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ABSTRACT

A SURVEY OF HARDWARE DESIGN VERIFICATION

by Liping Guo

The move from schematic-based design o hardware description language-based
design has enabled hardware designers to easily manage the complexity of designs that
were impossible to handle by manual methods. However, barely a decade after this
revolutionary design methodology shift, today’s hardware development industry is facing
a more severe challenge. The main cause of this is that the complexity of state-of-the-art
hardware devices is climbing much faster than the capacity of the techniques and tools
that are used to verify them.

In the past few years, due to the effort from both academia and mdustry,
verification techniques and tools have advanced in ma;ly ways but a fundamental
breakthrough in hardware verification methodology has not yet arrived.

This thesis report presents a general survey of hardware design verification. Four
important aspects of hardware design verification are covered by the survey: simuiation
acceleration, simulation vector generation, verification environment construction, and co-

simulation in co-design.
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1 INTRODUCTION

1.1 The Hardware Development Crisis

In the recent decade, the advancement of semiconductor materials and processing
technologies has allowed circuit designs of muiti-million gates to be able to {it on a single
chip. As a consequence, electronic devices are shrinking in physical size while
significantly enhancing in capabilities and speed. However, this technology advancement
also brought an unprecedented verification challenge for hardware development. While
the increasing silicon capacity allows design complexity to grow rapidly, verification
complexity is rising at a much faster pace than the staggering design complexity [1].

Unfortunately, the existing verification methodologies and tools have not kept up
with the climbing verification complexity, and the situation is further aggravated by
products’ shortening time-to-market and consumer’s insatiable demand for new product
features. This troublesome reality can be vividly illustrated by the famous and notorious
Pentium microprocessor’s FDIV bug found in 1994: a design error not caught during the
verification process forced Intel to set aside a reserve of $420 million to cover the costs,
hire hundreds of customer service personnel to handle customer requests, and dedicate
four fulltime employees to read Internet newsgroups and respond immediately to any
" postings about Intel or its products [2]. Now, a decade has past since the discovery of
Pentium’s FDIV bug; the inadequacy of the verification methods still severely impedes

the productivity of today’s hardware development industry: about 60% to 80% of the



hardware design groups’ effort is dedicated to verification {3] [4], and 80% of the second
and subsequent chip re-spins are caused by design errors that are pot captured by
verification {5].

According to Joan Bartlett [6], in order to enable hardware engineers to design
and implement chips of multi-million gates forecasted by Moore’s Law, at least three
major problems must be addressed: (1) the large volume of design detail demands a
higher level of design abstraction; (2) the shortening time-to-market demands improved
simulation performance and debugging techniques; and (3) the huge cost incurred by re-
spin due to the un-captured bugs demands early software/hardware integration and
verification in the development process.

Undeniably, in today’s hardware development, verification has already become a
bigger challenge than design. The pressing need for verification solutions widely affects
many entities of the hardware development community. For example, the electronic
design automation companies are spending more on research and development of
verification tools; and in system design houses, the team of verification engineers is
quickly expanding. Even though much progress has been made, finding solutions to the

problems of hardware verification stiil has a long way to go.

1.2 Motivation and Goals

While the hardware development industry is struggling to survive the verification
crisis, many engineering students haven’t been aware of its severity. This worrisome
situation is mainly due to three reasons: (1) the long existing negative sentiment towards

verification deeply influences engineers of the next generation, and many engineering



students still think that design is more important than verificaticn and believe that the
best engineers get to work on design; (2) despite the fact that formal verification has been
~around as an active research topic in the universities for many vears, few verification-
oriented courses can be seen in the engineer’s curriculum and very limited verification
skills are taught in the universities; (3) in the past few years, several books on hardware
verification were published, but most of these books focus on specific verification topic
and require considerable background knowledge to grasp the contents that the books
present.

This thesis is initiated based on the awareness of the situation described above.
The survey will contribute in three ways: (1) for engineering students who haven’t been
exposed to hardware verification, it can serve as an introductory reading material to
hardware design verification; (2) for engineers who worked in indusiry and had
experiences in hardware verification, it provides updated information on the {opics that
are covered by the survey; and (3) for the author herself, it establishes the foundation for

her continued research in this field.

1.3 Scope of the Thesis

During the course of a hardware development, at least three levels of validation
must be undertaken to ensure the correctness of the final product {7]. These three levels
_ of validation are design verification, implementation verification, and manufacturing
testing.

Design verification is a process of ensuring that a design exhibits intended

behavior {8]. There are two broad approaches to hardware design venfication:



simulation-based methods and formal methods. Because design verification targets the
initial hardware description language (HDL) description, usually the first description of a
design, it is of crucial importance in the design process.

Implementation verification checks if the design is correctly implemented with
respect to its specification. Once an initial HDL, description of a design is validated
through extensive simulation or formal property verification, it proceeds through a varied
set of optimization and transformation operations. Implementation verification is to check
whether or not the optimized and transformed design is functionally equivalent to the
original one. Equivalence checking tools are often used in various stages of the design
cycle to verify equivalence of different implementations of the same design.

Manufacturing testing detects manufacturing defects in a fabricated chip. At this
stage, the design description has been validated and the implementation of the design has
also been verified. So, the purpose of manufacturing testing is {o capture errors resulting
from flaws in the chip fabrication process, rather than design errors.

Among these three levels of validation, design verification is the main concern of
this thesis. Particularly, the survey is centered on simulation-based design verification
approach. Since it is impossible to touch every aspect of hardware design verification, the
thesis focuses on four important subjects, namely, simuiation acceleration, simulation-
vector generation, verification environment construction, and hardware-software co-

' simulation. For each subject, the basic background information is introduced; the current

research progress and industry trend are described; the research examples selected from



various publications are presented; and the updated information on available tools in that

area is provided.

1.4  Thesis Outline

This thesis report is organized in seven chapters:

Chapter | describes today’s hardware development crisis and explains where this
thesis fit in.

Chapter 2 contains background information on hardware design verification.

Chapter 3 presents methods that are used to accelerate the simulation process.
Among these methods, hardware-accelerated simulation techniques are discussed in

detail.

Chapter 4 surveys techniques for simulation vector generation. Several semi-
formal vector generation methods are introduced.

Chapter 5 discusses verification environment construction. A collection of
hardware verification languages is introduced, and topics, such as layered testbench
architecture, testbench automation, and verification intellectual property (VIP), are also
included.

Chapter 6 describes the hardware-sofiware co-simulation in co-design domain.
Background information on co-design is provided; co-simulation techniques and
* available tools are presented.

Chapter 7 summarizes the survey.



2 BACKGROUND

2.1 Introduction

To cope with the verification challenge in hardware design, tremendous effort has
been made, by hardware development industry and research institutions all over the
world, to find solutions to the problems of hardware verification. In general, the available
solutions to hardware design verification can be categorized into two broad approaches:
formal verification and simulation-based verification [9]. Formal verification methods,
such as theorem proving, model checking, equivalence checking, etc., attempt to
mathematically prove the correctness or incorrectness of the designed systems. On the
other hand, simulation-based verification models the design, in either software or
hardware, and tries to detect the design errors by applying tests to the modeled design and
observing its behavior.

In the past, formal hardware verification has been around mainly as an academic
exercise. Iis steep learning curve, low automation level, and inability of handling designs
of large size have prohibited forma! verification from being adopted in the hardware
design flow. Only in the recent two to three years, have commercial formal verification
tools started emerging into the market and the employment of formal methods in industry
" begun making promising progress. Meanwhile, as an unsolved problem, formal
verification will rerain as a hot academic research topic for some time. In contrast,

stmulation-based verification, which holds an imperative status, has been the industry’s



mainstream approach to hardware design verification for many years. However, as the
size of a design grows the effectiveness of the traditional software-only simulation decays
rapidly.

This chapter contains necessary background information on both simulation-based
verification and formal verification. In section 2.2, three major approaches of simulation-
based verification are described, and the tools commonly used in each approach are

presented; in section 2.3, formal verification methods and tools are briefly introduced.

2.2 Simulation-based Verification

As described in section 2.1, simuiation-based verification attempts to detect the
design errors by modeling the design in either software or hardware, applying tests to the
modeied design, and observing its fauity behavior. There are three major approaches used
in today’s simulation-based verification [10]: software-only simulation, hardware-
accelerated simulation, and in-circuit emulation. The lbatcr two methods, hardware-
accelerated simulation and in-circuit emulation, are also referred as hardware-based

simulation.

2.2.1 Software-only Simuiation
= Advantages and Disadvantages
In software-only simulation, the hardware design along with iis testbench 1s
- completely modeled in software. Besides being cost-effective, this approach also offers
another two benefits [11]: (1) it provides the possibility of observing and controlling the

internal signals of the design under test (DUT); and (2) it allows performing simulation at



the early stage of designs, regardiess the mode! being synthesizable or non-synthesizable.
Because of its beneficial features, software-only simulation is by far the most popular
functional verification method employed in hardware development industry.
The software-only simulation has some drawbacks. Firstly, it requires long
- computation times and capacities, and the situation gets worse as the design complexity
“increases. Secondly, although many fault coverage metrics have been developed, there 1s
still no practical way to directly associate simulation coverage with the confidence in a
design that is gained through simulation (in fact for many complex designs total coverage
is impossible to reach). As a result, when the simulation of a design can be stopped 1s
often dictated by the time-to-market, not the simulation coverage. Thirdly, software-only
simulation normally does not consider the physical environment that the designed circuit
is employed in. In such a situation, it is impossible to observe the circuit’s reai
performance Because the circuit is isolated from its real environiment during simulation.
8 Simulators
Table 1 contains a collection of commercially available simulators. A detailed
description for each included simulator can be found at the web link provided under
“comments.”

Table 1: Commercially available simulators

Simulator | Vendor Comments

Single-kernel architecture natively supports Verilog,
VHDL, SystemC, SystemC Verification library (SCV),
and PSL/Sugar assertions.
http://www.cadence.com/products/incisive_unified_simul
ator.html

NC-VHDL | Cadence A VHDL simulator.
http://www.cadence.com/products/ncvhdl.homi

Incisive™ | Cadence




NC-
Verilog

Cadence

A compiled Verilog simulatorand good for gate level
simulation. 7
http://www.cadence.com/products/neverilog. html

NC-
SystemC®

Cadence

First commercial implementation of the SysternC
Verification Library.

hitp://www.cadence.conyproducts/ncsysteme. himal

Verilog-XL

Cadence

The most standard simulator in the market, as this is the
sign off simulator.

htip://www.enee.umd.edu/class/eneed408c/Verilog-XL/

ves™

Synopsys Inc.

A Verilog simmilator,
http://www.synopsys.com/products/simulation/sitmnulation.
htmi

. T]
Scirocco™

Synopsys Inc.

A VHDL simulator.
http://www.synopsys.corn/products/simulation/scirocco/sc
irocco.html

VCS-MX

Synopsys Ine.

Supports mixed-HDL simulation.

hitp://www.synopsys.cony/products/simulation/ves-
sci/ves-sci.html

Scirocco-
MX

Synopsys Inc.

Supports mixed-HDL simulation.

http://www.synopsys.comy/products/simulation/ ves-
sci/mixed hdl ds.html

Finsim

Fintronic USA Inc.

A Verilog simulator. Supports the entire Verilog HDL
mnchuding all behavioral, gate and switch level constructs,
user defined primitives, specify blocks, system tasks and
functions, PLI 1.0, VCD and SDF; runs on Linux,
Windows, and Solaris; supports compiled, interpreted and
any mixture of compiled and interpreted simulation.

Modelsim

Model Technology

A Mentor Graphics
Company

http://www.fintronic.com/frame _products.html

Supports VHDL and Verilog with Single Kernel
Simulation; good for block level verification,

hitp://www.model.com/products/default.asp

Smash

Dolphin Integration

Mixed-signal simulation performed with a mixed-signal
netlist; Single-engine sirnulation for both the analog and
logic parts; Complete language support and mixity with
SPICE, VHDL, VDHL-AMS, VERILOG, C and soon
VERILOG-AMS.

hitp://www.dolphin.fr/medal/smash/smash _overview.htmi




2.2.2 Hardware-accelerated Simulation

= Advantages and Disadvantages

.. The Hardware-accelerated simulation method 1s employed to speed up the

simulation process. In hardware-accelerated simulation, the DUT is mapped to fieid

programmable gate arrays (FPGAs) or special-purpose computing engines, and a

testbench is used to provide stimulus (simulation vectors) to the DUT. Depending on the

implementation of the testbench, either leaving the software-modeled testbench in the

simulation environment or loading the synthesized testbench onto the accelerator,

hardware-accelerated simulation can be 10 to 100,000 times faster than software-only

stmulation [12][13].

Table 2: Commercially available accelerators

Accelerator

Vendor

Comments

Hammer™

Tharas Systems

ASIC-based hardware accelerator for Verilog, VHDL and
mixed language simulations; offers debugging capability
comparable to that of software simulators.

http://www.tharas.com/products/index.html

Xciie®

Axis Systems

Based on Axis' patenited ReConfigurable Computing
{RCC) technology, delivers simulation and acceleration in
a single system using one design database; offers
simulation performance of up to 100K cycles/second on a
design capacity of up to 10M ASIC gates; provides RTL.
simulation acceleration.

http://www.axiscorp.com/products/xcite.htmi

Cobalt?™

Quickturn
A Cadence
Company

A custom processor-based, compiled code logic emulation
system; offers a capacity of up to 20 miilicn emulation
gates, 2 Gbytes DRAM and 256 Kbytes SRAM memory
in a single chassis; comes in two configurations: The CE
series (CE1000-CE8000) with one million gate granularity
and the CL series (CL10000-CL200600) with 2.5 million
gate granularity.

http:/f'www.quickturn.com/products/cobaltplus_data
sheet.htm
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Unfortunately, hardware-accelerated simulation is much more costly than
software-only simulation. It requires a design or a portion of a design be modeled ina
synthesizable way before conducting simulation. Moreover, the DUT is still isolated from
its real application environment during simulation since the design is exercised through

stimulus provided by the testbench, not the real life data.

® Accelerators

Table 2 contains information on a collection of commercially available
accelerators. Features of each accelerator provided in Table 2 are not comprehensive. A
detailed product description can be found at the web link listed under “comments™ for

each accelerator.

2.2.3 In-circuit Emulation
® Advantages and Disadvantages

Despite its high cost, in-circuit emulation offexzs the highest run-time performance
among the three simulation-based verification approaches. Different from hardware-
accelerated simulation, with in-circuit emulation, the stimulus to the PUT is not provided
by testbench; instead, it comes from the live electrical connections consistent with the
application environment [13]. In-circuit emulation allows the DUT to be verified within
its real application environment, and thus makes hardware-software co-verification and
_ system-level verification possible.

Howewver, in-circuit emulation can only provide a limited visibility of the internal
signals of the DUT [9], and, like hardware-accelerated simulation, it also requires the

design to be synthesizable before verification can be performed.



