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ABSTRACT

ON ANALYZING GMRES FROM THE VIEW OF GEOMETRY
and an application to Haar wavelets

by Mei-Wern Cheng

Two recently developed Krylov method for solving linear systems are Arnoldi’s
method and the Generalized Minimum Residual (GMRES) method. We show here that
there is a relationship between breakdowns in the two methods. We explore the GMRES
from the view of geometry when Amoldi’s aléorithm breaks down. The result in this
paper suggests that the choice of the initial guess plays a very important role in deciding
how the GMRES method will converge or when the GMRES method will converge.

“ Wavelets” or “wavelet transforms” are a tool for decomposing functions in
various applications. In this paper, we choose the simplest wavelet, Haar wavelet, to
introduce the wavelet transform and apply the GMRES method to find the wavelet
transform coefficients. We show a discrete data set can be decomposed by a wavelet
transform, then de-noised, and reconstructed, from the beginning to the end, with the

assistance of the GMRES method.
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INTRODUCTION

Two recently developed Krylov methods for solving linear systems Ax = b are
Amoldi’s method [4] and the Generalized Minimum Residual (GMRES) method [1]. In
the present paper we introduce both Amoldi’s method and the GMRES method. The
GMRES method has been considered superior to Arnoldi’s method [2]. However, the
GMRES method is based on the Amoldi process. The advantage of these two methods is
that we can solve n x n systems of linear equations by using smaller systems.

Based on the Arnoldi process, we discuss how the choice of the initial guess X,
plays a very important role in the GMRES method. We adopt the result from [2] ; but in
this paper we prove and explain the result of GMRES according to its geometry. From
the view of geometry, it is obvious that for some initial guesses the GMRES algorithm
with periodic restarts, which we describe in section 1.9, will not converge. Examples and
programs are provided in this paper.

If the initial residual, b — Ax, = ro, happens to be an eigen-vector of the matrix A¥,
then the GMRES method will converge at exactly the k" iteration. In addition to
studying the residuals, we discuss how the norm of the matrix A plays a role in the
convergence of the GMRES method. A good application of the GMRES method is
solving the coefficients of Haar Wavelets transforms [3] [6] [7] [8].

The wavelet transform is a tool for carving up functions or data into

components of different frequency, which allows us to study each component separately.



Wavelet analysis may be thought of as a generalization of analysis by the Hilbert space
method, wherein one forms an orthogonal basis on the space of interest. Equations in
that space may then be solved in terms of an orthogonal basis [10].

Wavelet analysis is similar to Fourier analysis in the sense that it breaks a signal
down into its constituent parts for analysis. Whereas the finite Fourier sine transform
breaks the signals into a series of sine waves of different frequencies, the wavelets
transform breaks the signal into a series of “wavelets”, which are scaled and shifted
versions of the “mother wavelet”. In comparison to the series of sine waves which is
smooth and of infinite length, the wavelet is irregular in shape and compactly
supported.[9]

A linear data set can be viewed as a function, then approximated by a series of
wavelets. This gives the compression technique [6] [7] [11] that can be used for de-
noising the signal. We de-noise using a simple truncation of all wavelet coefficients
larger than some threshold, and by deleting (set to zero) all smaller wavelet

coefficients [11).



CHAPTER 1. Arnoldi’s Method and GMRES Method

Section 1.1 Projection concept
This section is based on Iterative Methods For Sparse Linear Systems, by

Yousef Saad. [13]

Most of the existing practical iterative techniques for solving large linear systems
of equations utilize a projection process in one way or another. A projection process
represents a canonical way for extracting an approximation to the solution of a linear
system from a subspace.

Consider the linear system Ax = b, where A is an nxn real matrix. In this paper,
the same symbol A is often used to denote the matrix and the linear mapping in R" that it
represents. The idea of projection techniques is to extract an approximate solution to the
above problem from a subspace of R°. If K is this subspace of candidate approximants,
or search subspace, and if m is its dimension, then, in general, m constraints must be
imposed to be able to extract such an approximation. A typical way of describing these
constrains is to impose n-m (independent) orthogonality conditions. Specifically, the
residual vector defined by approximation x, b — Ax, is constrained to be orthogonal to
n-m linearly independent vectors. This defines a subspace L of dimension m. This
simple framework is common to many different mathematical methods and is known as

the Petrov-Galerkin conditions.



A projection technique onto the subspace K and orthogonal to L is a process which
finds an approximate solution x’ to Ax = b by imposing the conditions that x’ belong to K
and that the new residual vector be orthogonal to L: find x’ € K, suchthat b- A x’ | L.
If we keep repeating this process until we obtain n linearly independent residuals, which
is not always done, then the next residual will be zero, and we will have an exact
solution. Note that if x’ is written in the form x’ = xy + z, and the initial residual vector r,
is defined as ry = b - Ax,, then b-A(xo+z)=b-Ax'.LLorro-Az_LL.
In other words, the approximate solution can be defined as

X¥=x+z zck
(ro-Az,w)=0, YwelL. (1.1.1)

The orthogonality condition (1.1. 1) imposed on the new residual r =r, - Az is illustrated

in figure 1.1.1.

e

0

figure 1.1.1 interpretation of the orthogonality condition.

This is a basic projection step, in its most general form. Most standard techniques

use a2 succession of such projections.



Section 1.2 Krylov subspace methods (This section is based on Iterative Methods for
sparse linear systems, by Yousef Saad. [13])

A general projection method for solving the linear system Ax = b is a method
which seeks an approximate solution Xy from an affine subspace x, + K, of dimension m
by imposing the Petrov-Galerkin condition : b- Ax, L L, where L, is another subspace
of dimension m. Here x, represents an arbitrary initial guess to the solution. A Krylov
subspace method is a method for which the subspace K, is the Krylov subspace
Ka (A, ro) = span{ro, Aro, A’r, ..., A™" r,} where ro=b- Axy. When there is no
ambiguity, K, (A, r,) will be denoted by Ko (see figure 1.2.1).

Although all the techniques provide the same type of approximations, the choice of
Ly, i.e., the constraints used to build these approximations, will have an important effect
on the iterative technique. We discuss two choices for L. The first is simply L,= K,
(for example: Arnoldi’s method) and the second is the minimum-residual variation[ .=

AK,, for the GMRES method.

e

0

Ly

figure 1.2.1. interpretation of the orthogonality condition



Section 1.3 Overview of Arnoldi’s Method and the GMRES Method [2]
If xo is an initial guess for the true solution of Ax = b, then letting x'=x, +2,
we have the equivalent system ro = Az, where r, = b - Ax, is initial residual. Let K, be
the Krylov subspace : K. = span{r,, Ar,, Azro, ey, AT ro}. Amoldi’s Method and
GMRES Method both find an approximate solution x,,= x, + z,, with z, e K, as shown
below:
3.1 Amoldi’s method:
Find xy, such that (b - Axp) L K, (equivalently (r, - Az,) L K, ) (figure1.3.1 and
figure 1.3.3)
Note that : 1, = (b - Axg,) = ((ro - Axo > A(Xo+ 2,)) = (rp - Az,,)
3.2 GMRES method:
Find x,, such that|| b - Ax,, || = min ib-Ax|= min | ry- Az|| wherex e Xot+ Kp
andz € K. Thisis equivalent to requiring r,, = (b - Ax; ) =(ry-Az,)be

orthogonal to AK,, (figure 1.3.2 and 1.3.3)

figure 1.3.1 Arnoldi’s method figure 1.3.2 the GMRES method



figure 1.3.3 A combination of
Amoldi’s and GMRES method



Section 1.4 Arnoldi’s Method

Let A be a nxn real matrix which is nonsingular, and b be a vector ¢ R®
Suppose that x is the exact solution for Ax = b. We use the following steps to describe
the general concept of Amoldi’s method. The details of computation follow.
4.1. Guess the solution:;

Let x, be the initial guess of X, then ry = b - Ax, will be the initial residual.

LetB=|Iro |, and v, =ry/B.

4.2. Construct the first iteration x;* and the residual r,” as follows:

Let x)"=x,+ 2%, where z,¢ K, = span{r,} = span{v,},

(i.e. there exists scalar s such that zt= Srp)

such that r* =b - Ax,*=r;- Az is orthogonal to r,.

In other words, r," is orthogonal to K (see figure 1.4. 1)

And ri*e K; = span{r,, Ar,} = span{ro, r;*} = span{v,, v}, where

va=r"/ ||r®|. Note that v, is orthogonal to v,.

4.3. Construct the second iteration x," and the residual r," as follows:
Let x,*= xy+ 2,, where z,¢ K, = span{r,, Ar,},
So, there exists scalars s and t such that = sro + tAr,. Require that
% =b-Ax;*=ry- Az, be orthogonal to roand r,*,
In other words, r," is orthogonal to K;.(see figure 1.42)

Letvs=tr"/|Ir,*|. Sovs is orthogonal to v, and v,.

8



Then r,%e K; = span{r,, Ar,, Azl'o} =span{r, r*, rh = span{v,, v,, v;}.

L =K

figure 1.4.1

4.4  Proceed inductively at the m® iteration:

Construct x,," and the corresponding residuals r,,*, where m = 3,4,5,...,n,

by discovering

Xo =X+ 2z where z_ e Ko = span{ro,Aro,A’r, ..., A™'r,},

such that rp,* =b - Ax,*=r,- Az " is orthogonal to ro, r\%, r,", ... and r A
In other words, r,* is orthogonal to K,,,. (figure 1.4.3)

Andr*e K, = span{ry,Ar,,A’r, ... ., A"r; ).

Let vy =%r,/ Il r,t [l. Then vy, is orthogonal to v;, vy, v;,... ... , and v,

and span{ro, r;", ..., ry,*} = span{v,, v,, ... > V).



The computational method is to select some m and use the Gram-Schmidt Process
to set{ro,Aro,Azro, ..... ,A™ !y, } to generate orthonormal vectors v; which will be in
the direction of r;;*. The procedure is as follows:

Let x, be the initial guess of x. Then ro =b - Ax, will be the initial residual.
LetB=|rf,and v, =ry/ B. Proceed inductively.

