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ABSTRACT

LEAD-ACID CELL PERFORMANCE PREDICTION
USING PATTERN RECOGNITION ANALYSIS

by
ROBERT M. PETESCH
Research Advisor: Dr. Sam P. Perone

Pattern recognition (PR) was used to correlate lead-acid cell capacity performance
with battery fabrication data. Fabrication data consisted of detailed documentation of
materials, electrolyte composition, and cell capacities during the manufacture and
conditioning of 340 (2080 amp-hr) lead-acid cells. PR was used to determine if fabrication
features could be used to classify individual cell performance. Cells were assigned to
different performance classes based on capacities determined for a 121-cell subset after 7
years of operation. Training sets were constructed for PR studies, and feature elimination
and statistical selection methods were used to develop classifiers which could accurately
identify high, low and intermediate capacity cells. Accurate classifiers frequently consisted
of electrolyte level measurements and adjustments to the latter at specific stages of
fabrication. Accuracies of 95% for high-low and 86% for high-low-intermediate class

recognition were obtained using K-nearest neighbor and cluster analysis methods.

© 1992, Robert M. Petesch



ACKNOWLEDGMENTS

I wish to express sincere gratitude to all those who helped with this project, and
loving appreciation to my wife Marjorie and my friends for their endless support. Whole-
hearted thanks go to Dr. Herbert Silber and Dr. Joseph Pesek for their help with the
manuscript and to San Jose State University for the use of the facilities. The Electric
Power Research Institute, Dr. William Spindler, and Dr. Sanjay Deshpande' are also
gratefully acknowledged for their contributions and for providing access to the GNB
battery database. Iam indebted to fellow research team member Pei-Hwei Chen for her
discussions of the cell maintenance data, and finally, I would like to extend sincere

appreciation to Dr. Sam Perone for his inspiration, guidance and many helpful discussions.

Y



TABLE OF CONTENTS

L Introduction. ..ttt et e e st enn e s e renn e aaa e rea 1
II. Multivariate Analysis and Pattern ReCOgNition.........cecceveecvreesreereveernensnnenens 3
A. Pattern Recognition Methods......ccccceeeeriiiiiiiieniiiiiricniieieiieeeeeeveeveeeee 3

1. Supervised Pattern RecOgNitioN......ccccceeveveeeerireerienrinerenineenenees 4

a. Linear Discriminant AnalySiS........ccceeeccrerieseeneresivneeenannens 4

b. Linear Learning Machine.....c.ccccocrririicirreccrenenenrreeneeennnnn, 6

¢. K-Nearest Neighbor AnalySiS.........cccceeeeriiiveemereeiiisineeenennee 7

2. Non-Supervised Pattern RecOgnition........cccceeevvereevrseerecrserneenne. 11

a. Cluster AnalySiS.....cccoiecriecirtnerereisiicernrererneeseeeesererensnns 11

b. Non-linear Mapping......ccoovceeiiiieciiniireiiiiceieieeineeneeeeeenen, 14

B. Feature Selection Methods......ccccervvieeiieeecenriiiieneccscnreer e 16

1. Correlation AnalysSiS....c.ccccveeccerreieereeirreeeeeerneeeseesneesesane 17

2. Fisher Ratio AnalysiS......c.ccccerierimrcririienieniieeiereeseessseenneenees 18

3. Univariate Discriminating POWET........cccccuvvveevveireresneeeeeseeseenn 18

4. Statistical DiStribUtIONS...ccivceerivrrereeeeeeiiciiieeeeiee e eae e 21

5. Systematic Selection.......cccccveeeveeeeiieeriiiiiiieiieeeineeeesereereeeaaas 25

6. Sequential Feature Elmination.........ccceeeeeeveveeerirereesereserueeesenne 25

I1I. Battery Description and Background............c.eeoeueeeeveecreeeneeeerssneesnesans 28
A. Properties and ConstruCtion.......cc.ueeeceveeevieiiierereeoresrereeeeeseesessaneens 28

B. Fabrication Features........cccccvvveirirecricnineeeicreereccesieee e sssssannees 32

(ORI < 110 o RPN 34



IV. Experimental Methods......cooreiiiiiiimiiiiiiiiieirreer e, 37
A. Instrumentation, Database and SOftwWare.........ccceeceverrirvveiecersrerereeenn 37

B.  ProCedures....cciiiiiiiiiiiiiiiii ittt reerr e e e eee s e renaaes 37

1. Database Information.......cccccceiierieriiiiniiiiiniinieeiennieenecneeeccennen 37

2. Data PreprocessSing....cccceceeeeeriemmennrreerraerrereeemnrcensrersrnseseenenns 38

3. Definition of Class BoUNdaries....c..ccceeieeermesieeeseeessrensesereneenanee 41

4. Feature SelectionsS.......c.cciieiiiiiiiiiiiiiiiiiiiiiiiiciieneecenieee e 46

IR #5130 1§ - SO 47

6. Classification ACCUTACY.....cccceirireccrerrerrrereeesrenrenssiereeessssanaranns 48

AR % £:11 53 § 1 - S RPNt 49

8. Pattern ReclassifiCationsS.....ccccccceereeerecueererirrisissseneeeeeenessneneeens 49

0. PrediCtiOnS...c.ciiueeeiiiiieirieeir et et errere e er e ee e aeaeaes 50

V. Results and DiSCUSSION...cicuuiieicieiiiiertitiincnnrrereaenrreenrerreseseneaeenes 52
A. Scope of Investigation........cccccccemmmmereiiiiieiieiineennieiiieeneenreneeseeeenens 52

B. 2-Class Study....ccccicioierierriiereiiccneiiiiiseeeerreeeseerreseeeseeensenesnneeeens 53

C. 3-Class StUAY...cicimiieeririeiieririreireeneieenereeeeseeeeeererresrasaseses 61
A2 SR 67¢) (10 11 T3 1+ ) 1 OO PRSP 82
VII  ADPENAICES. . iiuuiiiiiiiiruiiiiritieiiecie et eeiee ettt e e eenaeeestsrsneenneeennnennns 84
A. GNB Fabrication Data.......ccooeieieeeccieieiiieiiineneee e ceereann A-1

B. 1990 Capacity Test Data.......cccccevcrreerieecrieeenieiseresseereesnrecssnesssnns B-1

C. Correctly Classified Cells, Aberrant Cells and Replacement Cells.............. C-1

D. Prediction Results for Prediction Set Cells .....ccccceevverreevercescicerennes D-1

E. Prediction Results for Unknown Set Cells ....cccevvmrienneesvereerenneennns E-1
A28 0 PR 3100 STeT:4 1o ) o U 85

vi



LEAD-ACID CELL PERFORMANCE PREDICTION
USING PATTERN RECOGNITION ANALYSIS

I. Introduction

Multivariate analysis and computerized pattern recognition have been shown to be
useful tools in a variety of chemical analyses such as identification of amino acid sequences
in polypeptides [1], classification of herbicidal activity for nitrodiphenyl ethers [2] and
evaluation of several transition-metal ions as potential chemical ionization reagents [3].
Studies involving fundamental electrochemical measurements, such as those taken in
voltammetric determinations [4-7], have been useful in understanding the factors that
control electrochemical systems. Knowledge of electrochemical control factors is important
in the design of electrochemical cells which can meet stringent demands.

The quest for alternate forms of energy, and energy storage methods, has sparked
vigorous research into electrochemical cells. Of particular importance for energy storage
applications are cell lifetime and efficiency, and we have investigated pattern recognition for
prediction of these properties. The usefulness of pattern recognition has been demonstrated
in studies involving the prediction of nickel-cadmium [8] and lead-acid [9, 10} cell
lifetimes, based on initial acceptance test data. Results of these studies showed that a
multivariate examination of easily measurable properties allowed for the accurate prediction
(87-100%) of battery lifetimes. Data collected from fabrication, testing, and operation of
lead-acid cells [11] have been examined using cluster analysis to determine if natural
subsets of cells with similar performance properties could be identified.

The ultimate goal of our research is to determine and evaluate the information content
of electrochemical measurements, and to increase the understanding of chemical and
physical processes underlying electrochemical cells. The purpose of this particular study

was to determine if electrochemical and other measurements taken during lead-acid cell



fabrication contain the information content necessary for accurate prediction of cell
performance during its lifetime. In this work, the performance of a battery cell is equated
with its ability to deliver the rated capacity. The ability to distinguish between high and low
performing cells is important for allowing prior selection of superior cells and exclusion of
problem cells. This becomes particularly important for applications involving remote
measurement, space travel or situations involving large energy storage systems where cell
failure can be disastrous.

Factors which affect cell performance were determined and evaluated using pattern
recognition methods to clarify multivariate relationships among electrochemical
measurements taken during cell manufacture. This information was then used to classify
individual cells as to their performance capability. This present work is related to another
investigation that was conducted by our research group concerning pattern recognition
analysis of lead-acid cell maintenance data for the purpose of lead-acid cell performance

prediction [12, 13].



II. Multivariate Analysis and Pattern Recognition

Multivariate analysis can be defined simply as the analysis of a data matrix composed
of multiple samples for which several independent features have been measured. Advances
in instrumentation and hyphenated techniques have provided the ability to rapidly acquire
vast amounts of data for several parameters within a single assay.

The basic premise of pattern recognition is that a multivariate data matrix of
measurements on a system under study contains information that allows for the distinct
classification of each item subjected to the analysis [14]. Multiple measurements made to
characterize each item create a vector in multi-dimensional feature space which is located in
the same region of space as other items of the same class.

It is difficult for most people to visualize beyond three dimensions; however,
multivariate computational techniques can be used to examine pattern vectors in muiti-
dimensional feature space and are an invaluable tool in pattern recognition studies. Pattern
recognition is used in multivariate analysis to classify items from several measurable
features where the class distinction is not obvious from direct examination of the raw data.
The computer techniques aid in the detection of groups with similar patterns and in the
classification of items based on their proximity to items of known class in multi-
dimensional feature space. Additionally, computer mapping techniques can help in the

visualization of multi-dimensional feature space in two dimensions.

II.A. Pattern Recognition Methods

There exist many methods for pattern recognition, and much of the mathematical
proof and treatment of such problems have been addressed [15-17]. Generally, pattern
recognition methods fall into two categories: supervised and unsupervised pattern
recognition [14, 18, 19]. Supervised pattern recognition methods involve the utilization of

predetermined class models to enable the classification of individual items or unknowns. A



training set consisting of known items is used to develop suitable classifiers. The
classifiers are then tested on a different set of known items, the prediction set. Worthy
classifiers are then used to predict the class of each unknown item.

In contrast, unsupervised pattern recognition methods assume no prior knowledge of
any classes. Unsupervised methods employ cluster analysis or mapping techniques which
do not require a priori knowledge of the existence of specific classes. Clusters which form
in multi-dimensional feature space, or are observed visually upon plotting data in two or
three dimensions, are assumed to represent specific classes of items. Direct knowledge of
the origins of the raw data and the significance of observed clusters is needed to accurately
assess the identity and characteristics of a particular cluster. Some of the more common
methods of pattern recognition, which have been used to study electrochemical cells [8-13],

are discussed below.

ILLA.1. Supervised Pattern Recognition

In supervised pattern recognition, items are classified based on their proximity to
defined class models. There are several ways to perform these classifications, and the most

common of these are discussed next.

ILA.l.a. Linear Discriminant Analysis

Linear discriminant analysis (LDA) was first developed by the statistician R. A.
Fisher [17] as a means for classifying an object as belonging to one of two classes.
Essentially, a mathematical discriminant function is sought (using a training set of known-
class patterns) which linearly separate the two classes in pattern space (Figure 1). Each
item in the izh class can be described by a linear combination of feature elements, X,, X,
Xp - » Xx, which when multiplied by a weight vector, w;, W Wy, ... , Wy, Wi yields

a pattern vector located in the spatial region for class i [15, 17].
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Figure 1. Linear discriminant analysis of unknown item X. A plot of feature A versus B produces two
distinct groups, classes S1 and S2, which are separated by a linear boundary. The unknown X is located on
the side belonging to S1 and hence is assigned as such.



The general pattern vector for class i takes the following form:
N .
S,(X) = k2=',1wika +w;n Wherei=1,..,m 6))

A similar generalized pattern vector, S;(X), can be written for items in class j. A decision

boundary between the regions is defined by eq 2.
N

where wk = wy - wy

and Wy, = Wineg - Winep.

The discriminant function described by eq 2 is a line, plane, or hyperplane which
divides feature space into two regions assigned to different classes. The computed value of
the discriminant for each pattern is either positive (+) or negative (-) depending on whether
the item belongs to one class or the other. LDA methods have been useful for electrical

engineering applications which involve pattern recognition {16].

IL.A.1.b. Linear Learning Machine

The linear learning machine (LLM) method is commonly used in chemical pattern
recognition {12, 14, 18, 19, 17, 20]. The LLM method of classification involves repetitive
calculations which seek to find a linear discriminant that can separate two clusters of
training set objects in N-feature space. The discriminant function shown in eq 3 is similar

to eq 2.

N
S = Y wX; +wy, 3)

The discriminant, S, is > 0 on one side of the plane and < 0 on the other. An
arbitrary decision plane is selected and each object in a training set is classified based on

which side of the plane it is located. If any object is misclassified, the weight vectors, w,



are altered to adjust the decision plane, and the object is reclassified. This procedure
continues iteratively to convergence until all training set objects are classified correctly, or
until the LM reaches maximum classification accuracy. The resulting discriminant
function is then used to classify unknown objects. Training time can be extensive with the
LILM method, but unknown pattern classifications are fast. Of course the underlying
assumption in this method is that the two classes can be separated by a linear discriminant.

Sometimes linear separation is not possible, so one must use discriminants which
give the highest possible accuracy, or use a least squares method to find the best line
through the two groups. Another option is to define a "dead-zone" between the two
groups, i.e. aregion between the classes where objects cannot be unambiguously classified
(Figure 2). Objects falling on either side of the dead-zone can be classified correctly. If the
dead-zone is too large and many objects are within it, it may be beneficial to use a quadratic
or other type of function to separate the clusters.

LIM methods have been used to classify and resolve voltammetric data [5, 21, 22]
and have been applied in systematic approaches to pattern recognition analysis of chemical
data {23]. LLM was found to be useful in screening out ineffective features prior to

analysis by other classification methods.

II.A.1.c. K-Nearest Neighbor Analysis

Another commonly used method for making classification decisions is the K-nearest
neighbor (KNN) method. This method is useful when no linear discriminant exists that
will separate the clusters in a data set. It is also useful for multi-category classifications.
The essential premise is that an unknown object X is assigned to the same class as that of
its K-nearest neighbors, as illustrated in Figure 3 {15, 16, 23]. According to Patrick [16],
similar KNN decision methods have been proposed [Fix and Hodges, 1951; Cover and
Hart, 1966] known as the KNN; and KNN- decision rules.



I dead-zone

Figure 2. An example of two classes which cannot be separated by a linear discriminant. Designation of a
dead-zone between the classes enables the distinction between classifications made outside and those made
inside the dead-zone, where classification is ambiguous.
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Figure 3. Nearest neighbor analysis of item X of unknown class. Item is classified based on the class of

its nearest neighbors of known class. Note that there is no linear discriminant which can separate the
classes.



Patrick introduced the third rule, KNN3, which is described above and will be
referred to as the KNN method for simplicity. Distances, Dy, between any two objects, j

and k, are calculated using the Euclidean distance formula [19].

N ) 172
Dy = i);,[("ji " Xg) ] Q)

where x;; and xy; are values for the i-th feature for items j and k. The distance
measurements are compared and the unknown is assigned to the class of its K-nearest
neighbors. The value of K can be greater than one; however, it is customary to choose an
odd number to prevent an equally split vote. If an even number is picked for K, some sort
of voting scheme must be used to prevent a split vote [20].

The main advantage of the KNN method is that it can be applied to non-linear
classification problems and is suitable for multi-class identifications. There is no inherent
training involved. All patterns, known and unknown, are analyzed simultaneously. One
disadvantage of the KNN method is that all patterns must be examined for each unknown
that is classified. This can result in long computer calculation times, in contrast to the LDA
methed, where classification is fast. The KNN method also fails to provide a way to
screen out features which are less useful than others. Some prior procedures must be
followed to determine which are the most effective features for accurate classification (See
Feature Selection Methods, ILE). LLM methods may be suited for systematic elimination
of features and are often used as a screening tool for dimensionality reduction prior to
analysis by KNN.

A variation to the KNN method has been proposed by Pichler and Perone [23] which
performs one-dimensional KNN, i.e. examines each feature one at a time, for its ability to
classify a training set of known objects. Only those features which are associated with

high classification accuracies are chosen to perform multi-dimensional studies. KNN

10



analysis has been applied to numerous chemical problems including the analysis of
voltammetric data [4, 5, 21, 22], the identification of organic compounds [1, 2] and to

lifetime [8-10] and performance [12, 13] prediction for battery cells.

I1.A.2. Non-Supervised Pattern Recognition
Non-supervised pattern recognition is used to examine data where a priori knowledge
of specific classes is unknown. Cluster analysis and non-linear mapping methods were

used in this work and are discussed below.

I1.A.2.a. Cluster Analysis

Cluster analysis is used to determine the existence of subsets in a group of patterns.
The mathematical foundations of cluster analysis are very detailed, complex and well
established [15, 16], and many techniques have been developed [14, 18, 19, 24-27].
Clusters can occur in a wide variety of shapes [16], and some examples are shown in
Figure 4.

Three general steps are involved when performing cluster analysis [24]:

1. The items to be classified are characterized, and the analytical data are
collected and preprocessed.

2. The similarity of each object is determined.

3. Clustering algorithms are constructed to enable the development of classifiers
which result in meaningful clusters.

It is important to note that computer-based clustering algorithms are generally
applicable to multi-dimensional feature space, just like the LLM or KNN supervised
learning algorithms. Generally, there are two main types of hierarchical clustering [18]:
hierarchical agglomerative clustering and divisive hierarchical clustering. Hierarchical

agglomerative clustering is most common and is based on the premise that each object starts

11
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Figure 4. Examples of cluster types: (A, B) Bridges between clusters. (C) Parallel non-spherical clusters.
(D) Linearly parallel clusters. (E) Unequal cluster populations. (F) Cluster with a hole [actually two
clusters]. (G) The X.

12



as a cluster generating nucleus. The radius is iteratively increased by a fixed length to
include neighboring objects or clusters which contain a smaller number of objects. This
process is repeated until each of the smaller clusters progress to successively larger and
fewer clusters. Agglomerative methods involve what is known as the SAHN technique.

S stands for "sequential” algorithm.

A stands for "agglomerative” where objects start out as single nuclei and are

progressively built into larger clusters.

H stands for "hierarchical” meaning that each ascending level is composed of fewer

clusters than the preceding level.

N stands for "non-overlapping", i.e. objects can never be assigned to more than one

cluster centroid at a time.

Divisive hierarchical clustering is less common and essentially starts with all objects
grouped into one large cluster and proceeds with iterative divisions into progressively
smaller clusters. A third type of clustering is known as non-hierarchical clustering. A set
of objects is divided into the most likely clusters and the distance between objects and the
centroid of each cluster is used as criterion for the assignment of each object to a
neighboring cluster [14]. The basic assumption is that similar objects will occupy the same
region of feature space. The procedure is continued until convergence, i.e. until all objects
have been assigned to a cluster.

Assignment of an object to a specific cluster is usually based on the distance between
the two. There are several distance methods to choose from. The most popular is the
Euclidean measurement which was previously described in eq 4. Non-hierarchical
clustering methods usually involve the following steps [14]:

1. Select initial clusters.

2. Determine distances between objects and centroids.

13



3. Locate or assign each object to nearest centroid.

4. Compute new centroids and repeat to convergence.

Cluster analysis has found application in a variety of analytical chemistry problems
such as GC-MS identificaticn of organic esters [1], evaluation of transition metal ions as
chemical ionization reagents [3] and in electrochemical cell studies [8, 11, 13].
Additionally, Massart and Kaufman [24] have discussed in detail the application of cluster
analysis in analytical chemistry.

A fourth type of cluster analysis is simply "visual"” detection. However, this requires
that the objects be represented in 2- or 3-D feature space. When larger numbers of features
are required for separation, visual cluster analysis is not directly applicable. Nevertheless,
mapping techniques are available to display multi-dimensional space in two dimensions, as

described below.

II.A.2.b. Non-linear Mapping

Non-linear mapping (NLM) is 2 method for plotting data which reduces
N-dimensional feature space to two dimensions [14] and is illustrated in Figure 5. The
NLM method, sometimes referred to as multi-dimensional scaling, essentially attempts to
preserve inter-point distances in converting N-D to 2-D space. Several methods have been
proposed, but most operate on the same principle by iterative minimization of the mapping
error, E, which can take many forms [15, 18], one of which is

P
E =3 [¢- 9’/ d;) (5)

where di; = theoriginal inter-point distance in N-dimensional space
dj;* = the new inter-point distance in 2-dimensional space

and P = the total number of patterns

14



Figure 5. Non-linear mapping (NLM) is used to reduce multi-dimensional space to two dimensions. The
example above illustrates the reduction of 3-D space to 2-D using NLM.

15



Some forms of the mapping error function are referred to as the stress function, but
the principle is the same. The mapping error equation proposed by Sammon [28] is similar
to that above but contains a weighting factor which can weight the N-dimensional term by
different amounts relative to the 2-D term. Sammon's method was subsequently modified
by Kowalski and Bender [29] and is expressed below.

P -1
X d; (6)

i<j

E= ;i [(d; - )"/ dy] }(

While the NLM method is very powerful for transforming and viewing multi-
dimensional space in two dimensions, it suffers from the large amount of computer time
needed to execute the transformation. It is prudent to utilize feature selection methods first
to eliminate ineffective features and limit the NLM treatment to as few features as possible.

The NLM method has been used in many analytical chemistry applications [1, 3, 21,
22, 30] and is the only display method used as frequently as principal components analysis
[24]. NLM is particularly useful in our work for the evaluation of fabrication features for
lead-acid cells [11-13].

II.B. Feature Selection Metheds

Feature selection is important and ideally will result in a minimum number of features
being chosen so as to achieve the highest possible classification accuracy. A reduction in
the number of features is sometimes referred to as a reduction in dimensionality. Feature
reduction results in a smaller data matrix and subsequently much less data to process;
therefore, processing time is reduced. Another advantage to eliminating unnecessary
features is that the latter may contribute considerable "noise" to the multivariate data matrix,
and may make it more difficult to distinguish among different classes. Elimination of

unwanted, noisy features can render classification easier by reducing the degree of class

overlap in N-D space.

16



Another practical consideration is that feature reduction results in only the most
important measurements being taken and thus, a reduction of the physical measurement
time and effort involved. This, of course results in lower expenses incurred for a given

assay. Several feature selection techniques exist, but common methods used for this study
are described briefly below.

I1.B.1. Correlation Analysis
Correlation analysis involves calculating the linear correlation coefficient for each pair
of features in a multivariate data matrix. The Pearson correlation coefficient (R, p) between

features a and b, for n items, is defined as follows [14]:

Rop = {Z [(Xia - Xa)* (Xib- Xo)I} /[T (Xia- X2+ L Kib- X022 (7)

Xia and Xip, are the respective values of features a and b for item i, and T(_a and _)Zb
are the respective means of the values for features a and b. Summations are taken for all
values of i ranging from 1 to n. The correlation coefficient, as defined in eq 7, lies within
the range of +1 to -1. Values of R equal to zero imply that features from set A have no
correlation to features from set B. Positive values indicate a positive correlation between
two features, and negative values represent a negative correlation. R values equal to +1 or
-1 indicate that there is 2 perfect correlation between the two feature sets. Negative
correlations can sometimes be difficult to interpret, and while negative correlations suggest
dissimilarity, this is not always true [31]. Therefore, the square of R is sometimes used to
eliminate any negative value. R? would then range from 0 to +1.

Generally, high correlation values indicate feature pair similarity and one or other of
the two features can sometimes be eliminated from the feature set. Elimination of highly
correlated features results in a condensation of features with mutually large R values into a
smaller set with statistically equivalent information. However, elimination of highly

correlated features does not always avoid a loss of information. This is especially true if

17



the distribution of the measured values of a given feature are non-Gaussian or if the
effectiveness of a feature is dependent on the presence of another feature.

For example, assume feature A is highly correlated with feature B, but the
effectiveness of C depends on the presence of feature B. Elimination of feature B based on
its high correlation with feature A might actually result in a lower overall classification
accuracy, due to the loss of synergistic interactions between features B and C. Therefore,

it might be better to retain all three features for the analysis.

I1.B.2. Fisher Ratio Analysis
The Fisher ratio is used to determine the ability of a feature (i) to distinguish between

two different classes. Essentially, for a binary classification problem the Fisher ratio is

given by eq 8.