= Emuiators
A detailed product description can be found at the web link listed under
“comments” for each accelerator. Also, emulators annotated as Aybrid product can be

used as either accelerators or emulators.

Table 3: Commercially available emulators

Emulater Vendor Comments

. Provides Internet-based verification service
Systern Explorer Aptix Corp ’

http://www.aptix.com/products/product _overview.htm

Supports up to 64 independent clock domains; offers

CelaroPRO I\{Ientvo.r multi-user shared capabilities and remote network
Graphics . .
access with quening support.
hitp://www.mentor.com/celaro/
. Provides capacity of up to 20 million ASIC gates and a
Quicktumn . . -
Mercury™ memory system with up fo 2 gigabytes of memory that
reury . supports large testbenches and software code for High-
A Cadence e . . S
Performance regression testing.
Company
http://www.quickturn.com/products/mercurypiusspec.ht
m “
Speeds emulation performance up to S00K. cycles per
. second Supports three modes of in-circuit verification
Xireme Axis Systemss |y in_circuit simulation (ICS), in-circuit
Hybrid Product acceleration (ICA), and in-circuit emulation (ICE).
http://www.axiscorp.cony/products/xtreme.html
< I .
Vstation-SMX Mentor Uses patented V mualW@s technology to ensure that
Graphics the same database can be implemented in every

replicate VStation hardware solution. Up to 15 million
usable ASIC gates (4.5 million on a VStation-5Mx) ;
performance in the MHz range

Hybrid Product {Tkos)

http://www.mentor.com/vstation/vstation Smx. html

Provides up to 100x to 10,000x RTL performance;
provides simulation acceleration and in-circuit
emulation in a single system; supports multiple users
and remote access; maxinize efficiency with fast
compiles on a single workstation.

Palladium Quickturn

Hybrid Product A Cadence
Company

http://www.cadence.convproducts/palladium_new.htmi




2.3 Formal Verification

Simulation-based verification methods have a major drawback: they cannot fully
verify every aspect of a system’s functionality due to the fact that exhaustively simulating
a design is infeasible, unless the design is an extremely simple one. Consequently, only
the portion of the possible behaviors of a design 1s simulated; and serious design errors
often remain undetected and later cause catastrophic problems.

The evolution of the application of formal methods in hardware verification
directly results from the inability of the simulation-based methods in fully verifying a
system’s functionality. As a complementary approach, formal methods use mathematical
means 1o prove that a design is correct without applying huge sets of test vectors. In {14],
Mefarland vividly described the difference between formal verification and simulation-
based verification: “The difference between formal verification and simulation is similar
to the difference between d;:rivin_g laws in physics from first principles and performing
experiments.”

Since formal verification is not the main concern of this survey, this section only
provides a brief introduction to formal hardware verification techniques and tools.
However, there exist a large number of publications addressing this topic. In particular,
several surveys {e.g., [’7], 151, 1163, 1171, [18], [19], and [20]) provide comprehensive
coverage of both theoretical and practical aspects of formal hardware verification. Also, a
new book titled “Introduction to Formal Hardware Verification™ authored by Thomas

Kropf was released recently. As claimed in its description, this advanced textbook



presents an almost complete overview of existing techmques for formal hardware

verification.

2.3.1 Formal Methods

Ideally, a formal method consists of a formal language, tools, and a proof system,
which can be used to specify and verify systems [21]. A formal language refersio a
language where every well-formed statement has a mathematicaily defined meaning; and
tools are used to help the designers to describe systems and requirements in the formal
language; finally, a proof system provides facilities to be used in reasoning about
statements in the formal language.

In a design process, there are two main aspects to the application of formal
methods [151[21]: one is the specification oriented formal framework, for example
temporal logic, predicate logic, etc., which provides a rich and mathematically precise
language that is used to specify intended properties of a design; the other 1s the
verification oriented formal techniques and tools, which are used to reason about the
relationship between a specification and its corresponding implementation. There exist
quite a few formal techniques, such as automata-theoretic technique, automated theorem
proving, model checking, equivalence checking, symbolic trajectory evaluation, as well
as many hvbrid ones that integrate these formal techniques with a hope of improving
verification performance [22] [23] [24] [25].

Having a specification for a system written in a formal way brings many benefits
to a design project [21]. The formal frame work forces the desired properties of a system

to be specified in a precise description, which eliminates ambiguity that often exists in

14



the informal specifications, especially the ones written in nafural ianguages, such as
English; aiso, when a specification is written in a formal language, it becomes possible to
reason about whether or not the specification matches the true intention of the designers.
On the other hand, the verification oriented formal techniques and tools attempt to make
sure that an implementation confirms to its corresponding specification [15]. In order to
check this conformance, formal descriptions for both the specification and the
implementation must be created first, and foﬁnal tools can then be used to establish the
conformance.

It is important to note that formal methods are applied to the models of systems,
not to the real systems themselves [21]. In other words, the usefulness of the verification
results obtained via formal methods heavily relies on the correctness of the models and
the specifications. For instance, if a model or a specification fails to accurately capture
the behaviors of a system, then proofs acquired through formal methods are meaningless.
This fact simply demonstrates how critical it is to create an authentic model/specification
for a system. Unfortunately, obtaining such a model or a specification is still a challenge

[26].

2.3.2 Formal Methods in Hardware Verification

Applications of formal methods in hardware verification domain are often

| formulated in two forms [27]. One form is the so cailed property check or property
verification, which is concerned with properties and a model of a design; and verification
on this respect attempts to show that all of the system’s possible behaviors captured in the

mode] satisfy the temporal properties of its specification [15]. The other hardware formal

[
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verification form is known as the implementation check or implementation verification,
which addresses relationship between two models of a system. In this case, verification is
to show that each possible behavior of a system’s implementation (a model) is consistent
with some behavior of its high-level specification (a high-level model of the system).

In practice, property verification and implementation verification are often used in
conjunction [15]. The property verification is usually conducted first to prove that a lugh-
level model of a system satisfies a set of desired temporal properties defined by its
specification; then, a lower level model with more detailed implementation is developed,
and implementation verification is carried out to verify if the lower level model is an
implementation of the high-level model. The later process is iterated as the design
development proceeds: a series of models are developed, and each of ther is an
implementation of the model at the next higher level.

Three formal hardware verification methods are commonly used: theorem proving,
model checking, and equivalence checking. Among these three approaches, theorem
proving and model checking deal with the probiem of property verification; and
equivalence checking addresses the implementation verification issue.

Theorem proving is one of the earliest formal approaches used in hardware
verification {7]. In this approach, the implementation {(e.g. 2 high-level model of a system)
and the specification of a system are both described in some kind of formal logic, such as
‘ higher-order logic, first-order logic, etc.; and the relationship between them is regarded as

a theorem in the formal logic [16]. The goal of the proving process is to estabiish that the



theorem, which expresses the relationship between the implementation and the
specification of a system, is a logical truth in the system.

Theorem proving approach is structural rather than behavioral [7]. This distinctive
feature allows a circuit to be described hierarchically, where a component defined at one
level in the hierarchy serves as an interconnection of components defined at lower levels.

As a general approach, theorem proving places no restriction on applications. It
also offers powerful logic expressiveness and allows a circuit’s behaviors fo be described
and related at many different levels of abstraction. However, theorem proving is an
interactive method. Verification techniques based on theorem proving demand
considerable effort on users’ part in developing specifications and guiding the theorem
proved through all the lemmas. Unfortunately, this demand often exceeds the capabilities
of industrial hardware designers.

Model checking, opposite to theorem proving, is behavioral rather than structural,
since only the behavior of a system is checked to satisfy certain properties {7]. In this
approach, properties of a system are specified in the language of temporal logic, and the
system is modeled as finite state machine. The goal of the checking process is to establish
whether properties hold by exhaustively searching through ihe state space of the model
[211.

Model checking is one of the most widely used automatic methods of verifying
" hardware [21]. The major strength of it, besides being an automated method, is its ability
to produce counterexamples that can be used as a critical aid to debugging [27]. However,

because the state space of any non-trivial system is extremely large. especially when the
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system consists of many asynchronous conmumunicating state machines, model checking
faces the so called “state explosion” problem, which limits its applications to the large
systems and at low abstraction level [7]. Techniques, such as symbolic methods [28], are
developed by various groups to alleviate the problems of state explosion, and some of
them show promising results.

Equivalence Checking uses mathematical techniques to determine whether one
design representation is functionally equivalent to another. This formal approach is often
applied at the last stages of a design cycle to ensure that the final design implementation
does what the register transfer-level (RTL) code specifies [29].

The main strength of equivalence checking is that the checking process can be
fully automated. Also, equivalence checking can be used as a good replacement of
regression tests, since it is most effective in verifying the functional equivalence of
slightly different designs [27], for exaimple, the slightly changes iniroduced at the iast
stages of a design to optimize performance.

Because verifying a system via equivalence checking relies on the comparison
between two representations of the system, it is helpful only if one of the representations
of the system is correct. This correct representation is also referred as the so called
“golden reference.” Unfortunately, equivalence checking is not able to verify the
correctness of the golden reference itself, and other means must be utilized to ensure the

correctness of the golden reference.

2.3.3 VFormal Hardware Verification Tools



Although formally verifying an entire design is not generally possibie in today’s
hardware development, formal verification techniques are making their ways into the
design flows for complex systems [30]. This promusing progress, at least to some exfent,
should attribute fo the recent proliferation of commercial verification tools.

A few years ago, formal verification toels were used merely within the academic
scope, and the deployment of formal tools in industry was often seen as discowraging.
This situation was mainly caused by the weakness of these formal tools: they usually
provided limited capacity and poor usability, and many hardware engineers found them
hard to use and difficult to integrate into the existing design flow.

While simulation-based verification techniques are losing their effectiveness in .
verifying designs of large size, more and more hardware design companies, mcluding |
large systems houses and semiconductor suppliers, start sericusly considering deploving -
formal techniques in their hardware verification processes. The demands for better formal
verification tools encouraged EDA vendors, from well-established companies like
Cadence and Mentor Graphics to some start-ups, to invest more in research and
development on formal verification tools. As a result, a number of formal verification
tools, such as equivalence checker and property checker, are commercially available
today; and formal verification tools are gaining more acceptance and support in the -
hardware development industry. This claim can be well supported by the list of customers
" of a small EDA company called Verplex (Milpitas, CA}, which produces both
equivalence checker and property checker. According to Michael Chang [29]. president

and chief executive officer of Verplex Systems, Inc., in the first half of 1999, Verplex



only had seven customers, but today 150 different electronics companies worldwide are

using Verplex® formal verification tools.

Table 4: Commercially available property checkers, Lars Philipson 2001

Released Vendor
Prodact & & Strong Points According to Vender
Current Web Site
Version
1. Automatic Property Extraction; 2.
. y " Automatic Testbench generation; 3.
2 ) , . . ’
@Verifier oot @HDI Multiple clock domins: 4. Incremental
2.1 www.athdl.com checking; 5. Bounded and unbounded
checking
BlackTie 2000 Verplex Systems 1. Ease of use; 2. Automatic checks; 3.
2.10 www.verplex.com Capacity & performance
Design 2000 Veritable 1. Ease of use; 2. Capacity &
verity- 1.1 www.veritable.com | PEriOTmAnce
Check
1997 Cadence Design 1. Capacity; 2. Large installed base; 3.
- Systems Sophisticated Methods; 4. Ease of use
Formal 3.1
Check www.cadence.com
Formal 1997 Avanti 1. Mature technology; 2. Supports
Model 2001.2 Wivw.AvVanticorp.com safety, liveness, and faumess
Checker
Improve- 2001 TNI-Valiosys 1. Capacity; 2. Accepts non-
HDL 12 beta valiosvs.com synthes;zab.le HI_)L; 3. Propertxes &
constraints in a single language
Solidify 1999 Averant 1. Practicality; 2. Language easy to use;
2.5- Www.averant.com - 3 C apacity & performance; 4.
Incremental use
Verix 2000 Real Intent 1. Ease of use; 2. Hierarchical
. verification; 3. High error coverage; 4.
3.0 www.realintent.com N i -
Synthesis of simulation checkers; 3.
Muitiple formeal engines




Lars Philipson, a professor at Lunds Tekniska Hogskola University in Lund,
Sweden, has done an excellent survey on formal model checking and equivalence
checking tools [26]. In the survey, Philipson collected almost all the current
commercially available equivalence checkers and model checkers that specifically target
at hardware verification. The iotal of ten EDA vendors were identified, and four
equivalence checkers and eight property checkers were included in Philipson’s survey.
Table 4 contains information about the eight property checkers (model checkers); and
Table 5 provides information of the four equivalence checkers. All the informaticn
shown in Table 4 and Table 5 were extracted from Philipson’s survey {26], which was
originally published in Swedish in the £lektronik I Norden magazine in November 2001,

and later the English-language version was made available to E£design.

Table 5: Commercially available equivalence checkers, Lars Philipson 2601

Product Released & Vendor & Web Site Strong i’mms According to
Current Version Vender
Conformal | 1998 Verplex Systems 1. Capacity & performance; 2.
LEC Usability; 3. Integrated transistor
3.0 www.verplex.com extraction
Design 1993 Avanti 1. Accuracy; 2. Large database
Verifyer of customer examples; 3. Large
2001.2 www.avanticotp.com | selection of available options; 4.
Speed and ease of use
Formality 1998 Synopsys 1. Capacity performance; 2.
: _ Debugging environment; 3.
2001.06 www.synopsys.com | Mixed language support; 4. Uses
Verilog simulation libraries
FormalPro | 2000 Mentor Graphics 1. Capacity; 2. Debug features;
3. Mixed HDL; 4. Automation;
31 WWW.MEnIore.com 5. Bave session




3 SIMULATION ACCELERATION

3.1 Introduction

The advancement of the CMOS technology has drastically changed the way that
the electronic products are designed, verified, and manufactured. On one hand, engineers
are able to quickly produce smaller, faster, and more sophisticated products; on the other «
hand, the task of verifying a design becomes unprecedented heavy and complex. This
increased verification load can be simply illustrated by looking at the number of
simulation vectors needed to simulate a design. Comparing to the designs of a few vears
ago, the number of simulation vectors required to verify today’s hardware designs has
more than doubled [13].

Obviously, exercising a design with more simulation vectors requires more
simulation time. This nature of the simulation-based vériﬁcatian approach seriously
affects its effectiveness in handling large designs and meeting today’s short time-to-
market requirement. Before formal methods becoming the industry’s mainstream
verification means, hardware design verification has to largely depend on simulation. In
order to make simulation-based approach more capable in verifying designs of large sizes,
soluticns to speedup simulation must be found.

This chapter surveys techniques used to speedup the simulation process. Section
3.2 discusses simulation acceleration by using faster simulators; Section 3.3 introduces

the use of simulation server farms; Section 3.4 describes approaches based on simulation-

(3]
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emulation co-operation; and Secticn 3.5 briefly illustrates the issues of creating the

verification environment.