Suppose we have K, = span {ry, Ary, A’r, ... . A™? ro} =span{v,, vy, vs, ..., Vi),
where {v,,v,, v, ..., Vm-1} i an orthonormal basis for Koo

Let b;; = (Av;, v;) where ( *, * ) denotes inner product. This is defined fori < j+1.

m-~|

Define u, = Av,,, - Z hi m1vi. ¢))

i=]

m~1

Then, fork <m-1, (Up, Vi) = (Avy., vy) - > b (v, Vi) = (Avy, vi) - hy . =0.

i=]
We normalize by letting v, = uyy/ [ju||. If Ky, = {ro, Ary, A’rg, ..., A™'ry }isan
independent set, then G, = {V1, V2, v, ..., v} is an orthonormal basis for K.
Therefore, (Vaw, Vi) = (ug/ [l I}, Vi) = (U, vie) / [t || = 07 ([, || = 0.
Note that since ry.* =b - Axy, = ry - Az ,* where
Zni*e span{r,Ar, Ar,, ... .. A™r,},
rn.® € span{r,, Aro, A’ry, ... A™'r} =K. Nowr, A=b- Ax, *=r,- Az, °
was constructed to be orthogonal to ro, r,*, ... .., and ry €K, ;, so Iy is orthogonal
to K1 Also vy, has the same property, hence, + r, %/ Pt = U/ fJug)| = Vi So,

. . . . A
o is orthogonal to v,, v, ....., and Vm.1, and v, in the direction of r,,,*.

10



We show that hyy; = [

Proof: Since, by equation (1), uyy; = Av,, - D hiqvi(figure 1.4.4.),

=]

hosim= (AVg, Vipey) = (AVp, Upyy/ [l Yy

= (AVm, Uni1) / [[Ue || = (Ugpey + 2 BV U} / || = el / [l
i=]
= lug])-
Hence, Vi1 = Ut/ [[Uge]] = 0y / hoe 1 - 2)

figure 1.4.3  Amoldi’s method figure 1.4.4 where w = 2i=1.mhimvi.

Define H,, to be the mx m (Hessenberg) matrix whose entries are the
coefficients h; ;= (Av;, v)), 1 i <min{j+1,m}, 1 < J » and zero elsewhere.
This Hessenberg matrix, H,,, is shown in appendix A.

LetVy,=[v, vy, vs, ..., Vm], where v; are column vectors representing V; .

Then it is readily seen that H,, = VAV, (3)
11



We show that x,* = x, + BV, H,, e where ex is the column vector (1,0, ..., 0)T .
Proof: For any z," € span G, =K, , z,* = Va Yo' for some column vector Yo' with
suitable entries.
Since, fork=1...m, (v, r,;* )=0,V,Tr A=,
Hence, V,," (b - Ax,*) = 0.
Since x,"=xy+ 2", V' (b- A x-A z,")=0.
S0, V' (ro-A 2,)=0and V.7 (r, ~AV,y.*)=0
Therefore, V,,'ry= V,"AV,y A .
Since, by (3), Hn = Vi, 'AVy, V. 'ro= Hpy, A
Therefore, if H,, is nonsingular, ymA= Hm'leTro
=B % [(Vi, 70 ), (V2, 10 ), .., (Ve Fo )]inar”
=Hn'x [(v1,10),0, ..., 0]
=Hy 'x [(vi, Bv1), 0,0, ..., 0] 10T
=Hy 'x (vi, Bv1)[1, 0,0, ..., 0] ;0"
=Hy'x B[1,0,0, ..., 0],."
= Hy''(Bey).
Hence, z,,* =V, yo* = V. H," (Be,, )= BV.H, e,

Therefore, x,," = x + BV, .H "¢, where B = Il ro || 4)

12



To summarize, Arnoldi’s method is as follows: [2]
First step, start the Gram-Schmidt process:
For an initial guess x,, form r, = b - Ax,. Compute B = || ry |, and let v, = ro/B.
Forj=1,2,..., mdo:
(a) Form Av; and orthogonalize it against the previous vy,...., v; via

hij=(Av;,v), i=12,..j,

Ilj+1 = AVJ‘ - 2 h,JVJ

=l
Then b+, = |ju;|| , and
Viel = 04y / hj+lJ-
(b) Compute the residual norm P = || b- Ax;|| of the solution x; that
would be obtained if we stopped at this step.
(c)If py<esetm=jand go to the second step.
Second step, form the approximate solution:
Define Hy, to be the mx m (Hessenberg) matrix whose nonzero entries are the
coefficients h;;, 1 <i < min{j+1,m}, 1 <j <m and define Vam=[vi,va,v;, ..,va ]

Compute x,," = xo + 2, where z,* = BV.H e,

13



Section 1.5 GMRES Method

Let A be an nxn real matrix which is nonsingular, and b be a vector € R®.
Suppose that x is the exact solution for Ax = b.
We use the following steps to describe the general concept of the GMRES method.
5.1. Guess the solution:

Let x, be the initial guess of x, then ry = b - Ax, will be the initial residual.

LetB=|ro[l,and v, =ry/p.
5.2. Construct the first iteration x;®and the residual r,® as foliows:

Let x,%= x, + 2,8, where z,8¢ K, =span{r,},

(So, there exists scalar s such that z,® = sry)

suchthat ri®=b- Ax,2=r,- Az,® is orthogonal to AK,.

In other words, r;® is orthogonal to AK, = span{Ar,}.(see figure 1.5.1.)

And r\®e K, = span{ro, Ar,}.

Note that, in the Amoldi method, the residual r,* was orthogonal to K, = span{ry}.
5.3. The second iteration x,® and the residual rt:

Let x,%= x, + 2,%, where z,%¢ K, = span{ro, Ary},

(So, there exists scalar s and t such that z® =sry+ tA rp)

such that r,® =b - Ax,8=r, - Az8 s orthogonal to AK;. (see figure 1.5.2.)

And r,%¢ K; = span{r,, Ar,, A’ry}.

Note that, in the Arnoldi method, residual r,* was orthogonal to K; = span{r,, Ar,).

14



L=AKy

figure 1.5.1. figure 1.5.2.

5.4. Proceed inductively at the m® iteration:
Construct x,® and the corresponding residual, rm®. These are discovered
by defining x.,8 = x, + z,® , where zn®e Ky, = span{r,,Aro,A’r,, ... - A™r},
such that r,®=b - Ax,8=r, - Az, be orthogonal to AK,,. (see figure 1.5.3.)
S0, rue Ky+ = span{r,,Ary,A’r,, ceees A9 3.
The computational method is to select some m and apply Gram-Schmidt Process to
K., to generate orthonormal vectors v;, giving direction of r,.,"(note that this is not the
direction of r;_,%). The procedure is as follows:
Let x, be the initial guess of x, then ro = b - Ax, will be the initial residual.
LetB=|iro|,and v, =ry/ B. Proceed inductively.
Suppose we have K,,..,= span{r,, Aro, A’r, ..., A™? ro} =span{v,, v, v, ...., Vo },
where {v;, vy, v3, ..., Vm-1} is an orthonormal basis for | [

Let hiJ = (AVj » Vi).

15



m-1
Define Uy, =Avm-. - Z hm-lvi. (l)

=]l
Then, as before, v,.; = uy,,/ @y l] = sy / Mgy . (figure 1.5.4.) 2)

So, Un+ = hm+l,mvm+l-

By

L=AKy

figure 1.5.3 the GMRES method figure 1.5.4 wherew= Y., .h; mVi.

Define H,, to be the mx m (Hessenberg) matrix whose entries are the
coefficients h;;= (Avj,v), 1<i< min{j+1,m}, 1 <j < m, and zero elsewhere.
Let Vi, =[v), v, v3, ..., vy], where v; are column vectors representing V; .
Then it is readily seen that H,, = VAV, 3)
The method for finding x..® is different from Arnoldi’s method and is based on the

following:
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We show that A V, =V, H, + Uy emT.
Proof: Since uy = Avy, - Z h; ,vi, and since Hy, is a Hessenberg matrix, and using
ial
equation (1),
AV, -V, H,
3 4 m m

2
=AVm- [Z hi'm, Z huvi, Z huvi, cerey Z him_lvi, Z hva

i=] sl i=l i=]l =1

=AV, -

1 2 m-1 m
Q) hiavi) +hova, (O hiavi) +hsavs, oo, (O] BV + hyguiVen, (O himvi)]

i=l =] =l =]

1 2 m-1 m
=AVy - [(Q hivirru, (3 hav)+us, o, () higvi) + U, () higv))]
i=l

i=] i=l i=]

m-1

1 2 m
=AVm -[Z huvi, z h-szi, ceeey Z him-,vi, Z hmvi] -

i=l =1 i=] i=l

[u2a u3, ...., Uy, Up, 0]

1 2 m-1

= [Avl- Z hi,lvi, AVZ- Z huvi, ceeey AVm-l - Z him-lvi, Avm- i hi,mvi] -

=l i=] =l =]
[az, us, ..., Uy, 4y, 0]
= [uy, U, ...y Uy, Uy, Ut - (U2, U, ..o, Uy, Uy, O]
={0,0, ...,0,0, up; ] =[ups ] x [0,0,....,0, 1xm
Lete, = [0,0, ....,0, 1]1m , then AV - Vo Hy, = Uy €

Hence, AV, =VoHy + ugs; €n'. (5)
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We show AV, = Vi Hi®, where H,® to be the (m+1) x m (Hessenberg) matrix
whose nonzero entries are the coefficients hjj, 1 <i<j+1,1 <j < m, the same as H,
with a bottom row of 0’s appended except for hy.; m= (Avp, V) in the last column.
This Hessenberg matrix, H,.%, is shown in appendix A.

