.60 94 1.2741851.28403175.8025.60 94 1.2741851.28403175.8025.60 94 <td></td> <td></td> <td>1733</td> <td>1.275</td> <td>223</td> <td>73</td> <td>15.99</td> <td>24.54</td>			1733	1.275	223	73	15.99	24.54
761.23618661.27522329316.8025.63 77 1.25117491.282026916.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.69 80 1.25019871.27714643917.8325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28803918.8924.00 84 1.2838501.28602697.6425.12 85 1.26812571.286022011.0125.65 86 1.2705821.28403175.2624.74 88 1.2802601.2821373422.1527.68 89 1.2847081.28401715.0624.08 91 1.2745741.28403175.2624.74 88 1.2802601.2821373422.1527.68 90 1.2685441.28401715.0624.08 91 1.2745241.28402934.8124.65 92 1.2765901.2831371955.2625.48 93 1.2846551.28403175.8025.60 94 <td></td> <td></td> <td></td> <td>1.280</td> <td>0</td> <td>659</td> <td>17.96</td> <td>24.55</td>				1.280	0	659	17.96	24.55
771.25117491.282026916.8023.54 78 1.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.69 80 1.25019871.27714643917.8325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28803918.8924.00 84 1.2838501.28602697.6425.12 85 1.26812571.286022011.0125.65 86 1.2705821.28403425.4224.42 87 1.2745741.28403175.2624.74 88 1.2802601.2821373422.1527.68 90 1.2685441.28401715.0624.08 91 1.2745241.28402934.8124.65 92 1.2765901.2831371955.2625.48 93 1.2846551.28403175.8025.60 94 1.2741851.28403175.8025.60 94 1.2741851.28403175.8025.60 94 1.2741851.28403175.8025.60 94					146	366	17.56	25.02
781.23616421.27522358615.2025.60 79 1.25217701.282058616.6824.69 80 1.25019871.27714643917.8325.85 81 1.27711241.2870010.1524.41 82 1.2881791.28804391.6824.69 83 1.2709331.28803918.8924.00 84 1.2838501.28602697.6425.12 85 1.26812571.286022011.0125.65 86 1.2705821.28403425.4224.42 87 1.2745741.28403175.2624.74 88 1.2802601.2821373422.1527.68 89 1.2847081.28401715.0624.08 91 1.2745241.28402934.8124.65 92 1.2765901.2831371955.2625.48 93 1.2846551.28403175.8025.60 94 1.2741851.28403175.8025.60 94 1.2741851.28403175.8025.60 94 1.2741851.28403175.8025.60 94 1.				1.275	223	293	16.80	25.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.282	0	269	16.80	23.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					223	586	15.20	25.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.282	0	586	16.68	24.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					146	439	17.83	25.85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	0	10.15	24.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0		1.68	24.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0		8.89	24.00
86 1.270 582 1.284 0 342 5.42 24.42 87 1.274 574 1.284 0 317 5.26 24.74 88 1.280 260 1.282 137 342 2.15 27.68 89 1.284 708 1.284 0 146 6.17 25.63 90 1.268 544 1.284 0 171 5.06 24.08 91 1.274 524 1.284 0 293 4.81 24.65 92 1.276 590 1.283 137 195 5.26 25.48 93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65					0		7.64	25.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
88 1.280 260 1.282 137 342 2.15 27.68 89 1.284 708 1.284 0 146 6.17 25.63 90 1.268 544 1.284 0 171 5.06 24.08 91 1.274 524 1.284 0 293 4.81 24.65 92 1.276 590 1.283 137 195 5.26 25.48 93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65			582		0	342	5.42	24.42
89 1.284 708 1.284 0 146 6.17 25.63 90 1.268 544 1.284 0 171 5.06 24.08 91 1.274 524 1.284 0 293 4.81 24.65 92 1.276 590 1.283 137 195 5.26 25.48 93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65							5.26	24.74
90 1.268 544 1.284 0 171 5.06 24.08 91 1.274 524 1.284 0 293 4.81 24.65 92 1.276 590 1.283 137 195 5.26 25.48 93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65							2.15	27.68
91 1.274 524 1.284 0 293 4.81 24.65 92 1.276 590 1.283 137 195 5.26 25.48 93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65								25.63
92 1.276 590 1.283 137 195 5.26 25.48 93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65								24.08
93 1.284 655 1.284 0 317 5.80 25.60 94 1.274 185 1.284 0 244 1.69 24.65								
94 1.274 185 1.284 0 244 1.69 24.65								
95 1.265 557 1.283 137 391 5.18 24.86								
	90	1.265	557	1.283	137	391	5.18	24.86

CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
96	1.280	636	1.283	137	98	5.64	25.38
97	1.208	3620	1.282	206	278	32.94	25.29
98	1.269	468	1.288	0	464	4.44	24.27
99	1.283	698	1.285	0	220	6.63	23.70
100	1.281	844	1.284	0	9 8	7.44	25.23
101	1.276	1278	1.287	0	171	11.58	24.71
102	1.269	585	1.285	0	146	5.49	23.80
103	1.284	467	1.284	0	171	4.33	24.15
104	1.234	2284	1.284	0	195	19.63	26.08
105	1.200	5045	1.285	0	-220	43.87	24.86
106	1.279	596	1.287	0	317	5.25	25.75
107	1.292	609	1.288	0	49	5.53	24.41
108	1.285	423	1.285	0	0	3.71	25.13
109	1.180	5696	1.283	0	-220	50.66	24.30
110	1.167	5448	1.282	206	269	49.20	25.46
111	1.171	5955	1.283	137	195	52.88	25.56
112	1.195	5446	1.284	0	73	47.29	25.55
113	1.284	160	1.283	137	98	1.40	25.79
114	1.280	315	1.285	0	122	2.92	24.08
115	1.289	131	1.285	0	293	1.22	24.31
116	1.299	212	1.287	0	146	1.85	25.52
117	1.271	502	1.283	137	0	4.31	25.99
118	1.278	272	1.284	0	171	2.42	25.16
119	1.292	838	1.284	0	342	7.50	25.39
120	1.284	366	1.278	130	49	3.12	26.23
121	1.284	222	1.284	0	49	1.89	26.06
122	1.285	263	1.283	137	146	2.31	25.75
123	1.290	79 3	1.281	206	0	7.14	24.94
124	1.290	140	1.284	0	0	1.20	25.69
125	1.289	-416	1.284	0	49	-3.61	25.53
126	1.291	-284	1.286	0	98	-2.56	24.70
127	1.291	-294	1.284	0	220	-2.56	25.80
128	1.289	-389	1.288	0	269	-3.32	26.39
129	1.283	-176	1.287	0	244	-1.51	26.30
130	1.284	-77	1.285	0	757	-0.72	25.11
131	1.264	313	1.288	0	464	2.85	25.25
132	1.282	194	1.281	206	415	1.73	26.16
133	1.270	728	1.285	0	-73	6.13	26.01
134	1.289	-361	1.287	0	537	-3.19	26.12
135	1.289	-100	1.287	0	415	-0.95	24.09
136	1.273	1052	1.286	0	0	9.50	24.41
137	1.264	1741	1.287	0	98	15.44	25.08
138	1.279	516	1.284	0	317	4.75	24.66
139	1.289	375	1.286	0	415	3.39	25.33
140	1.289	455	1.284	0	0	4.12	24.34
141	1.269	263	1.283	69	293	2.70	22.25
142	1.252	1126	1.284	0	293	10.41	24.50
143	1.283	535	1.286	0	146	4.90	21.40
144	1.283	1168	1.284	0	342	10.34	25.65
145	1.293	-181	1.288	0	391	-1.63	25.31

CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
146	1.290	-97	1.285	0	342	-0.89	24.90
147	1.263	245	1.284	0	317	2.26	24.55
148	1.283	372	1.283	69	391	3.44	24.86
149	1.283	567	1.283	69	122	5.07	2 5.10
150	1.279	-59	1.284	0	342	-0.55	24.42
151	1.273	515	1.283	69	146	4.75	24.40
152	1.287	104	1.275	293	73	0.95	24.99
153	1.272	603	1.287	0	732	5.67	25.05
154	1.291	295	1.285	0	659	2.77	24.93
155	1.282	297	1.284	0	488	2.64	25.86
156	1.281	295	1.280	275	195	2.69	25.22
157	1.279	20	1.285	0	171	0.18	25.31
158	1.286	83	1.286	0	317	0.79	23.95
159	1.271	420	1.274	270	195	3.89	24.80
160	1.280	299	1.287	0	43 9	2.86	24.03
161	1.254	959	1.286	-84 5	49	8.33	23.63
162	1.257	772	1.284	-960	684	6.72	24.70
163	1.259	841	1.284	-389	293	7.56	24.31
164	1.259	618	1.284	-439	293	5.81	23.12
165	1.256	739	1.282	-293	-73	6.31	24.99
166	1.250	1140	1.293	-790	562	10.95	22.45
167	1.257	885	1.291	-638	0	7.74	23.79
168	1.255	1030	1.281	-243	-269	9.13	23.73
169	1.258	725	1.293	-194	-293	6.46	23.68
170	1.259	561	1.277	100	171	4.92	25.76
171	1.254	896	1.267	559	537	8.39	25.97
172	1.261	653	1.282	-194	-171	5.58	25.00
173	1.265	447	1.282	-145	-146	3.70	25.98
174	1.265	447	1.282	-194	244	4.06	24.41
175	1.269	378	1.288	-536	195	3.16	25.61
176	1.267	442	1.282	-243	-195	3.67	25.58
177	1.267	346	1.287	-437	195	3.06	24.40
178	1.269	234	1.285	-290	244	2.13	24.09
179	1.268	235	1.287	-339	635	2.17	24.54
180	1.268	236	1.281	-145	464	2.14	25.00
181	1.269	234	1.281	-194	0	2.06	24.62
182	1.266	100	1.283	-242	244	0.78	28.32
183	1.275	58	1.283	-144	293	0.53	24.40
184	1.269	378	1.283	-193	49	3.34	24.66
185	1.274	254	1.287	-291	366	2.24	25.14
186	1.260	614	1.270	353	195	5.54	25.62
187	1.273	284	1.279	-15	464	2.60	25.10
188	1.263	565	1.287	-388	293	5.02	24.62
189	1.269	378	1.284	-241	98	3.34	24.62
190	1.264	450	1.273	191	98	4.09	24.90
191	1.264	450	1.284	-290	244	4.10	24.12
192	1.269	234	1.283	-96	244	2.05	25.49
193	1.273	139	1.284	-96	684	1.29	25.07
194 195	1.273	284	1.272	374	757	2.55	27.02
195	1.280	-140	1.283	-242	855	-1.26	25.76

CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
196	1.269	378	1.280	0	732	3.48	25.58
197	1.265	447	1.280	-145	122	4.01	24.51
198	1.273	139	1.285	-241	488	1.24	25.18
199	1.274	254	1.284	-192	488	2.27	25.29
200	1.274	107	1.283	-291	317	0.94	25.22
201	1.258	714	1.274	-385	0	6.31	24.09
202	1.270	182	1.288	-341	610	1.68	24.48
203	1.268	235	1.288	-341	392	2.08	24.97
204	1.265	447	1.289	-488	391	3.99	24.50
205	1.273	-38	1.281	-145	195	-0.34	24.86
206	1.274	157	1.282	-48	366	1.42	25.00
207	1.267	238	1.284	-144	537	2.20	24.75
208	1.269	349	1.280	0	0	3.19	24.11
209	1.278	68	1.283	-193	488	0.62	24.76
210	1.277	-50	1.282	-194	635	-0.44	25.91
211	1.265	447	1.266	531	293	4.25	25.03
212	1.274	109	1.281	-48	49	0.95	25.16
213	1.268	351	1.277	100	-342	3.07	24.70
214	1.275	-42	1.283	-291	342	-0.39	23.96
215	1.266	396	1.282	-243	732	3.67	24.89
216	1.265	447	1.280	-194	293	4.00	24.86
217	1.268	206	1.291	-638	513	1.78	25.22
218	1.269	155	1.288	-536	513	1.34	25.37
219	1.280	-339	1.283	-391	317	-2.83	26.24
220	1.278	-228	1.285	-290	-122	-1.90	25.60
221	1.275	58	1.277	100	-49	0.50	25.91
222	1.276	-171	1.289	-586	439	-1.51	24.58
223	1.272	140	1.289	-586	146	1.22	24.23
224	1.271	142	1.290	-491	-73	1.20	24.89
225	1.277	-149	1.287	-437	391	-1.29	25.40
226	1.270	95	1.277	52	537	0.84	26.16
227	1.284	-654	1.291	-492	415	-5.67	25.26
228	1.268	284	1.283	-193	562	2.51	25.79
229	1.278	-253	1.289	-488	122	-2.12	25.44
230	1.284	-549	1.282	-194	293	-4.92	24.82
231	1.281	-341	1.289	-537	293	-2.94	25.00
232	1.283	-367	1.290	-587	-146	-3.02	25.16
233	1.279	-257	1.286	-437	98	-2.19	25.13
234	1.280	-140	1.289	-488	0	-1.20	24.57
235	1.279	-309	1.291	-687	439	-2.71	24.62
236	1.278	-256	1.288	-341	0	-2.20	24.94
237	1.283	-368	1.288	-487	342	-3.25	24.62
238	1.284	-395	1.289	-439	98	-3.43	24.67
239	1.275	-204	1.286	-487	317	-1.74	25.54
240	1.274	- 9 0	1.292	-640	293	-0.78	24.74
241	1.266	133	1.290	-838	146	1.13	24.46
242	1.271	-214	1.286	-388	513	-1.86	25.70
243	1.271	-110	1.290	-538	513	-0.94	25.71
244	1.267	343	1.288	-637	146	2.91	24.87
245	1.261	486	1.290	-738	244	3.98	25.80

CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
246	1.267	194	1.288	-487	244	1.60	26.16
247	1.268	205	1.288	-438	342	1.81	24.80
248	1.265	521	1.294	-744	0	4.63	23.15
249	1.263	601	1.284	-144	-146	5.35	24.15
250	1.268	4	1.285	-339	391	0.03	25.39
251	1.271	-110	1.284	-290	195	-0.92	26.19
252	1.268	256	1.289	-587	317	2.11	26.18
253	1.268	206	1.286	-641	146	1.74	25.08
254	1.266	233	1.293	-940	0	1.96	24.18
255	1.265	222	1.271	324	293	1.84	28.02
256	1.259	621	1.293	-890	195	5.13	25.17
257	1.264	657	1.298	-906	439	5.57	25.00
258	1.267	43	1.289	-738	342	0.36	25.41
259	1.266	-21	1.289	-738	439	-0.18	24.99
260	1.262	92	1.284	-682	220	0.77	25.23
261	1.260	579	1.290	-738	98	4.64	26.11
262	1.261	436	1.290	-687	244	3.66	25.31
263	1.264	58	1.290	-687	439	0.49	25.33
264	1.262	446	1.295	-894	195	3.58	25.95
265	1.258	614	1.289	-537	122	5.14	25.41
266	1.263	303	1.290	-687	146	2.53	25.21
267	1.263	99	1.285	-340	146	0.82	26.23
268	1.270	79	1.285	-241	-171	0.65	25.75
269	1.268	255	1.286	-437	73	2.44	22.22
270	1.272	55	1.285	-339	195	0.46	26.31
271	1.270	130	1.290	-788	146	1.09	24.95
272	1.272	-96	1.293	-404	-49	-0.81	24.99
273	1.251	923	1.295	-894	415	8.34	23.36
274	1.264	110	1.283	-391	293	0.93	25.77
275	1.263	354	1.290	-788	488	3.06	24.84
276	1.255	657	1.282	-293	269	5.71	25.33
277	1.265	173	1.282	-444	0	1.38	26.58
278	1.269	-190	1.284	-339	537	-1.68	25.71
279	1.274	-169	1.285	-388	122	-1.39	26.23
280	1.268	155	1.285	-589	49	1.25	26.11
281	1.268	155	1.285	-388	0	1.26	26.18
282	1.272	4	1.288	-586	-73	0.03	25.51
283	1.268	-152	1.285	-388	98	-1.27	25.84
284	1.268	-48	1.280	-48	-98	-0.38	27.17
285	1.262	409	1.282	-393	-73	3.36	25.79
286	1.269	17	1.285	-339	-49	0.14	26.41
287	1.264	313	1.285	-488	269	2.59	26.14
288	1.261	336	1.280	-343	-342	2.61	26.84
289	1.268	305	1.283	-341	0	2.53	25.84
290	1.270	-21	1.285	-388	488	-0.18	25.87
291	1.263	454	1.283	-441	439	3.89	25.72
292	1.266	286	1.284	-489	-49	2.32	26.00
293	1.263	454	1.285	-640	-49	3.62	26.16
294	1.269	217	1.285	-640	-146	1.75	25.64
295	1.269	217	1.280	-293	244	1.84	25.92

CELL NO.	SG2	EQWF	SG4	EQWC	ASHP	RELFRMA	SHPSLFA
296	1.268	255	1.280	-495	98	2.02	26.91
297	1.259	71 9	1.285	-589	0	5.77	26.15
298	1.273	17	1.285	-488	293	0.14	26.05
299	1.265	373	1.284	-439	122	3.16	25.36
300	1.258	712	1.284	-439	-98	6.05	24.77
301	1.269	-138	1.283	-391	98	-1.12	26.47
302	1.253	883	1.287	-636	146	7.48	24.94
303	1.258	713	1.283	-441	415	6.13	25.59
304	1.247	1143	1.278	-318	122	9.82	25.22
305	1.247	1043	1.280	-393	0	9.04	24.56
306	1.253	882	1.284	-489	146	7.77	24.26
307	1.258	563	1.284	-439	488	5.26	23.70
308	1.271	91	1.284	-192	244	0.73	27.60
309	1.254	687	1.280	-145	-342	5.89	24.65
310	1.270	-124	1.282	-243	146	-1.01	26.86
311	1.270	-73	1.283	-291	146	-0.61	26.27
312	1.263	698	1.276	-54	-122	5.96	25.41
313	1.269	217	1.283	-341	-146	1.83	25.03
314	1.272	-96	1.283	-341	0	-0.81	25.39
315	1.272	-45	1.284	-389	391	-0.38	25.92
316	1.270	179	1.279	-159	-49	1.51	25.72
317	1.260	578	1.286	-58 9	98	4.74	25.81
318	1.268	155	1.290	-840	317	1.32	24.65
319	1.275	-5	1.290	-840	146	-0.04	24.46
320	1.268	205	1.286	-539	0	1.74	24.80
321	1.274	205	1.292	-495	-49	1.74	24.79
322	1.256	9 11	1.291	-444	220	8.43	23.32
323	1.268	425	1.287	-243	146	3.77	24.65
324	1.262	660	1.296	-704	195	5.52	25.24
325	1.261	70	1.286	-194	-9 8	0.63	23.92
326	1.262	6 60	1.287	-243	122	6.01	23.96
327	1.278	66	1.287	-243	0	0.56	25.34
328	1.277	100	1.286	-194	-586	0.81	25.39
329	1.258	826	1.282	0	-488	7.05	24.76
330	1.260	742	1.287	-243	-244	6.43	24.35
331	1.265	541	1.294	-599	0	4.62	24.48
332	1.255	954	1.294	-599	- 9 8	8.54	23.10
333	1.256	911	1.283	-48	-610	7.96	23.7 9
334	1.263	620	1.291	-444	0	5.49	23.92
335	1.280	0	1.294	-599	53	0.00	25.46
336	1.280	0	1.292	-495	-171	0.00	25.83
337	1.283	-48	1.294	-599	293	-0.40	26.10

CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
1	1.282	91.9	1.146	261.26	96.2	1.151
2	1.285	92.2	1.146	262.58	96.5	1.154
3	1.288	92.6	1.146	261.46	96.7	1.155
4	1.286	9 2.4	1.146	262.99	96.5	1.155
5	1.286	93.8	1.147	262.28	97.9	1.155
6	1.286	92. 9	1.146	26 5.23	96.9	1.153
7	1.288	93.2	1.145	262.18	97.4	1.154
8	1.290	98.5	1.155	260.05	100.7	1.167
9	1.290	93.6	1.154	263.09	97.8	1.162
10	1.286	97.2	1.147	258.93	9 9.3	1.158
11	1.286	9 7.1	1.148	259.23	9 9.6	1.156
12	1.283	95.5	1.146	257.60	97.3	1.156
13	1.286	95.1	1.143	258.42	97.6	1.155
14	1.286	91.0	1.141	268.48	95.0	1.150
15	1.285	93.1	1.141	260.45	96.9	1.153
16	1.285	92.1	1.145	263.70	96.9	1.155
17	1.286	91.7	1.141	263.91	95.2	1.154
18	1.286	92.8	1.139	260.75	9 5.9	1.151
19	1.287	92.8	1.141	268.27	9 6.2	1.151
20	1.284	91.6	1.140	263.60	9 5.7	1.153
21	1.286	91.2	1.144	266.85	94.4	1.157
22	1.284	93.4	1.142	263.40	96.2	1.156
23	1.283	90.5	1.140	272.54	93.9	1.153
24	1.281	91.9	1.143	272.03	9 5.9	1.154
25	1.279	90.5	1.144	268.58	94.3	1.153
26	1.284	92.2	1.140	263.19	95.2	1.154
27	1.286	93.0	1.142	263.60	9 5.7	1.154
28	1.282	92.9	1.141	260.75	95.9	1.150
29	1.289	91.8	1.145	264.92	95.3	1.154
30 31	1.276	91.5	1.140	257.30	95.3	1.148
32	1.285	91.8 00.6	1.143	266.24	95.7	1.153
32	1.285	92.6	1.142	257.71	95.9	1.153
33 34	1.285 1.286	93.2	1.143	261.57	96.4	1.151
35	1.283	91.6	1.139	270.81	94.8	1.147
36	1.283	90.9	1.140	269.19	95.0	1,147
37	1.281	87.9 90.0	1.141	272.75	93.0	1.148
38	1.286	90.0 93.5	1.140	268.99	95.5	1,147
39	1.277	93.5 89.6	1.142 1.138	266.44 268.27	97.4	1.150
40	1.285	92.1	1.135	269.29	93.9 05.0	1.142
41	1.286	93.9	1.145	269.29	95.6 07.0	1.151
42	1.286	92.6	1.142		97.2 05.6	1.153
43	1.284	92.0 91.2	1.142	265.63 264.82	95.6 05.6	1.158
40	1.284	93.8	1.142	264.82 261.06	95.6 97.2	1.148
45	1.287	93.8 93.2	1.145	261.06	97.2 96.5	1.149 1.151
46	1.289	95.6	1.147	258.01	96.5 98.7	
47	1.286	91.6	1.149	256.01	96.7 94.4	1.157
48	1.286	94.3	1.146	260.98	94.4 97.4	1.148 1.153
49	1.284	91.8	1.140	262.58	97.4 95.7	1.153
		01.0		202.00	30.7	1.147

A - 8

· · _ · · · ·

CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
50	1.280	89.9	1.136	263.60	94.4	1.142
51	1.278	92.0	1.135	264.41	96.4	1.140
52	1.286	93.7	1.139	262.08	97.1	1.145
53	1.280	91.6	1.138	263.30	96.5	1.142
54	1.276	91.6	1.135	263.09	96.4	1.140
55	1.284	91.8	1.138	260.96	96.2	1.144
56	1.286	93.9	1.143	260.45	97.2	1.150
57	1.285	90.8	1.138	260.25	94.2	1.145
58	1.284	92.9	1.140	260.45	95.7	1.145
59	1.286	91.7	1.136	262.08	95.0	1.140
60	1.280	92 .1	1.143	261.98	96.7	1.148
61	1.281	90.8	1.139	262.48	95.6	1.144
62	1.286	91.7	1.137	265.02	96.3	1.144
63	1.277	89.4	1.135	263.50	94.1	1.138
64	1.286	91.3	1.142	262.48	95.3	1.147
65	1.283	89.0	1.136	263.30	93.5	1.141
66	1.281	90.9	1.135	265.13	95.5	1.140
67	1.287	91.7	1.137	262.99	95.3	1.141
68	1.286	93.6	1.139	258.11	97.2	1.144
69	1.281	91.9	1.140	262.48	96.1	1.144
70	1.288	92.8	1.140	264.21	95.4	1.145
71	1.285	9 1.1	1.140	264.62	94.4	1.156
72	1.288	93.3	1.141	262.28	96.3	1.147
73	1.282	91.6	1.138	262.18	96.3	1.141
74	1.284	89.4	1.136	263.50	92.8	1.141
75	1.285	9 1.9	1.138	262.58	95.6	1.143
76	1.280	90.6	1.139	264.82	95 .3	1.143
77	1.286	93.2	1.141	259.84	96.2	1.147
78	1.281	90.9	1.138	264.31	95.6	1.147
79	1.286	9 2.0	1.139	265.73	95.3	1.147
80	1.284	92.5	1.141	265.02	96.4	1.147
81	1.286	9 6.5	1.150	268.56	99.4	1.170
82	1.285	96.9	1.138	263.44	99 .5	1.149
83	1.286	95.0	1.142	265.35	97.3	1.152
84	1.284	9 4.6	1.146	264.75	97.3	1.155
85	1.285	9 5.1	1.149	265.05	98.7	1.162
86	1.285	9 3.0	1.140	265.85	95.6	1.149
87	1.281	93.9	1.137	264.24	96.4	1.145
88	1.279	93.4	1.139	262.44	97.0	1.144
89	1.281	95.9	1.147	263.64	9 9.8	1.156
90	1.280	92.9	1.141	264.04	96 .6	1.153
91	1.283	94.5	1.145	264.24	97.9	1.153
92	1.282	90.9	1.144	265.45	9 6.2	1.149
93	1.282	93.6	1.145	26 4.65	97.7	1.158
94	1.282	92.0	1.143	266.75	96 .0	1.155
95	1.280	91.4	1.142	264.04	95.5	1.152
96	1.280	91.8	1.144	262.74	97.2	1.153
97	1.278	91.5	1.138	265.55	95.5	1.145
98	1.281	90.0	1.138	264.75	94.4	1.147
99	1.284	92.2	1.144	264.04	95.5	1.158

CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
100	1.284	91.8	1.150	263.04	96.5	1.171
101	1.284	92.6	1.148	265.75	97.0	1.160
102	1.281	92.7	1.143	264.24	96.8	1.153
103	1.281	91.3	1.137	265.05	95.1	1.145
104	1.281	93.9	1.145	262.64	97.0	1.154
105	1.281	92.4	1.145	264.14	94.2	1.153
106	1.281	93.4	1.143	260.43	96.8	1.152
107	1.284	92.8	1.147	265.35	96.8	1.160
108	1.282	92.9	1.147	266.95	97. 9	1.160
109	1.280	88.6	1.143	264.24	92.2	1.154
110	1.278	92.9	1.141	264.04	94.9	1.150
111	1.279	95.2	1.138	261.53	97.4	1.145
112	1.279	96.3	1.148	262.84	9 9.8	1.154
113	1.281	94.3	1.147	262.64	9 9.5	1.156
114	1.282	91.3	1.143	265.65	96.3	1.152
115	1.282	90.5	1.145	265.15	95.1	1.155
116	1.282	92.8	1.148	261.84	97.3	1.160
117	1.280	91.8	1.148	266.85	97.7	1.161
118	1.280	92.0	1.148	265.05	96.6	1.160
119	1.281	92.0	1.146	264.85	96.3	1.156
120	1.279	92.7	1.153	266.25	9 6.8	1.164
121	1.280	92.8	1.147	265.45	97.0	1.150
122	1.281	92.0	1.143	263.34	9 5.7	1.152
123	1.279	94.8	1.148	263.74	9 9.5	1.162
124	1.281	94.5	1.148	262.24	98.9	1.165
125	1.282	92.7	1.139	263.74	97.3	1.150
126	1.282	92.0	1.142	260.73	95.5	1.154
127	1.281	93.3	1.142	259.23	96.4	1.149
128	1.284	95.0	1.145	259.73	99.5	1.154
129	1.282	94.3	1.143	258.93	98.5	1.153
130	1.281	92.5	1.135	264.95	96.9	1.147
131	1.285	94.6	1.144	262.14	98.3	1.158
132	1.280	93.2	1.144	263.74	98.5	1.154
133	1.281	94.8	1.148	261.33	98.5	1.165
134	1.285	9 1.7	1.142	261.74	96.0	1.154
135	1.281	9 2.3	1.137	264.24	95.6	1.145
136	1.281	93.1	1.142	264.95	97.5	1.150
137	1.282	95.3	1.147	266.75	9 8.3	1.159
138	1.282	93.8	1.141	267.86	97.7	1.152
139	1.285	9 4.1	1.142	265.35	9 8.1	1.153
140	1.281	93.6	1.144	267.86	98.3	1.154
141	1.280	9 3.6	1.142	266.35	99.3	1.154
142	1.281	95.7	1.142	266.25	99.5	1.154
143	1.281	96.2	1.144	266.55	100.0	1.154
144	1.281	93.1	1.146	263.54	98.5	1.158
145	1.283	93.1	1.144	261.33	98.2	1.155
146	1.281	93.3	1.142	263.04	98.3	1.154
147	1.282	92.8	1.140	265.35	97.8	1.154
148	1.281	92.0	1.139	265.65	98.0	1.152
149	1.281	92.1	1.141	265.25	98.0	1.152

......

