San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2007

Neural networks and differential equations

Kathleen J. Freitag
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Freitag, Kathleen J., "Neural networks and differential equations" (2007). Master's Theses. 3539.
DOI: https://doi.org/10.31979/etd.h2n8-mb9r
https://scholarworks.sjsu.edu/etd_theses/3539

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3539?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

NEURAL NETWORKS AND DIFFERENTIAL EQUATIONS

A Thesis
Presented to
The Faculty of the Department of Mathematics

San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Kathleen J. Freitag
December 2007

UMI Number: 1452051

Copyright 2007 by
Freitag, Kathleen J.

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1452051
Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346

(© 2007
Kathleen J. Freitag
ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF MATHEMATICS

Dr. Roger Dodd

J‘\-g‘-/*i—& < =7 ‘T"":‘"&_.,--f:)

Dr. Leslie Foster

/ 114 \.«-~4rwn‘--wd’, 3 {L L

Dr. Mohammad Saleem

APPROVED FOR THE UNIVERSITY

ZAy 7 A

ABSTRACT
NEURAL NETWORKS AND DIFFERENTIAL EQUATIONS

by Kathleen J. Freitag

This thesis investigates the use of neural networks for approximating solutions to
differential equations and compares the method to existing finite element methods. The
thesis begins with a discussion about traditional finite element methods. A detailed de-
scription of neural networks is then presented. In particular, the architecture of neural
networks and how data is processed by the network is explained. The parameters asso-
ciated with a neural network and methods for training the neural network are discussed.
Also, the topic of error minimization and the associated challenges are addressed.

The main topic of the thesis is a discussion of differential equations in the context
of neural networks. The thesis describes an implementation of numerical approximation
via neural networks which involves a non-traditional minimization technique. The thesis
concludes with examples of the neural network method applied to specific differential

equations and a discussion of future research in this area.

CHAPTER

1 INTRODUCTION

2 FINITE ELEMENT METHODS

2.1

2.2

Galerkin Method
2.1.1 Triangulation . . .
2.1.2 Assembly
2.1.3 Error Estimation .

Collocation Method

222 Assembly

2.2.3 Error Estimation .

3 NEURAL NETWORKS

3.1
3.2

3.3
3.4

History
Architecture
3.2.1 Transfer Functions
Training Networks
Minimization Techniques .

3.4.1 Backpropagation .

CONTENTS

oo OU e W

10
11
12
12
14

3.4.2 Steepest Descent Method

3.4.3 BFGS Method e
3.4.4 Radial Basis Function Methods

3.5 Overlearning and Generalization

4 DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS
4.1 Mesh
42 ANN Assembly
4.2.1 The Minimization Problem
4.3 Error Estimation o L o

4.3.1 Neural Networks and Function Approximation

5 IMPLEMENTATION

5.1 Neural Net Software
5.1.1 ANNADES
5.2 Example Problems Lo
5.2.1 Ordinary Differential Equation, Example 1

5.2.2 Ordinary Differential Equation, Example 2

6 CONCLUSION

BIBLIOGRAPHY

vi

37
38
39
39
45
46

49
49
50
51
33
56

61

62

Table

TABLES

2.1 Finite Element Method Error Norms

3.1 ANN Parameters

vii

Figure

21
22

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

5.1
2.2
9.3
5.4
5.5
5.6

FIGURES

Hat Function, equation (2.7) 6
Bilinear Example, equation (2.8). 7
Perceptron Structure L 18
XOR Problem 19
Connected Graph with Weighted Edges 21
Feed Forward ANN; the input nodes are on the left 22
Recurrent ANN 23
Neural Net Data Flow, 24
Logistic Curve, m =0, a=n=7=1 26
Radial Basis Curve, p (z,0) = g(z,1) =exp(—2?) 27
Representative ANNfora PDE 40
ANNADES Main Function Flow 51
ANNADES Optimization Function Flow 52
Absolute error approximation for problem 5.1, h =01 54
Absolute error approximations for problem 5.1, h<0.1 55
Absolute error approximation for problem 5.1, Ny =15 57
Absolute error approximation for problem 5.1, using T oo o8

viii

5.7 Absolute error approximation for problem 5.5 with a mesh size = 0.1 . . 60

1X

CHAPTER 1

INTRODUCTION

The study of differential equations is a broad field centered around rates of change
in a physical behavior. Physicists, engineers, etc. define physical behaviors of the world
using differential equations. Mathematicians study the existence and uniqueness of solu-
tions to differential equations and discover analytical and numerical techniques for solving
them. The goal of solving a differential equation is to find the closest, if not exact, solu-
tion given some restrictions on the behavior. The majority of real world problems are not
likely to have a closed form analytical solution. Therefore, algorithms for approximating
solutions are required and each differential equation has characteristics that lend itself to
different numerical approximation methods. The goal of this thesis is to find continuity
in the finite element methods of numerically approximating solutions and introduce a
method of similar nature using neural networks.

Chapter 2 will center around the traditional finite element methods summarizing
the process of finding a solution, the parameters involved and the method for determining
its viability through error estimation. These methods were chosen as a basis of compari-
son due to their similarity to the neural network approximation method. The traditional
methods discussed are the collocation method and the Galerkin method. These meth-
ods share the concepts of defining the domain on which to approximate the differential
equation, the assembly of an approximate solution and estimating the error between the

approximated solution and the exact solution.

2

Chapter 3 discusses neural networks in depth. The discussion will begin with
a history of the subject, the traditional uses of neural networks, the architecture and
parameters of a neural network, minimization techniques, and the potential challenges
in neural network training.

Chapter 4 examines the application of neural networks for solving differential equa-
tions and the similarities to the traditional methods presented previously.

Chapter 5 addresses available neural network software, the application developed
for this study, and the implementation of particular example problems.

The thesis concludes with the findings and results of the comparison including

directions for further research.

CHAPTER 2

FINITE ELEMENT METHODS

Before introducing a new method for approximating solutions to differential equa-
tions it is important to provide a foundation for comparison with existing robust methods.
The finite element methods provide the best analogy to the the Artificial Neural Network
Approximation Method. More specifically a summary of the Galerkin and collocation
methods are presented for their similarities. Both methods are described using an exam-
ple partial differential equation with Dirichlet boundary conditions as a model problem.
Good references for the extension of the methods on other types of differential equations
are given in [Sew88|, [GL88] and [Hug00].

First the partial differential equation is given. For domain P ¢ R?, f: P — P,

and a non-constant coefficient, x

-V (kVVU) =
(V) S 2.1)
¥ = 0 on the boundary of P.

The goal of finite element methods is to approximate ¥ using a projection of the
solution onto an approximating subspace of finite dimensions. Given, {¢;}]" forms a basis
for the entire solution space and the finite element approximating space, S, = {¢;}}, the

approximation is
U (z) = Z Uidi. (2.2)
i=1

For both the Galerkin and the collocation method, the approximation (2.2) has

4
a unique representation when a number of conditions are met. An outline of these

conditions are given for the Galerkin method next.

2.1 Galerkin Method

In order to find an approximation to the Dirichlet problem (2.1), the following

definitions are needed.

Definition 2.1.1. A set of functions S = {¢; (x)}.2; C H' (P) is said to be complete
if these functions, ¢; (x) are linearly independent and any function, ¥ € H' (P) can be

written as
U=> U (2.3)

S is also said to be a completion of P.

Definition 2.1.2. The Hilbert space H! (P), P C R™ is the space of complex functions

U, ® e H' (P) with inner product
(T,) = / (T8 + VIVE) dx. (2.4)
P

It is a complete, normed linear space, i.e. Banach Space with respect to the associated

norm

1| = (2,). (2.5)

Now with the above definitions, given a finite element approximation space S, C H!,

for every ¥ € H! and ¥,, € S,
|¥ - T,|| - 0asn— oc. (2.6)

More simply the finite element approximation approaches the exact solution as the sub-
space S, nears a completion of H!. With the conditions on the functions ¢ and the space
P met, the coefficients, U; can be determined by a linear system of equations. The core

steps in this approximating algorithm are,

e triangulation, partitioning the domain, P,
e assembly, forming the approximation function,V,,,

e error estimation, calculating the distance || — ¥, ||, between the exact solution

and the approximation.

The next three sections outline these steps in some detail.

2.1.1 Triangulation

The triangulation of the domain into n elements involves two steps. First, the
shape and size of the elements or mesh are defined. For example, in a one dimensional
problem, the elements are n intervals that can be equal in length or have unequal lengths.
For our 1-D problems we used an equally spaced mesh for the domain.

For the 2-D problems, the domain must be divided into a mesh of polygonal shaped
elements. These elements must adhere to size restrictions, meaning they can’t be too
“skinny.” They can be any polygon with straight or curved edges. Curved edges require
a special application of finite elements called isoparametrics. For illustration purposes,
we will be using a quadrilateral element with equal straight edges. These elements work
well on the non-curved boundaries.

Next, a function is defined for each interval/element. This function is called the
element basis function and tends to be a piecewise polynomial. These polynomials are
the simplest to integrate and fit over a given domain. A basis function for an element
has the property that it is zero at every vertex of the element except one where it has
the value one.

For the 1-D problems, the hat function satisfies these properties by combining two

element basis functions. On an interval, I = [z;, ;1] the hat function

;

T T € [T, @],
¢ (i) = < ;:”;L—_x;l x € [z, Tir1] s (2.7)
\0 T=Ti_1,T = Tjt1.
This piecewise linear function is illustrated by the example, x; = ¢ in figure 2.1 for

1=1...06.

Figure 2.1: Hat Function, equation (2.7)

Thus, each interval, I, is defined by both ¢; (z) = a1 + asx and ¢i41 (z) = a1 + asz.
The a;’s are then determined by the endpoints of interval I and the set of the ¢;’s form
the finite element basis for approximating ¥ : P — P. The approximation is defined
as, ¥, = Z?:1 U;¢; where n is the finite number of z; € P and the U, are yet to be
determined.

