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CHAPTER 1: Introduction

1.1 Pipe Organs

The organ occupies a high position among human inventions. Many consider the
pipe organ to be the most perfect of all musical instruments. Composer Amadeus Mozart
was so fascinated by the pipe organ that he called it “The King of Musical Instruments.”
The solemn dignified sounds of a pipe organ can captivate large audiences for hours.

To quantitatively determine what factors contribute to the unique sounds of a pipe
organ and how they differ from those of other musical instruments is challenging.
Characterizing the sounds of pipe organs is difficult because there are many different types
ol'pipes in each organ and many variations built into the pipe organs by each manufacturer.
In this investigation, two types of pipes (Principal and Gedackt) and three organ
manufacturers (Moller, Schantz and Schuke-Berialin) were studied.

The three pipe organs selected for this study were from three locations in two
countries (United States of America and Germany). The Moller organ was recorded at the
San [ku Gakuin Junior College located in Chiba, Japan. The Schuke-Berialin organ was
recorded at the Amanuma Seventh-day Adventist Church in Tokyo, J apan. The Schantz
organ was recorded at the First United Methodist Church in Campbell, California.

The main characteristics of sound are relative amplitude and frequency. In The

Acoustic Foundation of Music, Backus explains that tonal quality is what enables us to
distinguish one tone from others of the same frequency and volume.' Musical instruments

produce complex tones that are mixtures of simple tones of various amplitudes and
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frequencies. Several simple tones making up a complex tone are called partial tones or
simply partials. If the partials of a tone are integral multiples 1, 2, 3... of the fundamental

frequency, then those partials are called harmonics.'

1.2 Purpose of the Study

This study on tonal quality has two purposes. The first purpose is to compare the
spectra between the Principal pipes and Gedeckt pipes. The second purpose is to identify
the spectrum differences between the organ pipes made by three organ manufacturers in the
United States and Germany: the Moller (American), the Schantz (American), and the
Schuke-Benalin (German).

Tonal quality depends primarily on the relative amplitudes of the harmonics.! To
quantify the sound spectra, the fast Fourier transformation was applied to all signals. This
vielded a series of harmonics expressed as a power spectrum. The power spectrum was
then transformed into a weighted harmonic spectrum that expresses the harmonics relative

to the fundamental harmonic.

1.3 Literature Review

The tonal quality of organ pipes depends on several factors such as the air jet, shape
of the pipes, the wall materials of organ pipes, and more. The mechanism of sound
production in organ pipes driven by air jets has been widely studied.”>*"**> The harmonic
generation in organ flue pipes is well understood.>* The shape of the pipes determines

harmonic generation.



Theoretically, since Principal pipes belong to the group of open pipes, all
harmonics are expected to be present.''*!? Principal pipes tend to have bright sounds. On
the other hand, Gedackt pipes are closed at one end, so they belong to the group of stopped
pipes. Since Gedackt pipes have strong odd-numbered resonance peaks, even-numbered
harmonics are expected to appear less in their spectrum as compared to the spectrum of
Principal pipes. Consequently, Gedackt pipes tend to have hollow sounds. However, the

. - 112,14
even numbered harmonics are weak, rather than being absent.

Since, theoretically, the
even-numbered harmonics in the spectrum of Gedackt pipe are suppressed, it was
anticipated that the tonal quality differences between the Principal and Gedackt pipes only
resulted from the difference in amplitudes of even harmonics. Thus significant amplitude
differences at even harmonics in the spectra of Principal pipes are expected.

The investigated pipe organs can be categorized into two different groups: the
baroque or German organ and the modern or American organ. The Schuke-Berialin was a
baroque organ, and the Moller and the Schantz were modern organs.

W. Lottermoser investigated the differences between baroque organs and modern
organs in order to reconstruct baroque organs destroyed in World War II. According to his
results, the open flue pipes in baroque organs tend to have less sound at a lower frequency
than the modern organs.'® Significant amplitude differences were expected between the
American (Moller and Schantz) and the German (Schuke-Berialin) Principal and Gedackt
pipes.

N. Thompson-Allen studied on the effect of climate upon organ tones. Significant

differences in tonal quality were found between sounds recorded in March versus sounds



recorded in August. The sounds of organ pipe had higher frequencies in each harmonic and
brighter sounds in August compared to those in March.'® Many higher numbered

harmonics (greater than the tenth harmonic) were missing in March.'®

1.4 The Structure of Organ Pipes

[n this study, major stopped and open organ pipes were investigated. Stopped pipes
have one end closed, whereas open pipes are open at both ends.” Likewise, the Principal
organ pipes were selected because they represent one of the major open pipes. Figures
t-1-1,1-1-2, 1-1-3 show several characteristic modes of vibration of a Principal pipe and
the corresponding modes for Gedackt pipes. The boundary condition for an open end is a
pressure node, or a displacement antinode. The Gedackt organ pipes were selected because

they are one of the major stopped pipes.

=

Figure 1-1-1. First harmonic of an open pipe (Principal pipe).

XXl

Figure 1-1-2. Second harmonic of an open pipe (Principal pipe).

XXX

Figure 1-1-3. Third harmonic of an open pipe (Principal pipe).
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Figure 1-1-4. First harmonic of a closed pipe (Gedackt pipe).

X 4

Figure 1-1-5. Third harmonic of a closed pipe (Gedackt pipe).

X X

Figure 1-1-6. Fifth harmonic of closed pipe (Gedackt pipe).

1.5 The Principal Pipes

Principal pipes comprise the most important voice in the modern pipe organ,
because their firm and supporting qualities form the backbone in the tonal structure of the
organ. They are used throughout the range of audible pitches without changing tonal
character. Principal pipes most often have a high percentage of tin (60 to 75 percent),
“because it provides a fresher sound, and because Principal pipes are often mounted in the

ad : b 1" 2
tront, where appearance is important”.

1.6  The Gedackt Pipes

The Gedackt pipe is a major form of stopped pipes. The tonal character of Gedackt
pipes is hollow because even numbered harmonics are suppressed. For Gedackt pipes,
“both wood and tin-lead alloys have been used as materials, chiefly and generally with a

low tin content (30 percent)” .}



1.7  Organ Pipe Materials

The influence of organ pipe materials on its tonal quality has long been a topic of
controversy between organ builders and scientists. Organ builders believe that the
materials used in organ pipes significantly affect their tonal quality. For example, wood
pipes produce tones described as woody, warm, and mellow.” Metal pipes with a high
percentage of lead” produce tones generally described as solid, foundational, and massive.
[f'the metal has a high percentage of tin and the walls are thin, the tonal quality of the organ
considered keen, stringy, biting, or incisive. Descriptive terms used to describe timbre are
indefinite and lead observers to regard as valid conclusions about the effect of materials on
tonal quality, even in the absence of objective bases for those conclusions.*

On the other hand, scientists have found that the materials of organ pipes only

slightly affect their tonal quality. According to The Acoustical Foundations of Music, “‘as

in the woodwinds, recent work has further shown that the vibration of the walls of the
organ pipe when sounding do not affect the internal standing wave, nor do they radiate
sufficient sound to be heard”.! In addition, two scientists C. P. Boner and R. B. Newman
studied the effect of wall material on the steady-state acoustic spectrum of flue pipes and
concluded that cylinder material has a negligible effect on the generation and emission of

sound.* Moreover, Backus explained that the most compelling reason for the use of the

usual tin-lead mixture is the ease with which it may be worked and the pipe voiced.'

1.8  Structure of Paper

This paper is organized into seven chapters. The first chapter explains the purpose



of the study and describes the Principal and Gedackt organ pipes. In the second chapter,
the fast Fourier transformation and its algorithms are explained. In the third chapter, the
digital signal processing is introduced. In the fourth chapter, the experimental method is
explained. In the fifth chapter, the experimental results from the two types of pipes made
by three manufacturers are reported as spectra and numerical data. In the sixth chapter,
differences in tonal quality between the two types of organ pipes from the three organ

manufacturers are discussed. In the seventh chapter, the conclusion is given.



CHAPTER 2: Introduction of the Fast Fourier Transformation

Digital frequency analyses is based on mathematical calculation schemes rather
than on the use of a band pass filter. The input to a digital frequency analyzer consists of a
series of numbers. Such a series of numbers can be obtained from the original signal by
analog-to-digital conversion. The digital signal processing results can be presented
graphically as a frequency spectrum. In this study, the Fast Fourier Transformation (FFT)

was used to obtain frequency spectra.

2.1 Introduction of Fourier Transformation

The Fourter transformation was first introduced by the French mathematician,
Joseph Baron de Fourier (1768-1830). The Fourier transformation is based on the idea that
“every periodical function can be expressed as a combination of trigonometric functions.’
Through this idea of Fourier is widely accepted by scientists today, at the beginning of the
nincteenth century, Fourier’s idea was regarded as sensational and rejected by most

scientists, even the very famous French mathematician, Lagrange.



The Fourier transformation can transform an original signal into a spectrum as

shown in Figure 2-1.
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Figure 2-1. (a) Waves of 1000Hz and (b) Spectrum of 1000 (Spectrum obtained by fast

Fourter transformation)
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The Fourier spectrum analysis resembles the methods shown in recognition
processes of the human ear. According to study by Nakajima, the human ear processes the
sounds by performing spectral analysis.’

