San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2004

Pattern language for performance evaluation

Rohini Pradeep
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Pradeep, Rohini, "Pattern language for performance evaluation” (2004). Master’s Theses. 2647.
DOTI: https://doi.org/10.31979/etd.uSuv-kfa4
https://scholarworks.sjsu.edu/etd_theses/2647

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/2647?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2647&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

PATTERN LANGUAGE FOR PERFORMANCE EVALUATION

A Thesis
Presented to
The Faculty of Computer Engineering

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Rohini Pradeep

August 2004

UMI Number: 1424518

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1424518
Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

© 2004
Rohini Pradeep

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

.w‘"“"7
-

= ~

o

Dr. Mohamed. E. Fayad

P p LaeA.

Dr. Rod Fatoohi

Dr. Ammar Rayes, Cisco Systems, Inc.

APPROVED FOR THE UNIVERSITY

P LCSLL

ABSTRACT

PATTERN LANGUAGE FOR PERFORMANCE EVALUATION
by Rohini Pradeep

This thesis describes Software Stability modeling technique along with related
analysis and design patterns. It mainly addresses the pattern language for Performance
Evaluation and explains how this language can be used to obtain the relationship between
certain stable patterns. These patterns help overcome the issues related to “forgettable”
or “disposable” systems that result in redesigning an entire system to handle new
functionalities. Pattern Language for Performance Evaluation provides sets of patterns
that address the core system behavior. These patterns exhibit a rich set of behaviors
capable of handling features that are reusable, adaptable, and maintainable, with minimal
modifications.

The contribution to the pattern language field includes a Stable Analysis Pattern,
Evaluation, Stable Design Pattern, AnyPerformance, Stable Architectural Pattern,
Performance Evaluation, and a Pattern Language Map for Performance Evaluation.
Several application scenarios for these patterns are also implemented and discussed in

detail.

Table ’of Contents

CRAPIET T ...t eeee s seseseee oo 1
1.1 INTRODUCTION.......eeieveirureerererereeseeeteesnesesssesesssessnssssssssssesssssssssssesssssssssssesssssnsssssnses 1
1.2 RESEARCH METHODOLOGY OVERVIEWveeoveeerveeeeeessressseesssssssessssessssssssssesssssssesss 2
1.3 THESIS METHODOLOGYcovveeueiieeeeteeereeeseeessessssessssassssessssesssssssssssssssssssssssssssssssssssns 5
1.4 CONTRIBUTIONcccovrirurreeneeenreeesreesessesesssesssnsesensensessssssssssssssssssessnsssssssssssssssssssssssss 6
1.5 STRUCTURE AND ORGANIZATIONc.uveereeeveesneeersesesessassesssssssessssessssessssssssssesssssssess 8

CRAPTET 2. e ese s ssne s sese s 10
2.1 OVERVIEW OF PATTERN LANGUAGE FOR PERFORMANCE EVALUATION 10
2.2 OVERVIEW OF SOFTWARE STABILITY AND PATTERNS.......ccctteeireeeeereeeeeesesrneeseesssnes 11
2.3 ORGANIZATION OF PATTERN LANGUAGEeotecteeesteeeseeeeereeeseesseesssesssssssssessssssnsees 13
2.3 COMPARISON WITH EXISTING WORKccccevvuveeeeeereeeeessesssseseessssssesssssssessssssnsnsessssssne 15

(07 F=T o] (=T g OSSO 17
3.1 GOALS AND CLASSIFICATION FOR PERFORMANCE EVALUATION PLuvveveeeeeeennn 17
3.2 PHASE 1: IDENTIFICATION OF GOALS, CLASSIFICATIONS AND MISSIONS 17
3.3 CONCLUSIONcceeeiureeerrreeesnreeesesssreessssseeseesssseeeaesesssessassssssesesasssassssssssssesssssssssnesss 20