150 1.283 91.9 1.144 263.04 97.4 1.155 151 1.280 93.0 1.145 265.75 98.1 1.159 152 1.274 90.2 1.142 263.24 97.4 1.154 153 1.283 92.5 1.143 266.35 97.7 1.154 154 1.281 92.4 1.139 266.64 94.66 1.143 155 1.281 92.4 1.144 265.75 96.8 1.154 156 1.278 89.3 1.141 268.36 94.9 1.149 157 1.282 92.4 1.144 266.75 96.8 1.154 158 1.281 92.5 1.134 267.76 96.2 1.153 161 1.286 102.3 1.140 265.11 105.3 1.163 162 1.286 98.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.133 266.75 103.4 1.137 165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.286 97.3 1.142 103.4 1.137 167 1.284 96.9 1.138 263.77 103.4 1.137 167 1.284 96.9 1.138 263.77 103.4 1.142 170 1.287 97.3 1.137 267.16 99.1 1.142 171 1.287 9	CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
151 1.280 93.0 1.145 266.75 98.1 1.159 152 1.274 90.2 1.142 263.24 97.4 1.154 153 1.281 92.4 1.139 262.64 94.6 1.148 154 1.281 92.4 1.139 262.64 94.6 1.148 155 1.281 92.6 1.140 262.94 96.6 1.153 156 1.278 89.3 1.141 268.36 94.9 1.149 157 1.282 92.4 1.144 266.75 96.8 1.154 160 1.282 92.5 1.143 267.66 97.3 1.154 160 1.282 92.5 1.140 265.11 105.3 1.150 162 1.266 96.3 1.134 266.56 97.9 1.140 164 1.286 96.3 1.134 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 98.2 1.138 166 1.286 101.2 1.136 263.97 103.2 1.144 168 1.284 96.9 1.138 263.97 103.2 1.144 168 1.284 95.5 1.136 265.62 97.1 1.132 170 1.275 97.5 1.128 265.41 100.1 1.142 170 1.275 97.5 1.128 265.41 100.3 1.150 174 $1.$	150	1.283					
152 1.274 90.2 1.142 263.24 97.4 1.154 153 1.283 92.5 1.143 266.55 97.7 1.154 154 1.281 92.6 1.140 262.94 96.6 1.163 155 1.281 92.6 1.140 262.94 96.6 1.153 156 1.278 89.3 1.141 268.36 94.9 1.149 157 1.282 92.4 1.144 266.75 96.8 1.154 158 1.281 92.5 1.144 267.16 97.3 1.154 160 1.282 92.5 1.144 267.16 97.3 1.154 160 1.282 92.5 1.144 265.11 100.4 1.145 163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.132 266.03 100.6 1.146 166 1.284 96.9 1.139 266.03 100.6 1.146 166 1.284 95.5 1.136 265.75 103.4 1.137 167 1.284 95.5 1.138 265.41 102.4 1.132 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.29 265.22 97.1 1.142 176 1.284 97.9 1.142 265.62 97.1 1.142 177 1.2	151	1.280	93.0				
153 1.283 92.5 1.143 266.35 97.7 1.154 154 1.281 92.4 1.139 262.64 94.6 1.148 155 1.278 89.3 1.141 268.36 94.9 1.149 157 1.282 92.4 1.144 226.75 96.8 1.154 158 1.277 93.2 1.140 227.16 97.3 1.154 160 1.282 92.5 1.138 267.56 95.7 1.150 162 1.286 92.5 1.144 2267.76 96.2 1.153 161 1.286 92.5 1.144 226.716 97.3 1.154 162 1.286 98.3 1.134 226.11 100.4 1.145 163 1.282 95.6 1.129 2260.03 98.2 1.135 165 1.284 96.9 1.139 2266.03 100.6 1.146 164 1.286 101.2 1.130 226.75 103.4 1.137 167 1.284 96.5 1.136 226.97 10.24 1.142 170 1.275 97.5 1.128 226.11 100.4 1.132 171 1.277 92.9 1.129 226.29 90.1 1.142 172 1.283 97.3 1.139 226.48 97.1 1.135 174 1.284 97.1 1.135 226.18 97.1 1.142 174 <td< td=""><td>152</td><td>1.274</td><td></td><td>1.142</td><td>263.24</td><td></td><td></td></td<>	152	1.274		1.142	263.24		
154 1.281 92.4 1.139 262.64 94.6 1.148 155 1.281 92.6 1.140 262.94 96.6 1.153 156 1.278 89.3 1.141 286.36 94.9 1.149 157 1.282 92.4 1.144 266.75 96.8 1.154 158 1.277 93.2 1.140 267.16 97.3 1.154 160 1.282 92.5 1.144 267.76 96.2 1.153 161 1.286 90.3 1.133 266.65 97.9 1.140 162 1.286 98.3 1.133 226.03 98.2 1.135 163 1.282 95.6 1.129 226.03 98.2 1.135 165 1.284 96.9 1.138 226.397 103.2 1.144 166 1.286 101.2 1.130 226.75 103.4 1.142 176 1.284 99.6 1.138 2263.97 103.2 1.144 168 1.281 95.5 1.136 226.41 102.4 1.142 170 1.275 97.5 1.128 226.41 102.4 1.142 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.135 226.13 100.3 1.150 174 1.284 95.1 1.132 2262.2 98.7 1.140 175	153	1.283	92.5				
155 1.281 92.6 1.140 262.94 96.6 1.153 156 1.278 89.3 1.141 268.36 94.9 1.149 157 1.282 92.4 1.144 226.75 96.8 1.154 158 1.281 92.5 1.138 267.56 95.7 1.150 159 1.277 93.2 1.140 226.11 105.3 1.154 160 1.282 92.5 1.144 226.76 96.2 1.135 161 1.286 102.3 1.140 226.11 105.3 1.150 162 1.286 98.3 1.133 226.65 97.9 1.143 163 1.282 95.6 1.129 2260.3 98.2 1.133 165 1.284 96.9 1.139 226.03 100.6 1.146 166 1.286 101.2 1.130 226.75 103.4 1.137 167 1.284 95.5 1.136 226.33 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 2265.41 100.7 1.142 171 1.277 92.9 1.29 2265.62 97.1 1.132 172 1.283 97.3 1.135 $226.100.7$ 1.142 173 1.284 97.4 1.141 261.00 100.7 1.146 174 1.284 <td>154</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	154						
156 1.278 89.3 1.141 268.36 94.9 1.149 157 1.282 92.4 1.144 267.56 96.8 1.154 158 1.277 93.2 1.140 267.16 97.3 1.154 160 1.282 92.5 1.144 267.76 96.2 1.153 161 1.286 102.3 1.140 265.11 105.3 1.150 162 1.286 98.3 1.134 226.11 100.4 1.145 163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.286 98.3 1.139 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.286 101.2 1.130 226.75 103.4 1.137 167 1.284 99.6 1.138 2263.97 103.2 1.144 168 1.281 95.5 1.136 226.77 69.1 1.142 170 1.275 97.5 1.128 226.41 100.4 1.132 171 1.277 92.9 1.141 2261.40 100.3 1.150 174 1.284 97.4 1.141 2261.40 100.3 1.150 174 1.284 97.3 1.135 2262.22 98.7 1.142 175 1.283 97.3 1.135 2262.29 98.7 1.140 179 <td>155</td> <td>1.281</td> <td>92.6</td> <td></td> <td></td> <td></td> <td></td>	155	1.281	92.6				
167 1.282 92.4 1.144 266.75 96.8 1.154 158 1.217 93.2 1.138 267.56 95.7 1.150 159 1.277 93.2 1.144 267.16 97.3 1.154 160 1.282 92.5 1.144 267.16 97.3 1.153 161 1.286 98.3 1.134 265.11 105.3 1.150 162 1.286 98.3 1.134 266.11 105.3 1.135 163 1.282 95.3 1.133 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 98.2 1.135 166 1.286 101.2 1.130 266.75 103.4 1.146 166 1.284 99.6 1.138 266.397 10.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 174 1.284 96.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.22 98.7 1.130 174 1.284 96.1 1.132 262.33 100.3 1.140 177	156	1.278					
158 1.281 92.5 1.138 267.56 95.7 1.150 159 1.277 93.2 1.140 267.16 97.3 1.154 160 1.282 92.5 1.140 267.76 96.2 1.153 161 1.286 102.3 1.140 265.11 105.3 1.150 162 1.286 98.3 1.134 265.11 100.4 1.145 163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.129 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.286 101.2 1.130 266.75 103.4 1.137 167 1.284 99.6 1.138 263.97 103.2 1.142 170 1.275 97.5 1.128 265.41 102.4 1.142 170 1.275 97.5 1.132 265.462 97.1 1.135 172 1.283 97.3 1.135 263.46 100.7 1.146 173 1.284 96.1 1.135 262.33 100.3 1.140 174 1.284 97.9 1.142 263.56 92.2 1.140 176 1.283 97.3 1.135 262.33 100.3 1.140 176 1.284 96.0 1.134 262.22 98.7 1.136 176 1.284 96.3 1	157	1.282	92.4				
159 1.277 93.2 1.140 267.16 97.3 1.154 160 1.282 92.5 1.144 267.76 96.2 1.153 161 1.286 102.3 1.144 265.11 105.3 1.150 162 1.286 98.3 1.134 265.11 100.4 1.145 163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.129 266.03 98.2 1.135 165 1.284 96.9 1.139 266.75 103.4 1.137 167 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.41 102.4 1.132 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.135 264.18 97.9 1.142 175 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 97.3 1.135 262.22 98.7 1.140 177 1.283 96.1 1.132 262.22 98.7 1.140 177 1.284 96.0 1.134 262.22 98.7 1.140 177 1.284 96.0 1.132 263.56 99.2 1.140 178 1.284 96.0 1.132	158	1.281	92.5	1.138			
160 1.282 92.5 1.144 267.76 96.2 1.153 161 1.286 102.3 1.140 265.11 105.3 1.150 162 1.286 98.3 1.133 266.511 100.4 1.145 163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.129 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.43 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 97.4 1.141 261.40 100.3 1.160 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.284 96.0 1.134 262.22 98.7 1.140 176 1.284 97.9 1.132 262.22 98.7 1.140 176 1.284 97.9 1.132 262.22 98.7 1.140 177 1.283 97.3 1.132 262.22 98.7 1.140 176 <t< td=""><td>159</td><td>1.277</td><td>93.2</td><td>1.140</td><td>267.16</td><td></td><td></td></t<>	159	1.277	93.2	1.140	267.16		
1611.286102.31.140265.11105.31.1501621.28698.31.134266.11100.41.1451631.28295.31.133266.6597.91.1401641.28595.61.129266.0398.21.1351651.28490.61.139266.03100.61.1461661.286101.21.130266.75103.41.1371671.28499.61.138263.97103.21.1441681.28195.51.136265.83100.11.1381691.28295.31.137267.1699.11.1421701.27597.51.128265.41102.41.1351721.28397.31.139266.6297.11.1461731.28497.41.141261.40100.31.1501741.28495.11.135264.1897.91.1421751.28697.91.141262.02100.41.1501761.28397.31.135262.33100.31.1401771.28396.11.132261.3098.21.1381781.28496.01.134262.2298.71.1401791.28495.01.132261.3098.21.1381811.28196.81.137261.40100.41.1421831.28297.81	160	1.282	92.5	1.144	267.76		
162 1.286 98.3 1.134 265.11 100.4 1.145 163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.129 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.132 167 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.133 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.284 96.0 1.134 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.0 1.132 261.30 98.2 1.138 178 1.284 96.0 1.132 261.30 98.2 1.138 178	161	1.286	102.3	1.140	265.11		
163 1.282 95.3 1.133 266.65 97.9 1.140 164 1.285 95.6 1.129 266.03 98.2 1.135 165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.286 101.2 1.130 266.75 103.4 1.137 167 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 95.1 1.132 262.33 100.4 1.150 176 1.283 97.3 1.135 262.33 100.4 1.130 177 1.284 96.0 1.134 262.22 98.7 1.140 177 1.284 96.3 1.131 263.56 99.2 1.140 176 1.284 97.9 1.134 262.22 98.7 1.130 176 1.284 96.3 1.137 261.40 100.4 1.146 182 <t< td=""><td>162</td><td>1.286</td><td>98.3</td><td>1.134</td><td>265.11</td><td>100.4</td><td></td></t<>	162	1.286	98.3	1.134	265.11	100.4	
1641.28595.61.129266.0398.21.1351651.28496.91.139266.03100.61.1461661.286101.21.130266.75103.41.1371671.28499.61.138263.97103.21.1441681.28195.51.136265.83100.11.1381691.28295.31.137267.1699.11.1421701.27597.51.128265.41102.41.1321711.27792.91.129265.6297.11.1351721.28397.31.139263.46100.71.1461731.28497.41.141261.40100.31.1501741.28495.11.135264.1897.91.1421751.28697.91.141262.02100.41.1501761.28397.31.135262.3310.31.1401771.28396.11.132262.2298.71.1361781.28496.31.131263.5699.21.1401801.28295.01.132261.3098.21.381811.28196.81.137251.40100.41.1461821.28497.91.134259.86100.11.1421831.28296.41.135259.86101.81.1451861.27795.31.1	163	1.282	95.3	1.133	266.65		
165 1.284 96.9 1.139 266.03 100.6 1.146 166 1.286 101.2 1.130 266.75 103.4 1.137 167 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 97.3 1.132 262.23 100.3 1.140 177 1.284 96.3 1.131 263.56 99.2 1.140 179 1.284 96.3 1.131 261.30 98.8 1.138 181 1.282 95.0 1.132 261.30 98.8 1.138 181 1.282 97.8 1.135 260.06 100.1 1.142 183 1.282 96.8 1.135 259.86 100.1 1.142 186 <	164	1.285	95.6	1.129			
166 1.286 101.2 1.130 266.75 103.4 1.137 167 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 97.4 1.141 262.20 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.284 96.1 1.132 262.22 98.7 1.140 177 1.283 96.1 1.132 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.8 1.135 259.86 100.1 1.142 184 1.282 97.8 1.135 259.86 101.0 1.142 185 <	165	1.284	9 6.9	1.139	266.03		
167 1.284 99.6 1.138 263.97 103.2 1.144 168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 96.1 1.132 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.140 177 1.283 96.1 1.132 261.30 98.2 1.138 181 1.284 96.0 1.134 252.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.8 1.138 181 1.282 97.8 1.135 259.86 100.1 1.142 183 1.284 97.9 1.134 259.86 101.0 1.142 184	166	1.286	101.2	1.130			
168 1.281 95.5 1.136 265.83 100.1 1.138 169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 97.4 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.286 97.9 1.141 262.02 98.7 1.136 176 1.283 96.1 1.132 262.22 98.7 1.140 177 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.8 1.138 181 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.286 98.5 1.135 259.86 101.8 1.142 185	167	1.284	99.6		263.97		
169 1.282 95.3 1.137 267.16 99.1 1.142 170 1.275 97.5 1.128 265.41 102.4 1.132 171 1.277 92.9 1.129 266.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 97.4 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.140 177 1.283 96.1 1.132 262.22 98.7 1.140 177 1.284 96.0 1.134 262.22 98.7 1.140 178 1.284 96.0 1.132 261.30 98.2 1.138 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.284 97.9 1.134 259.66 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 183	168	1.281	95.5	1.136			1.138
171 1.277 92.9 1.129 265.62 97.1 1.135 172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.140 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.142 183 1.282 97.8 1.135 260.06 101.0 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.133 262.02 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 190 1	169	1.282	95.3	1.137	267.16	99.1	
172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 259.86 101.1 1.142 185 1.286 98.5 1.135 259.86 101.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.133 184 1.282 97.8 1.133 262.02 98.8 1.133 186	170		97.5	1.128	265.41	102.4	1.132
172 1.283 97.3 1.139 263.46 100.7 1.146 173 1.284 97.4 1.141 261.40 100.3 1.150 174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 259.86 100.1 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.138 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.132 263.66 97.8 1.138 190	171	1.277	92.9	1.129	265.62	97.1	
174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 95.0 1.132 261.30 98.8 1.138 184 1.282 97.8 1.135 250.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 259.86 101.1 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.138 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 263.66 97.8 1.138 191 $1.$	172	1.283	97.3	1.139	263.46		1.146
174 1.284 95.1 1.135 264.18 97.9 1.142 175 1.286 97.9 1.141 262.02 100.4 1.150 176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.145 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 263.66 97.8 1.138 191	173	1.284	97.4	1.141	261.40	100.3	1.150
176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 264.59 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 193 1.282 95.7 1.132 261.09 98.5 1.140 194 1	174	1.284	95.1	1.135	264.18		
176 1.283 97.3 1.135 262.33 100.3 1.140 177 1.283 96.1 1.132 262.22 98.7 1.136 178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 264.59 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 192 1.280 96.8 1.132 263.66 97.8 1.138 191 1	175	1.286	97.9	1.141	262.02	100.4	1.150
178 1.284 96.0 1.134 262.22 98.7 1.140 179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 264.59 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 193 1.282 95.7 1.132 261.09 98.5 1.140 194 1.279 95.7 1.132 261.09 98.5 1.140 194 1.283 93.1 1.144 261.33 98.2 1.140 195 $1.$	176	1.283	97.3	1.135	262.33	100.3	
179 1.284 96.3 1.131 263.56 99.2 1.140 180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 264.59 98.2 1.140 192 1.280 96.8 1.132 261.61 98.4 1.138 194 1.279 95.7 1.132 261.09 98.5 1.140 194 1.283 93.1 1.144 261.33 98.2 1.140 195 1.283 96.5 1.133 258.93 99.2 1.144 196 $1.$		1.283	96.1	1.132	262.22	98.7	1.136
180 1.282 95.0 1.132 261.30 98.2 1.138 181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 263.66 97.8 1.138 191 1.283 95.7 1.132 264.59 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 193 1.282 95.7 1.132 261.09 98.5 1.140 194 1.279 95.7 1.132 261.09 98.5 1.140 195 1.283 96.5 1.133 258.93 99.2 1.144 196 $1.$		1.284	96.0	1.134	262.22	98.7	1.140
181 1.281 96.8 1.137 261.40 100.4 1.146 182 1.284 97.9 1.134 259.86 100.1 1.142 183 1.282 96.4 1.131 261.30 98.8 1.138 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.142 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 264.59 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 193 1.282 95.7 1.132 261.61 98.4 1.138 194 1.279 95.7 1.132 261.09 98.5 1.140 145 1.283 93.1 1.144 261.33 98.2 1.144 196 1.280 95.8 1.133 258.93 99.2 1.144 196 1.280 95.8 1.133 263.05 99.0 1.140 197 $1.$		1.284	96.3	1.131	263.56	9 9.2	1.140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.282	9 5.0	1.132	261.30	98.2	1.138
183 1.282 96.4 1.131 261.30 98.8 1.132 184 1.282 97.8 1.135 260.06 101.0 1.142 185 1.286 98.5 1.135 259.86 101.8 1.142 185 1.286 98.5 1.135 259.86 101.8 1.142 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 266.699 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 193 1.282 95.7 1.132 261.61 98.4 1.138 194 1.279 95.7 1.132 261.09 98.5 1.140 145 1.283 93.1 1.144 261.33 98.2 1.144 196 1.280 95.8 1.133 258.93 99.2 1.144 196 1.280 95.8 1.133 263.05 99.0 1.140 197 1.282 96.5 1.134 264.28 99.5 1.140		1.281	96.8	1.137	261.40	100.4	1.146
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.284	97.9	1.134	259.86	100.1	1.142
185 1.286 98.5 1.135 259.86 101.8 1.145 186 1.277 95.3 1.129 263.66 98.8 1.133 187 1.280 96.2 1.133 262.02 98.8 1.138 188 1.281 98.6 1.138 263.05 101.1 1.146 189 1.282 96.9 1.140 263.05 100.1 1.147 190 1.283 95.0 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 263.66 97.8 1.138 191 1.281 95.6 1.132 264.59 98.2 1.140 192 1.280 96.8 1.134 260.99 99.2 1.140 193 1.282 95.7 1.131 261.61 98.4 1.138 194 1.279 95.7 1.132 261.09 98.5 1.140 145 1.283 93.1 1.144 261.33 98.2 1.155 195 1.283 96.5 1.133 258.93 99.2 1.144 196 1.280 95.8 1.133 263.05 99.0 1.140 197 1.282 96.5 1.134 264.28 99.5 1.140			96.4	1.131	261.30	98.8	1.138
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.282	97.8	1.135	260.06	101.0	1.142
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			98.5	1.135	259.86	101.8	1.145
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.277	95.3	1.129	263.66	98.8	1.133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			96.2		262.02	98 .8	1.138
1901.28395.01.132263.6697.81.1381911.28195.61.132264.5998.21.1401921.28096.81.134260.9999.21.1401931.28295.71.131261.6198.41.1381941.27995.71.132261.0998.51.1401451.28393.11.144261.3398.21.1551951.28396.51.133258.9399.21.1441961.28095.81.133263.0599.01.1401971.28296.51.134264.2899.51.140		1.281	98.6	1.138	263.05	101.1	1.146
1911.28195.61.132264.5998.21.1401921.28096.81.134260.9999.21.1401931.28295.71.131261.6198.41.1381941.27995.71.132261.0998.51.1401451.28393.11.144261.3398.21.1551951.28396.51.133258.9399.21.1441961.28095.81.133263.0599.01.1401971.28296.51.134264.2899.51.140					263.05		1.147
1921.28096.81.134260.9999.21.1401931.28295.71.131261.6198.41.1381941.27995.71.132261.0998.51.1401451.28393.11.144261.3398.21.1551951.28396.51.133258.9399.21.1441961.28095.81.133263.0599.01.1401971.28296.51.134264.2899.51.140	190	1.283		1.132	263.66	97.8	1.138
1931.28295.71.131261.6198.41.1381941.27995.71.132261.0998.51.1401451.28393.11.144261.3398.21.1551951.28396.51.133258.9399.21.1441961.28095.81.133263.0599.01.1401971.28296.51.134264.2899.51.140				1.132	264.59	98.2	1.140
1941.27995.71.132261.0998.51.1401451.28393.11.144261.3398.21.1551951.28396.51.133258.9399.21.1441961.28095.81.133263.0599.01.1401971.28296.51.134264.2899.51.140				1.134	260.99	9 9.2	1.140
145 1.283 93.1 1.144 261.33 98.2 1.155 195 1.283 96.5 1.133 258.93 99.2 1.144 196 1.280 95.8 1.133 263.05 99.0 1.140 197 1.282 96.5 1.134 264.28 99.5 1.140						98.4	1.138
1951.28396.51.133258.9399.21.1441961.28095.81.133263.0599.01.1401971.28296.51.134264.2899.51.140							1.140
196 1.280 95.8 1.133 263.05 99.0 1.140 197 1.282 96.5 1.134 264.28 99.5 1.140							1.155
197 1.282 96.5 1.134 264.28 99.5 1.140							1.144
							1.140
198 1.284 97.4 1.132 261.92 100.2 1.142							1.140
	198	1.284	97.4	1.132	261.92	100.2	1.142

CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
199	1.282	97.2	1.134	260.99	99 .5	1.140
200	1.281	97.4	1.133	261.40	99.7	1.143
201	1.282	96.4	1.135	26 9.53	100.3	1.147
202	1.284	97.2	1.132	260.27	99.9	1.137
203	1.283	96.2	1.132	262.84	99.1	1.140
204	1.284	9 7.0	1.137	264.80	99.8	1.143
205	1.282	96.6	1.133	259.86	100.0	1.141
206	1.282	97.0	1.134	261.61	9 9.7	1.141
207	1.282	96.6	1.133	260. 9 9	99 .0	1.142
208	1.281	97.0	1.135	262.53	99.8	1.145
209	1.281	96. 9	1.129	260.99	100.1	1.138
210	1.282	96.7	1.133	262.22	99.5	1.142
211	1.274	9 4.0	1.128	265.00	97.3	1.140
212	1.282	97.1	1.137	261.20	100.3	1.145
213	1.277	96.7	1.135	260.68	100.2	1.142
214	1.281	97.3	1.131	262.22	100.3	1.142
215	1.281	96.6	1.131	260.78	99.1	1.143
216	1.281	96.7	1.136	264.38	99.3	1.149
217	1.284	9 9.9	1.135	260.89	102.6	1.146
218	1.282	100.3	1.134	261.09	102.5	1.149
219	1.282	100.2	1.134	259.24	103.4	1.145
220	1.281	100.9	1.138	258.52	104.0	1.147
221	1.281	98.9	1.134	258.62	101.4	1.145
222	1.284	100.4	1.134	258.42	102.6	1.149
223	1.284	100.2	1.134	260.37	102.6	1.150
224	1.284	100.7	1.138	261.20	103.3	1.151
225	1.285	100.1	1.135	259.34	102.6	1.146
226	1.284	98.8	1.132	259.55	101.4	1.146
227	1.284	102.0	1.133	258.52	105.9	1.149
228	1.283	9 9.5	1.131	259.55	102.6	1.140
229	1.286	103.5	1.138	257.59	107.9	1.153
230	1.278	103.3	1.132	259.65	106.2	1.145
231	1.284	103.9	1.134	259.14	107.6	1.149
232	1.284	104.5	1.139	259.55	108.2	1.156
233	1.283	103.1	1.135	260.78	107.4	1.150
234	1.283	103.7	1.138	259.45	107.4	1.152
235	1.286	103.0	1.133	261.09	105.4	1.146
236	1.284	103.8	1.134	261.30	107.8	1.145
237	1.284	102.3	1.133	260.89	106.2	1.152
238	1.282	102.4	1.134	260.47	105.9	1.153
239	1.282	101.6	1.136	259.75	104.5	1.153
240	1.284	101.3	1.136	262.02	104.5	1.155
241	1.290	99.9	1.141	260.20	103.7	1.144
242	1.287	101.0	1.135	259.50	102.6	1.140
243	1.288	102.0	1.137	259.20	104.2	1.143
245	1.288	103. 9	1.141	254.40	107.2	1.150
246	1.286	101.4	1.141	256.10	104.1	1.148
247	1.287	103.2	1.134	256.40	104.9	1.140
248	1.288	105.2	1.144	257.10	107.1	1.150
249	1.283	103.2	1,140	257.10	104.4	1.149

....

CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
250	1.286	100.1	1.134	258.00	102.4	1.137
251	1.285	98.8	1.138	256.30	102.4	1.145
252	1.287	103.2	1.142	256.10	106.3	1.152
253	1.285	99.9	1.139	256.80	102.4	1.147
254	1.287	102.3	1.141	255.90	105.2	1.152
255	1.276	97.1	1.134	255.40	100.3	1.143
256	1.288	101.7	1.143	257.40	104.4	1.149
257	1.291	102.2	1.138	257.70	104.9	1.139
258	1.286	100.5	1.138	256.70	103.3	1.140
259	1.286	98.7	1.138	257.30	102.1	1.153
260	1.283	100.2	1.137	258.00	103.0	1.145
261	1.287	100.5	1.145	258.40	103.0	1.153
262	1.289	99 .7	1.140	258.00	103.8	1.145
263	1.286	100.6	1.137	259.40	103.5	1.140
264	1.287	101.5	1.142	257.90	104.0	1.148
265	1.287	103.5	1.140	258.20	104.9	1.149
266	1.287	100.2	1.138	256.10	103.2	1.144
267	1.285	100.0	1.137	258.40	103.8	1.140
268	1.286	106.0	1.142	258.60	106.8	1.149
269	1.286	103.3	1.142	268.19	104.8	1.149
270	1.287	102.8	1.140	256.40	104.1	1.144
271	1.288	101.7	1.142	257.20	103.9	1.149
272	1.284	103.4	1.133	259.60	104.4	1.139
273	1.287	99.2	1.135	263.70	102.7	1.138
274	1.283	101.4	1.135	258.50	102.7	1.140
275	1.286	100.5	1.136	257.10	103.0	1.142
276	1.282	100.2	1.135	261.30	105.5	1.139
277	1.283	101.9	1.138	256.00	105.5	1.144
278	1.283	99.8	1.130	258.00	101.4	1.134
279	1.285	103.2	1.137	257.10	104.9	1.143
280	1.286	104.2	1.141	261.30	106.1	1.149
281	1.284	102.9	1.137	258.40	105.9	1.143
282	1.285	102.8	1.139	256.00	107.2	1.143
283	1.284	104.3	1.137	256.40	106.1	1.144
284	1.285	103.8	1.138	253.50	106.4	1.144
285	1.285	100.5	1.137	260.20	103.1	1.144
286	1.284	98.7	1.138	259.10	101.8	1.145
287	1.287	97.4	1.138	256.50	101.5	1.145
288	1.283	97.7	1.142	256.80	102.0	1.152
289	1.286	97.6	1.140	254.60	101.5	1.149
290	1.285	95.7	1.134	254.30	98.9	1.13 9
291	1.285	95.3	1.134	257.00	99.4	1.138
292	1.285	97.6	1.139	255.10	101.4	1.149
145	1.283	93.1	1.144	261.33	98.2	1.155
293	1.285	98.6	1.142	253.60	101.8	1.150
294	1.286	99.0	1.142	255.10	102.0	1.152
295	1.285	96.7	1.133	256.80	101.5	1.139
296 207	1.285	100.8	1.139	254.80	102.6	1.147
297	1.284	98.4	1.140	258.10	104.1	1.149
298	1.284	100.5	1.134	254.80	101.9	1.140

CELL NO.	AVSB	AVCAP	AVSA	DRYWT	MXCAP	MXSA
299	1.282	98.4	1.135	257.40	100.8	1.145
300	1.284	98.0	1.137	257.60	103.7	1.143
301	1.284	103.5	1.136	260.60	104.6	1.143
302	1.284	98.5	1.137	258.80	102.9	1.143
303	1.284	95.0	1.133	259.50	99.8	1.140
304	1.282	96.3	1.136	262.10	101.2	1.139
305	1.284	98.0	1.135	259.70	102.9	1.142
306	1.283	96.5	1.137	264.90	100.2	1.144
307	1.283	97.4	1.128	264.80	100.0	1.131
308	1.284	103.1	1.138	254.10	105.0	1.143
309	1.285	100.1	1.135	264.80	103.6	1.140
310	1.285	102.8	1.133	255.20	104.6	1.135
311	1.284	101.4	1.134	256.80	103.2	1.138
312	1.280	9 9.5	1.135	265.89	102.1	1.143
313	1.286	102.7	1.134	262.10	104.6	1.137
314	1.282	100.6	1.135	261.40	102.4	1.138
315	1.286	101.5	1.133	260.60	103.7	1.137
316	1.283	102.5	1.135	262.80	104.2	1.138
317	1.286	102.3	1.139	259.80	104.3	1.143
318	1.286	103.0	1.134	260.10	106.1	1.138
319	1.285	104.2	1.136	260.20	106.6	1.144
320	1.284	102.3	1.136	262.20	104.9	1.142
321	1.293	104.9	1.155	260.86	107.3	1.162
322	1.289	96.1	1.155	266.38	101.1	1.160
323	1.284	94.7	1.158	262.07	98.8	1.166
324	1.28 9	98.6	1.160	260.16	102.8	1.163
325	1.288	97 .1	1.155	264.08	101.2	1.161
326	1.289	96.5	1.157	263.57	99 .0	1.166
327	1.292	101.9	1.152	261.16	104.3	1.154
328	1.290	104.3	1.156	261.66	106.7	1.160
329	1.286	98.3	1.156	262.47	102.4	1.166
330	1.284	97.4	1.152	261.36	101.9	1.160
331	1.292	96.7	1.160	258.9 5	99 .6	1.169
332	1.285	99.6	1.155	267.49	102.2	1.160
333	1.285	9 8.6	1.155	264.68	102.4	1.165
334	1.289	98.9	1.154	262.17	100.9	1.162
335	1.292	102.3	1.156	257.65	104.7	1.160
336	1.290	102.7	1.156	257.85	104. 9	1.160
337	1.293	103.6	1.157	256.84	106.0	1.160
338	1.285	96.6	1.153	263.98	101.3	1.165
339	1.289	102.9	1.150	258.65	104.7	1.153
340	1.286	96.6	1.149	263.98	100.3	1.160

APPENDIX B

BATTERY CAPACITY TEST CEMC, 450A DISCHARGE, APRIL 3, 1990

START TIME = CUTOFF VOLTAGE = AH CRRCTN FACTR =

09:00 C\SYMPH\CEMDATA 1.7 CAP90SRT.WK1 0.994 *(TEMP CORRCTN)

07/19/92 22:43

[BY % CAPACITY]

SGBR = SP GR BEFORE RAW DATA SGBC = SP GR BEFORE CORRCTD FOR TEMP SGAR = SP GR AFTER RECHG RAW SGAC = SP GR AFTER RECHG CORRCTD FVLTB = FLOAT VOLTAGE BEFORE DISCHARGE

			MEASUREMENTS					
070010				BEFORE DIS				
STRING	MODULE	CELL NO.	FVLTB	SGBR	TEMP	SGBC		
A	11	109	2.327	1.284	92	1.289		
B	20	22	2.318	1.276	93	1.281		
A	11	105	2.313	1.286	93	1.291		
В	20	21	2.311	1.276	95	1.282		
В	22	60	2.312	1.266	95	1.272		
В	20	28	2.328	1.276	93	1.281		
в	29	197	2.327	1.276	92	1.281		
Α	1	25	2.348	1.280	89	1.284		
в	22	59	2.307	1.272	95	1.278		
В	22	63	2.315	1.270	93	1.275		
С	44	249	2.316	1.270	92	1.283		
в	29	192	2.353	1.278	90	1.282		
Α	1	23	2.346	1.270	89	1.274		
в	32	225	2.332	1.276	92	1.281		
в	22	62	2.318	1.278	93	1.283		
В	30	199	2.316	1.272	92	1.277		
Α	9	91	2.313	1.274	93	1.279		
В	32	228	2.326	1.272	94	1.278		
в	20	20	2.316	1.276	95	1.282		
в	20	29	2.341	1.282	92	1.287		
Α	6	65	2.315	1.280	91	1.285		
С	50	299	2.317	1.272	93	1.277		
в	31	221	2.334	1.272	92	1.277		
в	29	185	2.332	1.280	92	1.285		
Α	8	90	2.338	1.282	89	1.286		
Α	10	102	2.340	1.282	92	1.287		
в	22	40	2.336	1.280	92	1.285		
A	18	174	2.311	1.272	95	1.278		
в	29	172	2.326	1.282	90	1.286		
в	19	17	2.341	1.280	91	1.285		
в	22	41	2.332	1.282	91	1.287		
в	19	15	2.325	1.282	93	1.287		

	MEASUREMENTS BEFORE DISCHARGE									
STRING	MODULE	CELL NO.	FVLTB	SGBR	TEMP	SGBC				
B	19	18	2.339	1.284	91	1.289				
В	29	195	2.318	1.276	94	1.282				
В	31	212	2.349	1.278	89	1.282				
В	20	24	2.345	1.280	91	1.285				
č	48	278	2.311	1.276	95	1.282				
č	40 54	316	2.323	1.280	93	1.285				
A	18	177	2.333	1.280	90	1.284				
c	54	319	2.340	1.280	89	1.284				
Ă	9	93	2.342	1.276	91	1.281				
c	50	298	2.322	1.278	92	1.283				
Ā	6	71	2.309	1.276	92	1.281				
A	10	97	2.325	1.280	94	1.286				
A	6	64	2.330	1.284	89	1.288				
В	29	196	2.319	1.270	94	1.276				
в	32	238	2.344	1.282	89	1.286				
В	31	219	2.326	1.278	94	1.284				
в	27	141	2.333	1.286	94	1.292				
в	31	223	2.340	1.280	89	1.284				
Α	1	12	2.315	1.278	92	1.283				
в	26	135	2.347	1.286	90	1.290				
в	32	226	2.327	1.282	94	1.288				
в	25	130	2.328	1.284	92	1.289				
в	31	222	2.330	1.280	92	1.285				
А	1	2	2.322	1.280	91	1.285				
В	26	136	2.357	1.282	90	1.286				
В	24	84	2.327	1.282	92	1.287				
С	49	286	2.309	1.272	93	1.277				
С	44	250	2.324	1.278	92	1.287				
В	19	16	2.316	1.282	95	1.288				
С	49	294	2.344	1.284	90	1.288				
Α	10	101	2.332	1.288	91	1.293				
С	42	233	2.339	1.274	89	1.290				
в	32	237	2.334	1.286	92	1.291				
в	25	132	2.316	1.280	94	1.286				
A	8	85	2.349	1.282	89	1.286				
Α	8	78	2.315	1.276	92	1.281				
С	42	231	2.321	1.272	92	1.281				
A	10	99	2.310	1.276	95	1.282				
С	43	244	2.340	1.286	89	1.288				
B	33	241	2.350	1.284	89	1.288				
A	8	87	2.313	1.280	92	1.285				
B	32	224	2.348	1.280	89	1.284				
A	6	70	2.311	1.280	92	1.285				
В	27	143	2.324	1.282	94	1.288				
A	1	9	2.314	1.286	92	1.291				
B	31	217	2.326	1.280	94	1.286				
B	24	83	2.341	1.284	91	1.289				
В	27	145	2.332	1.286	92	1.291				
В	27	147	2.349	1.286	90	1.290				
A	1	13	2.327	1.280	90	1.284				
С	43	248	2.329	1.280	92	1.291				

				ASUREMENT		
STRING	MODULE	CELL NO.	FVLTB	SGBR	TEMP	SGBC
в	25	131	2.329	1.286	92	1.291
в	19	14	2.325	1.282	93	1.287
С	43	247	2.317	1.280	92	1.291
В	26	138	2.329	1.286	94	1.292
в	26	140	2.347	1.286	92	1.291
С	51	307	2.310	1.276	96	1.282
в	24	106	2.333	1.282	92	1.287
В	27	142	2.336	1.290	92	1.295
в	25	129	2.345	1.280	90	1.284
С	42	232	2.335	1.272	89	1.292
В	25	133	2.348	1.288	90	1.292
в	24	86	2.342	1.288	91	1.293
C	46	266	2.340	1.280	90	1.286
С	44	253	2.333	1.282	89	1.280
С	46	263	2.310	1.276	95	1.282
С	42	234	2.314	1.278	92	1.287
B	33	242	2.344	1.282	89	1.294
В	26	137	2.328	1.290	94	1.296
В	26	139	2.338	1.290	92	1.295
в	25	128	2.320	1.284	94	1.290
С	42	235	2.307	1.274	94	1.292
в	27	146	2.345	1.286	90	1.290
С	46	267	2.343	1.284	90	1.288
С	43	236	2.331	1.280	89	1.286

VOLTAGE MEASUREMENTS

DURING DISCHARGE

			10:00	11:00	12:00	12:30	12:37	12:41	13:00	13:05	13:10
STRING	MODULE	CELL NO.	10:00	11:00	12:00	12:30	12:34	12:41	13:00	13:07	13:10
Α	11	109	1.963	1.920	1.867	1.833	1.823	1.817	1.789	1.779	1.771
В	20	22	1.956	1.914	1.861	1.829	1.820	1.813	1.788	1.777	1.770
Α	11	105	1.962	1.917	1.860	1.831	1.823	1.817	1.787	1.779	1.773
8	20	21	1.955	1.909	1.858	1.827	1.818	1.813	1.787	1.777	1.769
в	22	60	1.948	1.907	1.856	1.826	1.818	1.810	1.787	1.777	1.770
В	20	28	1.950	1.908	1.855	1.823	1.815	1.809	1.783	1.773	1.766
в	29	197	1.947	1.906	1.852	1.817	1.811	1.803	1.779	1.768	1.760
Α	1	25	1.961	1.919	1.867	1.835	1.827	1.820	1.792	1.782	1.772
B	22	59	1.956	1.908	1.863	1.829	1.822	1.818	1.790	1.781	1.774
8	22	63	1.952	1.911	1.859	1.829	1.820	1.813	1.788	1.778	1.771
С	44	249	1.952	1.908	1.858	1.828	1.820	1.813	1.789	1.779	1.77 1
В	29	192	1.951	1.908	1.857	1.825	1.817	1.809	1.785	1.773	1.765
Α	1	23	1.958	1.921	1.867	1.835	1.826	1.820	1.793	1.782	1.774
В	32	225	1.951	1.909	1.859	1.823	1.817	1.809	1.786	1.778	1.769
В	22	62	1.957	1.916	1.864	1.832	1.823	1.818	1.791	1.781	1.776
В	30	199	1.952	1.906	1.854	1.824	1.816	1.809	1.785	1.775	1.767
A	9	91	1.959	1.916	1.863	1.832	1.824	1.818	1.793	1.783	1.776
В	32	228	1.958	1.915	1.865	1.831	1.824	1.817	1.793	1.783	1.776
В	20	20	1.956	1.914	1.864	1.833	1.825	1.819	1.795	1.785	1.779
В	20	29	1.965	1.923	1.872	1.841	1.830	1.826	1.798	1.788	1.782
A	6	65	1.957	1.914	1.863	1.831	1.824	1.816	1.790	1.781	1.776
c	50	299	1.955	1.915	1.865	1.82 9	1.822	1.819	1.795	1.784	1.777
В	31	221	1.951	1.908	1.860	1.830	1.822	1.815	1.792	1.781	1.773
B	29	185	1.956	1.910	1.861	1.830	1.822	1.815	1.791	1.781	1.773
A	8	90	1.960	1.917	1.867	1.835	1.827	1.821	1.795	1.785	1.777
A	10	102	1.962	1.921	1.870	1.838	1.830	1.827	1.799	1.790	1.782
В	22	40	1.966	1.925	1.874	1.845	1.836	1.830	1.805	1.794	1.788
A B	18	174	1.962	1.920	1.870	1.840	1.832	1.829	1.804	1.794	1.789
B	29 10	172	1.960	1.915	1.869	1.835	1.828	1.820	1.796	1.786	1.778
B	19 22	17	1.969	1.926	1.875	1.844	1.835	1.830	1.804	1.794	1.788
B	19	41	1.965	1.923	1.873	1.842	1.833	1.827	1.801	1.792	1.785
B	19	15	1.960	1.918	1.867	1.837	1.831	1.833	1.801	1.789	1.783
B	29	18 195	1.965	1.923	1.874	1.843	1.834	1.829	1.803	1.793	1.787
B	31		1.957	1.915	1.864	1.833	1.826	1.818	1.795	1.787	1.779
B	20	212 24	1.952 1.965	1.918	1.864	1.836	1.829	1.822	1.796	1.787	1.778
c	48	24 278		1.926	1.877	1.846	1.838	1.832	1.807	1.798	1.791
c	40 54	316	1.959 1.957	1.919 1.915	1.868 1.867	1.836 1.838	1.829 1.831	1.824	1.802	1.790	1.785
Ă	18	177	1.967	1.915	1.878			1.825	1.802	1.791	1.786
ĉ	54	319	1.962	1.922	1.872	1.848 1.841	1.840 1.834	1.833 1.828	1.808	1.798	1.791
Ă	9	93	1.967	1.922	1.875	1.840	1.836	1.830	1.802 1.805	1.792	1.786
ĉ	50	298	1.957	1.916	1.866	1.837	1.830	1.825		1.794	1.789
Ă	6	71	1.961	1.920	1.869	1.840	1.834	1.829	1.800 1.804	1.790 1.792	1.786 1.786
A	10	97	1.964	1.920	1.872	1.839	1.834	1.827	1.803		1.787
A	6	64	1.963	1.923	1.872	1.842	1.835	1.830	1.803	1.793 1.796	1.787
В	29	196	1.956	1.914	1.864	1.835	1.828	1.822	1.799	1.788	1.783
В	32	238	1.959	1.919	1.872	1.844	1.837	1.830	1.806	1.795	1.783
В	31	219	1.958	1.917	1.869	1.841	1.833	1.827	1.804	1.795	1.789
-		2.0				1.041	1.505	1.067	1.004	1.799	1.703

VOLTAGE MEASUREMENTS DURING DISCHARGE

	DURING DISCHARGE										
			10:00	11:00	12:00	12:30	12:37	12:41	13:00	13:05	13:10
STRING	MODULE	CELL NO.	10:00	11:00	12:00	12:30	12:34	12:41	13:00	13:07	13:10
в	27	141	1.957	1.914	1.867	1.834	1.827	1.821	1.795	1.789	1.784
В	31	223	1.963	1.922	1.875	1.841	1.835	1.828	1.804	1.795	1.786
Α	1	12	1.962	1.919	1.873	1.843	1.835	1.829	1.805	1.797	1.791
в	26	135	1.963	1.921	1.871	1.840	1.832	1.827	1.801	1.783	1.787
в	32	226	1.960	1.919	1.870	1.842	1.835	1.828	1.806	1.797	1.789
в	25	130	1.962	1.918	1.867	1.837	1.830	1.825	1.800	1.791	1.785
в	31	222	1.961	1.919	1.872	1.839	1.832	1.825	1.802	1.792	1.785
A	1	2	1.966	1.926	1.875	1.844	1.837	1.831	1.807	1.798	1.791
В	26	136	1.964	1.922	1.872	1.842	1.833	1.828	1.800	1.794	1.787
B	24	84	1.960	1.917	1.867	1.838	1.829	1.824	1.801	1.792	
c	49	286	1.962	1.923	1.874	1.843	1.836	1.829			1.785
č	44	250	1.952	1.917	1.869				1.807	1.798	1.791
В	19	16	1.971			1.837	1.829	1.823	1.800	1.792	1.786
c	49	294		1.927	1.881	1.850	1.840	1.837	1.810	1.803	1.798
Ă	49 10	101	1.969	1.927	1.878	1.846	1.839	1.831	1.809	1.800	1.793
			1.969	1.928	1.878	1.848	1.840	1.834	1.810	1.801	1.795
C B	42	233	1.966	1.927	1.880	1.848	1.842	1.834	1.812	1.800	1.794
	32	237	1.961	1.920	1.874	1.844	1.834	1.830	1.807	1.799	1.792
B	25	132	1.958	1.916	1.866	1.836	1.829	1.824	1.801	1.789	1.786
A	8	85	1.969	1.927	1.876	1.845	1.839	1.833	1.809	1.800	1.793
A	8	78	1.963	1.922	1.875	1.845	1.836	1.832	1.804	1.800	1.792
C	42	231	1.964	1.922	1.876	1.841	1.832	1.826	1.806	1.796	1.791
A	10	99	1.961	1.920	1.870	1.844	1.834	1.829	1.809	1.799	1.795
С	43	244	1.969	1.927	1.879	1.846	1.837	1.831	1.808	1.799	1.792
В	33	241	1.968	1.928	1.881	1.852	1.844	1.837	1.814	1.804	1.797
A	8	87	1.962	1.922	1.873	1.843	1.836	1.830	1.807	1.798	1.791
B	32	224	1.966	1.925	1.878	1.845	1.838	1.832	1.809	1.799	1.792
Α	6	70	1.964	1.921	1.875	1.845	1.836	1.833	1.810	1.803	1.794
в	27	143	1.961	1.921	1.867	1.841	1.835	1.829	1.806	1.799	1.792
А	1	9	1.966	1.926	1.877	1.847	1.839	1.833	1.810	1.799	1.795
в	31	217	1.960	1.919	1.872	1.840	1.834	1.828	1.806	1.797	1.789
В	24	83	1.968	1.930	1.881	1.851	1.843	1.838	1.814	1.804	1.798
в	27	145	1.960	1.918	1.867	1.839	1.828	1.825	1.802	1.791	1.787
B	27	147	1.967	1.925	1.874	1.844	1.836	1.831	1.806	1.799	1.791
Α	1	13	1.967	1.926	1.877	1.849	1.842	1.834	1.812	1.803	1.796
С	43	248	1.965	1.923	1.875	1.843	1.837	1.831	1.809	1.799	1.793
в	25	131	1.964	1.922	1.873	1.843	1.835	1.828	1.807	1.799	1.792
В	19	14	1.968	1.928	1.877	1.849	1.842	1.835	1.813	1.805	1.798
С	43	247	1.960	1.919	1.871	1.843	1.835	1.829	1.807	1.799	1.792
в	26	138	1.963	1.923	1.874	1.845	1.838	1.832	1.809	1.800	1.795
в	26	140	1.964	1.922	1.873	1.844	1.836	1.830	1.808	1.799	1.793
С	51	307	1.965	1.927	1.881	1.850	1.844	1.839	1.800	1.808	1.802
В	24	106	1.966	1.924	1.874	1.846	1.838	1.830	1.810	1.803	
В	27	142	1.966	1.924							1.796
B	25	129	1.967	1.925	1.876 1.875	1.848	1.838	1.835	1.810	1.800	1.797
č	42	232	1.964	1.925		1.845	1.837	1.932	1.808	1.797	1.793
В	42 25	133			1.879	1.851	1.841	1.834	1.811	1.805	1.796
В	23 24	86	1.966	1.925	1.876	1.847	1.838	1.833	1.809	1.801	1.796
C	24 46		1.972	1.930	1.882	1.852	1.845	1.839	1.814	1.807	1.800
c		266	1.963	1.923	1.875	1.847	1.841	1.834	1.811	1.803	1.796
c	44	253	1.969	1.929	1.882	1.849	1.843	1.836	1.815	1.802	1.795
U	46	263	1.965	1.926	1.879	1.849	1.841	1.836	1.816	1.806	1.800