The Fourier series representation has the mathematical form:

g =A,+Ajcos (2= t/T)+..7vAscos(4 = t/T) + ...

. =Bisin 2z t/T)+...+Basin(d= t/T)+...

x

w0
nt . n
+ A cos2nt — + anm27t—
n T T
n=1

n=|

—

(2-1)
where tis time. T is a period, and n is an integer. The lowest frequency terms

Ajcos(2=t/T)and By sin (2= t/T)are called the fundamental components.
Ancos(2znt/T)and Bysin(2xnt/T)are called higher harmonic oscillation

components.7 The coefficients A,, A,, and B, are called the Fourier coefficients. The

Fourier coefficients indicate how cosine and sine components mix in the original signal.

These coefficients are also called amplitudes. The process of determining the coefficients

Aus An, and B, for a specific function G(t) is referred to as a Fourier analysis. [n order to

determine the amplitudes of the frequencies, the following integration must be performed:
[T

Ao= T G(t)dt'
0

2 ' T :

= nt
An= T G(t) cos. 2 T — dt
T .

0 | 2-3)



11

2 , :
; o nt\'.
Bn= 7 G(t) sin2n — dt
| T‘/ .
where T is the period, n is an integer, and t is time.®
By expressing the Fourier series in terms of an amplitude, cosine function, and
phase. equation (2-1) can be simplified as following:

x

t
g(l)=Co+ Z Cncos[ Zn% -¢n]

n=1 ' (2-5)
where Co= A,, amplitude C, =V ( A’ + B’ ), and phase ¢, =tan"'(B,/ An).

When the Fourier series is expressed as a complex numerical function, calculation
of Fourier coefficients is simpler than calculation of the Fourier coefficients from sine and
cosine functions. To achieve this, Euler’s formula is used in order to express the Fourier
series as a complex numerical function.

Euler’s formula is described as follows:
Exp(if)=cosf +isinf. (2-6)

Substituting the Euler’s formula into Equation (2-5), then Equation (2-5) can be

expressed cosine and sine functions as those complex quantities:



[o o)
‘ nt;
g(t) —C0+ Z Cn co{ “2 :4 ; - ¢n]
n=| - -
Zmt - t .
o« [[exp bk -itbn]+ex{ lTn +1¢nH
=C+ Z C
o n 2
n=|
X v o]
G 12tnt o . -12tnt
=Gt 5 exp-1 expT + Z 5 expip_  exp
n=1 n=i
(2-7)
When new constants G, and G, are defined as follows:
Cn .
G, = - P - , (2.5)
Cn
G,=— expip_
n= P9 ‘ 2:9)
then the Fourier series can be rewritten as this:
€L
12rent
g(t) = Z Gn exp: -
=-® (Go=Ay) (2-10)

Equation (2-10) is called the complex Fourier expansion. Equation (2-10) only represents

the characteristics of a periodical signal.
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The equation for the Fourier coefficients is:

lvl-—]

-12nnt:
e dt.

g(1)-exp

-T
2 (2-11)

When the signal does not have a period when the period is hard to find, then the period T is

assumed to be infinitely long. Thus Equation (2-11) can be rewritten as following:

.
]

-12nnt
dt

1
lim — - g(t) exp

-T
2

In Equation (2-12), when the period is set to some finite value, then /T represents the
n th harmonic frequency. Higher harmonic frequency, f,, and frequency difference, § f,

between adjacent harmonic frequencies are defined as follows:

f;]:

]

n
T (2-13)

5= L.
T (2-14)
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If Equation (2-13) and (2-14) are substituted into Equation (2-12), this new equation is

derived:

ot
2

Gy= lim |&f g(1) exp[- i2nf t‘]dt

T—=> < -T
E)

(2-15)
When a period T is assumed to have an infinitely long value, then § f(shown in Figure
2-2) becomes very small. Thus, the discrete spectrum can be shown as a function of

frequency as a continuous variable. Therefore, f, and 6 f can be rewritten as f and df,

G.

Gifi

Figure 2-2. For the infinitely long period T, the discrete spectrum G, can be shown as a

continuous spectrum G(f).

Hence, the equation for Fourier coefficients, whether the signal is periodic or not,
has following representation, called the Fourier transformation:

®oC
G(f) = g(t) exp(-12nft) dt .

-0

(2-16)
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2-2 Discrete Fourier Transformation
After sampling, a signal is no longer continuous. For such a discrete signal, a new
Fourier Transformation is introduced which is called the discrete Fourier Transformation

(DFT). Forthe sampled signal g,(t), the equation of the Fourier Transformation G(f) can be

expressed as:

. |
G(h = J g (t)-e("hmdt .
- (2-17)

For signal gy(t). as shown in the Figure 2-3 (b), the value of signal g,(t) will be 0

exceptatt=nt. Thus, g(t)e"*"" is also zero when n=N-1.

g(t) A0
f]/: ¢ -tz—Lo‘ I LL INI-I
((a) (b)

Figure 2-3. (a) Continuous signal g(t) and (b) sampled signal g(t).

If follows that the Fourier Transformation can be rewritten as a summation of function 2i(t)

att=nr<:

oo}
G(f): Z gs (m) e-ll n fnt )

n=-x

(2-18)
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However, at t = n ¢, the value of continuous signal g(t) and sampled signal g4(t) are the
same. Therefore, gq(t) is replaced with g(t) and the Fourier transformation can be
expressed as:

X
G(f= Z g(m) =70

n=-x (2-19)
This is the equation of a DFT for an infinite number of data points.

[n equation (2-19), of primary importance is the fin exp'™**™. Since the period
was set at infinity in the Fourier transformation, f became continuous. However, in order
to exccute the Fourler transformation with a computer, the finite period of the wave such as
shown in Figure 2-3 (a) has to be chosen and treated as a single period.

Assuming that the signal is chosen and sampled from a continuous signal is as

shown in Figure 2-4.

g,(t)

S

W B

}‘————— "\" ;!

Figure 2-4. N sampled signal
Since the period of the wave is the sampling period multiplied by the total number of data

points N (T = ¢ N), its fundamental frequency is 1/( < N). The rest of the frequencies,

which are integral multiples of the fundamental frequency, can be written as k/( = N). Here
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k represents an integral multiple of the fundamental frequency. By substituting k/( = N)
into f, the Fourier transformation becomes discrete and data is finite. In order to simplify

the DFT, - can be set at | second. Thus DFT can be written as:

N- 1
G(k/N) = Z g(n) exp:
n1=0 ’ (2-20)

-12nkn

The sampled signal is finite and can be represented by N (from G(0) to G(N-1)), discrete
Fourier spectrum of sampled signal, Gs(k/N), can be written as Gy(k) and DFT further

rewritten as

N -1

G(k) = Z g(n) exp
n=0

-i2nkn

(2-21)
[n order to simplify the process of DFT calculation, a new factor is introduced,

called the twiddle factor.’ The twiddle factor is defined as follows:

W = exp(-i2 = /N). (2-22)
From this the following equations thus:

W™ = exp(-i2nk = /N), (2-23)

W™ = exp( i2nk = /N). (2-24)
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For N = 8, W™ can be drawn as follow:

w: I'm .
wi [ oW
[ A
Wit Re
s \ D /f |

Figure 2-5. Twiddle Factor expressed as a unit circle.

The vertical axis is imaginary and horizontal axis is real. This circle has a radius of | and it
was divided by 8. From Figure 2-5, it is easy to find value of W4~ .

For example, W' = Real part + ilmaginary part = cos (-2 = /8) + isin(-2 = /8)

I'SQR(2) - i1/SQR(2). If N = 16, then the circle will have sixteen segments.
Finally, by using the twiddle factor, DFT has the following representation:

N-1

G(k) = Z gn) W™
n=0_

2-3 Fast Fourier Transformation

In order to execute DFT calculations by computer, the number of DFT calculations
must be reduced by an algorithm called the Fast Fourier transformation. This algorithm
was first introduced by J.W.Cooley and J.W.Tukey in 1965.! Before the invention of the

FFT, scientists believed the computer needs N* calculations in the DFT calculation in order
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to obtain the spectrum of signal G(k). The invention of the FFT algorithm reduced the
number of calculations from N” to N log(N). For example, if N = 1024, the number of the
DFT calculations will be 1,040,000. Using the FFT algorithm, it can be reduced from
1,040,000 to about 10,000.

Their algorithm is explained by using the twiddle factor and DFT equation when N

= 8. The DFT representation is expressed as:

]
Giog) = > gm W, "™

n=0 (2-26)
Each DFT calculation requires a multiplication in its calculation, therefore, there would be

8" calculations. The Equation (2-26) can be shown as a Table 2-1.

g g(l)y g(2) g3y g g5 g6) 7N

Go/g) |We W W' oWl oWt oWt W e
Gy (we w'ow W oWt Wt owe w
G/8) tW W oWt oW Wt oW w2 o
G3/8) |[wWe W oWt W owRowe R W
G4/8) {w°  w* w8 W oW wrP ow¥ w3
Gs/8) | W WP oW WY wR o owE oWl
G6/8) | W we Wt oWl W owe W
G7/8) {We W' oW wH o wE Wk we W

Table 2-1. Table of the twiddle factor

However, the twiddle factor rotates repeatedly over the same course, which means the

same values are repeated over and over.