(0 F=T o] (=] g OSSO 21
4.1 CAPABILITIES AND PROPERTIES FOR PERFORMANCE EVALUATION PL.oovvoean.. 21
4.2 PHASE 2: IDENTIFICATION OF PROPERTIES AND CAPABILITIESuvvvveeeeeeeeeeeeeannns 21
4.3 CONCLUSIONuuttteiieteeterereeeeseeeeeeeeaaseeesssssssssessassessssssssnssssssssssssssssnsessssss reeeereeeeeeeene 23

(O F=T o] (] g TSSOSO 24
5.1 PERFORMANCE EVALUATION PATTERN LANGUAGE KNOWLEDGE MAP......covvu...... 24
5.2 ARCHITECTURAL PATTERN FOR PERFORMANCE EVALUATION......ooeeeeeeeeeeeeeseeeeenns 25
5.3 CONCLUSIONutttiierteeeitttteesstteeesessteeeeeeaeessssssssesssssssasessssssseessssssessssssssesesssssnssessss 27

CRAPLEE B ...ttt seeseesesseseseessresesese e 28
6.1 DEVELOPMENT FOR PERFORMANCE EVALUATION PATTERN LANGUAGEoouennn.. 28
6.2 DEPLOYMENT FOR PERFORMANCE EVALUATION PATTERN LANGUAGE ..uevvveeennn. 29
6.3 CONCLUSION.......ueeieuieiteeeseterrreeesueeeeeeesassessssesssssesssssssesssssssssssessssssssssssssnssssssesssns 30

RETEIEINCES ... 31

Appendix A: Stable Patterns.................eeeeoeeeeeeeeeeeeeeeeeeeeereesesseeeesee s 32
AT ABSTRACT c.uuviiteieetieeeeteeeeeeeeeteeeeteeeeeseeseseesasseessseesanassssssssseassesesssssssssssssssssssssnessssns 32
A2 INTRODUGCTION.......uviiiuiieieteieeteeetteeeseeeeseeseeeeeesseesssssessesseseessesessseessssesssssesssssnessssns 32
A.3 EVALUATION ANALYSIS PATTERN ... ootiitiieeoeeeeeeeeeeeeeeeseeeeeesssessesssssesesssesneeesesins 33

ALB L PIODIEIN ..ttt eeeeeeeaeeeeeeeeeeeeeesaaeeessesesssseenee e eeeseseeeeeeeas 33
ALB.2 COMNEXL.ceiuriiieieiieeieeiie ettt e et eeeeeeeeeeeeeeseeesssseaeessessssssesssssessssssssnresssssneessss 34