F = (my;-my)?/ (Vy; + V) (8)

The difference between the mean values (m;) of feature i, for different classes 1 and 2
is squared and compared to the sum of the variance, V;, for both classes. Values of the
Fisher ratio, F;, for a chosen feature can vary widely depending on the distribution of the
values within each class. If the means 1 and 2 are nearly equivalent or equal, values of F;
will be quite small or equal to zero. Likewise, 2 large variance V; for one or both classes
can result in small Fisher ratios. As the distribution of values within each class narrows, or
as the means get further apart, the Fisher ratio becomes larger. First, the Fisher ratios are
calculated for each feature in a data matrix. The data set is then reduced in size by retaining

features with larger ratios and rejecting those with smaller ratios.

ILB.3. Univariate Discriminating Power
The univariate distribution of values for a given feature can often provide insight on

the ability of the feature to discriminate between classes [14, 32, 21]. The univariate
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discriminating power is determined for each feature, and features which provide a high
degree of discrimination are selected for further study.

Figure 6 illustrates individual feature values with a single dimension vector. The
univariate plot shown in Figure 6a indicates what appears to be two classes of items.
However, knowledge of the class of each item could lead to the results as shown in Figure
6b. In this case each class of items contains an outlier, causing an overlap in the sets.

Knowledge of the class identity for each of the items within the feature set can
significantly affect the interpretation of the results. Histograms are another, more
sophisticated way of visualizing univariate data. Histograms allow visualization of the
relative proportions of the number of items having a particular value. Histograms are
discussed later in more detail.

Another method for measuring univariate data consisting of two classes involves the
calculation of the ratio of the difference in the means of a given feature for two classes, 1

and 2, to the combined standard deviation of the two sets of features.

R = [Xj-Xal/ (82 + S,2)12 &)
Comparison of eqs 8 and 9 show that the quantity R in eq 9 is simply the square root
of the Fisher ratio. Thus, substituting V for S2 in eq 9 gives

R = [X1 - Xo| + (Vy + V)12 = (F)1/2 or R2 =F (10)

Both F and R have similar properties in that they become larger as the distance
between the average location of each class widens, and as the items within each class
cluster together. Of course, values of R2 will be more sensitive to changes in the means
and standard deviations of each class. R and F ratios are useful for discerning the
discriminating ability of individual features, but they do not reflect any feature to feature
interactions. The rejected features may still be valuable for other feature group

combinations and should not be exempt from further investigation by other methods.
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Xi

Figure 6. Univariate plots where plot (a) represents what appears to be two distinct groups. This would
likely be the conclusion if the class identity of each item is unknown. Plot (b) illustrates what the
distribution of items might really be if it were known that there are two distinct classes, represented by «
and 0 .
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I.B.4. Statistical Distributions

Often it is useful to group data into classes and group the measurements made for
each class [14]. Data which are organized this way can be described graphically with a
histogram (Figure 7). F(x;) is a measure of the relative frequency of occurrence of a
measurement in the interval Ax;. The probability of a measurement occuring within any
interval Ax; is the product of F(x;)*Ax;. If large numbers of measurements are taken on
infinitesimally small intervals of x, then the distribution of F(x;) is represented by a
smooth, continuous curve. The area under the curve is just the integral of F(x) for all

values of x, which equals 1, the total probability for the occurrence of values of x.

JFxydx =1 (11)

The function in eq 11 is referred to as a continuous random-variable probability
density function. When a continuous variable distribution is normal or normal-like, the
values are distributed evenly about the mean in decreasing frequency as the distance from
the mean increases. When the data are standardized, a special normal curve results
(sometimes referred to as a z-curve) where the mean equals zero and the z; are in
increments equal to one standard deviation [32, 33] (Figure 8).

When a group of random variables consist of a finite number of values, or a
countable sequence of an infinite number of values, the variable is known as a discrete
variable. The probability function of a set of discrete variables can be depicted graphically
as shown in Figure 9. The probability of a discrete variable Xi having a particular value is

P(Xi). Similar to continuous distributions, the total probability, i.e. the sum of all P(Xi)

equals 1.

P(X <Xn) = ‘=£1P(Xi) = P(X1) + P(X2) + P(X3)... P(Xn) (12)
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Figure 8. An illustration of a symmetrical continuous probability distribution of the number of items n
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numbers as z approaches the mean, but diminish in numbers at the extremes of the distribution, in this case
outside + 1 standard deviation from z.
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or i231P(Xi) =1 (13)

When a particular feature is composed of X; patterns belonging to more than one
class, class-conditional probability density curves can be constructed to determine the
ability of the feature to discriminate between classes. Ideally, features with high
discriminating ability result in a bimodal distribution of X; values for each class (Figure 10)
with a minimum amount of overlap. A large difference between means p1 and p2, and a

small variance within each peak, the less overlap, o, and the greater the discriminating

ability of the chosen feature.

II.B.5. Systematic Selection

Systematic feature selection, while not very scientific, can often provide fruitful
results and should not be overlooked. Smaller feature groups are randomly chosen from
either the original data matrix or from feature groups obtained through other feature
selection methods. The selection can be completely random and non-biased, or specific
feature groups believed to contain useful features can be selected. Other feature selection
methods are often applied to the final feature groups selected by this arbitrary, trial-and-
error method [19]. Systematic feature selection methods have been shown to be effective

in theoretical and experimental studies of overlapped voltammetric data [21, 22].

I1.B.6. Sequential Feature Elimination

Sequential feature elimination involves the arbitrary deletion of a feature after a given
feature set is evaluated for classification accuracy. If elimination of the feature results in a
drop in the overall classification accuracy with subsequent pattern recognition analysis, the
feature is added back into the feature set. If the classification accuracy is not degraded or is
improved by removing the feature, then the feature remains excluded from the feature set.

Regardless of the outcome, another feature is then selected to be deleted from the feature
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Figure 10. Probability density curves illustrating the ability of feature i to differentiate classes 1
and 2. The probability that an item belonging to class m has a value for feature i in the interval

AX is P(Xi)m « AX.
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set, and a subsequent evaluation of the effect of its deletion is done. This procedure is
continued until no further deletions are allowed, and the maximum classification accuracy is
achieved with minimum features. The order in which the features are examined can change
the outcome of the results. The subject of sequential feature analysis and how it applies to
pattern recognition and linear learning methods has been treated in detail [17].

The advantage of using sequential elimination methods are that they can be applied to
feature groups which have been selected by any other means and can be used to develop
other feature groups which may be useful. Computerized sequential methods provide an
automated way of establishing the relative importance of each feature and have been shown

to be effective in many applications {12, 13,21-23].
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III. Battery Description and Background

ITIL.A. Properties and Construction
The typical lead-acid cells used for this study are much like those found in
automobiles. They consist of negative and positive electrodes which are made of sponge

lead and lead peroxide, respectively, and are immersed in an electrolyte of sulfuric acid and

water [34] (Figure 11a).
A typical cell is represented by:

Pb(s) | PbSO4(s) | H2S04(aq) [| PbSO4(s), PbOx(s) | Pb(s)

and the cell (a) and half-cell (b and ¢) reactions are:

(a) Pb(s) + PbOao(s) + 2H2S04(aq) —> 2PbSO4(s) + 2H,0 Cell Reaction
(b) Pb(s) + SO472(aq) —> PbSOq(s) + 2e" Negative Flectrode

(c) PbOx(s) + 4H*(aq) + SO472(aq) + 2e- —> PbSO4(s) + 2H20  Positive Electrode

Electrochemical storage cells do not actually store electrical energy. Actually, they
convert electrical energy applied to the electrodes into chemical energy; the staze of charge
of the cell refers to the percent of the total available capacity. When a load is placed on the
charged cell, the chemical energy is converted, or discharged back into electrical energy.

A fully charged cell has an open circuit voltage just slightly greater than 2 volts (2.06
V), and may be as high as 2.10 to 2.70 V when being charged. The specific gravity, or
density of the electrolyte relative to water, is usually between 1.20 and 1.29 at the highest
state of charge. A cell constructed this way delivers a 2-volt potential regardless of size;
however, size does affect the amount of current (measured in amperes) that a cell can
deliver.

When a cell is discharged, the electrodes each react with the sulfuric acid electrolyte to

form a lead sulfate coating (Figure 11b). As the sulfuric acid is consumed, the specific
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Figure 11. Physical chemical states of a typical lead-acid cell.
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gravity gradually approaches that of water (1.00) and the cell voltage drops to zero volts
when completely discharged. Cells are not usually discharged below about 1.7 V to
prevent irreversible damage to the electrodes (Figure 11c). Thus, the nominal capacity of a
cell is the charge delivered (in amp-hr) from a fully charged state toa 1.7 V cell voltage. In
practice, lead-acid cells are usually required to deliver a small fraction of their actual
capacity before recharging. In fact, cells discharged to a 1.7 V cutoff are described as
undergoing deep discharge.

The discharged cell can be recharged by applying a charging current (in reverse
direction of the discharge current) across the electrodes (Figure 11d). The lead sulfate
coated electrodes react with water to produce sulfuric acid and each electrode is restored to
its original state. The cell voltage gradually increases back to 2 volts, and the specific
gravity increases as more sulfuric acid is formed.

Single cells are not sufficient for large power requirements and several cells are often
connected in series to increase the battery voltage. Therefore a 36-volt overall requirement
would need a battery consisting of 18 serially connected cells at 2 volts per cell. The
capacity of a battery is measured in ampere-hours (amp-hr) and is defined by the total
charge that the battery can provide before its voltage drops below a specified cut-off value.
It is dependent only on the size of the cells and is independent of the number of cells
connected in series. Battery capacity can also be expressed in kilowatt-hours, which is the
product of the average voltage per cell and the amp-hr rating of the battery. Battery
capacity measured this way is dependent on the size and number of cells in the system.

Battery construction is quite detailed and, for the sake of brevity, will only be
summarized here. Generally, a cell is constructed from lead alloy grids which have been
impregnated with a paste made of lead oxide (PbO) or a combination of the former with

lead sulfate (PbSQ4) to form a plate [34, 35]. Grids which will be positive are made

30



thicker than those which will be negative since charge and discharge cycles are more
detrimental to the positive plates. The pasted plates are carefully dried and cured under
strict tolerances of humidity and temperature. The cured positive plates are wrapped with
protective, porous fiberglass and are grouped alternately with negative plates to form an
element. The alternating positive and negative plates are separated by porous electrically
insulating material to prevent contact between plates but allow free flow of electrolyte.
Ultimately, the completed element is assembled into a protective casing; at this point the
cells have no electrical characteristics and no capacity.

To energize the battery, a low-rate forming charge is applied for a specified time
under a controlled battery temperature level. The forming charge produces the positive and
negative polarity of the corresponding plates in the cell. The lead oxide and lead sulfate are
converted to lead dioxide in positive plates and to elemental lead in negative plates. Water
is consumed during the formation process and sulfuric acid is formed. The relevant
formation reactions could be represented as follows:

Positive Plate: PbO(s) + PbSO4(s) + 3H20(1)—> 2PbOy(s) + SO472(aq) + 6H*(aq) + de
Negative Plate: PbO(s) + PbSO4(s) + 2H+ + de~(aq) —> 2Pb(s) + SO472(aq) + HO(1)
Net Reaction: PbO(s) + PbSO4(s) + HoO —> Pb(s) + PbOy(s) + H2S04(aq)

The forming charge also helps to establish the amp-hr capacity of each cell, which
will depend on the final amounts of lead and lead dioxide and the specific gravity of the
electrolyte. If several cells are connected in series, the forming charge is applied until all
cells have reached the rated capacity. This process is called formarion equalization. Some
cells reach capacity sooner than others during formation equalization and undergo a short

period of overcharging while the other cells catch up.
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IILB. Fabrication Features

Cell material changes, measured and recorded at the time of fabrication, are
summarized in Table 1. It should be noted that no effects on cell performance due to
material changes were expected, as all materials met specifications. However,

unsupervised cluster analysis studies [11] showed that groups of cells with different
materials had different properties.
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TABLE 1

FABRICATION MATERIAL CHANGES FOR LEAD-ACID CELLS

Subset
a

Q -0 Q O U

Circuit
1

P wWwwnNn =

Cells
1-15
16-80
81-160
161-218
219-240
241-320
321-340

Subset a: Pasted plates from inventory.
Subsets b, ¢, and d: Piates freshly pasted on grids from inventory.

Subsets e, f, and g: Newly cast grids and freshly pasted plates. -
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old
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Battery cell fabrication features for this study include 13 electrochemical and physical
measurements taken at various stages of production (Table 2). Feature 1 (SG2) is the
specific gravity of the cell prior to formation equalization. The amount of acid added
during formation equalization is represented by Feature 2 (EQWF). Cell formation
equalization often involves several charge/discharge cycles to condition the cells.

Measurements can be made on the cell at different stages of a cycle. Two such
measurements are the specific gravity (Feature 3, SG4) and the amount of acid added
(Feature 4, EQWC,) prior to the fifth equalization cycle. Feature 5 (ASHP) is a measure of
the final acid adjustment before shipping, and Feature 6, RELFRMA, is a transformation
which is calculated by dividing the EQWF by the difference between the total weight of the
cell after formation equalization (FINLWT) and the dry weight of the cell before the
addition of acid (DRYWT, Feature 11). Feature 7 (SHPSLFA) represents the total acid in
the cell as shipped.

Each cell was subjected to a test involving 5 charge/discharge cycles. Feature 8
(AVSB) is the average specific gravity before cell discharge for all 5 cycles. The capacity
of each cell was measured for each cycle and Feature 9 (AVCAP) represents the average
capacity. The average specific gravity after each of 5 discharge cycles is represented by
Feature 10 (AVSA) and Feature 12 and 13 are the maximum capacity (MXCAP) and
maximum specific gravity (MXSA), respectively, over the 5 test cycles.

HI.C. History

It is important to note that the manufacturer of the batteries has performed all
experimental procedures relating to battery fabrication and capacity testing, as well as all
measurements for each feature being studied. This research originally began in June 1983
with the construction of 340 large lead-acid cells by GNB, Inc., located in Kaukakee,

Iinois [36]. Each cell was assigned a number and information about fabrication materials
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TABLE 2

FABRICATION FEATURES OF LEAD-ACID CELLS

ID # Feature Description
1 SG2 Specific gravity prior to formation equalization
2 EQWF Acid added in formation equalization step
3 SG4 Specific gravity prior to 5th cycle equalization
4 EQWC Acid added (equalization) before 5th cycie
5 ASHP Final acid adjustment before shipping
6 RELFRMA EQWF = (FINLWT - DRYWT)

where FINLWT = total weight of cell after
formation equalization

7 SHPSLFA Total acid in cell as shipped

8 AVSB Average specific gravity before discharge (5 cycles)
9 AVCAP  Average capacity over 5 test cycles

10 AVSA Average specific gravity after discharge (5 cycles)
11 DRYWT  Cell weight before acid addition

12 MXCAP  Maximum capacity over 5 test cycles

13 MXSA Maximum specific gravity over 5 test cycles
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and measurements were recorded. The cells were arranged in series into four circuits of 80
cells each and a fifth circuit of 20 cells, for a total of 340 cells. These circuits were labeled
1 through 5 and the cells in each were conditioned by operating the cells for 5 or more
charge/discharge cycles.

A total of 324 cells were constructed into 6-cell modules (54 in all) at the Battery
Energy Storage Test (BEST) Facility operated by Public Service Electric and Gas Co. for
the Electric Power Research Institute (EPRI). Acceptance tests were conducted and
completed in December 1983. Requirements were that the cells deliver 500 kW for 1 hour
at a capacity limit of 1040 amp-hr. A 5-hour discharge of 2080 amp-hr was to deliver at
least 1.2 megawatt-hour of energy. The battery was given an eight year warranty.
Modules were tested as 3 parallel strings (labeled A, B, and C) of 18 serially connected
modules each and as a single string of all 54 modules. Two-hundred periodic test cycles
were performed over a 4-year period for a variety of industrial applications. Periodic
maintenance and capacity tests were performed during that time and a database was
assembled from the data measurements.

The battery was shipped to Stateville, North Carolina in the Fall of 1987 and installed
at Crescent Electric Membership Corporation (CEMC), a local area power plant. Since
then the battery has functioned as a peak-shaving device, discharging at a minimum of 200
kW for 3 hours and at a maximum power of 500 kW for 1 hour. Several capacity tests
have been performed on a selected subset of 121 cells since installation at CEMC. Capacity
testing is performed by taking each of the selected cells through 5 charge/ discharge cycles
at a load of 450 or 900 amperes until they reach a voltage cutoff level of 1.7 volts.
Capacity tests were performed in March 1989, April 1990 and September 1991. The
September 1991 event was a full capacity test, monitoring all cells. As of July 1991, only

one cell (# 241) has been excluded due to low capacity [11, 37].
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Iv. Experimental Methods

IV.A. Instrumentation, Database and Software

Three IBM/AT compatible computers were used for all data storage, manipulation and
pattern recognition studies. Each contained a minimum configuration of 1 megabyte (MB)
RAM (random access memory) and a 20 MB hard disk. Two computers were equipped
with 286-type microprocessors, running at 4 and 12 megahertz (MHz), respectively, and
the third used a 386/12 MHz microprocessor equipped with an 8087 math coprocessor.
Each computer contained copies of the database composed of GNB battery fabrication data
and capacity testing data. Database management and spreadsheet software programs called
SYMPHONY™ (Lotus Corp.) and QuattroPro® (ver. 3.0; Borland International) were
used to perform all statistical computations on the database.

All experimental results were analyzed using the same three IBM PC's and software
listed above plus a Macintosh IIcx equipped with Excel® spreadsheet software (ver. 3.0;
Microsoft Corp.) and Cricket Graph™ graphing software (ver. 1.2; Cricket Software,
Inc.). Pattern recognition software programs were written "in house” using a compiled
BASIC programming language (Microsoft Corp.) and were used to perform all multivariate
analysis and pattern recognition procedures.

IV.B. Procedures

1V.B.1. Database Information

The raw GNB battery fabrication and test data for all 340 cells are summarized in
Appendix A. The fabrication features were discussed in Section IIL.B and defined in
Table 2. Each feature was assigned a number for convenience. Although capacity tests
have been performed annually for the last three years, only the capacity data from the test
performed on April 3, 1990 were used for this study. This was because ~7 years had
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passed since manufacturing, and this marked the beginning of the final phase of cell life
(the last year of the warrenty period). Only 121 of the 323 cells operating at CEMC were
monitored for their capacity. The test was performed under a 450-amp discharge until the
cells dropped to an average cut-off of 1.7 volts. Results of the test are listed for each cell in
Appendix B (by increasing % capacity, corrected for temperature).

It is desirable to have a maximum number of patterns relative to the number of
monitored features of interest. The ratio of number of patterns to features should be > 3 to
keep the results statistically valid [19], and measurements must be taken with enough
sensitivity to allow for a detectable degree of variance in the data. Otherwise, the feature

may not have any effect on the ability to discern different classes.

IV.B.2. Data Preprocessing

Multivariate data measurements are often presented as a data matrix (Figure 12) in
which each row represents a different sample, and each column represents the data for a
given measurement for each sample. When structured in this manner, it is often most
useful to examine the relationships between samples within each column. However,
multivariate data can rarely be analyzed in its raw state, and some type of preprocessing is
usually necessary [18]. Preprocessing of raw data is important in order to preserve or
enchance the information content for further analysis. For example, preprocessing may
involve computing key characteristics (i.e., peak heights, widths, areas, ratios, etc.) or it
may involve numerical transformations (time domain converted to frequency domain).

Preprocessing frequently involves scaling of the data. Otherwise, measurements for
a given feature may be left significantly greater or smaller in magnitude than neighboring
features, and may lend an unrealistic weight to a feature set and its variance. Scaling can be

performed on measured features for a given sample (rows) and on individual features for a

collection of samples (columns).
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Figure 12. Graphical representation of a multivariate data matrix. Rows represent individual items or
experiments. Individual features or variables are presented in columns for each item.

39



Scaling of feature sets (or rows) helps preserve the relative geometrical distances
between feature sets. These distances are sometimes referred to as Euclidean distances. It
is especially important to maintain the relative geometry of feature sets when subjecting the
data to a reduction of dimensionality; otherwise, inaccurate evaluations of the inter-feature
relationships might occur.

One popular way to transform data is to normalize it. This involves scaling the
measurements to a constant total, usually 100%. The method has limitations in that for
some cases, normalization can result in a minimization or loss of variance. An example of
this is shown in Table 3. Features F1, F2, and F3 are presented in raw and normalized

form for patterns A and B, where features are normalized so that the sum of all features for

each sample equals 1.

Table 3
Raw and Normalized Data Sets

Raw Data Normalized Data

Sample F1 F2 F3 Fi F2 F3
A 50 100 50 025 05 0.25

B 9 10 1 045 0.5 0.05

Note that each feature set for the raw data contains a large variance; however,
normalization of the features for each sample results in a loss of the variance observed for
F2. In situations such as the latter, it may not be wise to normalize the data if subsequent
analysis depends on there being a reasonable degree of variance within each feature.

Scaling down a column or feature set is usually performed to reduce all feature sets to
the same range of values. Standardization is a way of normalizing each feature set, so that
normalized feature values are expressed relative to the inherent variance in each variable,

One method of accomplishing this is to autoscale the measurements within a column. The
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autoscaled value (Xa) is calculated as the difference between the raw data item, Xr, and the

mean of the feature column (3(_) divided by the standard deviation, s, of the column.

Xa = (X -Xr)/s (14)
Caution is advised when autoscaling data where the relative noise for highly intense
measurements is less than that for low intensity peaks; standardization can actually increase
the noise in the data.
The choice of scaling methods and the decision of whether or not to scale the data is
often a subjective choice, and each data set must be examined carefully before applying a
scaling method. For this work, all capacity values were normalized to the rated capacity of

2080 amp-hr and the data measurements were autoscaled for each feature.

IV.B.3. Definition of Class Boundaries

The class of a particular item may be a qualitative property that is known a priori. For
example, a chemical compound may belong to one of various structural or functional
groups (alcohols, ketones, aliphatics, aromatics, erc.). For our work, however, the class
of each item is based on some quantitative property (e.g., cell capacity). The definition of
class boundaries can be performed using different criteria in evaluating the quantitative
property of choice (figure of merit). One method assumes that a distribution of this
property follows a continuous probability function, one form of which is the Gaussian
distribution [32] (Figure 13).

The number of items, Y, that have a value of Xj are assumed to fall symmetrically
aboutamean X . Items which lie at the extremes of the distribution are considered to be
of different classes. Items that lie to one side of an arbitrary boundary, such as one or
more standard deviations from X , are assigned to a different class from those items lying
on the other side. For example, objects that lie outside 1 standard deviation to the left of

X could be classified as class 1, and those positioned outside 1 standard deviation (o) to
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the right of X could be labeled as class 2. The intermediate items falling within + 1 o of
X could be classified as a third class, 3.

Another method for viewing the distribution is the histogram approach. The number
of items n having a particular value Xj are plotted as shown in Figure 14. The distribution
of items along the x-axis may not be Gaussian, but the class criterion is similarly based on
where the item falls within the distribution. The boundaries that separate classes can be set
using the natural breaks or minimums that occur between clusters in the distribution of the
data.

Capacity values from the 1990 capacity test were used to determine the class
assignment of the corresponding patterns (cells) in the fabrication database. The nominal
capacity for each cell is 2080 amp-hr, and measured values are expressed as a percentage of
this value. High capacity cells were assigned to Class 1, low capacity cells to Class 2 and
intermediates to Class 3. All capacity test cells were sorted from lowest to highest capacity
(Appendix B). The average capacity, X , was computed for all 121 cells as well as the
standard deviation, o. High capacity cells were defined as those with capacities greater
than (Y + 0) and low capacity cells as those with capacities less than (—)? - O).
Intermediates were defined as those cells with capacity values within the range ( X+ o).
For the 1990 capacity test cells, X equals 101.5%, and o equals 2.8%. Using this
criterion (the standard deviation classification method, STDEYV) the class assignments were
as follows:

Class 1; 17 cells, capacities > 104.3%

Class 2; 22 cells, capacities < 98.7%

Class 3; 82 cells, capacities 2 98.7% but < 104.3%

A histogram distribution of the 1990 capacity data is shown in Figure 15. Capacity

values have been rounded off when assigning cells to a particular category on the
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graph. For example, cells labeled with a capacity of 101% represent capacity values which
range from 100.5% to 101.4%.

The training set for the 2-class problem was constructed with Classes 1 and 2. The
3-class study also used the same cells/classes as for the 2-class problem plus about one-
third of the cells from Class 3. Thus, the training set for the 2-class problem contained 17
Class 1 cells and 22 Class 2 cells for 39 cells total, and the 3-class training set contained the
same 39 cells plus an additional 20 cells from Class 3 for a total of 59 cells. The other 62
intermediate cells (Class 3) were designated as the "Prediction Set " for the 3~class
problem. The remaining 219 cells (340 - 59 - 62 = 219) were assigned to the "Unknown
Set", designated Class 0.

IV.B.4. Feature Selections

After the raw data are accumulated and preprocessed, the assembled database is
examined using different feature extraction methods. Individual features and feature
groups are chosen based on statistical, mathematical, and systematic selection methods.
Features are considered useful for pattern recognition if they exhibit a large amount of
variance or for their ability to accurately distinguish between two or more classes.