So just as 0° and 360° are the same, W° = W®, W' = W°, and so on. This simplifies the

Table 2-1 to become the table of the twiddle factor as shown in Table 2-2.

g(0) g(1) g2 gB) g4y g5 g6 M
GO/8) |W' W W' W Wt Wt oW W
Gug) |[w* w W W w W oWt W
GQ2/8) {W° w* W' W oW oW W W
Gy |we woowt wow oW owr W
Gag) |w* w W oW W oW W W
GiS/Ig)y |[W° W w?r owowt W owr W
G6/8) | W we Wt oW oWt Wt Wt WA
Gy |w* w owt W oW W oW W

Table 2-2. Simplified the table of the twiddle factor

The exponents were reduced to only eight groups - the numbers from 0 to 7. Further
reduction is possible if Table 2-2 is divided into odd and even values of n. the DFT
representation can be written as equation (2-27), and the Table of the twiddle factor will be

separated into two tables: Table 2-3 (a) and Table 2-3 (b).

=1

19 &
to|

w

G(k/8) — g(: n) ‘W

o

-1
k2n N Zg(an) W, k(2n+1)
=9

n=aq ' n

1o |
1]
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20) g2y g4) g g(l)y g3) g&) g
Gogy [wr w W W oy fwe w ow W
Gg) |w° W wrow Gus |w ow W W
Gu8y |w* W W W G/mg) |W w o wrow
Gi3g) |w* W W W G/ (W ow oW W
G/gy [ W T G/8) | W' W oW W
G(5/8) |W°* W' W' W Gy [w w oW w
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Table 2-3. Even (a) and Odd (b) group of twiddle factor

By defining the even group as g(2n) = p(n) and the odd group as g(2n+1) = q(n), the

cquation (2-27) can be expressed as:

19| w
o | oo

G(k/8) = W, 2 nk

v | =
1o | o

1 -1
: 2 nk k
p(n) W, "™+ W, Zq(n)
n=o * " n=o

(2-28)
By moving the twiddle factor Wg,* outside the summation, the same representation of the
twiddle factor is valid for both even and odd numbers of n in Equation

2-28. The following is the table of even and odd groups of n.
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-
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G@g)| wo W T T
GO We Wt oW W
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G(7/8) | w° Ww? Wt Wt

(b)

Table 2-4. Even (a) and Odd (b) group of the twiddle factor
The tables for the even and odd groups are now the same when the top half is

multiplied. The results can be used for the bottom half. With sixteen calculations for the



even group, sixteen calculations for odd group, and calculations of the twiddle factor with
the odd group, there are thirty-six total calculations (16 + 16 + 4 = 36).

Reduction of the number of calculations is possible by again dividing the values of
n in p(n) and q(n) into odd and even, so that the total number of operations can be reduced
to 24. This is how the FFT works for N = 8 DFT.

By repeatedly halving the number of values, the total number of calculations can be
dramatically reduced. For this method to work, the number of data points must have the

form of 2%, In this study, the number of data points was 1024.



CHAPTER 3: Digital Signal Processing

The audio signals must be sampled and digitized before executing the Fourier

transformation on a computer.

3-1. Sampling Theorem

Sampling is the process of converting a continuous analog signal into discrete
amplitudes at specified sampling intervals. As shown in Figure 3-1 below, in order to do
sampling, a continuous signal is multiplied by a modulation signal. which is a set of

impulse function separated by the sampling interval - .

Amplitude

TiNG

(a) Onginal Signal

Hnm

o Time =)

(b) Unit impulse function

r _

Time ~——

Amplitude
i

(c) Sampled signal

Figure 3-1. Sampling process: modulating a continuous signal with a unit impulse
function.



The optimum sampling interval < is determined from the input signal frequency
content using the Nyquist sampling theorem. This theorem states that ““A continuous input
signal with frequency bandwidth limited to f  f, (where fis frequency of the input signal
and fr 1s the maximum frequency contained in its spectrum), can be reconstructed
accurately from a sampled signal, provided the sampling rate is greater than twice the input

bandwidth”.” The sampling rate, fs (samples per second), is the reciprocal of the sampling
interval (f;=1/ = ). Determining the sampling rate is important throughout the signal
processing. This is the key to efficient implementation of digital calculations.

A signal which has a triangular shaped spectrum is shown in Figure 3-2 (a).

For convenience, the center of the spectrum was shifted so that the spectrum is in the range

-fn £ fnasshown in Figure 3-2 (b).

0 X(f)
X(H
: 1
0 f -f, £, £-f =
o 'm o o '‘m - t
Frequency ? . 0 -

Frequency —

() (b)

Figure 3-2. Spectrum centered at f, (a) center of spectrum shifted to f = 0.

When the input signal is sampled with sampling rate f;, the spectrum X,(f) of the sampled

signal will appear as shown in Figure 3-3.
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Figure 3-3. Output spectrum of signal after the sampling at sampling rate f;.

When the sampling rate is fs < 2f, the adjacent spectra overlap, distorting the output
signal so that it looks as shown in Figure 3-4. The overlap is referred to as the aliased
output spectrum or aliasing. The condition of the sampling theorem must be met when the

signal is sampled in order to avoid distorting the spectrum. This criteria determines the

IK(D
£ 0 f

Frequency -

choice of sampling rate f; .

Figure 3-4. Output signal spectrum for f; .

In order to cut input frequencies above the sampling rate, usually, an anti-alias filter
is used, such as the filter already incorporated in the mini disk recorder. In this study, the

sampling rate was 40 KHz, corresponding to a sampling interval of 25 microseconds.



3-2. Hamming Window

The input to an FFT is not an infinite-time signal as in a continuous Fourier
transform. A FFT can only handle a section (a truncated version) of a signal. In order to
obtain such a segmented signal, a continuous signal is truncated by multiplying it by a
special function called temporal window function, or, more simply, temporal window. The
temporal window function can control the time interval of each truncated signal; the time
interval is called sampling time. One of the major window functions is the Rectangular
window function.

According to C.H. Chen, “The Fourier transform of a rectangular window is the
sin(x)/x (or sinc) function, and the longer the rectangular window function, the narrower
the main lobe (peak) of sinc™.'® Thus, for good frequency resolution, a long window is
desired, but for good temporal resolution, a short window is desired.

For a DFT, the length of the rectangular function often set equal to one period or a
multiple of the period of the input signal. However, if the time length of the rectangular
window function is not equal to an integral number of periods of the input signal, spurious
results will appear in the DFT output. Such spurious results are called leakage or noise. If
the rectangular window is equal to an integral number of periods, then there is no
disturbance of the spectrum.’

[n a real system, it is very difficult to capture exactly one period or a multiple of
periods of a signal because the FFT prefers a 2-point time domain sequence in order to
shorten the time of calculation; therefore, sampling time will depend only on the total time

length of a signal divided by 2" data points.
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Figure 3-5. Process of signal-cut by Rectangular window function

Therefore, when a Rectangular window function is used, leakage in the FFT output
will usually result. It is better to use a window that has lower sidelobes (beginning point
and end point of signal cut out) in the frequency domain to control leakage. The cost is a
wider mainlobe, which decreases frequency resolution.

The window function should be selected for two characteristics. First, to reduce the

effect of side lobe multiplication, the side lobes in the Fourier transform of the window



function should be significantly smaller than those of the Rectangular window function’s
Fourier transform. Second, the main lobe of the window function’s Fourier transform
should be sufficiently narrow so that important signal information is not lost. In this
research, Hamming window function h(k) was chosen. Its equation is the following:
h(k) =0.54-0.46¢cos( 2 = k / N-1), (k=0,1,..,N-1) (3-1)
where k is an index of sampling points and N is the number of sampled data points. "
The Hamming window was derived from a generalized window function w(k):

w(k) = a +(1- a)cos(2 = k/n-1). (3-2)

For « =1 then this wave function is simply Rectangular window function. For o =0.5, this
tunction is called Hanning window function and for a =0.54, this function is called

Hamming window function." According to the fi gure, the most effective window function
to minimize the leakage is the Hamming window. The constant a = 0.54 was solved from a

generalized wave function in order to have the highest sidelobe level to be —42 dB.'
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Window Function Shape Maximum Level
of Sidelobe (dB)
Rectangular -13
Triangle -26
Sine function é -23
Hanning & -32
Hamming A -42

Table 3-1. A List of Window Functions

The constant a =0.54 was solved from a generalized wave function in order

to have the highest sidelobe level to be -42 dB." For comparison, the power spectrum of
1000Hz transformed through Rectangular window and Hamming window are plotted by
using Mathcad 8.0 and given below (Figure 3-6). It is clear that Hamming window has

lower sidelobes than rectangular window.
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Power Spectra (1000Hz)
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Figure 3-6. Spectra written by Rectangular window and Hamming window
Where dot line is spectrum of 1000 Hz which was given by the Hamming window and

solid line is spectrum of 1000 Hz which was given by the Rectangular window.



CHAPTER 4: Methodology of the Study

4.1 Apparatus

In this study, a mini-disk recorder (Sony MZ-R5ST) and condenser microphone
(AKG C1000S) were used to record the sounds of organ pipes. The frequency responses
for both the mini-disk recorder and microphone were given in the operating instructions by
the manufacture; nonetheless, the frequency characteristics of the equipment were
analyzed to check the accuracy of the manufacture’s information. In order to obtain the
frequency response for the equipment, a function generator (TRIO AG-203 CR Oscillator)
and voltmeter (Kenwood VT-171 AC Voltmeter) were used.