A 3.4 SOIULION ...ttt se e e cere st esresesbeesasaesseeesssensesneesnnes 35
A 3.5 Pattern StIUCIUIE......c.eoveirererereererreeteetenreerreneesesaessessessnesseessesasessesssesssensesnsens 35
A 3.6 CRC CArASceeuvireeieeeeeieerecctecreste ettt et csasee e eseesseeseesessesssesessessseesssesneesssens 37
AL3.7T CONSEQUENCES......ccceveererereriiererisassessessesessessaesenssressessesseessessessessessessessessesssnne 38
A 3.8 TTAACOMEScoveiriciieieceeteceeeetecect ettt e et e e bt e e bt st seseecsasesneeesens 39
A LB RESULLS ..ottt ettt ee e eeesae e e essessbeesesensesnsessenensens 40
A.3.10 Applicability with illustrated eXamplesc.cceeverrevrerreereereerrecrenrenrerrenenns 40
A.3.11 Related Patterns..........ccveeueveerenreeeeeieceeeeecteeeseeeeecseeeeeesesseessesseesssessseneesneens 43
A.3.12 Design/ Implementation ISSUEScccouerrveeereuieerirreenseresereeenesseseseeenens 43
A.4 ANYPERFORMANCE DESIGN PATTERNccoovtteetteeereereeeeesseeseeeessasessssessssssesssesssssesns 45
A4.1 Pattern NAINC.......cc.eeieieiereretcr et eteere e et steeresseteees e sseeesaeensessesnsenes 45
Ad2 PIODICIM ...ttt s tate s eeseeeeee s ae e esseesaeeneesaesseenns 45
A 4.3 CONLEXL...uuviereiciieeieeitreereesteeene et et e ete et esseseseeeeaeeessesssssaesnseessnseesessessssesssnees 45
A 44 SOIULIONeeneireeiiectecteeteeeeee ettt et e e ses s teaeesteeseseneeesnesnstenesessneessnenns 46
A4S CROC CAASeeeeveerereereeteereeciecr et eseteteeteessesesessesseessesessessseesnsssssesssesssasans 49
A.4.6 CONSEQUENCES.......coouiriviuiieenireueninieestetestssesesssastessssesessesseseesessessessesssessssenes 50
AT TIAACOAES ..ottt e s eere et et e st ssaessteseeesnesasessasssannen 51
A BB RESULILS ..ottt et v bearesat e e be s et e sseeeseseneassnesnsanans 51
A.4.9 Applicability with illustrated EXamples...........ccceeereeerreerereerenreeereseeecesnennnes 52
A.5 PERFORMANCE EVALUATION ARCHITECTURAL PATTERNccvevtieeeeeeeeeeeeesreenens 55
A.5.1 Performance Evaluation Architectural Patterncceeevveeeeeveeeveeeeveeereeerneenns 55
A5 2 PIODICIM ...ttt e et e et s e e e e e s aeesaeenaeee e esaeanean 55
ALS.3 CONLEXL..c..viirrierieereeiteecee e ettt et e et eeaeceseeesesssteeeresesneesansesenseeessnseessessesesen 55
ALS A FOTCES ..cuveeiirieiieieeiteeeerte et ee et etr et e saseeatees ssatsstesseenseessessnessseesseesssesseesnses 56
ALS.5 SOIULION ...ttt ettt e ettt e et eseeee et eesaessseesseessssenssesanan 56
A.5.6 Pattern SIUCLULE..........cveeeeeeeeirieeceeitececeeeeseee e eeeesteeseeeaeeesseessesssessssessseesseessen 56
ALS5.T CRC CALASoeoeiiieeiieieeeeieeeeceetete et e et et e et svaeeeasseeseesanessssesssanssean 59
A.5.8 Applicability with illustrated eXamplesccocveuerrerereerereeeereeerceeeceeeenenns 60
AL5.9 Related Patterns.........cccueeeeueireeteereetieieerecerceee e cerevesteseeeseseseeseeseeseessssssesneens 62
A.5.10 Design/ Implementation ISSUEScoeveereeesieriireenenseeeerereseenesceeresesenne 63
Appendix B: Application Scenarios For Performance Pattern................. 65

B.1 ORDER PROCESSING AND QUALITY INSPECTION IN MANUFACTURING INDUSTRY ... 65
B.2 PERFORMANCE OF A GAME APPLICATION AND ANIMATION IN WIRELESS DEVICES 78