Groups of fabrication features were selected from those presented in Appendix A
based on selection criteria outlined in Section IL.B. Feature groups were selected by
correlation methods, Fisher ratio analysis, relative standard deviations, arbitrary selection
and sequential feature elimination.

Fabrication measurements were examined using correlation analysis, and features
were eliminated to provide a set containing only poorly correlated features. Selected feature

groups were then tested for their ability to accurately classify cells belonging to the training

set.
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Fisher ratios and relative standard deviations were calculated from the training set data
for each fabrication feature for both the 2-class and 3-class training sets. Features yielding
the largest ratios and relative standard deviations were selected and analyzed for their
classification ability. These select feature groups were also subjected to sequential feature
elimination.

Systematically chosen feature groups were also examined for their ability to
accurately classify cells from each training set. While systematic selection may appear
unscientific, it is not practical to investigate all possible feature group combinations from
the entire set of 13 features. The number of possible combinations of Z features from a
total of M features can be determined using the following formula [23]:

M!=[Z! M - Z)!] (15)

If M = 13 features and Z; represents equally-weighted Features 1, 2, ..., 13, as i is
incremented from 1 to M, the total number of all possible feature groups, T, becomes:

M
T= _2‘,1 {M! =+ [Z! M - Z)!]} = 8,191 possible feature groups (16)

When weighted features are taken into account, the possibilities are enormous. Even with
the availability of high-speed technology, it is unproductive to examine all combinations.
For our purposes, the various feature selection methods described here proved very
satisfactory. Sequential feature elimination was by far the most productive way to discover
suitable classifiers. The method has the powerful advantage of being applicable to feature
groups selected by any other method. Using this approach increases the likelihood of the

evaluation of a large number of the total possible combinations of feature groups.

IV.B.5. Training

The training procedure involved the LOO-KNN (leave-one-out k-nearest neighbor)

classification algorithm combined with sequential feature elimination {38]. The procedure
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begins with the selection of a particular feature group using methods described above. All
data values for the chosen features are autoscaled as described in Section IV.B.2. Then,
each pattern is "left out” of the training set and classified using KNN as if it were an
"unknown". This procedure is repeated for all patterns in the set and the classification
accuracy is determined (overall and by class). In this procedure, training involves the
systematic selection of different groups of features for trial classification runs (LOO-
KNN), until the optimum feature set is found.

The algorithm also allows the user a choice of whether or not to optimize the feature
weights and perform forward or backward feature elimination. The forward and backward
direction refers to which way through the data matrix the sequential elimination is
proceeding. That is, columns of feature data are sequentially eliminated from left to right
for forward elimination and from right to left for backward elimination. The entire process
can be quite time-consuming depending on the computer speed, the number of patterns and
features, and whether feature weight optimization is selected. It is often prudent to select
feature weights of "1" for preliminary training sessions. Feature weight optimization is
then performed only on those feature groups which are superior classifiers. This results in

the use of much less computer time.

IV.B.6. Classification Accuracy
Classification accuracy can be expressed in several ways. The overall accuracy, A, is
the ratio of the number of patterns classified correctly, P, to the total number of patterns,

P, in the set, expressed as percent.

A = 100 (P/P) (17)

The class-specific accuracy, A, (expressed as percent) is defined as the number of
correct classifications, P, for patterns within a specific class, m, divided by the total

number of patterns in the class, Pp,.
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A. = 100 (P./Py) (18)
The average accuracy, ‘A, is the ratio of the sum of the individual class-specific

accuracy to the total number of classes, P,.
A =(Ap)/P, fori=1,...n (19)

IV.B.7. Mapping

Feature groups which provided the highest degree of classification accuracy (as
determined by training) were then analyzed using a non-linear mapping (NLM) method as
described earlier. The NLM procedure autoscales all feature values for each pattern and
then seeks to convert the resulting N-dimensional feature space into an accurate
representation in 2-dimensions. Sometimes feature groups fortuitously give high
classification accuracy when examined with the LOO-KNN training method. NLM plots
using these same feature groups and weights often indicate a fortuitous distribution of the
patterns such that no real clusters of specific classes exist. This is undesirable because it
gives false credence to the accuracy and reliability of the classifier. NLM plots which result
in separate clusters of specific classes are an accurate, independent measure of classifier
effectiveness. This method was useful as a critical step for identifying feature groups

which were not valid for classification purposes, despite fortuitously high accuracy.

IV.B.8. Pattern Reclassifications

If an item is consistently found to be misclassified during the training phase, it may
be that the item actually belongs to a different class. NLM plots can often elucidate this,
especially if the pattern is always found to reside within a cluster of patterns which belong
to a different class. This occurred for the 3-class problem, and it was beneficial to
"reclassify” some items, and repeat the training phase over again. As expected, this

approach often led to a higher classification accuracy for each classifier than was obtained
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before. Pattern reclassification also yielded classifiers which were comprised of different

feature groups than were originally discovered. These groups were then evaluated again by
NIM for their validity.

IV.B.9. Predictions

When a collection of classifiers is obtained from the training set, each classifier is
evaluated on its ability to accurately identify the class of each pattern contained in the
prediction set [15]. The prediction set is ideally composed of patterns which have the same
origins as those in the training set, but which are not part of the training set. The accuracy
of classification produced by a classifier which has been applied to a prediction set is
referred to as the prediction ability.

Calculations of classification accuracies for the prediction set are similar to
calculations for the training set (egs 17-19). Testing the prediction ability of the classifier is
a way of validating the high classification accuracies obtained from the training procedure.
The higher the classification accuracies for both training and prediction studies, the greater
the confidence that the data matrix contains the desired information regarding the particular
classification in question, and that an analysis of an unknown data set would yield valid
classifications. This assumes that data for the unknown items are treated similarly as the
training and prediction sets and that the class(es) of the unknown items are real classes
which also exist within the training and prediction sets.

If training or prediction procedures yield poor results, then other classifiers must be
developed by choosing different feature groups, by including other features not previously
investigated, or by transforming the data. Combinations of the above methods may also
prove useful. Based on classification algorithm results, the feature groups which appear to

have the greatest capacity for distinguishing classes are then used to categorize items of
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unknown classification. In this work, the classification decision is made by assigning the
unknown item to the same class as its nearest neighbor(s) of known class.

Fabrication feature groups and their weights which gave high classification accuracies
and resulted in NLM plots of distinct class clusters were used for the purposes of
prediction. No prediction set was available for the 2-class study due to the limited number
of cells of high and low capacity. For the 3-class study, the most useful classifiers

obtained from the training and mapping procedures were used to classify the Prediction Set

and Unknown Set cells.
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V. Results and Discussion
V.A. Scope of Investigation

For this study we were primarily concerned about the information content of the
fabrication data, i.e. do the data contain the information necessary for the accurate
distinction of good and poor performing cells? One of the difficulties, as discussed in
IV.B.3, is that class assignments for the training set cells are based on a Gaussian
distribution of the cell capacity data. In fact, this is not so; however the distribution is close
enough (Figure 15) that the natural breaks and the mean of the distribution are close to the
Gaussian results. The Gaussian model is quite adequate for determining whether or not the
information content is there. Some erroneous classifications can occur due to the
differences between the natural breaks in the distributuion and the boundaries that are
assigned based on a Gaussian spread of the data.

Another point of concern is the question of false-positive identifications, especially
their frequency of occurrence for each class. If a good performer is falsely classified as a
bad performer, it will be excluded from the set and little harm will have been done.
However, if a poor performer is misclassified as being good, it will be included with the
other good cells and this may lead to disastrous consequences for the battery. Therefore,
from the standpoint of false-positives, accurate classification of poor performers is much
more critical than that of good performers.

Finally, determination of which groups of features provide meaningful classifiers
gives information about the relationships between fabrication features and how they
influence the battery system. This information can be used to design experiments to

optimize the fabrication materials to produce better batteries.
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V.B. Two-Class Study

A summary of the pattern recognition training results for the 2-class problem is
presented in Table 4. Overall and individual class accuracies are listed for each classifier
along with the corresponding features of importance. Extensive training was performed on
the 2-class training set, and many useful feature combinations were obtained. A summary
of only the superior classifiers are shown here (overall accuracy > 92%). Many other
classifiers were obtained which gave good results, but those in Table 4 are a good
representation of the most useful feature combinations.

Table 4 lists each classifier by its feature code which is expressed as a 13-digit
number. Each digit, reading from left to right, represents the corresponding feature ID
number. The magnitude of the digit represents the weight given to that feature. Features
which have a 2-digit weight are enclosed in hash marks. For example, a feature code of
F-0004000101004 would represent a classifier composed of features 4, 8, 10 and 13,
which correspond to EQWC, AVSB, AVSA and MXSA, respectively (Table 2). Features
AVSB and AVSA are each assigned a weight of "1" and EQWC and MXSA are each given
a weight of 4. A feature code of F-200/16/040100011 includes features SG2, EQWC,
RELFRMA, AVSB and MXCAP (1, 4, 6, 8, 12 and 13), and utilizes a weight of 16 for
EQWC.

Each of the promising classifiers was examined by NLM to determine which feature
groups actually resulted in a separation of Class 1 and 2 cells in N-feature space.
Classifiers were graded as to their quality, and those which gave good results were noted.
Feature groups which gave fortuitously high classification accuracies were rejected if their
non-linear maps were poor in quality. Mapping errors were used as a measure of how well

the 2-dimensional maps represented their N-dimensional counterparts.
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TABLE 4

2-CLASS STUDY

SUMMARY OF BEST TRAINING RESULTS

Classifier
F-0004000101004

F-4001100210000

F-4001120210000

F-4020101100010

F-4001041201000

F-4001010200101

F-2001000100100

F-0008000100011

Feature ID

% Classification Accuracy
Overall/Class 1/Class 2

95/94/96

95/94/96

95/94/96

95/94/96

95/94/96

95/94/96

92/94/91

92/82/100

Feature
SG2
SG4

EQWC
ASHP
RELFRMA
SHPSLFA
AVSB
AVCAP
AVSA
DRYWT
MXCAP
MXSA

54

Features Used
4.8,10,13

1,4,5,8,9
1,4,5,6,8,9
1,3,5,7,8,12
1,4,6,7,8,10
1,4,6,8,11,13
1,4,8,11
4,8,12,13
Frequently

Observed
vy
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The 2-class training procedures developed many good classifiers which collectively
utilized each of the 13 fabricaticn features. Those classifiers which gave both high
classifications and good quality non-linear separations frequently contained one or more of
the following features: SG2, EQWC, ASHP, RELFRMA and ASVB. This suggests that
measurements of the specific gravity prior to formation equalization and discharge are
important for accurate cell classification, as well as acid additions made during formation
equalization. The final acid adjustment before shipping, and the ratio of acid added in the
formation equalization step to the total acid present in the cell are also important factors for
2-class (high/low) distinction.

Examination of the fabrication database (Appendix A) shows that many poor
performing cells have a lower than average value for SG2, AVSB, and AVCAP than do
cells which are good performers. Values of EQWC are greater than or equal to zero for
poor performers, whereas values for good performers tend to be large and negative
(negative acid adjustments correspond to additions of water). Generally, ASHP values are
relatively negative in-magnitude for poor performers as opposed to positive for most good
performers.

The results clearly suggest that acid adjustments during the formation cycles are
crucial to performance capability. Cells which have lower than average specific gravities
before dishcarge and demonstrate low capacity performance during testing will likely be
poor performing throughout their lifetimes. Also suggested is that addition of acid, rather
than water, during the EQWC step may result in premature formation of lead sulfate on the
plates and result in lower capacities [34].

When mapping, cells 105 and 109 always appeared as outliers, together in their own
cluster and far away from all other cells (Figure 16). Values for SG2, AVSB, AVCAP,
EQWC, and ASHP are more deviant for these two cells than for other cells. Because the
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Figure 16. Non-linear mapping (NLM) of five-dimensional feature space for fabrication data; 2-class
Training Set cells. STDEV classification criteria. A: Class 2, cells 105 and 109. B: Class 2 cells. C:
Class 1 cells with Class 1 false-positive cell 225. Features: SG2, EQWC, ASHP, AVSB, AVCAP.
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inclusion of cells 105 and 109 distorted the NLM and pattern recognition analysis results,
subsequent NLM's and pattern recognition classifiers were graphed without cells 105 and
109. The classifier used to generate this map yielded an overall accuracy of 95% for the 2-
class Training Set cells.

Representative non-linear maps from the 2-class study (less cells 105 and 109) are
depicted in Figures 17 and 18. Each map was generated from two different classifiers each
yielding 95% overall accuracy, just as for the map in Figure 16. Individual class accuracies
were 94% for Class 1 and 95% for Class 2 (96% if cells 105 and 109 are included). The
maps in Figures 16-18 illustrate the effective separation of Classes 1 and 2 into distinct
regions of N-space.

The map in Figure 17 was generated from the 6-dimensional classifier
F-4001041201000, which corresponds to features SG2, EQWC, RELFRMA, SHPSLFA,
AVSB and AVSA. Three distinct clusters are produced. Cluster A consists of all Class-1
cells plus one Class 2 cell (#225). Most of the Class 1 cells in Cluster A (13 out of 17) are
from Circuit 4. It is interesting to note that all of the Class 1 cells from Circuits 3 and 4 in
Cluster A were fabricated with plates consisting of new grids and new paste (Refer to Table
1).

The Class 2 cells are divided into two clusters, B and C. Cluster B is composed of
cells from Circuits 2, 3 and 4, while Cluster C is exclusively composed of cells from
Circuit 1, which were fabricated from old grids and new paste. Many of the cells in
Clusters B and C were found to correspond to cells which have been observed to expand,
thus causing the battery casing to swell [26]. Five cells have actually separated between the
jar and lid, but the cells are still in service since they continue to function well.

The observations for features SG2, EQWC, RELFRMA, and AVSB were the same
as those noted above for good vs. poor performing cells. The SHPSLFA values tended to
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Figure 17. Non-linear mapping (NLM) of six-dimensional feature space for fabrication data; 2-class
Training Set cells (less cells 105 and 109). STDEV classification criteria. A: Class 1 cells, Circuits 3 and
4, new grids/new paste. B: Class 2 cells, Circuits 2-4, old grids/new paste and new grids/new paste. C:
Class 2 cells, Circuit 1, old grids/new paste. Features: SG2, EQWC, RELFRMA, SHPSLFA, AVSB,
AVSA.
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Figure 18. Non-linear mapping (NLM) of six-dimensional feature space for fabrication data; 2-class
training set cells (less cells 105 and 109). STDEV classification criteria. A: Class 1 cells, Circuits 3 and
4, new grids/new paste. B: Class 2 cells, Circuits 2-4, old grids/new paste. C: Class 2 cells, Circuit 1,
old grids/new paste. Features: SG2, SG4, ASHP, SHPSLFA, AVSB, MXCAP.
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be lower for poor performers than those for good performers, and good performers
generally had lower AVSA values than poor performers. The map in Figure 18 is an
example of less well-defined clusters in spite of a 95% overall classification accuracy. The
classifier is composed of features SG2, SG4, ASHP, SHPSLFA, AVSB, and MXCAP.
Observations made for SG2, ASHP, SHPSLFA, and AVSB continued to hold true for the
observed clusters of Class 1 and 2 cells. Class 1 cells are dispersed more; however, the
cells are still the nearest neighbors to other Class 1 cells, and may actually be small isolated
clusters. Cluster C is composed exclusively with cells from Circuit 1, whereas Cluster B
contains cells from Circuits 1 through 4. It may be that B and C are really one large,
dispersed cluster for this particular classifier, the fourth listed in Table 4.

Values for SG4 and MXCAP are lower than average for poor performers and are
higher than average for good performers. MXCAP values change remarkably, from 96%
average for poor performing cells to 100-105% for good performers. It should be noted
though that MXCAP values alone are not sufficient for a high degree of distinction between
high and low capacity cells.

A very important aspect of cell classification involves the identification of false
positives. False positives are cells which have been incorrectly identified as belonging to
the desired class. For the 2-class problem there are two possibilities: Class 2 cells which
have been falsely identified as Class 1, and of course Class 1 cells which have been
classified as belonging to Class 2. The former case has far greater potential for unfortunate
consequences than the latter. Incorrect classification of Class 1 cells simply results in their
non-use, whereas Class 2 cells which have been classified as Class 1 would likely (and
erroneously) be placed into operation, and could result in undesirable consequences.

Class 2 false positive classifications occurred most frequently for cells 146, 236, 239, 243

and 303. More importantly, the most frequently encountered Class 1 false positives were



cells 225 and 299; cells 91, 228, and 249 were also occasionally identified as Class 1. All
Class 1 false positives were characterized by low capacity values for the 1990 Capacity
Test (Appendix B), but have fabrication data values for one or more of the features SG2,
SG4, EQWC, ASHP, RELFRMA, SHPSLFA, AVSB, ASHP, AVSA, and MXCAP
which are consistent for good performing cells. The results suggest that the cells may have
performed poorly as a cause of something other than that which is represented by the
fabrication data.

Cluster A in Figure 18 was also found to contain cells only from Strings B and C and
none from String A (Section III.C). Cluster B contains cells from all three strings and
Cluster C contains cells only from Strings A and B and none from String C. All cells in
Class 2, Cluster C are from modules 1, 6, 20, and 22 exclusively, and none of the cells in
Clusters A or B are from those stored in these four modules.

Perhaps the most encouraging result obtained from the 2-Class study is that the
battery fabrication data appear to contain the information content necessary for
distinguishing between high and low performing cells. Although the 2-Class classifiers
have not been tested on a prediction set, the NLM maps shown in Figures 16-18 indicate
real class separation which is consistent with earlier independent findings [10-13, 37].
Additionally, the pattern-to-feature ratios are between 7 and 10, which is greater than the

minimum recommended ratio of 3, and whose high value lends statistical validity to the

results [19].
V.C. Three-Class Study

Results from the initial round of 3-class training and mapping are summarized in
Table 5. 1t is not surprising that the overall and individual cell classification accuracies are

lower than what was obtained from the 2-Class studies. Overall classification accuracy

generally fell between 71 to 75%, and the highest individual accuracies obtained from
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Classifier
F-0420101000000

F-0411111000000

F-0410121000100

F-0420102000000

F-0041012010120

SUMMARY OF BEST TRAINING RESULTS

TABLE 5

3-CLASS STUDY

% Classification Accuracy

Overall/Class 1/Class 2/Class 3

75/71/86/65

72/82/77/60

73/71/86/60

71/65/86/60

71/65/77170

Feature ID Feature

2

N = O NGO PdPW

-t ek

EQWF
SG4
EQWC
ASHP
RELFRMA
SHPSLFA
AVCAP
DRYWT
MXCAP

62

important
Feature Groups
2,3,5,7
2,3,4,5,6,7
2,3,5,6,7,11
2,3,5,7

3.4,6,79,11,12

Frequently
Observed
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meaningful classifiers were 82%, 86% and 70% for Class-1, -2 and -3 cells, respectively.
Initial training and mapping results indicated that Features 2 through 7, followed by 11
seemed to be the most useful for separating all three classes. Acid adjustments at various
fabrication stages (EQWF, EQWC, RELFRMA) the total acid in the cell as shipped
(SHPSLFA) and, to a lesser extent, the dry weight of the cell (DRYWT) were found to
play an important role in the classification process for training cells classified by the
STDEV method.

The 3-class training set contained 59 cells, but only 50 cells could be mapped at any
one time since the non-linear mapping program was written for a maximum capacity of 50
patterns. Cells which were always classified incorrectly were identified as aberrant cells
and were initially excluded from the mapping data. The maps were plotted, and cells which
consistently fell deep within specific clusters were identified and replaced with the aberrant
cells after which the maps were plotted again. This step was necessary to determine the
relative placement of each of the 59 cells in N-feature space.

Although the absence of the aberrant or non-aberrant cells had some effect on the
mapping errors and relative cell placement in pseudo 2-dimensional space, it was very
minor. Cells 105 and 109 also appeared as outliers in maps prepared for the 3-class study
and were removed to improve map quality. Cells which were most frequently aberrant and
the cells which were exchanged with them for mapping purposes are indicated in Appendix
C. Aberrant cells and their exchanges for mapping purposes are indicated with a check
mark (v*) and all cells which were always classified correctly are marked with a "c".

Maps for two superior classifiers (based on STDEV classifications) are presented in
Figures 19 and 20. The map shown in Figure 19 was generated using a 7-dimensional
classifier represented by feature code F-0041012010120, which corresponds to features
SG4, EQWC, RELFRMA, SHPSLFA, AVCAP, DRYWT AND MXCAP. The
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Figure 19. Non-linear mapping (NLM) of seven-dimensional feature space for fabrication data; 3-class
Training Set cells (without aberrant cells). STDEV classification criteria. A: Class 2 cells, Circuit 1, old
grids/new paste. B: Class 3 cells, Circuit 1, old grids/new paste. C: Class 3 cells, Circuit 2, old
grids/new pasie. D: Class 2 cells, Circuits 3 and 4, old grids/new paste and new grids/new paste. E:
Class 1 cells, Circuits 3 and 4, new grids/new paste. Class 3 cells which are dispersed and individually
circled are from Circuits 3 and 4, old grids/new paste (1 cell) and new grids/ new paste (4 cells). Features:
3G4, EQWC, RELFRMA, SHPSLFA, AVCAP, DRYWT, MXCAP.
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Figure 20. Non-linear mapping (NLM) of six-dimensional feature space for fabrication data; 3-class
Training Set cells (with aberrant cells). STDEV classification criteria. Much overlap is observed between
classes due to the presence of aberrant cells. A: Primarily Class 1 and Class 3 cells, Circuits 3 and 4, new
grids/new paste. B: Mostly Class 2 and Class 3 cells, Circuits 2-4, old grids/new paste and new grids/new

paste. C: Class 2 and Class 3 cells, Circuit 1, old grids/new paste. Features: EQWF, SG4, ASHP,
RELFRMA, SHPSLFA, DRYWT.
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overall classification accuracy was 71% and the individual class accuracies were 65, 77 and
70% for Classes 1,2 and 3 respectively.

As expected from the training accuracies, the clusters in Figure 19 are not well
separated, and there is some degree of overlap. If each of the points from the Class-3 cells
were removed from the map in Figure 19, Classes 1 and 2 would very nearly be separabie.
The overlap is likely due to the arbitrary nature of the boundaries established between the
capacity values for Class 3 and those for Classes 1 and 2, within a nearly continuous
distribution. That is, the boundaries which have been established using the STDEV
criterion may not provide an adequate means of identifying different cell subsets with
different properties.

It is interesting to observe that virtually all of the points lying above zero on the
Y-axis are from Circuits 1 and 2 and those below are predominately from Circuits 3 and 4.
This suggests that differences in fabrication conditions from one batch to another produce
real differences in measurable cell properties. Some of the fabrication differences from
batch to batch are documented (e.g., material changes, Table 1) and are cited in the figure
legends. However, other fabrication changes may simply be associated with a learning
curve in the manufacture of these cells. The fact that cells from Circuit 3, which came from
two different groups of fabrication materials, have statistically significant differences in
capacity [13] suggests that fabrication materials are a determining factor in cell
performance, even after 7 years of operation.

Results from the 6-dimensional map in Figure 20 were similar to Figure 19 in that
low capacity cells from Circuit 1 are well resolved from the Class 1 cells, but cells from
Class 3 are found within each of the three clusters, A, B and C. Cluster B contains cells
predominately from Circuits 2 and 3 while Cluster A primarily contains cells with the

highest ID numbers, i.e. cells from Circuits 3 and 4 which were made from newer
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materials. These observations are supported by a dichotomy of performance observed for
the cells from Circuit 3 (Appendix B). The results suggest that measurements during initial
cell operation reflect the influence of plate and grid materials, and that these materials, along
with other factors, determine cell performance well into battery life.

The histogram distribution of the 1990 cell capacity data (Figure 15) shows that the
data do not conform exactly to a Gaussian distribution. Therefore, the boundaries assigned
between Class 3 and each of the other two classes, based on the Gaussian o-value, may not
be appropriate. The NLM clusters of Figures 19 and 20 illustrate the existence of subsets
of cells with common properties. Unfortunately, these subsets may not reflect only
performance differences. However, by first dividing cells into performance subsets by the
STDEYV criterion, then applying KNN training to find feature sets which separate these
classes as well as possible in feature space, the NLM display should illustrate cell grouping
reflecting primarily performance differences. Thus, if cell classes are then re-defined based
on their observed clustering in performance-based feature space, optimized definition of
performance subsets might be achieved.

Table 6 summarizes the results of re<classifying cells based on their consistent
occurrence within clusters of different STDEV assigned classes for various feature sets
considered good 3-class classifiers (Table 5). Table 6 lists each cell classification based on
STDEDV criteria and based on the NLM cluster analysis criteria. Remarkably, many of the
Class 2 cells were usually classified correctly and very few were reassigned to another
class. Many of the Class 3 cells and some of the Class 1 cells were reassigned to other
classes. The differences that occur underscore the need for examination of more than one
classification system.