3.2 Using Faster Simulators

Hardware simulation can be conducted in two ways: (1) simulating a design
without considering timing and (2) simulating the models including timing [31]. The
tradeoffs between these two approaches are performance and accuracy.

Traditional event-driven simulators calculate every active signal for every device
it propagates through during a clock cycle. By examining detailed timing information,
event-driven simulators provide higher accuracy in verification and therefore the rich
functionality of the DUT can be verified through this type of simulation [31]. However,
due to the high signai aciivity within a clock cycle, the performnance of event-driven
simulation, in terms of speed, is relatively poor.

Cycle-based simulator, on the other hand, p;ovides an inexpensive method of
accelerating functional simulation [32]. Typically, cycle-based simulators are five to ten
times faster than conventional event-driven simulators. Such performance improvement
is achieved through the following: (1) cycle-based simulators compute only two logic
states: Is and Os; (2) cycle-based simulators calculate the results only at the clock edges;
and (3) the inter-phase timing is ignored during simulation. In addition to performance
' improvement, because of the elimination of the inter-cycle calculations, cycle-based
simulators also reduce the memory utilization to about one-fifth up to one-third

comparing to the event-driven simulators. -



Cycle-based simulators have their limitations. For example, cycle-based
simulators are mainly used for synchronous designs; when components of an
asynchronous design are simulated using cycie-based simulators, the performance penalty
is high. However, as the complexity of hardware verification increases exponentially,
correctly employing the cycle-based simulation definitely offers a relief in terms of speed
and memory usage.

In the past few years, the performance of software simulators has improved
constantly: compiled simulators increases simuiation speed by more than ten times over
the interpreted simulators [33] [34]; and cycle-based simulators boost simulation
performance by avoiding detailed event processing overhead. Unfortunately, simulators’
performance improvement cannot cope with the climbing complexity of the verification
tasks. To further improve the speed and increase the capacity of functional simulation,

other methods must be utilized.

3.3 Using Simulation Server Farms
In the past, when hardware design complexity reached 100k gates, traditional

interactive simulation was replaced by batch-level simulation to achieve better
performance [35]. Now, as the design complexity of a typical electronic system often
exceeds 2 million gates, many hardware design companies are tarning to simmulation
_ server farms for massive simulation performance gain.

Basically, a simulation server farm consists of a group of computers that run
multiple simulations of a design simultaneously. Comparing to singie computer

simulation, the use of simulation server farms can increase simulation throughput by



several orders of magnitude {36]. Among various approaches to speeding up simulation,
server farm technology has become a proven and reliable solution for simulating large
and complex designs. The server farm technology offers many benefits [35]: it provides
more simulation capacity; it allows the utilization of cost effective hardware and software
resources; it offers a way of maximizing the utilization of workstations and licenses; and

it is scalable,
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Figure 1: Simulation server farm topology

A typical simulation sever farm, at its most basic level, is a collection of hardware
that is managed by some specialized software [37]. The collection of hardware normally
includes compute engines, storage servers, administrative servers, and networks [37].
Figure 1 (from [37]) shows an example of a simulation farm topology. Although a
~ simulation server farm can start from any size or price spectrurm, issues, such as
verification plan, equipment selection, installation, and configuration, must be properly
addressed to ensure the success of a newly built server farm. Professional help can also

be acquired from some EDA vendors. For instance, Cadence offers services of setting up



simulation farms, which include planning, equipment selection, and installation. More
information on design and implementation of a simulation farm can be found in
Cadence’s white paper [37]; and Synopsys’ white paper [35] also contains information on

hardware selection and setup for a simulation farm.

34  Using Simulation-Emulation Co-operation
3.4.1 Moetivation

Both software-only simulaticn and in-circuit emulation have advantages and
disadvantages. Software-only simulation offers good observability and controllability,
and it can be used to simulate both synthesizable and non-synthesizable design models. In
contrast, in-circuit emulation provides good performance in terms of speed, and it can
have the DUT simmlated within its real application environment.

The motivation of simulation-emulation cooperation, also termed as “hardware-
accelerated simulation,” stems from the desire of comgining the advantages of both

software-only simulation and in-circuit emuliation.

3.4.2 Examples

In [11], Siavash et al. reported a simulation-emulation co-operation method for
Verilog and VHDL models, and their experimental results show that the proposed
method can significantly reduce the simulation time. The reported method utilizes a
_general simulator as well as a general emulator: a PCl-based PLDA board is used for the
emulation part and the ModelSim simulator (Version 5.5 a) is used for the simulation part.

The overall co-operation environment is illustrated by Figure 2.
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Figure 2: Siavash et al.’s method of simulation-emulation co-operation

The simulator (ModelSim 5.5a) resides on a host computer, which is connected to
the ernulator (the PLDA board) via a PCI {Peripheral Component Interconnection)
expansion slot. The FPGA mounted on the PLDA board can be configured throagh the
PCI bus, and the PCI bus then serves as the communication channel between the
configured FPGA and the host computer. On the emulator side, the user-defined logic
(portion of the DUT) communicates with the PCI bus through the PCI core (the Inzerface
Mbdules}, which handles all bus events; on the simulator side, the simuliator
communicates with the FPGA chip by means of the PLI routines (the nerface Modules),
which access the PLDA board via memory-mapped /O technique.

To use the simulation environment presented in [11], the system description,
either in VHDL or Verilog, needs to be partitioned into the simulation part and the
emulation part. Both parts are then compiled or compiled and configured into sub-circuits

for simulation and emuiation respectively. During the simulation process, the simulator
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controls and coordinates the activities of the emulators through the PLI routines, and the
corresponding P1.I routine is invoked by the simulator when information from the

ernulator is needed.

In [38], Canellas and Moreno proposed a simulation-emulation co-operation
method of for VHDL models. Unlike [11], no actual physical emulator is used in
L
Canellas and Moreno’s co-operation environment; instead, another simulator is utilized to

act as a logical emulator. Figure 3 shows the basic idea of the simulation environment.
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Figure 3: Canellas and Moreno’s co-simulation/emulation

The to-be-verified design is split into two parts: VHDL simulated circuit and
. VHDL emuiated circuit. The simulator and the emulator run on different computers. The
communication between the simulator and the emulator 1s achieved by means of text files;
in this case, the TEXTIO package available in the standard VHDL library is used as the

commumnication text files.
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Since no actual physical emulator is employed, this method is relatively cost-
effective; however, the use of text files as a way of inter-processes comumumnication can be
a bottleneck of this approach, and thus the communication overhead prevents the method
from being applicable to large designs.

In [39], a hardware acceleration scheme for functional logic simulation is
presented by Cadambi et al. In this work, a standard “off-the-shelf” PCI-board
{ADC_RC1000 from AlphaData} with a single FPGA 1is used as the hardware accelerator:
Instead of synthesizing the DUT directly onto the FPGA, an intermediate simulation
processor, called SimPLE, is mapped onto the FPGA, which acts as an execution engine
for the netlist during the simulation. The overall acceleration system is illustrated in

Figure 4.

SimPLE Intermediste Arch

Figure 4: Cadambi et al.’s acceleration system

The DUT is compiled into VLIW-type instructions by a fast SimPLE compiler,

and each instruction represents a slice of the netlist of the DUT. The compiled



instructions along with a set of simulation vectors are then transfer to the on-board
meraory via direct memory access (DMA). For each simulation vector, SimPLE executes
all mstructions 1o assure that the entire netlist is tested, and the simulation result is stored
back to the on-board memory. After all the simulation vectors are exercised, the
simulation results are sent back from the board memory to the host, again via DMA.

The whole simulation process is controiled by the host through application
program interface (API). Scalability can be obtained at the price of sacnificing
performance, by breaking up the instructions into smaller portions and transfers them
separately to the on-board memory.

The authors reported that the proposed scheme can obtain speedups of up to
2000x over zero-delay event-driven simulation and up to 1000x over cycle-based
simulation on benchmarks and industrial circuits. The authors attributed the supulation
speed gain to the following factors: the SimPILE’s parallel architecture, the large number
of registers and memory in SimPLE, the high bandwidth between the FPGA and on-
board memory, and the high clock speed of the FPGA.

In [40], Kirovski, Potkonjak, and Guerra reported a cut-based functional
debugging paradigm that leverages the advantages of both emulation and simulation. In
this approach, test vectors are applied to the DUT by emulation tool to achieve simulation
speed improvement. When the design error is detected during emulation, the computation
can bé switched over to simulation tool for full design visibility and controllability. The
execution can be rolled-back 1o any arbitrary instance in run time, which eases debugging

process. The authors claimed that, with a low hardware overhead, the proposed approach



along with its accompanying algorithms demonstrated effectiveness when used on a set
of benchmark designs.

There are many other publications on simulation-emulation co-operation, and here
only some representative ones are presented. As analyzed before, the purpose of this co-
operation is to take advantages of both simulation and emulation. Simulation provides
good controllability and observability for signals in the design, but its slow speed
prevents it from effectively handling large designs; in-circuit emulation, on the conirary,
can achieve high execution speed, but its poor controllability and observability makes
debugging much more difficult. The desired solution would be a simulation method that

offers high speed and, at the same time, maintains good controllability and observability.

3.5 ﬂsing Rapid Construction éf Verification Environment

A verification environment is an infrastructure for simulation-based verification.
Before conducting simulation using any simulation orijented technigues, a verification
environment must be properly constructed. The way that a verification environment ts
architected has an immediate impact on simulation efficiency, and, more importantly, it
affects the possibility of reusing the same verification environment, or certain
components of it, for verification of other designs.

However, creating a verification environment is a fime-consuming process. When
~ a new product’s time-to-market is shrinking in a never-ending manner, the tire spent on
creating a verification environment and the time actually used on simulating a design
have to be well-balanced, so as to achieve satisfactory verification preductivity. Among

the endeavor s of accelerating the overall simulation-based verification process, searching



for means to reduce the time consumed on constructing a verification environment is
absolutely an imperative one.

In recent years, issues of improving the effectiveness of a verification
environment and reducing the time spent on constructing it have been intensively
addressed. For exampie, verification specific languages, such as Vera and the e-language,
were developed to remedy the deficiency of using hardware description languages to
handle verification tasks; the increased automation level has ever changed the traditional
concept of a testbench; and the desire of reusing verification components became a
reality with the introduction of verification intellectual property (VIP). All those topics

are discussed separately in Chapter 5: Verification Envircnment Construction.



4.3 introduction

MULATION-VECTOR GENERATION

Simulation-based verification attempts to capture design errors by applying

simulation vectors {(test patterns) to the design-under-test (DUT) and observing its fauity

behavior.
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Figure 5: Conventional simulation scheme
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Simulation vectors are simply input vectors to the DUT that causes the presence

of a design error to be observable during simulation. Because of the increasing size of the

design and the growing demand for bug-free product, the amount of the simulation

vectors required io verify a design is growing larger and larger. The magnitude of the

* testing space has reached the level that it is impossible to probe every single point in it

due to the time and resource constraints. Therefore, to reduce simulation time without

sacrificing the verification quality, the most effective simulation vectors must be obtained

fad
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such that the least amount of simulation vectors can be used to uncover the greatest
number of design errors. Usually, the effectiveness of a set of simulation vectors is
measured by coverage metrics, such as code-based metrics, functionality-based metrics,
spec-based metrics, observability-based coverage, etc. [41].

An ideal approach to verifying a design would be exhaustive testing, in which all
possible input vectors and their combinations are applied to the DUT. Theoretically, this
method can achieve the highest design error coverage; realistically, however, it is
infeasible to exercise all input combinations unless the DUT is a combinatorial logic of
very small size, which is often not the case in reality.

In industry, the following two types of simulation-vector generation techniques
form the backbone of the traditional simulation-based verification methodology {42}
directed testing and random testing. In directed testing, the simulation vectors are
manually created by hardware designers, and they aim at verifying the important
functionalities of a design. Since the simulation vectors are hand-~crafied, some hard-to-
detected exceptional (the “comer™) cases can be purposely targeted. Unfortunately,
directed testing suffers from some major drawbacks: (1) the simulation-vector generation
process is far from automation, which means experienced designers have to dedicate a
considerable amount of time in writing tests; (2) the completeness of the manually
generated tests is almost impossible to acquire as it is difficult to think up and write test
vectors that would simulate every aspect of a design; (3) the errors infroduced by
misinterpretation of a design specification or incorrect specification itself are likely to

escape, since the designers are the same group of people whe interpret the specification



and later write the tests. In random testing, the simulation vectors are randomly generated.
Comparing to the directed testing, random testing is a simpler and cheaper testing method.
The problem of the randomly generated vectors is their inability of detecting redundant
fauit [43] and their poor error coverage for most sequential circuits [44].

Simulation vector plays a critical role in simulation-based verification. The
quality of simulation vectors have a direct impact on simulation performance: good
simulation vectors are short so that simulation time can be reduced; good simulation
vectors have high error coverage so less bugs will be missed. The simulation vectors’
importance drives many hardware engineers and researchers to seek for better ways to
generate test vectors of high quality.

This chapter highlights some of the research work that has been done on
simulation-vector generation. Section 4.2 introduces vector generation techniques that
borrow test sets used for physical fault testing, and section 4.3 describes some semi-

formal methods for simulation-vecter generation.

4.2  Borrowing Test Sets from Physical Fault Testing
4.2.1 Moetivation

Physical faults usually refer to manufacturing defects in digital systems that are
mntroduced because of the imperfection of the chip fabrication processes. Comparing to
_ functional verification, physical fault testing, or chip testing, is one of the more
successfully tackled problems in today’s VLSI chip development [45]. Often, physical
faults are modeled as logical faults, which, in turn, can represent many different physical

defects, such as shorts, opens, bridges, etc. The frequently used fault modei 15 the so



calied “single stuck-line (SSL)” model, in which a single intercommection line is
permanently stuck st one logic value: stuck-at-zero or stuck-at-one. Test generation
algorithms for such fault models, like the D-algorithm, the path oriented decision making
(PODEM) algorithm, =tc., are well-studied; and automatic test pattern generation (ATPG)
tools, such as GENTEST, ESSENTIAL, FASTEST, etc., are commercially available. So,
the questions are: whether the test generation techniques for physical fault testing can be
borrowed for sumulation vector generation; and if they can, how to make use of the
borrowed test vectors in tackling design errors during functional simulation.

The similarity between hardware design verification and physical fault testing has
inspired some investigators to adopt physical fault testing techniques in generating test
sets for design errors [8] [46] [47] [48] [49]. However, the gap in abstraction level
between the implementation and the specification often imposes difficulties in mapping
empirical design errors to physical fault models [50]; and the test generation for large

sequential circuits, such as pipelined microprocessors, is still a to-be-solved problem.