Then, by (5), AV = Vg Hy + geiey’
= VuHy + hot Ve €0
= Vet Hp® (6)
Suppose x,.°= xo+ z,* where 2% € K, so it can be represented as
Xa' = Xo+ V¥, )
where y,* isam x 1 vector. We use QR factorization to find a suitable z,® and y,# such
that | *m®ll = min{||re-A 2y, [}, for z,, € Kn, (8)
We show that, in fact, ||r,, %] = min{ || Ben+; - Hoyn | }, fory, € R™ 9
Proof: Since ry® = (r;-Az,) L AK,,, r® is the vector that minimizes {||re-A zy ||}
So, || ra®ll = min{|iro-A 2, ||}, for z,, € K.
Since [jro’|| = ||b - Axn 8| = ||b - A x-A 2 8|} = [[ro-A 2, 8| = ||V, - AVpys?|
=BV - Vet HoPy®l| = 1BV i+ 1€mt1 = Vs Hlyn®l|
= Va1 Bems1 - Ho'yod) || = || Bem: - HulysH|,
lra®ll = min{ || Bex+i - HnYml| }, for yn € R™

A classic way of solving such minimization problems is to factor H,8 into Q R,

using plane rotations (where Q is orthogonal and R is an upper triangular matrix) and

find the least-squares solution. We denote by y,® the solution of the minimization
18



problem min{||Bey+, - Hyy, ||}, for y, € R™. Then the optimal x is given by
Xn® =X+ Vau ¥o2 [2].
The proofs of the following theorems will not be presented since they can be found
in most numerical linear algebra textbooks.
Theorem 1. The QR Factorization: [5]
If H,® is an m x n matrix with linearly independent columns, then H,,® may
be factored as H,,® = QR, where Q is an m x n matrix whose columns form
an orthonormal basis for Col H,8and Risann x n upper triangular
invertible matrix with positive entries on its diagonal.
Least-Squares Solutions:
DEFINITION: If H.® is m x nand b is in %™, a least-squares solution of H.2x=bisan
x’ in R” such that (b - H.® x’|| < |jb - H,® x|| forall xin R".
Theorem 2. Given an m x n matrix H,® with linearly independent columns, let H, & =
QR be a QR factorization of H,? as in the theorem 1. Then for each b in
R™, the equation H,.® x = b has a unique least-squares solution, given by
x'=R'Q"b.
This method is quite simple to implement because of the special structure of H.t.
We denote by y,..2 the solution of the minimization problem min{||Bey+ - Huyn ||},
for y, € R™. Then the optimal x is given by x,2= xo+ Vp, y8 [2).
Since, by equation (8), [|r®|| = min{|jro-A z,, || for z, €Kp}ooooovooov v ®)

andsince K, cK;cKsc...cKnc...c K, cK,;
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el 2 (e 8 2 e 2. > e 8 2.2 e ) 2 el o (10)

However, it is desirable to be able to update the factorization of H,.® progressively
as each column appears, i.c. at every step of the Arnoldi process. This is important
because it enables us to obtain the residual norm of || rm |jusing approximate solution, x,,
without computing x, ; thus allowing us to decide when to stop the process without
wasting needless operations{1].

As the number of iterations in GMRES increase, the amount of computations per
step also increases. In addition, it sometimes happens that the approximate solution,
Xn, still has a big residual, r,,. For these reasons, we normally try to restart GMRES after
some number of iterations. We will call the number m here. (Note: We call the number
m “iteration number”; we stop or restart the process at the m® iteration.) To restart
GMRES, we use the previous approximation x.," as our new initial guess x,,"" and
obtain a new Vi, (or new H, ). Then we can apply GMRES again and again until we find
an approximate solution which has as small a residual as we expect without increasing
the “iteration number” m. We will discuss more about “restart GMRES” and illustrate
this effect in our example in section 1.9.

To summarize, the GMRES method is as follows: [2]
First step, use the Gram-Schmidt process:

For a initial guess x,, form ry=b - Ax,.

Compute § = || ro ||, and let v, = ry / B.

Forj=1,2,...,m do:
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(a) Form Av; and orthogonalize it against the previousv,,... v via
hi;=(Av;,v), i=12,..,],
Ui+ = AV; - 3oy jhyvi.
hj+1; = [lu;.f| , and
Vie1 = W [ hyuy .

(b) Compute the residual norm p; = Il b - Ax; || of the solution x; that

would be obtained if we stopped at this step.
(c)If p;<esetm=jand go to the second step.
Second step, form the approximate solution:

Define H,® to be the (m+1) x m (Hessenberg) matrix whose nonzero entries are the
coefficients h;j, 1 <i < j+1,1<j < m, the same as H,,,, with a bottom row of 0’s
appended except for hy.; » = (AVy, Vae1) in the last column.

Anddefine Vy,=[v), vy, v, ..., v, ]
(a) Find the vector y,, ® which minimizes || ey, - Hpy, || over all vectors yinR™.

(b) Compute x,2=xo+ V,, y.&.

Note: We use a GMRES program which was published in [17].
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Section 1.6 Some conclusions of the case when H,, becomes singular
Since x," = x, + BV H . 'e,, we will not be able to get a solution when H, is
singular. Hence, we want to state three theoretical results from [2], in the case that
Hy, is singular. (see [2] for details and proofs )
Theorem 1. Suppose m steps of the Amoldi process have been taken, and assume
that H,,, is singular. Then
min{ [|Bexs - Hybyy ||}, for y, e R™
=min{ |[Beq; - By By |1}, fory,. & € R™. (a)
If'y; ® is the solution of min{ ||Bey; - Hply,|} with m replaced by
J;j=mor m-1, then y, ® = ((yu12)"), 0)%, and it follows that
Xnf=xp, 8.
Conversely, suppose m steps of the Amoldi process have
been taken and that (a) holds, Then H,, is singular [2].
This theorem gives a clear indication of how the performance of the Amnoldi and
GMRES algorithms are interrelated. If Hy, is singular, so that x,,” does not exist, then
GMRES is unsuccessful in reducing the norm of the residual, and x,,®=x__, 8.
Definition: Let us define the function g(x) by g(x) = [(Ax - b)|[>.
We say that the vector v is an ascent direction for g at x if
g(x + Av) > g(x) for all nonzero A.
Theorem 2. Suppose that m steps of the Amoldi process have been taken. Then H,

is singular if and only if v, is an ascent direction for g at x,,., ® .
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Theorem 1 and theorem 2 indicate what happens when the Amnoldi and GMRES
algorithms are performing poorly. If H_, is nearly singular, or equivalently, if ||r,, ¥ is
only slightly smaller than |r,,., ¥||, then the new Krylov vector v, is close to being an
ascent direction for g at x;,.; & [2].
Theorem 3. Suppose m steps of the Arnoldi process have been taken, and assume that

H,, is singular. Then

ming [[Vzy' (b - Axy )]}, for x, € X0+ Ko

= min{ ||Bex - Hy"ya |1}, for y, € R™ (®)

min{ (|Bey.; - Hylyy ||}, for y, € R® (c)

]

Furthermore, y,,"* = y,.¢ , where Yo" and y,, ® are the solutions to the last
two problems (b) and (c) (respectively) [2).
Note: Detailed proofs for these three theorems are provided in [2], based on the

condition of v, # 0.
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Section 1.7 Cases that make H,, become singular
Let Hy( : ,j ) denote the jth column of H,, and H( i, : ) denote the i row of H,.

Suppose that H; is nonsingular and H_, is singular while v; 20 fori=1,2,3,..., m-1.

Here, we want to describe the behavior of GMRES when H,, becomes singular, from

the view of geometry. There are four possibilities.

(a) The m® column of H,, is a zero vector.

(b) The entries of the m™ row of H,, are all zeros.

(c) The m® column of Hy, is a linear combination of the first to the (m-1)® columns of

H,.

(d) The m™ row of Hp, is a linear combination of the first to the (m-1)® rows of H,.

We can further discuss (a) and (b):
Since h;; = (Avj, v;), we have:
(a) If the m™ column of H,, is the zero vector then either (i) Av, = 0 or (ii) Av,, L \7
fori= 12, .., m where Av,, # 0.
Proof: Since h;j = (Av;, v;), hj, = (Av,, v;) fori=1, 2,3,....m

Fori=1,2,3,....,m,since h;;,= 0, (Av, v;)=0.
Hence, either Av, =0 or Av, L span {v,,v,,vs, ...., Vm}.
In other words, either Av,, = 0 or

Vm+ €an be Avy, / [|Avy|| if Avy, # 0.

(b) If the entries of m® row of H_, are all zeros then (i)Av,, = 0.
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Proof: If the entries of m™ row of H,, are all zeros then
(AVy.1,vy, ) =0 and (Avy,vy) = 0.

Suppose v, # 0.

m-1
Since vy, = €Ay, + Z 8;v;, and since v L span {vi, vy, v, ..., vy},
i=]

m-1

1= (vm:vm) = (Vm’ eAvm-l) + Z 8i(vmavi) =0 (since (Avnrl’vm )= 0)

i=l
This is impossible to happen.

Hence, v, =0. So, Av,, =0.

Hence, we conclude that if (a), (b), (c) or (d) hold, then
(1) Avy, =0 (v, =0), or

(i1) Avp L v; fori=1,2,..., m where Av, #0, or

m-1

(i) Hy(:,m)=>" aHu(:,j),or

Jel

m~1

(i(V)Hp(m,:)=3" aHy(j,:) hold.
=l

Therefore, if Hy, is singular, then (i), or (ii), or (iit), or (iv) hold. Next, in section
1.8, we prove that if (i), or (ii), or (iii) hold, then x,_, = x_8 .
Note: The proof for: “If (iv) holds, then x,,.; & = x,#” will not be provided in this paper.