Appendix C: Code SAMPIES ... eesesees oo 90

-vi-

List of Tables

Table 1: Patterns for Performance Evaluation...........cccoecueeieieeviveceeneeneenreeseensecseseseessnens 15
Table 2: Classification patterns for Performance Evaluationccccccceevveereeerevvnrennnne. 19
Table 3: Patterns for Capabilities for Performance Evaluation Pattern Language........... 23
Table 4: Development routes for performance evaluation knowledge map..................... 29
Table 5: CRC Card for EValUation.........c..cccceieeeirenienieneeieiecieirenreeeeeereesesseeseesnesesseennes 37
Table 6: CRC Card for ADYENULYc.ccceeevereiiiiniiiririecieieseeteseeeeeereeseesaeeseesnesseessennes 37
Table 7: CRC Card for ADYParty........cccoceeerieienirieninieceeeseneterenreestsesesseseeessssessssassenes 38
Table 8: CRC Card for AnyCONSLIAINES.........ccceeiruenreereneeruresieeiseneereessessessessessesssesssesserses 38
Table 9: CRC Card for ANYASSESSINENLcccecerverrereeeerierieeeeneniestesissessessesseessesessenes 38
Table 10: CRC Card for AnyPerformance.............ccccovevreevrenieerrenenreeieeneeneenreseenesssesnennes 49
Table 11: CRC Card for ADYENLILYcccveviiviereniiniinieseieiesresteceereestesaesseeseesessesssesnens 49
Table 12: CRC Card for AnYParty...........cccccvieriiienineneneeneieesieseneetsiessessessessesssessanses 49
Table 13: CRC Card for AnYCIiteria.........c.ccvvtererirrerieenieieiesienieseeieesteseessesseesessesseeseens 50
Table 14: CRC Card for Measurementcoceeveererveeirerenrenesieenresseseseeseessessessaensesnees 50
Table 15: CRC Card for ANYMELtIICS.......ccccvuiiiririenieenerriesieneententeseeressessesessessessessessenee 50
Table 16: CRC Card for Evaluation...........ccceceeervernreieiiiesinreseneeieenrenseceeseeessesseessesseennes 59
Table 17: CRC Card for ADYEDHLYcccocevieirieirirenirieesteieteeseeveeeaereeaeese s snesnessenes 59
Table 18: CRC Card for AnYParty.........ccccoceverereriirienieenieiiniestesteereereesrestesseseessessesssesnens 59
Table 19: CRC Card for ANYCIIteria........cccevrerrerceerrrreereeeiaresieseeeeesessesseesesseessessessesseeeens 59
Table 20: CRC Card for ANYASSESSINENLcccceevereeereeieeireereereerrenrenerensesseeseessesseessenes 60
Table 21: CRC Card for ANYMELIICS.......cocecvrierrerirrinenresreesiereeeeressesseseesessesseseseseessesenses 60
Table 22: Actors and Roles for Use Case 1.0c.ccceveererreenieieenecereeereeeeeeeseeveeseevenes 65
Table 23: Classes with Attributes and Methods for Use Case 1.0.........cceeevveevererreencnnnee 66
Table 24: Actors and Roles for Use Case 2.0cccceereereeirecreeeseeeceerereseeereeeesreeneenes 67
Table 25: Classes with Attributes and Methods for Use Case 2.0.........c.cccoverevvevrevennenen. 67
Table 26: Actors and Roles for Usecase1.0........cc.eceeueeiecreeceieeiecreieeceereeeeeeeeeeseeseesnenens 78
Table 27: Classes with Attributes and Methods for Use Case 1.0..........ccccoeeveverueenennnne. 78
Table 28: Actors and Roles for Use Case 2.0cccceeeererereneeceenieneneereereerenenseennennenns 81
Table 29: Classes with Attributes and Methods for Use Case 2.0........ccccccvevvvvviveeneennen. 81