4.2.2 Examples

In [8] and [46], Hussain Al-Asaad and John P. Hayes proposed a model-based
automated design validation scheme for gate-leve! combinational and sequential circuits,
which borrows method from test generation for physical faults. In this work, commonly
. seen design errors that cause malfunction of logic circuits are classified into five types:
the gate substitution error (GSE), the gate count error (GCE), the input count error (ICE),
the wrong input error { WIE), and the latch count error (LCE}. For each type of these gate-

level design errors, its unique characteristic is analyzed and the corresponding detection



requirement is derived; then the design error is carefully mapped into single stuck-at line
{SSL) faults; finally, a standard automatic test pattern generation (ATPG) program and
simulation tools are emploved to generate test vectors, which will be utilized as
simulation vectors in design verification process. The critical step of this method is the
mapping from some design error model to the single stuck-at line fault model. This
process includes the modification of the netlist of the to-be-tested design (or equivalent
description) and the injection of a set of predefined SSL faults.

The experiments on the benchmark circuits demonstrate that the generated test
sets via proposed approach are small and have high error coverage. Al-Asaad and Hayes
also pointed out that a design passes the tests is guaranteed to be correct with respect to
the modeled faults only, and this limitation is due to the fact that the complete set of the
design error model 1s unknown.

In [47], Chen et al. studied the application of universal test set (UTS) to design
verification. The UTS, based on the unate function theory [51], has been studied by many
researchers [52] [53]. The results based on those studies have indicated that the UTS,
generated from the functional specification, can be used to detect single and multiple
stuck-at faults. Chen et al. analyzed the relationship between the design error models (e.g.
the missing wire error, the extra wire error, etc.) and the stuck-at fault models. The
analysis shows that the test set used to detect stuck-at faults detects most of the design
errors. This indication motivated Chen et al. to use UTS as test vectors for design error
- detection. The reported experiment results show that the application of UTS 1o design

verification is efficient and memory-saving.
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4.3  Simulation-vector Generation via Semi-formal Methods
4.3.1 Motivation

With the rapidly growing verification complexity, many engineers and 1esearchers
try to combine the advantages of formal verification and the traditional simulation-based
verification together to validate large designs [42] [541[55]1 [56] [57]1 [58] [59]. Many of
the studies attempt to make the existing simulation-based verification more formal by
using coverage metrics as heuristic measures to quantify the completeness of verification

and to guide the generation of input vectors.

4.3.2 Example: Coverage Guided Random-simuiation-vector Generation

The traditional random testing randomly selects as many test vectors as possible
with the hope of achieving high simulation coverage. However, the metrics used to
measure the coverage of a set of simulation vectors and the method employed to generate
those vectors are often disconnected [54]. This disconnection unavoidably leads to poor
simulation coverage even a large number of random simulation vectors have been applied
to the DUT. Many researchers have tried to solve this problem by integrating coverage
metrics into the simulation vector generation process [42] [54] [55] [57]. For instance,
[42] uses trajectory graph as a coverage metric to quantify the test coverage of a set of
simulation vectors; and [57] presents a method using genetic algorithms to guide random
simulation. The similarity among those studies is that they all try to use certain guidelines
to direct the random simulation so that to achieve higher simulation coverage. Below,
Tasiran and Fallah’s work is elaborated to show the essence of the guided random

simulation.



In [55], Serdar Tasiran and Farzan Fallah presented a simulation-based semi-
formal verification method for sequential circuits that are described at the register-
transfer level. In their work, the generation of the simulation vectors is guided by the
observability-based coverage analysis. Figure 6 depicts their biased-randor simulation
process.

The coverage metric used to direct the simulation-vector generation is the so
called “tag coverage metric.” In this coverage metric, a code segment is considered
covered only when it is exercised and affects an observed node of the circuit during
simulation. Apparently, tag coverage is superior to code-based coverage for its paying
special attention to the case where a design error is exercised but its effects never get

propagated to the observed nodes.

Biased random U=, 1, ... Simuiatien Tag coverage
input generation L I analysis
J N
i1
R T[

Re-gptimization of
input probability Al
distributions

Figure 6: Tasiran and Fallah’s biased-random simulation with coverage feedback

Within the framework of the proposed method, for a given DUT and a set of tags,

the goal is to determine the probability distributions (PD) for the primary inputs of the



circuit in conjunction with possible input vectors. The probability distribution function R
controls the selection of input vectors to the circuit during simulation runs: R; (v) = o,
which rmeans input / is assigned to v with probability a. As illustrated in Figure 6, the
observability-based coverage metric (here the tag coverage metric) is used to identify
portions of the DUT not exercised by the previous simulation run. The PD optimization
algorithm then selects the R™ based on the computation of the “merit functions,” which
analyzes the tags to be covered, the DUT, and the probability distribution function and
estimates the number of tags that have a high likelihood of being detected during the
simulation: for each given R. Finally, the R™" is used for biased random input pattern
generation that targets at the non-covered portions of the circuit. A simulation run using
R is performed until the tag coverage stops to improve, and the PD optimization is |
performed again to target the remaining set of tags. The whole process repeats to the
point that no more tags are covered.

The reported experimental results indicate that the presented approach can
achieve better tag coverage than uniform PDs in much fewer simulation cycles for some
circuits, but there are some circuits that the uniform PDs give poor coverage and the
proposed approach also failed to improve the coverage considerably. Tasiran and Fallah
also suggested that the biased random simulation be complemented with other

deterministic methods to achieve overall good verification performance.

4.3.2 Example: Coverage Guided Simulation Vector Transformation
In [56], C. Norris Ip described another semi-formal technique to guide simulation

vectors generation. In this technique, the concept of abstract state exploration nistory,
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which was often used for reachability analysis in formal verification, is introduced to a
-stmulation environment. Moreover, a test stimujus transformation method, which can
transform the existing test suite to a desired new test suite on-the-fly, is also presented.

A state exploration history is simply a summary of what simulation vectors have
been applied to the DUT and what design states have been exercised. During simulation,
this state exploration history is maintained in a very abstract fashion and used to provide
the basis for test stimulus transformation. Figure 7 illustrates the test stimulus

transformation process proposed by Norris Ip.

Existing test suite Design implementation
Transformed
test stimuli
Transformers g Simulator
Approximated
current state

Figure 7: C. Norris Ip’s test stimulus transformation

In a typical traditional simulation scheme, after a simulation environment
exercises a design description by applying stimuli (test vectors} from the testbench, some
coverage tool is used to measure the coverage, and then new test vectors are manually
written to target at the uncovered portion of the design. Different from the traditional

simulation scherae, Norris Ip’s approach tries to auiomate the generation of test vector. it
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utilizes a dynamically collected state history as a concrete coverage mefric fo guide the
stimuli transformation for obtaining more effective simulation vectors.

As depicted in Figure 7, a set of transformers and a simulator are concurrently
running during simulation: the simulator collects the state exploration history while
performing its regular simulation task; while the transformers perform test suite
transformation for covering more unexplored states, based on the analysis of the history
information provided by the simulator and the examination of the test suite for the current
simulation step.

Experiments on two practical designs, the DASH cache coherence protocol and -
MPEG2 decoder, show that the reported method can increase simulation coverage and
reduce simulation time. In theory, if the state exploration history maintains a complete
history of state exploration, 100% simulation coverage could be achieved for & DUT;
however, the state explosion problem makes it infeasible to keep a complete state
exploration history. Thus, although the method removes lots of the redundant work
caused by ineffective simulation vectors, the full simulation coverage is not guaranteed.
The uniqueness of this method, as claimed in [56], is that it uses a transformation
framework instead of a test vector generation framework to produce simulation vectors;

therefore the existing test suite and the simulation technology can be reused.

- 4.3.3 Example: Other Semi-formal Approaches

Normally, the effectiveness of the simulation vectors is measured by some
coverage metrics, but coverage metrics cannot always correlate with error coverage

because the relationship between them has not been well understood. In [59], Gupta et al.
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present their work on generating a property-specific testbench for guided simulation.

- Although their work focuses on the automatic generation of testbenches instead of
simulation vectors, a vector generator along with a checker 1s embedded in the testbench
obtained. The vector generation constraints are determined based on the analysis of the
design and the properties being checked, rather than coverage measures.

There is also a line of work that uses symbolic methods to achieve effective
simulation [607] [61]. For example, Geist et al. reported a semi-formal method for direct
test vector generation by using symbolic techniques [60]. In their method, a combination
of mode! checking techniques and symbolic simulation is used to generate test vectors,
and the vector-generation constraints are derived based on the transition coverage.and

some temporal properties in a finite state machine.
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IFICATION ENVIRONMENT CONSTRUCTION

.3 Introduction

(%]

Verification environment construction is a fundamental process in a hardware
design cycle. This process consumes a huge portion of verification time and has a major
influence on the overall verification productivity. In recent years, new languages, 1deas,
and tools that address the efficiency of constructing the verification environment, are
proliferating. For instance, quite a few languages have been developed for hardware
verification; the concept of intellectual properties (VIPs) has been brought into the
verification community, and the EDA companies has begun to offer testbench automation
tools that automate many verification tasks that were done manually in the past.

This chapter collects information on the construction of verification environment.
Section 5.2 contains descriptions of a line of hardware verification languages; Section 5.3
briefs the status of the industry-standard hardware verification language; Section 5.4
introduces layered testbench architecture; and Section 5.5 discusses verification

mtellectual property.

5.2 Hardware Verification Languages (HVL)

) 8.2.1 Moetivation

The longing for a new verification language stems from the realization of the
existing hardware description languages’ limitation. Currently, the hardware design is

still dominated by the use of Verilog and VHDL; and these two languages were created at
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the time when the hardware engineers knew exactly what gates they wanted and where
[62]. Inherently, the existing HDLs are more suitable for register transfer level (RTL)
design; they lack abstraction and are not very expressive with respect to the testing
constructs. As design moves towards system level and verification complexity gets more
and more severe, the existing HDLs can no longer efficiently handle verification tasks to
meet the demands for higher productivity and better quality. The deployment of high-
level languages designated for verification purpose becomes irresistible.

According to Synopsys’ white paper entitled “OpenVera Technology
Backgrounder” [63], a desirable high-level verification language would be the one that
meets the following requirements: (1) It should support the modeling of testbench
functionality at a high level of abstraction; it must be abie to specify the stimulus {test
vectors), compute the expected response of the device 1o the applied stimailos, and model
the test fixtures that allow tests to be applied and results to be checked. (2) It should
support directed test, random test, constrained -random test, and the random pattern
generator must allow the constraints io be spéciﬁed in a compact, declarative way. {3) It
should support the specification of metrics to measure that, to what extent the verification
goals have been met; and the language should allow these metrics to be querted
dynamically so that the stimulus generation can be adjusted to maximize test
effectiveness. (4) It should also allow the user to specify connections to HDLsand Cina
' convenient way. |
Broadly speaking, there are two ways of forming a hardware verification language:

(1) by extending the existing languages’ capabilities, for example, System Verilog extends



the power of Verilog; or (2) by introducing a new verification language, such as Vera.
Since many EDA vendors tend fo use their own proprietary languages within their
dedicated environments, there exist far too many hardware verification languages. A
collection of hardware verification languages that briefly described below is not intended
to serve as a compiete list of the existing HVLs. However, the HVLs included in the
collection are believed to be the most popuiar ones. The list is inspired by [64] with a few
more languages added to 1t, and the placement of the languages is according to the

alphabetical order.

5.2.2 Examples of the Existing HVLs

5.2.2.1 DGL

DGL, stands for “data generation language,” was originally designed to generate
functional level tests for VLSI designs. Although DGL was based on a probabilistic
context free grammar, it provides several features for ;generating non-context free
languages to accommodate the fact that many tests contain context sensitive data or data
that is difficult to describe using a context free grammar. The DGL was designed to
facilitate the construction of data generators, and the DGL compiler can be used to create
a data-generator once the format of the test data had been described in DGL; Tests
generation using DGL can be either systematic or random, or combination of both [64].
. According to the DGL reference manual [65] authored by the creator of DGL, Peter M.
Maurer, DGL is still under development and will probably remain so for some time and
mainly used as a research tool to support research activities in VLSI testing and design

verification.
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5.2.2.3 e-language

The e-language [66], introduced by Verisity {www.verisity.com), is created
especially for verification purpese. It is built on object-oriented programming paradigm
with additional constructs provided for specification and verification. Verisity has
launched its LicenseE program for open licensing of the e verification language [67] with
a hope of making e-language the de facto standard verification language in hardware
industry. According to [68], industry leading electronics companies including ARM,
Cisco Systems, etc. have joined the LicenseE program to help drive the e language

towards open public standardization.

5.2.2.4 Jeda

Jeda [69], a new functional verification language, was first developed at Juniper
Network, Inc and then moved to Jeda Technologies, Inc. The language is designed for
modeling and verifying hardware design. Jeda suppor{s flexible and dynamic concurrent
programming with time/cycle concept; it also provides various system classes, such as
semaphore and events, to allow the efficient construction of dynamic concurrent systeins.
In addition, Jeda supports object oriented programming, and the newly released Jeda
3.0.0 version comes with the feature that supports a new programming paradigm - aspect
oriented programming. The syntax of Jeda is based on C and Verilog with a few concepts
borrowed from C++, Java, and Perl. Jeda can either run with Verilog as the user PLI code
or be used as a standalone simulator. Jeda Technologies, Inc (www.jedatechnologies.com)

provides commercial support for Jeda Verification System.
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5.2.2.5 Libero

- Libero [70], written by Pieter Hintjens, is a free Programmer’s Tool and Code
(Generator that uses a finite-state machine as the underlying model. Users define the high-
level logic of a problem as a diagram, and Libero generates the code to implement the
written logic. Libero can generate code in C, C++, Java, Perl, Awk, 80x86 assembler,
COBOL, MS Visual Basic, MS Test Basic, UNIX C Shell, UNIX:Kom Sheli, UNIX

Bourne Shell, GNU Bash Shell, Rexx, PL/SQL, and PHP.

5.2.2.6 Murphi

Murphi [71], a free protocol description language and a verifier for finite state
concurrent systems, was onginally designed and implemented by David L. Diil, Andreas
Drexler, Alan J. Hu, and C. Han Yang; and later, it has been rewritlen, enriched, and
maintained by Ralph Melton, Seungjoon Park, C. Norris Ip, and Denis Leroy. Currently,
Murphi is maintained by Ulrich Stern (http://sproutsténfard‘edu/ulif) and Norris Ip
(http://sprout.stanford.edu/ip/).