After each cell was assigned to the majority class of its nearest or surrounding cluster,

the training procedure was repeated on the newly classified cells. As expected, higher
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TABLE 6

3-CLASS STUDY
TRAINING SET CLASSIFICATIONS

Class by Class by Class by Class by

Cell ID STDEV NLM Clusters Cell ID STDEV NLM Clusters
146 1 1 105 2 2
230 1 3 109 2 2
236 1 3 192 2 2
239 1 3 197 2 2
243 1 3 199 2 2
245 1 1 225 2 3
246 1 1 228 2 2
251 1 1 249 2 3
252 1 1 299 2 2
254 1 1 16 3 2
262 1 1 18 3 2
265 1 1 70 3 3
267 1 1 71 3 2
273 1 1 83 3 3
276 1 3 99 3 3
297 1 1 128 3 3
303 1 3 131 3 1
20 2 2 132 3 2
21 2 2 133 3 3
22 2 2 135 3 3
23 2 2 136 3 3
25 2 2 172 3 3
28 2 2 185 3 1
29 2 2 219 3 3
59 2 2 221 3 3
60 2 2 235 3 3
62 2 2 263 3 3
63 2 2 307 3 3
65 2 2 316 3 2
91 2 2
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overall classification accuracy was obtained for each classifier and new classifiers were
discovered which were not obtained in the first round of training (Table 7). Overall
classification accuracy ranged from 78% to 86%, with greatest improvement obtained for
Class 3 cells which increased from a high of 70% for classification boundaries determined
by STDEV criterion to 81% using NLM. The use of NLM classification criteria also
produced high accuracies for Class 1 and Class 2 cells (85% and 92%, respectively).
Reclassifications based on NLM clusters resulted in the frequent appearance of
features SG2, EQWF, EQWC, ASHP and RELFRMA. So, in addition to features and
classifiers which were initially found to be important, SG2 was also found to be a useful
feature. The classifiers chosen for the NLM assigned cells are able to separate cells on the
basis of their fabrication materials. This observation is based on the formation of clusters
which contain cells exclusively from a particular circuit, or cells which are made from the
same fabrication materials. Representative maps for the reclassified cells are shown in
Figures 21 and 22 and depict very good separation of the three NLM-based classes of cells.
A thorough analysis of all useful classifiers generated by 3-class training and
mapping showed that the cells most frequently identified as false positives for Class 1 were
cells 133, 135, 225, 263 and 299. Cells 225 and 299 were also the most frequent Class 1
false positives encountered during the 2-Class studies. Examination of the data in
Appendix A showed no obvious reason for the continuous incorrect classification of these
cells. This suggests that the cells were fine during manufacture, but were likely in poor
condition at the time the 1990 capacity tests were performed. Examination of capacity
slope trends [13] for each cell indicates that many cells have changed their capacity levels
over the years. Cells which originally possessed low capacities gradually increased in
capacity over the years (1983 to 1990), whereas high capacity cells actually lost some
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TABLE 7

3-CLASS STUDY
SUMMARY OF BEST TRAINING RESULTS
AFTER NLM RECLASSIFICATIONS

% Classification Accuracy important
Classifier Overall/Class 1/Class 2/Class 3 Feature Groups
F-0201010000000 78/69/80/81 2,4,6
F-0/16/11110000000 85/77/92/81 2,3,45,6
F-1420110100010 81/85/84/76 1,2,3,5,6,8,12
F-1001020001000 81/77/88/76 1,4,6,10
F-0110010000000 86/85/92/81 2,3,6
Frequently
Feature ID Feature Observed
1 SG2
2 EQWF v
3 SG4 v
4 EQWC v
5 ASHP
6 RELFRMA v
8 AVSB
10 AVSA
12 MXCAP
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Figure 21. Non-linear mapping (NLM) of five-dimensional feature space for fabrication data; 3-class
Training Set cells (with aberrant cells, without exchange cells), NLM cluster classification criteria. A:
Class 3 cells, mostly Circuits 3 and 4, new grids/new paste. B: Class 1 cells, primarily Circuit 4, new
grids/new paste. C: Class 2 cells, mainly Circuits 2 and 3, old grids/new paste. D: Class 3 cells,
Circuits 2 and 4, old grids/new paste and new grids/new paste. E: Class 2 cells, Circuit 1, old grids/new
paste. Features: EQWF, SG4, EQWC, ASHP, RELFRMA.
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Figure 22. Non-linear mapping (NLM) of five-dimensional feature space for fabrication data; 3-class
Training Set cells (with exchange cells, without aberrant cells), NLM cluster classification criteria. A:
Class 2 cells, Circuit 1, old grids/new paste. B: Class 3 cells, primarily Circuit 2 (old grids/new paste)
and Circuit 4 (new grids/new paste). C: Class 2 cells, mainly Circuit 3, old grids/new paste. D: Class 3
cells, mostly Circuits 3 and 4, new grids/new paste. E: Class 1 cells, Circuit 4, new grids/new paste.
Features: SG2, EQWF, EQWC, ASHP, RELFRMA.
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capacity over the same time period. This supports the suggestion that cells can markedly
change in performance after manufacture.

Feature groups which afforded the most accurate training results were used to
perform prediction studies on the remaining Class 3 cells which were not part of the
training set. Individual cell classifications for each classifier and each method (STDEV and
NLM) are presented in Appendix D. Classes which were most frequently chosen are listed
for each method and for both methods considered equally. Cells which underwent a split-
vote have both assigned classes listed, separated by a slash (solidus). This information is
summarized in Table 8, where the class is assigned using the best training feature groups
from each of the criteria for a total pool of 10 classifiers. Cell classifications utilizing the
best training classifier from each type of classification treatment are also presented.

Prediction "accuracy” was generally poorer than expected (max. ~48%). However,
the large number of apparent misclassifications may be attributed to the arbitrary STDEV
criterion used to assign all of the Predication Set cells to Class 3. It is possible that a Class
3 designation for many of the cells in the prediction set is incorrect, and that the NLM-
trained classifiers provide a more accurate assignment of cells to subsets with overall
common properties.

The same best feature groups were aiso used to classify the remaining 219 cells
assigned to unknown Class 0. Due to the large number of cells, only summarized
predictions are shown in Table 9, while detailed prediction results are presented in
Appendix E. Results show that the assigned classes are again consistent with expectations
given the knowledge of fabrication material changes made during manufacture. Most cells
made early (those will smaller ID numbers) tend to be assigned to Class 2, which would be
expected of cells made with old grids and paste. Many Class 3 designations occur for cells

lying in the middle and later part of the database (consistent with old grids and new paste).
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TABLE 8

SUMMARY OF CLASSIFICATION RESULTS
FOR PREDICTION SET, CLASS-3 CELLS
USING STDEV AND NLM CLASS-ASSIGNMENT CRITERIA

Majority Yote Resuilt
for Best n Classifiers Result for Best
STDEV NLM BOTH Training Classifier
Index CelllID Circuit n=5 n=5 n=10 STDEV NLM
1 2 1 3 3 3 3 3
2 9 " 3 2 20r3 3 3
3 12 " 2 2 2 3 3
4 13 " 2 3 2 2 3
5 14 " 3 3 3 3 3
6 15 " 2 3 2o0r3 2 3
7 17 " 3 2 2 3 2
8 24 " 2 2 2 2 2
9 40 " 2 2 2 2 2
10 41 " 2 2 2 2 2
11 64 " 2 2 2 2 2
12 78 " 2 2 2 2 2
13 84 2 3 3 3 3 3
14 85 " 3 3 3 3 3
15 86 " 2 2 2 2 2
16 87 " 2 2 2 2 2
17 80 " 2 2 2 2 2
18 93 " 1 3 3 3 3
19 97 " 2 2 2 3 2
20 101 " 3 3 3 3 3
21 102 " 3 2 3 3 2
22 106 " 1 3 3 3 3
23 129 " 3 3 3 3 1
24 130 " 1 3 1 1 3
25 137 " 2 3 2or3 3 3
26 138 " 2 2 2 2 3
27 139 " 3 3 3 1 3
28 140 " 2 2 2 2 3
29 141 " 3 2 3 3 3
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TABLE 8 (cont.)

Majority Vote Result

for Best n Classifiers Result for Best
STDEV NLM BOTH Training Classifier
Index CelllID Circuit n=5 n=5 n=10 STDEV NLM

30 142 2 3 3 3 2 3
31 143 " 3 20r3 3 3 3
32 145 " 2 3 3 3 1
33 147 " 2 2 2 2 2
34 174 3 2 2 2 3 2
35 177 " 3 2 3 3 2
36 195 " 2 1 2 2 1
37 196 " 2 2 2 3 2
38 212 " 3 3 3 3 3
39 217 " 3 3 3 3 3
40 222 " 3 1or2 3 3 3
41 223 " 3 1 3 3 2
42 224 " 1 1 1 3 1
43 226 " 3 3 3 3 3
44 231 " 3 3 3 1 3
45 232 " 1 1 3 3 1
46 233 " 1 1 1 1 2
47 234 " 1 1 1 1 1
48 237 " 3 3 3 1 3
49 238 " 1 3 1 1 3
50 241 4 3 1 1 3 1
51 242 " 2 1 1or2 1 2
52 244 " 1 1 1 1 1
53 247 " 3 1 1 1 2
54 248 " 1 1 1 1 1
55 250 " 2 1 1 2 3
56 253 " 2 1 3 2 3
57 266 " 1 1 1 1 3
58 278 " 2 1 1 2 1
59 286 " 1 1 1 1 1
60 294 " 2 1 1or2 2 1
61 298 " 1 1 1 1 2
62 319 " 1 3 3 3 3
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TABLE 9 (cont.)

Majority Vote Resuit
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TABLE 9 (cont.)

Majority Vote Resuit

for Best n Classifiers Result for
STDEV NLM BOTH Best Classifier Unanimous
Index CellID Circult No. n=5 n=5 n=10 STDEV NLM Yote
94 155 2 2 2 2 3 2
95 156 . 2 2 2 3 2
96 157 " 1 1 1 1 1 v
97 158 " 3 3 3 3 3 v
a8 159 . 2 2 2 2 2 v
99 160 . 3 1 3 3 2
100 161 3 3 1 13 3 1
101 162 . 1/3 3 3 3 1
102 163 * 3 3 3 2 3
103 164 " 3 3 3 3 3 v
104 165 " 3 3 3 3 3 v
105 166 " 1 1 1 1 1 v
106 167 . 3 1 1 3 1
107 168 . 3 3 3 2 3
108 168 " 1 3 1 1 3
109 170 . 2 2 2 3 2
110 171 " 2 2 2 2 2 v
11 173 " 3 2 3 2 3
112 175 - 1 1 1 3 1
113 176 " 3 2 2/3 2 2
114 178 . 3 1 3 3 1
115 178 . 3 1 3 3 2
116 180 " 2 2 2 2 2 v
117 181 " 2 2 2 2 2 v
118 182 . 1 1 1 3 2
119 183 . 1 2 112 2 2
120 184 " 2 2 2 3 2
121 186 . 2 3 2/13 2 3
122 187 . 2 2 2 2 2 v
123 188 " 2 3 3 3 1
124 189 - 2 2 2 2 3
125 190 . 2 3 2 2 3
126 191 " 2 2 2 3 2
127 193 " 2 2 2 2 2 v
128 194 . 3 3 3 3 3 v
129 198 . 2 2 2 2 2 v
130 200 . 2 1 2 2 1
131 201 - 2 3 2 2 3
132 202 " 3 1 1/3 3 1
133 203 " 3 1 3 3 2
134 204 . 3 1 1 3 2
135 205 . 1 2 2 3 2
136 206 " 2 2 2 3 2
137 207 . 2 2 2 2 2 v
138 208 . 2 2 2 2 2 v
139 209 . 2 2 2 3 2
140 210 " 3 1 3 2 3
141 211 - 3 3 3 2 3
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TABLE 9 (cont.)

Majority Vote Resuit

for Best n Classifiers Result for
STDEV NLM BOTH Best Classifier Unanimous
Index CellID Circuit No. n=5 n=5 n=10 STDEV NLM Vote
142 213 3 3 2/3 3 3 2
143 214 . 3 1 1/3 3 3
144 215 . 2 2 2 3 2
145 216 . 2 2 2 2 2 v
146 218 " 3 1 1/3 2 2
147 220 " 1 3 1 1 1
148 227 . 3 3 3 1 3
149 229 " 1 3 1/3 1 3
150 240 " K] 3 3 3 3 v
151 255 4 3 3 3 3 3 v
152 256 - 1 1 1 1 1 v
153 257 " 1 1 1 1 1 v
154 258 " 3 3 3 1 3
155 259 . 3 3 3 1 3
156 260 . 2 1 1 2 3
157 261 . 1 1 1 1 1 v
158 264 " 1 1 1 1 1 v
158 268 b 1 1 1 1 1 v
160 269 " 3 1 1/3 3 1
161 270 " 1 1 1 1 1 v
162 271 . 3 1 1/3 1 1
163 272 - 1 1 1 3 3
164 274 . 2 1 1 2 1
165 275 . 1 1 1 1 3
166 277 b 1 2 1 3 1
168 280 " 1 1 1 1 1 4
169 281 " 1 1 1 1 1 v
170 282 . 1 3 1 1 3
171 283 " 1 1 1 1 1 v
172 284 . 3 2 1 3 2
173 285 . 2 2 2 2 2 v
174 287 . 1 2 1 1 2
175 288 . 3 2 3 3 1
176 289 " 2 2 2 1 1
177 290 . 1 3 1 2 3
178 291 " 2 2 2 1 2
179 292 . 2 2 2 1 1
180 293 ° 1 1 1 1 1 v
181 205 . 2 2 2 2 1
182 296 . 3 2 1 3 1
183 300 . 2 1 3 2 1
184 301 . 1 1 1 3 1
185 302 " 3 1 1 3 1
186 304 . 2 3 2 2 3
187 305 " 3 3 3 2 3
188 306 " 3 3 3 3 3 v
189 308 - 1 1 1 1 1 v
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TABLE 9 (cont.)

Majority Vote Result

for Best n Classifiers Result for
STDEV NLM BOTH Best Classifier Unanimous
index CellID Circuit No. n=5 n=5 n=10 STDEV NLM Vote
190 309 4 3 3 3 2 3
191 310 - 1 1 1 3 3
192 311 " 1 1 1 3 3
193 312 . 3 2 3 3 2
194 313 . 2/3 1 12 1 1
195 314 . 1 1 1 2 3
196 315 - 1 1 1 3 3
197 317 - 1 1 1 1 1 v
198 318 " 3 1 3 3 3
199 320 " 2 1 1 1 2
200 321 5 1 1 1 3 1
201 322 - 1 3 3 1 3
202 323 . 2 12 2 3 3
203 324 . 1 1 1 1 1 v
204 325 " 1 1 1 3 3
205 326 . 3 3 3 3 3 v
206 327 " 1 1 b 1 2
207 328 " 1 1 1 1 3
208 329 . 3 3 3 3 3 v
209 330 . 2 3 3 3 3
210 331 . 1 1 1 1 3
211 332 - 1 1 1 1 1 v
212 333 . 2 3 3 3 3
213 33 . 1 1 1 3 3
214 335 " 3 1 113 1 1
215 336 - 1 1 1 1 1 v
216 337 » 1 3 1 1 1
217 338 . 3 3 3 3 3 v
218 339 ® 1 1 1 1 1 v
219 340 . 3 1 3 3 3
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Cells which were made later with new grids and paste have many more of the Class 1
designations than any of the earlier cells.

Comparison of the results in Table 9 with class assignments based on 1991 capacity
data for 202 common cells showed that the predictions are consistent with the actual cell
performance for Class 3 cells (~85% correctly classified); however, the correlations
between the predictions and the class assignments (based on 1991 performances) for Class
1 and 2 cells were not as high (~25% and ~20% for Class 1 and Class 2, respectively).
The poor correlation is likely due to the changes observed in the performance of the cells
over time [13]. Cells which have large capacity slope trends will likely be misclassified
when comparing the class assignments based on currently measured performance relative to
performance soon after the date of manufacture.

In summary, results from the 3-class studies again indicate that battery fabrication
data contain the information necessary to distinguish between high and low performing
cells. Identification of Class 3 cells is more difficult. Better classifiers were obtained by
reclassifying cells based on their nearest NLM cluster, and the cell-class majority within
that cluster, than relying entirely on the STDEYV criterion. Many of the useful classifiers
were composed of only 4 to 7 features. For 59 total cells, the pattern-to-feature ratio lies

somewhere between 8 and 15 which is large enough to permit statistical confidence in the

results.
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V1. Conclusions

The results of this multivariate pattern recognition investigation clearly illustrate the
usefulness of battery fabrication data for predicting lead-acid cell performance.
Measurements of specific gravity, acid levels and adjustments to these levels appear to be
among the most important for accurate cell classifications. Results showed that high and
low performing cells could be distinguished quite accurately, demonstrating clearly that
performance prediction information is contained within the fabrication measurements.
Attempts to predict three different classes of cell performance were not completely
satisfactory. It appears that further work is needed regarding more effective definitions of
cell performance classes.

One potential benefit from this work may be the ability to isolate poor cells from good
ones which are needed for demanding applications. Another benefit would be the ability to
assign better-matched cells to energy storage batteries using long strings, where one "weak
link” can bring down the whole string. Finally, the ability to reject cells which will degrade
performance, fail early, or require exceptional maintenance, provides a significant
economic benefit for large energy storage batteries.

In addition to the benefits related to cell pre-selection, we hope the results of our
work will help illustrate how changes in manufacturing procedures might lead to improved
quality cells. For example, it is now clear from our work that subtle differences in grid and
paste materials have a prolonged effect on performance of lead-acid cells. Knowledge of
which fabrication features are the most important may also provide information on the
observation and adjustment of these features in an effort to produce superior batteries.

Finally, it may be possible that a combination of fabrication and maintenance data
measurements, raw or transformed, may yield even greater classification accuracy, and

hence more reliable performance predictions. Such studies are in progress. Ultimately,
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these studies will include correlation with cell lifetimes, when the CEMC battery goes
through its complete life and cell failure data becomes available.

This work has demonstrated that pattern recognition techniques are useful for
prediction of lead-acid cell performance. Pattern recognition and other chemometric
techniques will continue to play an important role in electrochemical research and in other
chemical applications such as spectroscopy [39-41], chromatography [42-44],
biochemistry [45], thermodynamics {46}, statistical analysis [47-49], QA/QC [50, 51},
environmental testing [52-54], food science [55], and in manufacturing and process control

[56-58].



VII. Appendices
A. GNB Fabrication Data
B. 1990 Capacity Test Data
C. Correctly Classified Cells, Aberrant Cells and Replacement Cells
D. Prediction Results for Prediction Set Cells

E. Prediction Results for Unknown Set Cells
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122
293
146

171
342
49
49
1486

49
98
220
269
244
757
464
415
73
537
415

98
317
415

293
293
146
342
391

5.64
3294
444
6.63
7.44
11.58
5.49
4.33
19.63
43.87
5.25
5.53
37N
50.66
49.20
52.88
47.29
1.40
292
1.22
1.85
4.31
242
7.50
3.12
1.89
2.31
7.14
1.20
-3.61
-2.56
-2.56
-3.32
-1.51
-0.72
2.85
1.73
6.13
-3.19
-0.95
9.50
15.44
4.75
3.39
4.12
270
10.41
4.90
10.34
-1.63

25.38
25.29
24.27
23.70
25.23
24.71
23.80
2415
26.08
24.86
25.75
24.41
25.13
24.30
25.46
25.56
25.55
25.79
24.08
24.31
25.52
25.99
25.16
25.39
26.23
26.06
25.75
2494
25.69
25.53
24.70
25.80
26.39
26.30
25.11
25.25
26.16
26.01
26.12
24,09
24.41
25.08
24.66
25.33
24.34
22.25
24.50
21.40
25.65
25.31



CELLNO.
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

S$G2
1.290
1.263
1.283
1.283
1.279
1.273
1.287
1.272
1.291
1.282
1.281
1.279
1.286
1.271
1.280
1.254
1.257
1.259
1.259
1.256
1.250
1.257
1.255
1.258
1.259
1.254
1.261
1.265
1.265
1.269
1.267
1.267
1.269
1.268
1.268
1.269
1.266
1.275
1.269
1.274
1.260
1.273
1.263
1.269
1.264
1.264
1.269
1.273
1.273
1.280

EQWF
-97
245
372
567

515
104
603
295
297
295
20
83
420
299
959
772
841
618
739
1140
885
1030
725
561
896
653
447
447
378
442
346
234
235
23¢
234
100
58
378
254
614
284
565
378
450
450
234
139
284
-140

APPENDIX A (cont.)

SG4
1.285
1.284
1.283
1.283
1.284
1.283
1.275
1.287
1.285
1.284
1.280
1.285
1.286
1.274
1.287
1.286
1.284
1.284
1.284
1.282
1.293
1.291
1.281
1.293
1.277
1.267
1.282
1.282
1.282
1.288
1.282
1.287
1.285
1.287
1.281
1.281
1.283
1.283
1.283
1.287
1.270
1.279
1.287
1.284
1.273
1.284
1.283
1.284
1.272
1.283

Py
BoBB8oos

[
©o
OO0 O Ww

275

270

-845
-960
-389
-439
-293
-790
-638
-243
-194

100

5§59
-194
-145
-194
-536
-243
437
-280

-145
-194
-242
-144
-193
-291
353
-15
-388
-241
191
-280
-96
-96
374
-242

ASHP RELFRMA SHPSLFA

342
317
391
122
342
146

73
732
659
488
195
171
317
195
439

49

244
293

49
366
195
464
293

98

98
244
244
684
757
855

-0.89
2.26
3.44
5.07

-0.55
4.75
0.95
5.67
2.77
2.64
2.69
0.18
0.79
3.89
2.86
8.33
6.72
7.56
5.81
6.31

10.95
7.74
9.13
6.46
492
8.39
5.58
3.70
4.06
3.16
3.67
3.06
2.13
217
214
2,06
0.78
0.53
334
224
5.54
2,60
5.02
3.34
4.09
410
2.05
1.29
255

-1.26

24.90
24.55
24.86
25.10
24.42
24.40
24.99
25.05
2493
25.86
25.22
25.31
23.95
24.80
24.03
23.63
24.70
24.31
23.12
24.99
22.45
23.79
23.73
23.68
25.76
25.97
25.00
25.98
24.41
25.61
25.58
24.40
24.09
24.54
25.00
24.62
28.32
24.40
24,66
25.14
25.62
25.10
24.62
24.62
2490
24.12
25.49
25.07
27.02
25.76



CELL NO.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

S$G2
1.269
1.265
1.273
1.274
1.274
1.268
1.270
1.268
1.265
1.273
1.274
1.267
1.269
1.278
1.277
1.265
1.274
1.268
1.275
1.266
1.265
1.268
1.269
1.280
1.278
1.275
1.276
1.272
1.271
1.277
1.270
1.284
1.268
1.278
1.284
1.281
1.283
1.279
1.280
1.279
1.278
1.283
1.284
1.275
1.274
1.266
1.271
1.271
1.267
1.261

EQWF
378
447
139
254
107
714
182
235
447

-38
157
238
349

68

-50
447
109
351

42
396
447
206
155

-339
-228
58
171
140
142
-149
95
-654
284
-253
-549
-341
-367
-257
-140
-309
-256
-368
-395
-204

-80

133
214
-110
343
486

APPENDIX A (cont.)

SGa
1.280
1.280
1.285
1.284
1.283
1.274
1.288
1.288
1.289
1.281
1.282
1.284
1.280
1.283
1.282
1.266
1.281
1.277
1.283
1.282
1.280
1.291
1.288
1.283
1.285
1.277
1.289
1.289
1.290
1.287
1.277
1.291
1.283
1.289
1.282
1.289
1.280
1.286
1.289
1.291
1.288
1.288
1.289
1.286
1.292
1.280
1.286
1.290
1.288
1.290

EQWC
0
-145
241
-192
-291
-385
-341
-341
488
-145
-48
-144
0
-183
-194
531
-48
100
-291
-243
-194
-638
-536
-391
-290
100
-586
-586
-491
-437
52
-492
-183
-488
-194
-537
-587
-437
-488
-687
-341
-487
439
-487
-640
-838
-388
-538
637
-738

ASHP RELFRMA SHPSLFA

732
122
488
488
317
0
610
392
391
195
366
537
0
488
635
293
49
-342
342
732
283
513
513
317
-122
-49
439
146

391
837
415
562
122
293
293
-146
98

439

342

98
317
293
146
513
513
146
244

3.48
4.01
1.24
227
094
6.31
1.68
2,08
3.99
-0.34
1.42
220
3.19
0.62
-0.44
4.25
095
3.07
-0.39
3.67
4.00
1.78
1.34
-2.83
-1.90
0.50
-1.51
1.22
1.20
-1.29
0.84
-5.67
251
-2.12
-4.92
-2.94
-3.02
-2.19
-1.20
271
-2.20
-3.256
-3.43
-1.74
-0.78
1.13
-1.86
-0.94
291
3.98

25.58
2451
25.18
25.29
25.22
24.09
24.48
2497
24.50
24.86
25.00
24.75
24.11
24.76
25.91
25.08
25.16
24.70
23.96
24.89
24.86
2522
25.37
26.24
25.60
2591
24.58
2423
24.89
25.40
26.16
25.26
25.75
2544
24.82
25.00
25.16
25,13
2457
24.62
24.94
24.62
24.67
2554
24.74
24.46
25.70
25.71
24.87
25.80



CELLNO.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

SG2
1.267
1.268
1.265
1.263
1.268
1.271
1.268
1.268
1.266
1.265
1.259
1.264
1.267
1.266
1.262
1.260
1.261
1.264
1.262
1.258
1.263
1.263
1.270
1.268
1.272
1.270
1.272
1.251
1.264
1.263
1.255
1.265
1.269
1.274
1.268
1.268
1.272
1.268
1.268
1.262
1.269
1.264
1.261
1.268
1.270
1.263
1.266
1.263
1.269
1.269

EQWF
194
205
521
601

-110
256
206
233
222
621
657

43
-21
92
579
436
58
446
614
303
99
79
255
55
130
-96
923
110
354
657
173

-180

-169
155
155

-152
-48
409
17
313
336
305
21
454
286
454
217
217

APPENDIX A (cont.)

