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ABSTRACT
ON IDENTIFYING THE IDENTITY IN A GROUP
by Karlene R. Jensen

This thesis addresses the following two questions.
The word problem: Can one decide in a finite number of
steps whether a word in a finitely generated group is
trivial or not? This thesis will prove that there is a
finitely presented group with an unsolvable word problem by
embedding a recursively presented group with an unsolvable
word problem in a finitely presented group.

The Burnside problem: Can a finitely generated group
be such that every element has finite order, but the group
is infinite? The focus is on the Burnside problem when the
orders of elements are bounded. The methods discussed
involve showing whether high order commutators are trivial
or not. Finally, an example of a finitely generated 3-group

which is infinite is given.



INTRODUCTION

Around the turn of the century two important group
theoretical questions were raised. They both involve
determining if a word in a group is equivalent to the
identity. The historical developments of these two
questions are chronicled below.

The first of these two questions was formulated by W.
Burnside in 1902. Can a finitely generated group be such
that every element has finite order, but the group is
infinite?

Then in 1911, Max Dehn formulated the second question,
the so called word problem. Let a group G be defined by
means of a given presentation. For an arbitrary word w in
the generators, can we decide in a finite number of steps
whether w defines the identity element of G, or not?

During the 1930’s and 1940’s the finiteness of groups
where every element has order a divisor of a specific n was
studied. If n = 3, or 4, or 6, then the finitely generated
group was shown to be finite. In 1950 W. Magnus restricted
the scope of the general Burnside problem further by asking
if there is a bound on the order of finite quotients of
finitely generated groups where every element has order a
divisor of a specific integer?

Dehn’s word problem was proven to be unsolvable in



general by Novikov in 1952 for recursively presented groups.
Then in 1961, Higman proved that a recursively presented
group can be embedded in a finitely presented group. Thus
having a finite set of defining relations is insufficient
for the word problem to be solvable, hence finitely
presented is not enough to guarantee solvability of the word
problem.

Finally, the general Burnside question was resolved by
Golod, in 1964. He proved the existence of finitely
generated infinite p-groups for all primes answering the
general Burnside question in the positive.

Even though the general Burnside problem has been
solved, the unsolvability of the word problem for certain
groups and classes of finitely presented groups tells us
that there is no procedure for solving the word problem
which will work for every group. Since to show that a group
is finite may well involve showing many words are the
identity, we see the methods must be particular to the type
of group. Thus, the Burnside problem seems to need special
tools.

In part 1, we discuss the word problem in which we try
to determine whether in a finite number of steps a word in a
group G can be shown to be trivial or not. We also show the
existence of a finitely presented group with an unsolvable

word problem. The second part of this paper discusses the



finiteness of the so called Burnside group. Here we will
try to determine whether a specific type of word in the
group, a high order commutator, is trivial or not. If the
general Burnside question were false then there would be
many more relations equivalent to the identity and the
Burnside question would not be so complicated. In the last
part of the paper we show that the answer to the General
Burnside question is yes by proving the existence of a
finitely generated infinite 3-group using tree

automorphisnms.



PART I: THE WORD PROBLEM

Introduction

A presentation G = <a, b, ¢, ...; P, Q, R>, no matter
how strange the defining relators, always determines a
unique group (up to isomorphism). However, there may arise
great difficulties as soon as we wish some more specific
information about the group G, such as whether ¢ is abelian
or finite.

Part of the trouble is that the definition of
equivalence of words used to obtain G is non-constructive.
For example, if G is finitely generated, then G is abelian

if and only if the words aba ‘b~ I, aca~lc7%, ...,

bcb-lc-l, «++ all define the identity element in G. If we -
have a constructive procedure for determining whether or not
a word defines the identity element in G, we would be able
to decide whether G is abelian.
Definition: A decision procedure for E a subset of A
is a method by which, given any element a € A we can decide
in a finite number of steps whether or not a € E. Whether
such a procedure exists is called the decision problem.
The decision problem is clearly equivalent to the
following. Given a group G, can we find a method, by which

given an element g € G, we can decide in a finite number of

steps whether or not g = e, or prove that no such method



exists? This is what Dehn refers to as the word problem.
We show that the word problem for a finitely generated

free group is solvable. Consider the free group generated

e1 _e
by {X3,+0.,% ). Let w = x_ ".xvp

1 P
We inductively define a process p whereby we freely reduce

(er = *1; v, = 1,...,n).

>

any consecutive occurrences of xsx: as follows:

£ 4

N (e =%1, v=1,...,n), and if

P(1) =1, p(x}) = x

P(U) = x1'...x™ (m = %1; u = 1,...,n) then
1 q

e, _ . ,m Nq,E -
p(UxV) xul...xuqxv 1if u.q # V or nq # =€

=xM.,.xM? jfu = v and n = -¢.
u u q q
1 q-1
- -y -1 —
For example, let w XX, XX XX . Then p(xi) X,

-1 -1 -1
p(xixz) = XX, p(x.x 'x

-1
172 3) = XX Xy

P (xix:xax;l) = x1x:’ p(xix:xax;xz) = Xy
p(xlx:xax;xzxi) = xf. Since only

trivial relations hold in a free group, we can determine in
a finite number of steps whether or not p(w) = 1.

Let us introduce some terminology that will be used
throughout the discussion. As there are many definitions
and notations introduced throughout part 1, the reader may
wish to use the material in the appendix as an aid in their

reading.

Notation: Let [A] designate the free group on a set

A subset A of a group G is free if the homomorphism



from [A] to G which is the identity on A is injective. 1In
this case we identify the subgroup {A)} (the subgroup
generated by A) of G with [A]. This identification
simplifies a number of discussions throughout the paper.

A relation on A is an expression X = Y where X and Y
are words on A. This relation holds in a factor group
[A]/ K if X and Y lie in the same coset of K (equivalently
xy e k).

Let R be a set of relations on A. A relation on A is
a consequence of R if it holds in every factor group of [A]
in which all the relations in R hold. The set of
consequences of R is denoted by C(R). There is a unique
factor group ([A]/ KR of [A] in which the relations which
hold are just the consequences of R; KR is the normal

1 for X =Y in R. We call

subgroup generated by the XY
[A)/ KR the group with the set of generators A and the set
of defining relations R, and designate it by [A;R].

This notation [A;R] can be extended to allow several
generators before the semicolon and several relations or
sets of relations after the semicolon. Thus [A,t ; R,X=Y]
has the set of generators A v {t} and the set of defining
relations R v (X=Y). It is understood that no generator is
repeated. If A appears before the semicolon and a appears

after the semicolon, it is understood that a varies through

A.



Since [A] is a subgroup of [A,B] and KR is a subgroup
of KRus' there is a natural homomorphism from [A;R] to
[A,B ; R,S] which maps the coset of a word on A into the
coset of that word in [A,B ; R,S]. If this homomorphism is
bijective, we identify the two groups.

A group G is isomorphic to a factor group of [G] and
hence with the group [G;RG] where Rs is the set of all
relations on G.!

Definition: A group is finitely presented if it is
isomorphic to a group [A;R] where both A and R are finite.

Definition: C(R) is recursive iff given any word w on
A, there is some finite set of instructions that will decide
whether or not w € C(R).

If C(R) is recursive then we can determine in a finite
number of steps whether a word is a consequence of the
defining relations or it is not.

Definition: The word problem for G = [A;R] is solvable
iff C(R) is recursive.

Definition: C(R) is recursively enumerable iff there

is some finite set of instructions such that given any worad

1 If G appears before the semicolon, it is understood that
the relations in R are among the defining relations even if
they do not appear explicitly after the semicolon.



w on A, will eventually determine if w € C(R).

If C(R) is recursively enumerable then given any word
w in G, we may never be able to determine if w is not an
element of C(R). That is, the procedure might produce the
result w ¢ C(R), or it might go on forever without producing
that w € C(R) if w ¢ C(R).

Definition: A group is recursively presented if it is
isomorphic to a group [A;R] where A is finite and R is
recursively enumerable.

Every recursive set is recursively enumerable. To see
this, suppose R was a procedure that was recursive. Then
upon every input it would respond with a yes or no response.
If we restrict R to output only yes responses then R would
be recursively enumerable. The converse is not true.

If G is a finitely generated group then G is
isomorphic to [A;R] = [A;C(R)] with A finite. Therefore it
suffices to talk about the solvability of the word problem
for [A:R].

Suppose that [A;R] is a subgroup of [B;S] where both A
and B are finite. We will show that C(R) is recursive if
C(S) is recursive. Let ¢ be a monomorphism from [A:;R] into
[B;S], then X = Y in [A;R] iff ¢(X) = &(Y) in [B;S]. Let T
be the procedure that takes the elements of A to words on B.
T is recursive since both A and B are finite. Suppose that

C(S) is recursive, then there is a procedure P that will



decide in a finite number of steps whether a word w on B is
an elements of C(S) or not. Now, let P’ be the following
procedure: for a word w on A decide whether T(w) is an
element of C(S) or not by the recursive procedure P. Then
T(w) is an elements of C(S) iff w is an element of C(R).
Hence P’ determines in a finite number of steps whether a
word w on A is an element of C(R) or not, so C(R) must be
recursive. As a consequence, if the word problem for [B;S]
is solvable then the word problem for [A;R] is solvable.
Next we show that a finitely generated subgroup of a
recursively presented group is recursively presented. Let
G = [B;R] = [B;C(R)] where B is finite and R is recursively
enumerable. Then C(R) is the set of relations on G closed
under consequences and is recursively enumerable. There is
a procedure T that will recursively enumerate the elements
of C(R). That is, at step k T will produce Tar Loy eee T
Let H be a finitely generated subgroup of G. We wish to
show that H = [A;C(S)] where A is finite and C(S) is
recursively enumerable. Since the elements of A need not be
a subset of B, then the relations of H must be on elements
of A. Let L be the recursive procedure that lists all words
on A of length 1, length 2, etc., where each letter x in A
is written as a word on B. Create the procedure P as
follows: at step i 1) enumerate the first i words in C(R)

by the recursively enumerable procedure T, and 2) enumerate



the first i words according to the recursive procedure L.
Then a word w on the set B is in C(S) if w € C(R) and w is a
word on A. Since P recursively enumerates the elements of

C(S) then H is recursively presented.

10



A Finitely Presented Group with an

Unsolvable Word Problem

The combined results of Novikov and Higman proved that
the word problem is unsolvable in general for a finitely
presented group G. In order to describe this grpup we must
discuss some properties about the amalgamation of groups.

Let G and G’ be groups and let ¢ be an isomorphism of
a subgroup H of G and a subgroup H’ of G’. The free product
of the groups G and G’ with the amalgamation ® is the group

G *® G’= [G,G’; h = &(h)].

The natural mapping of G and G’ into G *% G’ are
injective; so we identify G and G’ with their images under
these mappings. Then H and H’ are identified via the
isomorphism &. We have G *® G’ = {G,G’} and

GnG’ =H=H'.
This last group is called the amalgam.

Some useful properties about amalgams that will be
used later in the discussion are presented below.

Let T consist of one element in each right coset of H
in G other than H itself; and let T’ be formed similarly
from H’ in G’. A word on G v G’ is in normal form if it is
htltz"'tn where h € H; tl't2'°"tn € Tu T and ti € T iff

t €T for 1 =13i < n.

i+l
It can be shown that every right coset not equal to H

11



in G *® G’ contains exactly one word in normal form. The
existence of a word in normal form in each right coset is
straightforward to see since every w € G *% G’ = 9,95---9,
where g;€ G iff 9;41€ G’, and every g;= hitj is in G so
gi_lhie G’ and w = hi—lti for some ti. The uniqueness
follows from the use of Schreier’s systems and Schreier’s
lemmas [Hall, Theory of Groups, 94-106].

Let H = H’ by ¢; let K and K’ be subgroups of G and G’
respectively such that &(H n K) = &(H) n K. Then K and K’
have the same intersection with the amalgam in G *& G’.
Define ¢ = ﬁl(HnK)' Then ¢ is an isomorphisﬁ between H n K
and #(H) n K’. Thus we can form the amalgamation K *p K’
and there is a natural mapping A from K *¢ K’ to G *b G’
whose image is (K,K’}. We show that A is injective. ILet T
contain one element in each coset of K/HnK other than H n K
itself. TLet T’ be formed similarly. Then the words on K v
K’ in normal form are words among the words on G v G’ in
normal form. Thus it follows from uniqueness that a is
injective.

We can thus identify K *p K’ with {X,K’} ¢ G *#? G’ and

G n {K,K’}) = K. (1)
To see this it suffices to show that ¢ n {K,K’} < K. So
let g e G n {(K,K’). 2An element g € G is in normal form if
g =h or g = ht with t € T where T consists of elements from

cosets of G/H not including H. If g is in normal form in

12



K*p K then he HnKand t € K, so g € K.