The reader can find the proof from [2]: If H,, is singular, then Xm-1 % = x,® (When v, #0).
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Section 1.8 Proofs that x,,,, * = x,.% in some cases
Before the proofs, we have to know :
(2) When we apply GMRES to find the residual r, there are only two cases that will
occur: either || ru. ® || < || r® [ or | 1y 8 || = || r8 Il (see 9.1 in section 1.9 for proof).
(®) lirw*ll = min{ || Beps; - Huya || }, 9)
wherey, © € R™ denotes the solution for min{ || Be,., - Hpyn|l }, fory, € R™.
(©)%*=Xo+ Viuym® , where V,y,8=z.8 ¢ K., gives the solution for min{]| re-Az |} (7)
(DIE) e Bl =l 7® ||, then £y, & =1,
Proof: Let K, be the Krylov subspace and r,8 = ro- Az ® for z,® € K, as were
mentioned in the previous sections. Suppose e 8l = rd ]l
Since, by equation (8), ||r, & ||= min{ lIro- Az ||} for z, € K,,
Zy.1 ® is the least-square solution to Ire-1 & ||= min{ ||ro- Az, ||} in K., and
Z,,° is the least-square solution to ||ry, 8 [|= min{ [lro- Az, ||} in K,
Since Ko, < Ko, and since || rp. 8 || = || r8 ||, by the uniqueness property
in theorem 2 of section 1.5, z,,, ® =z_% In other words, o ® =rg8
() Also, if ry,.) ® = r,%, then we have x,,_, ® =x_8 This follows since
b-Ax,.f=r)-Azy t=r, f=rB=r,- Az B=D- Ax.® and A is non-singular.
So we can conclude that if r,,.,® = r.8, then x,, ¢ =x_8 .
In the next three proofs, we prove: |irp. 8| = ||[ru8|| or rp.® = ro®, in the case of (i), or

(i), or (iii) hold; and then x,,.; ® = x,® follows immediately.
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8.1 If Av,, =0, then x,,,® = x,, ,* = x and therefore Te1®= gt

Since we assumed that A is nonsingular, Av,, = 0 happens if and only if v, = 0.
Thus Gram-Schmidt failed to construct an additional orthonormal vector, so Av, ., eK,,,
andthen K, =K, =K., =.... = K, . This also implies that r, e AK,, (lemma 1.) and
therefore r,, = 0 (lemma 2.). This situation has often been referred to as a “happy break
down” and we have found the exact solution [2].
Note: Since 0 < || rp® || <] £t =0, || r [=0.ie ry, & =r,8=0.
Lemma 1. K, =K, ifand only ifry € AK,,.,.

Proof: Suppose K.; = K,, and A is non-singular. This occurs

m-2

if and only if there exists some a; such that A™ 'y, = Z aiAiro. Let a, be the

=0

first non-zero a; (so a, =0 fork = 1,2,3, ..., s-1), then

m-2 .
A™ gy = Y. aA'n

i=0

m-2 . m-s-2 .
ifand only if a,A°ry = A™ ', - Z aiA'rg=AA™ ', - Z a+sA' 1p)

{=3+] i=l
m-s-2 .
if and only if agry = A™* 'y, - Z ai+sA' ro where a,# 0
i=]
m-s-~3

if and only if a;r, = A(A™*r, - Z ai+s+1A' 1) where a,=0

i=0

ifand only if ry € AK,,,., AK, .
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Lemma 2. ry e AK,,, ifand only if x_, % = Xa1” = x, the exact solution.
Proof: (a) Suppose r, € AK, |, then ry = Aze AK,,,.
So|r-Az,||=0forze K, .
But || ry.® || equals the minimum for such expressions, then z,,,.,2 = z.
Hence, rp. ®=ry-Az, 2=r,- Az = 0.
Therefore, 0 =r, *=b- Ax,- Az, 2=b-Ax_ %
In other words, x,,.,% =x.
Also since z,,.," is the unique vector in K, such that
P =To - AZy* L Ko.; and since ro— Az =0 L Ko, 2" =2
Hence, rp *=ry- Az, " =r,— Az=0.
Therefore, 0 =ry.* =b - Ax, - Az, " =b - Ax,,,*.
In other words, x, ;" = x. So, x,.8= xm-,A =X.
(b) Suppose that x| =x, then x,, = x, + z, 5.
50,0=b-Axn*=b-A(X) +25.* )=b-Ax) - Az, B =r- Az, .
Hence, rp = Az, 2 e AK,,, .
Therefore, we have the following corollaries:
Corollary 1. A™' r; € K., if and only if x,, |® = x,.;* = x, the exact solution.
Proof: A™'r, e K, = span{ry , Aro , A’rg,..., A™r, }
if and only if Ky.1 = span{ro, Arg, A’ry, ....., A™%r,, A™'rp} = K,
if and only if ry € AK,,,., (lemma 1.)

if and only if xp, 8 = x,; * = x (lemma 2.).
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Note that if r; is an eigen-vector of A™", then A™" ro € Kni. SO, X 8=x,,%=x.

Corollary 2 follows from corollary 1:

Corollary 2. Suppose A“'r; ¢ K, for k < m, then we can never have x.t=xorx,A=x

for s <m-1.
Hence, this “m-1 will be the minimum iteration number we can choose in order to
get an exact solution without restarting the GMRES method.

Corollary 3. Suppose that r, is an eigen- vector of A™', then we have x;2#x

fori=12,....m-2,by corollary2,and x_,®=x by corollary 1.

Proof: Since 1y is an eigen- vector of A™, there exist A such that A" =2 e K.
Hence, we have x;® = x fori=12,... ,m-2, by corollary 2, and x,, & = x by
corollary 1.

Some examples are given as follow:

Example 8.1.1: r, is an eigen-vector of A”(then we have x2 8 =x, by corollary 1 and
x, 2 # x by corollary 2.)

A=
1 0 0 0 0 0 O
2 -1 0 0 0 0 0O
3 0 -1 0 0 0 o
4 0 0 -1 0 0 O
S 00 0 -1 0 O
6 0 0 0 O0 -1 o
7 0 0 0 0 0 -l

b= fo = Al'o = Azl'o el (' Xp =
1 1 1 1 0
1 0 2 0 -1.0000
1 0 3 0 -1.0000
1 0 4 0 -1.0000
1 0 5 0 -1.0000
1 0 6 0 -1.0000
1 0 7 0 -1.0000
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(2) Restart after m = 2 iterations, and do not do any repetition.
(Here we show x, & = x without restarting GMRES)

H; = (note that H; is singular)
11.8322 -0.9964
0 -0.0845

the residuals e= ans x;
1.0e-015*
0.2220
0.444]1
-0.2220
0.8882
0.2220
-0.4441
0.6661

N Ve W~

(b) Restart afterm = 1 iterations, and do not do any repetition.
( Here we show that x, 8 = x )

H,= 118322

the residuals e = ansx; =
-0.9929 0.0071
0.0143 -1.0000
0.0214 -1.0000
0.0286 -1.0000
00357 -1.0000
0.0429 -1.0000
0.500 -1.0000
0.501

Example 8.1.2 : r is an eigen- vector of A3, (Then we will have x, & = x, and x; & = x, by

corollary 2 and x; & = x by corollary 1.)

OCO00O0O = m—
ocococo~0L
cococoltoo
ococo~poco0oo
CO~0o0oO0o
- E-N-N=-
—oococooo
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ro A= r, A= ro A’=- rp

(=

&

S

OOOOOQ~||
QOO0 —
COOO ™~ =0
'
cCooooCo -

(a) Restart after m =1 iterations, and do not do any repetition. (Here we show x, & # x )

the residuals e = ans x;, = H, =1.4142
-0.5000 1.5000
0.5000 1.0000
0 0
0 1.0000
0 1.0000
0 1.0000
0 1.0000

(b) Restart afterm =2 iterations, and do not do any repetition. (Here we show x, & = x )

the residuals e = ans x, = H;=1.4142 -0.7071
-0.3333 1.3333 0 1.2247
0.3333 0.6667
-0.3333 0
0 1.0000
0 1.0000
0 1.0000
0 1.0000

(c) Restart after m = 3 iterations, and do not do any repetition. (Here we show x; € =x )

H3 =
the residuals e = ans x3 = x 1.4142 -0.7071 0
1 0 1.2247 -0.8165
0 0 0 -0.5774
-1 0 0 0

CoOoCoCoOoOOoCoO
— g g
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8.2. Avy, Lvifori=1,23,..,m, where Avy #0. Thenr, & =r,%.

Suppose Av,, Lv; fori=123,... m, where Avy, #0,thenry,., 8=r, 8.

proof: Suppose that Av,, L v; fori= 1,2,3,....,mand Av, # 0.

Since ry,® = ro - Az, for z, € Ky, there exists a; such that Zn=) av.

i=]

Since H,,, , is non-singular and Av,, #0, v; = 0 fori = 1,2,3,....,m.

Supposethatam¢Osuchthatrmg=ro-A(Z av;),

i=]

] m-1
then ra®=ro- (3, 8AV))=ro- (Y, aAV;)-anAv,.

=] =]

m~1
Let Toi =ro- (2, aAv; ), then [T || 2 fIr.® land To, € K, .

i=]
Since Avp,Lv; fori=123,..., m, Av, 1L K, .
Hence, Av, L T, .
Since ry® = Tp,.1- a,Av, , by the Pythagorean theorem (figure 1.8.1),
[1P® 1 > [Tt 2 1P ® || (if areA vy, # 0)
This result contradicts the GMRES’s result: ||r,,., || > lIrw® |-

Therefore, a,, = 0.

m-1
In other words, r 2 = r, - (Z hAv;) € Ky So, rp. =8 € K,

in]

Furthermore, if Av, L v; fori=12,3,....,s where Av, =0 fors=m, m+1, ...t, then we

32



are not going to have a better solution than rm®form<s<t

fa v,

figure 1.8.1
From the following example we show how this effects our discussion:

Example: Let A be the permutation matrix sendinge; e, > ... 5> ¢, o ¢,
where ¢; is the i standard basis vector in R, .
Let Ax =b where b=¢, and x, = 0. Thenry=e,.

Therefore, v, = e;and Av, =e,,, fori = 1,2,...nwheree,, =¢ .

In other words,
(@) ifs<n,thenAv, Lv;fori=123,...., s, and n=rf=e,.
(Hence, H; is singular for s <n.)
(b)ifs=n, thenAv, L v;fori=23,...., n, and (Av,,v,)=1.

(Hence, r,® =0 and we found the exact solution.)