			VOLTAGE MEASUREMENTS DURING DISCHARGE									
			10:00	11:00	12:00	12:30	12:37	12:41	13:00	13:05	13:10	
STRING	MODULE	CELL NO.	10:00	11:00	12:00	12:30	12:34	12:41	13:00	13:07	13:10	
С	42	234	1.961	1.919	1.875	1.846	1.843	1.837	1.816	1.804	1.801	
в	33	242	1.972	1.932	1.885	1.854	1.845	1.839	1.815	1.808	1.798	
В	26	137	1.966	1.924	1.876	1.848	1.840	1.835	1.811	1.804	1.798	
в	26	139	1.966	1.924	1.875	1.846	1.838	1.833	1.810	1.802	1.796	
В	25	128	1.964	1.921	1.872	1.843	1.835	1.831	1.808	1.800	1.793	
С	42	235	1.964	1.925	1.880	1.849	1.847	1.839	1.818	1.809	1.801	
В	27	146	1.970	1.929	1.880	1.850	1.842	1.838	1.814	1.804	1.789	
С	46	267	1.972	1.931	1.883	1.851	1.845	1.839	1.817	1.807	1.799	
С	43	236	1. 96 7	1.930	1.884	1.856	1.849	1.842	1.820	1.811	1.804	
С	44	251	1.965	1.925	1.878	1.847	1.841	1.835	1.814	1.805	1.796	
В	33	243	1.970	1.930	1.883	1.852	1.846	1.840	1.817	1.809	1.803	
С	44	254	1.968	1.92 9	1.882	1.853	1.846	1.840	1.818	1.809	1.802	
С	43	245	1.969	1.929	1.883	1.852	1.845	1.838	1.818	1.811	1.803	
С	42	230	1.964	1.925	1.879	1.852	1.848	1.842	1.819	1.810	1.806	
в	33	265	1.965	1.925	1.880	1.849	1.842	1.836	1.815	1.807	1.800	
С	46	262	1.968	1.930	1.885	1.853	1.847	1.840	1.819	1.813	1.807	
С	44	252	1.967	1.928	1.881	1.853	1.847	1.841	1.820	1.812	1.805	
в	33	239	1.973	1.934	1.890	1.863	1.855	1.850	1.828	1.821	1.813	
С	47	276	1.976	1.936	1.890	1.860	1.852	1.846	1.825	1.818	1.811	
С	47	273	1.972	1.932	1.886	1.861	1.851	1.846	1.825	1.817	1.809	
С	43	246	1.972	1.931	1.886	1.857	1.850	1.845	1.825	1.816	1.810	
С	50	297	1.970	1.931	1.883	1.854	1.848	1.840	1.819	1.812	1.807	
С	51	303	1.981	1.941	1.896	1.869	1.862	1.857	1.837	1.829	1.823	

VOLTAGE MEASUREMENTS

DURING DISCHARGE

			13:15	13:19	13:24	13:30	13:36	13:51	TIMETO
STRING	MODULE	CELL NO.	13:16	13:20	13:26	13:30	13:35	13:51	CUTOFF
A	11	109	1.763	1.753	1.743	1.725	1.710	1.635	04:39
В	20	22	1.762	1.753	1.743	1.728	1.715	1.654	04:40
A	11	105	1.762	1.756	1.744	1.728	1.716	1.655	04:40
В	20	21	1.762	1.754	1.744	1.730	1.719	1.666	04:43
В	22	60	1.764	1.753	1.744	1.730	1.720	1.665	04:43
В	20	28	1.759	1.750	1.741	1.727	1.716	1.664	04:42
В	29	197	1.751	1.742	1.730	1.722	1.714	1.657	04:41
A	1	25	1.766	1.758	1.748	1.732	1.718	1.653	04:40
В	22	59	1.767	1.761	1.752	1.738	1.722	1.676	04:45
В	22	63	1.764	1.757	1.744	1.732	1.720	1.666	04:43
С	44	249	1.762	1.754	1.742	1.733	1.723	1.669	04:42
В	29	192	1.756	1.746	1.734	1.724	1.713	1. 6 49	04:41
A	1	23	1.767	1.758	1.749	1.732	1.719	1.655	04:40
В	32	225	1.760	1.752	1.742	1.732	1.721	1.670	04:43
В	22	62	1.768	1.759	1.748	1.735	1.724	1.669	04:44
в	30	199	1.758	1.750	1.739	1.730	1.720	1.670	04:44
Α	9	91	1.770	1.761	1.753	1.739	1.729	1.684	04:45
В	32	228	1.768	1.759	1.748	1.740	1.731	1.683	04:47
B	20	20	1.772	1.764	1.755	1.743	1.732	1.685	04:48
В	20	29	1.774	1.763	1.755	1.741	1.728	1.674	04:45
Α	6	65	1.770	1.761	1.751	1.739	1.729	1.682	04:45
С	50	299	1.768	1.763	1.751	1.743	1.735	1.689	04:47
в	31	221	1.766	1.756	1.747	1.736	1.728	1.676	04:46
в	29	185	1.764	1.756	1.745	1.737	1.726	1.678	04:46
A	8	90	1.771	1.763	1.754	1.740	1.729	1.679	04:44
A	10	102	1.775	1.768	1.759	1.746	1.735	1.689	04:48
B	22	40	1.781	1.773	1.763	1.749	1.737	1.684	04:48
А	18	174	1.780	1.774	1.765	1.752	1.740	1.698	04:51
В	29	172	1.769	1.761	1.750	1.741	1.727	1.676	04:47
В	19	17	1.780	1.770	1.764	1.749	1.738	1.688	04:48
В	22	41	1.778	1.769	1.760	1.746	1.735	1.685	04:48
В	19	15	1.776	1.769	1.760	1.747	1.738	1.695	04:50
в	19	18	1. 78 0	1.771	1.761	1.749	1.738	1.690	04:48
8	29	195	1.770	1.763	1.754	1.746	1.738	1.694	04:51
В	31	212	1.769	1.762	1.750	1.742	1.731	1.680	04:47
В	20	24	1.784	1.776	1.767	1.754	1.742	1.692	04:49
С	48	278	1.776	1.771	1.761	1.750	1.741	1.705	04:53
С	54	316	1.777	1.770	1.761	1.752	1.743	1.702	04:51
A	18	177	1.785	1.776	1.768	1.753	1.742	1.691	04:49
С	54	319	1.776	1.769	1.758	1.749	1.740	1.693	04:48
Α	9	93	1.781	1.774	1.766	1.752	1.742	1.698	04:50
С	50	298	1.778	1.768	1.761	1.750	1.742	1.702	04:51
Α	6	71	1.783	1.773	1.765	1.755	1.742	1.703	04:52
Α	10	97	1.783	1.775	1.768	1.756	1.746	1.706	04:54
Α	6	64	1.783	1.775	1.766	1.753	1.743	1.697	04:50
В	29	196	1.776	1.766	1.758	1.751	1.742	1.702	04:54
В	32	238	1.780	1.770	1.761	1.750	1.740	1.690	04:50
в	31	219	1.781	1.773	1.763	1.755	1.745	1.703	04:55

	VOLTAGE MEASUREMENTS									
					DURIN	IG DISCH	ARGE			
			13:15	13:19	13:24	13:30	13:36	13:51	TIME TO	
STRING	MODULE	CELL NO.	13:16	13:20	13:26	13:30	13:35	13:51	CUTOFF	
В	27	141	1.775	1.769	1.762	1.749	1.740	1.703	04:55	
В	31	223	1.779	1.769	1.759	1.749	1.742	1.690	04:50	
A	1	12	1.784	1.777	1.769	1.757	1.748	1.707	04:53	
B	26	135	1.779	1.771	1.761	1.749	1.740	1.694	04:52	
B	32	226	1.782	1.775	1.765	1.757	1.748	1.707	04:55	
В	25	130	1.778	1.771	1.763	1.751	1.741	1.700	04:54	
В	31	222	1.779	1.771	1.760	1.753	1.743	1.700	04:54	
A	1	2	1.785	1.777	1.769	1.755	1.747	1.706	04:53	
В	26	136	1.780	1.772	1.763	1.750	1.741	1.695	04:52	
B	24	84	1.779	1.772	1.764	1.752	1.743	1.703	04:54	
C	49	286	1.783	1.775	1.767	1.759	1.751	1.711	04:55	
C	44	250	1.777	1.770	1.760	1.752	1.744	1.706	04:54	
B	19	16	1.791	1.784	1.775	1.763	1.754	1.715	04:57	
c	49	294	1.784	1.777	1.767	1.759	1.751	1.707	04:53	
A	10	101	1.788	1.780	1.777	1.759	1.748	1.707	04:54	
C	42	233	1.786	1.778	1.768	1.758	1.749	1.703	04:53	
В	32	237	1.783	1.776	1.764	1.758	1.750	1.705	04:55	
В	25	132	1.780	1.773	1.760	1.753	1.744	1.709	04:57	
A	8	85	1.787	1.780	1.770	1.759	1.749	1.708	04:53	
A	8	78	1.786	1.781	1.773	1.761	1.752	1.714	04:56	
C	42	231	1.782	1.776	1.765	1.759	1.749	1.709	04:56	
A	10	99	1.787	1.780	1.772	1.761	1.752	1.717	04:59	
C	43	244	1.784	1.776	1.765	1.758	1.750	1.706	04:54	
B	33	241	1.788	1.780	1.770	1.760	1.751	1.704	04:54	
A	8	87	1.786	1.779	1.771	1.760	1.751	1.715	04:57	
В	32	224	1.784	1.775	1.765	1.758	1.748	1.705	04:54	
A	6	70	1.787	1.780	1.776	1.761	1.753	1.716	04:57	
В	27	143	1.786	1.778	1.772	1.759	1.750	1.713	04:59	
A	1	9	1.789	1.781	1.773	1.763	1.754	1.717	04:57	
B	31	217	1.782	1.776	1.766	1.759	1.749	1.713	04:59	
В	24	83	1.793	1.785	1.776	1.764	1.754	1.712	04:57	
В	27	145	1.782	1.775	1.766	1.755	1.746	1.710	04:58	
B	27	147	1.784	1.776	1.769	1.756	1.746	1.704	04:56	
A C	1	13	1.791	1.783	1.776	1.764	1.755	1.715	04:56	
	43	248	1.783	1.777	1.768	1.760	1.752	1.715	04:58	
B B	25 19	131	1.787	1.779	1.772	1.759	1.751	1.714	04:58	
C		14	1.792	1.785	1.777	1.766	1.756	1.719	04:59	
В	43	247	1.784	1.778	1.769	1.761	1.753	1.716	04:58	
B	26	138	1.790	1.782	1.774	1.763	1.755	1.718	05:01	
C	26	140	1.787	1.780	1.772	1.761	1.752	1.714	04:59	
В	51 24	307 106	1.794	1.787	1.779	1.771	1.764	1.728	05:03	
В			1.777	1.783	1.775	1.764	1.758	1.719	05:00	
B	27 25	142 129	1.788	1.784	1.774	1.762	1.756	1.717	05:00	
C	25 42	232	1.787	1.779	1.772	1.760	1.749	1.712	04:58	
В	42 25	133	1.791 1.778	1.783	1.773	1.762	1.753	1.714	04:58	
В	25 24	86		1.782	1.774	1.763	1.755	1.717	04:59	
c	24 46	266	1.795 1.789	1.788	1.779	1.768	1.759	1.720	05:00	
c	40 44	255		1.782	1.773	1.765	1.757	1.719	05:00	
c	44 46	253	1.790 1.793	1.782 1.786	1.771	1.764	1.755	1.717	04:59	
Ŭ	40	203	1.793	1.700	1.778	1.770	1.765	1.730	05:04	

			VOLTAGE MEASUREMENTS DURING DISCHARGE									
			13:15	13:19	13:24	13:30	13:36	13:51	TIME TO			
STRING	MODULE	CELL NO.	13:16	13:20	13:26	13:30	13:35	13:51	CUTOFF			
С	42	234	1.791	1.784	1.775	1.770	1.762	1.723	05:02			
В	33	242	1.791	1.784	1.775	1.767	1.757	1.717	04:59			
в	26	137	1.792	1.785	1.778	1.767	1.759	1.724	05:04			
в	26	139	1.790	1.783	1.775	1.764	1.755	1.720	05:02			
в	25	128	1.789	1.782	1.775	1.764	1.756	1.723	05:04			
С	42	235	1.794	1. 78 7	1.779	1.770	1.762	1.726	05:04			
в	27	146	1.792	1.784	1.777	1.766	1.756	1.719	05:01			
С	46	267	1.794	1.786	1.778	1.770	1.761	1.725	05:02			
С	43	236	1.797	1.789	1.780	1.772	1.764	1.724	05:01			
С	44	251	1.793	1.786	1.778	1.770	1.761	1.729	05:06			
В	33	243	1.795	1.788	1.778	1.771	1.765	1.728	05:05			
С	44	254	1.795	1.787	1.778	1.770	1.762	1.725	05:02			
С	43	245	1.7 9 5	1.789	1.780	1.774	1.767	1.734	05:08			
С	42	230	1.797	1.790	1.782	1.775	1.768	1.734	05:09			
в	33	265	1.794	1.786	1.779	1.772	1.764	1.732	05:09			
С	46	262	1.799	1.792	1.783	1.777	1.771	1.737	05:08			
С	44	252	1.799	1.790	1.783	1.776	1.769	1.736	05:09			
в	33	239	1.806	1.799	1.790	1.784	1.776	1.739	05:09			
С	47	276	1.803	1.798	1.787	1.783	1.776	1.742	05:10			
С	47	273	1.801	1.795	1.786	1.780	1.771	1.738	05:09			
С	43	246	1.802	1.797	1.787	1.782	1.775	1.744	05:14			
С	50	297	1.800	1.792	1.782	1.775	1.766	1.741	05:17			
С	51	303	1.815	1.810	1.803	1.796	1.790	1.760	05:23			