SG4
1.288
1.288
1.294
1.284
1.285
1.284
1.289
1.286
1.293
1.271
1.283
1.298
1.289
1.289
1.284
1.290
1.290
1.290
1.285
1.289
1.290
1.285
1.285
1.286
1.285
1.290
1.293
1.295
1.283
1.280
1.282
1.282
1.284
1.285
1.285
1.285
1.288
1.285
1.280
1.282
1.285
1.285
1.280
1.283
1.285
1.283
1.284
1.285
1.285
1.280

A-6

EQWC
-487
438
744
144
-339
-290
-587
-641
-840

324
-890
-906
-738
-738
-682
-738
-687
-687
-894
-537
-687
-340
-241
437
-339
-788
404
-894
-391
.788
-293
444
-339
-388
-589
-388
-586
-388

48
-393
-339
488
-343
-341
-388
441
489
-640
-640
-293

ASHP RELFRMA SHPSLFA

244
342
0
-146
391
195
317
146

293
195
439
342
439
220
98
244
439
185
122
146
146
-171
73
195
146
-49
415
293
488
269

537
122
49

-73
98
-98
-73
-49
269
-342

488
439
-49
-49
-146
244

1.60
1.81
4.63
6.35
0.03
-0.92
2.1
1.74
1.96
1.84
5.13
5.57
0.36
0.18
0.77
4.64
3.66
0.49
3.58
514
253
0.82
0.65
244
0.46
1.09
-0.81
8.34
0393
3.06
5.71
1.38
-1.66
-1.39
1.25
1.26
0.03
-1.27
-0.38
3.36
0.14
2,59
261
253
-0.18
3.89
2.32
3.62
1.75
1.84

26.16
24.80
23.15
24.15
25.39
26.19
26.18
25.08
24.18
28.02
2517
25.00
25.41
2499
25.23
26.11
25.31
25.33
2595
25.41
25.21
26.23
25.75
22.22
26.31
2495
24.99
23.36
25.77
24,84
25.33
26.58
25.71
26.23
26.11
26.18
2551
25.84
2717
25.79
26.41
26.14
26.84
2584
25.87
25.72
26.00
26.16
25.64
25.92



CELL NO.
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
K2R
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

335
336
337

SG2
1.268
1.259
1.273
1.265
1.258
1.269
1.253
1.258
1.247
1.247
1.253
1.258
1.271
1.254
1.270
1.270
1.263
1.269
1.272
1.272
1.270
1.260
1.268
1.275
1.268
1.274
1.256
1.268
1.262
1.261
1.262
1.278
1.277
1.258
1.260
1.265
1.255
1.256
1.263
1.280
1.280
1.283

EQWF
255
719

17
373
712

-138
883
713
1143
1043
882
563

91

687
-124
-73
698
217
96
-45
179
578
155

205
205
9N
425
660

70
660

66
100
826
742
541
954
911
620

-48

APPENDIX A (cont.)

SG4
1.280
1.285
1.285
1.284
1.284
1.283
1.287
1.283
1.278
1.280
1.284
1.284
1.284
1.280
1.282
1.283
1.276
1.283
1.283
1.284
1.279
1.286
1.290
1.290
1.286
1.292
1.291
1.287
1.296
1.286
1.287
1.287
1.286
1.282
1.287
1.294
1.294
1.283
1.291
1.294
1.292
1.294

EQWC
-495
-589
488
439
439
-391
-636
441
-318
-393
489
-439
192
-145
.243
-291

.54
-341
-341
-389
-159
-589
-840
-840
-539
495
444
-243

-194
-243
-243
-194

-243
-599
-599

48
444
-509
495
-599

ASHP RELFRMA SHPSLFA

98

0
293
122
-98
98
146
415
122
0
146
488
244
-342
146
146
-122
-146
0
391

-171
293

2.02
577
0.14
3.16
6.05
-1.12
7.48
6.13
9.82
9.04
7.77
5.26
0.73
5.89
-1.01
-0.61
5.96
1.83
-0.81
-0.38
1.51
4.74
1.32
-0.04
1.74
1.74
8.43
3.77
5.52
0.63
6.01
0.56
0.81
7.05
6.43
4.62
8.54
7.96
5.49
0.00
0.00
-0.40

26.91
26.15
26.05
25.36
2477
26.47
2494
25.59
25.22
24.56
24.26
23.70
27.60
24.65
26.86
26.27
25.41
25.03
25.39
25.92
25.72
25.81
24.65
2446
24.80
24.79
23.32
24.65
25.24
23.92
23.96
25.34
26.3¢
24.76
24 .35
24.48
23.10
23.79
2392
25.46
25.83
26.10



APPENDIX A (cont.)

CELL NO. AVSB AVCAP AVSA DRYWT MXCAP MXSA
1 1.282 91.9 1.146 261.26 96.2 1.151
2 1.285 922 1.146 262.58 96.5 1.154
3 1.288 92.6 1.146 261.46 96.7 1.155
4 1.286 924 1.146 262.99 96.5 1.155
5 1.286 93.8 1.147 262.28 97.9 1.155
6 1.286 92.9 1.146 265.23 969 1.153
7 1.288 93.2 1.145 262.18 97.4 1.154
8 1.290 98.5 1.1585 260.05 100.7 1.167
9 1.290 93.6 1.154 263.09 97.8 1.162

10 1.286 97.2 1.147 258.93 99.3 1.158
11 1.286 97.1 1.148 259.23 99.6 1.156
12 1.283 95.5 1.146 257.60 97.3 1.156
13 1.286 95.1 1.143 258.42 97.6 1.155
14 1.286 91.0 1.141 268.48 95.0 1.150
15 1.285 93.1 1.141 260.45 96.9 1.153
16 1.285 92.1 1.145 263.70 96.9 1.155
17 1.286 91.7 1.141 263.91 95.2 1.154
18 1.286 92.8 1.139 260.75 95.9 1.151
19 1.287 92.8 1.141 268.27 96.2 1.151
20 1.284 91.6 1.140 263.60 95.7 1.153
21 1.286 91.2 1.144 266.85 94.4 1.157
22 1.284 934 1.142 263.40 96.2 1.156
23 1.283 90.5 1.140 272.54 93.9 1.153
24 1.281 919 1.143 272.03 95.9 1.154
25 1.279 90.5 1.144 268.58 94.3 1.163
26 1.284 92.2 1.140 263.19 95.2 1.154
27 1.286 93.0 1.142 263.60 95.7 1.154
28 1.282 929 1.141 260.75 95.9 1.150
29 1.289 91.8 1.145 264.92 95.3 1.154
30 1.276 915 1.140 257.30 95.3 1.148
31 1.285 91.8 1.143 266.24 95.7 1.163
32 1.285 92.6 1.142 257.71 95.9 1.153
33 1.285 93.2 1.143 261.57 96.4 1.151
34 1.286 91.6 1.139 270.81 94.8 1.147
35 1.283 90.9 1.140 269.19 95.0 1.147
36 1.282 87.9 1.141 272,75 93.0 1.148
37 1.281 90.0 1.140 268.99 95.5 1.147
28 1.286 93.5 1.142 266.44 97.4 1.150
39 1.277 89.6 1.138 268.27 939 1.142
40 1.285 92.1 1.145 269.29 95.6 1.151
41 1.286 939 1.142 268.37 97.2 1.183
42 1.286 92.6 1.142 265.63 95.6 1.158
43 1.284 91.2 1.142 264.82 95.6 1.148
44 1.284 93.8 1.145 261.06 97.2 1.149
45 1.287 93.2 1.147 261.16 96.5 1.151
46 1.289 95.6 1.149 258.01 98.7 1.157
47 1.286 91.6 1.141 260.96 944 1.148
48 1.286 94.3 1.146 260.35 97.4 1.153
48 1.284 91.8 1.140 262.58 95.7 1.147



CELL NO.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

AVSB
1.280
1.278
1.286
1.280
1.276
1.284
1.286
1.285
1.284
1.286
1.280
1.281
1.286
1.277
1.286
1.283
1.281
1.287
1.286
1.281
1.288
1.285
1.288
1.282
1.284
1.285
1.280
1.286
1.281
1.286
1.284
1.286
1.285
1.286
1.284
1.285
1.285
1.281
1.279
1.281
1.280
1.283
1.282
1.282
1.282
1.280
1.280
1.278
1.281
1.284

APPENDIX A (cont.)

AVCAP
89.9
92,0
937
91.6
91.6
91.8
93.9
90.8
92.3
91.7
92.1
90.8
91.7
89.4
91.3
89.0
90.9
91.7
93.6
919
92.8
91.1
93.3
91.6
89.4
91.9
90.6
93.2
90.9
92.0
92.5
96.5
96.9
95.0
94.6
95.1
93.0
939
934
959
929
945
809
93.6
92.0
914
91.8
915
90.0
92.2

AVSA
1.136
1.135
1.139
1.138
1.135
1.138
1.143
1.138
1.140
1.136
1.143
1139
1.137
1.135
1.142
1.136
1.135
1.137
1.139
1.140
1.140
1.140
1.141
1.138
1.136
1.138
1.139
1.141
1.138
1.139
1141
1.150
1.138
1.142
1.146
1.149
1.140
1.137
1.139
1.147
1.141
1.145
1.144
1.145
1.143
1.142
1.144
1.138
1.138
1.144

A-9

DRYWT
263.60
264.41
262.08
263.30
263.09
260.96
260.45
260.25
260.45
262.08
261.98
262.48
265.02
263.50
262.48
263.30
265.13
262.99
258,11
262.48
264.21
264.62
262.28
262.18
263.50
262.58
264.82
259.84
264.31
265.73
265.02
268.56
26344
265.35
264.75
265.05
265.85
264.24
262.44
263.64
264.04
264.24
265.45
264.65
266.75
264.04
262.74
265.55
264,75
264.04

MXCAP
94.4
96.4
97.1
96.5
96.4
896.2
97.2
94.2
895.7
95.0
96.7
95.6
96.3
94.1
95.3
93.5
95.5
95.3
97.2
96.1
95.4
944
96.3
96.3
928
95.6
95.3
96.2
95.6
95.3
96.4
99.4
99.5
97.3
97.3
98.7
95.6
964
97.0
89.8
96.6
87.9
86.2
97.7
96.0
95.5
97.2
955
944
955

MXSA
1.142
1.140
1.145
1.142
1.140
1.144
1.150
1.145
1.145
1.140
1.148
1.144
1.144
1.138
1.147
1.141
1.140
1.141
1.144
1.144
1.145
1.156
1.147
1.141
1.141
1.143
1.143
1.147
1.147
1.147
1.147
1.170
1.149
1.182
1.155
1.162
1.149
1.145
1.144
1.156
1.1563
1.153
1.149
1.158
1.1585
1.152
1.183
1.145
1.147
1.158



APPENDIX A (cont.)

CELL NO. AVSB AVCAP AVSA DRYWT MXCAP MXSA
100 1.284 91.8 1.150 263.04 96.5 117
101 1.284 92.6 1.148 265.75 97.0 1.160
102 1.281 927 1.143 264.24 96.8 1.163
103 1.281 91.3 1.137 265.05 95.1 1.145
104 1.281 939 1.145 262.64 97.0 1.154
105 1.281 924 1.145 264.14 94.2 1.153
106 1.281 934 1.143 260.43 96.8 1.1582
107 1.284 92.8 1.147 265.35 96.8 1.160
108 1.282 92.9 1.147 266.95 97.9 1.160
109 1.280 88.6 1.143 264.24 92.2 1.154
110 1.278 929 1.141 264.04 949 1.150
11 1.279 95.2 1.138 261.53 97.4 1.145
112 1.279 96.3 1.148 262.84 99.8 1.154
113 1.281 94.3 1.147 262.64 99.5 1.156
114 1.282 91.3 1.143 265.65 96.3 1.162
115 1.282 90.5 1.145 265.15 95.1 1.155
116 1.282 92.8 1.148 261.84 97.3 1.160
117 1.280 91.8 1.148 266.85 97.7 1.161
118 1.280 92.0 1.148 265.05 86.6 1.160
119 1.281 92.0 1.146 264.85 96.3 1.156
120 1.279 92.7 1.1583 266.25 96.8 1.164
121 1.280 92.8 1.147 265.45 97.0 1.150
122 1.281 92.0 1.143 263.34 95.7 1.182
123 1.279 94.8 1.148 263.74 99.5 1.162
124 1.281 94.5 1.148 262.24 98.9 1.165
125 1.282 92.7 1.139 263.74 97.3 1.150
126 1.282 92.0 1.142 260.73 95.5 1.154
127 1.281 933 1.142 259.23 96.4 1.149
128 1.284 95.0 1.145 259.73 89.5 1.154
129 1.282 94.3 1.143 25893 98.5 1.153
130 1.281 92.5 1.135 264.95 96.9 1.147
131 1.285 94.6 1.144 262.14 98.3 1.158
132 1.280 93.2 1.144 263.74 98.5 1.154
133 1.281 94.8 1.148 261.33 98.5 1.165
134 1.285 91.7 1.142 261.74 96.0 1.154
135 1.281 92.3 1.137 264.24 95.6 1.145
136 1.281 93.1 1.142 264.95 97.5 1.150
137 1.282 95.3 1.147 266.75 98.3 1.159
138 1.282 93.8 1.141 267.86 97.7 1.162
139 1.285 94.1 1.142 265.35 98.1 1.153
140 1.281 93.6 1.144 267.86 98.3 1.154
141 1.280 93.6 1.142 266.35 99.3 1.154
142 1.281 95.7 1.142 266.25 99.5 1.154
143 1.281 96.2 1.144 266.55 100.0 1.154
144 1.281 93.1 1.146 263.54 98.5 1.158
145 1.283 93.1 1.144 261.33 98.2 1.155
146 1.281 93.3 1.142 263.04 98.3 1.154
147 1.282 92.8 1.140 265.35 97.8 1.154
148 1.281 92.0 1.139 265.65 98.0 1.152
149 1.281 92.1 1.141 265.25 98.0 1.152
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CELL NO. AVSB AVCAP AVSA DRYWT MXCAP MXSA
150 1.283 919 1.144 263.04 97.4 1.1585
151 1.280 93.0 1.145 266.75 981 1.159
152 1.274 90.2 1.142 263.24 97.4 1.154
153 1.283 925 1.143 266.35 97.7 1.154
154 1.281 924 1.139 262.64 94.6 1.148
155 1.281 92.6 1.140 262.94 96.6 1.153
156 1.278 89.3 1.141 268.36 949 1.149
167 1.282 92.4 1.144 266.75 96.8 1.154
158 1.281 92.5 1.138 267.56 95.7 1.150
159 1.277 93.2 1.140 267.16 97.3 1.154
160 1.282 92.5 1.144 267.76 96.2 1.153
161 1.286 102.3 1.140 265.11 105.3 1.150
162 1.286 98.3 1.134 265.11 100.4 1.145
163 1.282 95.3 1.133 266.65 979 1.140
164 1.285 95.6 1.129 266.03 98.2 1.135
165 1.284 96.9 1.139 266.03 100.6 1.146
166 1.286 101.2 1.130 266.75 1034 1.137
167 1.284 99.6 1.138 263.97 103.2 1.144
168 1.281 95.5 1.136 265.83 100.1 1.138
169 1.282 95.3 1.137 267.16 99.1 1.142
170 1.275 97.5 1.128 265.41 102.4 1.132
171 1.277 929 1.129 265.62 97.1 1.135
172 1.283 97.3 1.139 263.46 100.7 1.146
173 1.284 97.4 1.141 26140 100.3 1.150
174 1.284 95.1 1.135 264.18 979 1.142
175 1.286 97.9 1.141 262.02 100.4 1.150
176 1.283 97.3 1.135 262.33 100.3 1.140
177 1.283 96.1 1.132 262.22 98.7 1.136
178 1.284 96.0 1.134 262.22 98.7 1.140
179 1.284 96.3 1.131 263.56 99.2 1.140
180 1.282 95.0 1.132 261.30 98.2 1.138
181 1.281 96.8 1,187 261.40 100.4 1.146
182 1.284 87.8 1.134 256.86 100.1 1.142
183 1.282 96.4 1.131 261.30 98.8 1.138
184 1.282 97.8 1.135 260.06 101.0 1.142
185 1.286 98.5 1.135 259.86 101.8 1.145
186 1.277 95.3 1.129 263.66 98.8 1.133
187 1.280 96.2 1.133 262.02 98.8 1,138
188 1.281 98.6 1.138 263.05 101.1 1.146
189 1.282 96.9 1.140 263.05 100.1 1.147
190 1.283 95.0 1.132 263.66 97.8 1.138
191 1.281 95.6 1.132 264.59 98.2 1.140
192 1.280 96.8 1.134 260.99 99.2 1.140
193 1.282 95.7 1.131 261.61 98.4 1.138
194 1.279 95.7 1.132 261.09 98.5 1.140
145 1.283 93.1 1.144 261.33 98.2 1.155
195 1.283 96.5 1.133 258.93 99.2 1.144
196 1.280 95.8 1.133 263.05 93.0 1.140
197 1.282 96.5 1.134 264.28 99.5 1.140
198 1.284 97.4 1.132 261.92 100.2 1.142
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CELL NO. AVSB AVCAP AVSA DRYWT MXCAP MXSA
199 1.282 97.2 1.134 260.99 99.5 1.140
200 1.281 §57.4 1.133 261.40 99.7 1.143
201 1.282 964 1.135 269.53 100.3 1.147
202 1.284 97.2 1.132 260.27 99.9 1.137
203 1.283 96.2 1.132 262.84 99.1 1.140
204 1.284 97.0 1.137 264.80 89.8 1.143
205 1.282 96.6 1.133 259.86 100.0 1.141
206 1.282 97.0 1.134 261.61 99.7 1.141
207 1.282 96.6 1.133 260.99 99.0 1.142
208 1.281 97.0 1.135 262.53 99.8 1.145
209 1.281 969 1.129 260.99 100.1 1.138
210 1.282 96.7 1.133 262.22 99.5 1.142
211 1.274 94.0 1.128 265.00 97.3 1.140
212 1.282 97.1 1137 261.20 100.3 1.145
213 1.277 96.7 1.135 260.68 100.2 1.142
214 1.281 97.3 1.131 262.22 100.3 1.142
215 1.281 96.6 1.131 260.78 99.1 1.143
216 1.281 96.7 1.136 264.38 99.3 1.149
217 1.284 99.9 1.135 260.89 102.6 1.146
218 1.282 100.3 1.134 261.09 1025 1.149
219 1.282 100.2 1.134 259.24 1034 1.145
220 1.281 100.9 1.138 258.52 104.0 1.147
221 1.281 989 1.134 258.62 1014 1.145
222 1.284 1004 1.134 258.42 102.6 1.149
223 1.284 100.2 1.134 260.37 102.6 1.150
224 1.284 100.7 1.138 261.20 103.3 1.151
225 1.285 100.1 1.135 259.34 102.6 1.146
226 1.284 98.8 1.132 259.55 1014 1.146
227 1.284 102.0 1.133 258.52 105.9 1.149
228 1.283 99.5 1.131 259.55 102.6 1.140
229 1.286 103.5 1.138 257.59 107.9 1.153
230 1.278 103.3 1.132 259.65 106.2 1.145
231 1.284 1038 1.134 259.14 107.6 1.149
232 1.284 104.5 1.138 258.55 108.2 1.156
233 1.283 103.1 1.135 260.78 107.4 1.150
234 1.283 103.7 1,138 259.45 107.4 1.152
235 1.286 103.0 1.133 261.09 1054 1.146
236 1.284 103.8 1.134 261.30 107.8 1.145
237 1.284 102.3 1.133 260.89 106.2 1.152
238 1.282 102.4 1.134 260.47 105.9 1.153
239 1.282 101.6 1.136 259.75 1045 1.183
240 1.284 101.3 1.136 262.02 104.5 1.155
241 1.290 99.9 1.141 260.20 103.7 1.144
242 1.287 101.0 1.135 259.50 102.6 1.140
243 1.288 102.0 1.137 259.20 1042 1.143
245 1.288 103.9 1.141 254.40 107.2 1.150
246 1.286 101.4 1.141 256.10 104.1 1.148
247 1.287 103.2 1.134 256.40 104.9 1.140
248 1.288 105.2 1.144 257.10 1071 1.150
249 1.283 103.2 1.140 257.10 104.4 1.149
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CELL NO. AVSB AVCAP AVSA DRYWT MXCAP MXSA
250 1.286 100.1 1.134 258.00 102.4 1.137
251 1.285 98.8 1.138 256.30 102.4 1.145
252 1.287 103.2 1.142 256.10 106.3 1.152
253 1.285 99.9 1.138 256.80 1024 1.147
254 1.287 102.3 1.141 255.90 105.2 1.152
255 1.276 97.1 1.134 255.40 100.3 1.143
256 1.288 101.7 1.143 257.40 104.4 1.149
257 1.291 102.2 1.138 257.70 104.9 1.139
258 1.286 100.5 1.138 256.70 103.3 1.140
259 1.286 98.7 1.138 257.30 102.1 1.153
260 1.283 100.2 1.137 258.00 103.0 1.145
261 1.287 100.5 1.145 258.40 103.0 1.1583
262 1.289 99.7 1.140 258.00 103.8 1.145
263 1.286 100.6 1.137 259.40 103.5 1.140
264 1.287 101.5 1.142 257.90 104.0 1.148
265 1.287 103.5 1.140 258.20 104.9 1.149
266 1.287 100.2 1.138 256.10 103.2 1.144
267 1.285 100.0 1.137 258.40 103.8 1.140
268 1.286 106.0 1.142 258.60 106.8 1.149
269 1.286 103.3 1.142 268.19 104.8 1.149
270 1.287 102.8 1.140 256.40 104.1 1.144
271 1.288 101.7 1.142 257.20 103.9 1.149
272 1.284 103.4 1.133 259.60 104.4 1.139
273 1.287 89.2 1.135 263.70 102.7 1.138
274 1.283 101.4 1.135 258.50 102.7 1.140
275 1.286 100.5 1.136 257.10 103.0 1.142
276 1.282 100.2 1.135 261.30 105.5 1.139
277 1.283 1019 1.138 256.00 105.5 1.144
278 1.283 89.8 1.130 258.00 101.4 1.134
279 1.285 103.2 1.137 257.10 104.9 1.143
280 1.286 104.2 1.141 261.30 106.1 1.149
281 1.284 1029 1.137 258.40 105.9 1.143
282 1.285 102.8 1.139 256.00 107.2 1.143
283 1.284 104.3 1.137 256.40 106.1 1.144
284 1.285 103.8 1.138 253.50 106.4 1.144
285 1.285 100.5 1.137 260.20 103.1 1.144
286 1.284 98.7 1.138 259.10 101.8 1.145
287 1.287 97.4 1.138 256.50 101.5 1.145
288 1.283 97.7 1.142 256.80 102.0 1.152
289 1.286 97.6 1.140 254.60 101.5 1.149
290 1.285 95.7 1.134 254.30 98.9 1.139
291 1.285 95.3 1.134 257.00 99.4 1.138
292 1.285 97.6 1.139 255.10 1014 1.149
145 1.283 93.1 1.144 261.33 98.2 1.1585
293 1.285 98.6 1.142 253.60 101.8 1.150
294 1.286 99.0 1.142 255.10 102.0 1.152
295 1.285 96.7 1.133 256.80 101.5 1.139
296 1.285 100.8 1.139 254.80 102.6 1.147
297 1.284 98.4 1.140 258.10 104.1 1.149
298 1.284 100.5 1.134 254.80 101.9 1.140



CELL NO.
299
300
301
302
303
304
305
306
307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

