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ABSTRACT

MAPPING POPULATION DENSITY USING A DASYMETRIC MAPPING
TECHNIQUE

by Rachel R. Trusty

Demographic data are commonly represented by using a choropleth map, which
aggregates the data to arbitrary areal units, causing inaccuracies associated with spatial
analysis and distribution. In contrast, dasymetric mapping takes quantitative areal data
and attempts to show the underlying statistical surface by breaking up the areal units into
zones of relative homogeneity. This thesis applies the dasymetric mapping method to the
1990 US Census block-group populations of Alameda County, California, using the US
Geological Survey’s 1992 National Land Cover Data Set and other ancillary land-cover
sources to redistribute the block-group populations into a 30-m grid based on categorical
zones relative to population distribution. To test the accuracy of the dasymetric
approach, census block populations were compared with the dasymetric mapping
distributions; the results yield high correlation coefficients (between 0.80-0.88),
indicating that the dasymetric mapping method produced more accurate population

distributions than the choropleth method relative to the census block.
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CHAPTER 1: INTRODUCTION
1.1 STATEMENT OF PROBLEM

Demographic data and socioeconomic information are commonly displayed
cartographically using choropleth mapping techniques. For example, the choropleth map
is used to display US Census data, a geographic standard for demographics, and is used
as a medium by virtually all geographers and many non-geographers (Slocum and Egbert
1993). The choropleth map spatially aggregates data into geographic areas or areal units
(e.g., county, census tract, block-group). If the spatial units are too large, the data’s
spatial variation tends to be reduced or averaged out. Since the value in the enumeration
unit is spread uniformly throughout the areal unit, continuous geographic phenomena
cannot be displayed. Dorling (1993) noted that choropleth maps of population by
administrative areal unit give the notion that population is distributed homogeneously
throughout each areal unit, even when proportions of the region are, in reality,
uninhabited. This discrepancy is greatest in areas with mixed urban, undeveloped, and
agricultural land uses.

The US Census Bureau (2001) collects demographic data at the block geographic
level. Census blocks are areas bounded on all sides by visible features, such as streets,
roads, streams, and railroad tracks, and by invisible boundaries, such as city and county
limits. In areas where there is a tight road network, census blocks are generally small in
area. However, census blocks in sparsly populated areas may be large and contain many
square miles. The block group is the next geographic level of US Census delineations,

consisting of a cluster of census blocks generally containing from 600 to 3,000 persons



(US Census Bureau 2001). The population of each block group is an aggregate of the
cluster of blocks. The boundaries of the census delineations are chosen on the basis of
linear features and administrative boundaries, causing discrepancies between the
enumeration units and the relevancy of population distributions.

Dasymetric mapping is a potential solution for the dilemma of portraying
population data that have been aggregated to areal units. Eicher and Brewer (2001, 125)
stated that, “Dasymetric mapping dépicts quantitative areal data using boundaries that
divide the mapped area into zones of relative homogeneity with the purpose of best
portraying the underlying statistical surface.” This type of mapping has been described
as an intelligent approach to choropleth mapping in an attempt to improve area
homogeneity. Thus, new zones are creatéd that directly relate to the function of the map,
which is to show spatial variations in population density. Land-cover data can indicate
residential areas for the delineation of new homogeneous zones. The census block-group
populations can be redistributed to the new zones, resulting in a more accurate portrayal
of where people live within an administrative boundary.

This study explores a surface-based representation of population, using a
dasymetric mapping technique that incorporates land-cover classifications as a means to
redistribute the original census block-group population value into a surface grid based on
levels of urbanization and undeveloped land. Through areal interpolatioh, the
distribution is depicted semicontinuously, where multiple datésets redefine the populated
surface. The hypothesis argues that this method will provide a more accurate

representation of where people live in Alameda County, California, within a given block



group than would choropleth maps of the same area. The greatest improvements in the
accuracy of population-density values should be seen in block groups with various
land-cover types and significant amounts of undisturbed land. In block groups that are
heavily urbanized, the dasymetric mapping method may not show much difference from
the choropleth method owing to the smaller 'éize of block groups and the better
correlation of the b]ock-group}bouﬁdaries in these areas to the actual population
distﬁbuiion.

To defenﬁine the'acéur'ac’y of they dagyfrietﬁé mappmg technique, ’the' 1990 US
Cénsus blbcks were énalyzed to see HOW éldsely tﬁe‘bbpulation density of the
urbanizbétion zonés by bloék-gfdﬁp mat:c'h.tfhe' 'popillatidhs 6f the ‘cénsus bldck. The
hypothesis coﬁcufs ‘tha.t ti]e .blocv:k gf‘oup‘sl on tﬁé daéyfnéfﬂc ‘mvap results will show a
statistically superior match to the census-block populations over those on the choropleth

map.



CHAPTER 2: LITERATURE REVIEW
2.1 DASYMETRIC MAPPING APPROACHES

Adequate research has been done on the dasymetric map, but the complexity of
this method compared to the choropleth method deters cartographers and nongeographers
from using the dasymetric map. Even though the nature of a population distribution is
more realistically represented with a dasymetric map, the choropleth map is more
commonly used due to the complex methodology of the dasymetric map (Charpentier
1997).