For the 2-D problems a similar approach can be taken for defining a basis. In
2-D the hats become tents. To demonstrate the tent functions, a bilinear function can
be assigned to each element. The bilinear functions are defined as ¢, (z,y) = a1 +
asx + azy + asxy. The coeflicients are determined by using the four corner points of the

quadrilateral element and the general finite element basis properties of ¢ must hold.

Example 2.1.3. Consider P = [0, 1], and split P into four equal sized quadrilateral

7

elements. This results in nine vertices, n = 9. Define a tent function, ¢ (z,y) =

11

5,5) =1 when z; = 1 and

a1 + axx + agy + asxy. The following equation satisfies ¢y (5

Yk = % Notice the equations agree at the edges of the quadrilaterals. This example is

illustrated in figure 2.2.

dxy T,y € [0, %}2,

o) = | 4a (1 —y) z,y € [0,3] x [5..1], 2.4
41—-2)y x,ye[%,l]x[o %],
[4@-DE-1) zy e [L1]°.

Figure 2.2: Bilinear Example, equation (2.8)

This construction of the ¢;; for each node (z;, yx) results in the finite element basis
defined on P and an approximation ¥,. Each of the four elements produce four ¢;; but
due to equality at the element boundaries the sixteen ¢;;’s reduce to only nine ¢;’s. The

approximation ¥y = Z?zl U,¢; is the finite element approximation of .

2.1.2 Assembly

The term assembly is used rather loosely in reference to the finite element method.
One interpretation is that forming the approximation to the solution of a differential
equation requires assembling a matrix of values called the stiffness matrix and a vector
of values called the load vector. Determining the coefficients U; is then done by solving
the system of equations. The representation of the differential equation in (2.1) is called
the strong form of the equation. In order to determine the stiffness matrix and the load
vector, the weak or variational form of the differential equation must be derived from
the strong form.

Recall that the set of functions, ¢ and the domain P had to satisfy some constraints.
Additionally, for each element in the domain with n, vertices, a function v can be defined

as
V=) adi. (2.9)
k=1

This variational function, v € H' is multiplied on both sides of the equation. The
two sides are integrated over the domain using integration by parts and a variational

form is derived. The next example illustrates this.

Example 2.1.4 (Weak Form of equation (2.1)). Recall, the Dirichlet equation from
the beginning of the chapter. For domain P C R% f : P — P, and a non-constant
coefficient, &
-V (kVU) = f
¥ = 0 on the boundary of P.
Beginning with the above strong form of the differential equation, multiply both sides by

v(z) € H} and integrate the equation over the domain, P.

—/PV(/iV\II)vz/PfU.

9

Using integration by parts, the divergence theorem from Calculus and the property that

v =0 on the boundary of P, i.e. v|,p = 0 the weak form is derived.

—/PV(KV\I/)’U = /va
/PHV‘I/VU—/BPKUg—;I: = /va
/PKV‘IIVU = /va

(2.10)

The integrals are then numerically approximated using a summation of estimates
over the number of elements, n, and the number of nodes in the domain, n. Each element
contains n, nodes which can be shared by other elements. This approximation is called

a quadrature rule and is shown below.

e

/ kVoVE = anv\m
P i=1

Ne Ny

= YD (wyrVo (x;) VI (2.11)

i=1 j=1

The entries of the stiffness matrix, K, can then be determined by setting k;; =
w;;kVv (X;). Then the load vector, L is approximated using the same quadrature rule
and the entries are [; = w; f (x;). The result is a n X n matrix equation of the form,

K- U = L. See equation (2.12).

10

kn . . ky . ki Uy I
k22
=1 |. (2.12)
kil ki]‘ . Ui li
ki - . .. kun U In

The stiffness matrix contains a band of values along the diagonal of size, n,. Once
this matrix and vector are created the task is then to find the coefficients, U, for each
basis function. This is accomplished by inverting the stiffness matrix and multiplying it
by the load vector. Once the coefficients are found the approximation of the solution is
created by summing the coefficients found multiplied by the basis function over all the

intervals or elements of the domain.

There are many details left out of this discussion of the finite element method for
approximating a solution to a differential equation. The goal is to provide the reader with
a general idea of the steps associated with constructing the approximation and noting
some key features that will be referred to when discussing the neural network method in
Chapter 3.

The next section will illustrate the value of this approximation by explaining the

different types of errors that can be calculated.

2.1.3 Error Estimation

The space on which the above approximation is defined is by definition in the
same space or subspace as the exact solution of the differential equation. This space
has a number of different ways to define how close to elements of the space are to each

other. This is known as a norm of the space and is represented by ||-||. A subscript also

11

accompanies the norm notation defining the space that the norm is operating in. There

are four norms to be considered.

Table 2.1: Finite Element Method Error Norms

Name Representation Definition Space
Sup Norm ol mazzen {|V ()]} 2
L2Norm 1)), (f, 72)* Ly

H' Norm 1T (f, U2 + VI?)? H!
Energy Norm N Vva(,) Ly and H!

The value a (-, -) are the k;;'s in the stiffness matrix. Also, the norm is not limited to
the Ly and H! spaces. In general, the actual error of the approximation is not available.
Thus, only a sense of the size of the error or order of the error can be determined. For
finite element methods the order is often given in relation to the size of the mesh. Knowing
the order of the error also allows different error estimations to be compared with each
other. Later it is shown in § 5.2 that comparing the finite element approximation with
the new neural network approximation using the mesh size is inconclusive and that the
similarity between the two methods is in the algorithm for defining the approximations

rather than in the methods for estimating the error of the approximations.

2.2 Collocation Method

The Collocation Method provides a better comparison to the neural network method
for numerically approximating solutions to differential equations. The method can be
considered a special form of the more general Galerkin Method in which a specialized

test function is used. With this in mind the basic steps of forming the approximation are
e mesh definition, partition the domain, P,

e assembly, create the approximation function, ¥,

12
e error estimation, calculate the distance ||¥ — ¥, (x)||, between the approxima-

tion and the exact solution and the approximation.

Recalling the model differential equation, (2.1), the first step is to define a mesh on the

domain P.

2.2.1 Mesh

The mesh of evaluation points is a finite number of points in a bounded domain,
X. These points are locations where the approximation exactly satisfies the differen-
tial equation. The goal is to collocate the solution with the approximation for each of
these domain values. The collocation points can be chosen from any location but in
general they are equally spaced or chosen for minimum error depending on the basis
functions. Gaussian points have been shown to generate the best approximation [Sun96|

for a particular set of basis functions.

2.2.2 Assembly

The basis functions best approximated by the Gaussian points are the Hermite
Cubic functions on each interval for the 1-D case or the Hermite Bicubic functions on
each rectangle in the domain. There are 4 unknowns in the 1-D case and 16 unknowns
in the 2-D case. In the 1-D case, the Hermite basis functions and it’s derivatives are
evaluated at two collocation points located within the boundary of the interval. In the
2-D case the Hermite basis functions and its derivatives are evaluated at 8 collocation
points.

The Hermite cubic basis functions for a domain consisting of n collocation points

are {So, H1,...,Sn_1, Hn, Sy} and are expressed by the following equation.

13

2 3
3 I__Ikd -2 z__zkﬂ T < x < a1
Tp—Tk—-1 Tp~Tk—1

2 3
Hk (1‘) = 3 (;kkj—ll_—;;) -9 (ikr:_—i) Tk S T < Tkt (2.13)

0 elsewhere

(x~zp-1)° (x—zp-1)3
_(Ik_IkAl) - (Ik—zk41)2 xk—l S x S Ik
N2 a3
Sp(z) = ((2]:11_;2) + gf:l_m?)z Tr <2 < Ty (2.14)
0 elsewhere

For a two dimensional domain consisting of n x n Gaussian points, the Hermite
bicubic functions are used and are defined as the product of two Hermite cubic functions.

As in the Galerkin method, the strong form is multiplied by a test function In this
case the Dirac Delta function is the special test function. However, when the product of
the Dirac Delta function and the strong form are integrated over the domain the outcome
of this procedure results in something different than in the Galerkin method. The Dirac
Delta or unit impulse functions [SN96] are often considered an operator function since it
has the property of determining a given function at a specific value. These functions are
represented using the following definition.

If ¢ (x) is a continuous function on [a, b], 2y € [a, b] then the inner product of ¥ (x)

with the Dirac Delta function, é (x — xo) is,
b
/ U, (z)d (x — xo) dz = U, (xy) . (2.15)

The operation of the Dirac Delta function on the strong from results in a simple evaluation

of ¥; at each Gaussian point in the domain where
The big assumption is that the exact solution, ¥ must be continuous on the domain,

P for the impulse function to apply over the entire domain. However, since the method

is only concerned about a finite set of points, the assumption doesn’t apply.

14

Next, the matrix equation KU = L is formed. The vector

U
Uy
Uy

Un
Un

L. d

The entries of K are computed by the H; and S; for each Gaussian vertex, z; € P.
Second, the entries of the load vector L are generated using the values of f (z;). The
coefficients, U; are then found by inverting the stiffness matrix and multiplying it with
the load vector. The product of the coeflicients with the basis functions summed over
the intervals then combine to form an approximate solution to the differential equation.

The resulting formulation of the approximation is,

n

U, (z) = U (z0) + Z UH; (z) + > U;S; () (2.17)

=0

where U (o) defines the boundary condition [Sew88].

2.2.3 Error Estimation

Due to the discrete nature of the collocation method, most of the norms defined for
the Galerkin Method are not applicable. All but one of those norms are reserved for con-
tinuous approximations in their respective spaces. For the collocation method, the Sup
Norm coupled with the Gaussian collocation points delivers the error estimation [Sew88].
The discrete formulation of the error estimation is also applicable for estimating the error

in the new neural network method, see § 4.3.