- vii -

List of Figures

Figure 1: Pattern Language..........ccccoccverueririnnenirntenienenessreecneetsestesesnessessssssesssessesssessens 3
Figure 2: Software Stability Modeling Layers..........cccoeeueevtrecnnirueneneneeencnieneeesensesennens 12
Figure 3: Performance Evaluation Categorization.............ccceeeeeereerercnnensinenrenseeneeseeseennes 14
Figure 4: Pattern Language Map for Performance Evaluation.............cccocevveeviineneinnnnnne 25
Figure 5: Architectural Pattern for Performance Evaluationccccocevuvvenvennrvecrnnne 26
Figure 6: Evaluation Analysis Patterncccccceveeurnirinrncnieenenieneeeeeenierieeeseeseesnesnenens 36
Figure 7: Evaluation Class Diagram for Manufacturing Industrycc.cc.eoevevvevuennnn. 41
Figure 8: Evaluation class diagram for running a Game Applicationcccccerverennen. 42
Figure 9: AnyPerformance Design Patternccoceveeveriereereininennnennienenieseeseeseenens 47
Figure 10: Performance Class Diagram for a Wireless Networkccccccveeveevevreennenne. 53
Figure 11: Performance Class Diagram for a Computercccoceeecervennenrenrererennenenns 54
Figure 12: Architectural Pattern for Performance Evaluationcc.cccceevivveeeenenueennnne. 58
Figure 13: Performance Evaluation Class Diagram for Wireless Devices....................... 61
Figure 14: Performance Evaluation Class Diagram for Computer Instruction Processing
... 62
Figure 15: Sequence Diagram for Checking Order Processing............ccccoceeveververieneennnne 70
Figure 16: Sequence Diagram to Inspect Product.............cccccceevievienviinennenenieenseeseennene. 72
Figure 17: Package Structure for Performance Pattern Implementation in Manufacturing
INAUSETY .ottt ettt et e st et st e et et e nenbanas 74
Figure 18: Screen Shot for Login Screen in Manufacturing Industryccccceeueenen.en. 75
Figure 19: Screen Shot for the Order Processing System.........cccccceeververrviviineeseeneenennen. 76
Figure 20: Screen Shot for the Order Details..........cccccceccereirienennnnienieneneneeseeneeneeeenennen 77
Figure 21: Sequence Diagram for Checking Game Performance.............ccccccevvevrenrnennene 83
Figure 22: Package Structure for Performance Pattern Implementation in Game
APPIICALION. ...ttt ettt et s s se st saesessesesesessessssessssssesessssesenssens 85
Figure 23: Screen Shot for Loading the Game Application Using a Wireless Toolkit 86
Figure 24: Screen Shot for Choosing the Game Applicationcccecueeveeererreereneeennnne. 87
Figure 25: Screen Shot for the Game in Progress.........cccvevieeirvieerienenesrenenenensensenseenes 88
Figure 26: Performance Results of Running a Typical Game Application 89

- viii -

CHAPTER 1

1.1 Introduction

While developing software systems may be complex, maintaining software and
enhancing it with requirements and making it applicable to multiple domains can be a far
greater challenge. Designing reusable, object-oriented software that remains stable, even
after addressing new requirements, is a complicated issue. Some applications are
designed, implemented, maintained, and sparingly used, while also exhibiting limited
purpose and short life span. Because they are difficult to maintain, expensive to reuse,
modify, or adapt to new requirements, these systems are usually termed “forgettable” or
“disposable.” Consequently, such systems are discarded and replaced by entirely new
systems.

The goal of the thesis, Pattern Language for Performance Evaluation, is to overcome
these issues. The proposed solution is not intended to replace existing systems, rather,
the effort is to define and provide a new methodology for designing such systems with a
rich set of patterns for Performance Evaluation that can be used efficiently. Pattern
language is intended to provide a set of highly compatible, related patterns, which will
help increase the overall flexibility of the syétem under consideration. It provides a
generic set of patterns pool for Performance Evaluation, from which any set of patterns
can be chosen to suit an application. Since these patterns are based on stability modeling
approach, which focuses on the stability of these patterns and hence the application built

from these patterns, the application developed is usually not “disposable” or

“forgettable.” The details of this approach and how this modeling technique helps
overcome the issues of “disposable” systems are discussed in detail in the later chapters.
These start by providing an introduction to the pattern language for Performance
Evaluation and the modeling technique used for obtaining these patterns. The next few
chapters present the organization of the patterns in pattern language and how this
interrelationship deals with issues arising from unpredictable future requirements and
enhancements. The following sections address the research methodology; how this thesis
is conducted and what significant contribution it has made to the software engineering

and patterns community.