END OF DISCHARGE

						END OF DISCHARGE				
					OPEN CIRCUIT					
				Ah	%CAP.	1	NTERPOLA		P	
STRING	MODULE	CELL NO.	Ah	CORR	CORR	VOLT	SGAR	TEMP	SGAC	
Α	11	109	2093	1997	96.0	1.932	1.120	95	1.126	
в	20	22	2105	2004	96.3	1.935	1.125	102	1.133	
Ā	11	105	2107	2005	96.4	1.940	1.120	103	1.129	
В	20	21	2125	2011	96.7	1.938	1.125	105	1.125	
В	22	60	2126	2011	96.7	1.932	1.115	106	1.125	
B	20	28	2120	2017	97.0	1.938	1.125	102	1.123	
B	29	197	2115	2018	97.0	1.933	1.120	102	1.129	
Ā	1	25	2101	2023	97.3	1.933	1.140	100	1.129	
В	22	59	2139	2024	97.3	1.941	1.135	106	1.148	
В	22	63	2127	2024	97.3	1.933	1.120	102	1.145	
ċ	44	249	2121	2025	97.3	1.932	1.120	102	1.128	
B	29	192	2109	2025	97.4	1.931	1.125	101		
Ā	1	23	2103	2025	97.4	1.927	1.125	102	1.133	
В	32	225	2127	2020	97.6	1.938			1.138	
B	22	62	2134	2030	97.7		1.120	101	1.128	
8	30	199	2134	2031	97.9	1.938	1.135	102	1.143	
Ā	9	91	2133	2038		1.940	1.130	107	1.140	
В	32	228	2143	2039	98.0	1.945	1.130	107	1.140	
В	20	220			98.3	1.943	1.125	104	1.134	
В	20	20 29	2162	2045	98.3	1.940	1.135	106	1.145	
A	6	25 65	2143	2046	98.4	1.936	1.135	95	1.141	
ĉ	50		2139	2048	98.5	1.943	1.135	102	1.143	
В		299	2154	2050	98.6	1.940	1.120	102	1.128	
	31	221	2150	2052	98.7	1.933	1.120	101	1.128	
B	29	185	2150	2052	98.7	1.940	1.130	105	1.139	
A	8	90	2135	2056	98.9	1.942	1.135	101	1.143	
A	10	102	2163	2065	99.3	1.941	1.130	95	1.136	
B	22	40	2164	2065	99.3	1.936	1.130	95	1.136	
A	18	174	2185	2067	99.4	1.943	1.130	105	1.139	
В	29	172	2156	2070	99.5	1.937	1.120	102	1.128	
B	19	17	2163	2071	99.6	1.940	1.135	95	1.141	
В	22	41	2164	2072	99.6	1.941	1.120	95	1.126	
В	19	15	2177	2072	99.6	1.946	1.135	102	1.143	
В	19	18	2167	2074	9 9.7	1.941	1.135	95	1.141	
В	29	195	2189	2077	9 9.9	1.946	1.120	108	1.130	
В	31	212	2158	2078	99.9	1.935	1.120	99	1.127	
B	20	24	2172	2079	100.0	1.939	1.135	95	1.141	
C	48	278	2199	2081	100.0	1.940	1.120	107	1.130	
C	54	316	2188	2083	100.1	1.940	1.115	106	1.125	
A	18	177	2170	2084	100.2	1.941	1.135	101	1.143	
C	54	319	2165	2085	100.2	1.932	1.115	106	1.125	
A	9	93	2177	2085	100.2	1.944	1.135	95	1.141	
С	50	298	2189	2089	100.4	1.939	1.120	102	1.128	
Α	6	71	2191	2092	100.6	1.947	1.135	104	1.144	
Α	10	97	2207	2094	100.7	1.946	1.135	103	1.144	
Α	6	64	2175	2095	100.7	1.942	1.135	100	1.143	
В	29	196	2211	2098	100.9	1.946	1.120	108	1.130	
в	32	238	2181	2100	101.0	1.932	1.120	99	1.127	
в	31	219	2214	2101	101.0	1.942	1.120	104	1.129	

~~~~

|        |          |          |      |      |       | END OF DISCHARGE<br>OPEN CIRCUIT |          |            |       |  |
|--------|----------|----------|------|------|-------|----------------------------------|----------|------------|-------|--|
|        |          |          |      | Ah   | %CAP. | 6                                | NTERPOLA |            | P     |  |
| STRING | MODULE   | CELL NO. | Ah   | CORR | CORR  | VOLT                             | SGAR     | TEMP       | SGAC  |  |
| В      | 27       | 141      | 2214 | 2101 | 101.0 | 1.953                            | 1.130    | 106        | 1.140 |  |
| В      | 31       | 223      | 2182 | 2101 | 101.0 | 1.933                            | 1.120    | 99         | 1.127 |  |
| Α      | 1        | 12       | 2202 | 2102 | 101.0 | 1.946                            | 1.130    | 104        | 1.139 |  |
| В      | 26       | 135      | 2190 | 2103 | 101.1 | 1.941                            | 1.125    | 95         | 1.131 |  |
| В      | 32       | 226      | 2218 | 2105 | 101.2 | 1.942                            | 1.125    | 104        | 1.134 |  |
| В      | 25       | 130      | 2205 | 2105 | 101.2 | 1.948                            | 1.125    | 102        | 1.133 |  |
| В      | 31       | 222      | 2205 | 2105 | 101.2 | 1.942                            | 1.125    | 101        | 1.133 |  |
| Α      | 1        | 2        | 2199 | 2105 | 101.2 | 1.945                            | 1.135    | 101        | 1.143 |  |
| В      | 26       | 136      | 2193 | 2105 | 101.2 | 1.943                            | 1.135    | 95         | 1.141 |  |
| в      | 24       | 84       | 2206 | 2106 | 101.2 | 1.952                            | 1.130    | 102        | 1.138 |  |
| С      | 49       | 286      | 2216 | 2109 | 101.4 | 1.944                            | 1.120    | 105        | 1.129 |  |
| С      | 44       | 250      | 2209 | 2109 | 101.4 | 1.945                            | 1.125    | 101        | 1.133 |  |
| в      | 19       | 16       | 2233 | 2113 | 101.6 | 1.952                            | 1.135    | 106        | 1.145 |  |
| С      | 49       | 294      | 2202 | 2114 | 101.6 | 1.943                            | 1.125    | 99         | 1.132 |  |
| Α      | 10       | 101      | 2209 | 2115 | 101.7 | 1.946                            | 1.135    | 95         | 1.141 |  |
| С      | 42       | 233      | 2198 | 2117 | 101.8 | 1.940                            | 1.125    | <b>9</b> 9 | 1.132 |  |
| в      | 32       | 237      | 2218 | 2118 | 101.8 | 1.941                            | 1.120    | 101        | 1.128 |  |
| B      | 25       | 132      | 2234 | 2120 | 101.9 | 1.951                            | 1.130    | 106        | 1.140 |  |
| Α      | 8        | 85       | 2205 | 2123 | 102.1 | 1.949                            | 1.140    | 101        | 1.148 |  |
| Α      | 8        | 78       | 2224 | 2123 | 102.1 | 1.946                            | 1.130    | 106        | 1.140 |  |
| С      | 42       | 231      | 2225 | 2123 | 102.1 | 1.944                            | 1.120    | 101        | 1.128 |  |
| Α      | 10       | 99       | 2245 | 2124 | 102.1 | 1.950                            | 1.130    | 107        | 1.140 |  |
| С      | 43       | 244      | 2206 | 2125 | 102.2 | 1.945                            | 1.125    | 99         | 1.132 |  |
| В      | 33       | 241      | 2208 | 2126 | 102.2 | 1.939                            | 1.135    | 99         | 1.142 |  |
| Α      | 8        | 87       | 2229 | 2128 | 102.3 | 1.951                            | 1.120    | 106        | 1.130 |  |
| В      | 32       | 224      | 2212 | 2130 | 102.4 | 1.941                            | 1.125    | 99         | 1.132 |  |
| Α      | 6        | 70       | 2231 | 2130 | 102.4 | 1.949                            | 1.130    | 104        | 1.139 |  |
| в      | 27       | 143      | 2245 | 2130 | 102.4 | 1.950                            | 1.130    | 106        | 1.140 |  |
| A      | 1        | 9        | 2234 | 2133 | 102.5 | 1.954                            | 1.135    | 104        | 1.144 |  |
| в      | 31       | 217      | 2248 | 2134 | 102.6 | 1.947                            | 1.125    | 104        | 1.134 |  |
| В      | 24       | 83       | 2230 | 2135 | 102.6 | 1.906                            | 1.135    | 95         | 1.141 |  |
| В      | 27       | 145      | 2236 | 2135 | 102.6 | 1.954                            | 1.135    | 102        | 1.143 |  |
| В      | 27       | 147      | 2223 | 2135 | 102.6 | 1.945                            | 1.135    | 95         | 1.141 |  |
| A      | 1        | 13       | 2225 | 2136 | 102.7 | 1.947                            | 1.130    | 101        | 1.138 |  |
| С      | 43       | 248      | 2239 | 2137 | 102.7 | 1.951                            | 1.120    | 101        | 1.128 |  |
| В      | 25       | 131      | 2240 | 2138 | 102.8 | 1.953                            | 1.130    | 102        | 1.138 |  |
| В      | 19       | 14       | 2248 | 2139 | 102.9 | 1.949                            | 1.135    | 106        | 1.145 |  |
| c      | 43       | 247      | 2242 | 2140 | 102.9 | 1.945                            | 1.135    | 101        | 1.143 |  |
| В      | 26       | 138      | 2260 | 2144 | 103.1 | 1.953                            | 1.125    | 106        | 1.135 |  |
| B      | 26       | 140      | 2247 | 2144 | 103.1 | 1.956                            | 1.130    | 102        | 1.138 |  |
| C      | 51       | 307      | 2276 | 2147 | 103.2 | 1.942                            | 1.115    | 106        | 1.125 |  |
| B      | 24       | 106      | 2252 | 2150 | 103.4 | 1.951                            | 1.130    | 102        | 1.138 |  |
| В      | 27       | 142      | 2254 | 2152 | 103.4 | 1.955                            | 1.135    | 102        | 1.143 |  |
| B      | 25       | 129      | 2242 | 2152 | 103.5 | 1.951                            | 1.135    | 95         | 1.141 |  |
| C      | 42       | 232      | 2241 | 2158 | 103.7 | 1.940                            | 1.130    | 99         | 1.137 |  |
| B      | 25       | 133      | 2248 | 2158 | 103.8 | 1.956                            | 1.130    | 95         | 1.136 |  |
| В      | 24       | 86       | 2255 | 2159 | 103.8 | 1.951                            | 1.130    | 95         | 1.136 |  |
| c      | 46       | 266      | 2250 | 2160 | 103.9 | 1.943                            | 1.130    | 100        | 1.138 |  |
| с<br>с | 44<br>46 | 253      | 2244 | 2161 | 103.9 | 1.943                            | 1.125    | 99         | 1.132 |  |
| 5      | 40       | 263      | 2285 | 2162 | 104.0 | 1.949                            | 1.120    | 106        | 1.130 |  |
|        |          |          |      |      |       |                                  |          |            |       |  |

......

|        |        |          |      |      |       |                    |          | SCHARGE    | 1     |
|--------|--------|----------|------|------|-------|--------------------|----------|------------|-------|
|        |        |          |      |      |       |                    |          | IRCUIT     |       |
|        |        |          |      | Ah   | %CAP. | 1                  | NTERPOL/ | ATED TEM   | P     |
| STRING | MODULE | CELL NO. | Ah   | CORR | CORR  | VOLT               | SGAR     | TEMP       | SGAC  |
| С      | 42     | 234      | 2268 | 2165 | 104.1 | 1. <del>9</del> 44 | 1.130    | 101        | 1.138 |
| в      | 33     | 242      | 2249 | 2165 | 104.1 | 1.948              | 1.130    | 99         | 1.137 |
| в      | 26     | 137      | 2282 | 2166 | 104.1 | 1.957              | 1.140    | 106        | 1.150 |
| В      | 26     | 139      | 2269 | 2166 | 104.1 | 1.956              | 1.145    | 102        | 1.153 |
| В      | 25     | 128      | 2283 | 2167 | 104.2 | 1.962              | 1.135    | 106        | 1.145 |
| С      | 42     | 235      | 2284 | 2168 | 104.2 | 1.947              | 1.120    | 104        | 1.129 |
| в      | 27     | 146      | 2263 | 2173 | 104.5 | 1.953              | 1.130    | 95         | 1.136 |
| С      | 46     | 267      | 2266 | 2176 | 104.6 | 1.946              | 1.130    | 100        | 1.138 |
| С      | 43     | 236      | 2262 | 2178 | 104.7 | 1.944              | 1.135    | <b>9</b> 9 | 1.142 |
| С      | 44     | 251      | 2299 | 2181 | 104.9 | 1.953              | 1.125    | 104        | 1.134 |
| в      | 33     | 243      | 2288 | 2184 | 105.0 | 1.953              | 1.120    | 101        | 1.128 |
| С      | 44     | 254      | 2271 | 2187 | 105.2 | 1.942              | 1.130    | 99         | 1.137 |
| С      | 43     | 245      | 2314 | 2196 | 105.6 | 1.956              | 1.125    | 104        | 1.134 |
| С      | 42     | 230      | 2318 | 2199 | 105.7 | 1.951              | 1.130    | 104        | 1.139 |
| в      | 33     | 265      | 2318 | 2199 | 105.7 | 1.955              | 1.125    | 104        | 1.134 |
| С      | 46     | 262      | 2313 | 2202 | 105.8 | 1.954              | 1.125    | 102        | 1.133 |
| С      | 44     | 252      | 2321 | 2202 | 105.9 | 1.955              | 1.135    | 104        | 1.144 |
| в      | 33     | 239      | 2324 | 2205 | 106.0 | 1.946              | 1.135    | 104        | 1.144 |
| С      | 47     | 276      | 2331 | 2218 | 106.7 | 1.956              | 1.130    | 102        | 1.138 |
| С      | 47     | 273      | 2321 | 2222 | 106.8 | 1.946              | 1.130    | 100        | 1.138 |
| С      | 43     | 246      | 2360 | 2240 | 107.7 | 1.959              | 1.135    | 104        | 1.144 |
| С      | 50     | 297      | 2379 | 2258 | 108.5 | 1.962              | 1.135    | 106        | 1.145 |
| С      | 51     | 303      | 2423 | 2306 | 110.8 | 1.962              | 1.135    | 102        | 1.143 |

#### MEASUREMENTS AFTER CUTOFF VOLTAGE IS REACHED

|        |        |          | TIME        |                      | TIME           |                       |                |                |                |
|--------|--------|----------|-------------|----------------------|----------------|-----------------------|----------------|----------------|----------------|
| STRING | MODULE | CELL NO. |             |                      |                |                       | 1/01 TO        | TIME           |                |
| A      | 11     | 109      | CORR<br>1.3 | <b>VOLT</b><br>1.710 | (RAW)          | (ADJ)                 | VOLTS          | (RAW)          | (ADJ)          |
| В      | 20     | 22       | 1.3         | 1.715                | 13:36<br>13:36 | 13:37                 | 1.635          | 13:51          | 13:52          |
| Ā      | 11     | 105      | 1.9         | 1.715                | 13:36          | 13:37                 | 1.654          | 13:51          | 13:52          |
| В      | 20     | 21       | 2.1         | 1.719                | 13:36          | 13:37<br>13:38        | 1.655          | 13:51          | 13:52          |
| В      | 22     | 60       | 2.5         | 1.720                | 13:36          | 13:38                 | 1.666<br>1.665 | 13:51          | 13:53          |
| В      | 20     | 28       | 2.5         | 1.725                | 13:36          | 13:38                 |                | 13:51          | 13:53          |
| B      | 29     | 197      | 3.9         | 1.713                | 13:35          | 13:38                 | 1.664<br>1.657 | 13:51<br>13:51 | 13:53          |
| Ā      | 1      | 25       | 0.0         | 1.718                | 13:36          | 13:36                 | 1.653          | 13:51          | 13:54<br>13:51 |
| В      | 22     | 59       | 2.4         | 1.722                | 13:36          | 13:38                 | 1.676          | 13:51          | 13:53          |
| B      | 22     | 63       | 2.5         | 1.720                | 13:36          | 13:38                 | 1.666          | 13:51          | 13:53          |
| č      | 44     | 249      | 1.4         | 1.723                | 13:35          | 13:36                 | 1.669          | 13:51          | 13:53          |
| B      | 29     | 192      | 3.6         | 1.713                | 13:35          | 13:38                 | 1.649          | 13:51          | 13:52          |
| Ā      | 1      | 23       | 0.3         | 1.719                | 13:36          | 13:36                 | 1.655          | 13:51          | 13:54          |
| В      | 32     | 225      | 2.8         | 1.721                | 13:35          | 13:37                 | 1.670          | 13:51          | 13:53          |
| В      | 22     | 62       | 2.3         | 1.724                | 13:35          | 13:38                 | 1.669          | 13:51          | 13:53          |
| В      | 30     | 199      | 3.6         | 1.720                | 13:35          | 13:38                 | 1.670          | 13:51          | 13:53          |
| Ā      | 9      | 91       | 0.9         | 1.729                | 13:36          | 13:36                 | 1.684          | 13:51          | 13:54          |
| В      | 32     | 228      | 2.9         | 1.731                | 13:35          | 13:37                 | 1.683          | 13:51          | 13:53          |
| В      | 20     | 20       | 2.0         | 1.732                | 13:36          | 13:38                 | 1.685          | 13:51          | 13:53          |
| В      | 20     | 29       | 2.2         | 1.728                | 13:36          | 13:38                 | 1.674          | 13:51          | 13:53          |
| Ā      | 6      | 65       | 0.5         | 1.729                | 13:36          | 13:36                 | 1.682          | 13:51          | 13:53<br>13:51 |
| c      | 50     | 299      | 0.3         | 1.735                | 13:35          | 13:35                 | 1.689          | 13:51          | 13:51          |
| В      | 31     | 221      | 3.2         | 1.728                | 13:35          | 13:38                 | 1.676          | 13:51          | 13:54          |
| В      | 29     | 185      | 3.7         | 1.726                | 13:35          | 13:38                 | 1.678          | 13:51          | 13:54          |
| Ā      | 8      | 90       | 0.6         | 1.729                | 13:36          | 13:36                 | 1.679          | 13:51          | 13:54          |
| A      | 10     | 102      | 1.2         | 1.735                | 13:36          | 13:37                 | 1.689          | 13:51          | 13:51          |
| в      | 22     | 40       | 2.6         | 1.737                | 13:36          | 13:38                 | 1.684          | 13:51          | 13:52          |
| Α      | 18     | 174      | 1.5         | 1.740                | 13:36          | 13:37                 | 1.698          | 13:51          | 13:53          |
| В      | 29     | 172      | 4.0         | 1.727                | 13:35          | 13:39                 | 1.676          | 13:51          | 13:52          |
| в      | 19     | 17       | 1.8         | 1.738                | 13:36          | 13:37                 | 1.688          | 13:51          | 13:52          |
| В      | 22     | 41       | 2.3         | 1.735                | 13:36          | 13:38                 | 1.685          | 13:51          | 13:53          |
| в      | 19     | 15       | 1.6         | 1.738                | 13:36          | 13:37                 | 1.695          | 13:51          | 13:52          |
| в      | 19     | 18       | 1.5         | 1.738                | 13:36          | 13:37                 | 1.690          | 13:51          | 13:52          |
| в      | 29     | 195      | 3.9         | 1.738                | 13:35          | 13:38                 | 1.694          | 13:51          | 13:52          |
| в      | 31     | 212      | 3.2         | 1.731                | 13:35          | 13:38                 | 1.680          | 13:51          | 13:54          |
| в      | 20     | 24       | 1.9         | 1.742                | 13:36          | 13:37                 | 1.692          | 13:51          | 13:52          |
| С      | 48     | 278      | 0.6         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | #N/A           |
| С      | 54     | 316      | 0.1         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | #N/A           |
| Α      | 18     | 177      | 1.4         | 1.742                | 13:36          | 13:37                 | 1.691          | 13:51          | 13:52          |
| С      | 54     | 319      | 0.0         | 1.740                | 13:35          | 13:35                 | 1.693          | 13:51          | 13:51          |
| Α      | 9      | 93       | 1.0         | 1.742                | 13:36          | 13:36                 | 1.698          | 13:51          | 13:51          |
| С      | 50     | 298      | 0.4         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | #N/A           |
| Α      | 6      | 71       | 0.6         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | #N/A           |
| A      | 10     | 97       | 1.2         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | #N/A<br>#N/A   |
| A      | 6      | 64       | 0.4         | 1.743                | 13:36          | 13:36                 | 1.697          | 13:51          | 13:51          |
| В      | 29     | 196      | 3.8         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | #N/A           |
| в      | 32     | 238      | 3.1         | 1.740                | 13:35          | 13:38                 | 1.690          | 13:51          | 13:54          |
| в      | 31     | 219      | 3.3         | #N/A                 | #N/A           | #N/A                  | #N/A           | #N/A           | 13.54<br>#N/A  |
| -      |        |          | 0.0         | # 1 <b>3</b> (73     | 11111          | <i>π</i> ( <b>1/Α</b> | TINK           | 711111         | <b>π</b> 1N/A  |

-----

| OTONIO |        |          | TIME |       | TIME  |       |       | TIME  |     |
|--------|--------|----------|------|-------|-------|-------|-------|-------|-----|
| STRING | MODULE | CELL NO. | CORR | VOLT  | (RAW) | (ADJ) | VOLTS | (RAW) | (AC |
| B      | 27     | 141      | 3.8  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #N  |
| В      | 31     | 223      | 3.5  | 1.742 | 13:35 | 13:38 | 1.690 | 13:51 | 13: |
| A      | 1      | 12       | 0.2  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #N  |
| В      | 26     | 135      | 3.3  | 1.740 | 13:36 | 13:39 | 1.694 | 13:51 | 13  |
| В      | 32     | 226      | 2.9  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #N  |
| В      | 25     | 130      | 3.2  | 1.741 | 13:36 | 13:39 | 1.700 | 13:51 | 13  |
| В      | 31     | 222      | 3.4  | 1.743 | 13:35 | 13:38 | 1.700 | 13:51 | 13  |
| A      | 1      | 2        | 0.3  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #N  |
| В      | 26     | 136      | 3.6  | 1.741 | 13:36 | 13:39 | 1.695 | 13:51 | 13  |
| В      | 24     | 84       | 2.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| С      | 49     | 286      | 0.6  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #ľ  |
| c      | 44     | 250      | 1.2  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| В      | 19     | 16       | 1.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| C      | 49     | 294      | 0.5  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| A      | 10     | 101      | 1.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| С      | 42     | 233      | 2.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #[  |
| В      | 32     | 237      | 3.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| В      | 25     | 132      | 3.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| Α      | 8      | 85       | 0.8  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #!  |
| Α      | 8      | 78       | 0.8  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| С      | 42     | 231      | 2.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #!  |
| Α      | 10     | 99       | 1.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 43     | 244      | 1.5  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| В      | 33     | 241      | 2.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| Α      | 8      | 87       | 0.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| В      | 32     | 224      | 2.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| Α      | 6      | 70       | 0.5  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| В      | 27     | 143      | 3.9  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| A      | 1      | 9        | 0.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| В      | 31     | 217      | 3.4  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 24     | 83       | 2.8  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| В      | 27     | 145      | 3.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| в      | 27     | 147      | 4.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| A      | 1      | 13       | 0.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 43     | 248      | 1.6  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 25     | 131      | 3.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 19     | 14       | 1.7  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 43     | 247      | 1.8  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| В      | 26     | 138      | 3.4  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 26     | 140      | 3.4  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #1  |
| С      | 51     | 307      | 0.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 24     | 106      | 2.8  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| В      | 27     | 142      | 3.9  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| В      | 25     | 129      | 3.2  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 42     | 232      | 2.3  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 25     | 133      | 2.9  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| в      | 24     | 86       | 2.6  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 46     | 266      | 1.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 44     | 253      | 1.1  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |
| С      | 46     | 263      | 1.0  | #N/A  | #N/A  | #N/A  | #N/A  | #N/A  | #   |

-----

|        |            |          | MEASUF | REMENTS | AFTER C | UTOFF VO | LTAGE IS R | EACHED |       |
|--------|------------|----------|--------|---------|---------|----------|------------|--------|-------|
|        |            |          | TIME   |         | TIME    |          |            | TIME   |       |
| STRING | MODULE     | CELL NO. | CORR   | VOLT    | (RAW)   | (ADJ)    | VOLTS      | (RAW)  | (ADJ) |
| С      | 42         | 234      | 2.2    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| B      | 33         | 242      | 2.4    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | 26         | 137      | 3.5    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | 26         | 139      | 3.5    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | 25         | 128      | 3.0    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 42         | 235      | 2.1    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | 27         | 146      | 3.7    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 46         | 267      | 0.8    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 43         | 236      | 1.9    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 44         | 251      | 1.3    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | <b>3</b> 3 | 243      | 2.5    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 44         | 254      | 1.5    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 43         | 245      | 1.7    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 42         | 230      | 2.2    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | 33         | 265      | 2.5    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 46         | 262      | 0.9    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 44         | 252      | 1.3    | ₩N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| В      | 33         | 239      | 2.6    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 47         | 276      | 0.7    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 47         | 273      | 0.8    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 43         | 246      | 1.8    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 50         | 297      | 0.4    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |
| С      | 51         | 303      | 0.2    | #N/A    | #N/A    | #N/A     | #N/A       | #N/A   | #N/A  |

# APPENDIX C

### CORRECTLY CLASSIFIED CELLS, ABERRANT CELLS, AND REPLACEMENT CELLS

| Cell IDClassified (STDEV)AberrantReplacements16 $\checkmark$ $\checkmark$ 18 $\checkmark$ $\checkmark$ 20 $\checkmark$ $\checkmark$ 21 $\checkmark$ $\checkmark$ 22 $\checkmark$ $\checkmark$ 23 $\checkmark$ $\checkmark$ 24 $\checkmark$ $\checkmark$ 25 $\checkmark$ $\checkmark$ 28 $\checkmark$ $\checkmark$ 29 $\checkmark$ $\checkmark$ 60 $\checkmark$ $\checkmark$ 62 $\checkmark$ $\checkmark$ 63 $\checkmark$ $\checkmark$ 70 $\checkmark$ $\checkmark$ 71 $\checkmark$ $\checkmark$ 83 $\checkmark$ $\checkmark$ 91 $\checkmark$ $\checkmark$ 105 $\checkmark$ eliminated109 $\checkmark$ eliminated131 $\checkmark$ $\checkmark$ 132 $\checkmark$ 135 $\checkmark$ 136 $\checkmark$ 199 $\checkmark$ 199 $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Correctly             |                                       |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------------------------------------|--------------|
| 16 $\checkmark$ $\checkmark$ 18 $\checkmark$ $\checkmark$ 20 $\checkmark$ $\checkmark$ 21 $\checkmark$ $\checkmark$ 22 $\checkmark$ $\checkmark$ 23 $\checkmark$ $\checkmark$ 25 $\checkmark$ $\checkmark$ 28 $\checkmark$ $\checkmark$ 29 $\checkmark$ $\checkmark$ 59 $\checkmark$ $\checkmark$ 60 $\checkmark$ $\checkmark$ 62 $\checkmark$ $\checkmark$ 63 $\checkmark$ $\checkmark$ 65 $\checkmark$ $\checkmark$ 70 $\checkmark$ $\checkmark$ 83 $=$ $\checkmark$ 91 $\checkmark$ $\checkmark$ 105 $\checkmark$ eliminated         109 $\checkmark$ eliminated         132 $133$ $135$ 136 $\checkmark$ $\checkmark$ 172 $\checkmark$ $\checkmark$ 185 $\checkmark$ $\checkmark$ 192 $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cell ID |                       | Aberrant                              | Replacements |
| 20       ✓ $21$ $22$ $23$ ✓ $25$ ✓ $28$ ✓ $29$ ✓ $60$ ✓ $62$ ✓ $63$ ✓ $65$ ✓ $70$ ✓ $71$ ✓ $83$ ✓ $91$ ✓ $71$ ✓ $83$ ✓ $91$ ✓ $105$ ✓ $105$ ✓ $131$ ✓ $132$ ✓ $133$ ✓ $136$ ✓ $146$ ✓ $72$ ✓ $185$ ✓ $192$ ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16      | 1                     |                                       |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18      | ✓                 ✓   |                                       | 1            |
| 22       ✓ $23$ ✓ $25$ ✓ $28$ ✓ $29$ ✓ $59$ ✓ $60$ ✓ $62$ ✓ $63$ ✓ $65$ ✓ $70$ ✓ $71$ ✓ $83$ ✓ $91$ ✓ $70$ ✓ $71$ ✓ $83$ ✓ $91$ ✓ $105$ ✓ $105$ ✓ $1105$ ✓ $128$ ✓ $131$ ✓ $132$ ✓ $133$ ✓ $134$ ✓ $135$ ✓ $136$ ✓ $185$ ✓ $192$ ✓ $197$ ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20      | <u> </u>              |                                       |              |
| 23 $\checkmark$ 25 $\checkmark$ 28 $\checkmark$ 29 $\checkmark$ 59 $\checkmark$ 60 $\checkmark$ 62 $\checkmark$ 63 $\checkmark$ 65 $\checkmark$ 70 $\checkmark$ 71 $\checkmark$ 83 $\checkmark$ 91 $\checkmark$ 92 $\checkmark$ 105 $\checkmark$ 105 $\checkmark$ 105 $\checkmark$ 1105 $\checkmark$ 111 $\checkmark$ 1132 $\checkmark$ 1133 $\checkmark$ 1136 $\checkmark$ 1146 $\checkmark$ 1172 $\checkmark$ 1185 $\checkmark$ 1192 $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21      |                       |                                       |              |
| $25$ $\checkmark$ $28$ $\checkmark$ $29$ $\checkmark$ $59$ $\checkmark$ $60$ $\checkmark$ $62$ $\checkmark$ $63$ $\checkmark$ $65$ $\checkmark$ $70$ $\checkmark$ $71$ $\checkmark$ $83$ $\checkmark$ $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $\checkmark$ $136$ $\checkmark$ $146$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                       |                                       |              |
| $25$ $\checkmark$ $28$ $\checkmark$ $29$ $\checkmark$ $59$ $\checkmark$ $60$ $\checkmark$ $62$ $\checkmark$ $63$ $\checkmark$ $65$ $\checkmark$ $70$ $\checkmark$ $71$ $\checkmark$ $83$ $\checkmark$ $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $\checkmark$ $136$ $\checkmark$ $146$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23      | ×                     |                                       |              |
| $29$ $\checkmark$ $\checkmark$ $59$ $\checkmark$ $60$ $62$ $\checkmark$ $\checkmark$ $63$ $\checkmark$ $65$ $65$ $\checkmark$ $\checkmark$ $70$ $\checkmark$ $\checkmark$ $71$ $\checkmark$ $\checkmark$ $83$ $\checkmark$ $\checkmark$ $91$ $\checkmark$ $\checkmark$ $99$ $\checkmark$ $\checkmark$ $105$ $\checkmark$ eliminated $109$ $\checkmark$ eliminated $131$ $\checkmark$ $\checkmark$ $132$ $\checkmark$ $133$ $135$ $\checkmark$ $146$ $172$ $\checkmark$ $\checkmark$ $185$ $\checkmark$ $\checkmark$ $192$ $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      | <b>/</b>              |                                       |              |
| $59$ $\checkmark$ $60$ $\checkmark$ $62$ $\checkmark$ $63$ $\checkmark$ $65$ $\checkmark$ $70$ $\checkmark$ $70$ $\checkmark$ $71$ $\checkmark$ $83$ $\checkmark$ $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $109$ $\checkmark$ $131$ $\checkmark$ $132$ $133$ $135$ $\checkmark$ $136$ $\checkmark$ $146$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28      |                       |                                       | ······       |
| 60       ✓ $62$ ✓ $63$ ✓ $65$ ✓ $70$ ✓ $71$ ✓ $83$ ✓ $91$ ✓ $99$ ✓ $105$ ✓ $105$ ✓ $109$ ✓ $131$ ✓ $132$ ✓ $133$ ✓ $136$ ✓ $146$ ✓ $172$ ✓ $185$ ✓ $192$ ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | <ul> <li>✓</li> </ul> |                                       | ~            |
| $62$ $\checkmark$ $63$ $\checkmark$ $65$ $\checkmark$ $70$ $\checkmark$ $70$ $\checkmark$ $71$ $\checkmark$ $83$ $\checkmark$ $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $109$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $\checkmark$ $135$ $\checkmark$ $136$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59      | <ul> <li>✓</li> </ul> |                                       |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60      | <ul> <li>✓</li> </ul> |                                       |              |
| $65$ $\checkmark$ $70$ $\checkmark$ $71$ $\checkmark$ $83$ $\checkmark$ $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ $109$ $\checkmark$ $128$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $\checkmark$ $135$ $\checkmark$ $136$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62      |                       | 1                                     |              |
| $70$ $\checkmark$ $71$ $\checkmark$ $83$ $91$ $\checkmark$ $91$ $\checkmark$ $99$ $99$ $\checkmark$ $105$ $\checkmark$ $105$ $\checkmark$ eliminated $109$ $\checkmark$ eliminated $128$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $133$ $\checkmark$ $135$ $\checkmark$ $136$ $\checkmark$ $\checkmark$ $146$ $\checkmark$ $172$ $\checkmark$ $\checkmark$ $192$ $\checkmark$ $197$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63      | <b>✓</b>              |                                       |              |
| $71$ $\checkmark$ 83       91         91 $\checkmark$ 99 $\checkmark$ 105 $\checkmark$ 109 $\checkmark$ 128 $131$ 131 $\checkmark$ 132 $133$ 133 $135$ 136 $\checkmark$ 146 $\checkmark$ 172 $\checkmark$ 185 $\checkmark$ 192 $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | <b>/</b>              |                                       |              |
| $83$ $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $109$ $\checkmark$ $109$ $\checkmark$ $128$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $\checkmark$ $135$ $\checkmark$ $136$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70      |                       |                                       | ✓            |
| $91$ $\checkmark$ $99$ $\checkmark$ $105$ $\checkmark$ $109$ $\checkmark$ $109$ $\checkmark$ $128$ $\checkmark$ $131$ $\checkmark$ $132$ $\checkmark$ $133$ $\checkmark$ $135$ $\checkmark$ $136$ $\checkmark$ $172$ $\checkmark$ $185$ $\checkmark$ $192$ $\checkmark$ $197$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71      |                       |                                       | ✓            |
| 99       ✓         105       ✓       eliminated         109       ✓       eliminated         128       ✓       131         131       ✓       ✓         132       ✓       133         133       ✓       ✓         136       ✓       ✓         146       ✓       ✓         172       ✓       ✓         185       ✓       ✓         192       ✓       ✓         197       ✓       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83      |                       |                                       |              |
| 105       ✓       eliminated         109       ✓       eliminated         128       ✓          131       ✓       ✓         132       ✓          133       ✓          136       ✓       ✓         172       ✓       ✓         185       ✓       ✓         192       ✓       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                       | 1                                     |              |
| 109       Image: Constraint of the second seco |         |                       | ~                                     |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | ✓ ✓                   | eliminated                            |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                       | eliminated                            |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128     |                       |                                       |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131     |                       | ×                                     |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132     |                       |                                       |              |
| 136     ✓       146     ✓       172     ✓       185     ✓       192     ✓       197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                       |                                       |              |
| 146     ✓       172     ✓       185     ✓       192     ✓       197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                       | · · · · · · · · · · · · · · · · · · · |              |
| 172 ✓<br>185 ✓<br>192 ✓<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 136     | 1                     |                                       |              |
| 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                       | ✓                                     | ·····        |
| 192 ✓<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172     | 1                     |                                       |              |
| 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                       | ✓ ✓                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 192     | V                     |                                       |              |
| 199 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 197     |                       |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199     | V                     | ·····                                 |              |

••

|         | Corre      | ectly                                  |                                        |                                         |
|---------|------------|----------------------------------------|----------------------------------------|-----------------------------------------|
| Cell ID | Classified | (STDEV)                                | Aberrant                               | Replacements                            |
| 219     |            |                                        | ······································ |                                         |
| 221     |            | ······································ | ~                                      |                                         |
| 225     |            |                                        |                                        |                                         |
| 228     | ~          |                                        |                                        |                                         |
| 230     | ~          | •                                      |                                        | ✓ ✓                                     |
| 235     | ~          |                                        | · · · · · · · · · · · · · · · · · · ·  |                                         |
| 236     |            |                                        |                                        |                                         |
| 239     | ~          | · · · · · · · · · · · · · · · · · · ·  |                                        |                                         |
| 243     |            | •                                      |                                        |                                         |
| 245     | <b>/</b>   | •                                      |                                        |                                         |
| 246     | ~          | ·                                      |                                        |                                         |
| 249     |            |                                        |                                        |                                         |
| 251     |            |                                        |                                        |                                         |
| 252     |            | •                                      |                                        |                                         |
| 254     |            |                                        |                                        |                                         |
| 262     | ~          | ,                                      |                                        |                                         |
| 263     |            |                                        |                                        |                                         |
| 265     | <b>/</b>   | •                                      |                                        |                                         |