Notation: If & is the isomorphism of the zero
subgroups, we write G * G’ for G *% G’ and call G * G’ the
free product of G and G’. Thus G * G’ = [G,G’]. Now let G
and G’ be subgroups of some larger group, L. Let
H=6Gn G’, and let & be the identity mapping from H to H.
Then there is a unique homomorphism from G *#*% G’ to L which
is the identity on G and G’ and whose image is (G,G’)}. If
this homomorphism is injective, we identify G *& G’ and
{G,G’} and say that {G,G’)} is the free product of G and G’
with the amalgam H.

Now we are ready to describe Novikov’s group which is
a recursively presented group with an unsolvable word
problem. Let E be a recursively enumerable subset of the
integers, which is not recursive. These sets are known to
exist [Enderton; 235 - 238)]. Let H be the subgroup of
G = [a,b] generated by the a™a™ for n € E. Let & be the
identity mapping from H to H. Letting G, be an isomorphic
copy of G we have

G *¢ G, = [a,b,a,,b, : a™ba” = ab.a’™ for n e E]

17171
which is clearly recursively presented.

In this group aba "= agblazn iff n € E. To see this,
since the amba'-m are free then if a"ba ™ = aTblaIm, then
meE and if n € E then aba = agblazn.

As a result of this relation, a™ba" = agblazn iff

13



n € E, the decision problem for E is equivalent to the word
problem for G *d G’ = [a,b,al,bl;R] where

n, n € E} is recursively enumerable.

R = (aba " = a?ba;
Recall that the word problem for [A;R] is the decision
problem for C(R). Since C(R) is the set of relations
holding in G *% G’, this is also the word problem for
G *® G’. Therefore, since the relations R in
[A;R] are nonrecursive (specifically only recursively
enunerable), then C(R) is nonrecursive and so the word
problem for G *® G’ is unsolvable.

However, G *® G’, or as we call Novikov’s group is not
a finitely presented group. We will, however, embed G *% G’

in a finitely presented group. The rest of part 1 addresses

the embedding problem.

14



Higman’s Theorem

Higman’s Theorem: A finitely generated group is
embeddable in a finitely presented group iff it is
recursively presented.

The forward direction of the proof is straightforward.
By the work from the last section a finitely generated
subgroup of a recursively presented group is recursively
presented. Hence, if a finitely generated group is embedded
in a finitely presented group then it is isomorphic to a
recursively presented subgroup. Thus the embedeed group
must be recursively presented since every finitely presented
group is recursively presented.

The proof of the other direction will take the
remainder of part 1.

Definition: A group is Higman if it is finitely
generated and embeddable in a finitely presented group.

Two useful properties about direct products of Higman
groups and amalgamations of Higman groups are presented
below.

Lemma 1: If G and H are Higman groups, then G x H is
Higman.

Proof: G x H= [G,H | gh = hg], thus G x H is
finitely generated. If G and H are embeddable in finitely

presented groups L and M respectively, then G x H is

15



embeddable in L x M.m

Lemma 2: If G and G’ are Higman groups and ¢ is an
isomorphism from a finitely generated subgroup of G into G/,
then G *¢ G’ is Higman.

Proof: Clearly G *$ G’ is finitely generated. ILet G
and G’ be embeddable in the finitely presented groups K and
K’ respectively. Then G *® G’ is embeddable in K *® K’
which is finitely presented since & is an isomorphism
between two finitely generated subgroups.ms

Definition: If ¢ is an isomorphism from a subgroup H

1< sm;.

of G into G then we define Gy = [G,t ; tht~
Clearly G can be naturally mapped into Gy since the
relations of Gy intersect trivially with G. Therefore we
can identify G with a subgroup of G¢. We also identify t
with its coset in Gy and call t the $-element. If ¢ is the
identity mapping on a subgroup K of G then we say Gy for Gg-
First let us see how Gy will be used to prove Higman’s
theorem. Let [A;R] = G/K where K is the normal subgroup

generated by XY 1t

1l

for X = Y in R, let

= [G,t; tkt " = k] = G, (where i is the identity mapping

Cx
on X), and {G,t6t 1) = ¢ =i et L ¢ ;. Clearly (G,t6t 1)

[

is embedded in G; = G We next show that {G,tGt™ !} is

K.
embedded in Gg X G/K. First, define a mapping ¢ from
(G,tet™ 1) to G/K by #(g) = gK and &(tgt™!) = eK. If we

restrict the domain of ¢ to the amalgam, then (G n K) =

16



Q(th-l) n K. Now define a homomorphism y from {G,tGt 1} to
Gy X G/K by ¥(x) = (x,%(x)). We will show that y is an
isomorphism. Since ¥ is clearly injective, then it suffices
to show that ¥ is a homomorphism. Since & is a
homomorphism, we have that

Y(xy) = (xy,3(x)2(y)) = (%,8(x)) (Y, 8(y)) = ¥ (x)¥(y)
so ¥ is a homomorphism. Since G/K is embedded ih
(GK X G/K)w, fhen if we can show that (GK x G/K)W is
finitely presented for finitely generated G and recursively
enumerable K we are done. However, one problem that
immediately arises is that we don’t know if Gk is finitely
K is
finitely presented then we have a chance of showing that

presented. If in this case we could show that G

(GK x G/K)w is finitely presented since the relations that
equate elements of K and {e} will be shown later to be among
the relations in Gg. We begin this discussion by presenting
three general properties about GQ.

Property 1: GQ is embeddable in a larger group where
® is an isomorphism of a subgroup H of G into G.

In [G,r], {G, rHr '} is the free product of G and
rHr l. Let Gy be a copy of G, then in [G,,s], (G,,

sQ(H)ls-l} is the free product of G1 and s@(H)ls-l. Hence

there is an isomorphism ¥ of (G, rHr Y} and (S sQ(H)ls-l}

defined by ¥(g) = g,, ¥(rhr'}) = s&(h),s™*. Then

[G,¥] *¥ [G,,s] = [G,G,,r,s ; g = g, thr | = s#(h)s "]

17



= [G,r,s ; rhr T = s®(h)s™ 1]

= [G,r,s,t ; rhr L = sé(h)s™!, t = s-lr]
= [G,r,s,t ; tht™) = &(h), t = s 1r]

= [G,r,s,t ; tht™} = &(h), r = st]

= [G,s,t ; tht™! = &(h)]

= [GQ,s].
Thus Gy is embeddable in [G,r] *y [G,,s] and there is an
isomorphism from Gy into [G,r] *Y [G,,s] which maps the

coset of g into g and maps t into s-lr.

Since {G,rGr-l} is the free product of G and rer~1 in
[G,r], we have similar to the results obtained from equation

(1), page 10,

(G, riHr 1y n rer™! = rar-l.
Similary, in [G,,s] we have
{Gl,si(H)ls-l} n sGls-l = sQ(H)ls_l.
Then it follows that rGr T *y sGls"1 is embedded in
[G,x] *Y [G,s] as {rGr-l,scls-l} = (x6r 1,s6s™1) which is
the free product of rGr-1 and s.Gs-1 with the amalgam

rHr ! = se(H)s~L.

1

Recalling that r “s = t and applying the inner

1

; s s . . . -1 -’ -
automorphism under conjugation by r on {rGr l,sGs } we

get that {G,tGt !} is the free product of G and t Gt with

the amalgam ®(H) = tHt Y. Hence,

1

Gntet " =H in G,. , (2)

o
Let G, ¢, and H be as above. A subgroup K of G is

18



invariant under ¢ if

$(H n K) = §(H) n K.
If K is invariant under &, then &’ = QI(HnK) is an
isomorphism in K. This leads us to the next property.

Property 2: Ky ./ is embedded in Gy where the above
situation holads.

Since GQ is embedded in [G,r] *y [Gl,s] by the proof
of property 1 it can be shown similarly that Kg» is embedded
in [K,r] *y’ [K,.s] where ¥’ = wIK, Then it will suffice to
show that there is a one to one mapping from
[K,xr] *y’ [Kl'S] to [G,r] *Y [Gl,s] which will make the

following diagram commute.

[K,x] *’ [Kj,8] = = = - - - - > [G,r] * [G,,s]
A A

- i | -

1-1 v v 1-1
Kgs) == === === ==« > Gy

Clearly, [K,r] is embedded in [G,r] as (K,r} and
[Kl,s] is embedded in [Gl’S] as {Kl,s}. Hence we must check
that (K,r) and {K,s} have the same intersection with the
amalgam. Recall that the normal form of an element of the
free product {G,rHr-l} is of the form
...glrhlr-lgzrhzr-l... . This is a normal form of a word in
[G,r] and is in [K,r] iff g; and hi are in K. Thus

{(K,r} n {G,rHr 1} = (K,r(H n K)r 1}. (3)

Similarly we get,
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1l

(KysS) 0 (Gy,s8(H);s77) = (K, s(8(H)y n K)s™H).  (a)

Since K is invariant under %,

(K,,s(2(H), n Ky)s™?) (K ,S(3(H n K )1s'1}

(X, ¥(X(Hn K)r 1))

= Y({K,r(H A R)r 1))
Thus the right-hand sides of (3) and (4) correspond under ¥

so that (K,s} and {Kl,r} agree when restricted to the
amalgam as required. Hence [K,r] *y’ [K,,s] is embedded in
[G,x] *Y [Gl,s] and the diagram commutes so that Ky s is
embedded in GQ as {K,t}). It follows from (1) of the
previous section that
{K,r,s}) n {G,r} = (K,r}. (5)
Since (K,r} = K * [r] as a subgroup of G * [r] then
again by (1) we have
{K,r} n G = K.
Combining these with (5) we get that
{K,r,s) n G c K.
Thus since K ¢ (K,r,s} n G it follows that
{K,t} n G = K. (6)
Property 3: Suppose that we have a set &, ¥, ... of
isomorphisms in G, then € is naturally embedded in G

o,V,...
where

- . -1 _
Cg,y,...= [Gity . i tghty dCh),...].
Suppose there is no natural embedding, then some
relation g = g’ holds in Gy v which does not hold in G;
' ".l

and it must be a consequence of a finite number of defining
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relations. Therefore, we need only consider the case in
which there are finitely many isomorphisms. This is easily

proven by induction since
G = (G ) JE
L IL SO 2 I ORI L N
If K is a subgroup of G invariant under all the Ql,

Qz,... then we will show that

{K,tl,t } nG =K

2,...

where ti denotes t@ . Clearly the right hand side is
i
included in the left. Since an element of {K'tl'tz""} is

already generated by K and a finite number of the t’s, we
need only prove the reverse inclusion for a finite number of

isomorphisms. The case for n = 1 was (6). Assume true for
n = j, then {K'tl't2'°"'tj} n G =K. Since each ti is
invariant under any other Qr’ in particular Qj+1 then

by (6)

(Kitg ity eee ity ) n GQII-..Qj

in G . Now intersecting both sides by G we get
Ql'...Qj+l

{K,tl,tz,...,tj+1} nGclkK.

Thus any subgroup K of G is invariant under all the Qi such
that {K,tl,tz;...} n G =K.

Let G be a Higman group. An isomorphism & in G is
benign if Gy is Higman. A subgroup H of G is benign if Gy

is Higman (ie: the identity mapping of H to H is Higman).
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Some relevant lemmas ébout benign subgroups follow.

Lemma 3: If G is a Higman group, and & is an
isomorphism of a finitely generated subgroup H of G into G,
then ¢ is benign in G.

Proof: Clearly, [G,r] and [G,,s] are Higman. Since G

and rHr 1

are finitely generated then [G,r] *y [G,,S] is
Higman where y is the isomorphism of (G,rHr-l} and
{Gl,sé(H)ls-l) as in the proof of property 1. Hence its
finitely generated subgroup Gy is Higman. It follows that a
finitely generated subgroup of a Higman group G is benign in
G.m

Lemma 4: Let L be a Higman group and let G be a
Higman subgroup of L. Then an isomorphism & in G is benign
in G iff it is benign in L. Hence a subgroup of G is benign
in G iff it is benign in L.

Proof: Suppose LQ is Higman. Then GQ is embeddable
in Lg by property 2 and hence, is Higman. Going the other
way, suppose that GQ is Higman. 1If y(g) = 9y then GQ *Y L1
is Higman. Let H be the domain of &, then

: tht™! = ¢(h), g =g
1

GQ *Y Ll = [G,t,L 1]

X = #(h),, g = g,]
= [L,t: tht™ = #m),] =L

1

= [G,,t,L;: thlt_

Q"
Lemma 5: If H and K are benign subgroups of the
Higman group G, then 1) H n K and 2) (H,K} are benign in G.

Proof: First suppose K is finitely generated, hence
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Higman (by Lemma 3). Then if & is the identity mapping on H
then certainly K is invariant under & so Kink is embedded in

Gy and is Higman. Thus we have that H n X is benign in K

whence in G. Thus, 1) holds if K is finitely generated.
We show 2) also assuming that K is finitely generated.