1.2 Research Methodology Overview

Pattern language is all about providing a set of patterns with their problems and
solutions. In simple terms, it enables us to document a set of known recurring problems
along with their solutions in any context and encourage a user to pick out the relevant

.pattems suitable for their application. Hence, it becomes important to understand the
goals and missions of the system, along with its capabilities, architectures, etc. Figure 1
provides a detailed picture of what the user needs from three different perspectives:
1. Marketing or business language
2. Stability
3. Scientific research
The marketing or the business language is mainly applicable and used across all

industry sectors and domains of electronic or non-electronic trade. The pattern language

in terms of business language provides a formal description of a specific business
terminology that can be used to identify uniquely the corresponding terms 12 stability and
research. The stability language, on the other hand is a systematic means of
communicating the ideas of stability methodology for patterns language. And finally,
research mainly identifies the search for knowledge, which involves systematic

investigation to establish facts about pattern language for performance evaluation.

Stability

 EBTs / Analysis
Patterns .

- EBTs and BOs.
“Analysis and Design

Unique Propertics -

Research

Performance Evaluation
Languages

E,___:I Performance Evaluation
Language Terminology

Figure 1: Pattern Language

As shown in the Figure 1, the pattern language for performance evaluation in the
business perspective addresses the goals or capabilities of the system, which relates to the
Enduri_ng Business Themes (EBTs) or arialysis patterns in stability and
categories/classification in research. This addresses the goal of the system, which helps
identify those aspects that remain consistent throughout the existence of the system.

It is a challenging endeavor to identify these aspects because they have to remain
the same no matter what the application is. Similarly, capabilities in terms of business
language map onto unique or common properties in stability, which encompass all the
properties of the goal identified. These form the Business Objects (BOs) or the design
patterns, which occur in the solution space and help to uniquely identify the goals. The
architecture, which is usually a combination of goals with capabilities, provides the map
and direction of Performance Evaluation. In other words, it consists of both the analysis
and design patterns fulfilling a specific functionality with the domain of Performance
Evaluation.

Verification and validation, which occurs next in the business language deals with a
board diversity of quality factors that need to be handled during deployment phase in
stability. These are again several design and analysis patterns for quality assurance. The
application scenarios provide the details on applicability of the patterns identified in a

plethora of applications and are termed development in research.

1.3 Thesis Methodology

The focus in this section is to provide a brief description of the methodology used in
the development of the pattern language and its associated patterns. The methodology for
this thesis is based on a wide approach to accessing and obtaining the relationship
between several interrelated patterns for performance evaluation. It can be broadly
viewed as consisting of three logical stages. The first stage involves identifying the
related patterns in the pattern language. The second stage then involves categorizing
them as either analysis patterns or design patterns based on the whether the pattern lies in
the problem space or the solution space. The third phase aims at providing the
relationship between different patterns and implementing them in different applications.
These are discussed in detail in different chapters.

The first phase, which involves obtaining the context in which pattern language and
the relevant patterns exist, made this thesis an interactive and feedback based study. This
report aims at encompassing different patterns obtained based on direct subject and
application observation, often diverse in nature. The method utilized to collect different
aspects involved a series of questions that required some research. This involved
discussion, particularly with the thesis advisor, Dr. M. E. Fayad, and the Stability
Patterns Group. The team focused on the following points:

1. The goal of designing the patterns, or in other words, the reason for the pattern

language to be developed

2. The different aspects or characteristics existing in different applications, which try
achieving this goal
3. Interrelationship between the patterns identified

4. Possible application scenarios where these patterns can be implemented

1.4 Contribution

The contribution of the thesis is significant to the research community in the field of
software engineering. It introduces a pattern language for Performance Evaluation,
which is a combination of various analysis and design patterns modeled using a new
modeling technique called “Software Stability” (Fayad, 2002). These patterns are mainly
in the area of Performance Evaluation. Because the patterns obtained help to overcome
several drawbacks seen in contemporary patterns, which will be discussed later, it implies
that these can be used in several different applications. This thesis has four major
contributions:

1. Analysis and design patterns are modeled using the concepts of “Enduring
Business Themes” (EBTs) and “Business Objects” (BOs), in the field of
Performance Evaluation. The analysis pattern, Evaluation, and the design
pattern, AnyPerformance, are provided in Appendix A.