In data 1 and data 2, we provide some data for the case that n = 7 and vector b as in the
above example.
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= b=
0 0 0 0 0 0 1 1
1 0 0 0 0 0 o 0
01 0 0 0 0 o 0
0 01 0 0 0 o 0
0 0 0 1 0 0 0 0
0 0 0 01 0 0 0
0 00 0 0 1 o 0

(a) In this example H, , H, , H;, .....,and H; are all singular
because Av,, L v; fori= 12,....,mby choosingx,=[0 0 0 0 0 0 01~
(S0, Xo = x,® = x,® = x;® = x8 = x,8 = x8)

Restart after m = 3 iterations, and do not do any repetition.

the residuals e= ans x;% =
-1 0
0 0
0 0
0 0
0 0
0 0
0 0
H; = Hy=
0 0 O 0 0 0 o
1 0 o 1 0 0 o
0 1 o 01 0 o
0 0 1 o
Hs = Hs =
0 0 0 0 O 0 00 0 00O
1 0 0 0 O 1 00 0 00
0O 1 0 0 o 01 0 0 00
0 01 o0 o 0 01 0 00
0 0 0 1 o 0 001 00
0 00 01 0
Restart after m =6 iterations, and do not do any repetition.
the residuals e= ans xg¢& =
-1 0
0 0
0 0
0 0
0 0
0 0
0 0
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Since AvyLv; fori=12,. . -» m, we have H,,, be singular for i = 1,2,....6.
So, initial guess x, = x;# = first restart Xo=x®=second restart xo=x8= . . . .
fori=1,2, ..., 6. Hence, no matter which m we choose (unless H,, is not singular), the
restart method will still give the initial guess as the result. Since A is a 7 x 7 matrix,
K7= K. Therefore, by 5.1, x;, = x. Hence, we have the next example:
(b) H; is non-singular and we can have the exact solution:

Restart after m= 7 iterations, and do not do any repetition.

H,= the residuals e= ans xy =
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 O 0 0
01 0 0 0 0 o 0 0
0O 01 0 0 0 O 0 0
0 0 01 0 0 o 0 0
0 0 0 0 1 0 o 0 0
0 0 0 0 0 1 o 0 1

Since we do not expect to have a large size of H,,,, we want to try other initial
guesses, X, (see data 2); because with same initial guess as above example, H,,, is singular
and the result is always the same as our initial guess, unless m = n ( no progress unless
Hy, is not singular). Hence, we want to choose another initial guess in order to prevent

this situation from happening again.
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Data 2: We want to try two new initial guesses:xo=[123456 7]T and x, = random
vector e R’

(@)x=1[1234567":

Restart after m= 3 iterations, and do not do any repetition.

the residuals e= ans x3 =

0.7691 -4.2211

-4.2211 1.1475
1.1475 0.2527
0.2527 1.4732
1.4732 1.5718
1.5718 1.6705
1.6705 0.7691

Restart after m =3 iterations, repeat this 19 times; (Since x, # x;,we can try restart
GMRES)

the residuals e= ansx; =

1.8227 -3.0710
-3.0710 1.3417
1.3417 0.2578
0.2578 0.1606
0.1606 2.2129
2.2129 2.2241
2.2241 1.8227

Restart after m = 4 iterations, and do not do any repetition.

the residuals e= ans x; =
0.9539 -4.1038
-4.1038 1.0231
1.0231 0.1686
0.1686 0.3110
0.3110 1.8032
1.8032 1.8786
1.8786 1.9539

Restart after m = 4 iterations; repeat this 19 times; (Since x, # x,,we can try restart
GMRES)

the residuals e= answer x, =
2.2210 -1.9378
-1.9378 1.0364
1.0364 0.0048
0.0048 0.0070
0.0070 0.7810
0.7810 2.0993
2.0993 3.2210
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When the small size of Hy, can not solve the problem, we may increase the size of H,, or
restart GMRES.

Restart after m = 5 iterations, repeat this19 times;

the residuals e= ans xs =
0.9069 -0.1641
-0.1641 0.1733
0.1733 -0.0467
-0.0467 0.1338
0.1338 0.0848
0.0848 0.1739
0.1739 1.9069

Restart after m = 5 iterations, repeat this 99 times;

the residuals e= ans xs =
0.0008 0.0011
0.0011 0.0010
0.0010 0.0005
0.0005 -0.0002
-0.0002 0.0011
0.0011 -0.0012
-0.0012 1.0008

Restart after m = 5 iterations; repeat this 499 times;

the residuals e= ans xs =x=
1.0e-018 * 0.0000
0 0.0000
0.5504 0.0000
0.8653 0.0000
-0.5548 0.0000
-0.1493 0.0000
-0.1962 1.0000
0.3928

If we need to restart 499 times in order to get a good solution, it is hard to converge by

using this initial guess. We may want to try other initial guesses (see data 2 (b)).
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(b) random vector € R’ .

Restart after m= 3 iterations, repeat this 19 times;

xo -
0.2190
0.0470
0.6789
0.6793
0.9347
0.3835
0.5194

the residuals e=

-0.7050
0.6840
0.1474
0.4044
0.3582
0.4160
-0.0964

ans x; =

0.6840
0.1474
0.4044
0.3582
0.4160

-0.0964

Restart after m = 3 iterations, repeat this 199 times;

xo =
0.8310
0.0346
0.0535
0.5297
0.6711
0.0077
0.3834

the residuals e=

-0.7531
04316
0.0616
0.4099
0.2601
0.6769
0.1240

0.2950

ansx; =

04316
0.0616
0.4099
0.2601
0.6769
0.1240
0.2469

Restart after m = 4 iterations, repeat this 199 times;

xo =
0.0668
0.4175
0.6868
0.5890
0.9304
0.8462
0.5269

the residual e =
0.0094
0.0090
0.0017
-0.0057
0.0090
-0.0053
0.0022

ans x4 =

0
0

.0090
.0017

-0.0057
0.0090
-0.0053
0.0022

1

Restart after m= 5 iterations, repeat this 199 times;

Xo=
0.0920
0.6539
0.4160
0.7012
0.9103
0.7622
0.2625

residual e =
0.0004
-0.0002
0.0048
0.0005
0.0005
0.0027
-0.0013

ans xs

.0094

-0.0002
0.0048
0.0005
0.0005
0.0027

-0.0013
0.9996
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Restart after m = 5 iterations, repeat this 999 times;

xo =
0.0475
0.7361
0.3282
0.6326
0.7564
0.9910
0.3653

residual e = ans xs =

1.0e-015 * 0.0000
0.6661 0.0000
0.2245 0.0000
-0.0157 0.0000
0.1134 0.0000
-0.0726 0.0000
0.0376 1.0000
-0.1894

Both data 2. (a) and (b) show that “restart GMRES method” converges slowly at iteration

number 5. However,

as long as we do not encounter a restart with the initial guess as the

case of data 1, we should be able to get our exact solution.
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m-1

83Hu(:,m)=) aH,(:,j). Then Foi® =rg5. (11)
=]

m-1

WHo(:,m)=3" aHy(:,j), then . ® =r,8.

i=]

m+lm

[ 4
Proof: Leth,=Hm(:,s),thenHm8=I:h'(')" h"- ],where

m-1
Ho= (A h; ... Ry hp) hy ] and we can state (11) as b, = d ah,

s=l

h
Let h58= ng( : s S )’ then hsg= [Z'J fors = 1’253’~---’ m-l, and hms - [ ] J.

m+lm

Since y,,® € R™ is the solution for min{ ||Bey; - H By, ||},
v ® 11 = lIBems - HpBy, |

Vai
)’f..z
Bews - (AF hE ... h, f h,E]] - I
y:.m-l
| Vo |
’-.V:,l ]
)’f..z
hl hZ hn-l h- .
= |iBexs: - I
B 0 h..
y:.m—l
ys
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m-1
= [iBem - Z Ys® - Ymm® i
s=| 0 N h-+l.- i

m-1 (h ] m-1 (h 0
=I|Bem+1-zl: Yms® (;_j ~Yoa® (D 2 0']+ [h J)II

s=l

s=l

m-1 h 0
= ||Ben+: - z (Yms® + Ymm® as)l: 0'] + Ymm® [h :,) Il

h 0 0
Since([ ’} ,l: ])=0, and sinceemﬂ.l.[ ],ifwc let
0 h-#l.- h-+l.-

0 m-1 h
W=ym.m8|:h ]andletv=Bem+u- Y Oas® + Youm® as)[o'].
m+lm

=]
Then [ra® || = v + w ||.

2 _ 2 _ o2 2 2 2
So, e [P =lv+w il =[IvIF+ Wi 2|lv P2 rmi 8.

m-1 h
Since v = Bey+; - z Yms® + Yum® a,)l: O':l is in the class used to define r,,_|,

s=l1

“ "mg “ 2 “ l"m-lg ” .
But || re. i ® | 2 || rm® ], 5O || rmt B f = || P ® |-

Hence, by (d ) in section 1.8, r,.; 2 = r, %

We use an example from [2] to show how it works out on this case.
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Example: Let A be a skew-symmetric matrix of the form listed below.
Since A is skew symmetric, so is H, for all m. Hence, H,, is singular for odd
m, and the Arnoldi iterates x,,* do not exist for m odd. For GMRES, we then
have [iry® [| = |lra+® || for k = 1,2,..., 24. These situations happen because the
last column of Hy,., is a linear combination of the previous columns. In the
data we provide below: H, and H, are nonsingular, but H; ,H; are singular
because the columns are not linearly independent. So we should have X = X3

and x4 = x5 , according to the proofin 8.3.

A= b= Xo =
0.7071

0

0

0

0

0
-0.7071

[}
L
-_0

L]
Loo
O= O ~000
—~—otoooo
~—oo0o0o oo
cCoocoocoooO

OCO0OOQOOO~0O
(=]

OCO0OO0CO ~Q
QOO —0O
OO = O

Restart after m = 2 iterations, and do not do any repetition.

the residuals r, Hz = (non-singular) ans x; =
= 0 -l 0
-0.3536 1 0 -0.3536
0 0
-0.3536 0
0 0
0.3536 -0.3536
0 0
0.3536

Restart after m = 3 iterations, and do not do any repetition.

the residuals r; H; = (singular) ans x3 =
= 0 -1 0 0
-0.3536 1 o -1 -0.3536
0 0 1 O 0
-0.3536 0
0 0
0.3536 -0.3536
0 0
0.3536



We show that have x, = x; in the former data and x, = x in the data we provide below:

Restart after m = 4 iterations, and do not do any repetition.

H, (non-singular)=
0 -1.0000 0 0.0000
1.0000 0 -1.0000 0
0 1.0000 0 -1.4142

0 0 1.4142 0
the residuals r,= ans x4 = x (the exact solution)=
1.0e-015 * 0
-0.1110 -0.7071
0 0
0 -0.7071
0 0
0 -0.7071
0 0
0.1110

Note: Since we happen to find exact solution from H,, and since, according to the proof,

1, =1s5; we should have the exact solution from H;. Hence,
Restart after m = S iterations, and do not do any repetition.