The earliest study documented is by John K. Wright, written in 1936, about the
methods he used to map population density of Cape Cod, Massachusetts. Wright (1936)
mentions the term dasymetric as a map type Russian geographers coined meaning,
“density measuring.” Wright used a dasymetric mapping method to show population
density of Cape Cod by excluding uninhabited areas and by weighting the original 1930
census values through interpolation. He argued that his method was based on many
assumptions, such as the delineation of uninhabited areas and “rough-and-ready”
methods of dividing the townships into tracts of different densities. His “rough and
ready” assumptions for the new zones were centered on USGS topographic maps and
personal recollection. Following the uninhabited-area delineations, density
measurements were given to different parts of the township, using “controlled
guesswork” as a subjective method. Wright’s method allocated estimated densities by

interpolation to areas whose subdivisions had no statistical data available.



An essential step in dasymetric mapping is the creation of zones within the areal
unit that correspond to the variable being mapped. To create intraunit zones of relative
homogeneity among population, ancillary data must be used to interpret relative levels of
habitation. Past approaches have focused on using ownership records, topography, and
land-cover classifications to identify and mask uninhabited areas. Holloway et al. (1997)
used multiple datasets to detect and remove uninhabited lands from the area of analysis.
Four types of area were ruled out, including census blocks with zero population, all lands
owned by local, State, or Federal government, all corporate timberlands, and all water or
wetlands, as well as all open and wooded areas with elevation data that have a slope at
most 15% (Holloway et al. 1997). To redistribute the census population to the ancillary
feature classes, a predetermined percentage was assigned to each class. The subjectivity
and accuracy of this percentage assignment (e.g., 80% of the population to urban
polygons, 10% to open polygons, and 5% to agriculture and wooded polygons) can be
argued because of the absence of empirical evidence.

In contrast, Mennis (2003) used a three-tier raster classification of urban land
cover derived from the Landsat Thematic Mapper (TM) as ancillary data. Within the
remotely sensed land-cover data, urban features were put into three classes of high
density, low density, and nonurban, with no distinction of wooded areas, agriculture, or
slope. Initially, all census data were converted into a 100-m raster surface that was used
for areal interpolation. The population statistics derived from the 1990 Census block-
group data were distributed via areal interpolation to each 100-m grid cell on the basis of

two factors: “the relative difference in population densities among the three urbanization



classes...and the percentage of total area of each block group occupied by each of the
three urbanization classes” (Mennis 2003, 36). An empirical sampling of population
density between urbanization classes helps determine what percentage of the census
block-group population should be assigned to each urbanization class. Also, an area-
based weighting addresses the relative differences between each urbanization class within
the census block group.
2.2 DATA MODELS and REPRESENTATION

Mapping techniques and models can differ based on the structure and theme of a
spatial dataset. For example, a choropleth map is the preferred map model to use when
the geographic theme portrays data that occur within well defined enumeration units, for
example, statistical administrative boundaries showing a rate or ratio representative of the
given boundary. However, if the variable changes within the enumeration unit the
choropleth map cannot detect this change. To map average annual temperature, or
elevation data, due to the gradual increase or decrease in the nature of the data, an
isopleth map would be appropriate because isolines connect the points of equal value
(e.g. contour lines). MacEachren (1994) situated the dasymetric map in the continuum
between isopleth and choropleth maps, suggesting that dasymetric maps represent data
half way between smooth and stepped statistical surfaces. A stepped statistical surface
would represent events that occur in isolated areas separated by areas where the
phenomenon is not present (MacEachren 1994). A smooth statistical surface would

represent data that has a continuous nature, like elevation. To track change within an



enumeration unit the dasymetric mapping model can detect the inherent principal
statistical distribution.

The relative merit of object versus field models for quantitative representation is a
subject of ongoing debate in the fields of cartography and geography. Michael
Goodchild (1992) has written extensively about object versus field models in a
geographic information system (GIS). In the object model, features are generally
represented as points, lines, or polygons, and so this mode is known as the vector data
model. The field model, which typically represents square features as a set of uniform-
sized cells, is known as the raster data model. The advantages and disadvantages for
visualization and quantitative representation in both models have become evident and
depend on the scale and quality of the data. Mennis (2003) determined that a field
representation of population data, where the data are modeled onto a continuous surface,
works well with the transformation of population data from census block groups.

For this study, a combination of the object and field models was used. If the
object represents the same area as the field, then the two models can be used
interchangeably. For example, in a vector representation of points where each point
represents 30-m, the points can be converted to 30-m pixels without a loss of data. This
conversion meets the ideal of the pycnophylactic property (Tobler 1979), where “the
summation of population data to the original set of areal units is preserved in the
transformation to a new set of areal units” (Mennis 2003, 32). Therefore, the Modifiable

Areal Unit Problem is avoided during the areal interpolation.



2.3 MODIFIABLE AREAL UNIT PROBLEM (MAUP)

The MAUP is a potential source of error that can affect spatial studies which
utilize aggregate data sources (Unwin 1996). The MAUP is most prominent in socio-
economic studies where areal data cannot be measured at a single point, but within an
areal boundary. The effects of MAUP can be divided into two components: scale and
zonation. The scale factor is the variation in results when data is grouped into different
levels of spatial resolution (e.g., regions, cities, census tracts, census block-groups). The
zonation factor is the variation in results due to the aggregation of smaller units into
larger units (e.g., census blocks aggregated into census block-groups). By using a
dasymetric mapping method, zones are created that have a closer spatial relationship to
the objective of the map, than the given boundaries. When original block-group census
values have to be redistributed to the new intraunit zones, as in the dasymetric mapping
method the zonation factor becomes important because the accuracy and relative qualities
of the zones chosen have a fundamental effect on the statistical outcome. In other words,
if the data were grouped into alternate zones, there may be excessive spatial and
statistical variability in the results. Therefore, the quality and accuracy of the ancillary
data highly influences dasymetric mapping results.