2. A pattern language map for Performance Evaluation defines a unique model

showing the classification, properties, development and deployment patterns.

3. Applicability of the obtained analysis and design patterns for different
applications with implementations in various scenarios are provided in Appendix
B.

4. An architectural pattern for Performance Evaluation, which is also contribution to
the field of patterns, is provided in Appendix A.

All these are discussed in detail in the later chapters. In general, this thesis is
expressive enough to understand the interrelationships between several analysis and
design patterns for Performance Evaluation. Under certain conditions, it is the most
reliable and stable model for all the patterns needed. Few published patterns are quoted
in references section for this chapter (Fayad, Pradeep, 2003) and (Fayad, Pradeep,

Sidiqqui, 2003).

1.5 Structure and Organization

Performance Evaluation is presented for various domains in the following
chapters. These chapters are a comprehensive survey of new material.

Chapter 1, Introduction, presents a high-level description of the thesis “Pattern
Language for Performance Evaluation.” Chapter 2, Overview, provides comparisons
between the pattern language and the existing methodology used for designing the
patterns. A detailed account of how the developed patterns are an improvement over the
contemporary patterns is debated in this section. Chapter 3, Classifications and Goals,
discusses the goals/missions/classification/or partitions of the pattern language for
performance evaluation. Chapter 4, Capabilities and properties, describes the pattern
language map, along with the properties for the classification identified. Chapter 5,
Performance Evaluation Knowledge Map, provides an interrelationship between patterns,
how they interact, and their properties, along with the different routes that can be adopted
for Performance Evaluation. Chapter 6, Development and Deployment, provides an
overview of how the analysis and design patterns obtained can be implemented and
deployed in different applications. Chapter 7, Conclusion, provides a conclusion for the
thesis, Pattern Language for Performance Evaluation. Appendix A, Section A.l,
Evaluation Analysis Pattern, describes the analysis pattern Evaluation; Section A.2,
AnyPerformance Design Pattern, describes the design pattern AnyPerformance; Section
A.3, Performance Evaluation Architectural Pattern, describes the stable architectural

pattern for performance evaluation. Appendix B, Application Scenarios, provides the

application scenarios with screen shots for implementing the analysis and design patterns,
Evaluation and AnyPerformance. Appendix C, Codg Sample, provides the code
samples for implementing the analysis and design patterns, Evaluation and

AnyPerformance.

CHAPTER 2

2.1 Overview of Pattern Language for Performance Evaluation

To overcome the issue of redesigning an entire system to handle new functionalities,
it becomes important to develop a core system that usually exhibits a rich set of behaviors
capable of handling features that are reusable, adaptable, and maintainable with minimal
modifications. These result in recurring patterns of classes that solve specific design
problems and make systems more flexible and ultimately, reusable. According to
Christopher Alexander,

“Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to the problem, in such a

way that you can use this solution a million times over, without ever doing it the

same way twice” (Alexander, Silverston, Jacobson, Fiksdahl and Angel, 1997).

Sets of such related patterns comprise a patterns language, which is a system used
for representing ideas and states related to patterns. In other terms, it is a set of certain
cognitivé processes involved in producing and understanding different concepts of
patterns in various disciplines. Pattern language is usually characterized according to
aspects and nature of different stable patterns. The common aspects that all stable
patterns share are identified and as a result, each pattern category with its own aspects is
obtained.