15

Next, the concept of using neural networks for numerically solving differential equa-

tions is introduced with the objective of illustrating its similarities to the traditional ap-
proximations and eventually providing it with a place on the menu of desired numerical

solutions.

16

CHAPTER 3

NEURAL NETWORKS

An artificial neural network (ANN) is a computer simulation of the human brain’s
problem solving processes. Their application to solve various problems is vast [Sam07]
[FVF04] [Bha99]. Before introducing the application of neural networks for numerically
approximating differential equation solutions, a history of neural networks and a discus-

sion of their traditional uses is presented.

3.1 History

ANNs began with the collaboration of Warren McCulloch and Walter Pitts in 1943.
McCulloch, a neurophysiologist, and Pitts, a mathematician, were both interested in the
mechanics of learning in the human brain. Their initial work resulted in a hardwired
circuit board that emulated the function of neural processes [AM92]. Shortly thereafter at
the IBM Research Lab located at Columbia University in New York, Nathanial Rochester
initiated work on the first neural network software application [RG58]. Though his efforts
produced a simple implementation, the limitations of the computers meant that the work
wasn’t pursued.

In 1956 the Dartmouth Summer Research Program’s topic was centered around
machine learning. The term artificial intelligence was coined at this conference and
neural networks were at the core of the artificial intelligence discussions [JMS55]. From

this program, many scientists began research in this area, including Frank Rosenblatt.

17
His contribution to the neural network community was the creation of the Perceptron,
a computer built to model neural net processing. It consisted of two layers of nodes, an
input layer for receiving N; signals and an output layer consisting of a single node that

delivered the output signal. Mathematically, the perceptron is defined below.

Definition 3.1.1. Given w,x € R", and threshold u € R, the perceptron ¢ : R - R

is defined by
Ny
o(x) = Zwixi —u. (3.1)
i=1
The single output of the perceptron is determined by a classification function ¥ :

R—R

1 ifzx>0
U(z) =

0 otherwise

The perceptron is a linear function and an affine subspace of R" [AB99]. One of
the outcomes of Rosenblatt’s perceptron development was the reinforcement of parallel
processing for computer hardware [Bri07]. The perceptron was the precursor to the ANN
and the ANN’s architecture reflects the perceptron’s parallel processing structure. This
structure can be viewed in illustration 3.1.

At the close of the 1950’s, Bernard Widrow and Marcian Hoff at Stanford created
the first neural nets applied to the real world problem of eliminating echo in phone lines.
The implementations were named ADALINE (Adaptive Linear Elements) and MADA-
LINE (Multiple Adaptive Linear Elements) both of which are still in use today [AM92].

During this time one of the challenges that surfaced with neural nets was the
inability to handle the Boolean function XOR. To explain the problem we first define

OR, AND, and XOR.
Definition 3.1.2. Given z;,z, € {0,1}.
0 if 1 = X9 = 0

OR (.1‘1, .7?2) =

1 otherwise

Input
Node

‘ Qutput

Node

Figure 3.1: Perceptron Structure

Definition 3.1.3. Given z;,, € {0,1}.

1 if 1 = T9 = 1
AND (l’l,l'z) =

0 otherwise
Definition 3.1.4. Given z,,z, € {0,1}.
1 ifaq =3l,$23: 0

XOR (x1,z2) = 1 ifx;=0,2z0=1

0 otherwise

18

The real issue was that the perceptron could not linearly separate what was a

combination of two functions. Recall that the perceptron is represented by a single linear

function where the separation of domain R" is the hyperplane defined by >, w; (z;) —u =

0. Figure 3.2 illustrates how a single line, [= wyx; — u can separate the data in the AND

and OR functions in R? but how the XOR solution needs two independent lines to

separate the solutions, Iy = wyz; — u and b, = wsxs — u. The pair of lines is impossible

to represent in R? using the perceptron as defined.

19

AND OR XOR
one line one line two line
separation separation separation

Figure 3.2: XOR Problem

This roadblock halted the evolution of neural networks until Marvin Minsky and
Seymour Papert’s book Perceptrons, [MP87], published in 1969. A solution to the XOR
problem was presented. The solution was to incorporate another layer, a hidden layer,
in the network which is described later in § 3.2.

Unfortunately, Minsky and Papert’s solution arrived just at the time panic was
instilled in the public by literary works. These works included Arthur C. Clarke’s tex-
tit2001:A Space Odyssey with the self motivated learning machine, HAL and the self
organizing robots of Isaac Asimov’s science fiction novels [AM92]. The result was a gen-
eral halt in U.S. government funding for any projects related to artificial intelligence,
including neural nets. However, artificial intelligence research continued elsewhere in the
world especially in Japan.

The artificial learning community finally found its break in 1982 when the charis-
matic John Hopfield from Caltech presented a paper and spoke in favor of further devel-
opment in artificial intelligence [Hop82|. That same year, the Japan conference on Coop-
erative/Competitive Neural Networks also announced it’s 5th generation implementation

of a neural network . This fueled the competitive nature of the US government and new

20
funding began to flow.

Recent developments in computer hardware have enabled the construction of mas-
sive parallel computers at a reasonable cost. This has enabled implementations of neural
networks on parallel processors with thousands of nodes so that machine learning can
now more accurately model the processes of the human brain. there have also been
software advances. For example in 1996, Dimitri Bertsekas and John Tsitsiklis intro-
duced a marriage of dynamic programming and neural networks called neuro-dynamic
programming (NDP). A result of their work was a machine that learned to play Tetris
and Backgammon [BT96]. Another success of the increasing power of artificial intelli-
gence techniques has been the solution to checkers. Checkers was solved by a computer
called Chinook [ST07]. Chinook was programmed by a team lead by Dr. Jonathan
Schaeffer at University of Alberta. The computer has been learning the good and bad
plays of numerous checkers games for the last 18 years and optimizing it’s search paths
along a decision tree toward a solution. The work by Schaeffer’s team perpetuates the
development of neural networks as a framework for “thinking” computers.

Although the results of neural networks being applied to specific areas of ’game the-
ory, engineering [GZ07], biomechanics [Hah07] and finance forecasting [HT06] has moved
forward, the more general use of applying neural nets to solving classes of mathematical
problems has had only limited attention. The study of ANNs and their architecture is
still in its infancy. Architectures are still being developed and the best way to use ANNs
for a wide field of problems is far from being understood.

As the applications of neural networks evolve, the need for the development of
better techniques in other mathematical areas, such as function approximation, emerges.
More specifically, methods for solving differential equations using ANNs requires better
techniques for minimization and a larger class of activation functions. The first applica-

tion of ANNs to solving differential equations appears to be in an article by Isaac Lagaris

21

and Aristadis Likas from the University of Ionnina, Greece in 1997. In order to under-
stand their work, the architecture, operation, and challenges of using neural networks is

first presented.

3.2 Architecture

An artificial neural net is a collection of perceptrons or nodes that are connected via
edges to form a network. The edges of the neural net are assigned weights which modify
the data. This is analogous to a connected graph with weighted edges and directional

data flow, see figure 3.3.

Figure 3.3: Connected Graph with Weighted Edges

A graph G of this form can be represented by a set of N nodes or vertices V =
{n;}{’, and edges E C V x V. If the graph is directed, then (n;,n;) € F is distinct

from (n;,n;) when both edges are in E. We shall exclude from consideration edges which

22
connect to the same node, that is (n;,n;) € E for all 1 <i < N. The weights assigned
to the edges are defined by a function w : F — R. We shall denote the value of a weight
by w;;.

The topology of a weighted directed graph G = (V, E; w) is determined by the set
of edges E. A complete weighted directed graph for example is one in which every node
is connected to every other node in the graph.

One difference between the connected graph and the neural net is that the nodes
are grouped in layers. There is an input layer, output layer, and any number of hidden
layers. Data flows from the input nodes through the hidden layer nodes culminating
in the output nodes. Typically, each layer of nodes is connected to the immediately

following layer but not any layers beyond that. Figure 3.4 shows the difference.

Figure 3.4: Feed Forward ANN; the input nodes are on the left

To describe the neural network we let I = { i;}1” denote the input nodes, O =

23
{ 0;}3° denote the output nodes and H = { h;}3"# denote a layer of hidden nodes. For
simplicity we shall restrict the discussion to a single hidden layer, as shown in Figure 3.4.
It is easy though to generalize to the case of several hidden layers. Let Fyy C I x H
denote the directed edges which connect the input nodes to the layer of hidden nodes,
and similarly Fgo C H x O represents the directed edges connecting the hidden layer to
the output nodes. The graph for this case is given by G = (I, H, O, Ery, Ego; w).

If backward flow of data exists the network is called a recurrent neural network. In
recurrent networks data is shared with other nodes in feedback edges so for example there
may be additional weighted edges which connect the output nodes and hidden nodes to
the input nodes. In this case there are additional edges, Fog C Ox H, and Fgy C H x 1.
The corresponding graph is G = (I, H,O, E;g, Ego, Eor, Egr; w). Figure 3.5 illustrates

diagrammatically an example of this type of recurrent neural network.

i !
| RECURRENT |
FEEDBACK |
EDGE |

|

~

i LOGISTIC THRESHOLD
WElGH =D TRANSFER ACTIVATION i)
FUNCTION TEST.

HIDDEN
LAYER

. ~

RECL T
mem FEEDBACK
EDGE
|

Figure 3.5: Recurrent ANN

Networks with non-recurrent directed data flow are called feed-forward networks
and are the simpler of the two types to model. In a basic model, the ANN would have
a few input data nodes, a single hidden layer of nodes, and a single output node. In

contrast to the data flow figure depicting a neural net allowing feedback loops figure 3.6

24

shows a feed-forward network.