The dasymetric mapping technique tends to remove the ecological fallacy
associated with enumeration units. Ecological fallacy is a situation that can occur when
an analyst makes an inference about an individual based on aggregated data for a group.
For instance, if a census block-group had a population density of 1000 persons/per sq. mi.

it would be true and accurate to say that this value is the average population density for



the given block group. On the other hand, if the analyst were to pick out a particular
square mile within that block-group and apply the same ratio of 1000 persons/per sq. mi.
to that area, the statement becomes inaccurate which introduces the ecological fallacy.
2.4 NATIONAL LAND COVER DATASET (NLCD)

Land-cover data has become widely available due to the increase of GIS users and
the demand for land-cover change analysis. Land-cover data can be collected and
mapped in a variety of ways; however, remotely sensed imagery seems to be the most
popular source for classifying land cover. The US Geological Survey (USGS) provides a
land-cover dataset derived from Landsat TM imagery known as the NLCD. This 1992
dataset was created by classifying 30-m resolution Landsat TM into 21 land-cover
categories based on the Anderson classification (Vogelmann et al. 1998; Anderson 1976).
By using NLCD as the primary ancillary dataset for a dasymetric map, the process of
image classification and accuracy assessment have been completed with a well defined
error matrix. However, the geographer needs to be aware of the spatial and spectral
accuracy of the land-cover data being used. The accuracy assessment of NLCD has been
conducted region-by region using a scientifically rigorous approach, and meets USGS
data requirements for applications at the regional to continental scale (Vogelmann et al.
2000). This geo-spatial dataset is also available nationwide to download, free of charge.
Although the process of creating urbanization zones becomes simplified when using
NLCD as the input land-cover dataset, the accuracy of the data at the scale of the study
becomes arguable. In this study, NLCD is under assessment at the county level factoring

into the quality and accuracy of the final dasymetric map.



CHAPTER 3: METHODOLOGY

3.1 STUDY AREA

The Alameda County, California study area, which is part of the greater San

Francisco Bay region, was chosen because the familiarity of the area enhances the depth

of understanding that can be brought to the spatial relations being analyzed (Figure 3.1).

As Eicher and Brewer (2001, 125) pointed out: “The cartographer generates dasymetric
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zones by using ancillary information.
This information can be both
objective and subjective, depending
on other available data and the
cartographer’s knowledge of the
area.” Furthermore, Alameda
County has a widely varying
topography and a mix of land-cover
types from undeveloped and
agricultural to heavily urbanized.
Alameda County is home to the city

of Oakland, the eighth-largest city in

Figure 3.1. California, showing location of Alameda County study area.

California, with a 2000 US Census population of 399,484, and the Port of Oakland, one

of the major container ports on the west coast of the United States. Many city centers

within Alameda County contribute to the greater San Francisco Bay region, such as
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Livermore, Pleasanton, Berkeley, Alameda, Hayward, and Fremont. Conversely, the
network of East Bay Regional Parks snakes through Alameda and neighboring Contra
Costa counties, preserving 94,500 acres of open space. Although the west side of
Alameda County is heavily populated and urbanized, the land cover changes drastically
toward the southeast into rugged hills and toward the east into the agricultural landscape
of the California Central Valley. Alameda County, which typifies the urban-rural fringe
of the San Francisco Bay region, is an important but complex area to understand and
portray demographically.

This study divides Alameda County into the US Census subcounty divisions to
treat each urban core area as a separate entity and to model the comparative population
clusters in the different parts of the county. By calculating each subcounty division
separately, a conclusion can be drawn pertaining to the correlation between land-cover
types and this dasymetric mapping technique. Within Alameda County, there are six
subcounty divisions: Alameda, Berkeley, Oakland, Hayward, Fremont, and Livermore-

Pleasanton (Figure 3.2).

Figure 3.2. Scale of research. Alameda County, Calif. is 738 sq. miles. Alameda is broken up into
subcounty areas based on the US Census subcounty divisions.

U.S. Census Sub-County Divisions

Alameda County, CA.
Berkeley

Oakland

Al
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3.2 DATA PREPARATION

This approach combined the methodologies of Mennis (2003) and Holloway et al.
(1997) by choosing four land-cover classes, using a three-tier urbanization classification
and adding an excluded class representing zero population. The 21-class National Land
Cover Data Set (NLCD) (Volgelmann et al. 2000) were recoded into four classes; high-
intensity residential, low-intensity residential, nonurban, and water: the nonurban class
consists of all remaining 18 classes, representing all lands that are not residential but may
be sparsely populated. The undeveloped layer, contributed by GreenInfo Network
(2003), incorporates lands that have some recreational, open-space, habitat-protection, or
agricultural-protection value in the San Francisco Bay region. These lands either are
owned by a public agency or a nongovernmental organization (NGO), or have an
easement on them held by a public agency or an NGO. The uninhabited layer was
merged with the recoded NLCD layer to produce a comprehensive land-cover layer.
From this dataset, the classes were merged and reconfigured into classes of high-intensity
residential, low-intensity residential, nonurban and exclusion; the exclusion class is a
combination of all water and undeveloped areas (see Table 3.1). The advantage of
incorporating an exclusion class is to more accurately display population density by
weeding out large areas of the areal interpolation, allowing the visual depiction of
population to be strictly within those areas that are actually populated.