| 267     |            |                                        |                                        |                                         |
| 273     |            |                                        |                                        |                                         |
| 276     | ~          |                                        |                                        |                                         |
| 297     |            |                                        | <u> </u>                               |                                         |
| 299     |            |                                        |                                        | *************************************** |
| 303     | ~          | •                                      |                                        |                                         |
| 307     | ~          |                                        |                                        |                                         |
| 316     |            |                                        |                                        |                                         |

------

#### APPENDIX D

#### PREDICTION RESULTS FOR PREDICTION SET CELLS CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

| Training Set       | Index:      | 1      | 2   | 3  | 4  | 5  | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |
|--------------------|-------------|--------|-----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Criterion: STDEV   | Cell ID:    | 2      | 9   | 12 | 13 | 14 | 15  | 17  | 24  | 40  | 41  | 64  | 78  | 84  |
| Feature Code       |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| F-0420101000000    |             | 3      | 3   | 2  | 2  | 3  | 2   | 3   | 2   | 2   | 2   | 2   | 2   | 3   |
| F-0411111000000    |             | 3      | 2   | 2  | 2  | 3  | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 3   |
| F-0410121000100    |             | 3      | 2   | 2  | 2  | 3  | 3   | 3   | 2   | 2   | 2   | 2   | 2   | 3   |
| F-0420102000000    |             | 3      | 3   | 2  | 2  | 3  | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| F-0041012010120    | _           | 3      | 3   | 3  | 2  | 3  | 2   | 3   | 2   | 2   | 2   | 2   | 2   | 3   |
| Majo               | ority Vote: | 3      | 3   | 2  | 2  | 3  | 2   | 3   | 2   | 2   | 2   | 2   | 2   | 3   |
| Training Set       |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| Criterion: NLM     |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| Feature Code       |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| F-0201010000000    |             | 3      | 2   | 3  | 3  | 2  | 3   | 2   | 2   | 2   | 2   | 3   | 2   | 3   |
| F-0/16/11110000000 |             | 3      | 2   | 2  | 2  | 3  | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 3   |
| F-1420110100010    |             | 3      | 2   | 2  | 3  | 3  | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 3   |
| F-1001020001000    |             | 3      | 3   | 3  | 3  | 3  | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 3   |
| F-0110010000000    | _           | 3      | 3   | 2  | 2  | 2  | 2   | 3   | 2   | 2   | 2   | 2   | 2   | 3   |
| Maje               | ority Vote: | 3      | 2   | 2  | 3  | 3  | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 3   |
| Overall Maj        | ority Vote: | 3      | 2/3 | 2  | 2  | 3  | 2/3 | 2   | 2   | 2   | 2   | 2   | 2   | 3   |
|                    |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| Training Set       | Index:      | 14     | 15  | 16 | 17 | 18 | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  |
| Criterion: STDEV   | Cell ID:    | 85     | 86  | 87 | 90 | 93 | 97  | 101 | 102 | 106 | 129 | 130 | 137 | 138 |
| Feature Code       |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| F-0420101000000    |             | 3      | 2   | 2  | 2  | 1  | 2   | 3   | 3   | 1   | 1   | 1   | 2   | 2   |
| F-0411111000000    |             | 3      | 2   | 2  | 2  | 2  | 2   | 3   | З   | 2   | З   | 1   | 2   | 2   |
| F-0410121000100    |             | 3      | 2   | 2  | 2  | 1  | 2   | 3   | 3   | 1   | 1   | 1   | 2   | 2   |
| F-0420102000000    |             | 3      | 2   | 2  | 3  | 1  | 2   | 3   | 3   | 1   | 3   | 1   | 3   | 2   |
| F-0041012010120    |             | 3      | 2   | 2  | 2  | 3  | 3   | 3   | 3   | 3   | 3   | 1   | 3   | 2   |
| Maj                | ority Vote: | 3      | 2   | 2  | 2  | 1  | 2   | 3   | 3   | 1   | 3   | 1   | 2   | 2   |
| Training Set       |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| Criterion: NLM     |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| Feature Code       |             |        |     |    |    |    |     |     |     |     |     |     |     |     |
| F-0201010000000    |             | 3      | 2   | 2  | 2  | 3  | 2   | 2   | 2   | 2   | 2   | 4   | •   | ~   |
| F-0/16/11110000000 |             | 3      | 2   | 2  | 2  | 3  |     | 3   | 2   | 2   | 3   | 1   | 2   | 2   |
| F-1420110100010    |             | ა<br>3 | 2   | 2  |    |    | 2   | 3   | 2   | 2   | 3   | 3   | 2   | 2   |
| F-1001020001000    |             |        | 2   |    | 2  | 2  | 2   | 3   | 3   | 3   | 3   | 3   | 3   | 2   |
| F-0110010000000    |             | 3      |     | 2  | 2  | 3  | 2   | 3   | 2   | 3   | 1   | 3   | 3   | 3   |
|                    | onity Motor | 3      | 2   | 3  | 3  | 2  | 2   | 3   | 1   | 3   | 2   | 1   | 3   | 2   |
|                    | ority Vote: | 3      | 2   | 2  | 2  | 3  | 2   | 3   | 2   | 3   | 3   | 3   | 3   | 2   |
| Overall Maj        | ority Vote: | 3      | 2   | 2  | 2  | 3  | 2   | 3   | 3   | 3   | 3   | 1   | 2/3 | 2   |

- ----

#### PREDICTION RESULTS FOR PREDICTION SET CELLS CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

| Training Set<br>Criterion: STDEV | Index:<br>Cell ID: | 27<br>139 | 28<br>140 | 29<br>141 | 30<br>142 | 31<br><b>143</b> | 32<br>145 | 33<br>147 | 34<br>174 | 35<br>177 | 36<br><b>195</b> | 37<br><b>196</b> | 38<br><b>212</b> | 39<br><b>21</b> 7 |
|----------------------------------|--------------------|-----------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|-----------|------------------|------------------|------------------|-------------------|
| Feature Code                     | oen no.            | 155       | 140       | 141       | 146       | 145              | .45       | 147       | 174       | .,,       | 155              | 130              |                  |                   |
| F-0420101000000                  |                    | 3         | 2         | 3         | 3         | 3                | 2         | 2         | 2         | 3         | 2                | 3                | 3                | 3                 |
| F-0411111000000                  |                    | 3         | 2         | 3         | 3         | 3                | 1         | 2         | 2         | 3         | 2                | 2                | 3                | 3                 |
| F-0410121000100                  |                    | 3         | 2         | 3         | 3         | 3                | 2         | 2         | 2         | 3         | 2                | 2                | 3                | 3                 |
| F-0420102000000                  |                    | 3         | 2         | 3         | 3         | 3                | 2         | 2         | 2         | 3         | 2                | 2                | 2                | 3                 |
| F-0041012010120                  |                    | 1         | 2         | 3         | 2         | 3                | 3         | 2         | 3         | 3         | 2                | 3                | 3                | 3                 |
|                                  | ority Vote:        | 3         | 2         | 3         | 3         | 3                | 2         | 2         | 2         | 3         | 2                | 2                | 3                | 3                 |
| Training Set                     |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| Criterion: NLM                   |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| Feature Code                     |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| F-0201010000000                  |                    | 3         | 2         | 3         | 3         | 2                | 3         | 3         | 2         | 2         | 1                | 3                | 2                | 1                 |
| F-0/16/11110000000               |                    | 3         | 2         | 2         | 3         | 2                | 3         | 2         | 2         | 2         | 2                | 2                | 3                | 1                 |
| F-1420110100010                  |                    | 3         | 3         | 2         | 3         | 3                | 3         | 2         | 2         | 3         | 2                | 3                | 3                | 3                 |
| F-1001020001000                  |                    | 3         | 3         | 3         | 3         | 3                | 1         | 2         | 2         | 2         | 1                | 2                | 3                | 3                 |
| F-011001000000                   |                    | 3         | 2         | 2         | 3         | 1                | 1         | 2         | 3         | 3         | 1                | 2                | 3                | 3                 |
| Majo                             | ority Vote:        | 3         | 2         | 2         | 3         | 2/3              | 3         | 2         | 2         | 2         | 1                | 2                | 3                | 3                 |
| Overall Maj                      | ority Vote:        | 3         | 2         | 3         | 3         | 3                | 3         | 2         | 2         | 3         | 2                | 2                | 3                | 3                 |
|                                  |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| Training Set                     | index:             | 40        | 41        | 42        | 43        | 44               | 45        | 46        | 47        | 48        | 49               | 50               | 51               | 52                |
| Criterion: STDEV                 | Cell ID:           | 222       | 223       | 224       | 226       | 231              | 232       | 233       | 234       | 237       | 238              | 241              | 242              | 244               |
| Feature Code                     |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| F-0420101000000                  |                    | 3         | 3         | 1         | 3         | 3                | 1         | 1         | 1         | 2         | 1                | 3                | 2                | 3                 |
| F-0411111000000                  |                    | 3         | 3         | 1         | 3         | 3                | 1         | 1         | 1         | 3         | 1                | 1                | 2                | 1                 |
| F-0410121000100                  |                    | 2         | 3         | 1         | 3         | 3                | 1         | 1         | 1         | 3         | 1                | 3                | 2                | 1                 |
| F-0420102000000                  |                    | 3         | 3         | 1         | 3         | 1                | 1         | 1         | 1         | 3         | 1                | 1                | 1                | 3                 |
| F-0041012010120                  |                    | 3         | 3         | 3         | 3         | 1                | 3         | 1         | 1         | 1         | 1                | 3                | 1                | 1                 |
| Maj                              | ority Vote:        | 3         | 3         | 1         | 3         | 3                | 1         | 1         | 1         | 3         | 1                | 3                | 2                | 1                 |
| Training Set                     |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| Criterion: NLM                   |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| Feature Code                     |                    |           |           |           |           |                  |           |           |           |           |                  |                  |                  |                   |
| F-0201010000000                  |                    | 1         | 1         | 1         | 3         | 1                | 3         | 1         | 1         | 3         | 3                | 1                | 1                | 1                 |
| F-0/16/11110000000               |                    | 2         | 1         | 1         | 3         | 3                | 1         | 1         | 1         | 3         | 3                | 1                | 1                | 2                 |
| F-1420110100010                  |                    | 2         | 1         | 1         | 3         | 1                | 1         | 1         | 1         | 2         | 1                | 1                | 2                | 1                 |
| F-1001020001000                  |                    | 3         | 2         | 1         | 3         | 3                | 1         | 2         | 1         | 3         | 3                | 1                | 2                | 1                 |
| F-011001000000                   |                    | 1         | 1         | 3         | 3         | 3                | 3         | 1         | 1         | 3         | 3                | 3                | 1                | 3                 |
|                                  | ority Vote:        |           | 1         | 1         | 3         | 3                | 1         | 1         | 1         | 3         | 3                | 1                | 1                | 1                 |
| Overall Maj                      | jority Vote:       | 3         | 3         | 1         | 3         | 3                | 3         | 1         | 1         | 3         | 1                | 1                | 1/2              | 1                 |

-----

#### PREDICTION RESULTS FOR PREDICTION SET CELLS CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

| Training Set                     | Index:      | 53           | 54         | 55  | 56  | 57    | 58        | 59          | 60   | 61       | 62  |
|----------------------------------|-------------|--------------|------------|-----|-----|-------|-----------|-------------|------|----------|-----|
| Criterion: STDEV<br>Feature Code | Cell ID:    | 247          | 248        | 250 | 253 | 266   | 278       | 286         | 294  | 298      | 319 |
| F-0420101000000                  |             | 2            |            |     | ~   |       | 4         |             | ~    |          | •   |
| F-0411111000000                  |             | 3<br>3       | 1          | 1   | 3   | 1     | 1         | 1           | 2    | 1        | 3   |
| F-0410121000100                  |             | ა<br>ვ       | 1<br>1     | 2   | 2   | 1     | 2<br>2    | 1           | 2    | 1        | 1   |
| F-0420102000000                  |             | -            | ·          | 2   | 2   |       | -         | 1           | 2    | 1        | 1   |
| F-0041012010120                  |             | 3            | 1          | 1   | 3   | 1     | 1         | 1           | 2    | 1        | 1   |
|                                  | ority Vote: | 1 3          | 1          | 2   | 2   | 1     | 2         | 1           | 2    | 1        | 3   |
| majo                             | onty vote:  | 3            | 1          | 2   | 2   | 1     | 2         | 1           | 2    | 1        | 1   |
| Training Set                     |             |              |            |     |     |       |           |             |      |          |     |
| Criterion: NLM                   |             |              |            |     |     |       |           |             |      |          |     |
| Feature Code                     |             |              |            |     |     |       |           |             |      |          |     |
| F-0201010000000                  |             | 1            | 1          | 1   | 1   | 1     | 1         | 1           | 1    | 1        | 3   |
| F-0/16/11110000000               |             | 1            | 1          | 1   | 1   | 1     | 1         | 1           | 1    | 1        | 3   |
| F-1420110100010                  |             | 1            | 1          | 1   | 1   | 1     | 3         | 1           | 1    | 1        | 1   |
| F-1001020001000                  |             | 2            | 1          | 3   | 3   | 3     | 1         | 1           | 1    | 2        | 3   |
| F-0110010000000                  |             | 1            | 1          | 1   | 3   | 1     | 1         | 1           | 1    | 1        | 3   |
|                                  | ority Vote: | - <u>+</u> - | <u> </u>   | 1   | 1   | 1     |           | 1           |      | <u></u>  | 3   |
|                                  | ,           | •            | •          | •   | •   | •     | •         | •           | •    | •        | U   |
| Overall Maj                      | ority Vote: | 1            | 1          | 1   | 3   | 1     | 1         | 1           | 1/2  | 1        | 3   |
| Training Cat                     |             |              |            |     |     |       |           |             |      |          |     |
| Training Set<br>Criterion: STDEV |             | 0/ A         | 0011       |     |     |       |           |             |      |          |     |
| Feature Code                     |             | 70 <b>A</b>  | CCUF       | ACT |     |       |           |             |      |          |     |
| F-0420101000000                  |             |              | 40%        |     |     |       |           |             |      |          |     |
| F-0411111000000                  |             |              | 40%<br>34% |     |     |       |           |             |      |          |     |
| F-0410121000100                  |             |              | 34%        |     |     |       |           |             |      |          |     |
| F-0420102000000                  |             |              | 35%        |     |     |       |           |             |      |          |     |
| F-0041012010120                  |             |              | 47%        |     |     |       |           |             |      |          |     |
| 1-0041012010120                  | Auro        |              | 38%        | -   |     |       |           |             |      |          |     |
|                                  | AVC         | s:           |            |     |     |       |           |             |      |          |     |
| Training Set                     |             | э.           | 070        | ,   |     |       |           |             |      |          |     |
| Criterion: NLM                   |             |              |            |     |     |       |           |             |      |          |     |
| Feature Code                     |             |              |            |     |     |       |           |             |      |          |     |
| F-0201010000000                  |             |              | 34%        |     |     |       |           |             |      |          |     |
| F-0/16/11110000000               |             |              | 29%        |     |     |       |           |             |      |          |     |
| F-1420110100010                  |             |              | 35%        |     |     |       |           |             |      |          |     |
| F-1001020001000                  |             |              | 48%        |     |     |       |           |             |      |          |     |
| F-0110010000000                  |             |              | 42%        |     |     |       |           |             |      |          |     |
|                                  | <b>∆</b> ve | race         | 38%        |     | Co  | mbine | d Ave     | ana na      | 380/ | <b>`</b> |     |
|                                  |             | s:<br>S      |            |     | 50  |       | ~ ~ ~ ~ ~ | siage.<br>S |      |          |     |
|                                  |             | 3.           |            | ,   |     |       |           | 3           | . 0% | ,        |     |

......

#### APPENDIX E

#### PREDICTION RESULTS FOR UNKNOWN SET CELLS CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

| Training Set       | Index:      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11  | 12  | 13 |
|--------------------|-------------|----|----|----|----|----|----|-----|----|----|----|-----|-----|----|
| Criterion: STDEV   | Cell ID:    | 1  | 3  | 4  | 5  | 6  | 7  | 8   | 10 | 11 | 19 | 26  | 27  | 30 |
| Feature Code       |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| F-0420101000000    |             | 3  | 3  | 3  | 3  | 3  | 3  | 3   | 3  | 3  | 3  | 2   | 3   | 2  |
| F-0411111000000    |             | 3  | 3  | 3  | 2  | 2  | 3  | 2   | 3  | 2  | 3  | 2   | 3   | 2  |
| F-0410121000100    |             | 3  | 3  | 3  | 2  | 2  | 3  | 2   | 2  | 2  | 3  | 2   | 3   | 2  |
| F-0420102000000    |             | 3  | 3  | 3  | 3  | 3  | 3  | 3   | 1  | 3  | 3  | 2   | 3   | 2  |
| F-0041012010120    | _           | 3  | 3  | 3  | 3  | 3  | 3  | 1   | 3  | 2  | 2  | 2   | 3   | 2  |
| Majo               | ority Vote: | 3  | 3  | 3  | 3  | 3  | 3  | 2/3 | 3  | 2  | 3  | 2   | 3   | 2  |
| Training Set       |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| Criterion: NLM     |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| Feature Code       |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| F-0201010000000    |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| F-0/16/11110000000 |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| F-1420110100010    |             | 3  | 3  | 2  | 2  | 2  | 3  | 1   | 3  | 2  | 2  | 2   | 2   | 2  |
| F-1001020001000    |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| F-0110010000000    | _           | 3  | 3  | 3  | 2  | 2  | 3  | 1   | 3  | 2  | 2  | 2   | 2   | 2  |
| Majo               | ority Vote: | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| Overall Majo       | ority Vote: | 3  | 3  | 3  | 2  | 2  | 3  | 2   | 3  | 2  | 2  | 2   | 2/3 | 2  |
|                    | -           |    |    |    |    |    | -  |     | -  | _  | _  | _   |     | -  |
| Training Set       | Index:      | 14 | 15 | 16 | 17 | 18 | 19 | 20  | 21 | 22 | 23 | 24  | 25  | 26 |
| Criterion: STDEV   | Cell ID:    | 31 | 32 | 33 | 34 | 35 | 36 | 37  | 38 | 39 | 42 | 43  | 44  | 45 |
| Feature Code       |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| F-0420101000000    |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 2   | 2  |
| F-0411111000000    |             | 2  | 2  | 3  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 2   | 2  |
| F-0410121000100    |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 2   | 2  |
| F-0420102000000    |             | 2  | 2  | 3  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 2   | 2  |
| F-0041012010120    | _           | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 3  | 2  | 2  | 2   | 2   | 3  |
| Majo               | ority Vote: | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 2   | 2  |
| Training Set       |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| Criterion: NLM     |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| Feature Code       |             |    |    |    |    |    |    |     |    |    |    |     |     |    |
| F-0201010000000    |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 3   | 2   | 3  |
| F-0/16/11110000000 |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 3  | 2  | 2  | 2   | 2   | 2  |
| F-1420110100010    |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| F-1001020001000    |             | 2  | 3  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| F-011001000000     |             | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   | 2  |
| Мај                | 2           | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2   | 2   |    |
| Overall Maj        | ority Vote: | 2  | 2  | 2  | 2  | 2  | 2  | 2   | 2  | 2  | 2  | 2/3 | 2   | 2  |

-----

| Training Set<br>Criterion: STDEV    | Index:<br>Cell ID: | 27     | 28     | 29 | 30  | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
|-------------------------------------|--------------------|--------|--------|----|-----|----|----|----|----|----|----|----|----|----|
|                                     | Cell ID:           | 46     | 47     | 48 | 49  | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |
| Feature Code<br>F-0420101000000     |                    | 2      | •      | ~  | ~   | •  | ~  | ~  | ~  | ~  | •  | •  | •  | ~  |
| F-0411111000000                     |                    | 3<br>3 | 2<br>2 | 2  | 3   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 3  |
| F-0410121000100                     |                    | 3      | 2      | 2  | 3   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 3  |
| F-0420102000000                     |                    | _      | _      | 2  | 2   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 2  |
| F-00420102000000<br>F-0041012010120 |                    | 3      | 2      | 2  | 2   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 3  |
|                                     |                    | 3      | 2      | 2  | 3   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 2  | 2  |
| maje                                | ority Vote:        | 3      | 2      | 2  | 3   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 3  |
| Training Set                        |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| Criterion: NLM                      |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| Feature Code                        |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| F-0201010000000                     |                    | 3      | 2      | 3  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 2  | 2  |
| F-0/16/11110000000                  |                    | 3      | 2      | 2  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 2  | 2  |
| F-1420110100010                     |                    | 2      | 2      | 2  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| F-1001020001000                     |                    | 2      | 2      | 2  | 2   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 2  |
| F-011001000000                      |                    | 2      | 2      | 3  | 3   | 2  | 2  | 3  | 2  | 2  | 2  | 2  | 2  | 3  |
| Majo                                | ority Vote:        | 2      | 2      | 2  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 2  | 2  |
|                                     |                    | ~      | •      | •  | •   | -  |    | -  | -  | -  | _  | -  | _  |    |
| Overall Majo                        | ormy vote:         | 3      | 2      | 2  | 2   | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  | 2  |
|                                     |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| Training Set                        | Index:             | 40     | 41     | 42 | 43  | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 |
| Criterion: STDEV                    | Cell ID:           | 61     | 66     | 67 | 68  | 69 | 72 | 73 | 74 | 75 | 76 | 77 | 79 | 80 |
| Feature Code                        |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| F-0420101000000                     |                    | 2      | 2      | 2  | 3   | 2  | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  |
| F-0411111000000                     |                    | 2      | 2      | 3  | 3   | 2  | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  |
| F-0410121000100                     |                    | 2      | 2      | 3  | 3   | 2  | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 3  |
| F-0420102000000                     |                    | 2      | 2      | 3  | 3   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 3  | 2  |
| F-0041012010120                     |                    | 2      | 2      | 2  | 3   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| Majo                                | ority Vote:        | 2      | 2      | 3  | 3   | 2  | 2  | 2  | 3  | 2  | 2  | 2  | 3  | 2  |
| Training Set                        |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| Criterion: NLM                      |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| Feature Code                        |                    |        |        |    |     |    |    |    |    |    |    |    |    |    |
| F-0201010000000                     |                    | 2      | 2      | 2  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| F-0/16/11110000000                  |                    | 2      | 2      | 3  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| F-1420110100010                     |                    | 2      | 2      | 2  | 2   | 2  | 3  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| F-1001020001000                     |                    | 2      | 2      | 2  | 2   | 3  | 3  | 3  | 2  | 2  | 2  | 2  | 2  | 2  |
| F-0110010000000                     |                    | 2      | 2      | 2  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
|                                     | ority Vote:        | 2      | 2      | 2  | 2   | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
|                                     | -                  |        |        |    |     |    | -  | -  | -  | -  | -  | -  | -  | -  |
| Overall Majo                        | ority Vote:        | 2      | 2      | 2  | 2/3 | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |

| Training Set<br>Criterion: STDEV | Index:<br>Cell ID: | 53     | 54  | 55     | 56     | 57     | 58     | 59     | 60     | 61     | 62     | 63     | 64  | 65  |
|----------------------------------|--------------------|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|-----|
| Feature Code                     | Cell ID:           | 81     | 82  | 88     | 89     | 92     | 94     | 95     | 96     | 98     | 100    | 103    | 104 | 107 |
| F-0420101000000                  |                    | 3      | 3   | 3      | 4      |        | •      | ~      | 4      | •      | ~      | ~      | ~   |     |
| F-0411111000000                  |                    | 3<br>3 | 3   | 3<br>3 | 1<br>3 | 1<br>2 | 2<br>2 | 2<br>2 | 1<br>3 | 3<br>2 | 3<br>3 | 2<br>2 | 2   | 1   |
| F-0410121000100                  |                    | 3      | 3   | 3      | 3<br>1 | 2      | 2      | 2      | -      | 2<br>3 | -      | 2      | 2   | 3   |
| F-0420102000000                  |                    | 3      | 3   | 3      | 1      | 2<br>1 | 2      | 2      | 1      |        | 1      | 2      | 2   | 3   |
| F-0041012010120                  |                    | 3      | 3   | 3      | 2      | 3      | 2      | 23     | 1      | 2      | 1      | _      | 2   | 2   |
|                                  | ority Vote:        | 3      | 3   | 3      | 1      | 1/2    | 2      | 2      | 3      | 3      | 3      | 3      | 3   | 33  |
| -                                |                    | Ŭ      | U   | U      | 1      | 172    | 2      | 2      | •      | J      | 5      | 2      | ۷   | 3   |
| Training Set                     |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| Criterion: NLM                   |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| Feature Code                     |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| F-0201010000000                  |                    | 3      | 1   | 2      | 3      | 2      | 1      | 2      | 3      | 2      | 3      | 2      | 2   | 2   |
| F-0/16/11110000000               |                    | 3      | 2   | 2      | 3      | 2      | 2      | 2      | 3      | 2      | 3      | 2      | 2   | 3   |
| F-1420110100010                  |                    | 3      | 1   | 2      | 3      | 2      | 2      | 2      | 3      | 1      | 3      | 2      | 2   | 3   |
| F-1001020001000                  |                    | 3      | 3   | 2      | 3      | 2      | 1      | 1      | 3      | 3      | 3      | 2      | 2   | 3   |
| F-0110010000000                  |                    | 3      | 1   | 2      | 3      | 3      | 2      | 3      | 3      | 1      | 3      | 2      | 2   | 1   |
| Majo                             | ority Vote:        | 3      | 1   | 2      | 3      | 2      | 2      | 2      | 3      | 1/2    | 3      | 2      | 2   | 3   |
| Overall Majo                     | ority Vote:        | 3      | 3   | 2/3    | 3      | 2      | 2      | 2      | 3      | 2/3    | 3      | 2      | 2   | 3   |
|                                  |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| Training Set                     | Index:             | 66     | 67  | 68     | 69     | 70     | 71     | 72     | 73     | 74     | 75     | 76     | 77  | 78  |
| Criterion: STDEV                 | Cell ID:           | 108    | 110 | 111    | 112    | 113    | 114    | 115    | 116    | 117    | 118    | 119    | 120 | 121 |
| Feature Code                     |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| F-0420101000000                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 1      | 1      | 2      | 2      | 1      | 3   | 1   |
| F-0411111000000                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 1      | 2      | 3      | 2      | 1      | 3   | 2   |
| F-0410121000100                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 3      | 2      | 3      | 2      | 1      | 3   | 3   |
| F-0420102000000                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 3      | 3      | 1      | 2      | 1      | 3   | 1   |
| F-0041012010120                  |                    | 1      | 2   | 2      | 2      | 2      | 3      | 3      | 3      | 3      | 2      | 3      | 3   | 3   |
| Majo                             | ority Vote:        | 2      | 2   | 2      | 2      | 2      | 2      | 3      | 2/3    | 3      | 2      | 1      | 3   | 1/3 |
| Training Set                     |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| Criterion: NLM                   |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| Feature Code                     |                    |        |     |        |        |        |        |        |        |        |        |        |     |     |
| F-0201010000000                  |                    | 2      | 2   | 2      | 2      | 2      | 1      | 3      | 1      | 2      | 1      | 3      | 1   | 1   |
| F-0/16/11110000000               |                    | 2      | 2   | 2      | 2      | 2      | 1      | 1      | 2      | 2      | 2      | 3      | 2   | 2   |
| F-1420110100010                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 1      | 1      | 3      | 2      | 3      | 2   | 2   |
| F-1001020001000                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 1      | 1      | 3      | 2      | 3      | 3   | 2   |
| F-0110010000000                  |                    | 2      | 2   | 2      | 2      | 2      | 2      | 1      | 1      | 2      | 2      | 3      | 2   | 2   |
| Мај                              | ority Vote:        | 2      | 2   | 2      | 2      | 2      | 2      | 1      | 1      | 2      | 2      | 3      | 2   | 2   |
| Overall Maj                      | ority Vote:        | 2      | 2   | 2/3    | 2      | 2      | 2      | 1      | 1      | 3      | 2      | 3      | 3   | 2   |

. ......

| Training Set<br>Criterion: STDEV | Index:<br>Cell ID: | 79<br>122 | 80<br>1 <b>23</b> | 81<br><b>124</b> | 82<br>125      | 83<br>126 | 84<br>127 | 85<br>134 | 86<br>144 | 87<br>148 | 88<br>149 | 89<br>150 | 90<br>151 | 91  |
|----------------------------------|--------------------|-----------|-------------------|------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| Feature Code                     | Centb.             | 122       | 123               | 124              | 120            | 120       | 121       | 134       | 144       | 146       | 149       | 150       | 131       | 152 |
| F-0420101000000                  |                    | 2         | 3                 | 1                | 3              | 1         | 3         | 3         | 3         | 2         | 1         | 1         | 2         | 3   |
| F-0411111000000                  |                    | 2         | 3                 | 2                | 3              | 1         | 3         | 3         | 3         | 2         | 2         | 1         | 2         | 3   |
| F-0410121000100                  |                    | 2         | 3                 | 3                | 1              | 1         | 3         | 3         | 3         | 2         | 2         | 1         | 2         | 3   |
| F-0420102000000                  |                    | 2         | 3                 | 2                | 1              | 1         | 3         | 3         | 3         | 2         |           | •         | 2         |     |
| F-0041012010120                  |                    | 23        | 2                 | 2                | 1              | 3         | 3         | 3<br>3    | 3<br>3    | 2         | 1<br>3    | 1<br>2    | 2         | 3   |
|                                  | rity Vote:         | 2         | 2                 | 2                | 1              |           | 3         | 3         | 3         | 2         | <br>      | 2         | 2         | 2   |
|                                  |                    | -         | Ŭ                 | -                | •              | ,         | Ũ         | 0         | 0         | 2         | 172       | 1         | 6         | 5   |
| Training Set                     |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| Criterion: NLM                   |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| Feature Code                     |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| F-0201010000000                  |                    | 2         | 3                 | 3                | 3              | 3         | 3         | 3         | 3         | 1         | 2         | 1         | 2         | 2   |
| F-0/16/11110000000               |                    | 2         | 3                 | 2                | 3              | 3         | 3         | 3         | 3         | 1         | 2         | 1         | 2         | 3   |
| F-1420110100010                  |                    | 2         | 3                 | 2                | 1              | 3         | 1         | 3         | 3         | 2         | 2         | 1         | 2         | 3   |
| F-1001020001000                  |                    | 2         | 3                 | 2                | 3              | 1         | 1         | 3         | 3         | 2         | 3         | 1         | 2         | 2   |
| F-011001000000                   |                    | 2         | 3                 | 2                | 3              | 3         | 3         | 3         | 2         | 2         | 3         | 1         | 2         | 3   |
| Majo                             | rity Vote:         | 2         | 3                 | 2                | 3              | 3         | 3         | 3         | 3         | 2         | 2         | 1         | 2         | 3   |
| Overall Majority Vote:           |                    | 2         | 3                 | 2                | 3              | 1/3       | 3         | 3         | 3         | 2         | 2         | 1         | 2         | 3   |
|                                  | -                  |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| Training Set                     | index:             | 92        | 93                | 94               | <del>9</del> 5 | 96        | 97        | 98        | 99        | 100       | 101       | 102       | 103       | 104 |
| Criterion: STDEV                 | Cell ID:           | 153       | 154               | 155              | 156            | 157       | 158       | 159       | 160       | 161       | 162       | 163       | 164       | 165 |
| Feature Code                     |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| F-0420101000000                  |                    | 3         | 2                 | 2                | 2              | 1         | 3         | 3         | 3         | 3         | 1         | 3         | 3         | 3   |
| F-0411111000000                  |                    | 3         | 3                 | 2                | 3              | 1         | 3         | 2         | 3         | 1         | 1         | 1         | 3         | З   |