AVSB
1.282
1.284
1.284
1.284
1.284
1.282
1.284
1.283
1.283
1.284
1.285
1.285
1.284
1.280
1.286
1.282
1.286
1.283
1.286
1.286
1.285
1.284
1.293
1.289
1.284
1.289
1.288
1.289
1.292
1.290
1.286
1.284
1.292
1.285
1.285
1.289
1.292
1.290
1.293
1.285
1.289
1.286
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AVCAP
98.4
98.0

103.5
98.5
85.0
96.3
98.0
96.5
97.4

103.1

100.1

102.8

101.4
99.5

102.7

100.6

101.5

102.5

102.3

103.0

104.2

102.3

104.9
96.1
94.7
98.6
97.1
96.5

101.9

104.3
98.3
97.4
96.7
99.6
98.6
98.9

102.3

102.7

103.6
96.6

102.9
96.6

AVSA
1.135
1.137
1.136
1.137
1.133
1.136
1.135
1.137
1.128
1.138
1.135
1.133
1.134
1.135
1.134
1.135
1.133
1.135
1.139
1.134
1.136
1.136
1.1585
1.185
1.158
1.160
1.155
1.157
1.182
1.156
1.156
1.152
1.160
1.155
1.1585
1.154
1.156
1.156
1.157
1.153
1.150
1.149

DRYWT
257.40
257.60
260.60
258.80
259.50
262.10
259.70
264.90
264.80
254.10
264.80
255.20
256.80
265.89
262.10
261.40
260.60
262.80
259.80
260.10
260.20
262.20
260.86
266.38
262.07
260.16
264.08
263.57
261.16
261.66
262.47
261.36
258.95
267.49
264.68
262.17
257.65
257.85
256.84
263.98
258.65
263.98

MXCAP
100.8
103.7
104.6
102.9

89.8
101.2
102.9
100.2
100.0
105.0
103.6
104.6
103.2
102.1
104.6
102.4
103.7
104.2
104.3
106.1
106.6
104.9
107.3
1011

98.8
102.8
101.2

99.0
104.3
106.7
102.4
101.9

89.6
102.2
102.4
100.9
104.7
1049
106.0
101.3
104.7
100.3

MXSA
1.145
1.143
1.143
1.143
1.140
1.139
1.142

144

131

143

140

135

.138

.143

137

.138

137

.138

.143

.138

.144

.142

.162

.160

.166

.163

161

.166

.154

.160

1.166

1.160

1.169

1.160

1.165

1.162

1.160

1.160

1.160

1.165

1.153

1.160

iy



APPENDIX B

BATTERY CAPACITY TEST
CEMC, 450A DISCHARGE, APRIL 3, 1990

START TIME = 08:00 C\SYMPH\CEMDATA
CUTOFF VOLTAGE = 1.7 CAP90SRHT.WK1
AH CRRCTN FACTR = 0.994 *(TEMP CORRCTN)
07/19/92 {BY % CAPACITY]
22:43

SGBR = SP GR BEFORE RAW DATA

SGBC = SP GR BEFORE CORRCTD FOR TEMP
SGAR = SP GR AFTER RECHG RAW

SGAC = SP GR AFTER RECHG CORRCTD

FVLTB = FLOAT VOLTAGE BEFORE DISCHARGE

MEASUREMENTS
BEFORE DISCHARGE
STRING MODULE CELL NO. FVLTB SGBR TEMP

A 11 108 2.327 1.284 22
B 20 22 2.318 1.276 93
A 1 105 2.313 1.286 93
B 20 21 2.311 1.276 95
B 22 60 2.312 1.266 95
B 20 28 2.328 1.276 93
B 29 197 2.327 1.276 92
A 1 25 2.348 1.280 89
B 22 59 2.307 1.272 95
B 22 63 2.315 1.270 93
o} 44 249 2.316 1.270 92
B 29 192 2.353 1.278 90
A 1 23 2.346 1.270 89
B 32 225 2.332 1.276 92
8 22 62 2.318 1.278 93
B 30 199 2.316 1.272 92
A 9 91 2.313 1.274 93
B8 R 228 2.326 1.272 84
B 20 20 2.316 1.276 95
B 20 29 2.341 1.282 92
A 6 65 2.315 1.280 91
C 50 299 2.317 1.272 93
B 31 221 2.334 1.272 92
B 28 188 2.332 1.280 92
A 8 90 2.338 1.282 8g
A 10 102 2.340 1.282 92
B 2 40 2,336 1.280 92
A 18 174 2.311 1.272 95
B 29 172 2,326 1.282 90
B 19 17 2.341 1.280 91
B 22 41 2.332 1.282 91
B 19 15 2.325 1.282 93

SGBC
1.289
1.281
1.291
1.282
1.272
1.281
1.281
1.284
1.278
1.275
1.283
1.282
1.274
1.281
1.283
1.277
1.279
1.278
1.282
1.287
1.285
1.277
1.277
1.285
1.288
1.287
1.285
1.278
1.286
1.285
1.287
1.287



STRING

0>mmmm>m>m>mo>o>>wmo>0m00mm>mmmm>mmmmm>>>o>o>oommwm

MODULE CELL NO.

YB3 BoLzREBLBS

n w N N [A ]
RBE-2B8E-25

49

APPENDIX B (cont.)

18
195
212
24
278
316
177
319
93
298
71
97
64
196
238
219
141
223
12
135
226
130
222

136

286
250
16
294
101
233
237
132

231

244
241
87
224
70
143

217
83
145
147
13
248

MEASUREMENTS
BEFORE DISCHARGE
FVLTB SGBR TEMP
2.339 1.284 91
2.318 1.276 94
2.349 1.278 89
2.345 1.280 91
2,311 1.276 95
2.323 1.280 93
2.333 1.280 20
2.340 1.280 89
2.342 1.276 91
2.322 1.278 92
2.309 1.276 92
2.325 1.280 94
2.330 1.284 89
2.319 1.270 94
2.344 1.282 89
2.326 1.278 94
2.333 1.286 94
2.340 1.280 89
2.315 1.278 92
2.347 1.286 90
2.327 1.282 94
2.328 1.284 92
2.330 1.280 92
2.322 1.280 91
2.357 1.282 90
2.327 1.282 92
2.309 1.272 93
2.324 1.278 92
2.316 1.282 g5
2.344 1.284 S0
2.332 1.288 91
2.339 1.274 89
2.334 1.286 g2
2.316 1.280 94
2.348 1.282 89
2.315 1.276 92
2.321 1.272 a2
2.310 1.276 95
2.340 1.286 89
2.350 1.284 89
2.313 1.280 92
2.348 1.280 839
2.31 1.280 92
2.324 1.282 9S4
2.314 1.286 92
2.326 1.280 94
2.341 1.284 21
2.332 1.286 92
2.349 1.286 90
2.327 1.280 90
2.328 1.280 92

B-2

SGBC
1.289
1.282
1.282
1.285
1.282
1.285
1.284
1.284
1.281
1.283
1.281
1.286
1.288
1.276
1.286
1.284
1.292
1.284
1.283
1.290
1.288
1.289
1.285
1.285
1.286
1.287
1.277
1.287
1.288
1.288
1.293
1.290
i.291
1.286
1.286
1.281
1.281
1.282
1.288
1.288
1.285
1.284
1.285
1.288
1.291
1.286
1.289
1.291
1.280
1.284
1.281



STRING

OCO0OWOWODBWOOOOWTODWITOWDDOW®

MODULE CELL NO.

25
19
43
26
26
51
24
27
25
42
25
24
46
44
46
42
33
26
26
25
42
27
46
43
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131
14
247
138
140
307
106
142
129
232
133
86
266
253
263
234
242
137
139
128
235
146
267
236

TEMP
92
93

[{e
n

MEASUREMENTS
BEFORE DISCHARGE
FVLTB SGBR
2.329 1.286
2.325 1.282
2.317 1.280
2.329 1.286
2.347 1.286
2.310 1.276
2.333 1.282
2.336 1.290
2.345 1.280
2.335 1.272
2.348 1.288
2.342 1.288
2.340 1.280
2.333 1.282
2.310 1.276
2.314 1.278
2.344 1.282
2.328 1.280
2.338 1.290
2.320 1.284
2.307 1.274
2.345 1.286
2.343 1.284
2.331 1.280

B-3

BEELERRABRABBLL2BEEL8Y8E

SGBC
1.291
1.287
1.291
1.292
1.291
1.282
1.287
1.285
1.284
1.292
1.292
1.293
1.286
1.280
1.282
1.287
1.294
1.296
1.295
1.290
1.292
1.290
1.288
1.286



STRING
A

DO ITPOPOPOO0ONDITTDIODODI>POCPP>P>PONOPDIOTP>PVINODP>PTOTT>COLON>»D

MODULE CELL NO.

1

RaoBLB8oBBReBRR-BERR-B3R828

“BseRadBa

b O

o3 o 8o

2R3

109
22
105
21
60
28
197
25
59
63
249
192
23
225

198
91
228

a8y

299
221
185

102

174
172
17
41
15
18
195
212
24
278
316
177
319
93
298
71
97

196
238
219

10:00
10:00
1.963
1.956
1.962
1.955
1.948
1.950
1.847
1.961
1.956
1.952
1.952
1.951
1.958
1.951
1.957
1.952
1.959
1.958
1.956
1.965
1.957
1.855
1.951
1.956
1.860
1.962
1.966
1.962
1.860
1.969
1.965
1.960
1.965
1957
1952
1.965
1.959
1.957
1967
1.962
1.967
1.957
1.961
1.964
1.963
1.956
1.959
1.958
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11:00
11:.00
1.920
1914
1.917
1.909
1.807
1.908
1.806
1.919
1.908
1.1
1.908
1.908
1.921
1.909
1916
1.906
1.916
1915
1914
1.923
1914
1.915
1.908
1.810
1.917
1.921
1.925
1.920
1.915
1.926
1.923
1918
1.923
1.915
1.918
1.926
1.819
1.915
1.927
1.922
1.924
1.916
1.820
1.920
1.923
1.914
1.919
1.917

VOLTAGE MEASUREMENTS
DURING DISCHARGE
12:00 12:30 12:37 12:41  13:00
12:00 12:30 12:34 12:41 13:.00
1.867 1.833 1.823 1817 1.789
1861 1829 1820 1813 1.788
1860 1831 1823 1.817 1787
1858 1827 1818 1813 1787
1856 1826 1818 1.810 1.787
1855 1823 1815 1803 1783
1852 1817 1811 1803 1.779
1867 1835 1827 1820 1.792
1863 1829 1822 1818 1790
1859 1829 1820 1813 1788
1858 1.828 1820 1.813 1.789
1857 1825 1817 1809 1.785
1867 1835 1826 1.820 1.793
1859 1823 1817 1809 1.786
1864 1832 1823 1818 1.791
1854 1824 1816 1809 1.785
1863 1832 1824 1818 1.793
1865 1831 1824 1817 1.793
1864 1833 1825 1819 1795
1872 1841 1830 1826 1.798
1863 1.831 1824 1816 1.790
1865 1829 1822 1819 1795
1860 1.830 1822 1815 1.792
1861 1830 1822 1815 1.791
1867 1835 1827 1821 1795
1870 1.838 1.830 1.827 1.799
1874 1845 1836 1830 1.805
1870 1840 1832 1829 1804
1869 1835 1828 1.820 1.796
1875 1.844 1835 1830 1.804
1873 1842 1833 1827 1.801
1867 1837 1831 1833 1.801
1874 1843 1834 1829 1803
1864 1833 1826 1818 1795
1.864 1836 1829 1822 1796
1877 1846 1838 1832 1807
1868 1836 1829 1824 1802
1867 1838 1.831 1.825 1.802
1878 1.848 1840 1833 1.808
1872 1.847 1834 1828 1.802
1875 1.840 1.836 1.830 1.805
1866 1.837 1.830 1825 1.800
1869 1840 1.834 1829 1804
1872 1839 1834 1827 1803
1873 1.842 1835 1830 1805
1864 1.835 1828 1822 1799
1872 1.844 1837 1830 1806
1869 1.841 1833 1.827 1.804

13:05
13:07
1.779
1.777
1.779
1.777
1.777
1.773
1.768
1.782
1.781
1.778
1.779
1.773
1.782
1.778
1.781
1.776
1.783
1.783
1.785
1.788
1.781
1.784
1.781
1.781
1.785
1.790
1.794
1.794
1.786
1.794
1.792
1.789
1.783
1.787
1.787
1.798
1.790
1.791
1.798
1.792
1.794
1.780
1.792
1.793
1.796
1.788
1.795
1.795

13:10
13:10
1.771
1.770
1.773
1.768
1.770
1.766
1.760
1.772
1.774
1.771
1.771
1.765
1.774
1.769
1.776
1.767
1.776
1.776
1.779
1.782
1.776
1777
1.773
1.773
1.777
1.782
1.788
1.789
1.778
1.788
1.785
1.783
1.787
1.778
1.778
1.791
1.785
1.786
1.791
1.786
1.789
1.786
1.786
1.787
1.783
1.783
1.787
1.789



STRING
B

OO0 OWITIBMOWDOWWOPTWOEE®PODPOVPDOIPOPP>P>POBOPOONOOHOE>>TDODWNEP®D

MODULE CELL NO.

27
31
1
26
a2
25
31
1
26
24
49
44
19

10
42
32
25
8
8
42
10
43

33
8
32
6
27
1
3
24
27
27
1
43
25
19
43
26
26

51
24

141
223
12
135
226
130
222

136

286
250
16
294
101
233

241

224
70
143

217
83
145
147
13
248
131
14
247
138
140
307
106
142
129
232
133
86
266
253
263

10:00
10:00
1.857
1.963
1.962
1.963
1.960
1.962
1.961
1.966
1.964
1.960
1.962
1.957
1971
1.968
1.969
1.966
1.961
1.958
1.968
1.963
1.964
1.961
1.969
1.968
1.962
1.966
1.964
1.961
1.966
1.960
1.968
1.260
1.967
1.967
1.965
1.964
1.968
1.960
1.963
1.964
1.965
1.966
1.966
1.967
1.964
1.966
1.972
1.963
1.969
1.965

APPENDIX B (cont.)

11:00
11:00
1.914
1.922
1.918
1.921
1919
1918
1.919
1.926
1.922
1.917
19823
1917
1.927
1.827
1.928
1.927
1.920
1918
1.927
1.922
19822
1.920
1827
1.928
1.922
1.925
1.921
1.921
1926
1819
1.930
1918
1.925
1.926
1.923
1922
1928
1919
1.923
1.922
1927
1924
1.924
1.925
1927
1.925
1830
1.923
1.929
1.926

VOLTAGE MEASUREMENTS
DURING DISCHARGE
12:00 12:30 12:37 12:41  13:00
12:00 12:30 12:34 12141 13:00
1.867 1.834 1827 1821 1.795
1.875 1841 1835 1.828 1804
1.873 1843 1835 1829 1805
1871 1840 1832 1827 1.801
1.870 1842 1835 1.828 1.806
1.867 1837 1830 1.825 1.800
1.872 1839 1832 1825 1.802
1.875 1844 1837 1.831 1807
1.872 1.842 1833 1.828 1.800
1.867 1838 1829 1824 1.801
1874 1843 1836 1.829 1.807
1.868 1837 1829 1.823 1.800
1.881 1850 1.840 1837 1810
1.878 1.846 1839 1.831 1.809
1.878 1848 1.840 1.834 1810
1.880 1848 1842 1.834 1812
1874 1844 1834 1830 1.807
1.866 1836 1829 1.824 1.801
1876 1845 1839 1.833 1809
1875 1845 1836 1.832 1.804
1876 1841 1832 1826 1806
1.870 1844 1834 1.829 1809
1.879 1846 1837 1.831 1.808
1.881 1852 1844 1837 1814
1873 1843 1836 1.830 1.807
1878 1845 1838 1.832 1.809
1875 1845 1836 1.833 1810
1.867 1841 1835 1.829 1.806
1.877 1847 1839 1.833 1810
1.872 1840 1834 1.828 1806
1881 1851 1843 1.838 1814
1867 1839 1828 1.825 1.802
1874 1844 1836 1.831 1806
1.877 1849 1.842 1.834 1812
1875 1843 1837 1831 1809
1.873 1843 1835 1.828 1.807
1.877 1843 1842 1835 1813
1871 1843 1835 1.829 1807
1874 1845 1838 1.832 1809
1873 1844 1836 1.830 1.808
1881 1850 1844 1.839 1816
1874 1846 1838 1.830 1.810
1.876 1848 1.838 1.835 1.810
1.875 1845 1837 1932 1.808
1.879 1851 1841 1834 1811
1.876 1847 1838 1833 1809
1.882 1852 1845 1.839 1.814
1.8756 1847 1841 1834 1811
1882 1849 1843 1.836 1815
1.879 1849 1841 1836 1816

13:05
13:07
1.789
1.795
1.797
1.783
1.797
1.791
1.792
1.798
1.794
1.792
1.798
1.792
1.803
1.800
1.801
1.800
1.799
1.789
1.800
1.800
1.796
1.799
1.798
1.804
1.798
1.799
1.803
1.798
1.799
1.797
1.804
1.781
1.789
1.803
1.799
1.799
1.805
1.799
1.800
1.799
1.808
1.801
1.800
1.797
1.805
1.801
1.807
1.803
1.802
1.806

13:10
13:10
1.784
1.786
1.791
1.787
1.789
1.785
1.785
1.791
1.787
1.785
1.791
1.786
1.798
1.793
1.785
1.794
1.792
1.786
1.793
1.792
1.791
1.795
1.792
1.797
1.791
1.792
1.794
1.792
1.795
1.789
1.798
1.787
1.791
1.796
1.793
1.792
1.798
1.792
1.795
1.793
1.802
1.796
1.797
1.793
1.796
1.796
1.800
1.796
1.795
1.800



STRING

0O000O0OWOOWOOOTOOOBOMIODOD®E®O

MODULE CELL NO.

42
33
26
26
25
42
27
46

SRBRS

42

38858

47
43

51

234
242
137
139
128
235
146
267
236
251
243
254
245
230
265
262
252
239
276
273
246
297
303

10:00
10:00
1.961
1.972
1.966
1.966
1.964
1.964
1.970
1.972
1.867
1.965
1.970
1.968
1.969
1.964
1.965
1.968
1.967
1.973
1.976
1.972
1.972
1.970
1.981

APPENDIX B (cont.)

11:00
11:00
1.919
1.932
1.824
1.924
1.921
1.925
1.929
1.931
1.930
1.925
1.930
1.929
1.929
1.925
1.925
1.930
1.928
1934
1.936
1.932
1.931
1.931
1.941

B-6

VOLTAGE MEASUREMENTS
DURING DISCHARGE
12:00 12:30 12:37 12:41 13:00
12:00 12:30 12:34 12:41  13:00
1875 1846 1843 1837 1.816
1885 1854 1845 1839 1815
1876 1848 1840 1835 1.811
1875 1.846 1.838 1.833 1810
1872 1843 1835 1.831 1.808
1880 1849 1847 1839 1818
1.880 1.850 1842 1838 1814
1883 1.851 1845 1839 1817
1884 1856 1849 1.842 1820
1878 1.847 1841 1835 1814
1.883 1852 1846 1840 1817
1882 1.853 1846 1840 1818
1.883 1852 1845 1838 1818
1879 1852 1848 1842 1819
1880 1849 1842 1836 1815
1.885 1.853 1847 1840 1819
1.881 1.853 1.847 1.841 1.820
1890 1863 1855 1850 1.828
1890 1860 1852 1846 1.825
1886 1861 1851 1846 1.825
1886 1857 1850 1845 1825
1883 1854 1848 1840 1819
1896 1.869 1.862 1.857 1.837

13:05
13:07
1.804
1.808
1.804
1.802
1.800
1.809
1.804
1.807
1.811
1.805
1.809
1.809
1.811
1.810
1.807
1.813
1.812
1.821
1.818
1.817
1.816
1.812
1.828

13:10
13:10
1.801
1.798
1.798
1.796
1.793
1.801
1.789
1.799
1.804
1.796
1.803
1.802
1.803
1.806
1.800
1.807
1.805
1.813
1.811
1.809
1.810
1.807
1.823



STRING
A

mmm>>>o>0>oommmmmmmm>m>>mmo>mmm>mmm>m0mm>mmmm>m

MODULE  CELL NO.

11

ReoB28o38K8e8NR8~-BARR-BBRS2B

s
[

YEBo3oBolsXs82Bs3RaB

109
22
105
21
60
28
197
25
59
63
249
192
23
225

199
91
228

aR88

299
221
185

102
40
174
172
17
41
15
18
195
212
24
278
316
177
319
93
298
7
97

196
238
219

APPENDIX B (cont.)

13:15
13:16
1.763
1.762
1.762
1.762
1.764
1.759
1.751
1.766
1.767
1.764
1.762
1.756
1.767
1.760
1.768
1.758
1.770
1.768
1.772
1.774
1.770
1.768
1.766
1.764
1.771
1.775
1.781
1.780
1.769
1.780
1.778
1.776
1.780
1.770
1.769
1.784
1.776
1.777
1.785
1.776
1.781
1.778
1.783
1.783
1.783
1.776
1.780
1.781

13:18
13:20
1.753
1.783
1.756
1.754
1.753
1.750
1.742
1.758
1.761
1.757
1.754
1.746
1.758
1.752
1.759
1.750
1.761
1.759
1.764
1.763
1.761
1.763
1.756
1.756
1.763
1.768
1.773
1.774
1.761
1.770
1.769
1.769
1.771
1.763
1.762
1.776
1.771
1.770
1.776
1.769
1.774
1.768
1.773
1.775
1.775
1.766
1.770
1.773

VOLTAGE MEASUREMENTS
DURING DISCHARGE
13:24  13:30 13:36
13:26  13:30 13:35
1.743 1725 1.710
1.743 1.728 1.715
1.744 1.728 1.716
1.744 1.730 1.719
1.744  1.730 1.720
1.741 1.727 1.716
1730 1.722 1.714
1.748 1732 1.718
1.752 1.738 1.722
1.744  1.732 1.720
1742 1733 1.723
1734  1.724 1.713
1.748  1.732 1.718
1,742 1.732 1.721
1.748 1735 1.724
1.739  1.730 1.720
1.783  1.739 1.729
1.748  1.740 1.731
1755 1.743 1.732
1.755  1.741 1.728
1.751 1.739 1.729
1.751 1.743 1.735
1.747 1736 1.728
1.745 1.737 1.726
1.784  1.740 1.729
1.759  1.746 1.735
1.763  1.749 1.737
1.765 1752 1.740
1.750 1.741 1.727
1.764 1.749 1.738
1.760 1746 1.735
1.760  1.747 1.738
1.761 1.749 1.738
1.754  1.746 1.738
1.750  1.742 1.731
1.767 1.754 1.742
1.761 1.750 1.741
1.761 1.752 1.743
1.768  1.753 1.742
1758  1.749 1.740
1.766 1752 1.742
1.761 1.750 1.742
1.765 1.755 1.742
1.768 1756 1.746
1.766  1.753 1.743
1.758 1751 1.742
1.761 1.750 1.740
1.763 1.755 1.745

13:51
13:51
1.635
1.654
1.655
1.666
1.665
1.664
1.657
1.683
1.676
1.666
1.669
1.649
1.655
1.670
1.669
1.670
1.684
1.683
1.685
1.674
1.682
1.689
1.676
1.678
1.679
1.689
1.684
1.698
1.676
1.688
1.685
1.685
1.690
1.684
1.680
1.692
1.705
1.702
1.691
1.693
1.698
1.702
1.703
1.706
1.697
1.702
1.690
1.703

TIMETO
CUTOFF
04:39
04:40
04:40
04:43
04.43
04:42
04:41
04:40
04:45
04:43
04:42
04:41
04:40
04:43
04:44
04:44
04:45
04:47
04:48
04:45
04:45
04:47
04:46
04:46
04:44
04:48
04:48
04:51
04:47
04:48
04:48
04:50
04:48
04:51
04:47
04:49
04:53
04:51
04:49
04:48
04:50
04:51
04:52
04:54
04.50
04:54
04.:50
0455



STRING

OO0 WOUITIWTOWWTOWDROPODIDDPEIPEOZPOOPOPPOTOPONOODND>PDODW®D>» @D

MODULE CELL NO.

27
31

1
26
32
25
31

1

26
24
49
44
19

49
10
42
32
25
8
8
42
10

43
33
8
2
6

27
1
31
24
27
27
1
43
25
19
43
26
28
51
24
27
25
42
25
24
46
44
A6

141
223
12
135
226
130
222
2
136
84
286
250
16
294
101
233
237
132

231

244
241
87
224
70
143

217
83
145
147
13
248
131
14
247
138
140
307
106
142
129
232
133
86
266
263
263

APPENDIX B (cont.)