LOGISTIC THRESHCOLD
TRANSFER ACTIVATION
FUNCTION TEST

HIODEN
LAYER

Figure 3.6: Neural Net Data Flow

The flow of data begins at the input nodes, is modified by the weighted edges to
the hidden layer nodes, and is then subject to an activation threshold test. The values
that pass the activation test are “squashed” by a logistic transfer function before the
weighted sum is passed to the output node. This process is summarized by the following
neural network output equation (3.2) and table 3.1 of parameters.

For input x € R™ the data processed to the ith hidden node is z; = §V=11 Wi T+ Us
where w;; = w (i;, h;). The output of a neural net, NV, is

Np,

Nx) =D vio(z) (3.2)

i=1
where v; = w (h;, 0) and o is a function similar to the classification function, (3.1), defined
for the perceptron. The functions available for ¢ are known as the transfer functions.
The ¢ function lies at the heart of a neural network and modifies the data received by

the hidden layers. Some examples are described in detail next.

3.2.1 Transfer Functions

Transfer functions correspond to the activation potential of a real neuron. Data
received by the neuron through its dendrites is transmitted across the synapse between

the axon and a dendrite of a communicating neuron only if the potential along the

25

Table 3.1: ANN Parameters

Parameter | Definition

Ny number of input nodes

Ny number of hidden nodes

{z;}} input data value

Wyj weight from input unit j to hidden unit ¢

Uu; bias of hidden unit ¢

2 tth hidden unit value

V4 weight from the 7th hidden unit to the output node
o (z) sigmoid transfer function of the ith hidden unit

axon exceeds a threshold value and the neuron fires. The function is called either the
activation or transfer function. The terms are sometimes used interchangeably, but they
have different roles. The activation function is typically a binary decision algorithm based
on a threshold value. The most common of these activation functions are step functions.
Data which exceeds the threshold value is transmitted onwards, otherwise it is dropped.
A transfer function on the other hand modifies the data smoothly by restricting its
range of values. It can be viewed as a smoothed out version of an activation function.
Its operation is therefore less drastic than an activation function. Recent physiological
studies indicate that neurons actually work in this way [AB99].

Typical transfer functions are members of the logistic family of functions or squash-
ing functions. These functions limit the range of values with which the net uses [Kin95].

The general form of which is,

1+mexp~

Sl e

p(t)=a (3.3)

1+ nexp™
where t,a,m,7,n € R
An example of this function can be viewed in figure 3.7.

The transfer function is used in the following way. Suppose that the input to the

26

Figure 3.7: Logistic Curve, m=0,a=n=7=1

1th node in the hidden layer is

Ny
zi = Z WizlLs + U, (3.4)
j=t

where z; is the input from the jth input node, w;; the weight associated with the edge
(1;, h;). The number w; is called the bias of the ith hidden node. The bias determines
where the transfer function has its steepest descent. If f is the transfer function for the
net then the output from the ith hidden node will be f(z;).

Another increasingly popular family of transfer functions are the radial basis func-
tions. This is because they offer the possibility of a direct calculation of the weights w;;
and biases u;. Suppose that we have data points (x;,y;)¥ for a function f: R¥ — R.
Select a radial basis function g : R, — R, (R, is the set of real numbers greater or
equal to 0). The Gaussian function is a commonly used function for this purpose. It has
the additional properties that g(0) is the maximum of g and the function rapidly decays
to 0. An example of a Gaussian radial basis function can be viewed in Figure 3.8. Radial
basis functions are discussed further in § 3.4.4.

ANNSs can also incorporate pre-processing and post-processing algorithms to modify
the incoming and outgoing data, respectively. For example, incoming data could be

riddled with known signal noise, the scale of the data could be wrong, or lexicographical

27

a
Q

et |
oo™

0.758

!

o

e N o
[

I N
4 —_—

it

€

T T T
-10 -5

o
)]
-
o

Figure 3.8: Radial Basis Curve, p(z,0) = g (z,1) = exp (—2z?)

values need translating to numerical values. The pre-processing algorithms address these
situations. Post-processing of neural network output may help in combining individual
output data for classification, regression of output data to provide a single continuous
output value, and sorting the information for display purposes.

The number of input nodes and the number of output nodes of a neural network is
determined by the numerical approximation being conducted by the net. The rest of the
components that comprise an artificial neural net, the number of layers, the number of
hidden nodes, the connections from one layer to the next, the weights of the edges, the
activation functions, and the direction of data flow have generally been chosen by what
seems to generate the best solution. The works of Hornik concluded that feedforward
networks with multiple layers are universal approximators for any “measurable function
to any desired degree” [KHW89]. Thus, a neural net with an input layer, at least one
hidden layer, an output layer, sigmoid transfer functions, and feed-forward data flow
can approximate any function. This is the foundation on which to build a method for
approximating the solutions to differential equations. The next step is to determine how

this approximation is performed in a neural net.

28
3.3 Training Networks

Over time the human brain gets better at taking inputs and classifying or solving
problems through learning. As in the human brain from which it is modeled, the neural
net evaluates it’s inputs giving greater weight to the more important features of the input
in an attempt to classify a problem and ultimately solve it. This method of learning is
modeled in ANNs by training algorithms.

Training neural networks falls into two categories, supervised and unsupervised.
Supervised training requires a training data set with known output values for the problem
to be approximated. The training data set is a list of selected values from the domain of
a known function with a known solution. The neural net is then trained by comparing
the computed outputs of the net with the known outputs of the problem for any given
set of inputs. The method by which this set of input data is selected is a subfield of
its own. The ideas that are available have been predominately influenced by the works
of Hopfield [Hop82], Hinton [DHAS85], Bertsekas and Tsitsiklis [BT96]. These works
address the issues of erroneous data and apply classification or filtering techniques prior
to using the data in the main net. For the method of using ANN’s to solve differential
equations, the output data are unknown with the exception of the equation, initial and
boundary data information. For this type of problem, an unsupervised training method
is needed.

Unsupervised training methods do not require training data sets with known out-
put values in order to train the ANN. Instead the measure of how well the ANN is
approximating a solution is defined using other given information. For the differential
equation problem, the initial and the boundary data provide a subset of output values
and the differential equations provide information for finding the remaining values.

In either method, the ANN uses an error minimization function with a set of con-

ditions. In supervised training the learning conditions are typically set by the user and

29
can, for example, either require minimizing the estimated error or specifying the num-
ber of times the user wants to train the network. In unsupervised training, the training
function is more complicated because the desired output is not known. For solving differ-
ential equations, the search for an optimal solution to the differential equation requires
finding the derivative of the ANN with respect to all of its parameters. Minimization
techniques are applied and the parameters of the net are modified to produce the closest
approximation to the solution of the differential equation. This theory is discussed in
§4.2.1

After training, it is important to test the neural net with a new set of inputs. The
net’s behavior on the new set of test data is the last indicator of whether or not the
net is accurately modeling the problem. In the supervised training approach, this data
should be an independent set of known inputs and outputs of the problem. The user can
choose how closely the network approximates the data or it can train the net until the
net produces the exact output i.e. zero error. If there is any interpolation done after
the net approximates the exact data then the error of the ANN solution is dependent on
the interpolation technique. The supervised ANN model is successful if it can accurately
approximate the test data when it has been trained on the training data.

For the unsupervised training approach, testing the net involves selecting a new set
of input values (i.e. differential equations with known exact solutions) and computing
the resulting cost with the ANN output. If the cost is still within the range of desired
error then the ANN approximation is interpolating the differential equation solution well.
If the error lies outside the desired range then the neural net has not reached a desired
solution approximation. The error calculations are straightforward since different classes

of differential equations have unique solutions that can be solved exactly.

30

3.4 Minimization Techniques

As noted before, there are two approaches used by an ANN to improve its problem
solving. The methods are either supervised or unsupervised learning. Currently most
ANNs are implemented using a supervised learning model. The goal of the training in
the supervised model is to minimize the error between the neural net output and the

known output of the system over a given domain.

3.4.1 Backpropagation

In supervised training methods there is a set of, N known input-output pairs called

the training set,
X = {3, f ()}l (35)

In this case the function f (x) : R" — R is unknown but specific values that are known
are used to help approximate f.
Given this set of input-output pairs defined in (3.5), the ANN parameters, p are

then updated as the error estimate is minimized. The error estimate is

N
E(X,p) =) N (% p) — f (x)|*. (36)
k=1
The parameters p of the net are the weights w;;,v;, and the biases u;, see table 3.1.

Backpropagation is the process of updating the ANN with new parameters that minimize

the above estimated error function. This process is outlined below. For each iteration, ¢
(1) Calculate the neural network outputs, N (xy) for each input x;.
(2) Calculate the error using function (3.6).
(3) Calculate the change in the parameter vector, Ap that minimizes E (X, p)

(4) Update the ANN parameter vector, p,

31

(5) Continue iterating until F (X, p) is less than a user specified tolerance or until a

user specified number of iterations has been reached.

When the exact output data is not known, as is the case in solving differential equa-
tions, the algorithm for updating the weights is the same but the method of determining
the value of the Ap is different. This will be discussed further in § 4.2.1.

There is a wide range of error minimization techniques available for finding the
value of p such that F (X, p) is minimal. In particular, steepest descent and Broyden-
Fletcher-Goldfarb-Shanno (BFGS), methods can be used. Each of these methods relies on
the idea that the direction perpendicular to the gradient moves toward a local minimum

or maximum [Rar98]. This direction is defined as follows.

Definition 3.4.1. Direction Ap is improving for the minimization function, F (X, p), if

VE(X,p)- Ap < 0.

The gradient VE (X, p) is found using,
[opxp) |
om

VE(X,p) = aE(;(p) : (3.7)
api’

OE(X.p)
Opm

However, there are limitations when using these methods. First a few more definitions

are needed.

Definition 3.4.2. A function F (X, p) is unimodal if the straight line direction from

every point, (X,p) to (X,p) in the domain is an improving direction [Rar98].