After the recoding process, the new zones of relative homogeneity were in a raster

format. Before the areal interpolation, the raster land-cover data were converted to points
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for two reasons: (1) to provide an easy way to spatially join the land-cover dataset to the

census block data and (2) to efficiently create and calculate new fields in a tabular

Table 3.1. Combining land-cover layers for recoding.
Class
Code Class Definitions for Re-coding

No Data
High Intensity

Low Intensity
Non Urban
Water

F O TSI F SR T )

10 | Open Space

11 | Open Space + High Intensity
& Classes 10-14 re-coded to class code (4)
12 | Open Space + Low Intensity after summation.

13 | Open Space + Non Urban

14 | Open Space + Water

structure. As mentioned above, this method allows the use of both raster and vector data
interchangeably. At this stage, each point representing a 30-m pixel has an associated
land-cover code but no census block-group information. To attach the census data, each
point also needs an associated block-group identifier. This step is required for the
dasymetric mapping approach because each calculation is performed on a block-group-
by-block-group basis. The census polygon data are joined spatially to the land-cover
points, and the data are now ready for areal interpolation.
3.3 RASTER /VECTOR PROBLEM

A potential problem can occur in the assignment of land-cover points to census
block-groups. When the spatial join occurs, the land-cover points are assigned to census
block-groups if the point falls completely inside the census block-group boundary. Since

each point will ultimately represent the centroid of each 30-m pixel, the points that fall
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close to the block-group boundaries, when converted to pixels, may overlap with the
census block-group boundary. The result causes slivers along the boundaries, making it
unclear which block-group the full 30-m pixel belongs to (Figure 3.3). To avoid
erroneous results, the centroid rule is observed throughout the project which indicates
that if the center of the point falls within a given block group, the entire value of that
point is attributed to that block-group. This geo-spatial rule, sometimes referred to as the
centroid rule, becomes important when the 30-m points are converted back to 30-m pixels

for the final demonstration.

Figure 3.3. Portions of the raster cells fall within adjacent census block-groups causing
“slivers” of data falling in erroneous block-groups.
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Within the USGS, Land Cover Trends Project, a similar problem occurs with the
sample block boundaries and the ecoregion boundaries. “If a 20 km block contains more

than one ecoregion, the block is assigned to the stratum identified at the block’s center”

14



(Stehman et al. 2003, 3). The 30-m resolution pixel is much finer than the 20 km
sampling block used in the Land Cover Trends project and when using the centroid rule,
this only leaves up to 15-m slivers that do not necessarily belong to the assigned census
block-group. In terms of population distribution, 15-m is a very small chunk of real
estate compared to the overall distribution. An area calculation determined that 88% of
the pixels fall completely within their assigned census block-group. Due to the census’

generalized boundaries this shift becomes even less significant (Table 3.2).

Table 3.2. Sliver Problem

Total # of Cells | # of "Slivers" % of Potential Error
198054 23848 12%
Area of BG Area of Cells Completely w/in BG | % Accuracy
Large BG
60014090009 16168210.14 15728400 97 %
Medium BG
60014042003 1769698 1624500 91%
Small BG
60014026002 25824 15300 51%
Area of Cells 50%- 100% w/in BG
Large BG
60014090009 16168210.14 16086633 99%
Medium BG
60014042003 1769698 1744194 98%
Small BG
60014026002 25824 15300 85%
3.4 AREAL INTERPOLATION

Areal interpolation, which is the process by which data from one set of source
polygons are redistributed to another set of overlapping target polygons, is used primarily
when a project contains data from various sources covering the same area but with

differing internal boundaries. This study adapted the four equations from Mennis (2003)
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(see Appendix A) to address the addition of a zero-population zone or exclusion class.
The removal of the spatial area of the exclusion class from the total possible area of
population distribution should contribute more accurate results overall relative to
Mennis’ approach because of the addition of a fourth class covering all areas of zero
population, such as water.

To quantify the urban land-cover variable within each subcounty subdivision, a
sampling method is used to calculate the relative difference in population density among
urbanization classes within each unit (Mennis 2003). Three representative block groups
were selected for each urbanization class (block groups that clearly had a majority of
high, low, or non-urban points within them). The total population and area were
calculated for each urbanization class sample and resulted in an aggregated population
density (see Table 3.3).