H;s (singular)=
0 -1.0000 0 0.0000 0
1.0000 0 -1.0000 0 1.0000
0 1.0000 0 -14142 0

0 0 14142 0 -1.4142
0 0 0 0.0000 0
the residuals rs = ans xs = x=
1.0e-015 * 0
<0.1110 -0.7071
0 0
0 -0.7071
0 0
0 -0.7071
0 0
0.1110
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Section 1.9 Restarting GMRES
To restart GMRES is to use the previous approximation x,,°as our new initial

guess X, and obtain a new Vy, (or new H, ).

9.1From the examples of Section 1.8, we showed that it was possible to have slow (or
bad) convergence if we happened to choose a “bad initial guesses” which resulted in
the singularities of Hy,,. In this situation, the best way to fix this problem is to find
another initial guess. To restart GMRES is not to find an arbitrary new initial guess;
but to use the previous approximation as the new initial guess since we can always
find x,, by applying GMRES, and since GMRES algorithm produces a sequence of
non-increasing residuals (recall from Section 1.5, equation (10)).
Proof: Suppose we restart the GMRES after m iterations, and repeat this w-1 times.
Let x;; ® denote the approximate solution of the i time we restart the GMRES
method after m iterations and then take j iterations. Let r; i g denote the
corresponding residual.

Since to restart GMRES is to use the previous approximation as the new initial

guess, Xom® =X %, X1 2 =x2.8, ........ , and Xy % = X148
Hence, |ro®l = [Iry, 8, ller ol = 2,8, .. ... »and [[Fuzm%} = w8
So,  [iro,1 ¥l 2 liro2 B 2 IIro ¥ 2....2 fIro &) =

e #2282 e a8 22 e o &) =

2, 812 ez ¥ 2 flr2s8] 2. 2 [irem 8 =



P11 8]l 2 et 2 Bl 2 Pt 35 2 2 [Pt 8]
9.2 However, there are always possibilities that ||ry.;»® /= [|r,»® ||. This case may cause
the restart method to fail to converge. If this situation happens, we can try a new

initial guess, or even enlarge the size of m.

The following example shows that we have x, 8 # x, x,% # x, x;® = x,and x, ¢ = x without

restarting GMRES method, and we also can have x; = x with restarting GMRES method.

Example:

A =
1 <1 0 0 0 0 O
1 0 0 0 O 0 O
O 1 -1t 0 0 0 O
0O 0 0 1 0 0 O
O 0 0 0 1 o0 o
0O 0 0 0 0 1 o
0 0 0 0 0 0 1

b= Xo = o= rp A= r A= ro A=
1 0 1 0 -1 -1
1 0 1 1 0 -1
1 0 1 0 1 -1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 | 1
1 0 1 1 1 1

Restart after m = 1 iterations, and do not do any repetition.
(we have x, ® # x without restarting GMRES.)

the residuals e ans x;
= -] =1 H, = 0.8452
0 1
-1 1
0 1
0 1
0 1
0 1
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Restart after m = 2 iterations, and do not do any repetition.

(we have x, ® # x without restarting GMRES.)

the residuals e ans x;,

= -1 =1 Hx= 08452 0.1604

0 1 0 1.4000
-1

OO OO
— et e et gy

Restart after m = 3 iterations, and do not do any repetition.
(we have x; ® = x without restarting GMRES.)

the residuals e = ans x3 =

-0.8000 1.5333 H; =

0.5333 1.3333 0.8452 0.1604 -0.0535
-0.2667 0.6000 0 1.4000 -0.2286
-0.1333 0.8667 0 0 1.2372
-0.1333 0.8667

-0.1333 0.8667

-0.1333 0.8667

Restart after m = 4 iterations, and do not do any repetition.
(we have x, ® = x without restarting GMRES.)

the residuals e = ansx; =x=
1.0e-015 * 1.0000
0.8882 0.0000
0.4441 -1.0000 H, =
-0.1110 1.0000 0.8452 0.1604 -0.0535 0.507M
0 1.0000 0 1.4000 -0.2286 -0.9939
0 1.0000 0 0 1.2372 -0.0522
0 1.0000 0 0 0 -0.6831
0

Next we show that with restarting GMRES method we can find the exact solution at
an earlier iterate step.

Restart after m = 3 iterations, repeat this 19 times; (Here we restart GMRES for 19 times)

the residuals e = ansx;=x =

1.0e-009 * 1.0000

-0.6868 0.0000
-0.5483 -1.0000

0.3156 1.0000
-0.0501 1.0000
-0.0501 1.0000
-0.0501 1.0000
-0.0501
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Restart after m = 3 iterations, repeat this 49 times.

the residuals e = ans x3=x =
1.0000
0.0000
-1.0000
1.0000
1.0000
1.0000
1.0000

COO0OOoOOOCO
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Section 1.10 Conclusions

10.1. There are two disadvantages of the Amoldi algorithm, when we compare it to the

(a)

(b)

GMRES algorithm.

One of the disadvantages of Arnoldi is that it does not produce a sequence of
approximations whose residual norms are non-increasing, as GMRES does[2] (As we
argued in Section 1.5, equation (10).) However, we can not find such a nice result
for r,” .

A second perceived disadvantage of the Arnoldi algorithm is that it can break
down and be unable to calculate an approximate solution. Partly for this reason, the
GMRES method has been considered superior since it never breaks down in the way
Armoldi’s algorithm does[2].

We can’t solve x,,* = xo + BV, H, e, for x,,* in Amoldi’s when H,, is singular.
This can happen if either u,4; = 0 so that v,,+; can not be formed, or Hy, 1, is
singular which means that the maximum number of Arnoldi steps has been taken,
but the final iterate cannot be formed. The first situation has often been referred to as
a happy break down, since uy+; = 0 implies Hy, is nonsingular and x,* is the exact
solution of Ax =b (on 8.1 of Section 1.8). The second case is more serious in that it
causes a convergence failure of the algorithm. One possible recourse is to hope that

Hj is nonsingular for some j among 1,2,...., my,, - 1. If such a j exists, we can

compute x;" and then restart the algorithm using x;* as the new initial guess x,.
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However, it may not always be possible to do this [2]. In this case ( examples on 8.2
and 8.3 of Section 1.8), even though the GMRES solution can always be calculated,
the approximations are sometimes all the same until the very last one which gives
the exact solution. In this situation, there is no use to restart GMRES; but we still can
find our result at step n, by GMRES.

(c) In appendix B, we show that r,® = 0 if and only if r,* # 0. In other words, if we
can not find the exact solution at the m™ iterate by Arnoldi method, GMRES method

will not perform better at the same iteration step without restarting GMRES method.

10.2 What kinds of A can we apply GMRES to solve Ax =b?

(a) If we only require that the residual be small, then for any matrix A which is a
non-singular square matrix can be used to find an approximation x by applying
GMRES.

(b) Let norm of A, ||A ||, be defined to be sup{|(Ax, x)|: |Ix|| = 1},

then [Irm® || =[ib - Axo5| = [|AX - Axy®|| = [|ACX - x®) | < [|A || [ x - x5,® ||

In other words, then ||x- x.® || 2 [Ira2]/ lIA |I.

If we require x to be very accurate, then we should be aware of the difference between
lIre® | and |ix - x* |l However, if [|A || <1, then [jx-xy® [| 2 [Irn® I/ A} 2 |ire® .
In other words, the smaller ||A || is, the greater ||x- x,,® || may be. Hence, we should
wisely choose the tolerance number i.e. decide acceptable values for the size of the

residuals. If we set the tolerance number to be sufficiently small, any square,
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nonsingular matrix will be able to find a approximate x by applying GMRES.

(c) In the end of this chapter, we provide a example to show how GMRES method
handles a bigger matrix like a 50x50 Hilbert matrix. Matrices that are sufficiently
large cannot be handled with conventional techniques like Gaussian Elimination or
using inverse A etc... ..

The example is shown below:
Example: Let A be a 50 x 50 Hilbert matrix, where a; 5 = (it)-1).

B N
1 1

b=Ax : where : 1s a vector of length 50, and
1 1
R R

'-0- PO-!

0 0
Xo = | : | where | : |is a vector of length 50;

0 0

—O- —O-A

then, we can expect that the exact solution to be
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where

is a vector of length 50.

In this example, we try restart after m = 7 iterations and repeat this 20, 50, 100,

and 200 times; restart after m = 9 iterations and repeat this 20 and 50 times; and

restart after m = 10 iterations and repeat this 20 times. The table below shows how

the GMRES works between different iteration numbers and different times of restart:

Table for the residuals r,? :

The range of restart Restart restart Restart
The norms of 20 50 100 200
The residuals r,? times times times times
Iteration number m = 7 1.0x10" [ 1.0x 10" | 1.0x 10" | 1.0 x 107"
Iteration number m = 9 1.0x10™ [ 1.0x 10"

Iteration number m = 10 1.0x 100
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The residuals tell how close the approximate solutions are to the exact
solution.
(d) Next, we want to apply the GMRES method to solve the wavelet transform
coefficient vector. In chapter 2, we provide some common knowledge of the
wavelets, details about Haar wavelet; and then show how the GMRES method can be

applied to wavelets.
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CHAPTER 2. WAVELETS

Section 2.1 An introduction to wavelets

(This section is based on An introduction to Wavelets, by Amara Graps [14))

Wavelets are functions that satisfy certain mathematical requirements and are used
in representing data or other functions. This idea is not new. Approximation using
superposition of functions has existed since the early 1800°s, when Joseph Fourier

discovered that he could superpose sines and cosines to represent other functions.

He asserted that any 2x-periodic function f{(x) is the sum a, + Z (axcos(kx) + bysin(kx))

k=l

of its Fourier series. The coefficients a,, a, and by are calculated by
27 27 M .
a0 =(12m) [ " f(x)dx , & = (U/m) [ " f(x)cos(iox)dx , and by = (1/x) [ fx)sin(kx)dx .

However, in wavelet analysis, the scale that we use to look at data plays a special role.
Wavelet algorithms process data at different scales or resolutions. If we look at a signal
with a large window, we would notice gross features. Similarly, if we look at a signal
with a small window, we would notice small features. The result in wavelet analysis is to

see both the forest and the trees, so to speak.