Definition 3.4.3. A solution, p is a global minimum if it doesn’t violate any constraints

and E (X,p) < E (X, p) for all p. A solution, p, is a local minimum if it doesn’t violate

32
any constraints and F (X,p) < E (&, p) for all p in a small neighborhood surrounding
p [Rar98].

The limitations encountered by the typical minimization techniques are that if the
function F (X, p) is not unimodal then any of the following methods could stumble upon
a local minimum instead of a global minimum. The study of finding a global minimum in
numerical analysis, optimization techniques, and in neural networks is beyond the scope
of this thesis. However, in practice many neural nets have been successful in achieving
errors below user specified tolerances. A good reference to investigating this further

is [AB99)].

3.4.2 Steepest Descent Method

The first minimization technique is a local improving search algorithm called the
steepest descent method. The model also requires a learning rate r € [0,1], which
represents how quickly the network learns, and a step size A, which represents how much
of a step the algorithm will allow in an improving direction. At each iteration of the
steepest descent algorithm, the error is minimized by using the gradient, VE (X, p), as
the improving direction since VE - VE > 0 for a VE # 0. The actual step taken then
is TAVE. The higher the learning rate the quicker the net will move toward a minimum
error. However, if the rate is too large it could overstep a minimum. In theory the
steps should be infinitesimal but convergence would never be reached. In practice, the
steps tend to be very small and they vary, i.e. get larger when the direction is constant
over several iterations and return to the initial size when the direction changes at each
iteration. With this in mind, typical learning rates vary with numbers generally below

0.1 in an attempt to balance both criteria.

33
3.4.3 BFGS Method

An improvement to the Steepest Descent Method is to determine the best step
size, A, to take at each iteration. This is done by incorporating an approximation of the

Hessian Matrix. First, we define this matrix.

Definition 3.4.4. The Hessian matriz is a symmetric matrix of second partial deriva-
tives that describes the changes in slope of a function E (X, p) in the neighborhood of

current values of p [Rar98]. Given p = {p1,...,pn} the matrix is defined as

92E 8%E
apl ’) ’ Op10pn,
2
H(X,p)= , __6§i£j , : (3.8)
9°E 8%°E
| OpnOp: : : : ap2

The Hessian matrix can be approximated using quasi-Newton methods [Rar98]. At
iteration, ¢, this matrix is identified as I); and called the deflection matriz.
As long as this deflection matrix is positive definite and symmetric a new minimiz-

ing direction at iteration, ¢ + 1 can be computed using the following formula,
Ap*!' = -D,VE (x,p"). (3.9)

The benefit of using the deflection matrix is that it doesn’t require inverting an
n X n matrix for computing the improving direction. This is the method adopted for
most neural net applications due to its superior success both in computation efficiency

and accuracy.

3.4.4 Radial Basis Function Methods

Another method worth noting is the method of Radial Basis functions. This is due

to its similarity to the collocation method discussed in § 2.2. The method differs from

34
the previously discussed minimization techniques in that it provides a direct calculation
of the optimal ANN parameters as opposed to an incremental search for them.

As in the collocation method, we write f as

J

f(x) = Zcig(lxi —di)

i=1
where d; is the center of the ith Gaussian function. From the point of view of the neural
net we only require to construct a function f which is fairly smooth and passes as close
as possible through the data points. The function is therefore determined by minimizing

the error function L[f],

J

Lif] = Z(yi — f(x:))” + pllP S,

i=1
where || - || denotes the Euclidean norm on RM. The first term is obvious and the second
term is a stabilizer which has been added to make f as smooth as possible. The multiplier
(1 measures the relative effect of the stabilizer.

It can be shown under certain conditions that the coefficients ¢; can be determined
from the condition that L[f] is minimal. The formula obtained this way is a generalization
of the Moore-Penrose inverse. Let Gi; = g(|x; — d;|) denote the ¢jth entry in the M x J
matrix G and similarly let G denote the J x J matrix contained in the upper left corner
of G (it is assumed that M > J). The parameters ¢; which determine the activation
function are given by

c=(G"G +puGp)_

. GTy.

The method of radial basis functions can be represented by a three layer feed
forward neural network with a single output node. The M input nodes communicate
with J hidden layer nodes and also directly with a single output node. The weights
w(1;, hj) = d;; are the components of the centers d of the radial basis functions. The

weights w(h;, 0) = ¢; are the components of the vector c. For a given input vector x

35
the hidden nodes calculate the Euclidean distances |x — d;| and the output node receives

the value

M
2= cgllx—dy)) +

=1

where u is a bias which can be added to modify the characteristics of the function g.
We can compare this directly with the equation (3.4) in the case of a single output
node (kK = 1). The radial basis function can be modified to include a bias for a node
in the hidden layer. If p denotes the bias parameter, then we can let g(z,p) denote
the modified function. For example in the case of the Gaussian function we can take
g(z,p) = exp(—pz?).

This method can be easily extended to N; input nodes, Ny hidden nodes and No

output nodes by defining
H
chkh dj|,pj)+uk 1<k < Np.

In this case the final output of oy is calculated by applying a transfer function such as
the sigmoid function p(z).

As was mentioned earlier the advantage of using radial basis functions is the direct
calculation of the weights cjx(= wji). The standard method of training a net using
incremental search algorithms differs from the method used to train a net when it is used
to solve differential equations. In fact as we outline in § 4.2.1 the method is very similar
in principal to the method for training the neural net when radial basis functions are

used.

3.5 Overlearning and Generalization

One drawback of an ANN is its propensity to overlearn or generalize a problem.
Overlearning is the result of the training process being too narrow in its scope. The

data used to train the net is selected from only a small subset of features and doesn’t

36

capture enough details of the problem. One interesting story of a neural net generalizing
a problem occurred in a classification problem for the U.S. Army. The idea was to
train a neural net to determine whether there were tanks hidden in the bushes. The
generalization occurred when the ANN focused on the fact that the tank pictures during
training were taken on a cloudy day and the pictures without tanks were taken on a
sunny day [Fra98]. This problem could have been avoided by some preprocessing of the
picture data to equalize the lighting.

Once the topology, parameterization, training and testing of a net has been com-
pleted the net is ready for operation. We can now consider how neural networks can be

used to approximate solutions to differential equations.

37

CHAPTER 4

DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS

Here begins the goal of the thesis which is to present an alternative method for
approximating solutions to differential equations using ANNs. The method as outlined by
Lagaris et al. is a marriage of the collocation method and the backpropagation algorithm.
The collocation method provides the procedures for defining a finite mesh on the domain
and for approximating a solution for only the finite set of points. The backpropagation
algorithm provides the iterative approach for minimizing the error of this approximation
as a training method.

We shall develop the theory for an mth order differential equation in n independent
variables x = (z1,...2,), and a single dependent variable ¥ defined on a region P C R™.
The simplest way to express the equation is to use multi-index notation. A vector o =

(aq,...,an), where a; € Z,, is called a multi-indez of order
lo| = a1 + ... + ap.

Given a multi-index o define

0l (x)

= =
Oy ...0gn

D" (x) = 921,02 U(x).
Then for m € Z, define

D"™¥(x) = {DV¥(x) : |a] = m}. (4.1)

38

Impose some ordering on the derivatives in D*¥(x). For example we could order the
multi-indices so that o < 3 if either |a| < || or if |a| = || and there exists j, such that
a; = f; for 1 <4 < j, and o; < B;. With this notation DV is for example the gradient

vector,

DV = (U,,,.., 0,)=V,

If the entries in D?V are arranged in a matrix then the Hessian is obtained
D*VU = (V).
Thus the Laplacian is given by
V2 = Tr(D*¥).
The multi-index notation enables the general mth order equation to be written as
G(x,¥(x), D¥(x),..., D™¥(x)) = 0. (4.2)

The next few sections will outline the process of approximating a solution, ¥;, to
equation (4.2). The process begins by selecting the values of x as input values to train

the neural network to learn ¥,.
4.1 Mesh

In order to begin the approximation of ¥ (x) a set of input values is needed. As in
the collocation method a set of collocated points or a mesh of points are selected from a
uniform grid in P € RM. Let {xy,...,x,} C P denote the input data.

For example in the 1-D case, given P = [a,b] then we take the collection of mesh
points {z1,z2,...,an} C P where ;41 = z; + h, 2y =aand h=(b—a) /(N - 1).

In the 2-D case, given P = [a,b] x [c,d] we can take as the collection of mesh
points,{(acl7), (T1,92), ..., (xNI, yNy-l) , (a:Nz,yNy) } Each xz;41 = z; + h, where h, =
(b—a)/(N; —1) and each y;41 = y; + hy where hy = (¢ —d) / (N, — 1).

39

The selection of these points could be chosen more optimally as in the collocation
method. However, in an effort to manage the scope of the thesis and maintain parameters
for replicating Lagaris et al.’s results, we have left this study for future endeavors. Next,

the neural network needs to be configured.

4.2 ANN Assembly

We associate with the differential equation (4.2) a neural network which has Ny = n
input nodes and Np = 1 output node. The number of hidden nodes Ny = h is at the
disposal of the user. We let w;; = w(h;, i;) and v; = w(by, 01). The weights and biases
are initialized with a random number generator.

Figure 4.1 is an example of the network topology used for solving PDEs. The
number of nodes in the hidden layer is h = 10. In this case there are two input nodes
and one output node. The activation function is chosen to be the sigmoid function, for
which the general form is (3.3). The parameters of the logistic function are chosen to

result in the equation
1
S ltet

a(t)
which is shown in figure 3.7. This function maps the line into the unit interval, o : R —
[0,1].

With the mesh selected and the neural net configured, the next step is to form
the approximation equation, ¥; and begin the algorithm to minimize the error of the

approximate solution.