The population density fraction is then calculated for each urbanization class
within each subcounty. This number indicates the percentage of the block-group
population that should be assigned to each urbanization class within the given block
group (see Appendix A for equations). In order to alter the population density fraction
values, an area ratio value for each block g;oup was calculated showing the proportion of
area that each of the three urbanization classes occupies within a given block group. This
calculation was performed on every urbanization class within every block group. At this
point, the exclusion class was inserted back into the analysis as the entire areas of each
land-cover class within the block-group total were summed into area ratios including the

exclusion class points.
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Table 3.3. Samp

High Oakland 0.0516 1,863 36,104.651 57,150.053 63.18
Low Oakland 0.080782 1,180 14,607.214 57,150.053 25.56

NonUrban | Oakland 0.0817 526 6,438.188 57,150.053 11.26

High Berkeley 0.108026 2,389 22,115.046 38,097.222 58.05

Low Berkeley 0.070769 944 13,339.174 38,097.222 35.01
: NonUrban | Berkeley 0.18199 2,643.002 38,997.222

High Alameda 0.27888 2,715 9,735.37 |  25626.627 38
Low Alameda 0.068526 842 | 12,287.307 | 25,626.627 48
eda_ 1.09158 | 3,603.95 | 25626.627

High Hayward 0.106925 10,540.0981 19,209.8786
Low Hayward 0.129875 1,116 8,592.8777 | 19,209.8786
5.82553 76.9028 | 19,209.8786

High Fremont 0.126942 1,070 8,431.6459 | 25,341.69808 33.27

Low Fremont 0.08667 1,436 | 16,572.40106 | 25,341.69808 65.4

25,341.69808 1.33

NonUrban Fremont ’ 6.35665 337.65112

—

Livermore-

High Pleasanton 0.179661 1,029 | 5,727.453371 | 13,911.78012 41.17
Livermore-

Low Pleasanton 0.105797 865 | 8,176.035237 | 13,911.78012 58.77
Livermore-

NonUrban | Pleasanton | 12.42234933 103 | 8.291507285 | 13,911.78012 0.06

Next, the population-density fraction was multiplied by the area ratio to give the
fraction of the original block-group population that was distributed to each urbanization
class within each block group; then that result was divided by the sum of the same
expression of all three urbanization classes. The total fraction is the underlying solution
to the interpolation. Once the total fraction was calculated, part of the original block-
group population could be assigned to each point within the block group according to its
urbanization class. This calculation was the final step in the areal interpolation, resulting

in a surface-based representation of population density (see Figure 3.4). The final
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distribution was completed by multiplying the total fraction of an urbanization class by
the total block-group population and then dividing the result by the number of points
within the urbanization class (see Appendix A). The utilization of a point-feature class in
a GIS made the areal interpolation efficient because each new field could be created and

calculated in a semiautomated mode, using the GIS field calculator.

Figure 3.4. Aggregated Census Value vs. Surface Population Relative to Spatial Land-Cover

Census Block Group - Arveal Interpolation using a
Aggregated Value Dasymetric technigue
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CHAPTER 4: ANALYSIS

4.1 COMPARING CENSUS BLOCK POPULATIONS TO DASYMETRIC MAPPING
RESULTS

The hypothesis is that the dasymetric mapping method will more accurately
represent where people live within a given block group. To test the precision of the
dasymetric map distribution, the census block totals were evaluated as an indicator of
how well the population was distributed within the block groups. The dasymetric map
consists of 30-m points, each representing a population total for that area. To obtain a
value comparable to the block populations, a sum of the dasymetric points that are
located within a given block was generated. Figure 4.1 is a histogram of the absolute
differences between the two variables, calculated by subtracting the block populations
from the summation of all the dasymetric points for each block. If the difference between

Figure 4.1. Showing difference between block populations and dasymetric comparative values for Alameda
County, an approximately normal distribution, with most of the difference near zero.
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the block populations and the dasymetric comparative values equals zero, the results
indicate that the dasymetric map distributions equals the census-block population. The
histogram shows an approximately normal distribution, with most of the difference
values near zero, affirming the claim that the dasymetric map preserves an accurate
block-level summation of census population data. Appendix B includes the histograms
and scatterplots for each subcounty comparison.
4.2 CORRELATION COEFFICIENTS

To further test a positive association between the block-population totals and the
dasymetric mapping distributions a correlation analysis was conducted. The correlation

coefficient, denoted by r of the pairs (x, y) is calculated as

_ Ldyd
¥ XSy

ey

Here the strength of the relation between the estimated dasymetric population per block
and the observed block population is tested by using a bivariate or simple correlation
analysis (Burt and Barber 1996). The hypothesis requires a positive correlation between
the two arrays, which would indicate that “the relationship between x and y is such that
small values of y tend to go with small values of x and large values of y tend to go with
large values of x” (Freund and Simon 1997, 528). The correlation coefficients for each
subcounty are high, ranging from 0.80 to 0.88 (see Table 4.1). This statistic can be
interpreted as a standardized measure of areal association and the degree of similarity of

the two maps in the individual statistics (Burt and Barber 1996).
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Another correlation coefficient was calculated to compare the choropleth map of
block-level summations derived from block-group population densities to the actual
census-block population densities. The results support the initial hypothesis. The
subcounties that scored the lowest in the choropleth-to-block comparison were Alameda,
Fremont, and Livermore-Pleasanton (Table 4.2). These three subcounties also have a
lower ratio of urbanized to nonurban and undeveloped land cover (see Table 4.3). The
hypothesis is that the dasymetric mapping method would be more effective in areas with
more land-cover variation and less concentrated urbanization as was true for all but one
subcounty (Hayward), which is highly urbanized but has some large undeveloped areas.
The large undeveloped area in Hayward may have contributed to the lower percentage of

residential land cover.