The frequency and sound pressure level of the function generator were set to
1000 Hz and -20dB respectively. Then the level of amplitude was fixed. Sixteen
frequencies were randomly chosen between 20 Hz to 20000 Hz. The recording level of the
mini-disk recorder was set to a fixed value (about five in its scale) then each signal was
recorded for ten seconds. After all the signals were recorded, a digital voltmeter was
connected to the output of the mini-disk recorder and set to show the sound pressure level.
Subsequently, the sound pressure level of each signal was recorded and plotted on a graph
using Lotus 1-2-3 Version 98. Next the graph of the frequency responses obtained and then
compared with the manufacturers' information. According to the operating instructions,

the frequency response of the mini-disk recorder should be flat to 0.5 dB over SHz ~

20,000 Hz, and the obtained result shows that frequency response of mini-disk recorder flat

to 0.3 dB over 20Hz ~ 20,000Hz.
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Characteristic of MINI Disc Player
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Figure 4-1 Characteristic Response of MINI DISC Recorder

For the microphone, the frequency characteristic was provided in the manual.

(See Appendix A)

4-2 Procedure

An electret condenser microphone (AKG C1000 S) was mounted on a tripod set in
front of the organ pipes. The distance between organ pipes and microphone was set to
about 1 meter in order to prevent the microphone from catching much ambient hall noise.
The output of the microphone was fed to a mini-disc (MD) recorder. The recording level of
the MD was set to a fixed value (about Level five) throughout the recording sessions. The

MBD can convert the analog signals to digitized signals and record them; however, there was
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no equipment to transfer those digitized signals from MD to the computer, so an analog to
digital converter was used. The discs were played into the National Instruments analog to
digital converter (DAQ-516) which was installed in the computer (NEC READY 9619),
and analog signals were converted to digitized signals and transformed into text files.
Every pitch from C4 to C6 of the Principal and Gedackt pipes were recorded. For each
note, the MD recorder was started and allowed to record the initial transient. Then the tone
was played for 10 seconds. Every note was recorded three times. Twenty-five Principal
pipes and Gedackt pipes for each organ were recorded.

The first set of recordings was taken at San-lku Gakuin Japan Missionary College
in Japan. This pipe organ was built by Moller Company.

Then second set of recordings was done at Amanuma Seventh Day Adventist
Church in Tokyo. Japan. This pipe organ was made by Schuke-Berialin Company.

The third set of recordings was done at the First United Methodist Church in
Campbell, California. The pipe organ was built by the Schantz Company. The
procedure slightly differed from the procedure used in Japan because of the structure
of the organ. All the pipes were in a loft where there was not enough space to put a
microphone, so the microphone was attached to the one end of a 2.5 meters long steel
pipe and held at about 1 meter from the pipes.

Data was analyzed using a t-test (See Appendix B) to assess differences
between Principal and Gedackt pipes and differences among pipes of different organ
manufacturers. The hypothesis in this study was that there was no differences between the

spectra of the different organ pipes. To assess the difference between the tonal quality of



organ pipes, we subtracted the average relative amplitudes of the harmonics of the Schantz
and the Moller from those of the Schuke-Berialin. The difference between the Moller and
the Schantz organs was obtained similarly. Results were considered significant at the 95%

level of probability.
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CHAPTER 5: RESULTS

Principal and Gedackt pipes were recorded for three different organs for 25 notes
ranging from C4 to C6. Spectra were obtained using Virtual Bench from National

[nstruments. Once spectra were obtained, they were transformed into weighted spectra.

S.1. The Principal Pipes

The weighted spectra of Principal pipes are shown in Figure 5-1 through 5-3, and
numerical values are given in Table 5-1 through 5-3. All the amplitudes are given as
fractions of the amplitude of the fundamental harmonic. Also, the standard deviations for
cach harmonic are given, reflecting the variation of the amplitudes from C4 to C6.

In this study, because of limitations in our equipment, only the first eight harmonics
were examined. All eight harmonics are present in the spectra of Principal pipes as

shown in the figures 5-1, 5-2, and 5-3.
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Figure 5-2 Spectrum of the Schantz organ’s Principal pipes
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MOLLER| 2ND 3RD 4TH 5TH 6TH 7TH 8TH

C4 0.0541 | 0.5619 | 0.0804 | 0.0058 | 0.0533 | 0.0250 | 0.0303
Ca4# 0.1556 | 0.5184 | 0.0219 | 0.0163 | 0.0166 | 0.0261 | 0.0082
D4 0.2370 | 0.0695 | 0.0841 | 0.0435 | 0.0160 | 0.0346 | 0.0330
D4# 0.0981 | 0.2456 | 0.0368 | 0.0142 | 0.0306 | 0.0073 | 0.027!
E4 0.3344 | 0.1974 | 0.0447 | 0.0069 | 0.0109 | 0.0026 | 0.0068
F4 0.1300 | 0.0763 | 0.0232 | 0.0107 | 0.0183 | 0.0127 | 0.0030
F4# 0.1018 | 0.0993 | 0.0248 | 0.0217 | 0.0099 | 0.0114 | 0.0143
G4 0.1555 | 0.0805 | 0.0148 | 0.0025 | 0.0179 | 0.0037 | 0.0077
G4a# 0.0874 | 0.0799 | 0.0326 | 0.0022 | 0.0011 | 0.0196 | 0.0026
Ad 0.1374 | 0.2129 | 0.0674 | 0.0367 | 0.0380 | 0.0081 | 0.0149
Ad# 0.0611 | 0.0680 | 0.0108 | 0.0336 | 0.0263 | 0.0117 | 0.0126
B4 0.1018 | 0.0688 | 0.0584 | 0.0130 | 0.0181 | 0.0060 | 0.0159
C5 0.1415 | 0.1578 | 0.0428 | 0.0041 | 0.0251 | 0.0059 | 0.0184
Cs5# 0.0348 | 0.1254 | 0.0189 | 0.0138 | 0.0158 | 0.0062 | 0.0063
D5 0.2925 | 0.1126 | 0.0703 | 0.0202 | 0.0192 | 0.0035 | 0.0062
D5# 0.1628 | 0.1882 | 0.1158 | 0.0351 | 0.0191 | 0.0112 | 0.0235
ES5 0.5046 | 0.0364 | 0.0712 | 0.0197 | 0.0018 | 0.0157 | 0.0231
F5 0.2888 | 0.0389 | 0.0634 | 0.0094 | 0.0057 | 0.0038 | 0.0091
F5# 0.5614 | 0.0816 | 0.0814 | 0.0347 | 0.0115 | 0.0034 | 0.0068
G5 0.8198 | 0.2584 | 0.0891 | 0.0572 | 0.0740 | 0.0337 | 0.0040
G5# 0.2003 | 0.0608 | 0.0047 | 0.0090 | 0.0121 | 0.0029 | 0.0048
A5 0.3810 | 0.0484 | 0.0504 | 0.0033 | 0.0167 | 0.0116 | 0.0029
A5# 0.0576 | 0.0181 | 0.0567 | 0.0443 | 0.0137 | 0.0131 | 0.0079
B5 0.2603 | 0.1399 | 0.0518 | 0.0302 | 0.0531 | 0.0141 | 0.0135
C6 0.1294 | 0.0317 [ 0.0030 | 0.0079 | 0.0055 | 0.0081 | 0.0064
Average | 0.2196 | 0.1431 | 0.0488 | 0.0198 | 0.0212 | 0.0121 | 0.0124
c 0.1852 | 0.1372 | 0.0296 | 0.0154 | 0.0172 | 0.0092 | 0.0089