4.2.1 The Minimization Problem

For the neural network approach the approximation will be represented by

U, (x)=Ax)+ F(x,N(x,p)) (4.3)

40

Figure 4.1: Representative ANN for a PDE

where A and F' incorporate the constraints of the boundary conditions. For a single

boundary condition, ¥ (by) = fy equation (4.3) becomes
Ui (x) = Fo + (z — bo) N (x,P).- (4.4)

The minimization of the approximation error is then a modified version of equation
(3.6).
E(X,p)=Y_|D™U (x,p) — f (2, T, D'Ty,..., D" 1T " (4.5)

1

In order to minimize this error the backpropagation algorithm is employed. As men-

tioned previously, the backpropagation algorithm is done using an unsupervised method,

41
§ 3.4, one that does not require a set of output values for the exact solution. In general the
only given values of the exact solution are either boundary values or initial values. This
set of values would not be sufficient to train a neural net on the entire domain. The neural
network, if trained on the boundary values, would definitely suffer from generalization,
§ 3.5. Every solution would behave as a boundary value behaves.

The backpropagation algorithm is similar to the Galerkin method of approximating
differential equations when using the Ritz approach [Goc06]. In the Ritz algorithm, the
minimization problem is to minimize the difference between the load vector and the inner
product of a finite dimensional approximating function. In order to minimize the error
of the solution using ANN’s traditional minimization techniques discussed in § 4.2.1 are
used to minimize the error in equation (4.5) given the differential equation,(4.2), over a
finite set of mesh points.

For each cycle of the backpropagation algorithm the neural network processes each
input data vector and obtains a corresponding output value before the network is updated
with new parameters. Subsequent cycles use the same input data but the output changes
for each cycle because the parameters are modified by a user defined minimization tech-
nique. The minimization algorithm measures the error defined in (4.5). Since, F' and A
are represented by some product of some polynomial in x with constant coeflicients and

N. The derivative of the approximation is found by using the chain rule.
D™, = D™A(x)+ D™F (x, N (x,p)) D""N (x,p) . (4.6)

Since the above equation’s only variable parameters are the neural network param-
eters, p, these are the parameters that are updated using the minimization technique.
These iterations continue until a minimum is attained, a user defined error tolerance is
reached, or the number of iterations has surpassed the user defined maximum number of
iterations.

In order to execute the minimization technique the derivatives of the neural network

42

with respect to its parameters need to be explained. Recall from section § 3.2 that the

neural network is a linear sum of constant coefficients and transfer functions, o.

= Z%‘U (z)

i=1

and

Ny
2 = E WikT; + Ug-
Jj=1

The derivatives of the output with respect to any of its inputs as well as the gradient
of the network derivatives with respect to their inputs must be calculated. To find the
derivative of N with respect to Zj, wyj, v; and ug the chain rule is again used. First we

show the derivative of the ANN, NV, with respect to any of its input nodes, z;. That is,

k h
a/\/ sz whal®, (4.7)

Proof. For k = 1:

ON 0
%j = 8I] (Z V;0 (Z Wi; X 5 +Uz>>
= sz (Z WwijTj + Uz) aa (wijmj + ui)
i=1

h

= Z ’UiO'/ (Zi) Wiy
i=1
h

= Zvia(l) (2:) wy

1=1

Assume for k=n — 1:

5n 1N Z’UO’"I) Zl

For k =n:
"N 0 [~ .)
bz O, (ZW(V(@) w) 1)
i=1
h n
= zva(" 1 (Z Wi T; +ul) wy 18_
i=1 j=1
h
= ZUN(”) (1) wi; wyj
1=1
h
= Zvia(") (2:) wij
i=1

Thus, by induction equation (4.7) holds true for all n.

(’I.Uij.%'j + Ui)

43

a

Next the gradient of the ANN with respect to it’s input nodes, NV, is determined.

First, let P, = [],_, , wi¥ and the derivative index n is defined in (4.1) then

N, =D'"N = ZviPicri(n).
i=1
Proof. For k = 1:

0N

a1
0z}

h
= 2w (=)
1=1

from previous proof.

Assume for k =n — 1:

h
DrUN = Z vi [Twe™™Y (2).
=1

For k = n:

(4.8)

(4.9)

(4.10)

44

gon

8xnan
h n—1
o°n a; (n—
T D (Z wigo," ™ <zi>)
Tpan)
h n—1
a; g -1
= Yulu (s)
i=1 j=L1

h n—1 o
_ 2 :'U' Hwaja(n—l)—f-an (Z) o "2
— ' P R " Oz pan

= Zvl H w i (n— 1+1) () gon (Z:;:l WimTm + U;)
i=

8l'nom

_ Zv’ij () (2) Wl
= Zvlnw a (z)

i=1 7=1

= Z’UiPZ‘O'i(A) (Zi)
i=1

Therefore, by induction, equation (4.8) holds true for all n. O

It is also necessary to figure out the derivative of N with respect to v;, u;, and w;;.
Finding the derivatives of NV, with respect to the other parameters becomes straightfor-

ward.

ON (A)
= Po®. 4.11
so. = P (4.11)
0
% = vPo . (4.12)

Finally, finding the partial derivative of A/ with respect to w;; requires using the

product rule.

45

5,
N, = xjviPiUi(AH) + viAjwlAj"_l < H wf}ck'lal-(A)) . (4.13)

Ow,
Y k=1k#j

Now that all of the derivatives of the gradient network have been found with respect
to all of its network parameters, the techniques for minimizing non-linear surfaces can
be used. These are the same methods employed by the supervised training methods.
Though any minimization technique can be used, BFGS is chosen due to its superior
performance [ILF98].

The ANN parameters are then modified by changes that the BFGS algorithm sug-
gests and the iterations continues producing an approximation, ¥;, that nears the exact

solution, W.

4.3 Error Estimation

Optimally, the error between the approximation and the exact solution would go
to zero in a finite number of backpropagation iterations, n;. However, there are two
obstacles to this occurring and eventually obtaining ¥; = V. As was mentioned in § 3.4.3
an optimal solution is only guaranteed by BFGS if the error surface, dependent on the
number of parameters n, is untmodal. Since this is not generally known, one approach to
insuring this behavior in the differential equation solution is to divide the domain of the
differential equation solution into sections or elements known to have convex properties
as in the Galerkin method. In an effort to stay focused on the method, this tangent
would be an excellent subject for further research. Instead, it is known that for an n,
dimensional problem, typical BFGS error estimates are defined by the product of n; and
the number of calculations made at each iteration [Rar98]. The majority of calculations
is in determining the direction toward the minimum error and finding the gradient with
respect to the parameters. Finding a direction involves determining a deflection matrix

of size n, and calculating the gradient of size n,. Each hidden node has three parameters

46
associated with it, w;;, u;, and v; producing an n, = 3Ny where Ny is the number of
hidden nodes. This gives the minimization portion an error of order dependent on Ng.

The second obstacle in approximating the error is the ability of a neural net to
approximate a function. This area of research is an open ended question in the study
of ANNs and has been a deterrent for users of neural nets. The next section describes
the current status of the subject with respect to approximating differential equations.
It is determined that the error of approximating the error function is also dependent on
Np. In chapter 5 reasonable approximations are achieved in the examples performed and

within a small number of iterations of the backpropagation algorithm.

4.3.1 Neural Networks and Function Approximation

The use of a feed forward neural network to solve differential equations raises
some fundamental questions. The most important of these is whether such a neural
network can in fact approximate an unknown function ¥ : R® — R (the solution of the
differential equation) and its derivatives. If this is the case then does it require some
specific or optimal number of hidden layers? Finally we can inquire about the class
of transfer functions which are applicable to this problem. For example if the transfer
function is a step function as discussed in § 3.2.1 then it is a piecewise continuous function
which has derivative zero almost everywhere. Thus although this transfer function can
be used to approximate the solution of the differential equation, it cannot be used to
approximate its derivative. This type of transfer function is therefore not applicable
to solve differential equations where successive approximations to the solution and its
derivatives are calculated at each cycle through the network.

The original papers which investigated function approximation by feed forward
neural networks were due to Hornik et al. [MHW90] and Leshno et al. [MLS93]. More

recent papers refine the original results, but do not essentially change the conclusions of

47

the earlier works. It turns out that a feed forward neural network with a single hidden
layer is capable of approximating a function and its derivatives to an arbitrary level of
accuracy for relatively mild smoothness conditions on the activation function [MHW90].
In fact even more is possible. The network is capable of approximating functions which
only have generalized derivatives (such as piecewise continuous functions).

In order to appreciate what is involved let us consider a neural network with Ny
input nodes, a single hidden layer of Ny nodes, and one output node. The input to the
kth hidden node zj is defined in (3.4). Let f : R — R denote the transfer function and
let A': RM — R denote the output function of the neural network (the dependence on
the weights and biases has been suppressed). Then if x € R and vy = w(hy, o) is the
weight on the edge from the kth hidden node to the output node the output function

from the net is

Ny Ny Ny
N(X) = Z 'ka (Z Wigxi — ’U,k> = kaf(x.wk - uk) (414)

where wy, = (wig, ..., wn;x). The first partial derivatives of the network output function

are
8 oL
g/;g:() = ; vpwie D f (x. Wy — ug) (4.15)

where Df is the derivative of f. Thus both (4.14) and (4.15) have the same functional
form. It is well known (we briefly review some of the results later), that an unknown func-
tion ¥ can be well approximated by an appropriate choice of weights and biases. The same
is therefore true of ¥,,. However it was not clear until the papers [MHW90|, [MLS93]
appeared that the same set of weights and biases could be chosen for which both ¥ and
its derivatives could be arbitrarily closely approximated.

There is however a big snag in the proof; it assumes a continuum of hidden nodes.
This idea was first proposed by Irie & Miyake [IM88] and enables the use of Fourier

transforms to considerably simplify the calculations. For example suppose ¥ € C™(R"),

48
which we assume to be the unknown function, where n = N; corresponds to the number

of input nodes. Then if

N 1
f(a):W

f(x)e_ix'adx
Rn

in the transform space the derivatives of f can be simply expressed as

Def(a) = (271),1/—2 /R Dgem™2dx = (ia)® f(a).