Now working in Gy, (G, tet™ly is the free product of G
1 1 '

with the amalgam H = tHt *. Since (H,K} and tGt 1

and tGt~
have the same intersection with the amalgam,
(H,K,tet™Y) n ¢ = (H,K),
and since H ¢ tGt™! we have
(K,t6t™ 1y n ¢ = (H,K).
By our assumption that K is finitely generated then

{K,t-th} is finitely generated in Gy Thus by lemma 3

{K,t_th} is benign. By the same argument G is benign in

G Thus {(H,K) is benign by our special case for 1) and we

H.
have the special case that 2) holds for K finitely

generated. However, we need to prove these results without

the assumption that K is finitely generated.

1. H in G,; so

In general, we have that G n tGt~ -

HaK=Gn (tet™ ) a K).

1

Since tGt - is finitely generated then K is embedded

tet 'nK

in Gy and hence Higman. Thus tet In K is benign by the

truth for 1) if one subgroup is finitely generated.

n K)Gn(thdnK) i1s embedded in GH' So

n K) is benign and hence H n K is benign, and 1)

similarly, (tet™!

G n (tet™1
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holds. Now (K,tGt™l} is benign since tet ™t

is finitely
generated and benign. Thus {H,K) = {K,t6t Y} n G is the
intersection of two benign subgroups and by 1) is therefore
benign. Thus, 2) holds.s |
Lemma 6: Let ¢ be a homomorphism from the Higman
group G to the Higman group L. If H is a benign subgroup of
G, then ¢(H) is a benign subgroup of IL. If M is a benign
subgroup of L, then Q-l(M) is a benign subgroup of G.
Proof: We have shown by lemma 1 that G x L is Higman.
Let Q be the subgroup of G x L consisting of all (g,%(qg)).
Then Q is isomorphic to G by the mapping (g,3(g)) » g. Thus
Q is finitely generated and benign in G x L. If
®(H) = {({H,L} nQ,G) n L in G x L, and
<I>'1(M) = ({M,6}) nQ, L) nG in G x L
then by the previous lemma &(H) and Q-l(M) are benign.
{({H, L} nQ,6) nL = {((Hx L) n Q,G} n L
= {{(h,8(h)},G}) n L
= [G x §(H)] n L
= $(H).
Here G, H, and L have been identified with G x {e)}, H x {e)},
and {e} x L. & (M) = ({M,G) n Q,L) n G can be shown
similarly.m
Lemma 7: If ¢ is an isomorphism of the Higman group G
into G and H is a benign subgroup of G then @IH is benign in

G.
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Proof: Gy is Higman by lemma 3. Since
Gy = [G,s ; #(g) = sgs '] and Gy = [G,t ; h = tht™ '], then
Gy is embeddable in Gy by the function
¥: Gy » Gy by Y(tht™!) = shs™' and y(g) = g.
Thus H is benign in Gy which implies that (GQ)H is Higman.
But,

- -1
(Ggly = [G,s,t 5 sgs™l= &(g), tht™! = n)
1

[G,r,s,t ; sgsi= &(qg),stht™1s™1= &(h), r =st]

[G,r,s,t ; rhr 1= &(h),sgs = &(g), t =sir ]

= [G,r,s ; rhr 1= Q(h),sgs_l= $(g)]

= [[G,r; rhr 1= §(h)],s ; sgs™ 1= &(qg)]

= (G§|H)Q’

Thus G¢| is embedded in a Higman group and thus is Higman.=z
H

Definition: A set &, ¥,... of isomorphisms in a
Higman group G is benign if G¢,¢:--- may be embedded in a
Higman group H so that {ti’tw""} is a benign subgroup of
H.

A finite set of benign isomorphisms in G is benign; we
may take H = G¢,¢,---ﬂ and use lemma 3.

Lemma 8: Let G be Higman, H a benign subgroup of G;
®, ¥, ... a benign set of isomorphisms in G; K the smallest
subgroup of G which includes H and is invariant under &,
¥,..., then K is benign.

Proof: Embed Gﬁ'w...in a Higman group L so that

{tQ’tw"') is benign. We know that
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G n {H’ti’tw”"} cGn {K,tQ,tw,...} = K
by property 3. Clearly Kc G n (H'taftw"") since the
right hand side is invariant under &,y,... and K was chosen
as the smallest invariant subgroup. Thus we have that
K=Gn {H,tﬁ,tw,...). From Lemma 5 we have that

{H'tQ't¢'°°'} is benign and G n {H'tQ't¢'°"} is benign,

thus K is benign.s
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Benign Subgroups as Benign Subsets
Recall that we want to show that GK is Higman for G

finitely generated and K recursively enumerable. We will
show that Gg is Higman by regarding K as a set and not as a
subgroup, but first we must define benign subsets.

Let A be a finite set and choose an element z not in

A. For P a set of words on A, EP is the subgroup of [A,z]

generated by the words sz"1 for X in P. Since the words

XzX~! for X a word on A form a free set, then XzX ! e Ep

iff X e P.

Definition: A subset P of [A] is benign in [A] if Ep
is benign in [A,2z].

Suppose that P a subgroup of [A], is benign as a
subgroup, then [A)p is Higman, hence [a,2]p is Higman, so P
is benign in [A,z]. Since [2] is embedded in [A,z] then by

lemma 3 [2] is benign in [A,z]. Suppose

E = <sz-1; X a word on A> was not the smallest subgroup

[A]
of [A,2] containing z and invariant under the inner

automorphisms of A. Let F ¢ E[A] be that subgroup. 1If

. -1
F = E[A] then choose XzX ~ ¢ F for X as short a word as

possible in A such that xzx"* ¢ F. Then if X = a¥Y for some

aed, Ye [A], Y is shorter so Yz¥ T ¢ F and

1, -1 1

a(YzY ")a"" = XzX - € F. Thus by lemma 8, E is benign.

[A]

Next we show that EP = {P,2}) n E Clearly,

[Al"
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EP c {P,2}) n E Ep contains z since e € P, and E_ is

(A]° p
invariant under the inner automorphisms through elements of
P using the closure of P, therefore it is a normal subgroup
of (P,z}.

Now since z € EP the natural mapping of P to {P,z}/E
P

is surjective. Then if x € {P,2}, x = py with p € P and
Yy € EP. The homomorphism ¢ from [A,z] to [A] defined by

®(a) = a, ¥(2) = e maps E into the zero subgroup. So, if

(A]

X = py is in E then e = ¢(x) = ®(py) = 2(p)2(y) = p, so

[A]

X =y and x € E Thus EP = {P,2} n E and by Lemma 5, E

P° [A] P

is benign. Thus, P is benign as a subset.

Now suppose that Ep is benign where P is a subgroup.
Then we must show that P is benign as a subgroup. Let c
and d be new elements not in A and form [A,c,d]. For X a
word on A, let @x be the isomorphism of {c} and {dX) defined
by Qx(c) = dX.

If we can show that the set of isomorphisms Qx for X
in P is benign, then (by lemma 8) the smallest subgroup of
[A,c,d] which contains ¢ and 4 and is invariant under the Qx
for x in P is benign. This subgroup is {(P,c,d).

By lemma 5 since P = (P,c,d} n [A] then P would be

benign as a subgroup. It remains to show that

H = [A,c,d]Q 3 (using all the words on A)
xl yl"
= [A,c,d byt ... txct;l = aX,... ]
where t, = tQ is embeddable in a Higman group with the
x
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subgroup {tx,...) for X in P benign.
Now suppose A = {al,...,an}. Define an automorphism

'/li of [A,C,d,tx,t 1] bY wi(a) = a, Wi(C) =C,

Y
wi(d) = dai, and wi(tx) = taix. Applying wi to the relation
-1
ct
a;x ra;x

defining relations of H and hence induces an automorphism of

-1 _ : =
txctx = dX gives t = daix. Thus wi permutes the

H.
Now we can embed H in a group K where
-1 -1
K = [AIA'lcrdltxl--- H thtx = dX, aiaa{ = a,
-1 ‘ -1 -1
’ ’ - ’ ’ - . ! ! -
afcaf c, ajda} da;, aft af taix]’

where A’ = {ai,...,aﬁ}. Define a mapping ¥ from H into K by

¥(a) = a
¥(c) = ¢
¥(d) = da,
W(tx) = taix and require linearity.
The only relations on H are the txct;1 = dX and since
¥(t ot l) = taixct;ix = da,X,

and ¥(dX) = daix then ¥ is a well defined homomorphism.
Also since K imposes no new relations on [A,c,d,{tx}] then V¥
is injective.

We show that K is finitely presented. Let t = t,, and

for X a word of A, let X’ be the word obtained from X by

replacing each a; by ai. By the relations
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1

’ L _
aitxai = taix we get
_1
’ ’ =
X7tX tx

by replacing X by e and repeated application of the

resulting {aitai-l = t, }. The equality xrex L

= t_ allows
i X

us to drop the generators tx other than t, replace

t ot '= ax with (x/tx’"yc(x’tx "})"! = ax, and drop the
: ’ 1 =
relations (aitxai ) taix' Then
_ ’ . v’.l.v"'l 74 1-1 -1 _
K = [A,A7,c,d,t ; (X'tX" " T)e(x/ex ™)™t = ax,

-1 -1 -1
’ ’ — ! { — ! ! — .
ajaaf = = a, afcaf ~ =c, afdal ~ = da,]

which is finitely generated.

1, -1

If we can show that (X/tX’ Y)c(x’tx’"1)"! = ax is a

result of the other relations then this implies that K is

finitely presented and hence Higman. From a = aiaai-l,
c = aica’zl,and da; = aiaai-l we get X’cx’" ! = ¢ and
xrax'~t = dX. Then applying the inner automorphism through
X’ to tet™! = d we get
x'tet sl = xraxs”1 = ax
Xrt (X texr )t ixe " = ax
(xrtxr " yexrt™Ix "Ly = ax,

so these are redundant.

Finally, we show that {t, i X € P} is benign in K.

1

since E,, = {X’tX’"" ; X’ € P’} is benign in [A’,t], by

PI
lenma 6 {tx i X € P} is benign in K. Thus we have shown
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that the definition of benign for a subgroup P is the same
as the definition of P as a set.

Our goal is to embed a recursively presented group in
a finitely presented group. Recall that a recursively
presented group [A;R] where A is finite and R is recursively
presented can be written as G/K, where G is a free group on
A and K is the recursively enumerable normal subgroup of G

1

generated by the XY ~ for X = Y in R.

We discuss, again, the group into which we embed G/K.

1

Now in G, (G,tGt™1} is the free product of G and tGt ~ with

the amalgam K = th-l. The natural mapping from G to G/K
and the mapping from tGﬂl:_1 to the zero subgroup of G/K agree
when their domains are restricted to the amalgam.

Therefore we have a homomorphism & from {G,th-l} to
G/K such that &(g) = gk, Q(tgt-l) = eK. Define a mapping ¢
from {G,tGt™1) to H x G/K by ¥(x) = (x,%(x)) where H 2 G.
We will show that ¥y is an isomorphism into H x G/K. Since &
is a homomorphism then

Y(xy) = (xy,2(x)2(Y)) = (%,2(x)) (Y, 2(y)) = ¥ (x)¥(y)
so ¥ is a homomorphism. Clearly ¥ is injective.

If we can show that K is benign then we may embed Gk
in a finitely presented group H. Then since G/K is embedded
in (H x G/K)w, it will suffice to show that (H x G/K)w is
finitely presented.

Let us construct (H x G/K)W from scratch.
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1l

Gy = [G,t : tkt ~ = k] € [H ; R] and we may assume that the

finite set of generators of H include t, a set of generators

1l

of G, and R contains the relations {tkt — = k}. ILet G, be

an isomorphic copy of G. Then Gl/K1 =[Gy ¢ k1 = e,].

Taking the direct product of H and G, we have

179
Clearly [G,th-l] is a subgroup of H and hence a subgroup of
L. Next we define mappings $* and y* from [G,th-l] to L
such that

¥*(g) = g,

d*(tgt™1) = e

ll
and
Y*(x) = xd*(x).

The relations {glh = hgl} guarantee that y* is a

1

homomorphism. Next let L’ = [L,s ; R, sxs — = Y*(x)] and we

will show that L’ = (H x G/K)w. First we show that in L/,

k1 =e, for all k1 € Kl' We have in L’ that
sks™L = y*(k) = kd*(k) = Kk, .
Also
sks™! = stkt™1s7! = ya(tkt™) = tkt les(txt™l) = ke, .

Thus kk1 = kel, and kl = e Now, since ¥ and ® agree with

15
Y* and 9* modulo the relations of L’ then

Y=y, R = 1.

(H x G/K),, = [H,G,,8 ; g;h = hg,, sxs
Since there is a finite number of generators for H

and G,, there are finitely many relations that commute H and
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G1 and finitely many relations that equate y(x) and sxs-l;

hence (H x G/K)W is finitely presented and we are reduced to
proving that K is benign. The benignness of a recursively

enumerable subgroup P in [A] is known as the principle lemma
and will be considered in the next section. By the results

of this section we can view P as a subset.
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The Principle Lemma

Principle Lemma: If A is finite and P is a
recursively enumerable set of words on A, then P is benign.