Table 4.1. Correlation coefficients for each subcounty

Subcounties

Berkeley 0.84

Oakland 0.82

Alameda 0.88

Hayward 0.87

Fremont 0.87

Livermore_Pleasanton 0.80

Alameda County 0.85

Table 4.2. Correlation coefficient comparisons by Alameda's subcounties
Dasymetric : Block | Choropleth : Block

Berkeley 0.84 0.83
Alameda 0.88 0.67
Qakland 0.81 0.79
Hayward 0.87 0.79
Fremont 0.87 0.56
Livermore-Pleasanton 0.8 0.57
ALAMEDA COUNTY 0.85 0.7
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Table 4.3. Area ratio between residential and non-urban/undeveloped by subcounty (in pixels)

%
SubCounties Residential Total RATIO Residential
Berkeley 27482 33691 0.815707 81.57
Alameda 14575 36407 0.400335 40.03
Oakland 94215 174206 0.540825 54.08
Hayward 103602 380763 0.272091 27.21
Fremont 94850 338532 0.28018 28.02
Livermore-Pleasanton 62553 1206282 0.051856 5.19
ALAMEDA COUNTY 397277 2169881 0.183087 18.31

4.3 F-TEST TWO SAMPLE VARIANCES

Theoretically all census blocks nest perfectly within their associated block-groups
indicating that the statistical mean of the two arrays should be the same. After looking at
the block population mean and the dasymetric mean for all sub-counties, it is clear that
they are almost identical (Table 4.4). The noticeable difference between the observed
block populations and the estimated block populations was thus seen in the variance of
the data. The F-Test is designed to test if the two sample variances are equal. The null

hypothesis is that the variances equal one another at the 0/2= 0.025 significance level.

Table 4.4.
Dasymetric Population | Block Population Differences (Est-
Statistical MEAN Mean Mean Obs) Mean

Berkeley 85.86756541 86.23277737 -0.365211965
Oakland 87.71772569 87.59026048 0.12746521
Alameda 103.7963762 103.8713018 -0.074925592
Hayward 108.141221 108.1579912 -0.016770198
Fremont 134.0055249 134.0862944 -0.080769492
Livermore_Pleasanton 79.10778605 78.98947368 0.118312368
ALAMEDA COUNTY 97.52577375 97.55012281 -0.024349064

The alternative hypothesis is that the variances do not equal each other at the a/2= 0.025

significance level. The results showed that only two subcounties out of the six meet the
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null hypothesis which concludes that those areas have equal variances at the 0/2=0.025

significance level (Table 4.5).

Table 4.5.

Hy: 6’1 =022

H,: 0’1 #6%2

Reject Hyif F>F,»

F-Test Two Sample

Variances 0/2=.025 | Fy - Critical Value F - Statistic Reject/Accept: Hy
Berkeley 1.11 1.29 | Reject
Oakland 1.06 1.01 | Accept
Alameda 1.16 1.18 | Reject
Hayward 1.07 1.05 | Accept
Fremont 1.09 1.23 | Reject
Livermore_Pleasanton 1.1 1.27 | Reject
ALAMEDA

COUNTY 1.03 1.15 | Reject

Oakland and Hayward had the lowest variances to the block populations
indicating that the dasymetric mapping technique demonstrated the finest results in these
areas. The hypothesized estimation asserted that the best results would be seen in areas
that have higher land-cover variation and low levels of urbanization, which is not the case
in Oakland or Hayward. Livermore-Pleasanton has the most variation in land-cover, with
the most undeveloped and uninhabited areas, but showed the highest variances. The
comparative statistics showed that smaller blocks seen in highly urbanized areas produce
closer estimations to the block boundaries because the areal range of distribution is
smaller allowing less distribution error.

For example, one of the highest variances within the Livermore-Pleasanton
subcounty was within block group ‘060014507222°. The population of the block group

is 4558 people (see Figure 4.2a). Within this block group lie 16 blocks with different
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populations all adding up to 4558 people. The population of 4558 was distributed
according to the areal interpolation method, relying heavily on the land-cover data. For
the reason that the block-group population is so high (4558), the distributions made could
result in blocks that have a low population. In Figure 4.2b the block population of the
highlighted block is 18 people, and the estimated dasymetric population is 902 people.
This difference yielded a high variance which is why some of the subcounties did not
pass the variance hypothesis testing. This error in the population distribution can be
attributed to the accuracy of NLCD at the block level. This is one major drawback of
working with NLCD when testing results with something as fine as the census block level
geography.
4.4 DISCUSSION

Figure 4.1 showed that the deviations between block and block-group totals
aggregated via dasymetric techniques were approximately normally distributed indicating
minimal difference between the two datasets. Also, all of the correlation coefficients
exceeded 0.80. The correlation coefficients between the choropleth map and the block
populations ranged from 0.56 to 0.83, unambiguously lower than for the dasymetric map
confirming the hypothesis that the dasymetric mapping method of representing block-
group population density was more accurate than the choropleth mapping method.
The dasymetric map also produces a superior visual enhancement of the data, a fact most
evident when focusing on the water features (see Figure 4.3 and Figure 4.4). For
instance, the city of Alameda is an island on the north western part of the county that is

adjacent
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FIGURE 4.2a. Block group with population of 4558. Population is interpolated and distributed to the land-
cover classes within the block group.
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FIGURE 4.2b. If land-cover is not accurate enough, the population is not distributed to the correct areas
resulting in high variances when tested against the block populations. The highlighted block in the upper
left has a population of 18 people whereas the dasymetric mapping technique interpolated 902 people for
the block spatial area.
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to San Francisco Bay, which the choropleth map conceals entirely and also shows non-
zero population levels where there’s water. Also, Lake Merritt, the major urban water
feature of Oakland, appears to be populated in the choropleth map but the dasymetric
map correctly identifies this area as uninhabited. Other features, such as parks, have been
designated as uninhabited areas as well, adding to the overall visual realism of the

dasymetric map.