Let L,(R) denote the space of Lebesgue measurable functions on R with the norm

151l = | [1rtapras] v

The Sobolev space S;*(R) is defined as the collection of functions g € C™(R) such that
[|D%gllp, < oo for all £ < m. We also introduce the notation C{°(R) to denote functions in
C™(R) of rapid decrease. This means that for any g € C°(R) and j,1 > 0 ' Dtg(z) = 0
as |z| — oo.

The main result of Hornik et al. is that provided the transfer function f # 0 belongs
to the Sobolev space ST*(R,), N can approximate any function belonging to C}*(R)
and its derivatives up to order m arbitrarily closely on compact sets. However these
conditions are too strong for most transfer functions; it rules out logistic and hyperbolic
tangent squashing functions, and indeed any sigmoid function (3.3)

It turns out that the conditions on the transfer function can be considerably weak-

ened to {-finite functions. These are functions g € C*(R) for which

0< /R[Deg(x)|d:r < 0.

That is if the transfer function f € C*(R) and D‘f € L;(R), for some ¢ > 0, then N/
can approximate any function ¥ € C{°(R). The logistic and hyperbolic tangent transfer
functions are now covered by this result. Unfortunately the result does not give any

insight into the optimal number of hidden nodes required to approximate V.

49

CHAPTER 5

IMPLEMENTATION

Lagaris et al. make little mention of the software used or developed for performing
the neural net approximation of differential equations. They do direct the reader to a
program called Merlin. However, Merlin is solely an optimization package. Discussion of
the neural net piece was absent. This required searching for or creating a tool to use in

applying the neural net approximation theory.

5.1 Neural Net Software

Many challenges existed when searching for neural net software. First, the majority,
if not all, of neural net software applications available in the market use supervised
training methods. This means the applications are hard-coded to train the neural net
using training data sets, i.e. two vectors of input and output values.

Second, software implementations of multi-layer feed-forward neural networks range
from the extremely expensive software of Wardsystem, NeuroShell 2 for stock trading
predictions, to freeware by Sylvain Muise, to a simple Maplet that simulates an ANN to
solve Boolean problems. These applications tend to have specific user interfaces catering
to the problem being addressed. Since, solving differential equations with an ANN is a
relatively new idea and the algorithm used was unsupervised, an implementation need
to be created or another implementation needed to be modified.

The initial thought was to modify the existing program SNNS, Stutgart Neural

o0

Network Simulator, to do unsupervised training with a customized learning algorithm,
i.e. the minimization problem outlined in § 4.2.1. The application had a decent user
interface and graphical output. However, the structure of the code did not lend itself to
unsupervised learning. Similar attempts were made with various other existing neural
net software but the final evaluation was that the traditional backpropagation algorithm
was intricately embedded in all of these applications.

The new goal became finding a set of simple classes for defining a neural net
and for performing the optimization. These two pieces were found easily. A neural
net class developed by Jasper Bedaux at the University of Amsterdam in 2002 along
with the GNU scientific library for the optimization covered the foundation for what is
deemed the Artificial Neural Net for the Approximation of Differential Equation Solutions
(ANNADES).

5.1.1 ANNADES

The neural net classes and the optimization library provided the basic layer of
ANNADES. The remaining work was to provide a link between them and incorporate
the minimization function for the differential equations. Since each differential equation
is different the details of the minimization had to be changed for each approximation.
To limit user error in these modifications, all changes for each approximation are made
in a small number of functions. The best way to illustrate ANNADES is by first looking
at the functional flow diagram of the main program in figure 5.1.

The main program defines the mesh of the domain, creates the neural net, minimizes
the parameters of the net, and outputs the minimization results.

The minimization work occurs in the Optimize Neural Net process. A similar
functional flow diagram can be referred to in figure 5.2. Here is where the majority of

the calculations are done. The minimizer is defined using the GSL classes. The weights

ol

- Enter
. meshdata | Create 5
©oand Creale Neural Net Opinize Qutput Data File
1 Mesh Neural Net Error Data
. neural net Model
size

Figure 5.1: ANNADES Main Function Flow

and biases of the ANN are stored in a parameter vector, p. These parameters are then
optimized using the user defined differential equation. The optimization occurs over the
course of several iterations. At each iteration, the error function, (4.5), the derivative
of the ANN with respect to the input, (4.8) and the gradient of the Error function with
respect to p, using (4.11), (4.12) and (4.13), are calculated. The gradient is checked to
determine if a minimum has been reached, the derivative of the error function is checked
to determine if the step sizes are near zero and the number of iterations is checked
to determine if the maximum number of iterations has been reached. If any of these
conditions are met, the optimization process is exited and the minimization output is

generated.

5.2 Example Problems

The difficulty in verifying the results given by Lagaris et al. is that the differences
between their implementation and ANNADES is unknown. In an attempt to minimize
these differences, the goal was to confirm the results of their example problems. The

results are illustrated in the following section of examples.

52

. 1'suogess)
T

pie

[d \
]\ Sigjousered /
/ WY/

e —
,\, i
Sty \,\

[aupnsp |

,\ |

T
[
lfl\ 20UBIa} \\
[ez /
L

] st \

/ lzwuw

,|!\ o \

Figure 5.2: ANNADES Optimization Function Flow

,\ ! /

;J\ Sty /

T

{
b

53
5.2.1 Ordinary Differential Equation, Example 1

The first example is given as

d 1 + 322 1+ 3z?
—U — U =2*+2 L 5.1
dz +<x+1+x+x3) v x+x1+x+x3 (5.1)
U (0)=1,z€]0,1].
The exact solution is ,
exp“% 9
v, = .
(z) l=x+ 28 T
The neural net approximation is

where each parameter p € p is initialized to a random value in [—1,1] and modified
through the optimization algorithm.

For this problem, ten z; equally spaced in [0,1], i.e. the mesh size, h = 0.1. The
ANN had ten hidden nodes. The optimization method was BFGS and the approximation
equation was (5.2). The minimization ran for 35 iterations before the program determined
that the optimization was not making any progress. This meant that the size of the steps
in the direction of the minimum were near zero. The resulting sum of the squared error
(SSE) for the gradient was 0.504079 which the same magnitude as h,i.e. O (h). The

absolute error for each z;,
e(xi) = Vo (z:) — Vs (24, P)| (5.3)

achieved errors as high as 0.57932389. See figure 5.3.

Next, as in the finite element methods, it was necessary to determine if the approx-
imation would improve with smaller mesh sizes. The approximation routine was run for
h=10.1, h=0.05, h =0.025, h = 0.0125 and achieved results in 87, 26, 24, 51 iterations
respectively. Unexpectedly, the approximation did not improve but worsened with no

visible correlation to the mesh size. The results can be viewed in figure 5.4.

54

20 =4 '80106°0 = 38S ‘(d “INNX+1="J

ll"l

¥
II(-\

lllll
P
-
.

PR
Loes
lllll
w |
-
P

kY- ~ -

=

O S e

uonewixoiddy Jolig
| We[qoid 3A0

[44

¥i

s

I

Figure 5.3: Absolute error approximation for problem 5.1, h = 0.1

99

GZ1000 =Y '869L0°Z = 3SS GZ0'0 =Y ‘Z80%°'LZ = 388

G0'0=Y 'LGlGLL =3SS

uolewixolddy Jou3
| ws|qold 3d0

Figure 5.4: Absolute error approximations for problem 5.1, A < 0.1

o6
Since the approximation did not improve by reducing the mesh size, the next
idea was to increase the number of hidden nodes in the ANN. This simulates increasing
the dimension of the basis since the neural network output is a summation of sigmoid
functions, see equation (3.2). The result was that the SSE was reduced to 0.456032 but
was still O (h). This result was achieved in 31 iterations and can be viewed in figure 5.5.
Finally, a last attempt was made at reducing the magnitude of the error. After
some consideration, it was noted that the approximation ¥; was numerically a linear
approximation and the general form of the differential equation had an z3 term. This
prompted another look at the neural net approximation and led to a new approximation
of the form

¥, (z,p) = 1+ 23N (z,p) . (5.4)

The parameters of N (z,p) were optimized in 14 iterations using the new form,

(5.4), and achieved an SSE = 0.0450667. This error was 5 the magnitude of & or O (h?)
and the absolute errors were less than 0.2, a marked improvement over the original

approximation model. See figure 5.6.

5.2.2 Ordinary Differential Equation, Example 2

The next differential equation to be approximated is the following equation.

d 1 x
%\II + g\I/ = exp 5 cos () (5.5)

v(0)=0,z€0,2.

The exact solution is ¥, (z) = exp~5 sin (x).

The first neural net approximation tried was,
U (z,p) = 2N (z,p) (5.6)

where p is a set of optimized values ranging from [—1, 1].

o7

1’0 = 4 'Z€09GH'0 = ISS ‘Gl = S8pou uspply

¥ &1 a o L] £a [4] g0 (4] (3}

15

o
-

e ™
pr"
»
-
-

lllll

P
P

DU w l\..l.\lllll...u‘..llnl.'l [——

fyg =N E—
REXT — e

uonewixolddy Jou3
| wo|gqold 3d0

(44

| 22

[

T

Figure 5.5: Absolute error approximation for problem 5.1, Ny

o8

1'0 =4 ‘29906700 = 388 ' (d X)NN X +]=

yuim g

‘&

I (1} o o [L] <0 L4} £ (4] a

-
o w am ™ -

-
u
LY e
- "
- -

-
-
P Re
-

uonewixosddy Joai3
| we|qold 3d0

[

¥i

[]

T

Figure 5.6: Absolute error approximation for problem 5.1, using ¥,

59

Note that the neural net approximation is similar to the first problem. There
were ten xz; equally spaced creating a mesh size of A = 0.2 since the domain interval
was [0,2]. The ANN had ten hidden nodes and the optimization method was BFGS.
The minimization ran for 39 iterations before the program again determined that the
optimization was not making any progress. However, in this case the resulting SS'E for
the gradient error (3.7) was 0.0768531 which is O (h?). The figure 5.7 illustrates this
result.