13:15
13:16
1.775
1.779
1.784
1.779
1.782
1.778
1.778
1.785
1.780
1.779
1.783
1.777
1.791
1.784
1.788
1.786
1.783
1.780
1.787
1.786
1.782
1.787
1.784
1.788
1.786
1.784
1.787
1.786
1.789
1.782
1.793
1.782
1.784
1.791
1.783
1.787
1.792
1.784
1.790
1.787
1.794
1.777
1.788
1.787
1.791
1.778
1.795
1.789
1.790
1.793

13:19
13:20
1.769
1.769
1.777
1.771
1.775
1.771
1.771
1.777
1.772
1.772
1.775
1.770
1.784
1.777
1.780
1.778
1.776
1.773
1.780
1.781
1.776
1.780
1.776
1.780
1.779
1.775
1.780
1.778
1.781
1.776
1.785
1.775
1.776
1.783
1.777
1.779
1.785
1.778
1.782
1.780
1.787
1.783
1.784
1.779
1.783
1.782
1.788
1.782
1.782
1.786

B-8

VOLTAGE MEASUREMENTS
DURING DISCHARGE
13:24  13:30 13:36
13:26  13:30 13:35
1.762 1.749 1.740
1.759 1,749 1.742
1.769  1.757 1.748
1.761 1.749 1.740
1.765 1.757 1.748
1.763 1.751 1.741
1.760 1753 1.743
1.769  1.755 1.747
1.763 1.750 1.741
1.764  1.752 1.743
1.767  1.759 1.751
1760 1.752 1.744
1.775 1.763 1.754
1.767  1.759 1.751
1.777 1.759 1.748
1.768  1.758 1.749
1.764 1.758 1.750
1.760 1.753 1.744
1.770 1.759 1.748
1.773 1761 1.752
1.765 1.759 1.749
1.772 1.761 1.7562
1.765 1.758 1.750
1770 1760 1.751
1.771 1.760 1.751
1.765 1.758 1.748
1.776  1.761 1.7583
1.772 1.759 1.750
1.773 1.763 1.754
1.766  1.759 1.749
1776  1.764 1.754
1.766  1.755 1.745
1.769 1.756 1.746
1,776 1764 1.755
1.768 1.760 1.752
1.772 1.759 1.751
1.777  1.766 1.756
1.768  1.761 1.753
1.774 1.763 1.765
1772 1761 1.752
1.779 1.771 1.764
1.776 1764 1.758
1.774 1.762 1.756
1772  1.760 1.749
1.778  1.762 1.753
1.774 1.763 1.755
1779 1.768 1.759
1773 1.765 1,757
1.771 1.764 1.755
1.778 1.770 1.765

13:51
13:51
1.703
1.680
1.707
1.694
1.707
1.700
1.700
1.706
1.695
1.703
1.711
1.706
1.715
1.707
1.707
1.703
1.705
1.709
1.708
1.714
1.708
1.717
1.706
1.704
1.715
1.705
1.716
1.713
1.717
1.713
1.712
1.710
1.704
1.718
1.715
1.714
1.719
1.716
1.718
1.714
1.728
1.718
1.717
1.712
1.714
1.717
1.720
1.719
1.717
1.730

TIMETO
CUTOFF
04.55
04:50
04:53
04:52
04:55
04:54
04:54
04:53
04:52
04:54
04:55
04:54
04:57
04:53
04.54
04:53
04:55
04:57
04:53
04:56
04:56
04:59
04:54
04:54
04:57
04:54
04:57
04:59
04.57
04:59
04:57
04:58
04:56
04:56
04:58
04:58
04.:59
04:58
05.01
04:59
05:03
05:00
05:00
04:58
04:58
04:59
05:00
05:00
04:59
05:04



STRING

O0000DOODDOOOOOOTODWWMDO

MODULE CELL NO.

42
33
26
26
25
42
27
46
43

SRBR

42

46

47

47

43

51

234
242
137
139
128
235
146
267
236
251
243
254
245
230
265
262
252
239
276
273
246
297
303

APPENDIX B (cont.)

13:15
13:16
1.791
1.791
1.782
1.790
1.788
1.794
1.792
1.794
1.797
1.793
1.795
1.795
1.785
1.797
1.784
1.799
1.799
1.806
1.803
1.801
1.802
1.800
1.815

13:19
13:20
1.784
1.784
1.785
1.783
1.782
1.787
1.784
1.786
1.789
1.786
1.788
1.787
1.789
1.790
1.786
1.792
1.790
1.799
1.798
1.785
1.797
1.792
1.810

B-9

VOLTAGE MEASUREMENTS
DURING DISCHARGE
13:24 13:30 13:36
13:26  13:30 13:35
1775 1.770 1.762
1775 1767 1.757
1.778 1.767 1.759
1775 1.764 1.755
1.775  1.764 1.756
1778 1770 1.762
1777 1766 1.756
1.778 1770 1.761
1.780 1772 1.764
1778 1.770 1.761
1.778 1.771 1.765
1.778 1.770 1.762
1.780 1.774 1.767
1.782 1.775 1.768
1.779 1.772 1.764
1.783 1.777 1.771
1.783 1.776 1.769
1.790 1.784 1.776
1.787 1.783 1.776
1.786 1.780 1.771
1.787 1.782 1.775
1782 1.775 1.766
1.803 1.796 1.790

13:51
13:51
1.723
1.717
1.724
1.720
1.723
1.726
1.719
1.725
1.724
1.729
1.728
1.725
1.734
1.734
1.732
1.737
1.736
1.739
1.742
1.738
1.744
1.741
1.760

TIMETO
CUTOFF
05:02
04:59
05:04
05:02
05:04
05:04
05:01
05:02
05:01
05:06
05:05
05:02
05:08
05:09
05:09
05:08
05:09
05:09
05:10
05:09
05:14
05:17
05:23



APPENDIX B (cont.)

END OF DISCHARGE

OPEN CIRCUIT
Ah %CAP. INTERPOLATED TEMP
STRING MODULE CELL NO. Ah CORR CORR  VOLT SGAR TEMP SGAC
A 1 109 2093 1997 96.0 1.932 1.120 95 1.126
B 20 22 2105 2004 96.3 1.935 1.125 102 1.133
A 11 105 2107 2005 96.4 1.940 1.120 103 1.129
B 20 21 2125 2011 96.7 1.938 1.125 106 1.135
B 22 60 2126 2011 96.7 1.932 1.115 106 1.125
B 20 28 2120 2017 97.0 1.938 1.125 102 1.133
8 29 197 2115 2018 87.0 1.933 1.120 105 1.129
A 1 25 2101 2023 97.3 1.833 1.140 100 1.148
B 22 58 2139 2024 97.3 1.841 1.135 106 1.145
B 22 63 2127 2024 97.3 1.933 1.120 102 1.128
C 44 248 2121 2025 97.3 1.932 1.120 101 1.128
B 29 192 2109 2025 97.4 1.931 1.125 102 1.133
A 1 23 2103 2026 97.4 1.927 1130 100 1.138
8 32 225 2127 2030 97.6 1.938 1.120 101 t.128
B 22 62 2134 2031 97.7 1.938 1.135 102 1.143
B8 30 199 2133 2036 97.9 1.940 1.130 107 1.140
A 9 91 2143 2038 98.0 1.945 1.130 107 1.140
B k4 228 2155 2045 98.3 1.843 1.125 104 1.134
B 20 20 2162 2045 98.3 1.940 1.135 106 1.145
B 20 29 2143 2046 98.4 1.936 1.135 95 1.141
A 6 65 2139 2048 98.5 1.943 1.135 102 1.143
C 50 299 2154 2050 98.6 1.940 1.120 102 1.128
B 3t 221 2150 2052 98.7 1.933 1.120 101 1.128
B 29 185 2150 2052 98.7 1.940 1130 105 1.139
A 8 90 2135 2056 98.9 1.942 1.135 101 1.143
A 10 102 2163 2065 99.3 1.941 1.130 95 1.136
B8 22 40 2164 2065 99.3 1.936 1.130 95 1.136
A 18 174 2185 2067 99.4 1.943 1.130 105 1.139
B 29 172 2156 2070 98.5 1.937 1.120 102 1.128
B 19 17 2163 2071 99.6 1.940 1335 95 1.141
B 22 41 21€4 2072 9.6 1.841 1.120 85 1.126
B 19 15 2177 2072 99.6 1.946 1.135 102 1.143
B 19 18 2167 2074 99.7 1.941 1.135 95 1.141
B 29 185 2189 2077 99.9 1.946 1.120 108 1.130
B 3 212 2158 2078 99.9 1.935 1.120 99 1.127
B 20 24 2172 2079 100.0 1.939 1.135 95 1.141
C 48 278 2199 2081 100.0 1.840 1.120 107 1.130
C 54 316 2188 2083 100.1 1.940 1.115 106 1.125
A 18 177 2170 2084 100.2 1.941 1.135 101 1.143
C 54 319 2165 2085 100.2 1.932 1.115 106 1.125
A 9 93 2177 2085 100.2 1.944 1.135 95 1.141
c 50 298 2189 2089 100.4 1.939 1.120 102 1.128
A 6 71 2191 2082 100.6 1.947 1.135 104 1.144
A 10 97 2207 2094 100.7 1.946 1.135 103 1.144
A 6 64 2175 2095 100.7 1.942 1.135 100 1.143
B 29 196 221 2098 100.9 1.946 1.120 108 1.130
B 32 238 2181 2100 101.0 1.932 1.120 99 1.127
B 3 218 2214 2101 101.0 1.942 1.120 104 1.129

B-10



APPENDIX B (cont.)

END OF DISCHARGE

OPEN CIRCUIT
Ah %CAP. iINTERPOLATED TEMP
STRING MODULE CELL NO. Ah CORR CORR VOLT SGAR TEMP  SGAC
B 27 141 2214 2101 101.0 1.853 1.130 106 1.140
B 31 223 2182 2101 101.0 1.933 1.120 99 1.127
A 1 12 2202 2102 101.0 1.946 1.130 104 1.139
B 26 135 2190 2103 101.1 1.941 1.128 95 1.131
B 32 226 2218 2105 101.2 1.942 1.125 104 1.134
B 25 130 2205 2105 101.2 1.948 1.125 102 1.133
B 31 222 2205 2105 101.2 1.942 1.125 101 1.133
A 1 2 2199 2105 101.2 1.945 1.135 101 1.143
B 26 136 2193 2105 101.2 1.943 1.135 95 1.141
B 24 84 2206 2106 101.2 1.852 1.130 102 1.138
C 49 286 2216 2109 101.4 1.944 1.120 105 1.129
C 4 250 2209 2109 101.4 1.945 1.125 101 1.133
B 19 16 2233 2113 101.6 1.952 1.135 106 1.145
C 294 2202 2114 101.6 1.943 1.125 99 1.132
A 10 101 2209 2115 101.7 1.946 1.135 95 1.141
(o} 42 233 2198 2117 101.8 1.940 1.125 99 1.132
B 32 237 2218 2118 101.8 1.941 1.120 101 1.128
B 25 132 2234 2120 1019 1.951 1.130 106 1.140
A 8 85 2205 2123 102.1 1.949 1.140 101 1.148
A 8 78 2224 2123 102.1 1.946 1.130 106 1.140
C 42 231 2225 2123 102.1 1.944 1.120 161 1.128
A 10 99 2245 2124 102.1 1.950 1.130 107 1.140
C 43 244 2206 2125 102.2 1.945 1.125 98 1.132
B 33 241 2208 2126 102.2 1.939 1.135 99 1.142
A 8 87 2229 2128 102.3 1.951 1.120 106 1.130
B 32 224 2212 2130 102.4 1.241 1.125 29 1.132
A 6 70 2231 2130 1024 1.949 1.130 104 1.139
B 27 143 2245 2130 102.4 1.950 1.130 106 1.140
A 1 9 2234 2133 102.5 1.954 1.135 104 1.144
B 31 217 2248 2134 102.6 1.947 1.128 104 1.134
B 24 83 2230 2135 102.6 1.906 1.135 95 1.141
B 27 145 2236 2135 102.6 1.954 1.135 102 1.143
B 27 147 2223 2135 102.6 1.945 1.135 95 1141
A 1 13 2225 2136 102.7 1.947 1.130 101 1.138
C 43 248 2239 2137 102.7 1.951 1.120 101 1.128
B 25 131 2240 2138 102.8 1.953 1.130 102 1.138
B 19 14 2248 2139 1029 1.949 1.135 106 1.145
C 43 247 2242 2140 102.9 1.945 1.135 101 1.143
B 26 138 2260 2144 103.1 1.953 1.125 106 1.135
B 26 140 2247 2144 103.1 1.956 1.130 102 1.138
C 51 307 2276 2147 103.2 1.942 1.115 106 1.125
B 24 106 2252 2150 103.4 1.951 1.130 102 1.138
B 27 142 2254 2152 1034 1.955 1.135 102 1.143
B 25 129 2242 2152 103.8 1.951 1.135 S5 1.141
(o] 42 232 2241 2158 103.7 1.940 1.130 99 1.137
B 25 133 2248 2158 103.8 1.956 1.130 95 1.136
B 24 86 2255 2159 103.8 1.951 1.130 S5 1.136
Cc 46 266 2250 2160 1039 1.843 1.130 100 1.138
o] 4 253 2244 2161 1039 1.943 1.125 29 1.132
C 46 263 2285 2162 104.0 1.8489 1.120 106 1.130
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APPENDIX B (cont.)

END OF DISCHARGE

OPEN CIRCUIT
Ah %CAP. INTERPOLATED TEMP
STRING MODULE CELL NO. Ah CORR CORR VOLT SGAR TEMP  SGAC
C 42 234 2268 2165 1041 1.944 1.130 101 1.138
B 33 242 2249 2165 104.1 1.948 1.130 299 1.137
B 26 137 2282 2166 104.1 1.857 1.140 106 1.150
B 26 139 2269 2166 104.1 1.956 1.145 102 1.153
B 25 128 2283 2167 104.2 1.962 1.135 106 1.145
(o} 42 235 2284 2168 104.2 1.947 1.120 104 1.129
B 27 146 2263 2173 104.5 1.953 1.130 95 1.136
C 46 267 2266 2176 104.6 1.946 1.130 100 1.138
C 43 236 2262 2178 104.7 1.944 1.135 99 1.142
C 44 251 2299 2181 104.8 1.953 1.125 104 1.134
B 33 243 2288 2184 105.0 1.953 1.120 101 1.128
C 4 254 2271 2187 105.2 1.842 1.130 o9 1.137
C 43 245 2314 2196 105.6 1.956 1.125 104 1.134
C 42 230 2318 2199 105.7 1.951 1.130 104 1.139
B 33 265 2318 2199 105.7 1.955 1.125 104 1.134
o} 46 262 2313 2202 105.8 1.954 1.126 102 1.133
C 44 282 2321 2202 105.9 1.955 1.135 104 1.144
B 33 239 2324 2205 106.0 1.946 1.135 104 1.144
C 47 276 2331 2218 106.7 1.956 1.130 102 1.138
C 47 273 2321 2222 106.8 1.946 1.130 100 1.138
C 43 246 2360 2240 107.7 1.959 1.135 104 1.144
o] 50 297 2379 2258 108.5 1.962 1.138 106 1.145
o] 51 303 2423 2306 110.8 1.962 1.135 102 1.143



APPENDIX B (cont.)

MEASUREMENTS AFTER CUTOFF VOLTAGE IS REACHED

TIME TIME TIME
STRING MODULE CELLNO. CORR VOLT (RAW) (ADJY) VOLTS (RAW) (ADJ)
A 11 109 1.3 1.710 13:36 13:37 1.635 13:51 13:52
B 20 22 1.8 1.715 13:36 13:37 1.654 13:51 13:52
A i3] 105 14 1.716 13:36 13:37 1.655 13:51 13:52
B 20 21 2.1 1.719 13:36 13:38 1.666 13:51 13:53
B 22 60 25 1.720 13:36 13:38 1.665 13:51 13:53
B 20 28 2.1 1.716 13:36 13:38 1.664 13:51 13:53
B 29 197 3.9 1.714 13:35 13:38 1.657 13:51 13:54
A 1 25 0.0 1.718 13.36 13:36 1.653 13:561 13:51
B 22 59 24 1.722 13:36 13:38 1.676 13:51 13:53
B 22 63 25 1.720 13:36 13:38 1.666 13:51 13:53
C 44 249 1.4 1.723 13:35 13:36 1.669 13:51 13:52
B 29 192 3.6 1.713 13:36 13:38 1.649 13:51 13:54
A 1 23 0.3 1.719 13:36 13:36 1.655 13:51 13:51
B 32 225 2.8 1.721 13:35 13:37 1.670 13:51 13:63
B 22 62 2.3 1.724 13:36 13:38 1.669 13:51 1353
B 30 199 3.6 1.720 13:35 13:38 1.670 13:51 13:54
A 9 91 0.9 1.729 13:36 13:36 1.684 13:51 13:51
B 32 228 29 1.731 13:35 13:37 1.683 13:51 13:53
B 20 20 2.0 1.732 13:36 13:38 1.685 13:51 13:53
B 20 29 2.2 1.728 13:36 13:38 1.674 13:51 13:53
A 6 65 0.5 1.729 13:36 13:36 1.682 13:51 13:51
c 50 299 0.3 1.735 13:35 13:35 1.689 13:51 13:51
B 3 221 3.2 1.728 13:35 13:38 1.676 13:51 13:54
B 29 185 3.7 1.726 13:35 13.38 1.678 13:51 13:54
A 8 90 0.6 1.729 13:36 13:36 1.679 13:51 13:51
A 10 102 1.2 1.735 13:36 13:37 1.689 13:51 13:52
B 22 40 2.6 1.737 13:36 13:38 1.684 13:51 13:53
A 18 174 1.5 1.740 13:36 13:37 1.698 13:61 13:52
B 29 172 4.0 1.727 13:35 13:39 1.676 13:51 13:55
B 19 17 1.8 1.738 13:36 13:37 1.688 13:51 13:52
B 22 41 2.3 1.735 13:36 13:38 1.685 13:51 13:53
B 19 15 1.6 1.738 13:36 13:37 1.695 13:51 13:52
B 19 18 1.5 1.738 13:36 13:37 1.690 13:51 13:62
B 29 195 3.9 1.738 13:35 13:38 1.694 13:51 13:54
B 31 212 3.2 1.731 13:35 13:38 1.680 13:51 13:54
B 20 24 18 1.742 13:36 13:37 1.692 13:51 13:52
C 48 278 0.6 #N/A #N/A #N/A #N/A #N/IA #N/A
C 54 316 0.1 #N/A #NIA #N/A #N/A #N/A #N/A
A 18 177 14 1.742 13:36 13:37 1.691 1351 13:52
o] 54 318 0.0 1.740 13:35 13:35 1.693 13:51 1351
A 9 93 1.0 1.742 13.36 13:36 1.698 13:51 13:51
o] 50 298 04 #N/A #N/A #N/A #N/A #N/A #N/A
A 6 71 0.6 #N/A #N/A #N/A #N/A #N/A #N/A
A 10 97 12 #N/A #N/A #N/A #N/A #N/A #N/A
A 6 64 0.4 1.743 13:36 13:36 1.697 13:51 13:51
8 29 196 38 #N/A #N/A #N/A #N/A #N/A #N/A
B 3 238 3.1 1.740 13:35 13:38 1.690 13:51 13:54
B 31 219 3.3 #N/A #N/A #N/A #N/A #N/A #N/A



APPENDIX B (cont.)

MEASUREMENTS AFTER CUTOFF VOLTAGE IS REACHED

TIME TIME TIME
STRING MODULE CELLNO. CORR VOLT (RAW) (ADJ) VOLTS (RAW) (ADJ)
B 27 141 38 #N/A #N/A #N/A #N/A #N/A #N/A
B 31 223 35 1.742 13:35 13:38 1.680 13:51 13:54
A 1 12 0.2 #N/A #N/A #N/A #N/A #NIA #N/A
B 26 135 3.3 1.740 13:36 13:39 1.694 13:51 13:54
B 32 226 29 #N/A #N/A #N/IA #N/A #N/A #N/A
B 25 130 3.2 1.741 13:36 13:39 1.700 13:51 13:54
B 31 222 3.4 1.743 13:35 13:38 1.700 13:51 13:54
A 1 2 0.3 #N/A #N/A #N/A #N/A #N/A #N/A
B 26 136 3.6 1.741 13:36 13:39 1.695 13:51 13:54
B 24 84 2.7 #N/A #N/A #N/A #N/A #N/A #N/A
(o] 49 286 0.6 #N/A #N/A #N/A #N/A #NIA #N/A
C 44 250 1.2 #N/A #N/A #N/IA #N/A #NIA #NIA
B 19 16 1.7 #N/A #N/A #N/A #N/A #N/A #N/A
c 49 294 0.5 #N/A #N/A #N/A #N/A #N/A #N/A
A 10 101 1.0 #N/A #N/A #N/A #N/A #N/A #N/A
C 42 233 2.0 #N/A #N/A #N/A #N/A #N/A #N/A
B 32 237 3.0 #N/IA #N/A #N/A #N/A #N/A #N/A
8 25 132 3.1 #NIA #N/A #N/A #N/A #N/A #N/A
A 8 85 0.8 #N/A #NIA #N/A #N/A #N/A #N/A
A 8 78 0.8 #N/A #N/A #N/A #N/A #N/A #N/A
C 42 231 20 #N/A #N/A #N/A #N/A #N/A #N/A
A 10 99 1.1 #N/A #N/A #N/A #N/A #N/A #N/A
C 43 244 15 #N/A #N/A #NIA #N/A #N/A #N/A
B 33 241 2.7 #N/IA #N/A #N/A #N/A #N/A #N/A
A 8 87 0.7 #N/A #N/A #N/A #N/A #N/A #N/A
B 32 224 2.7 #N/A #N/A #N/A #N/A #N/A #N/A
A 6 70 0.5 #N/A #N/A #N/A #N/A #N/A #N/A
B 27 143 39 #N/A #N/A #N/A #N/A #NIA #N/A
A 1 9 0.1 #NIA #N/A #N/A #N/A #N/A #N/A
B 31 217 34 #NIA #N/A #N/A #N/IA #N/A #N/IA
B 24 83 28 #N/A #N/A #N/A #N/A #N/A #N/A
B 27 145 3.7 #N/A #N/A #N/A #N/A #NIA #N/A
B 27 147 4.0 #N/A #N/A #N/A #N/A #N/A #N/A
A 1 13 0.1 #N/A #N/A #N/A #N/A #N/A #N/A
o] 43 248 1.6 #N/A #N/A #N/A #N/A #N/A #N/A
B 25 131 3.0 #N/A #N/A #N/A #N/A #N/A #N/A
B 19 14 1.7 #N/A #N/A #N/A #N/A #N/IA #N/A
c 43 247 1.8 #N/A #N/A #N/IA #N/A #N/A #N/A
B 26 138 3.4 #N/A #N/A #NIA #N/A #N/A #N/A
B 26 140 34 #N/A #N/A #NIA #N/A #N/A #N/A
c 51 307 0.1 #N/A #N/A #N/IA #N/A #N/A #N/A
B 24 106 2.8 #N/IA #N/A #NIA #N/A #N/A #N/A
B 27 142 3.9 #N/A #N/A #N/A #N/A #N/A #N/A
B 25 129 3.2 #N/A #N/A #NIA #N/A #N/A #N/A
o 42 232 2.3 #NIA #N/A #NIA #N/A #N/A #N/A
B 25 133 29 #N/IA #N/A #N/A #N/A #N/A #N/A
B 24 86 2.6 #N/A #N/A #N/A #N/A #N/A #N/A
c 46 266 1.1 #N/A #N/A #N/IA #N/A #N/A #N/A
c 44 253 11 #N/A #NIA #N/A #N/A #N/A #N/A
c 46 263 1.0 #NIA #N/A #N/A #N/A #N/A #N/A
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APPENDIX B (cont.)

MEASUREMENTS AFTER CUTOFF VOLTAGE IS REACHED

TIME TIME TIME
STRING MODULE CELLNO. CORR VOLT (RAW) (ADY) VOLTS (RAW) (ADJ)
Cc 42 234 2.2 #N/A #N/A #N/A #NIA #N/A #N/A
B 33 242 2.4 #N/A #N/A #N/A #N/A #N/A #N/A
B 26 137 35 #N/A #N/A #N/A #N/A #N/A #NIA
B 26 139 35 #N/A #N/A #N/A #N/A #N/A #N/A
B 25 128 3.0 #N/A #N/A #N/A #N/A #N/A #N/IA
c 42 235 21 #N/A #N/A #N/A #N/A #N/A #N/A
B 27 146 3.7 #N/A #N/A #N/A #N/A #N/A #N/A
c 46 267 0.8 #N/A #N/A #N/A #N/A #N/A #N/A
Cc 43 236 1.8 #N/A #N/A #N/A #N/A #NIA #NIA
c 44 251 1.3 #N/IA #N/A #NIA #N/IA #N/A #NIA
B 33 243 25 #NIA #N/A #N/A #N/A #N/A #N/A
c 44 254 1.5 #N/A #N/A #N/A #N/A #N/A #N/IA
c 43 245 1.7 #N/A #N/A #N/A #N/A #N/A #NIA
c 42 230 22 #N/A #N/A #N/A #N/A #N/A #N/A
B 33 265 25 #N/A #N/A #N/A #N/A #N/A #N/A
Cc 46 262 0.9 #N/A #N/A #N/A #N/A #N/A #N/A
C 44 252 1.3 #N/A #N/A #N/A #N/A #N/A #N/A
B 33 239 2.6 #N/A #N/A #N/A #N/A #NIA #N/A
C 47 276 0.7 #N/A #N/A #N/A #N/A #N/A #N/A
C 47 273 0.8 #N/A #N/A #N/A #N/A #NIA #N/A
Cc 43 246 1.8 #N/A #N/A #N/A #N/A #N/A #N/A
C 50 297 0.4 #N/A #N/A #N/A #N/A #N/A #N/A
C 51 303 0.2 #N/A #N/A #N/A #N/A #NIA #N/A



APPENDIX C

CORRECTLY CLASSIFIED CELLS,
ABERRANT CELLS, AND REPLACEMENT CELLS

Correctly
Cell ID Classified (STDEV) Aberrant Repliacements

16 v

18 v

20

21

22

23

25
28
29
59
60

62

63

NS ANERANASASAYANASAY A AYAYAY

65

70

ANAR

71

83

91 v

99 v

105 eliminated

AYAN

109 eliminated

128

131 v

132

133

135

136 v

146 v

172 vl

185 v

192 v

197

199 v




APPENDIX C (cont.)