This makes wavelets interesting and useful. For many decades, scientists have
wanted more appropriate functions than the sines and cosines which comprise the bases

of Fourier analysis, to approximate choppy signals. By their definition, these functions
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are non-local (and stretch out to infinite). They therefore do a very poor job in
approximating sharp spikes. But with wavelet analysis, we can use approximating
functions that are contained neatly in finite domains. Wavelets are well-suited for
approximating data with sharp discontinuities.

Understanding the concepts of basis functions and scale-varying basis functions is

key to understanding wavelets.[14]

1.1 What are Basis Functions?

It is simpler to explain a basis function if we move out of the realm of analog
(functions) and into the realm of digital (vectors)[15). Every two-dimensional vector
(x,y) is a combination of the vector (1,0) and (0,1). These two vectors are the basis
vectors for (x,y). Why? Notice that x multiplied by (1,0) is the vector (x,0), and y
multiplied by (0,1) is the vector (0,y). The sum is (x,y).

The best basis vectors have the valuable extra property that the vectors are
perpendicular, or orthogonal to each other. For the basis (1,0) and (0,1), this criteria is
satisfied.

Now let’s go back to the analog world, and see how to relate these concepts to
basis functions. Instead of the vector (x,y), we have a function f(x). Imagine that f(x) is
a musical tone, say the note A in a particular octave. We can construct A by adding sines
and cosines using combinations of amplitudes and frequencies. The sines and cosines are
the basis functions in this example, and the elements of Fourier synthesis. For the sines
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and cosines chosen, we can set the additional requirement that they be orthogonal. How?
By choosing the appropriate combination of sine and cosine function terms whose inner
product adds up to zero. The particular set of functions that are orthogonal and that

construct f(x) are our orthogonal basis functions for this problem.

1.2 What are Scale-Varying Basis Functions?

A basis function varies in scale by chopping up the same function or data space
using different scale sizes. For example, imagine we have a signal over the domain from
0to 1. We can divide the signal with two step functions that range from 0 to 2 and % to
1. Then we can divide the original signal again using four step functions from 0 to %, %
to ', Y2t0 %, and % to 1. And so on. Each set of representations code the original signal
with a particular resolution or scale.

In this chapter, we use Haar basis to construct a function.

55



Section 2.2 Haar basis

In this section we will show how an arbitrary function f can be approximated by a
linear combination of Haar wavelets. Below, we use the information from [3] to
describe Haar basis and Haar wavelets.

Lemma 1. ¥, ,(x) = 2™2%¥(2™x-n) constitute an orthonormal basis for L*(R), where

[ 1 0sx<1r2
P(x)=1{ -1 12<x<1
Ll 0 otherwise.

Proof: Since support (Wy,,) = [2"" n, 2™(n+1)], it follows that two Haar wavelets of the
same scale (same value of m) never overlap, so that (Wy, ., Wi o') = 8o
Overlapping supports are possible if the two wavelets have different sizes, as in
(figure 2.2.1.) Itis easy to check, however, that if m < m’, then support (¥,
lies wholly within a region where ‘¥, . is constant (as on the figure). It follows

that the inner product of ¥, , and ‘¥, is then proportional to the integral of ¥

itself, which is zero.

Any f in L*(R) can be arbitrarily well approximated by a function with compact
support which is piecewise constant on the [2™ n, 2"(n+1)[ (it suffices to take the
support and m large enough). We can therefore restrict ourselves to such piecewise

constant functions only.
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We describe here a recursive method for representing f:

Assume f to be supported on [-2™', 2™'], and to be piecewise constant on the
[2™ n, 2™(n+1)[, where m1 and mO can both be arbitrary large (figure 2.2.2). Letus
denote the constant value of f> = fon [2™ n, 2™(n+1)[ by f,°. We now represent {’ as a
sum of f* = f' + §', where f' is an approximation to f° which is piecewise constant over
intervals twice as large as originally, i.e.f' | [2™*! n, 2™*!(n+1)[ =constant = f,' The
values f,' are given by the averages of the two corresponding constant values for f°,
f,' =Y (f2 + f2r1”) (see figure 2.2.3). The function §' is piecewise constant with the
same stepwidth as {’; one immediately has (as shown in figure 2.2.3.)

82 =fon - ' =Y (Fra’ + fiurt”)

and
Boart' = Fount” - 2 = Yo (Faaei® + F) = - aa' .

It follows that &' is a linear combination of scaled and translated Haar functions:

4
8'=)" 8x' W™ 'x-n), where s =21 "™ 4] apd t =27t =0,

We have therefore written fas f=f{* = f' + ¥ C..0412¥ mo+1.0 Where f' is of the same
type as f°, but with stepwidth twice as large. (see figure 2.2.3.)

Note: () £,! =% (f2 + fon+1") is the average of the sum, can be denoted by “s”.

2 8 =fo’ - ' = Y2 (Fon” + fanet))
and
Sanrt’ = Font® = £y = % (Foaet® + o) = - O
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are the difference, can be denoted by “d”. When we average the sum, we
keep the difference as the detail; so “d” also denotes “detail”. [15]

(3) The coefficients C_no+1  Of Ty C.inor10¥ mo+1 5 @S in the equation
f==f+3 C.mo+1.0W.mo+1.0 are called the Haar wavelet coefficients.
Note that the coefficients also represent the differences.

(4) If the differences (the wavelet coefficients) are too small (smaller than a
threshold number), we normally set these differences (the wavelet
coefficients) towards zero . We call this procedure “de-noising”. We smooth
the data by de-noising the data. [16]

We can apply the same trick to f', so that £ = £ + ¥, C.u0+2.2¥-mo+2.00
with f* still supported on [-2™' , 2™, but piecewise constant on the even larger

intervals [2™°* n, 2™*3(n+1)[. We can keep going like this, until we have

ml
f="""+ 3 ¥, CenPin

km—mO+]
Here f"*™! consists of two constant pieces (see figure 2.2.3), with
™! [0, 2™ = £, is equal to the average of f over [0, 2™![, and
£ | -2, 0f = £, is equal to the average of f over [-2™, of.
Even though we have “filled out” the whole support of f, we can still keep going
with our “average” trick: nothing stops us from widening our horizon from 2™ to 2™*!,
and writing {2 = fRHm2l | gmitm2tl pere

fn“’ﬂﬁ"‘l I [O, 2m|+l[ = ,/zfoml'*mz ,

58



fnl*‘anﬂ I [-2ml+l,0[ = |/2£lml+m2 and
amlﬂnz = l/zﬁ)ml'ﬂnll{,(z-ml-lx) - |/2£lml+m2‘p(2-ml-lx +1)

(see figure 2.2.3). This can again be repeated, leading to

mli+h
f= fn0+ml+h + Z Zn Cuq’hn,

k=-m0+1
where support (f*™!*h) = [gmI*h omi*hy apg
grovmi+h | g ymishr _ yh g mosml
grovmi+h | [_gmi+h gr _ oh ¢ mo+ml
It follows immediately that

ml+h

(norm(f- ) X, Cua¥in))

k=—m0+1

= 2'hf2 2mlf2 [(norm(&m()‘ﬂnl ))2 + (nonn(f-lmo‘ﬁnl ))2]1/2’
which can be made small by taking sufficiently large K. If we continue until our

support intervals are the same as the intervals where f is a constant function, we express f

in as a linear sum of the wavelets exactly. [3]
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figure 2.2.1




Section 2.3 Wavelet transforms for discrete data

Because the original signal or function can be represented in terms of a wavelet
expansion (using coefficients in a linear combination of the wavelet functions), data
operations can be performed using just the corresponding wavelet coefficients. And if
you further choose the best wavelets adapted to your data, or truncate the coefficients
below a threshold, your data is sparsely represented. This sparse coding makes wavelets

an excellent tool in the field of data compression. [14]

The argument in Section 2.2 has implicitly used a “multiresolution” approach:
We have written successive coarser and coarser approximations to f (the f™, averaging f
over larger and larger intervals), and at every step we have written the difference between
the approximation with resolution 2™, and the next coarser level, with resolution 2, as
a linear combination of the ¥, .[8] We identify
Yo o(X) = 2™2¥(2™x-n) to be
Yon(x)=2"%(0,0,0, ..., 1,1, ..., 1,-1,-1, ....,-1,0,0, ..., 0),

one of the column vectors of the matrix A ( see tablel and table 2).
Given a setof 2* discrete data points, which is supported on [0, 2* ] with uniform
gnds. We can construct f by letting f; representing these values on each unit interval of

k
interval [0, 2¥ . Then £ is £, and f* =2%? z f; , a constant function, is the coarsest

i=]

approximationto f. Letr=1,2,... . kandn=1.2,..., 2" , we can also write f as
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f=f°

=+ C,¥, (where a=2%")
n=t
] a

=f+ z CnWaon + Z Cio¥Pin (where b=2%?)
n=| n=l
c b a

=f3+z Cia¥snt ), Coa¥ant D, Cia¥ia (where ¢ =2+3)
n=| n=l n=l
s b a

=f+ 3 CoaWumt ...+ Y Coa¥sn+ Y Cio¥i, (where s =2*7)
n=| n=l n=]

1 ki b a
=+ CaPiat ...+ . CooWrnt. v ). Cog¥aa+d. Cia¥is
n={

n=l n=| n=|

C1¥i, +
Ceet1Wiert + Cre 2Prrn +

Cu2,1¥k21 + CraaWi22 + Cig 1 W23 + Cr2Wras +

.t
CoaWei *CoaPia+ oo oo C W + (where s =257)
..+
CotWar +Coo%Pon+ oooe v 4 CopWap + (where b=2%?)
CLiWii+CraWiz+ oo v+ CaWia (where a =2"")
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Recall we can associate each ‘¥, , with a vector of form:
0,0,...,0,1,1,..., 1, 1,-1,-1, ...,-1,-1,0,0, ..., 0, 0). Likewise, the original f can

be represented as a 2* vector, f Hence this is a linear system. Since there are totally

k-1
I+ Z =1+ (2k -1)=2% items; forn = 2,3, .., 2% we can rename all the Haar
raQ

wavelets, the associated vector ¥;;, as a vector a,, and all the corresponding coefficients
as scalar d,.