Briefly let us state how we will prove the Principle
Lemma. Recall that we must show that [A;R] = G/K is Higman,
where G/K is recursively presented and G = [A]. Earlier we
showed that it suffices to prove that Gy is embedded in a
finitely presented group H, whence (H x G/K)W will be
finitely presented. Since to be benign as a subgroup agrees
with benign as a subset, we will show that K is benign as a
subset, P.

Let A’ consist of an element a’ for each a of A, & be
the homomorphism from [A,A’] to [A] by &(a) = a,

d(a’) = a-l. The two properties that we will show are 1) P’
the set of positive words on A v A’, is benign in [A,A’],
and 2) There exists a mapping & so that $(P’) = P, and then
P is benign in [A] which is what we want to show.

The following lemmas follow from similar lemmas about
subgroups (Through the conclusion of part 1, A and B are
finite sets.):

- Lemma 9: Every finite subset of [A] is benign in [A].

Lemma 10: If A ¢ B and P is a set of words on A,
then P is benign in [A] iff P is benign in [B].

Lemma 11: If P and Q are benign subsets of [A], then
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PnQand Pv Q are benign.

Definition: An associate of a mapping & (not
necessarily a homomorphism) from {A] to [B] is a
homomorphism from [A,z] to [B,z] such that

1 - (X)z&(X) "L for X a word on A.

v(XzX~
If & is a homomorphism, then it has an associate.
Definition: A bijective mapping from [A] to [A] is
nice if it has an associate which is an automorphism of
[A,2z].
Definition: A word on A is positive if it does not

1 with a A (in reduced form, of course).

contain any a~

Lemma 12: Let & be a mapping from [A] to [B] which
has an associate. If P is a benign subset of [A] then &(P)
is a benign subset of [B].

Proof: If y is an associate of & then EQ(P) = w(EP).
So by lemma 6, #(P) is a benign subset of [B].m

The remainder of this chapter will show that the set
of positive words is benign.

Definition: ILet P and Q be subsets of [A], and let &
be a mapping from [A] to [A]. We say that P is
(2,Q)-invariant if for each X in Q, x € P iff &(X) € P. 1If
Q = [A], we say invariant under & for (%,Q)-invariant.

Lemma 13: Let P, Ql' ceer Q be benign subsets of

[A]: Ql, ««+,® nice mappings from [A] to [A], R the

n
smallest subset of [A] which includes P and is
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(Qi,Qi)—invariant for i =1, ...n, then R is benign.
Proof: Let ¥; be an automorphism of [A,z] which is an

associate of ®.. By lemma 7, wiIE is benign. Therefore,
i
by lemma 8 the smallest subgroup which includes EP and is

invariant under the wilE is benign. If this group is Ep
i

then we are done. An element g of E is a product of words

Q;

xz°1x"1 witn X in Q;. We obtain wi(g) by replacing each X

by Qi(X). Then g € ER iff wi(g) € ER since R is
(Qi,Qi)—lnvarlant. Thus ER 1s invariant under wiIE . Now

Q;

an element of R is obtained from an element of P by

repeatedly applying the Qi and @;1 subject to the condition
that &, is applied only to a word in Q, and Qzl is applied

only to a word in Qi(Qi). It follows that if X € R, then

-1

XzX is in every subgroup which includes Egp and is

invariant under wiIEQ .n
i
Lemma 14: Let b, = b*ab™l, and let P be the set of

all words bilbiz---bin with 0 = 11 < 12 < +see< ln‘ Then P

is a benign subset of [a,b].

Proof: Let H, H', and H’ be the subgroups generated
by the b;, the b, for i > 0, and the bi for i =z 0

respectively. Since H is the smallest subgroup which
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contains a and is invariant under the inner automorphisms
through powers of b, then H is benign by lemma 8. Consider
homomorphisms & and A from [a,b] to [a,b] by ®(a) = a,

1, 8(b) = a(b) = b2. It is straightforward to

A(a) = bab_
show that ¢ and A are injective. So by lemma 7, @IH and wIH
are benign. Hence by lemma 8, it will suffice to show that
H' is the smallest subgroup which contains b and is
invariant under ®|y and ¥|,. Since
2(b,) = #(blab~l) = p?lap~2i - b,: and
A(by) = p2ipap~lp=2i - byiis

then it is a simple inductive argument to show that any
subgroup which contains b, and is invariant under QIH and
Aly will contain b, for i > 0.

Next we show that H' is invariant under QIH and AIH'
Any element x of H is a product of the bi and their
inverses; x € H" iff i > 0 for all the b;,. Then x e H'
implies #(x) € H' and A(x) € H'. Thus H' is invariant under
¢|, and Aly so by lemma 8, H' is benign. Since H’ = (H',a},
H’ is benign by lemma 5.

Continuing, let ¥ be the automorphism of [a,b] defined
by y(a) = bab %, y(b) = b. Then ¥(bg) = by,.. By lemma 13,
it suffices to show that P is the smallest subset which

contains e and is left multiplication by a of H', denoted

La,(La,H’)-invariant, and (Y,H’)-invariant. We show that P

is (La,H')-invariant. An element h of H' is bil---bil with
1 n
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the ij positive and not necessarily distinct. Then left

multiplication by a is bobiln-bil = ah. If the exponents
1 n
are all +1 and il< ees < in then both h and ah are in P. If

either of the two above conditions do not hold, then both h
and ah are not in P since the bi are free. Thus we get the
desired results. The argument is similar for
. . . ] 1
(P,wIH)—lnvarlant since l/J(bi ) = bi+1.l
Lemma 15: The set of all positive words on A is
benign.

Proof: Let A = {al, ...,an}. Define an automorphism

, and

® of [A,z] by Q(ai) a for i < n, @(an) = a

i+1 1
®(z) = z. [A,2], is Higman by lemma 3. Let t be the
$¢-element, and let ¥y be the homomorphism from [a,b,z] to
[A,z]@ defined byy(a) = a,, v(b) = t, and yY(z2) = z. If P is
defined as it was in lemma 14, then y(P) will be the set Q

of positive words on A. To see this note that in [A,2]5 we

1 1

have the following aj4q1 = tait for i < n and a,; = tant

so
U(by) = W(biab-i) = tialt-i = 34 (mod n)°

In addition, in [A,z]Q we have the relation that

t:nait.'n = a; so that any positive word on A can satisfy the

ascending powers on the bi in P. Thus Y(P) = Q and lemma 12

gives the result.m

Definition: An n-ary predicate is a subset of the set

of n-tuples in A. P(a1,a2, ...,an) means that the n-tuple
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{al,az, ceesap} is in P.

We can identify each k-tuple of natural numbers with a
positive word on {a,b) by identifying Xy rXgr eoe X with
axlbaxzb. . .baxk. It then makes sense to say that a kéary
predicafe of natural numbers is benign.

We collect some properties on benign predicates:

A) The predicates {((n,n)) = P, {(n,m,n+m)) = P,
and {(n,m,nm)} = P, are benign.

B) If P is benign and Q is defined by
Q(2,n) & P(n,Q), then Q is benign (where Q is
a sequence of letters in the predicate P).

C) If P is benign and Q is defined by
Q(n,Q) & P(Q), then Q is benign.

D) If P is benign and Q is defined by
Q(2) < 3InP(n,Q), then Q is benign.

E) If P is benign and Q is defined by
Q(n,Q) ¢ vYm<n P(m,N), then Q is benign.

Definition: An explicit definition of a function or
predicate contains only previously defined functions and
predicates. Thus we can show that certain explicit
definitions of predicates lead to benign predicates.

First, suppose that the definition only uses variables

in benign predicates. Then an explicitly defined predicate

P would be of the form

)
p

P(xl, ...,xn) « Q(le, ...,xj
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where the xj € {x,, coerXp) and with Q benign. We can
i

rewrite this as

P(xl, ...,xn) © 3y1, ...,yp(y1= X A eee A yp = xjp A

QYyr -eer¥,))-
P is benign by D, lemma 11, and the fact that equals and Q
are benign predicates of Yyr ooy p’xl' coe s Xy by B and c.?
By lemma 11, D, and E, we may also use A, v,

existential quantifiers, and bounded universal quantifiers
in explicit definitions of benign predicates. We may also
use constants. For example, we may replace ...0... by

3x(x = 0 A ...X...), and we know that x = 0 is a benign
predicate by lemma 9.

Definition: A function F on Z is recursive if:

n . .
1) F = Ii(al, ...,an) =ay ( projection map), F = P,
F=P, or F= K< where K< is the 2-place function

defined by K<(al,a = (0 if a.< a

2! 1< @z
2) F(Q) = G(H (R), ... ,H(R)) where G, Hy,..., H

1 if alz az}.

K
are recursive functions.

3) If G is recursive and VQ3Ix(G(Q,x) = 0), then

F(Q) = ux(G(Q,x) = 0) where ux(G(Q,x) = 0) = x iff

B is used to move the xj around to their position if
i

different in P than in Q, and C is used if k = p).
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Ve<xG(Qc) #0 and G(R,x) = 0.°

A predicate is recursive if its representing function
is recursive. Note that if F(xl, ces ,xk) = y is recursive
then Pp = (%3, ... 1 XprY) is recursive where F(xl, cee 1X%p)
is PF’s representing function.

Lemma 16: If F is a recursive function, then the
predicate Pg is benign.

Proof: We proceed by induction on the complexity of
n
il

B, and ¢C. For F = K<,

F. If P is I

P,, or P then it is benign by properties A,
consider the predicate X # 0 by
identifying it with {a?bao; X 2 0}). ({(a%pa’; x =» 0} is
benign by lemmas 11, 12, 13, and 15 since this set is the
image under left multiplication by a of the set R n Q where
R is the smallest subset of A = [a,b] containing a’ba® which
is invariant under left multiplication by a and Q is the set
of positive words in A = [a,b]. From this and the explicit
definitions

X Sy e 3z P;(x,z,y)
X <ye3z (2 %0 A P;(x,z,y)),

we see that = and < are benign. Hence we get explicitly

3u.x(...x...) denotes the smallest x for which ...x... is

true.
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that PF(x,y,z) = (X <yAz=0)Vv (YysSXAZ-= 1).4

Continuing the inductive process, suppose that F is
defined by F(Q) = G(Hl(n), ...,Hk(n)) where G, Hl""’ Hk
are benign. Then Py has the explicit definition

PF(Q,x) = 3y1...3yk(PH1(Q,yl) A ces A PHk(Q,yk) A
PG(yl, e ,yk,x))
and is benign by D and the fact PHi and P, are benign.
Finally, suppose that F is defined by
F(Q) = ux(G(Q,x) = 0) where G is benign. Then Pp has the
explicit definition
PF(Q,x) = PG(n,x,O) A Vy<x 3x(z # 0 A PG(Q,x,z)).
Thus Pr is benign by induction.s
We claim that Q is recursively enumerable, not
recursive, if there is a recursive predicate P such that
Q(Q) & 3x P(Q,x) for all Q.

Definition: Ky is the representing partial functional

of predicate P defined on the same domain as P such that
KP(Q) = 0 if Q is in P and KP(Q) =1 if Q is not in P.

Lemma 17: Every recursively enumerable predicate is
benign.

Proof: 1In view of D, it will suffice to consider a

4The constants are benign by lemma 9.
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recursive predicate P. Since P(Q) < Py (2,0), then by
p

lemma 16, P is benign (Py is the predicate from the
P

recursive function KP’ the p-place function described

earlier) .=
Lemma 18: If Q is a recursively enumerable set of
positive words on A, then Q is benign.

Proof: Let P be the set of all words bi ---bi where
1 n

b, = biab-i, 0=1i, <...<4i as in lemma 14. Let ¥ be as
in the proof of lemma 15 where ¥ is the homomorphism from
[a,b,2] to [A,z]<I> defined by y(a) = a,, Yy(b) = t, and
Y(z2) = z where ® is an automorphism of [A,z] defined by
Q(ai) = ay. .4 Q(an) = a,, and ¥(z) = z. Since Y (P) is the
set of positive words on A,

YWHQ) o P) = 0.
To see this, if a; is an element in A, then
vy = w'l(ti'lalt’i“) = b lap™i*l. o vhich is an
element of P, so w_l(w) € P if w is a positive word. Thus,
w-l(Q) € P and the results follow. From this equality we

et Y(E = E. since
Vg T

¥(X2X"Y) = y(x)zy(x) "t

for X ¢ E -1 .
¥ “(Q)nP
It will therefore suffice to show that w-l(Q) n P is

benign. Since w-l(Q) n P is clearly recursively enumerable,
this will follow if we show that every recursively

enumerable subset R of P is benign.
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Let ¢ be the homomorphism from [a,2z] to [a,2] defined
by &(a) = a2, $(z) = z. Then & is injective. By lemma 3,

(a,zl, is Higman. Let b be the ®-element, and let A be the

natural mapping from [a,b,z] to [a,2]g. Since if

. . i
b, = btab™' then A(by) = a® by the relation a2 = bab™ 7% in

[a,2]4 for i =z 0. Hence if X = bil...bi is a word in P,
n
1 tn

then A (X) = a¥ with y=2 "% ...+ 2 ; so 7&(sz"l

) = a¥za¥

i i
Now a number y can be written in the form 2 1+ eeot 2 ®with

0 = i1 < o0 < in in only one way since its base 2

representation is unique. It follows that A is injective on
EP; so ER = EPnAq(A(ER))' Thus it will suffice to show

that A(ER) is benign.