Figure 4.3. Diagram (A) shows the choropleth map of the Oakland area (top) and the Livermore-Pleasanton
area (bottom) and diagram (B) shows the dasymetric map of the same area.
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Figure 4.4. Alameda County, Calif., (A) showing the choropleth map of population density and (B)
showing the dasymetric map of population density
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CHAPTER 5: CONCLUSION

5.1 CONCLUSION

Considering the overall statistics compiled (histograms, scatter plots, correlation
coefficients and the F-Test), the dasymetric results tested well against the block
populations. The histograms showing the differences between the two testing datasets
are approximately normally distributed, and the correlation coefficients are very high
exceeding 0.80. The correlation coefficients of the choropleth map and the block
populations yielded results in the range of 0.56-0.83, which is far lower than the
dasymetric map. This statistic proves that the dasymetric mapping method of block-
group population density demonstrates a more informative population distribution then
the choropleth mapping method.

The segment of the hypothesis stating that the greatest improvements in accuracy
would be seen in areas that have a variety of land-cover types is unclear when looking at
the variance in data distribution. The highest distribution error within this dasymetric
mapping technique occurred within block-groups that had a higher variability in land-
cover types. However, the choropleth map, when compared to the block populations
demonstrated weak correlation coefficients in the subcounties with high variability in
land-cover types. Therefore, the dasymetric map is a superior technique to use for overall
population distribution, and the high variances observed are a factor of the data
limitations relative to NLCD at this scale. To overcome this limitation, the increase in
ancillary data is necessary to better define urbanization zones and to add to the exclusion

class. Slope is a variable that should be explored and would pare down the areas that are
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classified as nonurban. Figure 5.1 shows how the combination of the uninhabited layer
with the elevation model could add much more to the exclusion class, which would weed

out high variances in these error-susceptible areas.

Figure 5.1. Open Space and Elevation data demonstrate the potential for a stronger exclusion class. Notice
all of the topography in the south-eastern part of the county.

Hillshade with Public and Private
Protected Lands

20 Miles
]

Alameda Co., CA.

" Public and Private Protected Lands

The study has shown that the dasymetric mapping technique is a viable approach
for defining the underlying statistical surface from a spatial data that is aggregated and
attributed to large areal units. The process may seem laborious to some geographers for
mapping population density due to the fact that urban core areas typically show the same
distributions seen in a choropleth map. However, in large block groups with sparse
population (see Figure 4.3) the dasymetric map demonstrates an intuitive and more
informative distribution. Processing time was minimized with the GIS field calculator,

but the overall task of areal interpolation is time consuming, although could be automated
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into a programming interface if desired. The inclusion of enhanced ancillary data could
produce higher accuracy within all land-cover types due to the identification and
elimination of all lands with zero population. The decision to use a dasymetric mapping

technique should be made based on the purpose and the audience of the map.
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APPENDIX A: DETAILED METHODOLOGY
1) Gather all necessary datasets.
a) National Landcover Dataset 1992. Available for download at

http://landcover.usgs.gov/. Downloaded California North half, and subset the

data by county.
b) US Census Bureau, 1990 Census Block-groups, Population; Subcounty

Cartographic Boundary Files. Available for download at http://www.census. gov/.

c) Vector Layer showing open space, public land ownership (Federal, State, and

City). Received from Green Info. Network. http:/www.greeninfo.org

d) Landsat ETM+ 1990 Path44, Row34
2) Re-project all datasets into common projection and datum.

a) UTM, Zone 10 N, WGS_84, Meters
3) Create Choropleth Map of Population Density, by census block-group.
4) Processing NLCD

a) Neighborhood command :

i) Using Erdas Imagine, use the Neighborhood command. Neighborhood
functions are specialized filtering functions that are designed for use on
thematic layers. Each pixel is analyzed with the pixels in its neighborhood.
The number and location of the pixels in the neighborhood are determined by
the size and shape of the filter, which you define. In this case, the 3x3 pixel
filter was used. Each filtering function results in the center pixel value being
replaced by the result of the filtering function. This function was performed
to filter the NLCD for pixels that were classified incorrectly, due to the fact
that NLCD is a national dataset, and this study is at the county scale.