Murphi is a protocol description language based on a collection of guarded
commands — conditions or action rules. The Murphi verifier, which is based on explicit
state enumeration, works by explicitly generating states and storing them in a harsh table
[72]. The algorithmic techniques in Murphi airn at exploring a given state space in the
most efficient manner to allow verification of large protocols. Murphi also provides
several special techniques for reducing the number of reachabie states while guaranteeing

that protocol errors will still be detected [73].
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5.2.2.7 RAVE

RAVE [74] is short for “Reuse Architecture for Verification,” and it 1s a
proprietary verification language from Forte Design Systems (www.forieds.com). RAVE
provides verification-specific command set, which allows user to easily create data
sources that model complex reai-world requirements. The language is designed to support
efficient generation and manipulation of large data sets, extensive random value
generation, creation of complex transaction flows, computation of expected values, and
reactive data generation and execution control for complete functional coverage. RAVE
has been used to support Forte Design’s verification suite - Quickbench Sequencer, and
its automated validation features play an important role in this product, especially in

runtime testbench control and direct information feedback to the designer.

5.2.2.8 Belidity

Solidify [75] [76] is a proprietary hardware préperty language from Averant
(www.averant.com). It is a HDL-like language that can be used to describe design
behavior. As a general-purpose property verification language, Solidify can be used to
express temporal relationships, sequence of events, and verification lcops; and it also
supports user-defined variables, recursive macros, procedures, and functions. Averant’s
Solidify, an HDL (Verilog and VHDL) static functional verification tool that exhaustively

verifies properties of Verilog or VHDL designs, is based on this proprietary language.
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5.2.2.9 Spin

Spin [77] is a software tool that is widely used for the formal verification of
- distributed software systems. It was developed at Bell Labs in the original Unix group of
the Computing Sciences Research Center, starting in 1980. Spin targets software
verification, not hardware verification. Spin offers three usage modes: it can be used as a
simulator that allows rapid prototyping with a random, guided, or interactive simulations;
it can be used as an exhaustive verifier, which is capable of rigorously proving the
validity of specified requirements; it can also be used as a proof approximation system
that validates large protocol systems with maximal coverage of the state space. More
features about Spin can be found at Spin Home Page {77].

PROMELA, Spin’s input language, is a non-deterministic language that is loosely
based on Dijkstra’s guarded command language notation and the notation for /O

operations from Hoare’s CSP language.

5.2.2.10 SUPERLOG

Superlog, developed by Co-Design Automation Inc., is a superset of Verilog with
the addition of C programming, system and verification capabiiity. The language was
designed to be used as a single language for four purposes: system specification,
hardware description, design verification, and programming [78]. Superlog’s creaior Co-
Design Automation Inc has tried to move 2 step toward the eventual standardization of
Superlog [79], and it has donated what it calls the extended synthesizabie subset (ESS) of

Superlog to the Accellera standards organization [80]. In August 2002, Co-Design



Auiomation Inc was acquired by Synopsis Inc, the EDA leader, who intends to combine

Co-Design's Superlog, with Synopsys' own Verilog simulator {81].

5.2.2.11 SystemC

SystemC [82] {83], a product of Synopsis Inc., s a standard design and
verification language that can be used to describe hardware/software systems at multiple
levels of abstraction. It is built in C++, an object oriented language, and it offers high
abstraction modeling and fast simulation performance [6]. The formation of SystemC
Verification Library (SCV) has extended SystemC’s capability to verification domain
(please cross refer to the description on TestBuilder).

SystemC is maintained by Open SysternC Initiative (OSCI), which is a non-profit
organization composed of major EDA and IP companies, universities, and ndividuals
that contributes to and governs SystemC’s development and distribution. More

information about SysternC and OSCI can be found at the web site: WWW.Systeme.org.

5.2.2.12 SystemVerilog

SystemVerilog, owned by Accellera, is an Acéellera {(www.accellera.org)
approved standard hardware design and verification language (HDVL) [84]. The
language is an evolution of IEEE 1364 Verilog standards, and it extends Verilog into the
high-level design and verification domain. The intention of the language is to eliminate
- many of Verilog’s past limitations and offer a unified language for both design and
verification. For design purpose, SystemVerilog provides high-level design constructs for

concise design; to support verification, SystemVerilog 3.1 has added assertions and



testbench automation capabilities [85]. The introduction of assertions into SystemVerilog
allows designers to define design properties more concisely, and the application of these
assertions to smaller modules or sub-blocks can reduce certain verification load on unit
level testbenches [85]. SystemVerilog’s newly added testbench automation features can
be applied to create directed, random, pseudo-random tests and many other aspects to

automate testbenches.

5.2.2.13 SpeeC

SpecC language is a system-level language that was specifically developed to
address the challenges of system-on-chip (SoC) design that involves both software and
hardware. It was developed in Gajski’s group at University of California, Irvine
(http://www .cecs.uci.edu/~specc/), and it has been proposed as 2 standard system-level
language for adoption in industry and academia [86]. The standardization of the language
is promoted by STOC, SpecC Technology Open Cons;)rtium {www.specc.org).

SpecC is based on the ANSI-C software programming language, and it1s a
superset of C language [87]. The language development has focused on adding keywords
to the basic C language to support hardware description at a high level as a basis for
synthesis [62]. The SpecC allows the system functionality to be specified in a clear and
precise way and the obtained specification can be used for simulation and as the input to
the synthesis in the SpecC design methodology [87]. SpecC is also based on program
state machine (PSM) model of computation to model a system at different levels of
abstraction [88]. Although SpecC is backed by more than 30 companies and 30

universities woridwide [88], the precise meaning of the execution semantics is still under
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development [86]. More information about SpecC can be found at SpecC Technology

Open consortium’s web site: htfp://www.specc.org.

5.2.2.14 TestBuilder

TestBuilder, developed by Cadence Design Systems Inc., is a powerful testbench
authoring language that extends C++ for hardware verificaticn [64]. The open source
TestBuilder provides HDL signal class, data structures, concurrency, transaction-based
verification, constrained randomization and temporal check API [64].

In the effort on unifying SystemC and TestBuilder into one standard language for
design and verification at both the system level and RTL level [89], Cadence Design
Systems, Inc. proposed Open SystemC Initiative (OSCI) to extend SystemC by
leveraging open source TestBuilder’s verification functionality. The proposal was granted
by OSCI, and the specification is called SystemC Verification Library (SCV), which
provides a verification foundation for SystemC [89]. ”fhe SCV includes the following
features: randomization facility, random constraint facility, verification models,
transaction recording support streams, transaction recording facility, smart data objects,
and full power and expressiveness of C++. More information on TestBuilder and SCV

can be found at Cadence Verification Extension (http://www.testbuider.net/).

5.2.2.15 OpenVera

OpenVera is an open-source hardware verification language. It is developed
specifically for functional verification. The language’s predecessor is Synopsys’

(www.synopsys.com) proprietary language Vera. Vera is built on object-orientated
p prop guag i



programiming principle. It extends the capabilities of general-purpose languages, such as
(C++, by adding constructs needed for effective design verification. Vera supports
complex data structures, built-in data types for verification, powerful set constructs for
defining constraints {9¢], and many other essential features; and the language, developed
especially for testbench writing, allows users to build testbenches at a higher level of
abstraction than HDLs (Verilog and VHDL) [91].

In attempting to forge an industry-standard testbench generation language,
Synopsys Inc opened its proprietary language —Vera- as verification language standard in
April 2001 [91]. Synopsys also has launched the Vera Open Source Initiative for third-
party vendors. The open-source license of Vera is administered by the Synopsys-backed
OpenVera Group [92]. The latest development of CpenVerz can be found at the web site:

WWW.QpLD-vETa.Coml.

5.3 The Reality of Industry-Standard Vm‘iﬁcaﬁ;m Languages

Although tools, like generators, predictors, checkers, etc., that target at the
hardware verification bottleneck are continuously emerging into the market, none of them
is able to independently fulfill the verification task in a comprehensive fashion — no one
tool is best at everything. To gain enough confidence in the designs without missing the
time-critical opportunity in the marketplace, engineers have to rely on muitiple tools,
_ either developed m-house or purchased from the EDA vendors, to verify their designs.
This practice made integration of tools essential.

Furthermore, grasping a verification tool often involves learning a new

design/verification language. The EDA companies had historically developed and



marketed tcols based on their own closed, proprietary design languages, which
unavoidably imposes unnecessary learning curves on engineers as one need to know “the
language™ in order to use “the fool.” This extra learning load made the deplovment of
new tools much more difficult than it should have been. Currently, there are two
endeavors {rying to unload the language learning burden: one is to develop tools that
support muiltiple hardware verification languages, and another 18 to form an industry-
standard hardware verification language.

To address this “language explosion” problem and reduce engineer’s learning
load, some EDA companies are developing tools that support mixed languages. For
example, Mentor Graphics’ (www.mentor.com) simulator Mode!Sim supports VHDL,
Verilog, C/C-++, SystemC, and SystemVerilog [5]; Avery Design Systems, Inc.
(www.avery-design.com) has built a transaction-based verification test developraent
system called TestWizard that climinates the need of learning a new language by
allowing the tests be written in Verilog, VHDL, C/C++, and Perl [93]; Forte Design
Systems’ popular verification results analysis product Perspective added support for
OpenVera last year in addition to QuickBench, C/C++, and HDLs [{94].

It is commonly recognized by the EDA industry that tools based on proprietary ¢
languages may result in dead ends because they only foster small and fragmented markets
[5]. Meanwhile, the hardware design community is hunger for intercperability solutions:
' the engineers are putting oo much effort on procuring and developing translators, syntax
checkers, and other inefficient workarounds to make sure that the new tools interoperate

sinoothly with their own internal solutions. Therefore, forming an industry-standard
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hardware verification language is endorsed by both the EIDA vendors and the hardware
design community.

Open Source is a popular method for creating and promoting standards in mdustry
[95]. As described in section 3.2, languages like SystemC, e, SpecC, Vera, etc. are all
being pushed for standard to certain extent through the Open Source model. The intention
of those endeavors is to develop a complete solution to verification bottleneck around an
open, non-proprietary hardware verification language.

The form of any standard is an outcome of users’ demands combined with tool
provider’s efforts. As one looks back at the success of the HDL standards (Verilog and
VHDL), the similar trends have been seen and are growing stronger in the process of
forming industry-standard hardware verification languages. For mstance, Synopsys
released its commercial SystemC simulator, CoCentric System Studio, which provides an
advanced SystemC design and verification solution [96]; Forte Design Systems’ popular
verification result analysis product Perspecrive added support for OpenVera last year [94].
It will probably take some time for the standard HVLs to reach the success level that
HDL standards had reached years ago; however, much progress has been made and the

future of the standard HVLs is promising.

5.4  Layered Testbench Architecture
5.4.1 Motivation
In simulation-based verification, tests and DUTs are connected by testbenches.

The construction of testbenches is an important task in sirnulation-based verification, and



the verification effort expended on testbench development has made considerable impact
on the overall verification quality and cost.

Traditionallv, a testbench, in general, consists of a stimulus driver (a.k.a. test
vector generator), an output mnonitor, and some mechanism of checking off completed
tests and results. The shortening verification cycle demands more traditional manually
performed verification tasks be handed over to testbench, which brings the so called
“Testbench Automation.” Basically, testbench automation tools, such as Verisity’s
Specman Elite, Synopsys’ Vera, Avery’s TestWizard, etc., attempt to address the
functional verification bottleneck by automating the verification process. For example,
Specman Elite automates test generation and uses functional coverage analysis to ensure
the completeness of the verification [97]. Furthermore, in order to minimize the
verification cost and increase verification productivity, issues such as reducing the effort
on test development and debugging, enabling reuse oftests for sub-system level testing in
system-level testing, maximizing the reuse of the testbench across multiple projects, etc.,
must be seriously considered. All those factors necessitate improved testbench

architecture. Two layered testbench architectures are introduced below.

5.4.2 Examples

In [98], Mohammed Hawana and Rindert Schutten, from Synopsys Professionai
_Services, developed a systematic approach for testbench design, which targets functional
verification of complex multi-function system on a chip (SoC). In their approach, the
testbech is modeled as the so called “Verification Stack (V_Stack).” The V_Stack

consists of four layers: the hardware representation layer (V_Layer(), the hardware



abstraction layer (V_Layeri), the application transaction layer (V_1Layer2), and the

scenario and stimulus layer (V_Layer3). Figure 8 (from [98]) shows layered testbench

architecture.
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Figure 8: Hawana and Schutten’s layered solution

The lower layer provides a certain set of services to the upper layer while
shielding it from the lower-level details. Each layer in the stack performs clearly defined
tasks: V_Tayer O provides signal-level connectivity into the physicai represeniation of the

DUT; V_Layer | provides a bus-abstraction view of the hardware to ensure that the bus

trausactions issued by upper V_Layers will reach the DUT, regardless of how the DUT is
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represented; V_Layer 2 provides the abstraction needed to carry out the operations of the
SoC from the application point of view; V_Layer 3, the highest layer, enables stimuius
generation and provides high-level interface to configure the DUT, testbench, and the rest.

By using 3 layered approach, the proposed testbench architecture increases the
abstraction level on which the tests are written, which consequently reduces the effort
required to write a single test; it also uses self-checking techniques and advocates using
pseudo-random stimuius generation combined with functional coverage to reduce the
number of tests that are needed to excise the DUT; moreover, it allows the testbench to
be used for muitiple configurations, which enables the sub-system level tests to be re-
used in the system level context.

In this article, Mohammed Hawana and Rindert Schutten also reported the
successful use of the proposed approach n two designs: a Security Processor and a Fault-
tolerant PCIX to PCIX bridge chipset. The success demonstrates that the proposed
layered approach can significantly reduce the effort on test creation and debuggihg task.
The detailed explanation along with a real example can be found in Synopsys’ white
paper: Testbench Design, a Systematic Approach [98].

In [99], Bernd Stohr et al. presented FlexBench, a complete framework for SoC
verification at the Module and SoC level. The proposed verification framework is based
on a layered architecture depicted in Figure 9.

As shown in Figure 9, the proposed architecture is comprised of three layers: the
stimulus layer, the integration layer, and the service layer. The stimulus layer is the “user

interface” to the DUT, which provides a transaction level interface to the integration layer;
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the integration layer is imiplemented as a set of Drivers {D) and Monitors (M), which
performs actual driving and monitoring of the DUT pins; the service layer provides some
system services and cormects the stimulus layer and the integration layer. FlexBench i1s an
example that shows how the verification productivity can be significantly increased by

raising the abstraction level from pin-level to the higher level.
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Figure 9: Bernd Stohr et al.’s FlexBench architecture

5.5 Verification Intellectual Property (VIP)

The use and reuse of intellectual property (IP) in the hardware design community .
has become a cormmon practice. The motivation behind it is the desire to close the gap
between the cost and the time-to-market. As design verification gets more and more
. complex and time-consuming, there has arisen a pressing need for standalone, pre-
verified, and built-in verification infrastructure, which can be easily plugged m the
simulation-based verification tests [100]. This pressing need brings the arrival of the so

called “Verification Intellectual Property (VIP}.”
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The purpose of verification [P is to aid engineers in the task of validating the
functionality of a desigp by accelerating the development of a complete verification
environment. Since the vernfication IP components are pre-venfied to the standard
protocols and contain the necessary infrastructure for testbench generation and checking
mechanisms [100], the use of VIP components can reduce the time spent on building the

verification environment, thus cut down the time to the first test.