Now A(ER) = EA(R) where A(R) is a set of positive
words on {a}. Since R is recursively enumerable, A(R) is a
recursively enumerable l-ary predicate. Hence A(R) is
benign by lemma 17.m

Now we can prove the principle lemma. Let P be a
recursively enumerable set of words on A. Let A’ consist of
an element a’ for each element a of A, and let & be the
homomorphism from [A,A’] to [A] defined by &%(a) = a,

d(a’) =a"l, Let P’ be the set of positive words X on A v A’

such that ¢(X) € P. Then P’ is recursively enumerable and

hence benign by lemma 18. Clearly ¥(P’) < P. Let p € P,

44



if p is positive, then p = ¥(p). Suppose p is not positive,

then replace each occurrence of aTl

i inp by ai then p is

a positive word in P’. Thus P = §(P’), and P is benign by
lemma 12.

In summary there were 3 main points in the discussion.
First we showed that there is a recursively presented group
with an unsolvable word problem. Next, we embedded a
recursively presented group G/K in the group (GK X G/K)w

where Y is an isomorphism from {G,t—lst} into G, x G/K. But

K
we needed to embed GK in a finitely presented group H in
order to show that (GK x G/K)W was finitely presented. The
remainder of part 1 proved that K was benign so that GK is
Higman. Hence if a group is finitely presented this does
not imply that the group has a solvable word problem.

Indeed proving that an element is the identity in a finitely
presented group is not a trivial task. In part two we
consider different questions; however, the issue of whether
certain types of elements are trivial or not is central to

the discussion.
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Part IT: THE BURNSIDE PROBLEM

Introduction

Definition: Let A be a set of r elements, N be the

normal subgroup of the free group on A denoted [A] generated

by all nth powers of elements of A, then

B(n,r) = [A]/N = [A ; w"

e], and B(n,r) is called the
Burnside group of order n with r generators. When we are
referring to the Burnside group we shall call n the order.

Clearly, every group with r generators and elements of
order dividing n will be a homomorphic image of the group
B(n,r). We will in this section of the paper talk about the
Burnside problem with respect to the Burnside group. We
will discuss those groups where the orders arewﬁnbounded
powers of a particular prime in the last section. Thus we
restrict the general Burnside question to: "For which
integers n and r are the groups B(n,r) finite?"

The case for B(l1,r) is the trivial group, and B(n,1)
is the cyclic group of order n. The group B(2,r) is abelian
and hence finite. This is a classic problem in
undergraduate algebra. B(3,r), B(4,r), and B(6,r) can also
be shown to be finite. However, the question of the
finiteness of B(5,2) is still unsettled.

Every finite group has a solvable word problem. Thus,

if we could show that the word problem for B(n,r) was
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unsolvable then B(n,r) would be infinite. Thus solving the
word problem for B(n,r) would seem like a reasonable
approach for answering the Burnside question. Adian proved
that the word problem is solvable for odd n = 665. He also
proved for odd n =z 665 that B(n,r) is infinite. However,
solving the word problem for B(n,r) turns out to be a more
difficult task than showing that an upper bound exists on
products of commutators in B(n,r). We begin part 2 by

discussing properties of commutators in B(n,r).
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The Collection Problem
and the Lower Central Series

There is a way of writing an expression y with n,

’ ’ ’
X,'s, ny x,'s, «.. , 0 xX.'S as
n n n
y = xll xzz * e @ xkk c1c2 * o0 c
where c; are commutators, and loosely speaking the higher

n

the subscript the higher the commutator. Commutators of
commutators are called higher commutators. Thus, a basic
strategy for proving finiteness or obtaining bounds on the
number of elements in a group, G, is to show that
sufficiently high commutators must be trivial. This section
gives a discussion of relevant results about commutators and
higher commutator subgroups which yield the lower central
series of G.

Definition: (a,b) = a " b lab and is called the
commutator of a and b (in this order).

Definition: Let F be a group generated by Xip eee

1) Gy = Xy i=1, ... ,r are the commutators of

weight 1; i.e. w(xi) = 1, and are simply ordered by the rule

x1< x2< eee < xr. Call these commutators basic.

2) If ¢4 and cj are commutators, then Cp = (ci,cj) is
a comnmutator and w(ck) = w(ci) + w(cj).

3) If basic commutators of weight less than n have
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been defined and simply ordered, then (x,y) is a basic
commutator of weight n, iff
a) x and y are basic commutators with
w(x) + w(y) =n,
b) x>y,
c) if x = (u,v), theny =z v.

4) Commutators of weight n follow all commutators of
weight less than n, and for weight n, (xl,yl) < (Xz'yz) if
Y, <Y, ory, = Y, and ¥ <X,

For example suppose x and y are basic commutators of
weight 1 such that x < y. Then (x,y,x) is not basic since
it does not satisfy 3c. Generally, any left normed
commutator (y,x,...,x) is basic but (%, ... ,%,¥,%X, ... 1 X)
is not basic since x cannot precede y.

Lemma 1 (Witt-Hall identities): V a,b,c € G where G
is a group,

l) (a,b)(b,a) =1

2) (a,bc)

(a,c) (a,b) ((a,b),c)
3) (ab,c) = (a,c)((a,c),b) (b,c)

a) ((a,c),c?) ((c,a),b%) ((b,c),aP) =1 where aP

= b lab.
These identities are straightforward to prove.
Given any element g € B(n,r), g can be written as a
product of commutators where the commutators are ordered in
ascending weight by repeated applications of lemma 1 and the

identity ab = ba(a,b). Then
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ail

g - Xri...

ar b1z b1j m
xrz(xl,xz) ...(xi,xj) "'(xi1""’xis) C.ee.C

1 t
where {ci} represent the bracket arrangements higher than s;
ai, biy, and m are positive integers less than n; and B(n,r)

is generated by (X, -0 1 X}

Suppose we could show in a group B(n,r) that all
commutators of weight k+1 are trivial. Then
(xi1""’xim) = 1 if m > k and g reduces to
g = xil...xg’(xl,xz)knz...(xi,xj)bij.,.((xil,...,xik))q.

It can be shown that there are only finitely many bracket
arrangements (on a finite number of generators) of weight k,
thus there are only finitely many products of these bracket
arrangements possible. Hence, B(n,r) must be finite in this
case.

Two applications of the commutator identities on
normal subgroups are presented below and will be useful
later in the discussion.

If A and B are normal subgroups of G let (A,B) denote
the subgroup generated by {((a,b)}, which is also normal.
The normality follows from g-l(a,b)g = (g_lag,g-lbg). The
normality of A and B give us that (A,B) = (B,A). To see
this let 2 = (A,B) as a set. Since wiw T = 3 for all w € G
then b Ya™lba = a™l(ab ta"lb)a € Z so (B,A) < 2. Similarly,
if 2z’ = (B,A) then 2’ 2 (a,B).

Lemma 2: If A, B, C are normal subgroups of G, then

((A,B),C) is contained in ((B,C),A)((C,A),B).
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Proof: Iet ae€eA, be B, ¢ce C. Since both B and
A are normal subgroups, then b® € B and ab € A. From the

fourth Witt-Hall identity

((a,b),c?) ((c,a),b%) ((b,c),a°) =1

we have ((a,b),c?) = ((b,c),a?) "t ((c,a),b%) L. since c®

runs through all elements of C if ¢ does, then the lemma is
proved.a
Definition: Given G = SR VRTINS define

5 The series

G = < (¥ys¥yr oo ' Y) | ¥; € 6.
G = G1 2 G2 cee R Gn ... form the lower central series (LCS)
of G.

G, will be shown to contain all bracket arrangements
of weight i. So showing that all commutators of weight i
are trivial is equivalent to showing that Gy is trivial.

Definition: A group G for which Gy = 1 for some
positive integer k is called nilpotent, and we say G is
nilpotent of class k if k is the smallest integer such that
Gk = 1.

At this point the Burnside question could be restated
as "“For what integers n,r are the groups B(n,r)
nilpotent?".

There are some important facts about the groups of the

5Notation: ((a,b),c) = (a,b,c) and is inductively defined
for larger products.
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LCS that we present in the following theorem.

Theorem 1: ' (a) Gi is normal, (b) Gi+ c Gi'

1
G,
(c) Gk+1 = (Gk,G), d) (Gk,Gm) (4 Gk+m' and (e) "i/G

abelian.

i+1 S

Proof (a): It suffices to show that a conjugate of a

generator of Gi is in Gi' Let x = c-ld-lcd = (c,d) where

-1 -1 -1.=
C = (Yp,-+++¥; 1)+ Then g 'xg = g ‘¢ td Tcdg =

(g7 e ge) (c7lg™a  edg) = (c,9) "Y(c,dg) e G-
Proof (b): Cipp = <(ays -oey ajr a4.4) | a, € G>

= <((a1, ceny ai), ai+1)>

<(95+35,4) | g; € 6;>, thus
VX € Gy ., X = gzlg-lgig = gzl(g_lgig). But G, is normal so
g_lgig € G; which implies that x e G;.

Proof (c): We have Gk+1 S (Gk,G). To prove the
inclusion in the other direction, we need the Witt-Hall
identities. Using (xy,z) = (x,z)y(y,z) and setting
X = (), «ee 43)), ¥ = (ag, «.s ,ak)-l, z = a,,, vhere

a; € G, then
1= = Y -1
= (1Iak+1) - (all LI laklak+1) ((all LIC Iak) rak+1)

Y
and (al, cee ,ak,ak+1) € Gk+1
i

((al, e ,ak) ,ak+1) € Gk+1'

S0

Now, we can assume (Gk,G) is generated by elements

(uluz...un,g), where u, is of the form (al, oo ,ak) or

(a,, «.. ,ak)-l. By the work above, (u;,g) € G We show

k+1°

by induction on n that (uluz...un,g) € G This is done

k+1°
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by setting

X = u,u,...0 4, Y =0, and z = ¢g

in (xy,z) = (x,z)y(y,z) so that we have
u
(uluz...un,g) = (uluz...un_l,g) n(un,g). We have that

n . .
(uluz...un_l,g) ,(un,g) € Gk+1 by our inductive
assumption. Therefore, (uluz...un_l,g) € Gk+1
Proof (d): Let m = 1, then Gk+1 = (Gk,G) by part (c).

as desired.

Again we will use induction on m assuming that
(Gk,Gm) c Gk+m for any k, thus we have that

Gm) c We know

(Gk+1' Cx+1+m*
(leGm+1) = (Gm+l'Gk) = ((Gerl)er) = ((Glle)le)- By
lemma 2 and part ¢ of theorem 1
((G1:6) 1G)) © ((GpsGy) sGy)) ((Gy,6q),Gp) sO
(Gyr (60Gy)) © ((6),6p)46q)) ((G),Gq),C) -
By the induction hypothesis
((CyrCGp) 1Gq) € (CyypsCy) = Cpipyy
and
((GyrGy) 1Gp) = (GpyyrGp) € Gpygyp:
Hence, (Gk’Gm+1) c Gk+m+1 as desired.
Proof (e): Gi+1 > G2i ) (Gi,Gi). Thus Gi/G. is
i+l
abelian.=
Note that d) above implies that G; contains all
commutators of weight i no matter how the elements are

associated.

Modulo the terms of the ILCS, the commutator
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identities from lemma 1 take on a particularly useful form.
Theorem 2: Let a,b,c € G, k,m,n € N* such that
ae Gk’ b e Gm’ C € Gn, then

1) ab = ba (mod Gk+m)

2) (a,bc) = (a,b)(a,c) (mod G, . )

3) (ab,c) = (a,c)(b,c) (mod Gy, . )

4) (a,b,c)(b,c,a)(c,a,b) =1 (mod Gy tmen+1)

Proof: (1) ab = ba(a,b), thus it suffices to show that
(a,b) € G, , but this is true by the last theorem.

(2) (a,bc) = (a,c)(a,b)((a,b),c)

= (a,b) (a,c)((a,c),(a,b)) ((a,b),c). Clearly

(a,b,c) € Gytm+n’ (@rC) € Gyyns (asb) € Gy4m’ SO
((a,e), (a,b)) e C2k+m+n € Ck+mtn®
(3) ((a,b),c%) ((c,a),b% ((b,c),aP) = 1 from the

Witt-Hall identities. Using this, first, we see that

(a,b,c®) = ((a,b),a"lca) = ((a,b),cc ta"tca)

= ((a,b),c(c,a))

= ((a,b),e) ((a,b),(c,a)) (mod Gpp, .- ).