| F-0410121000100                  |                    | 3         | 2                 | 2                | 2              | 1         | 3         | 2         | 3         | 3         | 3         | 3         | 3         | 3   |
| F-0420102000000                  |                    | 3         | 2                 | 2                | 2              | 1         | 3         | 2         | 3         | 3         | 2         | 3         | 3         | 3   |
| F-0041012010120                  |                    | 3         | 1                 | 3                | 3              | 1         | 3         | 2         | 3         | 3         | 3         | 2         | 3         | 3   |
| Majo                             | ority Vote:        | 3         | 2                 | 2                | 2              | 1         | 3         | 2         | 3         | 3         | 1/3       | 3         | 3         | 3   |
| Training Set                     |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| Criterion: NLM                   |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| Feature Code                     |                    |           |                   |                  |                |           |           |           |           |           |           |           |           |     |
| F-0201010000000                  |                    | 2         | 1                 | 1                | 2              | 1         | 3         | 2         | 1         | 1         | 1         | 3         | 3         | 3   |
| F-0/16/11110000000               |                    | 3         | 2                 | 2                | 2              | 1         | 1         | 2         | 1         | 1         | 3         | 3         | 3         | 3   |
| F-1420110100010                  |                    | 3         | 2                 | 2                | 2              | 1         | 3         | 3         | 1         | 1         | 3         | 3         | 3         | 3   |
| F-1001020001000                  |                    | 2         | 3                 | 2                | 2              | 1         | 3         | 2         | 2         | 1         | 1         | 3         | 3         | 3   |
| F-0110010000000                  |                    | 1         | 2                 | 2                | 2              | 1         | 1         | 3         | 1         | 3         | 3         | 3         | 3         | 3   |
|                                  | ority Vote:        |           | 2                 | 2                | 2              | 1         | 3         | 2         | 1         | 1         | 3         | 3         | 3         | 3   |
| Overall Majo                     | prity Vote:        | 3         | 2                 | 2                | 2              | 1         | 3         | 2         | 3         | 1/3       | 3         | 3         | 3         | 3   |

-

. . . . . .

| Training Set<br>Criterion: STDEV | Index:<br>Cell ID: |             | 106<br><b>167</b> | 107<br><b>168</b> | 108<br><b>169</b> | 109<br><b>170</b> | 110<br><b>171</b> | 111<br><b>173</b> | 112<br><b>175</b> | 113<br><b>176</b> | 114<br>178 | 115<br>179  | 116<br><b>180</b> | 117         |   |
|----------------------------------|--------------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------|-------------------|-------------|---|
| Feature Code                     | Cen ID.            | 100         | 107               | 100               | 109               | 170               | 171               | 173               | 175               | 170               | 1/8        | 179         | 160               | 181         |   |
| F-0420101000000                  |                    | 1           | 3                 | 3                 | 1                 | 2                 | 2                 | 3                 | 1                 | 3                 | 3          | 3           | 2                 | 2           |   |
| F-0411111000000                  |                    | 1           | 1                 | 3                 | 2                 | 2                 | 2                 | 3                 | 1                 | 3                 | 3          | 3<br>3      | 2                 | 2           |   |
| F-0410121000100                  |                    | 1           | 3                 | 3                 | 3                 | 2                 | 2                 | 3                 | 3                 | 3                 | 3<br>3     | 3<br>3      | 2                 | 23          |   |
| F-0420102000000                  |                    | 1           | 3                 | 2                 | 1                 | 23                | 2                 | 3                 | 3                 | 3                 | 2          | _           | -                 | -           |   |
| F-0041012010120                  |                    | 1           | 3                 | 2                 | 1                 | 3                 | 2                 | 2                 | 3                 | 3<br>2            | 2          | 3<br>3      | 2<br>2            | 2           |   |
|                                  | rity Vote:         | 1           | 3                 | 3                 | 1                 | 2                 | 2                 | 2                 | 1                 |                   | 3          | 3           | 2                 | 2           |   |
| -                                | ,                  | •           | U                 | U                 | •                 | 2                 | L                 | 5                 | •                 | J                 | 5          | 5           | 2                 | ٤           |   |
| Training Set                     |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| Criterion: NLM                   |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| Feature Code                     |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| F-0201010000000                  |                    | 1           | 1                 | 3                 | 3                 | 2                 | 2                 | 2                 | 2                 | 2                 | 1          | 1           | 2                 | 2           |   |
| F-0/16/11110000000               |                    | 1           | 1                 | 3                 | 3                 | 2                 | 3                 | 2                 | 2                 | 2                 | 1          | 2           | 2                 | 2           |   |
| F-1420110100010                  |                    | 1           | 1                 | 3                 | 1                 | 2                 | 2                 | 3                 | 1                 | 3                 | 2          | 1           | 2                 | 2           |   |
| F-1001020001000                  |                    | 1           | 1                 | 3                 | 3                 | 2                 | 2                 | 3                 | 1                 | 2                 | 1          | 2           | 2                 | 2           |   |
| F-011001000000                   |                    | 1           | 1                 | 3                 | 1                 | 2                 | 2                 | 2                 | 1                 | 2                 | 2          | 1           | 2                 | 2           |   |
| Мајо                             | rity Vote:         | 1           | 1                 | 3                 | 3                 | 2                 | 2                 | 2                 | 1                 | 2                 | 1          | 1           | 2                 | 2           |   |
| Overall Majo                     | rity Vote:         | 1           | 1                 | 3                 | 1                 | 2                 | 2                 | 3                 | 1                 | 2/3               | 3          | 3           | 2                 | 2           |   |
|                                  |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| Training Set                     | Index:             | 118         | 119               | 120               | 121               | 122               | 123               | 124               | 125               | 126               | 127        | 128         | 129               | 130         |   |
| Criterion: STDEV                 | Cell ID:           | 182         | 183               | 184               | 186               | 187               | 188               | 189               | 190               | 191               | 193        | 194         | 198               | 200         |   |
| Feature Code                     |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| F-0420101000000                  |                    | 1           | 1                 | 2                 | 3                 | 3                 | 2                 | 2                 | 3                 | 2                 | 2          | 3           | 2                 | 2           |   |
| F-0411111000000                  |                    | 1           | 1                 | 2                 | 2                 | 2                 | 1                 | 2                 | 2                 | 2                 | 2          | 3           | 2                 | 2           |   |
| F-0410121000100                  |                    | 1           | 1                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2          | 3           | 2                 | 2           |   |
| F-0420102000000                  |                    | 1           | 1                 | 2                 | 3                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2          | 3           | 2                 | 2           |   |
| F-0041012010120                  |                    | 3           | 2                 | 3                 | 2                 | 2                 | 3                 | 2                 | 2                 | 3                 | 2          | з           | 2                 | 2           |   |
| Majo                             | rity Vote:         | 1           | 1                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2                 | 2          | 3           | 2                 | 2           |   |
| Training Set                     |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| Criterion: NLM                   |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| Feature Code                     |                    |             |                   |                   |                   |                   |                   |                   |                   |                   |            |             |                   |             |   |
| F-0201010000000                  |                    | 1           | 2                 | 2                 | 2                 | 1                 | 3                 | 2                 | 2                 | 1                 | 2          | 2           | 2                 | 1           |   |
| F-0/16/11110000000               |                    | 1           | 1                 | 2                 | 3                 | 2                 | 3                 | 2                 | 2                 | 2                 | 2          | 2           | 1                 | 1           |   |
| F-1420110100010                  |                    | 1           | 2                 | 2                 | 3                 | 2                 | 3                 | 2                 | 3                 | 2                 | 2          | 3           | 2                 | 2           |   |
| F-1001020001000                  |                    | •           | -                 | _                 | 3                 | 2                 | 1                 | 3                 | 3                 | 2                 | 2          |             |                   | 1           |   |
| F-0110010000000                  |                    | 2           | 2                 | - 2               |                   |                   |                   |                   |                   |                   |            |             | ~ ~               | 1           |   |
|                                  |                    | 2<br>2      | 2<br>2            | 2<br>2            | _                 | -                 | •                 | -                 | -                 | _                 | _          | 3           | 2                 |             |   |
| Majo                             | ority Vote:        | 2<br>2<br>1 | 2<br>2<br>2       | 2 2 2             | 2<br>3            | 2                 | 1                 | 2                 | 3                 | 2                 | 2          | 3<br>3<br>3 | 2<br>1<br>2       | 1<br>2<br>1 |   |
| Majo<br>Overall Majo             | -                  | 2           | 2                 | 2                 | 2                 | 2                 | 1                 | 2                 | 3                 | 2                 | 2          | 3           | 1                 | 2           | • |

| Training Set<br>Criterion: STDEV | Index:<br>Cell ID; | 131<br>201 | 132<br><b>202</b> | 133<br><b>203</b> | 134<br>204 | 135<br>205 | 136<br><b>206</b> | 137<br><b>207</b> | 138<br>208 | 139<br><b>209</b> | 140<br><b>210</b> | 141<br>211 | 142<br>213 | 143    |
|----------------------------------|--------------------|------------|-------------------|-------------------|------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|------------|--------|
| Feature Code                     | Cen ID.            | 201        | 202               | 203               | 204        | 200        | 200               | 207               | 208        | 209               | 210               | 211        | 213        | 214    |
| F-0420101000000                  |                    | 2          | 3                 | 3                 | 3          | 2          | 2                 | 2                 | 2          | 2                 | 3                 | 3          | 3          | 4      |
| F-0411111000000                  |                    | 2          | 3                 | 3                 | 1          | 1          | 2                 | 2                 | 2          | 2                 | 2                 | 3          | 3          | 1<br>3 |
| F-0410121000100                  |                    | 2          | 3                 | 3                 | 2          | 1          | 2                 | 2                 | 2          | 2                 | 3                 | 2          | 3          | 3      |
| F-0420102000000                  |                    | 2          | 3                 | 3                 | 3          | 1          | 2                 | 2                 | 2          | 1                 | 3                 | 3          | 2          | 3      |
| F-0041012010120                  |                    | 2          | 3                 | 3                 | 3          | ,<br>3     | 3                 | 2                 | 2          | 3                 | 2                 | 2          | 3          | 3      |
|                                  | ority Vote:        | 2          | 3                 | 3                 | 3          | 1          | 2                 | 2                 | 2          | 2                 | 3                 | 3          | 3          | 3      |
| Training Set                     |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| Criterion: NLM                   |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| Feature Code                     |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| F-0201010000000                  |                    | 2          | 4                 |                   | •          | ~          | ~                 | ~                 |            | •                 |                   | ~          |            |        |
| F-0/16/11110000000               |                    | 3<br>3     | 1                 | 1<br>1            | 2          | 2          | 2                 | 2                 | 1          | 2                 | 1                 | 2          | 1          | 1      |
| F-1420110100010                  |                    | 2          | 1                 | 1                 | 1          | 1          | 2                 | 2                 | 2          | 1                 | 1                 | 2          | 2          | 1      |
| F-1001020001000                  |                    | 23         | 1                 | 2                 | 1<br>2     | 2<br>2     | 2<br>2            | 2<br>2            | 2          | 2                 | 2                 | 3          | 3          | 1      |
| F-0110010000000                  |                    | 2          | 1                 | 2                 | 2          | 2          |                   |                   | 2          | 2                 | 3                 | 3          | 2          | 3      |
|                                  | ority Vote:        | 2          | 1                 |                   | <u> </u>   | 2          | 2                 | 2                 | 2          | 2                 | 1                 | 3          | 3<br>2/3   | 1      |
| majority vote.                   |                    | 3          | ľ                 |                   | I          | 2          | 2                 | 2                 | 2          | 2                 | 1                 | 3          | 2/3        | 1      |
| Overall Majo                     | ority Vote:        | 2          | 1/3               | 3                 | 1          | 2          | 2                 | 2                 | 2          | 2                 | 3                 | 3          | 3          | 1/3    |
|                                  |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| Training Set                     | index:             |            | 145               | 146               | 147        | 148        | 149               | 150               | 151        | 152               | 153               | 154        | 155        | 156    |
| Criterion: STDEV                 | Cell ID:           | 215        | 216               | 218               | 220        | 227        | 229               | 240               | 255        | 256               | 257               | 258        | 259        | 260    |
| Feature Code                     |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| F-0420101000000                  |                    | 2          | 2                 | 3                 | 1          | 3          | 1                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 2      |
| F-0411111000000                  |                    | 2          | 2                 | 3                 | 1          | 3          | 1                 | З                 | 3          | 1                 | 1                 | 3          | 3          | 3      |
| F-0410121000100                  |                    | 2          | 2                 | 3                 | 1          | 3          | 1                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 1      |
| F-0420102000000                  |                    | 2          | 2                 | 3                 | 1          | 3          | 1                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 2      |
| F-0041012010120                  |                    | 3          | 2                 | 2                 | 1          | 1          | 1                 | 3                 | 3          | 1                 | 1                 | 1          | 1          | 2      |
| Maje                             | ority Vote:        | 2          | 2                 | 3                 | 1          | 3          | 1                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 2      |
| Training Set                     |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| Criterion: NLM                   |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| Feature Code                     |                    |            |                   |                   |            |            |                   |                   |            |                   |                   |            |            |        |
| F-0201010000000                  |                    | 2          | 2                 | 1                 | з          | 3          | 3                 | 3                 | 2          | 1                 | 1                 | 3          | 3          | 3      |
| F-0/16/11110000000               |                    | 2          | 2                 | 1                 | 3          | 3          | 3                 | 3                 | 2          | 1                 | 1                 | 3          | 3          | 1      |
| F-1420110100010                  |                    | 2          | 2                 | 1                 | 3          | 3          | 3                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 1      |
| F-1001020001000                  |                    | 2          | 2                 | 2                 | 1          | 3          | 3                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 3      |
| F-0110010000000                  |                    | 2          | 2                 | 1                 | 1          | 3          | 3                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 1      |
| Maj                              | ority Vote:        | 2          | 2                 | 1                 | 3          | 3          | 3                 | 3                 | 3          | 1                 | 1                 | 3          | 3          | 1      |
| Overall Maj                      | ority Vote:        | 2          | 2                 | 1/3               | 1          | 3          | 1/3               | 3                 | з          | 1                 | 1                 | 3          | 3          | 1      |

| Training Set<br>Criterion: STDEV | Index:<br>Cell ID: | -   | 158<br><b>264</b> | 159<br><b>268</b> | 160<br><b>269</b> | 161<br><b>270</b> | 162<br><b>271</b> | 163<br><b>272</b> | 164<br><b>274</b> | 165<br><b>275</b> | 166<br>277 | 167<br><b>27</b> 9 | 168<br><b>280</b> | 169<br><b>281</b> |
|----------------------------------|--------------------|-----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|--------------------|-------------------|-------------------|
| Feature Code                     | Cell ID:           | 201 | 204               | 200               | 209               | 270               | 2/1               | 212               | £14               | 413               | 211        | 213                | 200               | £01               |
|                                  |                    |     | 4                 | 4                 | ~                 | 4                 | 0                 | 4                 | 2                 | 3                 | 4          | 4                  | 1                 | -                 |
| F-0420101000000                  |                    | 1   | 1                 | 1                 | 3                 | 1                 | 3                 | 1                 | 2                 | ى<br>1            | 1<br>1     | 1<br>1             |                   | 1<br>1            |
| F-0411111000000                  |                    | 1   | 1                 | 1                 | 3                 | 1                 | 3                 | •                 | -                 | -                 | -          | -                  | 1                 |                   |
| F-0410121000100                  |                    | 1   | 1                 | 1                 | 3                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1          | 1                  | 1                 | 1                 |
| F-0420102000000                  |                    | 1   | 1                 | 1                 | 3                 | 1                 | 3                 | 1                 | 2                 | 3                 | 1          | 1                  | 1                 | 1                 |
| F-0041012010120                  |                    | 1   | 1                 | 1                 | 3                 | 1                 | 1 3               | 3                 | 2                 | 1                 | 3          | 1                  | 1                 | 1                 |
| Majo                             | rity Vote:         | 1   | 1                 | 1                 | 3                 | I                 | 3                 | 1                 | 2                 | I                 | 1          | 1                  | I                 | 1                 |
| Training Set                     |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| Criterion: NLM                   |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| Feature Code                     |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| F-0201010000000                  |                    | 1   | 1                 | 1                 | 1                 | 1                 | 3                 | 3                 | 1                 | 1                 | 1          | 3                  | 1                 | 1                 |
| F-0/16/11110000000               |                    | 1   | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 2          | 3                  | 1                 | 1                 |
| F-1420110100010                  |                    | 1   | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 3                 | 2          | 1                  | 1                 | 1                 |
| F-1001020001000                  |                    | 1   | 1                 | 1                 | 1                 | 1                 | 1                 | 3                 | 1                 | 3                 | 1          | 3                  | 1                 | 1                 |
| F-011001000000                   |                    | 1   | 1                 | 1                 | 1                 | 1                 | 3                 | 1                 | 2                 | 1                 | 2          | 1                  | 1                 | 1                 |
| Majo                             | rity Vote:         | 1   | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 1                 | 2          | 3                  | 1                 | 1                 |
| O                                |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| Overall Majo                     | ority vote:        | 1   | 1                 | 1                 | 1/3               | 1                 | 1/3               | 1                 | 1                 | 1                 | 1          | 1                  | 1                 | 1                 |
|                                  |                    |     |                   |                   | _                 |                   |                   |                   |                   | _                 |            |                    |                   |                   |
| Training Set                     | Index:             |     | 171               | 172               | 173               | 174               | 175               | 176               | 177               | 178               | 179        | 180                | 181               | 182               |
| Criterion: STDEV                 | Cell ID:           | 282 | 283               | 284               | 285               | 287               | 288               | 289               | <b>29</b> 0       | 291               | 292        | 293                | 295               | 296               |
| Feature Code                     |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| F-0420101000000                  |                    | 1   | 1                 | 3                 | 2                 | 1                 | 3                 | 2                 | 1                 | 2                 | 2          | 1                  | 3                 | 3                 |
| F-0411111000000                  |                    | 1   | 1                 | 3                 | 2                 | 1                 | 3                 | 2                 | 2                 | 1                 | 2          | 1                  | 2                 | 1                 |
| F-0410121000100                  |                    | 1   | 1                 | 1                 | 2                 | 1                 | 3                 | 2                 | 1                 | 2                 | 2          | 1                  | 2                 | 1                 |
| F-0420102000000                  |                    | 1   | 1                 | 1                 | 2                 | 1                 | 3                 | 2                 | 1                 | 2                 | 1          | 1                  | 3                 | 3                 |
| F-0041012010120                  |                    | 1   | 1                 | 3                 | 2                 | 1                 | 3                 | 1                 | 2                 | 1                 | 1          | 1                  | 2                 | 3                 |
| Majo                             | ority Vote:        | 1   | 1                 | 3                 | 2                 | 1                 | 3                 | 2                 | 1                 | 2                 | 2          | 1                  | 2                 | 3                 |
| Training Set                     |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| Criterion: NLM                   |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| Feature Code                     |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |
| F-0201010000000                  |                    | 3   | 3                 | 1                 | 2                 | 2                 | 1                 | 1                 | 1                 | 2                 | 1          | 1                  | 1                 | 1                 |
| F-0/16/11110000000               |                    | 1   | 1                 | 1                 | 2                 | 2                 | 2                 | 2                 | 3                 | 2                 | 2          | 1                  | 2                 | 2                 |
| F-1420110100010                  |                    | 3   | 1                 | 2                 | 3                 | 1                 | 2                 | 2                 | 3                 | 3                 | 2          | 3                  | 2                 | 2                 |
| F-1001020001000                  |                    | 3   | 1                 | 2                 | 2                 | 2                 | 1                 | 1                 | 3                 | 2                 | 1          | 1                  | 1                 | 1                 |
| F-0110010000000                  |                    | 3   | 1                 | 2                 | 2                 | 2                 | 2                 | 2                 | 1                 | 2                 | 2          | 2                  | 2                 | 2                 |
|                                  | ority Vote:        | -   | 1                 | 2                 | 2                 | 2                 | 2                 | 2                 | 3                 | 2                 | 2          | 1                  | 2                 | 2                 |
| Overall Maj                      | ority Vote:        | 1   | 1                 | 1                 | 2                 | 1                 | 3                 | 2                 | 1                 | 2                 | 2          | 1                  | 2                 | 1                 |
|                                  |                    |     |                   |                   |                   |                   |                   |                   |                   |                   |            |                    |                   |                   |

| Training Set<br>Criterion: STDEV                                                                                                                                                                                                                                          | index:<br>Cell ID:      |                                                                 | 184                                                                  | 185                                                               | 186                                                   | 187                                                                  | 188                                                                  | 189                                                                                   | 190                                              | 191                                                        | 192                                                             | 193                                                             | 194                                                | 195                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Feature Code                                                                                                                                                                                                                                                              | Cell ID:                | 300                                                             | 301                                                                  | 302                                                               | 304                                                   | 305                                                                  | 306                                                                  | 308                                                                                   | 309                                              | 310                                                        | 311                                                             | 312                                                             | 313                                                | 314                                                                                           |
| F-0420101000000                                                                                                                                                                                                                                                           |                         | •                                                               |                                                                      | ~                                                                 | •                                                     | ~                                                                    | ~                                                                    |                                                                                       | ~                                                |                                                            |                                                                 | ~                                                               | ~                                                  |                                                                                               |
| F-0411111000000                                                                                                                                                                                                                                                           |                         | 2<br>3                                                          | 1<br>1                                                               | 3<br>1                                                            | 2<br>3                                                | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 2<br>3                                                          | 2                                                  | 1                                                                                             |
| F-0410121000100                                                                                                                                                                                                                                                           |                         | 3<br>2                                                          | 3                                                                    | 1                                                                 | 3                                                     | 3<br>3                                                               | 1<br>3                                                               | 1<br>1                                                                                | 3                                                | 1                                                          | 1                                                               | 3<br>3                                                          | 3                                                  | 1                                                                                             |
| F-0420102000000                                                                                                                                                                                                                                                           |                         |                                                                 | -                                                                    | -                                                                 |                                                       |                                                                      | -                                                                    | -                                                                                     | 3                                                | •                                                          | •                                                               | -                                                               | 3                                                  | 1                                                                                             |
| F-0420102000000<br>F-0041012010120                                                                                                                                                                                                                                        |                         | 3<br>2                                                          | 1                                                                    | 3                                                                 | 2                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 3                                                               | 2                                                  | 2                                                                                             |
|                                                                                                                                                                                                                                                                           | rite Vote.              | 2                                                               | 3                                                                    | 3                                                                 | 2                                                     | 2                                                                    | 3                                                                    | 1                                                                                     | 2                                                | 3                                                          | 3                                                               | 3                                                               | 1                                                  | 2                                                                                             |