Table 5-1 Relative Spectra of the Moller organ’s Principal pipes
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SCHANTZ| 2ND 3RD 4TH 5TH 6TH 7TH 8TH
C4 0.2820 | 0.1829 | 0.0261 | 0.0129 | 0.0097 | 0.0065 | 0.0038
Ca# 0.1698 | 0.1025 | 0.0397 | 0.0156 | 0.0155 | 0.0076 | 0.0057
D4 0.3772 | 0.2119 | 0.0682 | 0.0109 | 0.0082 | 0.0085 | 0.0060
D4# 0.3343 | 0.3085 | 0.1367 | 0.0114 | 0.0231 | 0.0160 | 0.0112
E4 0.1765 | 0.1739 | 0.0407 | 0.0175 | 0.0167 | 0.0078 | 0.0072
F4 0.2415 | 0.2106 | 0.0570 | 0.0093 | 0.0216 | 0.0031 | 0.0119
F4# 0.2366 | 0.0605 | 0.0758 | 0.0144 | 0.0031 | 0.0064 | 0.0064
G4 0.7583 | 0.2014 | 0.1619 | 0.0502 | 0.0370 | 0.0165 | 0.0202
G4# 0.8446 | 0.1497 | 0.1331 | 0.0301 | 0.0492 | 0.0329 | 0.0122
A4 0.3342 | 0.1177 | 0.0939 | 0.0215 | 0.0356 | 0.0156 | 0.0139
Ad# 0.4649 | 0.0369 | 0.0477 | 0.0188 | 0.0122 | 0.0108 | 0.0122
B4 0.3438 | 0.0582 | 0.0243 | 0.0166 | 0.0203 | 0.0146 | 0.0048
C5 0.2770 | 0.0236 | 0.0427 | 0.0092 | 0.0123 | 0.0158 | 0.0470
C5#% 0.5403 | 0.0890 | 0.1187 | 0.0321 | 0.0222 | 0.0052 | 0.0051
D5 0.9906 | 0.0931 | 0.0677 | 0.0286 | 0.0225 | 0.0066 | 0.0214
D5& 0.0237 | 0.0885 | 0.0185 | 0.0140 | 0.0108 | 0.0094 | 0.0123
E5 0.4217 | 0.0383 | 0.0399 | 0.0179 | 0.0237 | 0.0123 | 0.0106
F5 0.9709 | 0.3754 | 0.1621 | 0.0937 | 0.0969 | 0.0117 | 0.0081
F5# 0.4340 | 0.0396 | 0.0284 | 0.0218 | 0.0025 | 0.0094 | 0.0035
G5 0.6832 | 0.0446 | 0.0887 | 0.0284 | 0.0231 | 0.0441 | 0.0051
G5# 0.0940 | 0.0600 | 0.0707 | 0.0339 | 0.0118 | 0.0174 | 0.0052
A5 0.7253 | 0.1313 | 0.0177 | 0.0307 | 0.0360 | 0.0218 | 0.0049
AS# 0.4981 | 0.0220 | 0.0650 | 0.0214 | 0.0142 | 0.0143 | 0.0084
B35 0.9229 | 0.0566 | 0.0735 | 0.0067 | 0.0131 | 0.0124 | 0.0146
Co 0.2476 | 0.0797 | 0.1169 | 0.0275 | 0.0290 | 0.0099 | 0.0107
Average 0.4557 | 0.1182 | 0.0726 | 0.0238 | 0.0228 | 0.0135 | 0.0109
T 0.2793 | 0.0904 | 0.0438 | 0.0176 | 0.0191 | 0.0089 | 0.0089

Table 5-2 Relative spectra of the Schantz organ’s Principal pipes
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SCHUKE | 2ND 3RD 4TH STH 6TH 7TH 8TH
C4 0.3091 | 0.1122 | 0.0350 | 0.0082 | 0.0128 | 0.0220 | 0.0129
Ca# 0.4831 | 0.2537 | 0.0595 | 0.0498 | 0.0121 | 0.0126 | 0.0286
D4 0.4122 | 0.1430 | 0.0625 | 0.0061 | 0.0398 | 0.0237 | 0.0175
D4# 0.6444 | 0.2117 | 0.1286 | 0.0150 | 0.0496 | 0.0151 | 0.0155
E4 0.3845 | 0.1446 | 0.0367 | 0.0126 | 0.0271 | 0.0148 | 0.0118
F4 0.7220 | 0.2059 | 0.1695 | 0.0506 | 0.0575 | 0.0403 | 0.0595
F4# 0.5908 | 0.3111 | 0.0522 | 0.0110 | 0.0117 | 0.0535 | 0.0025
G4 0.4571 | 0.0889 | 0.0391 | 0.0169 | 0.0102 | 0.0134 | 0.0065
G4# 0.6973 | 0.2293 | 0.0593 | 0.0465 | 0.0096 | 0.0244 | 0.0161
A4 0.0367 | 0.2057 | 0.0723 | 0.0131 | 0.0316 | 0.0390 | 0.0143
Ad# 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
B4 0.9065 | 0.1305 | 0.0369 | 0.0511 | 0.0249 | 0.0231 | 0.0091
C5 0.5842 | 0.0747 | 0.0957 | 0.0485 | 0.0145 | 0.0369 | 0.0054
Cs# 0.3000 | 0.0103 | 0.0051 | 0.0105 | 0.0165 | 0.0136 | 0.0133
D5 0.8855 | 0.1991 | 0.0263 | 0.0611 | 0.0477 | 0.0215 | 0.0262
5% 0.6325 | 0.5217 | 0.1931 | 0.1876 | 0.2155 | 0.1381 | 0.1183
ES 0.7210 | 0.3027 | 0.0534 | 0.0769 | 0.0839 | 0.0373 | 0.0214
F5 0.8764 | 0.1855 | 0.0847 | 0.0473 | 0.0580 | 0.0578 | 0.0405
F5# 0.3211 | 0.1485 | 0.0262 | 0.0384 | 0.0278 | 0.0210 | 0.0126
G5 0.3140 | 0.0610 | 0.0231 | 0.0163 | 0.0185 | 0.0245 | 0.0159
G5# 0.2898 | 0.1592 | 0.0777 | 0.0293 | 0.0200 | 0.0296 | 0.0225
A5 0.3289 | 0.0843 | 0.1082 | 0.1614 | 0.0267 | 0.0307 | 0.0698
AS# 0.3636 | 0.0775 | 0.0567 | 0.0348 | 0.0157 | 0.0039 | 0.0120
BS 0.3098 | 0.0918 | 0.0793 | 0.0193 | 0.0196 | 0.0195 | 0.0042
Co 0.1823 | 0.0596 | 0.0668 | 0.1009 | 0.0812 | 0.0340 | 0.0190
Average 0.4897) 0.1672| 0.0687| 0.0464| 0.0389| 0.0313] 0.0240
A 0.2335| 0.1086{ 0.0450| 0.0462] 0.0433] 0.0262| 0.0258

Table 5-3 Relative spectra of the Schuke-Berialin organ’s Principal pipes
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5.2. The Gedackt Pipes

The spectra of the Gedackt pipes are shown in Figure 5-4 through 5-6, and

numerical values are given in Table 5-4 through 5-6.
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Figure 5-4 Spectrum of the Moller organ’s Gedackt pipes
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0.40 0.40
Z 030 0.30
3 O Average
< 020 = 020 wyg
2
E -0
& 0.10 n 0.10
i
0.00 = M. X o B ol 0.00
2 3 4 5 6 7 8
Harmonics

Table 5-6 Spectrum of the Schuke-Berialin organ’s Gedackt pipes



MOLLER | 2ND 3RD 4™ 5TH 6TH 7TH 8TH
C4 0.0168 | 0.1831 | 0.0216 | 0.0198 | 0.0343 | 0.0114 | 0.0112
C4# 0.0450 | 0.1326 | 0.0377 | 0.0070 | 0.0614 | 0.0092 | 0.0207
D4 0.0265 | 0.1128 | 0.0719 | 0.0209 | 0.0069 | 0.0084 | 0.0032
Da# 0.0218 | 0.0776 | 0.0262 | 0.0083 | 0.0273 | 0.0071 | 0.0053
E4 0.0124 | 0.0612 | 0.0521 | 0.0059 | 0.0172 | 0.0056 | 0.0046
F4 0.0343 | 0.0231 | 0.0491 | 0.0057 | 0.0091 | 0.0053 | 0.0016
Fa4# 0.0090 | 0.0367 | 0.0280 | 0.0058 | 0.0147 | 0.0039 | 0.0052
G4 0.0223 | 0.0522 | 0.0256 | 0.0160 | 0.0162 | 0.0110 | 0.0027
G4# 0.0235 | 0.0528 | 0.0392 | 0.0132 | 0.0245 | 0.0027 | 0.0020
Ad 0.0193 | 0.0268 | 0.0054 | 0.0088 | 0.0172 | 0.0021 | 0.0022
Ad# 0.0243 | 0.0262 | 0.0151 | 0.0087 | 0.0239 | 0.0033 | 0.0021
B4 0.0338 | 0.0224 | 0.0444 | 0.0127 | 0.0216 | 0.0027 | 0.0024
Cs 0.0278 | 0.0706 | 0.0052 | 0.0144 | 0.0063 | 0.0048 | 0.0034
Cs# 0.0561 | 0.0436 | 0.0571 | 0.0127 | 0.0358 | 0.0089 | 0.0036
D5 0.0321 | 0.0371 | 0.0096 | 0.0023 | 0.0116 | 0.0031 | 0.0020
D5# 0.0143 | 0.0118 | 0.0377 | 0.0049 | 0.0024 | 0.0040 | 0.0073
ES 0.0527 | 0.0393 | 0.0399 | 0.0271 | 0.0029 | 0.0131 | 0.0140
F3 0.1141 | 0.0126 | 0.0568 | 0.0269 | 0.0431 | 0.0306 | 0.0160
F5# 0.2311 | 0.0195 | 0.3487 | 0.0394 | 0.0285 | 0.0193 | 0.0421
G5 0.0888 | 0.0216 | 0.0225 | 0.0187 | 0.0046 | 0.0163 | 0.0052
G5# 0.1599 | 0.0256 | 0.1035 | 0.0180 | 0.0104 | 0.0073 | 0.0078
A3 0.0149 | 0.0234 | 0.0154 | 0.0289 | 0.0020 | 0.0045 | 0.0031
A5# 0.0255 | 0.0298 | 0.0122 | 0.0207 | 0.0231 | 0.0056 | 0.0020
B5 0.2076 | 0.0644 | 0.0704 | 0.0414 | 0.0869 | 0.0321 | 0.0257
C6 0.1175 | 0.0758 | 0.0254 | 0.0418 | 0.0383 | 0.0070 | 0.0063

Average 0.0573 | 0.0513 | 0.0488 | 0.0172 | 0.0228 | 0.0092 | 0.0081
T 0.0618 | 0.0408 | 0.0667 | 0.0116 | 0.0197 | 0.0079 | 0.0095