Now ((a,b),(c,a)) € G thus (a,b,ca) = (a,b,c) (mod

2k+nm+n
G2k+m+n)' Similarly, we get that (c,a,bc) = (c,a,b) (mod

b .
Gk+m+2n) and(b,c,a™) = (b,c,a) (mod G Since

k+2m+n)'
congruence modulo G, implies congruence modulo G, when
r =z s then

(a,b,c?)

(a,b,0) (mOdGy,pinss)

(c,a,bc) (c,a,b) (modG

k+m+n+1 )
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b
(b,c,a’) = (b,c,a) (mOAG,, ., ..)

so we get (a,b,c)(c,a,b)(b,c,a) = 1 (mode+m+n+1).-

Any relations modulo a term of the LCS will be used to
describe the elements of G; and ultimately help us to
determine if Gy is trivial or not. The following theoren,
although relevant to the argument above, will be used later
to show that a particular commutator (y,x, ... ,x) will be
~trivial. It relates commutators involving products and

inverses to products and inverses of commutators.

Theorem 3: If 9yr ese19, € Gk' g e Gmppnd g; = 1

P

then

(g;lgi 19) = g=1(gi,g) (mod G,y ) (3-1)
and

(9:_937) =1_ (9:95) * (mod Gpppp). (3-2)

Proof: By induction on p we get
A R | _
(g;lgi /9) = g;l(gi,g) (mod G,, . ) since
€1 %2 €1 €2

(9,79,°/9) = (9;7,9)(39,°,9) (mod G, , ). Now,

-1 - .
(9;7/9) (95,9) = (gilgi,q) =1 (mod G, ..), hence it follows

€

i [ >4
that (gi /g) = (girg)

1 (mod G ) and so we get (3-1).

2k+m
The proof of (3-2) follows similarly.s

If Gn/G is infinitely generated, then describing
n+l
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the elements of this group would be an almost impossible

task. Thus showing that Gn/G is finitely generated, or
n+1l

better yet showing that the generators of Gn/G are cosets
n+l

of commutators (xi ;) see ,sX. ), is important to our

1 1

discussion.
Theorem 4: If G is generated by r elements

{xl, ...,xr}, then Gn/G L is generated by the cosets of the
n+

left-normed n-fold commutators

(x

pl’ ...'x

pn) where p; € {1, ...,r}. (4-1)

Proof: Let us proceed by induction on n using the
results of the previous theorem. If n = 1, then (4-1)

results in the generators of G and so the cosets of the

generators of G yield the generators of G Assunming

/ L]
1 G2

that the cosets of (4-1) generate Gn/G , we wish to show
n+1l

is generated by (x. , ...,X
2 Py Pp+1

Theorem 1 gave us that Gn+1 = (Gn'G) is generated by (h,q)

that ¢ )G

/ .
n+l Gn+ n+2

where h € G,» 9 € G. Clearly G is generated by the

nt1/c
A6 o

cosets of all such (h,g). Since h € Gn by the inductive

€

1h’, €, = %1 where h’ € G

n
hypothesis we see that h =y h, i n+1’

i=1

hi € G, and hi is of the form (4-1). Using theorem 3 we see
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that

(h,g) = [ [ iﬁlhii]h"g ) = iﬁlhji'g ](h',g) (mod Gon+1!

n €,
i ’
= T @ 9 J (v, @mod 6y, ).

Since (h’,g) € G4 then

€.,
1
) = LBy @) T(mod G ).

i=1
S €.
Now g = nx J  vhere P; € {1, ... ,r) so
=1 P3 J
j= J
€ s €5
(hilg) = (h ir. n X -) (mod Gn_|.2) ETN (hir xp.) (mOd Gn+2)

j=1 Pj j=1 J

Therefore,

n s €
(h,g) = igl Jnl(hl, xpj) (mod G ..)-
Since hi is of the form (4-1) then (hi,x

P

form (4-1) by replacing n by n+l and we have our desired

) is also of the

results.m
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The Restricted Burnside Problem

In 1950 Magnus introduced a weaker version of
Burnside’s question: "Is there a bound on the orders of
finite quotients of B(n,r)?" This is known as the
restricted Burnside problem. Since the answer to this
question comes from examining the LCS of the previous
section, it fits in with our discussion. In addition, if
B(n,r) fails to be finite, but a bound on finite quotients
of B(n,r) does exist we will be able to focus on an
obstruction, a term of the LCS, to the finiteness of B(n,r).

If pkln for some prime p, then since B(n,r) has
B(pk,r) as a factor group, B(n,r) is infinite if B(pk,r) is
infinite, and B(p",r) will be finite if B(n,r) is finite.
Therefore, the case of n = pk deserves special attention.

Definition: A group is a p-group if every element of
G has order a power of p, a prime.

Theorem 5: If q = pk, where p is a prime, and if
B(q,r) is finite, then B(q,r) is nilpotent.

Proof: Every finite p-group is nilpotent. We know
that every element of B(q,r) has order that divides ¢, thus
B(q,r) is a p-group.m

Suppose that B(pk,r)'s LCS terminates after a finite

number of steps with a group ﬁ(pk,r) which is infinite, then
the quotient group '
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k .
prpK,r) = BT} will be shown to be finite.
Ak
B(p™,r)
B* would then have the property of being maximal in the

sense that every finite group with r generators where

k
wP = 1, will have order = [B*|. To see this, first note
Bi(pk.r) L.
that must be finite since every element has
k
Bi+1 (p Ir)

order that divides pk and it is finitely generated and

abelian. To show that B*(pk,r) is finite we use an

. . B(p", )
inductive argument, and show ! is finite for all i.

B, (p¥, 1)

k
In the case where i = 0 we have that B(p",r) is finite.

B, (p%, 1)

B(p* 1) .
Assume ! is finite. Then by the third isomorphism

B;_, (P%,1)
theorem we have

B(pk'r) k
) < k
B: .(p,X) B: _,(p )
1i-1 -1
* Bi (Pkrr)
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X
but B, (pk,r)/ is finite, thus B(P /T) ¢ finite
i-1 " —
Bi(p ' X) k
Bi(P /)

k,r) = Bi(pk,r) for some i then B*(pk,r) is

and since ﬁ(p
finite.

Next we show that B*(pk,r) has the maximal property.
Let G be a group, finite, which is generated by r elements
where gpk = e Vg € G. There exists a homomorphism from
B(pk,r) onto G. Recall that G is nilpotent. ILet Bi
represent the ith group in B(pk,r)'s LCS and Gi represent G
similarly. Calculating their LCS we get

A

B1 > 32 D eeed Bn = B = Bn+1

G1 > G2 D eeed Gi = (e} for some i = 1.

Let & be the onto homomorphism &: B, » G.,. Then ¢|p will

1 1 5

5 * Gz. etc. Since G’s 1cS

be an onto homomorphism QIB : B
2
terminates at G; = {e} and B’s LCS terminates at B, then we
claim that i s n. To see this we note that since Bn = Bn+1
then Q[B (B,) = Q]B (B 4q) - So G, = G,,,+ but this is
n n+1l
true only when n =2 i. Thus B, € Ker ¢ and by the third

isomorphism theorem G = B* and G is a homomorphic

Ker?d
Bn

image of
B* = B1/Bn. Further suppose there exists a maximal finite
quotient for B(pk,r). If the LCS of B(pk,r) does not

stabilize after a finite number of steps, then the sequence
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{Bl/Bz, B1/B3, ...} forms a sequence of finite quotients
with strictly increasing order. But this sequence must be

finite, therefore B(pk

/T)’s LCS stabilizes after a finite
number of steps.
Now, suppose that B(pk,r) is infinite but its LCS

X .

reaches, after a finite number of steps, a group B, (p
Bi(pk,r) is nilpotent since it is a p-group. By the word
above B*(pk,r) = B(pk,r)/Bi(pk,r) is maximal in the sense

k

described earlier. Thus when n = p~ the restricted Burnside

problem takes the form: " Does the lower central series of
B(pk,r) become stationary after a finite number of steps?".
If we can show that for every such group G = B(pk,r)

there is an integer s = s(pk,r) such that Gs =G then we

s+1/
shall have solved the restricted Burnside problem for
exponent n = pk. The finiteness of G then reduces to the
finiteness of Gg- Of course G, can be infinite or finite,
but knowing this integer, s, and maximal bound N on finite
quotients will tell us that if we find N + 1 distinct
elements in the group, then the group must be infinite.
The answer to the restricted Burnside question is
known to be yes for k = 1. This comprehensive finding is
known as Kostrikin’s Theorem. His arguments show that

certain theorems about finitely generated Lie rings lead to

a bound on the orders of the finite quotient groups of
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6
B(p,r).
Next, we will discuss how the nilpotency of the Lie

ring is used to solve the restricted Burnside problem.

6Recently E. I. Zelmanov solved the restricted Burnside
problem for groups of prime power exponent.
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The Lie Ring
Briefly let us show how the Lie Ring of B(q,r),
denoted L(B(q,r)), is used to solve the restricted Burnside

k

problem for q = p . We showed that if Bi =B for some

i+l
i z 1 then B*(q,r) is finite and we will show that this
implies that the jth term of the LCS of L(B(q,r)) is zero
for j =z i, L(B(q,r)) is finite and has the same order and
nilpotency class as B*(q,r). Hence if L(B(q,r)) is
infinite, then there is no bound on the orders of the
quotient groups B(q,r)/Bi(q,r) and hence no bound on the
orders of finite r generator groups of exponent q.

In an associative ring R let us define a Lie product
[x,y] by the rule [x,y] = xy - yx. Then with respect to the
addition in R and the Lie product, the elements of R form a
Lie ring L.

A Lie ring L satisfies the following laws:

Ll: Addition x + y, and Lie product [x,y] are well

defined operations.

L2: L, + is an abelian group.

L3: ([x+y,2] = [x,2] + [y,2], [x,y+2] = [x,y] + [x,2].

L4: [x,x] = 0.

L5: [[x,yl,2] + [[y,2],x]) + [[z,x],y] = O.

It is straight forward to show that the Lie product

[X,Y] = xy - yx satisfies the above laws.
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From L3 and L4 we find
0 = [xt+y,x+y] = [X,x] + [%x,y] + [y,x] + [Y,Y]
= [xX,¥Y] + [Y,x] whence we get that [x,y] = -{y,x].

If R is generated by elements Xye eeorXy then the
elements generated from Xyr eeerXy by addition and the Lie
product [x,y] will not in general include all the elements
generated in R by addition and the associative product
( Consider the ring Z5(x], the Lie product of any two
elements will always be linear.).

The elements generated by the Lie product are called
Lie elements. Thus xi is not a Lie element, but

2 2

xlx2 - 2xlx2x1 + X ¥, = xl(xlxz-xle) - (xlx2 - xle)x1

= [xl,xlx2 - Xx,] = [xl,[xl,xz]] is a lie element. It may,
of course, happen that xi is equal to a Lie element because
of relations in R.

We may take the laws L1, L2, L3, L4, L5, as the
definition of a Lie ring L.

If G is a group with lower central series,

G = Gl 2 i.. 2 Gn 2..., then the associative Lie ring L of

G is formed in the following way:

L1) L is the Cartesian sum of the additively written factor

groups Gi/G . The Cartesian sum gives the addition in L
i+l

L(6) = Ljp €i/e;,. T %’¢, ® %2/¢

® ... Wwhere G,/
1 2 Civ1

3

are called homogeneous components. The Lie product
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[aGi+1,bGj+1] = (a,b)G, is well defined by theorem 1

i+j+1
where a e Gi and b e Gj‘ Also we know from theorem 1 that
(a,b) € Gi+j so (a,b)Gi+j+1 € Gi+j/Gi+j+1and 1s inductively

defined for larger products. More general Lie products are
defined by requiring the distributive law.

L2) Since each Gi/G is abelian addition is commutative.
i+ :

1
L3) It suffices to show
[9G;4q hGi+1'ij+1] = [gGi+1'ij+1] + [hGi+1'ij+1]'
(9G4 + NGj49,KGy 4] = [9hGy, ) ,KGy ]

= (gh'k)Gi+j+1
= (g,k)(h,k)Gi+j+1
= (9/K)Ci 541 * (MKIGy 50 q

since i+j+1 = 2i+j

= [9C;41/KC44q] + MGy, kG4 410
The proof for
[9CG;41/RC 4 + KGyyg] = [96;47/MC5, ] + [96;,,, kG5, ;]
is similar.
L4) [gGi+1,gGi+1] = (g,g)Gzi+1 = EG21+1 which is the zero
element in the 2i+1’st component under 0.7
L5) From L3 we only need to show [[X,y],2] + [[Y.,2],X]
+ [[2,X],yY] = 0 for homogeneous x,y,z. But
[[gGi+1'th+1]'kG1+1] + [[th+1'kG1+1]'gGi+1] +

[[kGl+1,gGi+1],th+1] = 0 follows from lemma 2. Thus

70 €L(G) is denoted as 0 = eG, + eG, + ... .
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L(G) is a Lie Ring and has the anti-commutative property
[9€;41/0G54,] = ~[hG4,,,96;,,4].