In addition, letfk=d,al wherea; =[1,1,1, ..., 1}/ ({1, 1, 1, ..., 1]}. Then we
have a matrix A such that the n® column of A is vector a,, and a vector d with entry d,.
Since f is identified with the 2* vector with coordinate f; using vector notation, then
f=Ad. Now, we wish to find d, or, most likely, an approximation to d. To find an
approximation to d, we can apply GMRES to approximate d.

Since A is orthonormal, we can also findd by d = A'f. However we will focus on
using the GMRES method to illustrate how the GMRES works in this application. In this
paper, we provide an example to show how the GMRES method helps transform a data
vector f to be a wavelet transform coefficient vector, d, by a 128 x 128 (128 = 27)
matrix, A. When we apply theGMRES method, we can choose some m < 128, so

Xn® = Xo + Vpy n, where y, 8 R™ (equation (7)) such that
i Fm® | = min{ ||Beg: - Hylyn |1}, for y,e R™ (equation)).
In other words, using the GMRES method, we only have to deal with a small matrix

instead of a 128x128 matrix. We hope the residual || r,,® || is very small; let’s see how
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the example works.

Before we show the example, we first list 3 different sizes of A’s (table 1) and

the program (table 2) which constructs A.

Table 1:
A‘=

0.5000 -0.5000 -0.7071 0

0.5000 -0.5000 0.7071 0

0.5000 0.5000 0 -0.7071

0.5000 0.5000 0 0.7071
Ag=

0.3536 -0.3536 -0.5000 0 -0.7071 0 0 0

0.3536 -0.3536 -0.5000 0 0.7071 0 0 0

0.3536 -0.3536 0.5000 0 0 -0.7071 0 0

0.3536 -0.3536 0.5000 0 0 0.7071 0 0

0.3536 0.3536 0 -0.5000 0 0 -0.7071 0

0.3536 0.3536 0 -0.5000 0 0 0.7071 0

0.3536 0.3536 0 0.5000 0 0 0 -0.7071

0.3536 0.3536 0 0.5000 0 0 0 0.7071
A =
0.2500 -0.2500 -0.3536 0 -0.5000 0 0 0 -0.7071 0 0 0 0 0 0 0
0.2500 -0.2500 -0.3536 0 -0.5000 0 0 0 0.7071 0 0 0 0 0 0 0
0.2500 -0.2500 -0.3536 0 0.5000 0 0 0 0 -0.7071 0 0 0 0 0 0
0.2500 -0.2500 -0.3536 0 0.5000 0 0 0 0 0.7071 0 0 0 0 0 0
0.2500 -0.2500 0.3536 0 0 -0.5000 0 0 0 0 -0.7071 0 0 0 0 0
0.2500 -0.2500 0.3536 0 0 -0.5000 0 0 0 0 0.707 0 0 0 0 0
0.2500 -0.2500 0.3536 0 0 0.5000 0 0 0 0 0 -0.7071 0 0 0 0
0.2500 -0.2500 0.3536 0 0 0.5000 0 0 0 0 0 0.7071 0 0 0 0
0.2500 0.2500 0 -0.3536 0 0 -0.5000 0 0 0 0 0 -0.7071 0 0 0
0.2500 0.2500 0 -0.3536 0 0 -0.5000 0 0 0 0 0 0.7071 0 0 0
0.2500 0.2500 0 -0.3536 0 0 05000 0 0 0 0 0 0 -0.7071 0 0
0.2500 0.2500 0 -0.3536 0 0 0.5000 0 0 0 0 0 0 0.7071 0 0
0.2500 0.2500 0 0.3536 0 0 0 -0.5000 0 0 0 0 0 0 -0.707} 0
0.2500 0.2500 0 0.3536 0 0 0 -0.5000 0 0 0 0 0 0 0.7071 0
0.2500 0.2500 0 03536 0 0 0 0.5000 O 0 0 0 0 0 0 -0.7071
0.2500 0.2500 0 0.3536 0 0 0 0.5000 O 0 0 0 0 0 0 0.7071



Table 2:
The following is a program to construct the matrix, A, by matlab.

form=1:1 :2",
forn=1:1:2%
ifn==1;
A(m,1)=1;
else
if log2(n) = = fix(log2(n)),
s =log2(n)- 1;
else
s = fix(log2(n));

end

y=mx(2*)-(n-2°)+I;
if(0<y)& (y<=0.5),
A(m,n) = 2972
elseif (0.5 <y) & (y <=1.0),
A(m,n) = 26972 .
else
A(m,n) =0;
end

end

end

end

The following example shows that the matrix A transforms the original data to the
coarsest approximation in one step; so that we can easily de-noise the data (by setting the
small coefficients to be zero). This example also shows that the GMRES method helps to
find a wavelet transform coefficient vector with a error as small as 1.3323 x 107",
Example: Let f be a 128 x 1 data vector (see table 3: Original data) such that

f(n) = 1.1 +0.01 x sin(100000 x n), wheren=1, 2,..., 32;
f(n) = 1.5 + 0.01 x sin(100000 x n), where n = 31, 32,..., 64; and

f(n) =2.1 +0.01 x sin(100000 x n), where n = 65, 66...., 128.
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First step: Construct a 128 x 128 matrix A.

We wish to approximate x so that f = Ax ( note that this x is exactly the d that

we mentioned earlier in this section.)

Second step: We restart the GMRES after m iterations and repeat this a few times. Call

Norm of final residuals r_° :

the final approximation x.,® and the corresponding residual r,2. We did a

few experiments and list all the residuals from each experiment below:

repeatitions | repeat 0 repeat 1 repeat 5 repeat 10 repeat 20
m\ time time Times times Times
m=10 4.6690 2.2586 1.6637 1.4840 0.7351
m =20 1.7563 0.2689 8.8594x10" | 2.8764x10° | 3.4309x10™"!
m =25 1.3796 0.1095 5.9927x10° | 3.1029x10™"! | 1.3867x10°"
m = 30 0.0489 1.2811x10* | 1.1835x10™"* | 1.6012x10™°
m =40 3.7962x107'% | 1.3323x10°7
m =50 1.3459x10™"* | 1.4895x10°"°
m =64 1.5715x10"* | 1.3688x10™"°

We chose the most accurate x,,* to be our d (table 4), the wavelet

transform coefficient vector.

Third step: we set a threshold to smooth the coefficients (de-noise)[11] and have a new

d, denoted by d4 (table 5). In this example we set the entries of d to be

zero if they are smaller than 0.1 .

Recall from section 1: note (1) and (2), the entries of d are all the differences

except the first entry. In other words, we only keep the average of the sum,

if the difference is very small.

Fourth step: we find our new data f; (table 6) with no noise by f; = Ad,.
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table 3: original data vector f and picture.
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d=

[19.3045 ]
4.4559
1.5007
-0.0002
0.1416
0.0003
00.0001
-0.0002
0.0000
0.2001
0.0001
0.0001
0.0001
0.0000
-0.0001
-0.0001
0.0000
0.0000
0.0000
0.2829
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000

continue

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.40000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

continue

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0008
—-0.0018
-0.0028
-0.0037
-0.0047
-0.0057
—-0.0066
-0.0074
-0.0083
-0.0091
~0.0098
-0.0105
-0.0112
-0.0118

table 4:

continue

-0.0123
-0.0128
-0.0132
—0.0135
—-0.0138
-0.0140
-00141
-0.0141
-0.0141
—0.0140
—-0.0139
-0.0136
-0.0133
—-0.0129
—-0.0125
-0.0120
-0.0114
-0.0108
-0.0101
—0.0094
—-0.0086
—-0.0078
—0.0069
—0.0060
—-0.0051

-0.0042

continue

-0.0032
-0.0022
-0.0012
-0.0002
0.0008
0.0018
0.0028
0.0038
0.0048
0.0057
0.0066
0.0075
0.0083
0.0091
0.0099
0.0106
0.0112
0.0118
0.0123
0.0128
0.0132
0.0135
0.0138

| 0.0140 |

The wavelet transform coefficient vector, d, before de-noise.
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dy=

19.3045
4.4559
1.5007
0
0.1416

continue

COC O OO OO OCOQOD O O

0
0.40000
0

C oo ococoocoocooC0ccoC

continue

©CCcCoQCoCoc oo o0ooCc oo

0
0.00000
0

L= = = R = B = I = BN = I « I « I o I « S <

continue

Note: 0.00000 shown here are exactly equal to zero.

table §:

©cC o oo oo Qoo

0
0.00000;
0

COoOCC oo oOooOoOoOCoOOCOCO OO

continue

The new wavelet transform coefficients, dg, after de-noise.
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table 6:

The new data, f;, and the picture after “de-noise”.
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Section 2.4 Conclusion and further studies
GMRES method is based on a classical scheme due to Amoldi (1951) that
constructs an orthonormal basis of a space called the Krylov subspace. The GMRES
(Generalized Minimal Residual) method is designed to minimize the norm of the residual
vector b-Ax over all vectors of the affine Krylov subspace.
Restarting the GMRES method will produce a sequence of non-increasing
residuals. However, in the present paper, we have shown, by geometry,
(a) that some initial guesses will make the GMRES method converge without restart at
certain iteration steps (on 8.1 of Section 1.8),
(b) some will have no progress with restart at certain iteration steps (on 8.2 and 8.3 of
Section 1.8), and

(c) some will have better results with restarting GMRES (Section 1.9.).

When an initial guess has a slow convergence rate, we will simply choose a new
initial guess. An interesting question is how to determine how big “m” should be for our
initial approximation. Some of these questions will be answered in another study by the

author.
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APPENDIX A:
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APPENDIX B:
rn®=0ifandonly ifr,* =0
Proof: (a) Suppose that r, & = 0.
Since r, % =(ry - Az? ) where Az 2 € AK,,
¢ AK,.
Since ry,* = (r, - Az ) where Az.* € AK,,
r,” # 0. (figure 1)
(b) Conversely, Suppose that rp, * = 0.
Since ry* = (ro - Az," ) where Az,* € AK,,
¢ AK,,.
Since ry, ® = (ro - Az,? ) where Az,? € AK,,

r%=0. (figure 1)

figure 1.
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