Table 5-4 Relative spectra of the Moller organ’s Gedackt pipes
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SCHANTZ | 2ND 3RD 4TH 5TH 6TH 7TH 8TH
C4 0.0085 | 0.0245 | 0.0056 | 0.0154 | 0.0162 | 0.0057 | 0.0013
Cd# 0.0077 | 0.0369 | 0.0038 | 0.0148 | 0.0038 | 0.0069 | 0.0031
D4 0.0150 | 0.0070 | 0.0089 | 0.0204 | 0.0080 | 0.0103 | 0.0035
D4# 0.0465 | 0.0803 | 0.0385 | 0.0397 | 0.0590 | 0.0286 | 0.0100
E4 0.0085 | 0.1216 | 0.0233 | 0.0179 | 0.0049 | 0.0153 | 0.0086
F4 0.0149 | 0.0665 | 0.0044 | 0.0098 | 0.0060 | 0.0109 | 0.0032
F4# 0.0094 | 0.0242 | 0.0047 | 0.0218 | 0.0091 | 0.0128 | 0.0029
G4 0.0080 | 0.0567 | 0.0099 | 0.0561 | 0.0102 | 0.0142 | 0.0050
G4# 0.0108 | 0.0606 | 0.0195 | 0.0219 | 0.0323 | 0.0246 | 0.0503
Ad 0.0082 | 0.0507 | 0.0226 | 0.0138 | 0.0240 | 0.0138 | 0.0055
Ad# 0.0066 | 0.0515 | 0.0199 | 0.0225 | 0.0281 | 0.0300 | 0.0071
B4 0.0113 | 0.1407 | 0.0349 | 0.0312 | 0.0379 | 0.0441 | 0.0087
C5 0.0289 | 0.0970 | 0.0216 | 0.0426 | 0.0510 | 0.0386 | 0.0105
C5#% 0.0266 | 0.0765 | 0.0171 | 0.0222 | 0.0329 | 0.0110 | 0.0049
D5 0.0196 | 0.0468 | 0.0122 | 0.0188 | 0.0173 | 0.0090 | 0.0063
D5#& 0.0251 | 0.0295 | 0.0496 | 0.0253 | 0.0284 | 0.0065 | 0.0165
E5 0.0163 | 0.0073 | 0.0145 | 0.0225 | 0.0069 | 0.0146 | 0.0049
) 0.0206 | 0.0271 | 0.0091 | 0.0179 | 0.0096 | 0.0125 | 0.0034
F5# 0.0215 | 0.0117 | 0.0305 | 0.0214 | 0.0403 | 0.0049 | 0.0066
G5 0.1002 | 0.0142 | 0.0252 | 0.0694 | 0.0148 | 0.0128 | 0.0289
G5# 0.0180 | 0.0243 | 0.0279 | 0.0380 | 0.0110 | 0.0103 | 0.0113
A5 0.0069 | 0.0247 | 0.0156 | 0.0164 | 0.0058 | 0.0052 | 0.0086
AS# 0.0416 | 0.0148 | 0.0236 | 0.0127 | 0.0107 | 0.0079 | 0.0145
B5 0.0389 | 0.0272 | 0.0233 | 0.0251 | 0.0109 | 0.0234 | 0.0110
Cé 0.0173 | 0.0134 | 0.0245 | 0.0313 | 0.0050 | 0.0159 | 0.0050
Average 0.0215 | 0.0454 | 0.0196 | 0.0260 | 0.0194 | 0.0156 | 0.0097
h 0.0199 | 0.0356 | 0.0114 | 0.0140 | 0.0154 | 0.0103 | 0.0102

Table 5-5 Relative spectra of the Schantz organ’s Gedackt pipes
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SCHUKE| 2ND 3RD 4TH 5TH 6TH 7TH 8TH

C4 0.0084 | 0.2024 | 0.0312 | 0.0045 | 0.0047 | 0.0172 | 0.0102
C4# 0.0058 | 0.2273 | 0.0053 | 0.0044 | 0.0037 | 0.0061 | 0.0047
D4 0.0028 | 0.0926 | 0.0054 | 0.0024 | 0.0019 | 0.0042 | 0.0050
D4# 0.0194 | 0.4499 | 0.0181 | 0.0120 | 0.0075 | 0.0052 | 0.0075
E4 0.0100 | 0.1276 | 0.0011 | 0.0009 | 0.0058 | 0.0019 | 0.0024
F4 0.0074 | 0.2016 | 0.0130 | 0.0095 | 0.0040 | 0.0045 | 0.0035
F4# 0.0111 | 0.1725 | 0.0094 | 0.0041 | 0.0025 | 0.0018 { 0.0050
G4 0.0256 | 0.2882 | 0.0488 | 0.0262 | 0.0129 | 0.0239 | 0.0910
G4# 0.0015 | 0.0342 | 0.0008 | 0.0015 | 0.0007 | 0.0006 | 0.0005
A4 0.0081 | 0.0949 | 0.0021 | 0.0022 | 0.0019 | 0.0024 | 0.0016
A4# 0.0183 | 0.1265 | 0.0252 | 0.0156 | 0.0202 | 0.0026 | 0.0071
B4 0.0199 | 0.0556 { 0.0099 | 0.0039 [ 0.0032 | 0.0020 | 0.0032
C5 0.0034 | 0.0411 | 0.0042 | 0.0021 | 0.0025 | 0.0012 | 0.0011
C5#% 0.0045 | 0.0135 | 0.0029 | 0.0058 | 0.0022 | 0.0095 | 0.0015
D3 0.0012 ] 0.0277 [ 0.0028 | 0.0029 | 0.0075 | 0.0023 | 0.0010
D5# 0.0409 | 0.0411 [ 0.0082 | 0.0043 | 0.0065 | 0.0027 | 0.0054
ES 0.0148 | 0.1575 [ 0.0019 | 0.0106 | 0.0152 | 0.0069 | 0.0034
F5 0.0028 | 0.0309 [ 0.0024 | 0.0006 | 0.0019 | 0.0012 | 0.0014
F5# 0.0052 | 0.0350 | 0.0017 | 0.0079 | 0.0020 | 0.0044 | 0.0009
G5 0.0192 | 0.0227 | 0.0686 | 0.0174 | 0.0031 | 0.0091 | 0.0048
G5# 0.0060 | 0.1647 | 0.0788 | 0.0177 | 0.0848 | 0.0032 | 0.0056
A5 0.0040 | 0.0341 | 0.0306 | 0.0226 | 0.0208 | 0.0053 | 0.0021
AS5# 0.0035 | 0.0073 | 0.0094 | 0.0046 | 0.0116 | 0.0014 | 0.0016
BS 0.0051 | 0.0212 | 0.0232 | 0.0114 | 0.0063 | 0.0012 | 0.0012
C6 0.0076 | 0.0055 | 0.0366 | 0.0061 | 0.0063 | 0.0025 | 0.0022
Average | 0.0103 | 0.1070 | 0.0177 | 0.0081 | 0.0096 | 0.0049 | 0.0070
L 0.0093 | 0.1074 | 0.0213 | 0.0070 | 0.0166 | 0.0054 | 0.0177

Table 5-6. Relative spectra of the Schuke-Berialin organ’s Gedackt pipes
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CHAPTER 6: DISCUSSION

This discussion consists of three sections. In the first section, the spectrum of each
pipe and the spectra differences between the Principal pipes and the Gedackt pipes are
examined for each of the three pipe organs. The second section examines differences
between the three organ manufacturers’ Principal pipes and Gedackt pipes. The third
section examines the standing waves, temperature, and characteristic sound radiation of the

pipes which may affect the sound quality of the pipe organs.

6.1. The Variation of the Harmonics with Different Shape of Pipes.
6.1.1. Comparison of the Moller Organ’s Principal and Gedackt pipes.

The significant differences in amplitudes between the spectrum of the Principal
pipes and the Gedackt pipes were found at the second and third harmonics. For the second
harmonic, the average of amplitude of the Principal pipes was 16.23+16.95% stronger
than that of the Gedackt pipes. For the third harmonic, the average of amplitude of the
Principal pipes was 9.18 = 11.16% stronger than the Gedackt pipes. For the fourth through
eighth harmonics, there was no significant difference in the amplitudes.

For the Moller organ, the significant amplitude differences were found at second
and third harmonics. By subtracting the average amplitude of the Gedackt pipes from the
Principal pipes, the Principal pipes had stronger amplitudes than that of Gedackt pipes. But

there was no significant amplitude difference in the other harmonics.
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6.1.2 Comparison of the Schantz Organ’s Principal and Gedackt pipes.

The significant amplitude differences between the Principal pipes and the
Gedackt pipes were found at the second, third, and fourth harmonics. For the second
harmonic, the average of amplitude of the Principal was 43.43 = 27.60 % stronger than the
Gedackt. For the third harmonic, the Principal was 7.28 = 9.34 % stronger than the
Gedackt. Finally, for the fourth harmonic, the Principal was 5.30 = 4.67 % stronger than
that of the Gedackt pipes. There was no significant amplitude difference in the fifth
through the eighth harmonics.

For the Schantz organ, the significant amplitude differences between the Principal
pipes and the Gedackt pipes were found at the second, third, and fourth harmonic. By
subtracting the average amplitudes of Gedackt pipes from the Principal pipes, the Principal

pipes had stronger amplitudes than that of the Gedackt pipes. But there was no significant

amplitude difference in the other harmonics.