In a Lie Ring L let us write monomials in left normed
form, ie., write X,%, for [xl’le and recursively XqXye oo Xy
for [xl,xz, cee 4 xn].

The lower central series of L(G) is defined
analogously to be the LCS of G where Ll(G) = L(G),
1**1e) = [L1(e),L(6)] i = 1. Note that in

L(G) =Y%__ G,/ elements are such that only a finite
i=m “i’G,,

1
number of terms may be not 0. To show that

]

2 — L3
L™ (G) = Zi=m Gi/Gi+ we see given gG,, th € G/G that

1 2
[ng,thj = (g,h)G3 € GZ/G , thus elements of L2(G) have
-3

zero component in G/Gz. Assuming that Lm(G) =Y __ G,/

i=m i Gi+1
for m =z 2, an arbitrary element [gGm+1'hGZ] = (g,h)Gm+2 in
Dm+1(G), thus elements of Lm+l(G) have zero component in
G,/ .
m Gm+1

Theorem 6 : Ll+1(G) is generated by all left normed

Lie elements [x_ G

P, 5 1 seerX G.,] where the X, are

Pjy1 2
generators of G and Py € {1, ... r}.

Proof: From theorem 4 we have that G_/ is
" Chia

generated by the cosets of the simple n-fold commutator

(Xp1 ) -

r e 00 ’ X

Pn
Ll(G) = L(G) and is generated by
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{x Gyr +oe +%,Gy} = (X6, | 1 e(1,, ... ,x}).

1827 X%
LZ(G) is generated by the

[xiGzlijzl = (xi'xj)G3 = {(xi'xj)G3 I i,j e (1, ... ,r}}

by theorem 2. Assume Lk(G) is generated by

[x G o e o ’x G]l
p, 2’ Py 2

Recalling that [x_ G cee 4X_ G,] = (x I
| Py 2’ Py 2 Py’ Py
then Lk(G) is generated by

)Cria

{(xp ;) eee ,xpk)Gk+1 | p; € {1, ... ,r}).

1

To see that Lk+1(G) is generated by

{(xpl, cee .xpk+1)Gk+2 | p; € (1, ... ,1}}

recall that Lk+1(G) = [Lk(G) ,L(G)] where a generator is of

the form [ (xp y vee 4 xpk)Gk+1’ xpiGZ]’ P; € {1, «.. ,xr}.

1
This in turn is equal to (xpl, . ,xpk,xpi)Gk+2
= (xpl, cee ,xpk+1) Gk+2' p; € {1, ... ,r)
= [XP1G2' ...,xpk+1G2].-

Next, since the factor group B(n,r) and the Lie ring
L(B(n,r)) share many properties, if we could show that the
ILCS of B(n,r) stabilizes after the kth term when the kth
term of the LCS of L(B(n,r)) is trivial then we will have
answered the restricted Burnside question for B(n,r). This
equivalence is advantageous since showing that higher

commutators are trivial will be an easier task to accomplish
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in L(B(n,r)).
® — n —3
Theorem 7: G, = G g iff L' (G) = 0.

. = - G.
Proof: If Gn = Gn+1 then L(G) = 2?=1 1/Gi+1 where n

. s n _ G, _ G
is finite. By the work above L (G) = 2?=n 1/Gi+1 = n/Gn+1

= 0L = (eG}.
Going the other way, if L™(G) = 0 then
™) =3°__ C%ise... = 0, which implies that ®n/c_.. = o
1=n i+l L n+1 L

implying G, = Gpyq-m

Definition: 1If Ln(G) = 0 for some n =z 1, then L(G) is
nilpotent, and we say that L(G) is nilpotent of class n.

Some of the theorems that will be useful in L(B(p,r))
follow from theorems about basic commutators. The
collection formula, whereby basic commutators are collected
in order of their weight, developed by P. Hall leads to the
following theorem.

Theorem 8: We may collect the product (alaz...ar)n in

the form
n n_n n_. Sr+1 1
(alaz...ar) = aja,...a.c .5 eesCy Rl"‘Rt'
where Crtyr *++ ¢G4 are the basic commutators on @ys cee 4L

in order, and Rl' oo ,Rt are basic commutators later than c;

in the ordering. For 1 = j = i, the exponent ej is of the

form

(m)

) n
+ ® ¢ +bm ,

_ ]
ej = bln + bzn

where m is the weight of c.

¢ the b’s are non-negative
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integers and do not depend on n but only on cj. Here

n® = n(n-1)...(n-k+1)/k! = ().

The proof consists of keeping track of from which

occurrence of a,,a ... a commutator arises. For example

2!
in the product

5

(Xy)™ = XyxXyxyxyxy x2Y(Y:x)YXYXYxY

= %%y (v, %) xy (¥, %) yxyxy

= x%yx(y,%) (¥,%,%) ¥ (¥, %) yxyxy

= vy (¥,%) 2 (v,%,%) ¥ (v, %) yxyxy
(y,x,x) is labeled as Cyxx(1,2,3) since it arose from the
first y and the second and third x’s. It can be shown that
whether an arbitrary commutator will occur only depends on
the inequalities that hold between coordinates. For
example, if (2,3,4) is a label that occurs, so is (a,b,c)
for all a,b,c such that a < b < ¢ s n. If these all occur,
then there are (3) of these labels so (3) of Cyx(a,b,c)
types occur.

Theorem 9: If G = B(p,r), then (y,%, ... ,x) =1

(mod G (p-1x's).

p+1)

Proof: In the collecting process above as applied to

a_(n) a (n)
(xy)n we have (xy)n = xnyncl1 cen ctt Rl"'Rt where if

c4 is of weight m, then its exponent, ai(n) is of the form:
b.n+ b, (2) + ... + b, ().
i i, i,
And if cy is of the form ¢; = (¥,%X,...,%x) (where x occurs s

times), the exponent ai(n) is the number of ways of choosing
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indices jl'jZ' e oo

,js+1 such that in (yjl,sz, cee 4X. )

Js+1
we have j1 < j2 ) ses < js+1' and 1 = jk = n. But this is
merely the number of ways of choosing s + 1 distinct numbers
from 1,2,...,n and is (5+).

If n = p is a prime, the exponents for commutators of
weights at most p - 1, the ai(p) are all multiples of p
since the binomial coefficients (}) with 1 s i s p - 1 are
all multiples of p. But for the commutator (y,x, ... ,X)

( p-1 occurrences of x), the exponent is (P) = 1. Hence in
a group G of exponent p we have

1 = (xy)p = (YiX, oos ,x)vl...vt (p - 1 occurrences of x),
where x < y and vl, cesn ,vt are commutators of weight at

least p, and for those of weight p the weight in y is at

least 2.
This gives the relation in Gp/Gp+1
(ViX, oo ,x)vl...vS = 1 (mod Gp+1)
(p - 1 occurrences of x). (9-1)

where Vir «se 4 Vg are commutators of weight p in x and vy,
and of weight at least 2 in y and at most p-2 in x. From
theorem 3 we have generally in any group that if (u,v) is of

weight m, then (ul,vj) = (u,v)iJ (mod Gm+1)'

Using this we find that if a vy in (9-1) is of weight

r in x the replacement of x by x® in (9-1) can be viewed as

ir

replacing v by v where vy = (Y/YreoeerViX,X,0..,%X) is of

weight r in x. Theorem 4 implies that vy is of the form
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involving only x’s and y’s. The collection process with
X < y on basic commutators implies that the y’s occur to the
left of the x’s.

Since the choice of y and x was arbitrary in (9-1)
then replacing each occurrence of x by xi will not change

the equivalence relation. Then we can let

v0 = (Y/X,X,4004,%) (P-1 x’s)

ip--1 1¥1 s
and w, =V, vy <oV where r, is the weight of x in

vj. By multiplying W, through wp_1 together we get

wlwz...wp_1 = 1 (mod Gp+1) since w; € Gp+1.

ab = ba(a,b) we can collect all the vj’s together and we get

By the identity

the following

u

S =
Vo V1 ...Vs PPy - P, = 1 (mod G
r. r.

where u, = 1+2Y+ ...+ (p-1) 1

P+1)

and pj is a commutator of

weight = p+l. Since we have congruence modulo Gp+1, the
. Yo M1 Us

relation becomes V0 V1 ...Vs = 1 (mod GP+1).NOW,
1T+ 2Y+ ...+ (p-1)r =0 (mod p) for 1 = r = p-2,

so u; = 0 (mod p) for 1 = r. s p-2; if =1 (mod p) when

r = p-1 so u, = p - 1 (mod p) and (5-1) becomes

p-1 _
' X) =1 (mode+1

(Y, %x,%, «.. ,X) =1 (modG

since zP™1 = 271 = 3 implies z = 1.m

(Y, X, X, oce ) and so

p+1)

Definition: A ring R has characteristic n if there is
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a least positive integer n such that na = 0 for all a € R.
Lemma 3: L(G) has characteristic p, for ¢ = (p,r).
Proof: Let L(G) be the Lie Ring of B(p,r). Let x be

an arbitrary element in L(G) where x = (xl,xz, .«+) then

px = (xg,xg, s+«.) = 0 thus L(G) has characteristic p.m
The realization of (y,x%,...,X) is not easily

distinguishable in G. If we can show that yxP™! = 0 in L(G)

then the consequences of this relation are more easily

recognized in L(G).

Corollary 9-1: The Lie Ring of a group of prime
exponent p satisfies the identical relation yxp-1 = 0,

Proof: L(G) is of characteristic p. Since
(y,x,...,x)p-1 is (p-l)yxk (k occurrences of x) in L(G) by
definition then yxP™! = 0 by Theorem 9.m

Let us call the relation yxP 1 = 0 the (p-1) -Engel
condition.

Thus we have shown that if L(B(q,r)) is finite, then
there is a bound on the orders of finite r generator groups
of exponent q = pk, and the largest of these groups has the
same order and nilpotency class as L(B(q,r)). This fact is
essential to Kostrikin’s solution to the restricted Burnside
problem for exponent p in which he proves that L(B(p,r)) is

nilpotent.
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The Finiteness of B(3,r)
As we stated earlier, Kostrikin solved the Restricted
Burnside problem for prime exponent. We will prove that
B(3,r) is finite by first proving Kostrikin’s theorem for
p = 3.
let x,y,2,t € L(B(3,r)). By corollary 9-1 we have
Xy~ = xz2 = x(y + z)2 = 0.

2 and we

So x(y+z)2 = (xy + x2)(y + 2) = xy2 + Xyz + xXzy + X2
see that
Xyz + xzy = 0. (9-2)
Since xy +yx = 0 by the anticommutativity of L(B(3,r) then
we also have
Xyz + yxz = 0. (9-3)
Combining the results from (9-2) and (9-3) we see that
Xyz = yZX = 2XY = ~YX2 = -X2y = =-2YX. (9-4)
Applying the Jacoby identity xyz + yzx + zxy = 0 to (9-4) we
get
3xyz = 0. (9-5)

Now by using (9-4) repeatedly we have

)
g
N
o
n

{xy)zt

2t (xy)

=(xy) (zt) (by anticommutativity)

y(zt)x + (zt)xy (by the Jacoby identity)

(zt)xy - (2t)yx
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2(z2t)xy
2ztxy.

Also

xyzt = (xyz)t

(zxy)t

(zx)yt
= =(2x)ty

(ztx)y
= ztxy.
Thus we see that 2ztxy = ztxy so ztxy = 0. So we have that
L(B(3,r)) is nilpotent. and the Restricted Burnside problem
for B(3,r) has been solved.
Since the identities
[x,y,2,t] =1

[y.z,x] = [2,x,Y] = [xlzly]-l

1

(x,y,2]

= [z,¥,x17 = (y,x,2]”

follow immediately from the Lie identities, then all groups
of exponent 3 are nilpotent and hence finite, if finitely

generated. Thus B(3,r) is finite.

74



The Existence of a
Finitely Generated Infinite 3-group

The General Burnside problem was resolved in 1964 by
Golod. Based on his joint work with Shafarevich, Golod
proved the existence of finitely generated infinite p-groups
of all primes p. We will, here, give the construction, due
to Gupta and Sidki, of a 2-generator, infinite 3-group using
tree automorphisms (as described in AMJ April 1989).

Let T be a tree with root denoted "e" such that from o
and from the end of each branch precisely 3 new branches

grow upwards, and subscript as below.