Table 6: OpenVera verification IP solutions

Company OpenVera Verification IP

ControlNet India IEEE 1394, TCP/IP Stack

GDA Technology HyperTransport

HCL Technologies {12C

Integnology Smart Card Interface
nSys SIEEE 1284, UART
Qualis Design Ethernet 10/100, Ethernet 10/100/1G, Ethernet 10G, PCI-X,

PCI, PCI Express Base, PCI Express AS, 802.11b, ARM

AMBA AHB, USB 1.1, USB 2.0

Synopsys, Inc. AMBA AXEB, AMBA APB, USB, Ethernet 10/100/1000, IEEE

1394, PCI/PCIx, SONET, SDH, ATM, IP, PDH

In the VIP development community, Synopsys, a world leading EDA company,

plays an initiative role. In September 2001, Synopsys launched the OpenVera Catalyst
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Program, which creates a broad network of verification companies with expert tool and
methodology knowledge in leading verification solutions [101]. One important mission
of the participating members of the Catalyst Program is to create and commercialize
OpenVera verification intellectual property (VIP) to accelerate the development of
compiete verification suites. Till now, according to Catalyst Program’s web site, 30
companies have joined the OpenVera Catalyst Pragram. The current available OpenVera
VIP solutions are listed in Table 4.

The guidelines for the structured development of verification IP based on
OpenVera can be found in Synopsys’s white paper - Verification Intellectual Property
{VIP) Modeling Architecture, Guide to Structured Development Using OpenVera,
version 1.1. More information on OpenVera Catalyst Program and updated OpenVera
verification IP solutions can be obtained at Catalyst Program’s web site; www.open-

vera.coni/catalyst.



6 CO-SIMULATION IN CO-DESIGN

8.1 Introduction

Despite the fact that the correct functions of electronic systems, especially
embedded systems, often require the hardware and software components closely co-
operate together, the software and hardware development fields evolved along the
separate paths through the end of the 20™ century [102].

Traditionally, the split of the hardware and software development paths takes
place in the early design cycle, usually on ad hoc basis [103]. After the partition between
the hardware and sofiware 1s decided, the software and hardware teams ake different
approaches and work independently with very little interaction. Later, during system
integration, which usually happens after the hardwareis fabricated and the physical
prototypes are buiit, the software and the hardware are finally combined and tested
together as a whole system. If problems were discovered at this stage, the software and/or
hardware components had to be modified: the modification of the software is commonly
used to work around the hardware inadequacies [104]; and the development of additional *
hardware may be necessary to compensate the software’s poor performance [105].

Although in the past, many electronic systems were successfully built using the
design approach described above, this conventional design approach is unable 10 manage
today’s design challenges - the short time-to-market, the enriched system functionality,

the increased design density, the strict design constramts, etc.. The separation of



hardware and software design paths made late bug discovery an inevitable scenario.
Modifications on either hardware or software attempting to fix the bugs in the late design
phases usually bring significant cost and elongated design cycle. In addition, with the
 traditional design approach, the exploration of the various design alternatives and the
evaluation of the hardware-software tradeoffs are very restricted. Once the separate
developments of the hardware and software proceed, the retraction of the hardware-
software partition is extremely difficult and very expensive. Unfortunately, because
different design options often lead to dramatically different cost-performance outcomes
[1061, it is always worthwhile to explore different design options and evaluate the
hardware-software trade-offs before making a final design choice.

In order to address the problems associated with the traditional design approach
and close the cost and the time-to-market gap caused by the differences in the hardware
and software design flows [107], a unified and cooperative design approach, the
hardware-software co-design, has been proposed and promoted. It is difficult to give co-
design an accurate and comprehensive definition because different research groups tend
to define it somewhat differently. For example, in [108], co-design is defined as the
methodology, tools, and practices that support the integration: of the hardware and
software components during a system’s design and developrent; and in [109], co-design
is described as the approach that aims at providing an integrated environment for

concurrent specification, validation, and svnthesis of both hardware and sofrware.
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Notwithstanding the numerous definitions of co-design, Michaela Serra and
William B. Gardner listed the major definitions of co-design in [110], which capture the
essence of the area:

= the cooperative design of hardware and software components;

= the unification of currently separate hardware and sofiware paths;

= the movement of functionality between hardware and software;

* and the meeting of system-level objectives by exploiting the synergism of

hardware and software through their concurrent design.

Traditional design flow Concurrent (co-design) flow

Start Start

HwW SW
AW SW
Designed by independent Designed by Same group of
groups of experts experts with cooperation

Figure 10: Traditional design flow vs. co-design flow

Different from the conventional design approach, co-design focuses on a unified
design environment. It emphasizes the use of the same integrated infrastructure for the
development of both hardware and software to achieve the improved overall system

performance, reliability, and cost effectiveness. In co-design, the unification of the

o
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traditionally separaie hardware and software design paths cannot be characterized mnerely
by the feedback sessions across the hardware and software teams or the weekly held
designers meetings. The successful deployment of a co-design process dictates the use of
an effective co-simulation platform and powerful tools that can support the exploration,
prototype implementation, and rapid evaluation of the repartitioning of the functionality
between hardware and software. Figure 10 (from [109]) shows a stmple comparison

between traditional design flow and the co-design flow.
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Figure 11: Co-design flow highlighting co-simulation at different abstraction levels.
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During the past decade, co-design has gained enormous attention from both
‘academia and industry. The early work on co-design came from academia [ 1111, which
can be exemplified by Ptolemy - 2 framework for hardware-software co-design and co-
simulation developed at the University of California-Berkeley [112]. A few years later,
commercial solutions, such as Mentor Graphics” Seamless [113], and the Eaglel , EagleV
developed by Eagle Design Automation {now merged with Synopsys), gradually surfaced
in the market. Currently, research in the area of co-design concentrates on the following
themes [11G] [114]: system modeling - methodologies for specifying hardware/software
systems; system partitioning - how to divide specified functions between hardware and
software; hardware-software co-synthesis - the generation of the hardware and the
software as well as the communication between them; and the hardware-sofiware co-
simulation.

Within a co-design process, co-simulation plays an indispensabie role and 1s of
crucial importance in the validation of the heterogeneous systems. In a simplistic way,
co-simulation can be described as verifying if hardware and software function correctly
together {115]. It usually combines the simulation of the software running on a
programmable processor with the simulation of the weakly programmable {or fixed)
hardware subsystems [109]. Like other hardware verification techniques, co-simuliation
aims at verifying the product’s functionality as much as possible before the actual
' hardware is fabricated [116]. In the past, the separation of the hardware and software
design paths severely confined the software developers’ ability to test software

components; and co-simulation was conducted only after the hardware is deemed to be



working and stable [116]. With the maturity of the behavioral model simulation and the
improvement of the simulation tools, co-simulation can now be adopted throughout a
system’s development cycle. Figure 11 (from [117] and [118]) presents different levels in
a co-design flow that co-simulation can be performed.

With the adoption of co-simnulation at different phases throughout the co-design
process, co-simulation has become an imperative aid to many critical design tasks. For
example, co-simulation is utilized in the tasks of exploring the hardware-software
tradeoffs, evaluating the design alternatives, optimizing the hardware-software partitions,
checking the correctness of the interface between hardware and software, assessing the
hardware or software performance, and verifying the functions of the whole system. As
co-design becomes a dominant design trend, tremendous research effort has been
invested in the development of co-sirmnulation environment to better serve the co-design
needs.

This chapter surveys the co-simulation approaches and tools. Even though co-
simulation is oniy one of the many essential steps in a co-design process, it is rather a rich

field to explore, and because of this, the survey can merely serves as an introduction.

6.2 Co-simulation Approaches

Hardware-software co-simulation involves verifying both the hardware and
_ software components of a system in a concurrent and interactive fashion. As a result of an
endeavor of more than a decade in finding the effective and efficient methods of co-
verifving both the hardware and software components of an electronic system, many

commerciai and non-commercial co-simulation tools and techniques are available. This



section arranges the existing co-simuiation solutions into groups and introduces them
accordingly.

Depending on the classification criterion, co-simulation approaches can be
categorized differently. Based on how the hardware and software components are glued
together, co-simulation techniques can be grouped into two broad categories [115]:
technigues that require processor models and technigues that do not require processor
models. 1If the number of the needed simulators is considered, then co-simulation
environment can be classified as the homogeneous co-simulation and the heterogeneous
co-simulation. Moreover, if the geographical location of a co-simulation environment is
taken into account, then the approaches can be divided as the distributed co-simulation

and the local co-simulation.

6.2.1 Requiring Processor Models vs. Requiring no Processor Models
6.2.1.1 Processor Models

Not only can processor be modeled in both hardware and software, but also the
software processor models can be built in various levels of abstraction with each
abstraction level offering different accuracy/performance trade-off. Software models in
the high level of abstraction offer good performance at the price of losing significant
timing accuracy; software models with detailed timing information, on the other hand,

~ often demand long simulation time.

6.2.1.1.1 Hardware Processor Models

When a processor is modeled in hardware, the co-simuiation environment, as

shown in Figure 12 (from {119]}, often includes a board with the target processor or
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FP(GAs mounted on it [119]. The compiled software is loaded into the on-board memory
and runs on the target processor during simulation. If the target processor 1s not available,
then a gate-level description of the processor’s functionalily can be mapped onto the on-

board FPGAs to emulate the target processor [ 120].

Target Processor

Memo
or Memory
FPGA
Interface
maodeler board
C code HDL code
software execution hardware simulator

.

Figure 12: Hardware modeler

This scheme, in fact, is based on the same idea used by the hardware-accelerated
simulation, which is introduced in section 2.2.4.1 of this survey. Modeling processor in
hardware can increase simulation speed, which is important to the verification of the
large gate-ievel designs. In [120], Dreike and McCoy stated that the speed of the entire
simulation, using the hardware-accelerated environment, is controlled by either the
software simulation or the communications overhead between the hardware processor
and the simulator. Although the hardware modeled processor can provide improved

simulation speed, to build up such a co-simulation environment and make the
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accelerators working correctly with gate-level models is costly and takes a lot of work
1201

Since the hardware-accelerated simmulation is described earlier in the survey, co-
simulation examples using hardware modeled processors will not be given here; but

similar approaches can be found mn section 3.3.

6.2.1.1.2 Software Processor Models

A Software processor model is a functional description of a processor [119],
which can be buiit at different levels of abstraction. According to the
performance/accuracy tradeoffs they offer, software processor models can be grouped
into the nano-second accurate model, the cycle accurate model, the instruction set
accurate model, and the bus functional model. A comparison among those software

models can be found in Table 5.

= The Nano-second Accurate Processor Model

The nano-second accurate processor model provides the highest timing accuracy
and the best debug capability among all the software models [115]. Because it captures
the most detailed functional description of a processor, many internal transitions need to *
be calculated during simulation; therefore, this type of processor models suffers from iow
performance. According to James A. Rowson [115], the typical performance for this type
" of model is 1 to 100 instructions per second. Also, the nano-second accurate processor
models are the hardest models to develop because they are often detailed to gate level.

Consequently, when co-design is still at the early phase of verifying system specification,
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it would be inappropnate to use the nano-second accurate processor modeis for co-

simulation.

= The Cycle-accarate Processor Model

The cycle-accurafe processor model can be used to accurately sirnulate a
processor’s behavior at the cycle-accurate level. The software model of this type provides
the correct transitions at each clock edge, but it does not ensure the exact delay time
needed for a transition [119]. Because it includes less functional information of a
processor comparing to the nano-second accurate model, the cycle accurate processor
model ofters the relatively iroproved simulation speed — 50 to 1000 insiructions per

second [115].

= The Instruction Set Accurate Processor Model

The instruction set accurate processor model is commonly inchuded in the
software development environments to assist software debugging process. It models the
values of the internal registers and memory, and it can be used to accurately simulate the
instruction fetch, decode, and execute units in a processor [1211]. Usually, this kind of
mstruction emulation model provides the execution speed at the range from 2,000 to
20,000 instructions per second [115]; and the speed gain is obtained by igunoring the
internal pipelines, hazards, and interlocks {115]. As a tradeoff to performance, the
" instruction set accurate processor models handle only approximate timing information or

no timing at ail {122].

u The Bus Functionai Model (BFM)



The bus functional model of a processor is the least expensive and most readily
available one, and it is often used to exercise and debug the hardware side of the
hardware/software intertace in a system [115][122]. The intent of the bus functional
models is to model the bus transaction of a processor instead of the functionality of the
processor [123]. It is normally derived based on a processor’s bus specification document,
not the functional processor description [124]. Hence, a BFM can only execute bus
transactions on the processor bus, often with cycle accuracy, but cannot execute any
instructions [121]. For this reason, a bus functional model is usuaily not considered as a
processor model. The simulation performance of the bus functional model is limited by

the hardware simulator used in co-simulation.

6.2.1.2 Techniques Require Processor Model

In the technigues that require processor models, co-simulation is performed by
simulating the final machine code on a processor mod:el [125]. During the course of this
simulation process, the hardware and software components are linked together by the
modeled processor. For that reason, the availability of the processor model becomes the
premise of the possible application of this type of co-simulation technique.

Using processor models in co-simulation environment are fairly common
[126][121]. Here one example is described to illustrate the rationale behind the choice of
~ different processor models at different design stages.

Séméria and Ghosh, from Stanford and Synopsys Inc., reported their SystemC
based design environment for hardware /software co-verification {121]. In this paper,

Séméria and Ghosh also described, in their co-verification environment, how co-



simulation can be carried out efficiently and effectively at various levels of abstraction
and how the different processor models and techniques are used to speed-up co-
simulations.

Figure 13 shows an un-timed co-simulation model that is used in the early design
stages where the hardware-software co-simulation first comes into the proposed
methodology. At this stage, the system’s architectural specification 1s created, and the
objective of co-simulation is to validate the architecture and determine its performance.
The simulation speed needs to be extremely fast at this level because various
architectures may need to be explored via simulation; and models used in simulation at
this level tend to be more abstract in order to satisfy the high performance demand.
Therefore, for the processor, only a bus functional model is used. This co-simulation
model is un-timed because the software runs on the host processor and its execution time

18 not accurate.

Figure 13: Séméria and Ghosh’s untimed co-simulation model
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Once the architecture choice is made, the hardware and software teams work in
parallei 1o refine the individual hardware and software blocks by adding the necessaty
implementation details and specifying the constraints for synthesis. In the course of those
refinement processes, co-simulation must be conducted to ensure that the system, as a
whole, still works. At this point, simulation speed slows down as the refined hardware

" and software blocks are much more detailed. Hence, a bus functional mode! alone can no
longer fulfill the co-simulation task, and an instruction set accurate processor model (ISS)
is emploved in conjunction with the BFM. The ISS executes the instruction for the target
processor, and the BFM handles the communication among the software and hardware
compenents of the simulated system. Figure 14 depicts the co-simulation model used at

this level.