6.1.3 Comparison of the Schuke-Berialin Organ’s Principal pipes and Gedackt

pipes

The significant amplitude differences were found in the all harmonics. The
largest difference was found at the second harmonic. The Principal was 47.98 + 24.68%
stronger than that of the Gedackt pipes. The spectrum of the Principal pipes had stronger
relative amplitudes than the Gedackt pipes.

For the Schuck organ, the significant amplitude differences were found in all

harmonics. By subtracting the average amplitudes of Gedackt from the Principal pipes,
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Principal pipes had stronger amplitudes in all harmonics.

6.2 The Difference in spectrum for Different Pipe Organ Manufactures
6.2.1. The Principal Pipes

[n this section, the characteristic tonal quality differences between the three
different manufacturer’s Principal pipes are examined. The significant amplitude
differences between the Schuke-Berialin and the Schantz, the Schuke-Berialin and the
Moller, and the Moller and the Schantz pipes are listed in Table 6-1. The positive sign (+)
indicates that the first named organ was stronger. For example, the first column indicates
that the Principal pipes of the Schuke-Berialin pipe organ has significantly stronger at the
fifth. scventh. and eighth harmonics. In addition, the Schuke-Berialin pipe organ has
stronger relative amplitudes than those of the Schantz (this was confirmed by subtracting

the average amplitude of the Schantz organ from the Schuke-Berialin organ).

HARMONICS | SCHUKE VS. SCHUKE VS. MOLLER VS.
SCHANTZ MOLLER SCHANTZ

(88
t

ol | O] ] =] W
+
+

Table 6-1. Tonal quality differences of Principal pipes



A significant amplitude difference between the Principal pipes of the

Schuke-Berialin and the Schantz organs were found at the fifth, seventh, and eighth
harmonics. The Schuke-Berialin’s amplitude of the fifth harmonic was 2.15% = 4.84%,
the seventh harmonic was 17.0% = 28.3%, and the eighth harmonic of the Schuke-Berialin
was 1.26% = 2.77% stronger than that of the Schantz organ. The average of harmonics
showed that the Schuke-Berialin organ have stronger higher harmonics, such as the fifth,
seventh, and eighth harmonics. The significant amplitude differences between the
Schuke-Berialin and the Moller principal pipes were found at the second, fifth, seventh.
and cighth harmonics. The Schuke-Berialin organ has stronger relative amplitude than
does the Moller organ.

The average difference between the Schuke-Berialin and Moller Principal pipes at

the second harmonic was 26.35230.74%, at the fifth harmonic was 2.71 =4.96%, at the
seventh harmonic was 1.92=2.82% and at the eighth harmonic was 1.16 =2.69%. A

significant amplitude difference between the Moller organ and the Schantz organ Principal
pipes was found at the second harmonic. The Schantz has a stronger amplitude at the
second harmonic than does the Moller organ. The average difference between the Moller

organ and the Schantz organ was 22.92+29.23% at the second harmonic.

6.2.2. The Gedackt pipes
In this section, the characteristic spectra differences between three manufacturers’

Gedackt pipes were examined and shown in Table 6-2. The positive (+) or negative ()
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signs indicate that there was a significant difference in the strength of a harmonic. The
positive sign (+) indicates that the first named organ was stronger and negative sign ()

indicates that it was weaker.

HARMONICS | SCHUKE VS. SCHUKE VS. MOLLER VS.
SCHANTZ MOLLER SCHANTZ

9
'

Ja]l L2
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Table 6-2. Tonal quality differences of Gedackt pipes.

Significant relative amplitude differences between the Schuke-Berialin and the

Schantz were found at the second, third, fifth, and seventh harmonics. The
Schuke-Berialin’s third harmonic was 6.16 % 10.74% stronger than that of the Schantz. On
the other hand, the amplitudes of the Schuke-Berialin were weaker at the second, fifth, and
seventh harmonics were -1.12 = 2.05% for the second harmonic, -1.79 % 1.19% for the fifth
harmonic, and -1.07%1.29% for the seventh harmonic.

A significant amplitude difference between the Schuke-Berialin and the Moller
organ was found in all harmonics. The Schuke-Berialin had stronger harmonics at the third

harmonic with a difference of 5.57=10.02%. On the contrary, all other harmonics were
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weaker than that of the Moller with these differences: -4.70 £6.47% for the second
harmonic, -3.12%=7.16% for the fourth harmonic, -9.13 % 1.22% for the fifth harmonic,
-1.3222.81% for the sixth, -4.24 £9.15% for the seventh, and —1.10%2.12% for the
eighth harmonics.

Significant relative amplitude differences between the Moller organ and the
Schantz organ were found at the second, fourth, fifth, and eighth harmonics. At both the
second and the fourth harmonics, the Moller organ had stronger relative amplitudes than

the Schantz organ. The average difference was 3.58 = 5.99% at the second harmonic and
2.9226.55% for the fourth harmonic. On the other hand, at the fifth and seventh

harmonics, the Moller organ had weaker amplitudes than that of the Schantz organ with an
average difference of —0.88 = 1.75% at the fifth harmonic and —0.64 = 1.39% at the seventh

harmonic.

6.3 Factors External to the Pipes

Several factors can affect the observed sound quality of the organ. One is the
standing waves at the position of the microphone. If the standing waves form a pressure
node at the position of the microphone, the intensity will be reduced, on the other hand, if
the standing waves form antinode, the intensity will be increased. The standing waves can
affect the spectrum, since the nodes and amplitudes of the different harmonics will not
coincide. The standing waves depend on the structure of the space where the organ is

located. Many scientists have worked on how the standing waves depend on the space in
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the building'*'*'¢ and the position of the microphone.!” For example, W. Lottermoser
pressed three adjacent keys (such as C4, C4#, and D4) at the same time and used octave
band filters to analyze the sound. This minimized the effect of the standing waves by
averaging the spectra of the three tone clusters.'

Because of limitations in the equipment, Lottermoser’s method could not be
replicated. This method was modified by adding the intensities of three adjacent notes
(such as C4, C4# and D4) and dividing the sum of those intensities by 3. All 24 notes from
C4 to B5 (we excluded C5) on Moller organ’s Principal and Gedackt pipes were modified.
The results showed small standard deviations, and the significant amplitude differences
between Principal and Gedackt pipes were found at the second, third, fifth, seventh, and
cighth harmonic. For convenience, this method is called a cluster method.

Sundberg and Jansson used a different method to minimize the effect of the
standing waves. Ten different positions were chosen and the sound of the pipe organ was
recorded at each position. After the recording, the each harmonic was averaged over ten
positions. Averaging the spectra at ten positions reduces the standard deviation in the
harmonics caused by the standing waves. For convenience, this method is called a multiple
position method.

To evaluate the significance of our results, results of our original method to those
obtained using a multiple position method were compared. This investigation was
performed in May, 2000 at First United Methodist Church at Campbell, California. The

room temperature was 20°C. The microphone was moved to ten different locations as

shown in Figure 6-2 and recorded from C4 to B4.
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Figure 6-2. Appropriate ground plan of First United Methodist Church at Campbell, with
positions (A, B, C, ...) at which sound measurements were made.
The spectra for the different locations were averaged and compared to the result of

the onginal method. The numerical values of those results are shown in Table 6-4 and

Table 6-5.



Notes | 2nd | 3rd | 4th | 5th | 6th 7" 8th
C4 10.1511]0.0738]0.0696]0.0303]0.0170|0.0111 | 0.0066
C4# 10.2316[0.1707]0.0388{0.0319]0.0135[0.0162[0.0147
D4 10.6181]0.0369{0.0667}0.02320.0159]0.03550.0052
D4# [0.6392[0.0425]0.0356{0.0154]0.0130[0.0131]0.0128
E4 [0.4873[0.1219]0.1505]0.0310(0.0055[0.0130]0.0104
F4 10.1847/0.2304]0.1224]0.0125]0.0157[0.0337[0.0093
F4# 10.8410[0.5511[0.1840]0.0318]0.0577[0.0435[0.0218
G4 10.6038/0.1146[0.0621]0.0218(0.0093 [0.0039[0.0018
G4# 10.3675[0.0436|0.0521]0.0565]0.0079[0.0135[0.0051
A4 10.4733]0.1151[0.0406]0.0083[0.0024 [0.0036|0.0039
Ad# 0.6965[0.1631(0.0972]0.0378|0.0258 [0.0307[0.0077
B4 [0.2915]0.0227[0.0364]0.0251|0.0067 [0.003410.0193

Average[0.4655]0.1405|0.0797]0.0271[0.0159 [ 0.0184 [ 0.0099
T ]0.2215]0.1439[0.0490|0.0128|0.0146 | 0.0138]0.0062

Table 6-4. The relative amplitudes and standard deviations for original method.