| maju                                                                                                                                                                                                                                                                      | rity Vote:              | 2                                                               | I                                                                    | 3                                                                 | 2                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 3                                                               | 2/3                                                | 1                                                                                             |
| Training Set                                                                                                                                                                                                                                                              |                         |                                                                 |                                                                      |                                                                   |                                                       |                                                                      |                                                                      |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
| Criterion: NLM                                                                                                                                                                                                                                                            |                         |                                                                 |                                                                      |                                                                   |                                                       |                                                                      |                                                                      |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
| Feature Code                                                                                                                                                                                                                                                              |                         |                                                                 |                                                                      |                                                                   |                                                       |                                                                      |                                                                      |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
| F-0201010000000                                                                                                                                                                                                                                                           |                         | 3                                                               | 3                                                                    | 1                                                                 | 3                                                     | 3                                                                    | 3                                                                    | 2                                                                                     | 3                                                | 1                                                          | 1                                                               | 3                                                               | 1                                                  | 1                                                                                             |
| F-0/16/11110000000                                                                                                                                                                                                                                                        |                         | 1                                                               | 1                                                                    | 1                                                                 | 3                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 3                                                               | 2                                                  | 1                                                                                             |
| F-1420110100010                                                                                                                                                                                                                                                           |                         | 1                                                               | 1                                                                    | 1                                                                 | 2                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 2                                                               | 1                                                  | 1                                                                                             |
| F-1001020001000                                                                                                                                                                                                                                                           |                         | 1                                                               | 1                                                                    | 1                                                                 | 3                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 3                                                          | 3                                                               | 2                                                               | 1                                                  | 3                                                                                             |
| F-011001000000                                                                                                                                                                                                                                                            |                         | 3                                                               | 1                                                                    | 3                                                                 | 2                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 2                                                | 3                                                          | 1                                                               | 2                                                               | 2                                                  | 1                                                                                             |
| Majo                                                                                                                                                                                                                                                                      | rity Vote:              | 1                                                               | 1                                                                    | 1                                                                 | 3                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 2                                                               | 1                                                  | 1                                                                                             |
|                                                                                                                                                                                                                                                                           |                         | •                                                               |                                                                      |                                                                   | ~                                                     | •                                                                    | -                                                                    |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
| Overall Majo                                                                                                                                                                                                                                                              | onty vote:              | 3                                                               | 1                                                                    | 1                                                                 | 2                                                     | 3                                                                    | 3                                                                    | 1                                                                                     | 3                                                | 1                                                          | 1                                                               | 3                                                               | 1/2                                                | 1                                                                                             |
|                                                                                                                                                                                                                                                                           |                         |                                                                 |                                                                      |                                                                   |                                                       |                                                                      |                                                                      |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
|                                                                                                                                                                                                                                                                           |                         |                                                                 |                                                                      |                                                                   |                                                       | 000                                                                  | 201                                                                  | 202                                                                                   | 203                                              | 204                                                        | 205                                                             | 206                                                             | 207                                                | 208                                                                                           |
| Training Set                                                                                                                                                                                                                                                              | Index:                  | 196                                                             | 197                                                                  | 198                                                               | 199                                                   | 200                                                                  | 201                                                                  | 202                                                                                   |                                                  | 204                                                        | 200                                                             | 200                                                             | 207                                                | 200                                                                                           |
| Training Set<br>Criterion: STDEV                                                                                                                                                                                                                                          | Index:<br>Cell ID:      |                                                                 | 197<br><b>317</b>                                                    | 198<br><b>318</b>                                                 | 199<br><b>320</b>                                     | 200<br><b>321</b>                                                    | 322                                                                  | 323                                                                                   | 324                                              | 325                                                        | 205<br>326                                                      | 200<br><b>327</b>                                               | 328                                                | 329                                                                                           |
| -                                                                                                                                                                                                                                                                         |                         |                                                                 |                                                                      |                                                                   |                                                       |                                                                      |                                                                      |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
| Criterion: STDEV                                                                                                                                                                                                                                                          |                         |                                                                 |                                                                      |                                                                   |                                                       |                                                                      |                                                                      |                                                                                       |                                                  |                                                            |                                                                 |                                                                 |                                                    |                                                                                               |
| Criterion: STDEV<br>Feature Code                                                                                                                                                                                                                                          |                         | 315                                                             | 317                                                                  | 318                                                               | 320                                                   | 321                                                                  | 322                                                                  | 323                                                                                   | 324                                              | 325                                                        | 326                                                             | 327                                                             | 328                                                | 329                                                                                           |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000                                                                                                                                                                                                                       |                         | <b>315</b>                                                      | 317<br>1                                                             | 318<br>3                                                          | <b>320</b>                                            | 321<br>1                                                             | <b>322</b>                                                           | <b>323</b><br>3                                                                       | <b>324</b>                                       | <b>325</b>                                                 | <b>326</b>                                                      | <b>327</b>                                                      | 328<br>1                                           | <b>329</b><br>3                                                                               |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000                                                                                                                                                                                                    |                         | <b>315</b><br>1                                                 | 317<br>1<br>1                                                        | <b>318</b><br>3<br>3                                              | <b>320</b><br>2<br>2                                  | 321<br>1<br>1                                                        | <b>322</b><br>3<br>1                                                 | <b>323</b><br>3<br>2                                                                  | <b>324</b><br>1                                  | 325<br>1<br>1                                              | <b>326</b><br>3<br>3                                            | 327<br>1<br>1                                                   | <b>328</b><br>1<br>3                               | <b>329</b><br>3<br>3                                                                          |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100                                                                                                                                                                                 |                         | 315<br>1<br>1                                                   | 317<br>1<br>1<br>1                                                   | <b>318</b><br>3<br>3<br>3<br>3                                    | 320<br>2<br>2<br>2                                    | 321<br>1<br>1                                                        | <b>322</b><br>3<br>1<br>3                                            | 323<br>3<br>2<br>2                                                                    | <b>324</b><br>1<br>1                             | 325<br>1<br>1                                              | 326<br>3<br>3<br>3<br>3                                         | 327<br>1<br>1                                                   | 328<br>1<br>3<br>3                                 | <b>329</b><br>3<br>3<br>3<br>3                                                                |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120                                                                                                                                           |                         | 315<br>1<br>1<br>1                                              | 317<br>1<br>1<br>1                                                   | 318<br>3<br>3<br>3<br>3<br>3                                      | 320<br>2<br>2<br>2<br>3                               | 321<br>1<br>1<br>1                                                   | 322<br>3<br>1<br>3<br>1                                              | 323<br>3<br>2<br>2<br>2<br>2                                                          | <b>324</b> 1 1 1 1                               | 325<br>1<br>1<br>1<br>3                                    | 326<br>3<br>3<br>3<br>3<br>3                                    | 327<br>1<br>1<br>1<br>3                                         | <b>328</b><br>1<br>3<br>3<br>1                     | 329<br>3<br>3<br>3<br>3<br>3                                                                  |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120                                                                                                                                           | Cell ID:                | 315<br>1<br>1<br>1<br>1<br>3                                    | 317<br>1<br>1<br>1<br>1<br>1                                         | 318<br>3<br>3<br>3<br>3<br>3<br>3<br>3                            | 320<br>2<br>2<br>2<br>3<br>1                          | 321<br>1<br>1<br>1<br>1<br>3                                         | 322<br>3<br>1<br>3<br>1<br>1                                         | 323<br>3<br>2<br>2<br>2<br>2<br>3                                                     | 324<br>1<br>1<br>1<br>1<br>1                     | 325<br>1<br>1<br>3<br>3                                    | 326<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 327<br>1<br>1<br>3<br>1                                         | 328<br>1<br>3<br>3<br>1<br>1                       | 329<br>3<br>3<br>3<br>3<br>3<br>3                                                             |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo                                                                                                                                   | Cell ID:                | 315<br>1<br>1<br>1<br>1<br>3                                    | 317<br>1<br>1<br>1<br>1<br>1                                         | 318<br>3<br>3<br>3<br>3<br>3<br>3<br>3                            | 320<br>2<br>2<br>2<br>3<br>1                          | 321<br>1<br>1<br>1<br>1<br>3                                         | 322<br>3<br>1<br>3<br>1<br>1                                         | 323<br>3<br>2<br>2<br>2<br>2<br>3                                                     | 324<br>1<br>1<br>1<br>1<br>1                     | 325<br>1<br>1<br>3<br>3                                    | 326<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 327<br>1<br>1<br>3<br>1                                         | 328<br>1<br>3<br>3<br>1<br>1                       | 329<br>3<br>3<br>3<br>3<br>3<br>3                                                             |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo<br>Training Set                                                                                                                   | Cell ID:                | 315<br>1<br>1<br>1<br>1<br>3                                    | 317<br>1<br>1<br>1<br>1<br>1                                         | 318<br>3<br>3<br>3<br>3<br>3<br>3<br>3                            | 320<br>2<br>2<br>2<br>3<br>1                          | 321<br>1<br>1<br>1<br>1<br>3                                         | 322<br>3<br>1<br>3<br>1<br>1                                         | 323<br>3<br>2<br>2<br>2<br>2<br>3                                                     | 324<br>1<br>1<br>1<br>1<br>1                     | 325<br>1<br>1<br>3<br>3                                    | 326<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 327<br>1<br>1<br>3<br>1                                         | 328<br>1<br>3<br>3<br>1<br>1                       | 329<br>3<br>3<br>3<br>3<br>3<br>3                                                             |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo<br>Training Set<br>Criterion: NLM                                                                                                 | Cell ID:                | 315<br>1<br>1<br>1<br>3<br>1                                    | 317<br>1<br>1<br>1<br>1<br>1                                         | 318<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                       | <b>320</b><br>2<br>2<br>2<br>3<br>1<br>2              | 321<br>1<br>1<br>1<br>3<br>1                                         | <b>322</b><br>3<br>1<br>3<br>1<br>1<br>1                             | <b>323</b> 3 2 2 2 3 2 2 3                                                            | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 325<br>1<br>1<br>3<br>3<br>1                               | <b>326</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3                   | <b>327</b> 1 1 1 3 1 1 1                                        | <b>328</b> 1 3 3 1 1 1                             | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                        |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo<br>Training Set<br>Criterion: NLM<br>Feature Code<br>F-0201010000000                                                              | Cell ID:                | 315<br>1<br>1<br>1<br>1<br>3                                    | 317<br>1<br>1<br>1<br>1<br>1                                         | 318<br>3<br>3<br>3<br>3<br>3<br>3<br>3                            | 320<br>2<br>2<br>2<br>3<br>1                          | 321<br>1<br>1<br>1<br>3<br>1                                         | <b>322</b><br>3<br>1<br>3<br>1<br>1<br>1<br>3                        | <b>323</b><br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2                          | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 325<br>1<br>1<br>3<br>3<br>1                               | <b>326</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3              | <b>327</b> 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | <b>328</b> 1 3 1 1 1 2                             | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                   |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo<br>Training Set<br>Criterion: NLM<br>Feature Code                                                                                 | Cell ID:                | 315<br>1<br>1<br>1<br>3<br>1<br>3                               | 317<br>1<br>1<br>1<br>1<br>1<br>1                                    | 318<br>3<br>3<br>3<br>3<br>3<br>3<br>3                            | 320<br>2<br>2<br>2<br>3<br>1<br>2                     | 321<br>1<br>1<br>1<br>3<br>1                                         | <b>322</b><br>3<br>1<br>3<br>1<br>1<br>1                             | <b>323</b> 3 2 2 2 3 2 2 3                                                            | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 325<br>1<br>1<br>3<br>3<br>1                               | <b>326</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3                   | 327<br>1<br>1<br>1<br>3<br>1<br>1<br>1                          | <b>328</b> 1 3 1 1 1 2 1                           | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                         |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0411111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo<br>Training Set<br>Criterion: NLM<br>Feature Code<br>F-0201010000000<br>F-0/16/11110000000                                        | Cell ID:                | 315<br>1<br>1<br>1<br>3<br>1<br>3<br>1                          | 317<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | <b>318</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1           | 320<br>2<br>2<br>2<br>3<br>1<br>2<br>1<br>1<br>1      | 321<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1                     | 322<br>3<br>1<br>3<br>1<br>1<br>1<br>3<br>3<br>3<br>1                | <b>323</b><br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>1                | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <b>325</b><br>1<br>1<br>3<br>3<br>1<br>2<br>1<br>1         | 326<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1                | <b>327</b> 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | <b>328</b> 1 3 1 1 1 2 1 1 1                       | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0410111000000<br>F-0410121000100<br>F-0420102000000<br>F-0041012010120<br>Majo<br>Training Set<br>Criterion: NLM<br>Feature Code<br>F-0201010000000<br>F-0/16/1111000000<br>F-0/16/1111000000<br>F-1420110100010 | Cell ID:                | 315<br>1<br>1<br>1<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3      | 317<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <b>318</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>3 | 320<br>2<br>2<br>2<br>3<br>1<br>2<br>1<br>1<br>1<br>2 | 321<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1                | 322<br>3<br>1<br>3<br>1<br>1<br>1<br>3<br>3<br>3<br>1<br>3           | <b>323</b><br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>3           | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 325<br>1<br>1<br>3<br>3<br>1<br>1<br>2<br>1<br>1<br>3      | <b>326</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>3    | <b>327</b><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2         | <b>328</b> 1 3 1 1 1 2 1 1 3                       | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0410121000100<br>F-041012000000<br>F-041012010120<br>Majo<br>Training Set<br>Criterion: NLM<br>Feature Code<br>F-020101000000<br>F-0/16/1111000000<br>F-0/16/111100010<br>F-1001020001000<br>F-0110010000000     | Cell ID:<br>prity Vote: | 315<br>1<br>1<br>1<br>3<br>1<br>3<br>1                          | 317<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | <b>318</b><br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1           | 320<br>2<br>2<br>2<br>3<br>1<br>2<br>1<br>1<br>1      | 321<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1                     | 322<br>3<br>1<br>3<br>1<br>1<br>1<br>3<br>3<br>3<br>1                | <b>323</b><br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>1                | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <b>325</b><br>1<br>1<br>3<br>3<br>1<br>2<br>1<br>1         | 326<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1                | <b>327</b> 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | <b>328</b> 1 3 1 1 1 2 1 1 1                       | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     |
| Criterion: STDEV<br>Feature Code<br>F-0420101000000<br>F-0410121000100<br>F-041012000000<br>F-041012010120<br>Majo<br>Training Set<br>Criterion: NLM<br>Feature Code<br>F-020101000000<br>F-0/16/1111000000<br>F-0/16/111100010<br>F-1001020001000<br>F-0110010000000     | Cell ID:<br>prity Vote: | 315<br>1<br>1<br>1<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1 | 317<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <b>318</b><br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>3<br>3 | 320<br>2<br>2<br>2<br>3<br>1<br>2<br>1<br>1<br>2<br>1 | 321<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 322<br>3<br>1<br>3<br>1<br>1<br>1<br>3<br>3<br>3<br>1<br>3<br>3<br>3 | <b>323</b><br>3<br>2<br>2<br>2<br>3<br>2<br>2<br>3<br>2<br>2<br>2<br>2<br>1<br>3<br>1 | <b>324</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 325<br>1<br>1<br>3<br>3<br>1<br>1<br>2<br>1<br>1<br>3<br>1 | 326<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>3<br>1<br>3 | 327<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>3 | <b>328</b> 1 3 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 | 329<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |

-

| Training Set                   | Index:    | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
|--------------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Criterion: STDEV               | Cell ID:  | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 |
| Feature Code                   |           |     |     |     |     |     |     |     |     |     |     |     |
| F-0420101000000                |           | 2   | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 3   | 1   | 1   |
| F-0411111000000                |           | 2   | 1   | 1   | 2   | 1   | 3   | 1   | 1   | 3   | 1   | 3   |
| F-0410121000100                |           | 3   | 1   | 1   | 3   | 3   | 3   | 1   | 1   | 3   | 1   | 3   |
| F-0420102000000                |           | 2   | 1   | 1   | 2   | 1   | 3   | 1   | 1   | 3   | 1   | 3   |
| F-0041012010120                |           | 3   | 1   | 1   | 3   | 3   | 1   | 1   | 1   | 3   | 1   | 3   |
| Major                          | ity Vote: | 2   | 1   | 1   | 2   | 1   | 3   | 1   | 1   | 3   | 1   | 3   |
| Training Cat                   |           |     |     |     |     |     |     |     |     |     |     |     |
| Training Set<br>Criterion: NLM |           |     |     |     |     |     |     |     |     |     |     |     |
| Feature Code                   |           |     |     |     |     |     |     |     |     |     |     |     |
| F-0201010000000                |           | 3   |     |     | ~   | ~   | ~   | ~   | ~   | ~   |     | •   |
|                                |           | -   | 1   |     | 3   | 3   | 3   | 3   | 3   | 3   | 1   | 3   |
| F-0/16/11110000000             |           | 3   | 1   | 1   | 3   | 1   | 3   | 1   | 3   | 3   | 1   | 1   |
| F-1420110100010                |           | 1   | 1   | 1   | 3   | 1   | 1   | 1   | 3   | 3   | 1   | 1   |
| F-1001020001000                |           | 3   | 3   | 1   | 3   | 3   | 1   | 1   | 1   | 3   | 1   | 3   |
| F-011001000000                 |           | 3   | 1   | 1   | 3   | 1   | 1   | 1   | 1   | 3   | 3   | 1   |
| Major                          | ity Vote: | 3   | 1   | 1   | 3   | 1   | 1   | 1   | 3   | 3   | 1   | 1   |
| Overall Major                  | ity Vote: | 3   | 1   | 1   | 3   | 1   | 1/3 | 1   | 1   | 3   | 1   | 3   |

1 - er - age 2 - r

#### VIII. Bibliography

- 1. Perone, S. P.; Ziemer, J. N.; Caprioli, R. M.; Seifert, W. E. Anal. Chem. 1979, <u>51</u>, 1732.
- 2. Byers, W. A.; Freiser, B. S.; Perone, S. P. Anal. Chem. 1983, 55, 620.
- Forbes, R. A.; Tews, E. C.; Huang, Y.; Freiser, B. S.; Perone, S. P. Anal. Chem. 1987, <u>59</u>, 1937.
- 4. Depalma, R. A.; Perone, S. P. Anal. Chem. 1979, <u>51</u>, 825.
- 5. Schachterle, S. D.; Perone, S. P. Anal. Chem. 1981, 53, 1672.
- 6. Byers, W. A.; Perone, S. P. Ancl. Chem. 1983, 55, 615.
- 7. Perone, S. P.; Ham, C. L. J. Res. Natl. Bureau of Standards 1985, 90, 6.
- 8. Byers, W. A.; Perone, S. P. J. Electrochem. Soc. 1979, 126, 5.
- 9. Perone, S. P.; Spindler, W. C. J. Power Sources 1984, 13, 23.
- Perone, S. P.; Spindler, W. C.; Presented at the 14th International Power Sources Symposium; Pierce, L. J., Ed., Brighton, September 1984.
- Perone, S. P.; Spindler, W. C.; Presented at the 2nd International Conference on Batteries for Utility Energy Storage, Newport Beach, CA, July 1989.
- Chen, P.-H. Master of Science Report, Department of Chemistry, San Jose State University, August 1991.
- Perone, S. P.; Petesch, R.; Chen, P.-H.; Spindler, W. C.; Deshpande', S. J. Power Sources 1992, <u>37</u>, 379-402.
- Massart, D. L; Vandeginste, B. G. M.; Deming, S. N.; Michotte, Y.; Kaufman, L. *Chemometrics: a textbook*; Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 1988; Vol. 2.

- Meisel, W. S. Computer-Oriented Approaches to Pattern Recognition; Bellman, R., Ed.; Mathematics in Science and Engineering; Academic Press: New York, 1972; Vol. 83.
- Patrick, E. A. Fundamentals of Pattern Recognition; Kailath, T., Ed.; Information and System Sciences Series; Prentice-Hall: New Jersey, 1972.
- Fu, K. S. Sequential Methods in Pattern Recognition and Machine Learning; Bellman, R., Ed.; Mathematics in Science and Engineering; Academic Press: New York, 1968; Vol. 52.
- 18. Brereton, R. G. Chemometrics, Applications of Mathematics and Statistics to Laboratory Systems; Ellis Horwood: Chichester, England, 1990.
- Varmuza, K. Pattern Recognition in Chemistry; Berthier, G., et. al., Eds.; Lecture Notes in Chemistry; Springer-Verlag: New York, 1980; Vol. 21.
- Miller, J. C.; Miller, J. N. Statistics for Analytical Chemistry; Chalmers, R. A.; Masson, M., Eds.; Ellis Horwood: Chichester, England, 1984.
- 21. Thomas, Q. V., Perone, S. P. Anal. Chem. 1977, 49, 1369.
- 22. Thomas, Q. V.; DePalma, R. A.; Perone, S. P. Anal. Chem. 1977, 49, 1376.
- 23. Pichler, M. A.; Perone, S. P. Anal. Chem. 1974, 46, 1790.
- 24. Massart, D. L.; Kaufman, L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis; Elving, P. J.; et. al., Eds.; Chemical Analysis; John Wiley & Sons: New York, 1983; Vol. 65.
- 25. Massart, D. L; Dijkstra, A.; Kaufman, L. Evaluation and Optimization of Laboratory Methods and Analytical Procedures; Elsevier: Amsterdam, The Netherlands, 1978.
- 26. Fukunaga, K. Introduction to Statistical Pattern Recognition; Academic Press: New York, 1972.
- 27. Zahn, C. T. IEEE Trans. 1971, C-20, 69.

- 28. Sammon, J. W. IEEE Trans. 1969, C-18, 401.
- 29. Kowalski, B. R.; Bender, C. F. J. Amer. Chem. Soc. 1973, 95, 686.
- 30. Kowalski, B. R.; Bender, C. F. J. Amer. Chem. Soc. 1972, <u>94</u>, 5632.
- Morgan, E. Chemometrics: Experimental Design; John Wiley & Sons: New York, 1991.
- 32. Wadsworth, H. M. Handbook of Statistical Methods for Engineers and Scientists; Hauserman, R. W.; Stochmal, I. M., Eds.; McGraw-Hill: New York, 1990.
- Walpole, R. E.; Myers, R. H. Probability and Statistics for Engineers and Scientists, 4th Ed.; MacMillan: New York, 1989.
- Motive Power Batteries and Chargers; Instruction, Maintenance and Service Manual; Gould, Inc., 1976.
- 35. Bode, H. Lead-Acid Batteries; John Wiley & Sons: New York, 1977.
- McClellan, R. N.; Deshpande', S. L. 500-kWh Lead-Acid Battery for Peak-Shaving, Energy Storage. Testing and Evaluation; EPRI-EM3707, October 1984.
- 37. Perone, S. P.; Spindler, W. C.; Deshpande', S. L.; Presented at the 3rd International Conference on Batteries for Utility Energy Storage, Kobe, Japan, March 1991.
- 38. Perone, S. P.; Pattern Recognition Software Documentation; Private Communication.
- 39. Buydens, L.; Wehrens, R.; Lucasius, C.; Kateman, G. Proceedings from the Fifth International Conference on Chemometrics in Analytical Chemistry; Montreal, Canada, July 14-17, 1992. Proceedings to be published in future issue of Anal. Chimica Acta.
- 40. Cadisch, M.; Farkas, M.; Gloor, A.; Brodmeier, T.; Pretsch, E. Anal. Chimica Acta, ibid.
- 41. Lang, P. M.; Kalivas, J. H. Anal. Chimica Acta, ibid.
- 42. Bolck, A.; Smilde, A. K.; Doornbos, D. A. Anal. Chimica Acta, ibid.

- 43. Hendriks, M. M. W. B.; Coenegracht, P. M. J.; Doornbos, D. A. Anal. Chimica Acta, *ibid.*
- 44. Jarvis, T. D.; Kalivas, J. H. Anal. Chimica Acta, ibid.
- 45. Wold, S.; Johnsson, J.; Sjostrom, M.; Sandberg, M.; Rannar, S. Anal. Chimica Acta, *ibid*.
- 46. Rutan, S. C.; Poe, R. B. Anal. Chimica Acta, ibid.
- 47. Arranda, M. M. A.; Singh, A. K. Anal. Chimica Acta, ibid.
- 48. Borgen, O. S.; Ukkelberg, A. Anal. Chimica Acta, ibid.
- 49. Bos, A; Bos, M.; van der Linden, W. E. Anal. Chimica Acta, ibid.
- 50. Carlsson, A.; Janee, K. Anal. Chimica Acta, ibid.
- 51. Miah, M. J.; Garner, F. C.; Stapanian, M. A. Anal. Chimica Acta, ibid.
- 52. Bauer, K. M.; Stanley, J. S. Anal. Chimica Acta, ibid.
- 53. Baum, E. J. Anal. Chimica Acta, ibid.
- 54. Buydens, L.; Wehrens, R.; van Hoof, P.; Kateman, G. Anal. Chimica Acta, ibid.
- 55. Fry, F. S.; Chambers, T. L.; Totah, J. E.; Page, S. W. Anal. Chimica Acta, ibid.
- 56. Bertolin, M. Anal. Chimica Acta, ibid.
- 57. Bondarenko, I. I.; Treiger, B. A.; Rezuitskii, V. V. Anal. Chimica Acta, ibid.
- 58. Duineveld, K. A. A.; Smilde, A. K.; Doornbos, D. A. Anal. Chimica Acta, ibid.