Figure 14: Séméria and Ghosb’s cycle-accurate co-simulation model

The bus functional processor model, used in both co-simulation schemes (Figure

13 and Figurei4), is derived from a SystemC class called sc_module using C++

-3
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inheritance. Programming interface to the C/C++ sofiware and to the instruction set

- processor model is provided as the member functions of the BFM class; the functionality
of the BFM itself is modeled as a set of {inite-state machines that can executs in parallel.
Notably, the BFM constructed in the SystemC environment has a relatively fixed
programming interface, which allows the easy swap of one processor model {o another
without changing the C/C++ source code. This feature works ideally when different
architectures with different processors are explored.

The instruction set accurate processor model reads the assembly code written for
the given architecture and simulates it on 2 host machine. In terms of choosing the
instruction set accurate processor model, the proposed co-verification approach offers
flexibility to the designers. For example, if the purpose of co-simulation is to verify the
functional correctness of an application written in assenjibly code, then a fast ISS. whuch
translates the instructions of the target architecture inte the instructions of the host
machine, can be used; if the timing and interfaces between the different components of
the system need to be verified, an ISS can be used in conjunction with a BFM to provide
accurate timing.

After synthesis, the gate-level co-simulation needs to be performed to verify the
final system implementation, the resuit of system integration, and whether or not the
system satisfies the constraints specified in the initial system specification. At this point,
Séméria and Ghosh suggested that any co-simulation techniques are in use today be

erployed.



6.2.1.3 Techniques Regquire No Processor Model

For the techniques that do not use processor models, co-simulation is usuaily
performed by compiling the software for a computer and linking the executable to a bus
functional model of the processor, which is simulated in conjunction with the hardware
component [125]. In such a case, mechanisms, such as synchronizing handshakes, virtual
operating systems, etc., are utilized to handle communications among the hardware and
software components [115]. An example of co-simulation technique that requires no
processor models is described below.

Operating systems, such as UNIX, usually provide the facility for running
processes to communicate with each other. In co-simulation, this inter-process
communication facility can be used to link the hardware and software components. In
[127], Becker et al. presented an engineering environment that links the software
components of a system to the simulation of the hardware components. Employing this
environment, they successfully performed co-simulation of a network interface unit (NIU)
on a distributed network using Cadence’s Verilog-XL simulator and the UNIX sockets.
The software and hardware components were modeled in C++ and Verilog respectively.
In the co-simulation environment, the software components were implemented as
separate programs, which interact with the hardware simulation via UNIX mterprocess
communication (IPC) mechanisms. To accomplish the hardware and software
‘ communication, both interface functions in the sofiware components and the simulation
modules of the hardware components were modified. The major drawback of Becker’s

technique is that it does not accurately simulate the relative speeds of the hardware and



software components; in other words, this solution does not include timing evaluation.

in the co-simulation techniques that do not use processor models, the software
directly runs on the host processor; and thus the pearly real time execution of software
can be achieved [111]. Unfortunately, as illustrated by Becker’s engineering environment,
the gain of the real time execution of software is under the loss of timing accuracy. There
are attempts to decrease this disadvantage by back annotation of the software runtime
[1221[128]. For instance, in Bassam et al.”s co-sumulation technique [122], software is
modeled by using behavioral VHDL constructs and annotated with timing information
that is derived from basic block-level timing estimates. For each block of the software,
the delay information was derived through using timing estimation methods introduced in
[129]{130]; and the derived sofiware timing estimation was further utilized by a process
emulating the target RTOS behavior to synchronize the processes modeling the software

tasks with those modeling the hardware components. -

6.2.1.4 The Choice of Co-simulation Techniques

The choice of different processor modeis could have direct impact on co-
simulation performarice, timing accuracy, and the visibility of internal state for
debugging purpose [115]. The optimum selection of processor models should always take
into account the specific co-simulation goal dictated by the corresponding development
~ phase. For example, at system level (see Figure 11), the goal of co-simulation is to
characterize the system’s functionality, thus the use of nano-second accurate processor

model 1s of no necessity.
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In [115], Rowson pointed out that the processor model availability dominates the
choice of the co-simulation technique. Rowson also did a comparison of hardware-
software co-simulation techniques based on the tradeoffs arnong a number of factors,
such as performance, timing accuracy, model availability, and visibility of internal state

for debugging. Partiai resuit of Rowson’s comparison is llustrated in Table 5.

Table 7: Rowson’s comparison of hardware/software co-simulation technigues

speed (nstructions. . . processor model
s debugeme ability f .
per second) == : requirements

hardware modeller | 10-30 16 Processor state timing only
logic emnulation fast limited none
nano-second seey- | 1-100 excellent fardest
rate
cvele accurate 50-10006 eood hard
instruction sst 2000-20.000 oK mednm
synchronized hand- | limited by hardware | no processor state nong
shake simulator
virtual operating fast na processor {and easier
svstem no hardware) state
bus functional limited by hardware | no processor state easier

stmulator

6.2.2 Homogeneous Co-simuiation vs. Heterogeneous Co-simulation

Based on the number of simulators used, co-simulation approaches can be
grouped into the Aomogeneous co-simulation and the heterogeneous co-simulation. In the

homogeneous co-simulation, only one simulator is required; and in the hererogeneous co-
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simulation, the maumber of simulators emploved is determined by the number of different

languages or models of computation (MOC) used in modeling the system.

6.2.2.1 Homogeneous Co-simulation

The use of smgle'].anguage and a uniform modeling paradigm is fundamental to
the adoption of the homogeneous co-simulation. In other words, ﬁodeiing the whole
system in one language made it feasible to utilize only one simulator for simulation of
beth the hardware and software components. The major advantage of this approach is that
it eliminates the communication overhead among different simulators. In addition,
describing a system in one language allows the designer to move functionality from
hardware to software and vice versa easily, which eases the exploration of differernt
architectures and hardware-software partitions.

In Séméria and Ghosh’s co-verification scheme [121] introduced in section
4.2.1.2 of this survey, both the hardware and seﬁwarevcomponents throughout the design
flow are described in C/C++. There are no overheads associated with interfacing HDL
sirnulators with the software world; and only an instruction set simulator along with a bus
functional model (BFM) is used for co-simulation.

In [122], Bassam et al. described a co-simulation technique in which both the
hardware and software components were modeled in VHDL. This technique does not
_ require the use of inter-process communication, nor a C language interface for the
software components; any commercial VHDL simulator can be employed in this co-
simulation method. The proposed co-simulation methodology is heavily based on the use

of the software and hardware synthesis, and POLIS co-design environment for reactive
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embedded system, which is introduced in section 4.3.2 of this survey, was employed {0
synthesize the software and hardware components. In order io achieve fast sirnulation
speed,.the reported co-simulation technique ignores some aspects of the final embedded
system impiementation. For instance, it ignores the overhead due to the scheduling

mechanism and the cost of inter-processor or hardware/software commuuication.

6.2.2.2 Heterogenesus Co-simulation

When different languages or models of computation (MOC) are used to describe a
system, a dedicated simulator is needed for each language or MOC employed. The major
challenge of this kind of co-simulation approach is the construction of an efficient bridge
among the heterogeneous simulators.

In[117], Amory et al. presented a heterogeneous and distribuied co-simulation
environment in which the communication among simulators is carried out using a co-
simulation backplane. Figure 15 shows the general su{wture of their proposed co-
simulation environment.

The software modules are written in C and simulated using gcc, and the hardware
modules are described in VHDL and simulated by QuickHDL. The integration of
simulators, here gee and QuickHDL, to the co-simulation backplane is through UNIX
sockets. The communication library, ComLibC and ComLibVHDL, has three functions -

) initialization {csilnitialize()), send data (csiSend(}), and receive data (cisReceive(}) - that
are utilized by simulators to carryout socket communication with the co-simulation
backplane. A coordination file contains the information of each module: its unique name,

the language in which the module is described, the simulator used to validate it, the CPU
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where the module will be simulated, and the name and direction of each external module
pin. The inter-module connections are also specified in the coordination file. During
simulation, the co-sirnulation backplane builds its internal data structure based on the
information provided by the coordination file to control the simmulation and enable the
routing of messages among modules. The proposed co-simulation environment does not
© support cvele level co-simulation because the backplane does not have a global
synchronization mechanism; however, the backplane offers great flexibility in terras of

integration of new languages because it is independent from the simulators.

L 0 15399 R 0 U S 20,534 5 070 R g

eé’

5 0 R D A 5 A A 24 Y

r 3 5 o £ 2 U D

Figure 15: General structure of Amory et al.’s co-simulation environment

6.2.3 Geographically Distributed Co-simulation vs. Local Co-simuiation

The evolvement of the geographically distributed co-simulation 1s closely in

connection with the intellectual property (IP)-based design using the Internet {131] [132]
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or the globally distributed design [133] [134]. Such a co-simulation environment allows
parallel execution of sirnulators in geographically distributed machines over a lecal area
network {LAN) or a wide area network (WAN) [117]. Conversely, in the locai co-
simulation environment, the simulators run on machines located within a confined local
environment; and no network is used for message exchange among simulators or modules

during simulation.

6.2.3.1 Co-simulation Environment Structure

Since more than one simulator is emploved, the geographically distributed co-
simulation can be treated as a special case of the heterogeneous co-simulation, which s
introduced in section 6.2.2.2. Consequently, the general structure for the heterogeneous
co-simulation is often suitable for the geographically distributed co-simuiation. For
instance, Amory et al.’s structure for a heterogeneous co-simulation environment (Cross
reference 4.2.2.2) also supports geographically distriblited co-simulation [117].

In [135], BA de Mello and FR Wagner presented a generic architecture to support
environments for geographically distributed co-simulation, called Distributed Co-
simulation Backbone (DCB). The proposed co-simulation backbone is based on HLA
(High Level Architecture), which was originally developed by the US Department of
Defense as a standard for military simulation interoperability within the US; and in the
_ year of 2000 HLA was adopted as a non-military stan&ard by the IEEE {136].

HLA offers a common architecture for the cooperative and distributed execution
of individual simulations [135]. In this architecture, several simulation systems

{represented by simulators), called "federates,” are combined together into one big
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simulation, called the "federation.” HLA is specified by three main parts [1371: {1) “A set
of rules which must be followed to achieve proper interaction of simulations in a
federation. These rules describe the responsibilities of simulations and of the runtime
infrastructure (RTY) in HLA federations.” (2). “I)eﬁniz‘.iéns of the interface functions
between the runtime mfrastructure and the simulations participating in a HLA
federation.” (3) “The prescribed common method for documenting the information
contained in the required HLA Object Model for each federation and sirmulation.” A
detailed description of the IEEE 1516 standard for HLA can be found at the web site:
hitp://www.leee.org.

Mello and Wagner’s co-simulation backbone (DCB) [135] 1s constructed based on
the HLA standard, and it aims at offering a generic mechanism for communication and
cooperation services among the distributed heterogeneous federates (simulators). Figure
16 (from [135]) depicts the architecture of Mello and Wagner’s DCB.

In this scheme, the ambassador’s paradigm [138] is used to provide services for
the cooperation among simulators (federates); and gateways [138], implemented as part
of the ambassadors, translate data formats according to the destination of the data sent
through the DCB. The distributed co-simulation backbone infrastructure, shown in Figure
16, is general-purpose, which means that the integration of new elements (simulators)
into a federation will not affect the DCB. However, when a new simulator is integrated
into a co-simulation environment, two ambassadors must be developed - one for

sirnulator and one for DCB. As part of the DCB development work, the authors aiso built
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a supporting environment for the DCB, which offers services and resources for the semi-

automatic generation of the ambassadors.
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HWotwork

Distributed Cosimulstion Backbone

Figure 16: Architecture of the DCB

6.2.3.2 The Benefits of Geographically Distributed éo—SimuBaﬁon
The geographically distributed co-simulation approach offers some benefits that
do not present in the local co-simulation [117] [139]:
= 1t decentralizes the project by allowing design and validation of a system under
development by geographically distributed teams;
a It allows designers to simulate a system that consists of remotely located IP
blocks without requiring local copies of the IP description (source code); hence,
IP providers and EDA vendors can let their IP blocks and proprietary tools, such
as high-performance hardware emulators, be accessed remotely while protecting

their IP rights and tool licenses;



® It provides a fundamental infrastructure for resource sharing through remote toc!

access and IP simulation.

6.2.3.3 Performance Issue in Geographically Distributed Co-Simulation

In ge&graphically distributed co-simulation, the transfer o messages between
simulators can cause considerable network communication overhead. As a resuit,
geographically distributed co-simulation faces a significant problem in terms of co-
simulation performance.

There are two kinds of messages transferred among simulators in the
geographically distributed co-simulation: (1) event-carrying messages and (2) null
messages that are used for simulator synchronization only [139]. The performance
optimization methods of geographically distributed co-simulation lie in the reduction of
both the event-carrying messages and null messages {139].

Yoo et al. n [139] proposed a technique for pérformance improvement of
geographically distributed co-simulation, which is based on a new concept called
hierarchically grouped message (FIGM). This HGM concept utilizes the fact that
transmitting one large message is faster than transmitting multiple small-sized messages
one by one; and, likewise, the network communication overhead does not strictly depend
on the size of the messages being transferred, instead, it strongly relates to the number of
_ physical messages transferred. Based on the HGM concept, Yoo et al.”’s method
hierarchically groups messages transferred between simulators in a short period of time
into a single physical message to reduce the number of physical messages needed to be

transferred during co-simulation, and thus improves the performance.
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More approaches to improving the performance of geographically distributed co-

stmulation can be found in [140] [141] [142] [143].

6.3  Ceo-simulation Tools

While hardware/software co-design is rapidly becoming an essential capability for
electronic systems with mixed hardware and sofiware components, EDA. vendors along
with research institutions are starting to launch programs to create co-design systems. As
a result, more and more commercial tools and research products become available to the
co-design community. Since co-simulation is a widely adopted co-verification method in
hardware-software co-design, co-simulation tools are often developed as an important
part of the co-design systems.

The rest of the section contains two parts: the first part gives relatively detailed
descriptions of four co-simulation tools that have made substantial impact on the
advancement of co-simulation techniques; and the seczond part collects the information of

various commercial and non-commercial co-simulation tools.

6.3.1 Ptolemy

Ptolemy [112] [144] [145] [146] is a heterogeneous simulation and design
environment that supports muitiple models of computation. It was developed as part of a
design project — Ptolerny -conducted in the EECS department at the University of
" California, Berkeley since 1990,
The Ptolemy offers two possible execution styles: one with Ptolemy interactive

graphic interface and another without the graphic interface. As depicted in Figure 17(a),



when using the Ptolemy interactive graphic interface, two Unix ™ processes need to be
started. The first process contains the user interface (VEM) and the design database (OCT)
and the second process contains the Ptolemy kernel. If Ptolemy runs as a singie process
without the graphical user interface, as shown in Figure 17(b), the textural interpreter
based on the Tool Command Language, TCL, can be used to provide a textual interface

for the user.