These results are promising in providing an alternative method for approximating
solutions to differential equations. The speed and efficiency of the method is driven
by the minimization technique as in other finite element techniques. The speed of the
minimization techniques stems from the number of parameters, § 3.4. In other finite
element techniques the results improve as the mesh size decreases which in turn slows
the minimization algorithm. In contrast, the neural network approximation results seem
to be independent of the size of the hidden layer and do not require increased mesh sizes
for the approximation to improve. This keeps the number of parameters to be optimized a
small constant value in the minimization. The neural network approximation presumably

could achieve same or better results as the traditional methods.

- = =AbsErrar

—— T

[e—— Y

MM
oA oy ‘II.B- B

ﬁ“""‘”w

SSE = 0.0768531, h = 0.1

ODE Problem 2
Error Approximation

[1k]

Figure 5.7: Absolute error approximation for problem 5.5 with a mesh size = 0.1

60

61

CHAPTER 6

CONCLUSION

One of characteristics of a relatively new field of science is that there are many
unanswered questions. The idea of a neural network has only been around for a lit-
tle over half a century with a thirty year hiatus. There is research being done in how
to sample the domain of a neural network problem, § 3.1. There are questions sur-
rounding the neural net architecture and the influences of the architecture on problem
solving [MDRMO03]. There are numerous ideas surrounding the activation functions of
the hidden nodes [CWO04]. There is also the widely researched area of the convergence of
solutions using neural networks [Cao04].

Similarly, trying to corroborate Lagaris et al.’s results provided an alternative path
of analysis regarding the neural net approximation models. Further research in the
modification of these approximations and a future implementation of partial differen-
tial equation approximations will better the understanding of approximating differential
equations using neural networks. With so many open ended avenues to pursue in the the-
ory and implementation of neural networks models to approximate differential equations,

the challenge is selecting a destination.

[ABYY]

[AM92]

[Bha99)

[Bri07]

[BTY6]

[Cao04]

[CW04]

[dBS73]

[DHASS5]

[Fra9g]

[FVF04]

BIBLIOGRAPHY

Martin Anthony and Peter L. Bartlett, Neural network learning: Theoretical
foundations, Cambridge University Press, 1999.

Dave Anderson and George McNeil, Artificial neural networks technology,
Tech. report, Data and Analysis Center for Software, 775 Daedalian Drive
Rome, NY 13441-4909, August 1992, Prepared for Rome Laboratory, Grifiss
Business Park, rome, NY 13441.

H. K. D. H. Bhadeshia, Neural networks in matertal science, ISIJ Interna-
tional 39 (1999), no. 10, 966-79.

Encyclopedia Britannica, Artificial intelligence, creating an artificial neural
network, Encyclopedia Britannica (2007), 25.

Dimitri P. Bertsekas and John Tsitsiklis, Neuro-dynamic programmaing,
Athena Scientific, 1996.

Jinde Cao, An estimation of the domain of attraction and convergence rate
for hopfield continuous feedback neural networks, Physics Letters A 325
(2004), 370-374.

Jinde Cao and Jun Wang, Absolute exponential stability of recurrent neu-

ral networks with lipschitz-continuous activation functions and time delays,
Neural Networks 17 (2004), 379-390.

Carl de Boor and Blair Swartz, Collocation at gaussian points, SIAM Journal
of Numerical Analysis 10 (1973), 582-606.

G. E. Hinton D. H. Ackley and T. J. Segnowski, A learning algorithm for
boltzmann machines, Cognitive Science 9 (1985), 147-169.

Neil Fraser, Neural network follies, http://neil.fraser.name/writing/
tank/, 1998.

Aristidis C. Likas Fotis Vartziotis, Isaac Elias Lagaris and Dimitrios I. Fo-
tiadis, A portable decision making tool for health professionals based on neu-
ral networks, Health Informatics Journal 9 (2004), 273-82.

[GLSS]

[Goc02]

[Goc06]

[GZ07)

[Hah07]

[Hop82]

[HTO6)]

[Hug00]

[ILF98]

[ILP00]

[IM388]

[IMS55]

[KHW89]

[Kin95]

63

Ronald B. Guenther and John W. Lee, Partial differential equations of math-
ematical physics and integral equations, Prentice Hall, 1988.

Mark S. Gockenbach, Parital differential equations analytical and numerical
methods, Society For Industrial and Applied Mathematics, 2002.

, Understanding and implementing the finite element method, Society
For Industrial and Applied Mathematics, 2006.

Mara P. Gonzalez and Jose L. Zapico, Seismic damage identification in
buildings using neural networks and modal data, Computers and Structures
(2007), http://dx.doi.org doi:10.1016/j.compstruc.2007.02.021.

Michael E. Hahn, Feasibility of estimating isokinetic knee torque using a
neural network model, Journal of Biomechanics 40 (2007), 1107-1114.

J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the National Academy of Sciences,
USA 79 (1982), 2554-2558.

Yi-Chung Hua and Fang-Mei Tseng, Functional-link net with fuzzy inte-
gral for bankruptcy prediction, Neurocomputing (2006), http://dx.doi.org
d0i:10.1016/j.neucom.2006.10.111.

Thomas J. R. Hughes, The finite element method, linear static and dynamic
finite element analysis, Dover Publications, Inc., 2000.

A. Likas I. Lagaris and D. Fotiadis, Artificial neural networks for solving or-
dinary and partial differential equations, IEEE Transactions on Neural Net-
works 9 (1998), 987-1000.

Aristidis C. Likas I. Lagaris and Dimitrios G. Papageorgiou, Neural net-
work methods for boundary value problems with irregular boundaries, IEEE
Transactions on Neural Networks 11 (2000), 1041-9.

B. Irie and S. Miyake, Capabilities of three-layered perceptrons, Proceedings
of the 1988 IEEE International Conference on Neural Networks (1988), 217—
225.

N. Rochester J. McCarthy, M. L. Minsky and C.E. Shannon, Proposal for
the dartmouth summer resarch project on artificial intelligence, 1955.

Maxwell Stinchcombe Kurt Hornik and Halber White, Multilayer feedforward
networks are universal approrimators, Neural Networks 2 (1989), 359-366.

S. E. Kinglsand, Modeling nature, Wikimedia Foundation, Inc., 1995,
en.wikipedia.org/wiki/Logistic _function.

64

[MDRMO3] Joel S. Parker Lance W. Hahn Marylyn D. Ritchie, Bill C. White and Ja-

[MDTCO1]

[MHWO0]

[MLS93]

[MP87]

[MR90]

[NMNRO6]

[Rar98]
[RG58]

[S+07]

[Sam07]

[Sew88]

[SHUO00]

[SN96]

son H. Moore, Optimization of neural network architecture using genetic

programming improves detection and modeling of gene-gene interactions in
studies of human diseases, BMC Bioinformatics 4 (2003), 28.

Nam Mai-Duy and Thanh Tran-Cong, Numerical solution of differential
equations using multiquadric radial basis function networks, Neural Networks
14 (2001), 185-199.

M. Stinchcombe M. Hornik and H. White, Universal approrimation of an
unknown mapping and its derivatives using multilayer feedforward networks,
Neural Networks 3 (1990), 551-560.

A. Pincus M. Leshno, Ya. Lin and S. Schocken, Multilayer feedforward net-
works with a non-polynomial activation function can approrimate any func-
tion, Neural Networks 6 (1993), 861-867.

Marvin L. Minsky and Seymour A. Papert, Perceptrons - expanded edition:
An introduction to computational geometry, The MIT Press, 1987.

B. Mueller and J. Reinhardt, Neural networks, an introduction, Springer-
Verlag, 1990.

M. R. Ransing N. M. Nawi and R.S. Ransing, An tmproved learning algorithm
based on the conjugate gradient method for back propogation neural networks,
Transactions on Engineering, Computing and Technology 14 (2006), 211-
215.

Ronald L. Rardin, Optimization in operations research, Prentice Hall, 1998.

Nathaniel Rochester and H. L. Gelernter, Intelligent behavior in problem-
solving machines, IBM Journal of Research and Development 2 (1958), no. 4,
336-345.

Jonathan Schaeffer et al., Checkers is solved, Science (2007).

Sandhya Samarasinghe, Neural networks for applied sciences and engineer-
ing, Auerback Publications, 2007.

Granville Sewell, The numerical solution of ordinary and partial differential
equations, Academic Press, Inc, 1988.

K. Reif S. He and R. Unebehauen, Multilayer neural networks for solving a
class of partial differential equations, Neural Networks (2000), 385-396.

Gilbert Strang and Truong Nguyen, Wavelets and filter banks, Wellesley
Colleg Press, Inc, 1996.

65

[Sta06] FElectronic statistics textbook, www.statsoft.com/textbook/stathome.
html, 2006.
[Sun96] W. Sun, Block iterative algorithms for solving hermite bicubic collocation

equations, SIAM Journal of Numerical Analysis 33 (1996), 589-601.

[VSAIO4] Sean F. McLoone Vijanth S. Asirvadam and George W. Irwin, Memory effi-
cient bfgs neural-network learning algorithms using mip-network: A survey,
Proceedings of the 2004 IEEE International Conference on Control Applica-
tions (2004), 586-591.

	San Jose State University
	SJSU ScholarWorks
	2007

	Neural networks and differential equations
	Kathleen J. Freitag
	Recommended Citation

	tmp.1290447007.pdf.7JbIc