Notes | 2nd | 3rd | 4th | 5th | 6th 7" 8th
C4 10.3584[0.2044|0.0583]0.0267|0.0234|0.0109[0.0129
C4# 10.4074/0.2757]0.0644[0.0351{0.0222]0.0151[0.0115
D4 10.5402/0.22290.1326[0.0300]0.0412[0.0234]0.0111
D4# 10.6400{0.20560.0617]0.0190(0.0300]0.014210.0176
E4 0.5408{0.1900]0.1136{0.0305]0.0237[0.0191]0.0121
F4 [0.4180{0.1709{0.0872[0.0114{0.0272]0.0151]0.0102
F4# [0.5224[0.2644]0.1140]0.0312{0.0238]0.0389]0.0186
G4 [0.3606(0.1783]0.0456]0.0232]0.0215[0.0154]0.0109
G4# [0.3576[0.0748{0.0900]0.0291 [0.0235[0.0221]0.0167
A4 ]0.4117/0.2861(0.0826]0.0337[0.0289(0.0213[0.0148
Ad# 10.4903{0.0809 | 0.0696|0.0385]0.0133]0.0136}0.0059
B4 ]0.4047|0.08610.0600]0.0326}0.0156{0.0142[0.0179

Average|0.4543|0.1867|0.08160.0284 |0.0245[0.0186]0.0134
o }0.0907{0.07380.02680.0075[0.0071|0.0075 [ 0.0038

Table 6-5. The relative amplitude and standard deviations for the multiple position
method.
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The average results were quite close to those of the original method. The strength
of the relative amplitude at each harmonic in the multiple position method was about the
same as the results obtained by original method. We found significant amplitude
difference only at the eighth harmonic. However, the average standard deviations in the
spectrum of the multiple position method was about 53% less than those in the original
method.

According to Fletcher and Rossing, Principal pipes and Gedackt pipes differ in how
they radiate the sound."® For Gedackt pipes, the radiation is relatively simple because there
is only a single source, the mouth of the pipe. On the other hand, Principal pipes have two
coherent sources, the mouth and the open end. For Principal pipes, these two coherent
sources are acoustically in phase for odd harmonics and out of phase for even harmonics.
We studied how this phenomenon might influence our results. We placed our microphone
50 centimeters higher than the original position and compared the results to the original

position for Principal pipes.



The results are shown in Tables 6-4 and 6-6.

Notes 2 3 4 5 6 7 8
C4 10.3222]0.1003{0.0189]0.0145[0.0065 | 0.0065|0.0025
C4# 10.5247]0.4704{0.0853|0.04740.0602 | 0.0088|0.0166
D4 10.754510.1507{0.0141]0.0299|0.0299 | 0.0353 {0.0104
D4# 10.5543]0.1983|0.1115(0.0286|0.0544|0.0179{0.0030
E4 10.962210.1845|0.0846(0.0144[0.0062|0.0148{0.0115
F4 10.4304{0.0660|0.0229(0.0197{0.0209 [ 0.0037 | 0.0037
F4# 10.2910(0.1893(0.0419|0.0706|0.0308 | 0.0097 | 0.0046
G4 10.4336(0.1412|0.1135]0.00820.0319|0.0312|0.0046
G4# [0.6102{0.1227]0.0763]0.0140|0.0091 | 0.0203 | 0.0069
A4 10.0321{0.0519|0.0668{0.0395|0.0074 { 0.0038 | 0.0006
Ad# 10.3225]10.0616 [ 0.0046|0.0086 [0.0054 | 0.0083 | 0.0040
B4 10.3486|0.1361(0.0264 |0.0260|0.0043 | 0.0094 | 0.0029
C5 10.2079|0.0293 | 0.0844 |0.0204 [ 0.0094 [ 0.0012 [ 0.0040

Average|0.4457(0.1463(0.05780.0263|0.0213{0.01320.0058
6 ]0.2413(0.1118 0.0380{0.0177|0.0191|0.0105|0.0045
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Table 6-6. Average amplitudes and standard deviations from C4 to B4 for 50 centimeters
higher position than the original position.

[n comparison, no significant amplitude difference between the original and the 50

centimeters higher position was found. The standard deviations in

Table 6-6 are quite closer to the standard deviations in Table 6-4, therefore, the variations in

the harmonics probably due to the standing waves. The results showed that effect of the

standing waves is more important than the effect of this phenomenon.

Another factor to consider is room temperature. The Schuke-Berialin pipe organ

was recorded in early September, when the room temperature was 25.5 °C. The Schantz

pipe organ was recorded in late December, when the room temperature was 12 °C.
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The frequency shifts observed were shown in Table 6-3.

Estimated frequency |Schuke |[Schuke {Moller |Moller {Schantz |Schantz

Pitch [based on A4440Hz |P) [(G) |(P®) |(G) |(P) (G)

C4  (261.63 264.10 |264.40 |265.80 |265.70 |257.60 [257.40

Table 6-3. Frequencies of the recorded sound of C4(Hz).
(P = Pnincipal pipe, G = Gedackt pipe).

In order to examine the frequency shift by temperature, the organ pipe (Principal
C4) of the Moller was selected. The sound was recorded at two different temperatures.
The frequencies of C4 were 263.00 Hz at 24 °C and 265.80 Hz at
30.2"C. Theoretically. the frequency difference should be 3.10 = 0.22 Hz, not far from the
actual frequency difference, 2.80 Hz.

According Hiroyuki Mochizuki, who is the tuner of the Schuke-Berialin pipe organ,
C4 was tuned to 261.63 Hz ( based on A4, 440Hz at 20 °C). Since the audiences feel most
comfortable at temperatures between 20°C and 25 °C, organ pipes are usually tuned in that
temperature range. However, the actual frequency of C4 was 264.1Hz.
Mary Ann Gee, who is the organist at First United Methodist Church, told us that the
Schantz pipe organ was tuned to 261.63 Hz (based on A4 440Hz at 20°C); however, the
actual frequency was 257.6Hz for the Schantz pipe organ.

Theoretically, the frequency changes of the C4 for the Schuke-Berialin should be

2.46 = 0.22 Hz higher than 261.63 Hz, 3.58 * 0.22 Hz lower for the Schantz. In this

investigation, the actual frequency changes for the Schuke-Berialin was 2.47 Hz and for
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the Schantz was 4.03 Hz, about the same for the Schuke-Berialin organ and a little higher
than expected for the Schantz organ.

The higher harmonics may disappear from the spectrum at lower temperatures,
reducing the brightness of the sound. N. Thompson investigated the effect of climate upon
organ tone. He recorded all the C’s of each stops (from C2 to C7) and nine chorus reed
stops and four flue pipes were selected. His measurements were taken from a pipe organ in
March (20.89°C ) and August (30.89°C). He found that many higher harmonics above the
sixth in the spectra of flue stops were missing in March, confirming the impression that the
organ sounds brighter in August than March.'® The results of investigation of the flue pipes
over C4 to C6 range were quite impressed one.

In this research, the Moller’s principal pipes from C4 to B4 were chosen, and the
spectra at temperature of 30.2°C and 24 °C were examined to see if this effect could be

verified.



For example, the spectra difference at C4 were shown in the Figure 6-1 (a) and (b).
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Significant amplitude differences were found in sixth, seventh and eighth
harmonics in the averaged spectrum of C4 to B4. Because of limitations in computer, the

harmonics above the eighth harmonic were not examined.



CHAPTER 7: Conclusion

This study indicates that the harmonics in the spectrum of Principal pipes are not
always stronger than those in the spectrum of Gedackt pipes. For example, significant
relative amplitude differences between Principal and Gedackt pipes, both made by the
Moller organ manufacturer, were found at the second and third harmonics. No significant
relative amplitude difference was found at other harmonics. The tonal quality differences
between Principal and Gedackt pipes was not solely due to relative amplitude differences
in even harmonics, but also in relative amplitude differences in the odd harmonics.

Next comparison was made between the American (Moller and Schantz) and the
German (Schuke-Berialin) Principal pipes. Also, comparison was made between the
American and German Gedackt pipes.

Significant relative amplitude differences between American and German Principal
pipes were found at the fifth, seventh, and eighth harmonics. German Principal pipes have
stronger amplitudes than those of American pipes. Significant relative amplitude
differences between the American and German Gedackt pipes were found at the second,
third. fifth, and seventh harmonics. Except for the third harmonic, American Gedackt
pipes have stronger amplitudes than the German Gedackt pipes.

Each organ had a characteristic tonal quality. However, the sample size was too
small to generalize the characteristic tonal quality of each rank. Only two octaves of notes
(C4 to C6) were recorded and, not all notes in each rank. Thus it is difficult to generalize

the tonal quality in each rank, since there are more than two octaves in each pipe organ.
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External factors, such as the standing waves and temperature, strongly influence
the sound of organ pipes. Standing waves produce large standard deviations in each
harmonic. Large standard deviation in the harmonic will make it difficult to find the
significant relative amplitude differences between two spectra.

Due to the limitations of the equipment used, there were several limitations in this
investigation. For example, spectrum analyzer cannot handle the calculation of the
harmonic amplitude higher than the eighth harmonic. Therefore, the eighth harmonic was
the highest harmonics to examine. In further investigations, a better spectrum analyzer
could expand this investigation to include higher harmonics. Then more detailed tonal
qualities of each pipe organ could be obtained. Since the tonal quality of sound depends

mainly on the relative amplitudes of the harmonics.
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APPENDIX B

T - test

A test of significance that assumes the sample standard deviation is different from
the population standard deviation. The level of confidence that a particular value is
difterent from the null hypothesis value is derived from a t distribution rather than a normal
distribution. The t distribution is wider than the normal distribution and the unobserved
normal distribution. As the size of the sample increases, the t distribution approaches the
shape of the normal distribution.

Standard error can be qualified by the degree of freedom. The degrees of freedom

are related to how much data are being examined and how many things are estimated with

that data.
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