KERNEL

GRAPHICAL USER
INTERFACE

Figure 17: The overall organization of Ptolemy version 0.7

Ptolemy is written in C++. It uses an object-oriented software technology, such as
polymorphism and information hiding, to model each subsystem and integrate these
subsystems into a whole. A famdly of C++ class definitions forms the software H
infrastructure, cailed Prolemy kernel, upon which the specialized design environments,
called domains, can be defined by creating new C++ classes derived from the basic
" classes in the Ptolemy Kernel. Tn Ptolemy, the simulation of the heterogeneous systems
described in multiple design styles is allowed; and the domain is used to realize a

computational model appropriate for a particular type of subsystem. For example, the
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Thor domain is defined in Ptolemy for the RTL hardware simulation. In Table 6 (from
[147]), some simulation domains implemented in Ptolemy are listed, and the updated list

along with descriptions can be found in [146].

Table 8: Simulation domains implemented in Ptolemy

~ Expansion

| BF o , snaus daﬁ ycﬁfnmz inE mcessing

DDF dynamic dataflow asynchronous signal processing
BDF boolean dataflow asynchronous signal processing
§ MDSDF | multidimensional dataflow muitidimensional signal processing
DE discrete event communication network modeling and
determinate high-level sysiem modsiing

FSM finite state machines control

HOF higher-order functions graphical programming

Ther {name given at Stanford) HTL harﬁwar& simuiation {
message queue teiecsmn%unicaﬁcns switching software
process networks regl-time systems
communicating processes communication network modeling

nondeterminate system modeling

Ptolemy enables designers to create their own co-simulation environments for the
validation of heterogeneous systems [119]. The obtained co-simulation environment
comprises several domains that define different simulation behavior; and Ptolemy pre-
determines the basic internal structures, such as Blocks, Targets, and associated

Schedulers, for domains and ensures the proper communications among them.
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“Ptolemy is a non=commercial product andcan be-downloaded from Piolemy
project’s web site: http://ptolemy.eecs.berkeley.edu. Ptolemy version 0.7.1, released on
June 12, 1998, is the stable production release of Ptolemy Classic; and Ptolemy
{.7.2devel is aiso available for testing to experienced Ptolemy developers. Although the
Ptolemy groups’ work has shifted to a new Java-based environment called Ptolemy 11,
there remains an extensive network of active users. Particularly, many co-design and co-
simulation tools are built on Ptolemy. For example, Pia, a co-simulation tool developed at
the University of Washington in Seattle is based on Ptolemy domain; and PeaCE, a co-
design environment for rapid development of heterogeneous digital systems, uses
Ptolemy extensions. More information and the latest updates on Ptolemy project can be

found at the web site: hitp:// www.ptolemy.eecs.berkeley.edu.

8.3.2 POLIS

POLIS [148] [149], a hardware-software co-deskign framework for reactive
embedded systems, has been developed at UC-Berkeley. The computation model
employed in POLIS is a single finite state machine-like representation, known as Co-
design Finite State Machine (CFSM). Each element of a network of CFSMs describes a
component of the system to be modeled, and both the hardware and software components
perform the same computation for each CFSM transition. However, the hardware and
~ software elements have different delay characteristics: a synchronous hardware
implementation of CFSM can execute a transition in one clock cycle, but a software
implementation will probably require more than one clock cycle. Ultimately, the

elemenis in the CFSMs that specify a system will be synthesized in hardware or sofiware.
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Figure 18: Design flow implemented in the POLIS system

POLIS can directly transiate system specifications written in a high level
- language, like ESTEREL, graphical FSMs, and subsets of Verilog or VHDL, into CFSMs.
For co-simulation, POLIS currently utilizes Ptolemy as its simulation engine; but it is not

limited to Ptolemy. Since VHDL code along with all the co-simulation information is
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also an output of POLIS, any commercial VHDL simulator can be used for co-sirnulation
purpose in POLIS. For instance, the Bassam et al.’s co-simulation technique introduced
before is based on POLIS co-design environment in which a commercial VHDL
simulator is used to perform co-simuiation [105]. During co-simulation, POLIS allows
designers to dynamically choose the different hardware or sofiware implementation for
cach CFSM, the type and clock speed of the processor on which the software is running,
and the type of scheduler.

Figure 18 depicts the design flow that is currently implemented in the POLIS
system, and a detailed explanation of the design flow can be found at the web site:
http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html. POLIS can be
obtained from the web site: http://www-cad.eecs.berkeley.edu/~polis/; and questions

about POLIS can be asked via email: polis-questions@jic.eecs.berkeley.edu.

6.3.3 Seamless CVE

The Seamless Co-Verification Environment [150] [148], a product from Mentor
Graphics Corporation (www.mentor.com), first came to market in 1996. It was developed
to address the growing need of co-verifying both the hardware and software components

of embedded systems, especially prior to fabricating ASIC and building a hardware

prototype.

Seamiess supports simulation of the entire system and provides system-wide
debug features. In the Seamless Co-Verification Environment, the connections among the

hardware and software simulators are established based on a tool-independent backplane

O
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via open application programming interfaces (APIs) [119]. This commection establishment
means enables Seamless to incorporate a2 wide range of hardware and software simulators.
For example, it supports ModelSim (VHDL & Verilog), Veritog-XL, VCS, IKOS

Voyager, etc. for hardware simulation.
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Figure 19: Seamless CVE architecture

Seamless CVE has three major components: (1) the instruction set simulator (ISS),
(2) the co-simulation kernel, and (3) the hardware simulator interface and hardware

simulation kernel. Figare 19 (from [152]) depicts the architecture of Seamless CVE.
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The instruction set simulator {ISS) performs the software portion of a co-
simulation session. It fetches, decodes, and executes instructions; if reads and writes
memory and /O data; and it simulates the processor’s registers and other internal data
handling. The co-simulation kernel acts like 2 middle agent, it controls the
communication between the software simulator and the hardware simulator during a co-
simulation session. For example, it receives all address-space access requests from the
instruction-set simuiator (ISS), determines whether to pass those requests to the bus
interface model or service the requests directly through local memory without hardware
bus cycles, and reports the number of clock cycles for executing an instruction by ISS to
the hardware simulator. The hardware simulator interface and hardware simulation
kernel handles the hardware portion of a co-simulation session. It receives request for bus

cycles and starts the necessary logical operations to make pin transitions.

Table 9: Seamless CVE processor families

Analog Devices 21K Intel 960 and 288 %Mcrtorula M-Core
ARM , Imtel MCS51 Motorola P owerPL
DSP Growp Miresoatole Cag . MoomleGK
Hitachi SH LSIMIPS NEC
IBM P owerFC L3l Z5P Embeddable DSP Cores [NEC MIPS
Infineon Technologies C 163
{STMicroelectromes, SG3- MIPS- e 3_&3_:_15_111_{:3
ThomsonSTIO) i
Infineon Technologies Tri ars  Motorola C oldFire %Texas Instruments
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Seamless is supported by a wide range of Processor Support Packages (PSP}, and
each PSP includes the XRAY (software simulator) source-ievel debugger, an mstruction
set simulator, and a bus interface model. Table 7 (from [153]) suminarizes current PSP
processor families, and the updated information on PSP can be found at the web site:
http://www.mentor.com/seamless/psp_listings.html.

As part of the Seamless Version 4.3 released in April 2002, Mentor Graphics
extended its Seamless co-verification environment’s capability to include the C-Bridge
technology [154]. The C-Bridge incorporates C and C++ hardware descriptions,
testbenches, and protocol models into Seamless co-verification sessions to promote high-
level modeling. Latest information on C-Bridge technology can be obtained from
www.menior.com/seamless. Also, a free Seamless CVE informational CD, which
includes an introduction to Seamless and an overview presentation of Seamiess, can be

obtained from the web site: http://www.mentor.com/seamless/cd/cd_reques.cfm.

6.3.4 Eaglei

Eaglei, from Synopsys Inc., is a high performance Hardware/Software co-design
and co-verification tool. It allows users to model portions of a to-be-built ASIC or PC
board with HDL simulation, while running software debugging tools on a fast processor
model [155]. Eaglei extends its virtual prototyping capabilities by linking up with

» industry leading RTOS simulators, and these extended virtual prototyping capabilities
allow software developers to integrate their application code and operating system
together with the virtual hardware prototype before the target hardware is available.

Hence, hardware drivers can be fully tested before the hardware is built.
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Unfortunately, Synopsys discontinued its Eaglei product about two years ago

[156], and not much information on Eaglei can be found, even from Synopsys’ web site.

£.3.5 Other Co-simuilation Tools

In Table &, a collection of tools that support hardware-software co-sirulation are

listed. More detailed information on each included co-simulation tool can be found at the

corresponding web site under the column “Comment/Information.”

Table 18: Co-simulation tools

Co-simulation Tool

Comments / Information

CoSim

TIMA Lab at Institute National Polytechnique, Grenoble

COSYMA

Braunschweig, http://www.ida.ing.tu-bs.de/home.e.html

CoCentric System Studio

Synopsys Inc.,
hittp://www.synopsys.conyproducts/cocentric_stmudic/cocentric
studio.html

CoWare N2C® Products

CoWare Inc, http://www.coware.com

Eaglei Synopsys Inc. This product is discontinued

PeaCE National Soul University of Korea,
http://peace.snn.ac.kr/research/peace/

Pia University of Washington,
http://www.cs.washington.edwhomes/hineskj/PiaMain. html

POLIS Berkeley,
http://www.cad.eecs.berkeley.edw/Respep/Research/hsc/abstract
.htmi

Poseidon Stanford

Ptolemy Berkeley, http://ptolemy.eecs.berkeiey.edw/

Seamless CVE Mentor Graphics Corp.
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SUCCESS™ Dolphin Integration,
http://www.dolphin. fi/medal/success/success_overview.htmi

vCC Candence Design Systems Inc,
httpy//www.cadence.comy/products/incisive.htrnl

VI TIMA, htip:/tima-~
cmp.imag.fi/Homepages/valderr/Vei/vei.html

Virtual-ICE Yokogawa Flectric




7 CONCLUSION

This thesis presents a survey on hardware design verification. Generally speaking,
there exist two broad approaches to hardware design verification: simulation-based
verification and formal verification. The thesis contains information: on both approaches,
but with an emphasis on simulation-based verification. The survey covers four important -
aspects of simulation-based verification: simulation acceleration, simulation vector
generation, verification environment construction, and hardware-sofiware co-simulation.

In the last several years, formal verification has been progressively gaining
acceptance in the hardware development industry, but design verification of today’s
digital systems still relies mainly on simuiation. Due to their slow speed, simulation-
based approaches lose their effectiveness rapidly when design sizes exceed half million
gates. In order to speedup the simulation process, traditional interpreted simulators are
replaced by compiled simulators; event-driven simulators lost their popularity to cycle-
based simulators; server farms consisting of a cluster of networked computers are utilized
for computationally intensive simulation tasks; and simulation-emulation co-operation
techniques and tools are widely adopted to boost simulation efficiency.

The generation of simulation vectors is of great importance because the quality of
" simulation vectors often has direct impact on simulation performance. Since it is
infeasible to exhaustively simulate a design, traditionally, directed testing and random

testing are widely adopted by industry. In directed testing, simulation vectors are
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manually created; and in random testing, simulation vectors are randornly generated.
During the last few vears, new ideas of creating simulation vectors start to develop in
both acadermia and industry. Based on the similarity between hardware design
verification and physical fault testing, methods of borrowing test sets from physical fault
testing to detect design errors are proposed. More notably, a large amount of research
work on simulation vector generation via semi-formal methods has been reported. These
studies attempt to make the simulation-based verification more efficient by using
coverage metrics as heuristic measures to guide the generation of the simulation vectors,
and to quantify the verification completeness.

The construction of verification environment is a fundamental step in simulation-
hased design verification, and it is also a process that consumes a considerable amount of
time and resources. In order to improve verification productivity, EDA industry as well
as many system design companies has invested significant amount of effort 1n developing
new methodologies and tools to accelerate the construction of verification envircnment.
As a result, new languages targeting at hardware verification were developed and some of
them were already turned into open source and went on the road towards standardization;
layered testbench architectures were proposed and adopted; and EDA vendors began to
offer testbench automation tools; furthermore, the concept of intellectual property (IP)
and the use of verification intellectual properties (VIP) are getting more and more
popular in the hardware verification community.

Hardware and software design should be closely coupled, but they remain largely

in separate worlds in today’s design environment. As co-design gradually becomes a
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design trend, co-simulation, which is an essential part in the process of co-design, has
also gained tremendous attention. There are many ways of classifying co-simulation
techniques: based on how the hardware and software components are glued together, co-
--simulation techmiques can be classified as fechnigues that require processor modeis and
techniques that do not require processor models; based on the number of simulators
needed, the co-simulation environment can be classified as homogeneous co-simulation
and heterogeneous co-simulation; moreover, based on the geographical location of a co-
simulation environment, the approaches can be categorized as distributed co-simulation
and local co-simulation. Co-simulation tools have been developed by both EDA industry
and research institutions. Among the commercially available co-simulation tools, Mentor

Graphics’ SEAMLESS is the most popular one.
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LIST OF ACRONYMS

ASIC
ATPG
BFM
CFSM
DCB
DMA
DUT
EDA
FSM
ESS
FPGA
HDL
HDVI
HGM

HLA

HW
- IP
IPC
ISS

MOS

Application Program Interface
Application Specific Integrated Circuit
Automatic Test Pattern Generation

Bus Functional Model

Co-design Finite State Machine
Distributed Co-simulation Backbone
Direct Memory Access

Design Under Test

Electronic Design Automation

Finite State Machine

Extended Synthesizable Subset (in Superlog)
Field-programmable Gate Array
Hardware Description Language
Hardware Design and Verification Language
Hierarchically Grouped Message

High Level Architecture (for Simulation)
Hardware Verification Language
Hardware

Intellectual Property

Interprocess Communication (in UNIX)
Instruction Set Simulator

Model Of Computation
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OSCI
PCI
PD
PLI
PSM
PSp
RTL
RTOS
SCV
SSL
STCC
SW
UTS

VIP

Open SystemC Initiative

Peripheral Component Interconnection
Probability Distribution

Programming Language Interface (in Yerilog)
Program State Machine

Processor Support Packages (in SEAMLESS)
Register Transfer Level

Real Time Operating System

SystemC Verification Library

Single Stuck-at Line

SpecC Technology Open Consortium
Software

Universal Test Set

Verification Intellectual Property

Very Large Instruction Word
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