Correctly
Cell ID Classified (STDEV) Aberrant Replacements

219

221 v

225

228

230

AN ANAN
AN

235

236

239

243

245

ANNANANAS

246

249

251

252

AN

254

262 v

263

265 v

267

273

276 v

297

299

303

AYAN

307

316 v
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APPENDIX D

PREDICTION RESULTS FOR PREDICTION SET CELLS
CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

Training Set Index: 1 2 3 4 5 6 7 8 9 10 11 12 13
Criterion: STDEV CelllD: 2 9 12 13 14 15 17 24 40 41 64 78 84

Feature Code
F-0420101000000 3 3 2 2 3 2 3 2 2 2 2 2 3
F-0411111000000 3 2 2 2 3 3 2 2 2 2 2 2 3
F-0410121000100 3 2 2 2 3 3 3 2 2 2 2 2 3
F-0420102000000 3 3 2 2 3 2 2 2 2 2 2 2 2
F-0041012010120 3 3 3 2 3 2 3 2 2 2 2 2 3
Majority Vote: 3 3 2 2 3 2 3 2 2 2 2 2 3

Training Set
Criterion: NLM

Feature Code
F-0201010000000 3 2 3 3 2 3 2 2 2 2 3 2 3
F-0/16/11110000000 3 2 2 2 3 3 2 2 2 2 2 2 3
F-1420110100010 3 2 2 3 3 2 2 2 2 2 2 2 3
F-1001020001000 3 3 3 3 3 3 2 2 2 2 2 2 3
F-0110010000000 3 3 2 2 2 2 3 2 2 2 2 2 3
Majority Vote: 3 2 2 3 3 3 2 2 2 2 2 2 3

Overall Majority Vote: 3 2/3 2

N
w
3
n
N
N
N
N
N
w

Training Set Index: 14 15 16 17 18 19 20 21 22 23 24 25 26
Criterion: STDEV CelllD: 8 8 87 90 93 97 101 102 106 129 130 137 138
Feature Code
F-0420101000000 3 2 2 2 1 2 3 3 1 1 1 2 2
F-0411111000000 3 2 2 2 2 2 3 3 2 3 1 2 2
F-0410121000100 3 2 2 2 1 2 3 3 1 1 1 2 2
F-0420102000000 3 2 2 3 1 2 3 3 1 3 1 3 2
F-0041012010120 3 2 2 2 3 3 3 3 3 3 1 3 2
Majority Vote: 3 2 2 2 1 2 3 3 1 3 1 2 2
Training Set
Criterion: NLM
Feature Code
F-0201010000000 3 2 2 2 3 2 3 2 2 3 1 2 2
F-0/16/11110000000 3 2 2 2 3 2 3 2 2 3 3 2 2
F-1420110100010 3 2 2 2 2 2 3 3 3 3 3 3 2
F-1001020001000 3 2 2 2 3 2 3 2 3 1 3 3 3
F-0110010000000 3 2 3 3 2 2 3 1 3 2 1 3 2
Majority Vote: 3 2 2 2 3 2 3 2 3 3 3 3 2

Overall Majority Vote: 3 2

(M)
N
w
N
w
w
w
w
-
5
»



APPENDIX D (cont.)

PREDICTION RESULTS FOR PREDICTION SET CELLS

CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

Training Set
Criterion: STDEV
Feature Code

Index: 27
Cell ID:

28 29 30 31

32 33 34 3B

36

37 38 39

139 140 141 142 143 145 147 174 177 195 196 212 217

F-0420101000000 3 2 3 3 3 2 2 2 3 2 3 3 3
F-0411111000000 3 2 3 3 3 1 2 2 3 2 2 3 3
F-0410121000100 3 2 3 3 3 2 2 2 3 2 2 3 3
F-0420102000000 3 2 3 3 3 2 2 2 3 2 2 2 3
F-0041012010120 1 2 3 2 3 3 2 3 3 2 3 3 3
Majority Vote: 3 2 3 3 3 2 2 2 3 2 2 3 3

Training Set

Criterion: NLM

Feature Code
F-0201010000000 3 2 3 3 2 3 3 2 2 1 3 2 1
F-0/16/11110000000 3 2 2 3 2 3 2 2 2 2 2 3 1
F-1420110100010 3 3 2 3 3 3 2 2 3 2 3 3 3
F-1001020001000 3 3 3 3 3 1 2 2 2 1 2 3 3
F-0110010000000 3 2 2 3 1 1 2 3 3 1 2 3 3
Majority Vote: 3 2 2 3 23 3 2 2 2 1 2 3 3
Overall Majority Vote: 3 2 3 3 3 3 2 2 3 2 2 3 3
Training Set index: 40 41 42 43 44 45 46 47 48 49 50 51 52

Criterion: STDEV CelllD: 222 223 224 226 231 232 233 234 237 238 241 242 244

Feature Code
F-0420101000000 3 3 1 3 3 1 1 1 2 1 3 2 3
F-0411111000000 3 3 1 3 3 1 1 1 3 1 1 2 1
F-0410121000100 2 3 1 3 3 1 1 1 3 1 3 2 1
F-0420102000000 3 3 1 3 1 1 1 1 3 1 1 1 3
F-0041012010120 3 3 3 3 1 3 1 1 1 1 3 1 1
Majority Vote: 3 3 1 3 3 1 1 1 3 1 3 2 1

Training Set

Criterion: NLM

Feature Code
F-0201010000000 1 1 1 3 1 3 1 1 3 3 1 1 1
F-0/16/11110000000 2 1 1 3 3 1 1 1 3 3 1 1 2
F-1420110100010 2 1 1 3 1 1 1 1 2 1 1 2 1
F-1001020001000 3 2 1 3 3 1 2 1 3 3 1 2 1
F-0110010000000 1 1 3 3 3 3 1 1 3 3 3 1 3
Majority Vote: 1.2 1 1 3 3 1 1 1 3 3 1 1 1
Overall Majority Vote: 3 3 1 3 3 3 1 1 3 1 112 1



APPENDIX D (cont.)

PREDICTION RESULTS FOR PREDICTION SET CELLS
CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

Training Set Index: 53 54 55 56 57 58 59 60 61 62

Criterion: STDEV CellID: 247 248 250 253 266 278 286 294 298 319
Feature Code

F-0420101000000 3 1 1 3 1 1 1 2 1 3
F-0411111000000 3 1 2 2 1 2 1 2 1 1
F-0410121000100 3 1 2 2 1 2 1 2 1 1
F-0420102000000 3 1 1 3 1 1 1 2 1 1
F-0041012010120 1 1 2 2 1 2 1 2 1 3
Majority Vote: 3 1 2 2 1 2 1 2 1 1
Training Set
Criterion: NLM

Feature Code
F-0201010000000 1 1 1 1 1 1 1 1 1 3
F-0/16/11110000000 1 1 1 1 1 1 1 1 1 3
F-1420110100010 1 1 1 1 1 3 1 1 1 1
F-1001020001000 2 1 3 3 3 1 1 1 2 3
F-0110010000000 1 1 1 3 1 1 1 1 1 3
Majority Vote: 1 1 1 1 1 1 1 1 1 3

Overall Majority Vote: 1 1 1 3 1 1 1 12 1 3

Training Set
Criterion: STDEV % ACCURACY
Feature Code
F-0420101000000 40%
F-0411111000000 34%
F-0410121000100 34%
F-0420102000000 35%
F-0041012010120 47%
Average: 38%
8: 6%
Training Set
Criterion: NLM
Feature Code
F-0201010000000 34%
F-0/16/11110000000 2%
F-1420110100010 35%
F-1001020001000 48%
F-0110010000000 42%
Average: 38% Combined Average: 38%
s: B% s: 6%



APPENDIX E

PREDICTION RESULTS FOR UNKNOWN SET CELLS
CLASSIFIERS DEVELOPED FROM STDEV AND NLM PROCEDURES

Training Set Index: 1 2 3 4 5 6 7 8 9 10 11 12 13
Criterion: STDEV CelllD: 1 3 4 5 6 7 8 1 11 19 26 27 30

Feature Code
F-0420101000000 3 3 3 3 3 3 3 3 3 3 2 3 2
F-0411111000000 3 3 3 2 2 3 2 3 2 3 2 3 2
F-0410121000100 3 3 3 2 2 3 2 2 2 3 2 3 2
F-0420102000000 3 3 3 3 3 3 3 1 3 3 2 3 2
F-0041012010120 3 3 3 3 3 3 1 3 2 2 2 3 2
Majority Vote: 3 3 3 3 3 3 23 3 2 3 2 3 2

Training Set

Criterion: NLM

Feature Code
F-0201010000000 2 2 2 2 2 2 2 2 2 2 2 2 2
F-0/16/11110000000 2 2 2 2 2 2 2 2 2 2 2 2 2
F-1420110100010 3 3 2 2 2 3 1 3 2 2 2 2 2
F-1001020001000 2 2 2 2 2 2 2 2 2 2 2 2 2
F-0110010000000 3 3 3 2 2 3 1 3 2 2 2 2 2
Majority Vote: 2 2 2 2 2 2 2 2 2 2 2 2 2
Overall Majority Vote: 3 3 3 2 2 3 2 3 2 2 2 23 2
Training Set index: 14 15 16 17 18 19 20 21 22 23 24 25 28
Criterion: STDEV CelllD: 31 32 33 34 35 36 37 38 39 42 43 44 45

Feature Code
F-0420101000000 2 2 2 2 2 2 2 2 2 2 3 2 2
F-0411111000000 2 2 3 2 2 2 2 2 2 2 3 2 2
F-0410121000100 2 2 2 2 2 2 2 2 2 2 3 2 2
F-0420102000000 2 2 3 2 2 2 2 2 2 2 3 2 2
F-0041012010120 2 2 2 2 2 2 2 3 2 2 2 2 3
Majority Vote: 2 2 2 2 2 2 2 2 2 2 3 2 2

Training Set

Criterion: NLM

Feature Code
F-0201010000000 2 2 2 2 2 2 2 2 2 2 3 2 3
F-0/16/11110000000 2 2 2 2 2 2 2 3 2 2 2 2 2
F-1420110100010 2 2 2 2 2 2 2 2 2 2 2 2 2
F-1001020001000 2 3 2 2 2 2 2 2 2 2 2 2 2
F-0110010000000 2 2 2 2 2 2 2 2 2 2 2 2 2
Majority Vote: 2 2 2 2 2 2 2 2 2 2 2 2 2
Overall Majority Vote: 2 2 2 2 2 2 2 2 2 2 213 2 2



Training Set
Criterion: STDEV
Feature Code
F-0420101000000
F-0411111000000
F-0410121000100
F-0420102000000
F-0041012010120

Majority Vote:

Training Set
Criterion: NLM
Feature Code
F-0201010000000
F-0/16/11110000000
F-1420110100010
F-1001020001000
F-0110010000000

Majority Vote:

Index: 27
CelliD: 46

APPENDIX E (cont.)
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Training Set
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APPENDIX E (cont.)

Training Set Index: 53 54 55 56 57 58 59 60 61 62 63 64 65
Criterion: STDEV CellD: 8 82 83 8 92 ©°4 85 96 98 100 103 104 107
Feature Code
F-0420101000000 3 3 3 1 1 2 2 1 3 3 2 2 1
F-0411111000000 3 3 3 3 2 2 2 3 2 3 2 2 3
F-0410121000100 3 3 3 1 2 2 2 1 3 1 2 2 3
F-0420102000000 3 3 3 1 1 1 2 1 2 1 2 2 2
F-0041012010120 3 3 3 2 3 2 3 3 3 3 3 3 3
Majority Vote: 3 3 3 1 12 2 2 1 3 3 2 2 3
Training Set
Criterion: NLM
Feature Code
F-02010100060000 3 1 2 3 2 1 2 3 2 3 2 2 2
F-0/16/11110000000 3 2 2 3 2 2 2 3 2 3 2 2 3
F-1420110100010 3 1 2 3 2 2 2 3 1 3 2 2 3
F-1001020001000 3 3 2 3 2 1 1 3 3 3 2 2 3
F-0110010000000 3 1 2 3 3 2 3 3 1 3 2 2 1
Majority Vote: 3 1 2 3 2 2 2 3 12 3 2 2 3
Overall Majority Vote: 3 3 213 3 2 2 2 3 213 3 2 2 3
Training Set Index: 66 67 68 69 70 71 72 73 74 75 76 77 78
Criterion: STDEV CelliD: 108 110 111 112 113 114 115 116 117 118 119 120 121
Feature Code
F-0420101000000 2 2 2 2 2 2 1 1 2 2 1 3 1
F-0411111000000 2 2 2 2 2 2 1 2 3 2 1 3 2
F-0410121000100 2 2 2 2 2 2 3 2 3 2 1 3 3
F-0420102000000 2 2 2 2 2 2 3 3 1 2 1 3 1
F-0041012010120 1 2 2 2 2 3 3 3 3 2 3 3 3
Majority Vote: 2 2 2 2 2 2 3 23 3 2 1 3 13
Training Set
Criterion: NLM
Feature Code
F-0201010000000 2 2 2 2 2 1 3 1 2 1 3 1 1
F-0/16/11110000000 2 2 2 2 2 1 1 2 2 2 3 2 2
F-1420110100010 2 2 2 2 2 2 1 1 2 2 3 2 2
F-1001020001000 2 2 2 2 2 2 1 1 3 2 3 3 2
F-0110010000000 2 2 2 2 2 2 1 1 2 2 3 2 2
Majority Vote: 2 2 2 2 2 2 1 1 2 2 3 2 2
Overall Majority Vote: 2 2 23 2 2 2 1 1 3 2 3 3 2
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APPENDIX E (cont.)

Training Set Index: 79 80 81 82 83 84 8 8 8 88 89 90 09f

Criterion: STDEV CelliD: 122 123 124 125 126 127 134 144 148 149 150 151 152
Feature Code

F-0420101000000 2
F-0411111000000 2
F-0410121000100 2
F-0420102000000 2
F-0041012010120 3

Majority Vote: 2
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Majority Vote:

Overall Majority Vote: 2 3

N
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w

Training Set index: 82 93 94 95 96 97 98 99 100 101 102 103 104

Criterion: STDEV CellID: 153 154 155 156 157 158 159 160 161 162 163 164 165
Feature Code

F-0420101000000

3 2 2 2 1 3 3 3 3 1 3 3 3
F-0411111000000 3 3 2 3 1 3 2 3 1 1 1 3 3
F-0410121000100 3 2 2 2 1 3 2 3 3 3 3 3 3
F-0420102000000 3 2 2 2 1 3 2 3 3 2 3 3 3
F-0041012010120 3 1 3 3 1 3 2 3 3 3 2 3 3
Majority Vote: 3 2 2 2 1 3 2 3 3 13 3 3 3
Training Set
Criterion: NLM
Feature Code
F-0201010000000 2 1 1 2 1 3 2 1 1 1 3 3 3
F-0/16/11110000000 3 2 2 2 1 1 2 1 1 3 3 3 3
F-1420110100010 3 2 2 2 1 3 3 1 1 3 3 3 3
F-1001020001000 2 3 2 2 1 3 2 2 1 1 3 3 3
F-0110010000000 1 2 2 2 1 1 3 1 3 3 3 3 3
Majority Vote: 2/3 2 2 2 1 3 2 1 1 3 3 3 3
Overall Majority Vote: 3 2 2 2 1 3 2 3 13 3 3 3 3



APPENDIX E (cont.)

Training Set Index: 105 106 107 108 103 110 111 112 113 114 115 116 117

Criterion: STDEV CellID: 166 167 168 169 170 171 173 175 176 178 179 180 181
Feature Code

F-0420101000000

1 3 3 1 2 2 3 1 3 3 3 2 2
F-0411111000000 1 1 3 2 2 2 3 1 3 3 3 2 2
F-0410121000100 1 3 3 3 2 2 3 3 3 3 3 2 3
F-0420102000000 1 3 2 1 3 2 3 1 3 2 3 2 2
F-0041012010120 1 3 2 1 3 2 2 3 2 3 3 2 2
Majority Vote: 1 3 3 1 2 2 3 1 3 3 3 2 2

Training Set

Criterion: NLM

Feature Code
F-0201010000000 1 1 3 3 2 2 2 2 2 1 1 2 2
F-0/16/11110000000 1 1 3 3 2 3 2 2 2 1 2 2 2
F-1420110100010 1 1 3 1 2 2 3 1 3 2 1 2 2
F-1001020001000 1 1 3 3 2 2 3 1 2 1 2 2 2
F-0110010000000 1 1 3 1 2 2 2 1 2 2 1 2 2
Majority Vote: 1 1 3 3 2 2 2 1 2 1 1 2 2

Overall Majority Vote: 1 1 3 1 2 2 3 1 23 3 3 2 2

Training Set index: 118 119 120 121 122 123 124 125 126 127 128 129 130

Criterion: STDEV CelliD: 182 183 184 186 187 188 189 120 191 193 194 198 200
Feature Code

F-0420101000000

1 1 2 3 3 2 2 3 2 2 3 2 2
F-0411111000000 1 1 2 2 2 1 2 2 2 2 3 2 2
F-04101210001090 1 1 2 2 2 2 2 2 2 2 3 2 2
F-0420102000000 1 1 2 3 2 2 2 2 2 2 3 2 2
F-0041012010120 3 2 3 2 2 3 2 2 3 2 3 2 2
Majority Vote: 1 1 2 2 2 2 2 2 2 2 3 2 2
Training Set
Criterion: NLM

Feature Code
F-0201010000000 1 2 2 2 1 3 2 2 1 2 2 2 1
F-0r16/11110000000 1 1 2 3 2 3 2 2 2 2 2 1 1
F-1420110100010 1 2 2 3 2 3 2 3 2 2 3 2 2
F-1001020001000 2 2 2 3 2 1 3 3 2 2 3 2 1
F-0110010000000 2 2 2 2 2 1 2 3 2 2 3 1 2
Majority Vote: 1 2 2 3 2 3 2 3 2 2 3 2 1
Overall Majority Vote: 1 12 2 213 2 3 2 2 2 2 3 2 2



APPENDIX E (cont.)

Training Set Index: 131 132 133 134 135 136 137 138 139 140 141 142 143

Criterion: STDEV CeltID: 201 202 203 204 205 206 207 208 209 210 217 213 2i4
Feature Code

F-0420101000000 2
F-0411111000000 2
F-0410121000100 2
F-0420102000000 2
F-0041012010120 2

Majority Vote: 2
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Training Set
Criterion: NLM
Feature Code
F-0201010000000 3
F-0/16/11110000000 3
F-1420110100010 2
F-1001020001000 3
F-0110010000000 2

Majority Vote: 3
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Training Set index: 144 145 146 147 148 149 150 151 152 153 154 155 156

Criterion: STDEV CellID: 215 216 218 220 227 229 240 255 256 257 258 259 260
Feature Code

F-0420101000000 2
F-0411111000000 2
F-0410121000100 2
F-0420102000000 2
F-0041012010120 3

Majority Vote: 2
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Criterion: NLM
Feature Code
F-0201010000000
F-0/16/11110000000
F-1420110100010
F-1001020001000
F-0110010000000
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Overall Majority Vote: 2 2  1/3 1 3 113 3 3 1 1 3 3 1

E-6



Training Set
Criterion: STDEV
Feature Code
F-0420101000000
F-0411111000000
F-0410121000100
F-0420102000000
F-0041012010120

Majority Vote:

Training Set
Criterion: NLM
Feature Code
F-0201010000000
F-0/16/11110000000
F-1420110100010
F-1001020001000
F-0110010000000

Majority Vote:

Index: 157 158 159 160 161

APPENDIX E (cont.)

162 163 164 165 166 167 168 169
CellID: 261 264 268 269 270 271 272 274 275 277 279 280 281
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Feature Code
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Training Set
Criterion: NLM
Feature Code
F-0201010000000
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Overall Majority Vote:
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APPENDIX E (cont.)

Training Set Iindex: 183 184 185 186 187 188 189 190 191 192 193 194 195

Criterion: STDEV CellID: 300 301 302 304 305 306 308 309 310 311 312 313 314
Feature Code

F-0420101000000

2 1 3 2 3 3 1 3 1 1 2 2 1
F-0411111000000 3 1 1 3 3 1 1 3 1 1 3 3 1
F-0410121000100 2 3 1 2 3 3 1 3 1 1 3 3 1
F-0420102000000 3 1 3 2 3 3 1 3 1 1 3 2 2
F-0041012010120 2 3 3 2 2 3 1 2 3 3 3 1 2
Majority Vote: 2 1 3 2 3 3 1 3 1 1 3 23 1
Training Set
Criterion: NLM
Feature Code
F-0201010000000 3 3 1 3 3 3 2 3 1 1 3 1 1
F-0/16/11110000000 1 1 1 3 3 3 1 3 1 1 3 2 1
F-1420110100010 1 1 1 2 3 3 1 3 1 1 2 1 1
F-1001020001000 1 1 1 3 3 3 1 3 3 3 2 1 3
F-0110010000000 3 1 3 2 3 3 1 2 3 1 2 2 1
Majority Vote: 1 1 1 3 3 3 1 3 1 1 2 1 1
Overall Majority Vote: 3 1 1 2 3 3 1 3 1 1 3 12 1
Training Set Index: 196 197 198 199 200 201 202 203 204 205 206 207 208

Criterion: STDEV CellID: 315 317 318 320 321 322 323 324 325 326 327 328 329
Feature Code

F-0420101000000

1 1 3 2 1 3 3 1 1 3 1 1 3
F-0411111000000 1 1 3 2 1 1 2 1 1 3 1 3 3
F-0410121000100 1 1 3 2 1 3 2 1 1 3 1 3 3
F-0420102000000 1 1 3 3 1 1 2 1 3 3 3 1 3
F-0041012010120 3 1 3 1 3 1 3 1 3 3 1 1 3
Majority Vote: 1 1 3 2 1 1 2 1 1 3 1 1 3
Training Set
Criterion: NLM

Feature Code
F-0201010000000 3 1 1 1 1 3 2 1 2 3 1 2 3
F-0/16/11110000000 1 1 1 1 1 3 2 1 1 3 1 1 3
F-1420110100010 1 1 1 1 1 1 1 1 1 1 1 1 3
F-1001020001000 3 1 3 2 1 3 3 1 3 3 2 3 3
F-0110010000000 1 1 3 1 1 3 1 1 1 1 3 1 3
Majority Vote: 1 1 1 1 1 3 12 1 1 3 1 1 3

Overall Majority Vote: 1 1 3 1 1 3 2 1 1 3 1 1 3
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APPENDIX E (cont.)

Training Set Index: 209 210 211 212 213 214 215 216 217 218 219

Criterion: STDEV CelliD: 330 331 332 333 334 335 336 337 338 339 340
Feature Code

F-0420101000000 2 1 1 2 1 1 1 1 3 1 1
F-0411111000000 2 1 1 2 1 3 1 1 3 1 3
F-0410121000100 3 1 1 3 3 3 1 1 3 1 3
F-0420102000000 2 1 1 2 1 3 1 1 3 1 3
F-0041012010120 3 1 1 3 3 1 1 1 3 1 3
Majority Vote: 2 1 1 2 1 3 1 1 3 1 3

Training Set

Criterion: NLM

Feature Code
F-0201010000000 3 1 1 3 3 3 3 3 3 1 3
F-0/16/11110000000 3 1 1 3 1 3 1 3 3 1 1
F-1420110100010 1 1 i 3 1 1 1 3 3 1 1
F-1001020001000 3 3 1 3 3 1 1 1 3 1 3
F-0110010000000 3 1 1 3 1 1 1 1 3 3 1
Majority Vote: 3 1 1 3 1 1 1 3 3 1 1

Overall Majority Vote: 3 1 1 3 1 13 1 1 3 1 3
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