b) Raster Recode

i) The NLCD needed to be recoded into the classes chosen for this study. Out of
the twenty-one NLCD classes, only three classes are identified, and the
remainders are classified as non-urban. Below the three classes are

highlighted, Open Water, Low Intensity Residential, and High Intensity
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Residential. The residential classes are the urban classes, and the open water
signifies an area that can later be eliminated, or given a value of zero
population for the interpolation.
¢) Recode NLCD into classes 0, 1,2,3,4.
(a) 0 = No Data
(b) 1 = High Intensity
(c) 2 = Low Intensity
(d) 3 = Non Urban (18 classes)
(e) 4 = Water (this is separate from non-urban because later it will be part
of the exclusion class).
5) Process Open Space Layer
a) Create raster layer from vector open space layer.
i) ArcMap-Spatial Analyst — Convert — Features to Raster
b) Raster Recode
i) Erdas Imagine — Recode into two classes 0, 10.
(a) 0 =No Data
(b) 10 = Open Space
¢) Combine Two Rasters to produce the sum of all values.
i) Erdas Imagine- Utilities — Two Input Operators
ii) Output :
(1) 0 = No Data
(2) 1 = High Intensity
(3) 2 = Low Intensity
(4) 3 =Non Urban
(5) 4 = Water
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iii) Water becomes part of the exclusion class as well as all of the areas that are
excluded due to the fact that we know that there is no population in these
areas.

6) Creating Point Feature Class Representing Land-cover ID
a) New LandCover Table

i) 0=No Data

ii) 1= High Intensity

iii) 2 = Low Intensity

iv) 3 = Non Urban

v) 4 = Exclusion

b) Convert Raster to Feature using Spatial Analyst, outputting POINTS.

i) For every point in the new vector layer, there is a grid_code attribute which
represents the thematic land-cover code.

ii) Each Point Represents 30 meters on the ground, relative to the input pixel
size.

iii) The output point file for Alameda County created approximately 4.7 million
points. In order to process the statistics with efficiency, the data needs to be
subset into a smaller, more manageable area. To emulate Mennis’ study, the
population density of Alameda should be calculated by subcounty, because
the counties on the west coast are much larger than the east coast, where
Mennis conducted his research. In addition, the large point file is subset into
the POINTS the have their center within, each subcounty.

7) Join Land-cover data (points) with Census Block-group data (polygons)
a) Each Point needs to have the Block-group Unique ID associated to it.
b) To do this, conduct a Spatial Join (Polygons to Points)
¢) Now each point has all block-group attributes associated to it creating a layer that

will be the final statistical table.
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d) Using the Livermore-Pleasanton Subcounty Division as an example, the dataset

should now contain around 1.2 million points.

8) Areal Interpolation

a)

b)

c)

Before the field calculations can take place, population density values for the
subcounty needs to be established. This is a sampling method which calculates
the relative difference in population density among urbanization classes (Mennis,
2003). To sample this, three block-groups were selected for each urbanization
class (block-groups that had a majority of high, low, non-urban points). If
possible, a block-group that was entirely high, low or non-urban points would be
the best sample. The total population and area were calculated for each sample
and an aggregated population density was the outcome. (See Table 3.1) The
sampled population density was calculated for each subcounty, independently
because the relative difference in population density varies within the county due
to the fact that population density is going to be much higher in the urban core
compared to the urban fringe of the county where there lies a lot of open space.
New fields can be added to the table. A POINT feature class represents the
foundation for the interpolation. All of the calculations were performed with the
Field Calculator in ArcMap.

The first field added was the Population Density Fraction which will be calculated
by equation (1) of Mennis’ (2003) study.

duc = Puc/(Ppe + Pic + Puc) )

where d,. = population density fraction of urbanization class u in county c,

P,.= population density (persons/900 m?)of urbanization class u in county c,
P, = population density (persons/900 m?) of urbanization class & (high) in county
c,

P, = population density (persons/900 m?) of urbanization class I (low) in county
¢, and

P, = population density (persons/900 m?) of urbanization class n (nonurban) in

county c.
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d)

This fraction will be used throughout the interpolation.
The next calculation is to determine the Area Ratio, which focuses on the
difference in area between the urbanization classes, within each block
group.
aub = (Nu/np)/0.33 (2
where ay, = area ratio of urbanization class u in block-group b,
nub, = number of grid cells of urbanization class u in block-group b, and
np = number of grid cells in block-group b.
After the Area Ratio is calculated the Total Fraction is calculated which
determines the percentage of the block-group population goes to each
urbanization class. This is the most crucial value of the interpolation.
fube = (duc™aub)/

[(dnc*anb) + (dic*amw) + (dnc*anv)] (€))
where . = total fraction of urbanization class u in block-group b and in county
c,
dy. = population density fraction of urbanization class u in county c,
ayp = area ration of urbanization class u in block-group b,
dne = population density fraction of urbanization class & (high) in county ¢, dic =
population density fraction of urbanization class [ (low) in county ¢, dnc =
population density fraction of urbanization class n (nonurban) in county c,
ayp = area ratio of urbanization class 4 (high) in block-group b,
app, = area ratio of urbanization class / (low) in block-group b, and
anp = area ratio of urbanization class n (non-urban)in block-group b.
Finally the block-group population can be distributed to the points within
each block-group.
POPube = (fubc*POPb)/Nub 4)
where popusc = population assigned to one grid cell of urbanization class u in

block-group b and in county c, fypc = total fraction for urbanization class u in
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block-group b and in county ¢, popy = population of block-group b, and ny, =

number of grid cells of urbanization class u in block-group b.
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APPENDIX B: CHARTS AND GRAPHS
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Fremont Subcounty Results
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Scatter Plots of Subcounty Population Comparisons
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