33 332 333

|~
\L/

For any vertex u of T let T(u) denote the subtree with
root "u". Then T = T(e) is an infinite (everbranching)
3-regular tree with the property that T(e) = T(u) for all u
( note that T(u) = (T(ul),T(uz),T(u3)) since u can be

described in terms of its branches u,, u,, u3).
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T(u,) T(u,) T(u;)

T(u)

For each vertex u we define an automorphism tu( = [tu:

T(u) -» T(u)]) of T(u) by mapping T(ul) onto T(uz), T(uz)

onto T(U3), and T(u3) onto T(ul) (Note: this automorphism

can be thought of as grafting the branch starting at u, onto

the branch where u, was previously located. Otherwise,

t (v) alters only the n+lst subscript so
Yi1...in

tu (v) = v if v has fewer or the same number of
il...in
subscripts or if the first n subscripts of v differ from

those of u,

i1...in)+ Clearly t has order 3. Using these

automorphisms as a tool we next define an automorphism
a,( = [a,s T(u) » T(u)]) by its action on the subtrees
T(ul), T(uz), and T(u3) as follows. We set au(u)=u and
_ . . 74 .2
au(v) = v if v is not above u, and a, = (tul,tuz,au3
each component representing the action on the corresponding

) with

subtree. Since T(u) = T(®) we can describe the action a,
from the initial node . For example, we compute the image
of v = 3321, and w=123 under a = a, ®a, as

aj(w) = t;(123) = 133
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2
332

Note that 3 acts like the identity on a level (ie. a, (3333)

a,(v) = a;(3321) = a,,(3321) =t3,,(3321) = 3323.

= a;,,,(3333) = 3333).

Since we can compare componentwise ai = (1,1, a33) it
follows inductively that a, has order a power of 3. We set

Gu = <au,tu> to be the subgroup of the automorphism group of

T(u) generated by a, and tu (note that Gz and Gu are
isomorphic for each vertex u). We proceed to show that each
G, so constructed is an infinite 3-group. We set

1e

R _ -1,2 -1 -
by =ty 3zt = (t, tu2tu' ty Apatyr t uturtu)

u u uu

=2 2 _ -2 2 -2 2 -2.2 .2
Ca T tu autu - (tu au3tu’ tu tultu’ tu tuztu)
so that
a. = (t..,t2.,a..)
u ul’ "u2’“u3z’’
_ 2
bu - (tul’auZ'tuB)’
- 2
€0 T (aul'tuz'tu3)'
Let Hu = <a,, bu’ c,>- We show that Hu is a proper

normal subgroup of G, of index 3. First note that H, fixes
ul (tuland a1 leave ul fixed) but tu permutes {ul,u2,u3}.
Thus H, is proper.

Next, we show that Hu is normal. It suffices to look

-1
at the generators of Gu and Hu. auhau

€ H since a, € Hu'
To see that tuht;1 € Hu we need to look at the generators of

Hu in turn:
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-1 _ .2 -1 _ .3 -

tubutu = tutuaututu = tuau a, € H,
-1 _ .2 2,-1 _ .2 =

tucutu = tuaututu = tuautu bu € H.

Thus Hu is normal.

Finally, let t We know Eﬁ = 1 and Eu # 1

€ G /. o
u u'H
since t ¢ H,. Therefore, Eu has order 3. So H  has index

3ingG/ . Since the action of H_ on T(u,) is generated
u'H, u 1

by <a 1, tu1> = Gul & Gu' thep Gu has a proper subgroup

isomorphic to itself, and so G, must be infinite. Thus to

u

finish the proof we must show that G, is a 3-group.

First, observe that

o(u)

Gu = {wutu , Where W, € Hu and a(u) € {(0,1,2}}.

= +2 (1)
For each gu—wutu
Aw,) if a(u) = 0 mod(3) and as A(wu) + 1 if a(u) 20

we define its formal length |g | as

mod(3), where A(wu) the formal syllable length is defined as

follows:

1. Y
If LA £ <o Vo where v; € {au,bu,cu}

. # VY,
and vy Vieqr

To prove that G, is a 3-group it suffices to prove by

then A(wu) = r.

induction on the formal length |gu| = n that g, has order
s 3 n - = a0 o o a
dividing 3. 1If |gu| =1, then g = a, or b, or ¢, or t,

for some o, and it follows that 9u has order 3. Let
|gu| = n+l, nzl, and assume the results for elements of

formal length up to n. If 9, is of the form gy = ¥ then,

ul

as an element of Hu’ then Sy = (gul'guz’gu3) where each Jui
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has length at most n. If Jui € Hui then the facts that

_ 2 _ .2
autu = tubu’ autu = tuc

u are used to "herd" the tu's

together such that the length of g, never increases. If

Jui

€ Hui after "herding" the tu's, they appear with

exponent a multiple of 3 and so drop out, and there is at

least one fewer syllable and we are done by induction.

Otherwise, Jui

a(i) € {1,2).

- wuitui

a(i) 3 <
with w . e H ., |w,;| =n, and

Thus without loss of generality, we may assume that

. - 2 _
g, itself has the form g =w t with w e H,, |w,| =n and

o« € {1,2)}. Then gg is an element of Hu since Hu has index 3

in G,- It can be expressed in the following form:

3
9p =

o 04 o
wutuwutuwutu

o - 20, =20
wh(tuwutu )(tu wutu )

= W, Ty (W,) T,(w,) where j; are permutations

2 -1
of the letters of Wy and j, = M; =T, - As an example of

this let W, = aﬁbﬁcﬁ and let « =1, kx,8,A € {0,1,2) then

M (w,)

Clearly My = ni.

= t_a pfcre

uuuuu
(tuastal)tu(talautu)ﬁ(tazautu)htal
bty 2aty

cﬁaﬁbﬁ.

In general nl(wu) is a word where au's are

replaced with c ’s, bu’s by au’s and cu's by bu's, and

u

2 i .
nz(wu) = nl(wh) similarly permutes a, s bu' and Cy* This

means the word 93 has as many ag 's as buB 's as cﬁ 's, If

3 . o
'wul = k, 94 will have k a, ’'s, k bﬁ ’s, and k Cﬁ 's.
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Now, consider any word with k ag 's, k bﬁ ’s, and k

cﬁ ’s. Componentwise, each component will be a product of k

aﬁi types and 2k tﬁi types since one of the components is an
a-type and the other 2 are t-types. (Note: it does not
matter whether the exponent is a, B, or ¥ since we are
concerned only with the formal length). Thus each component

is an alternating product of at most k aﬁi types and 2k tﬁi.

-1 _« _ -2 a2 _ «
Now, tui auitui = bui and tui auitui = C,i S° that
o _ o
aitui = TyiPui-

and

a ,2 _ .2 «

aitui = %uiCui-
Using these relations we can herd together all of the tui to
the left. Then the number of tui will be a multiple of 3.
To see this, if L has 1 au's, m bu's and n cu's, component
1 will have 1 + 2m t’s from w, m + 2n t’s from nl(wu) and
n+ 21 t’s from nz(wu) for a total of 3(1 + m + n) t’s. By
the relations above we will still have at most k syllables
to the right of the t,’s. Therefore, |wui| = k where

3 . . . .
9, = (wﬁl’ LATY wu3). By the induction hypothesis it

follows that g, has order dividing 3k+1

as was to be proved.
Thus, the general Burnside question is answered.

In summary, we have shown in the beginning of part 2
that if B(n,r) is nilpotent, then B(n,r) is finite. 1In the
specific case where n = pk, B(n,r) is nilpotent, the ILCS
terminates in an infinite group Bi(n,r), or the LCS does not

terminate. If the LCS terminates in an infinite group
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Bi(n,r), then B(n,r) modulo this group Bi(n,r) will be a
maximal finite group on r generators where every element has
order dividing pka Thus the restricted Burnside problem, a
weaker version of the Burnside problem, "Is there a bound on
these finite groups?" was shown to be equivalent to "Does
the LCS of B(pk,r) terminate after a finite number of
steps?". However determining if the LCS terminates with the
identity or even showing that it becomes stationary after a
finite number of steps is still a difficult task. We have
shown many similarities between the group B(n,r) and the Lie
ring L(B(n,r)) where commutator calculations are easier to
work with and in particular that the nth term of the LCS of
L(B(n,r)) implies that the n+lst group of the LCS of B(n,r)
becomes stationary. Next, we showed that B(3,r) is finite.
Finally we showed that the answer of the Burnside question
in general is no by proving the existence of a finitely

generated infinite 3-group.
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PPENDIX

WORD PROBLEM DEFINITIONS

Definition (1): A decision procedure for E a subset of A
is a method by which given any element a € A we can decide
in a finite number of steps whether or not a € E. The
decision problem is whether such a procedure exists.

Definition (2): A group is finitely presented if it is
isomorphic to a group [A;R] where both A and R are finite.

Definition (3): C(R) is recursive if given any word w on
A, there is some finite set of instructions that will decode
whether or not w € C(R).

Definition(4): C(R) is recursively enumerable if there
is some finite set of instructions such that given any word
w on A, will determine if w € C(R).

Definition (5): A group is recursively presented if it is
isomorphic to a group [A;R] where A is finite and R is
recursively enumerable.

Definition (6):Let G and G’ be groups and let & be an
isomorphism of a subgroup H of G and a subgroup H’ of G’.
The free product of the groups G and G’ with the
amalgamation ¢ is the group G *% G’=[G,G’; h=¥(h)]. The
natural mapping of G and G’ into G *® G’ are injective; so
we identify G and G’ with their images under these mappings.
Then H and H’ are identified via the isomorphism &. We have
G *¢ G’ = {G,G’) (the subgroup generated by G v G’) and
G n G’= H = H’. This last group is called the amalgam.

Definition (7): A group is Higman if it is finitely
generated and embeddable in a finitely presented group.

Definition (8): If & is an isomorphism gfom a subgroup H
of G into G then we define Gy = [G,t ; tht ~ = &(h)] and
call t the @-element.

Definition (9): A subgroup K of G is invariant under & if
(HnK) = $(H) n K.

Definition (10): Let G be a Higman group. An isomorphism
® in G is benign if Gy is Higman. If ¢ is the identity
isomorphism of H then we write Gy for Gg-

Definition (11): A set & ,y¥,... of isomorphisms in a
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Higman group G is benign if G¢ " may be embedded in a
’ '...
Higman group H so that {tQ, tW"'°} is a benign subgroup.

Definition (12): A subset P of [A] is benign in [A] if E,
is benign in [A,z] where Ep is the subgroup of [A,z]
generated by the words XzX 1 for X in P.

Definition (13): An associate of a mapping from [A] to
[B] i§1a homomorphisgl1 from [A,2z] to [B,z] such that
¥(XzX 7) = 98(X)zd(X) for X a word on A.

Definition (14): A bijective mapping from [A] to [A] is
nice if it has an associate which is an automorphism of
(a,z].

Definition 1}5): A word on A is positive if it does not
contain any a for aeA.

Definition (16): Let P and Q be subsets of [A], and let &
be a mapping from [A] to [A]. We say that P is
(%,Q)-invariant if for each X in Q, X € P iff ®(X) € P. If
Q = [A], we say invariant under & for (%,Q)-invariant.

Definition (17): An n-ary predicate is a subset of the
set of n-tuples in A. P(al,az, ...,an) means an n-tuple in

the predicate P.

Definition (18): An explicit definition of a function or
predicate contains only previously defined functions and
predicates.

Definition £19): A function F is recursive if:

1) F = Ii(al' ...,an) = a; ( projection map), F = P,
F=pP, or F = K, where K, is the 2-place function defined by
K<(a1,a2) = { 0 if a1<a2, 1 if alzaz}.

2) F(Q) = G(Hl(n), ...,HK(Q)) where G, Hl’ ...,HK are

recursive functions.

3) If G is recursive and VQ3Ix(G(Q,x) = 0), then
F(Q) = ux(G(Q,x) = 0) where ux(G(Q,x) = 0) = x if for all
c < xG(R,c) #* 0 and G(Q,x) = 0.

Definition (20): Kp is a representing partial functional

of predicate P defined on the same domain as P such that
KP(Q) = 0 if Q is in P and KP(Q) =1 if Q is not in P.
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NOTATIONS
[A] is the free group on a set A.

{A} is a subgroup of G such that if the homomorphism from
[A] to G which is the identity on A is injective then we
identify the subgroup {A) of G with [a].

[A;R] is the group generated by the elements of A and the
set of defining relations R.

G *@ H: See definition 6.

G * G’ = [G,G’] =G *b G’if ¢ is the isomorphism of the zero
subgrecups.

Gy = [G,t ; tht™!

= ®(h)]: See defintion 0.

Gy = Gy if @ is the identity isomorphism of H a subgroup of

P_is the predicate ((n,n)}.

P is the predicate {(n,m,n+m)).

p is the predicate ((n,m,nm)}.

PF is the predicate {(xl,...,xk,y)) where F(xl,...,xk) =Y.
EP:

K<: See definition 19.

See definition 12.

($,H)-invariant: See definition 16.

KP: See definition 20.
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