There are several methodologies available for developing patterns, (Alur, Crupi, and
Malks, 2001), (Gamma, Helm, Johnson, and Vlissides, 1994), which systematically

name, explain, and evaluate an important and recurring design in a software system. But

-10 -

Sometimes, developing a good pattern with an appropriate methodology is expensive and
may have drawbacks. Moreover, it may not necessarily be applicable to multiple
domains. Stable Patterns Methodology, that handles the methodologies for developing
both analysis and design patterns is used for developing patterns. The concept of
Software Stability Modeling is used in these cases (Fayad, 2002). The patterns thus
developed will be simple enough to learn and still provide enough features that can be
used quickly to hook multiple applications with few changes. This also ensures that the
pattern is flexible enough to be applied to many domains and remains stable even after
addressing new requirements and design changes. Let us next examine why software

stability patterns are an essential modeling technique.

2.2 Overview of Software Stability and Patterns

Software Stability modeling is a modeling technique that uses the concepts of
“enduring business themes” (EBTs) and “business objects” (BOs). These are classes that
are usually classified into three different layers. They are:

Layer 1: Enduring Business Themes (EBTs), which represents the core knowledge of the
system

Layer 2: Business Objects (BOs), which form the concrete classes of the system and are
generally called the “work horses” of the system under consideration

Layer 3: Industrial Objects (IOs), represent the external applications that can be hooked
to the pattern and usually form the leaves, which can be replaced without affecting the

system

-11 -

Figure 2 gives an overview of different layers obtained for performance evaluation.
The EBT layer contains Measurement and Evaluation, which cover the core concepts.
The BO that is shown here is Performance since our main focus is performance
evaluation. There are several other BOs that are not listed here. Because the pattern that

is developed uses a layered approach, it is important to understand these layers and how

these layers are obtained.

Figure 2: Software Stability Modeling Layers

To obtain EBTs of the system under consideration, those aspects of the system that
remain stable over a period of time are identified. These are usually those aspects that
form the core of the system based on what the system needs are and why the system is
modeled. This helps in reducing the reengineering and code modifications required when
requirements change. On the other hand, BOs are those classes that act as “workhorses”
and form concrete classes. They are classes that change only internally but remain stable

externally. As a result of obtaining these classes, majority of engineering done on a

-12-

system modeled should be to fit the project to those areas that remain stable. This yields
a stable core design and thus, a stable software product.

Changes introduced to the software product will then be in the periphery because
the core would be based on something that remains stable. Since any changes that must
be made to the software in the future will be in this periphery, it will only be these small
external modules that will be engineered. Thus, the endless circle of reengineering the
 entire system is avoided for any minor changes. Hence, this reduces the changes that
need to be made to the system when the requirements change.

Stable analysis and design patterns are conceptual models that are obtained as a
result of capturing the core aspects of the problem under consideration. Patterns may
vary in the level of abstraction and granularity. Capturing the core of the probiem is
mandatory to design the right solution. To successfully reuse the same model to address
a similar problem, regardless of the nature in which the problem appears, it is important

to extract features that are adaptable to handle multiple domains.

2.3 Organization of Pattern Language

The main objective of pattern language is to provide an exhaustive material of related
patterns in the field of performance evaluation. Pattern language mainly consists of four
different phases. These mainly include the classification or the core knowledge,
properties, which also provide a description of the benefits, development, and last but not
the least deployment. We consider the example Performance Evaluation in this paper to

thoroughly understand these different phases or steps. Each of these phases is a set of

-13-

patterns that uniquely identifies that phase. Figure 3 shows how these phases form the

pattern language for performance evaluation.

Figure 3: Performance Evaluation Categorization

As shown in Figure 2, Performance Evaluation forms the basis of this structure for
which the relevant analysis and design patterns need to be obtained. The next layer gives
all the EBTs, which form the analysis patterns and support the most common tasks in
performance evaluation. These are identified as Evaluation, Measurement, Collection,
and Analysis. The next layer, which sits on top of this layer, is the architectural
framework. This layer indicates that the layers above and below this layer, which are the
analysis and design patterns, collectively form the architectural framework for
performance evaluation. The layer above this is the list of all BOs, which form the
design patterns and are mainly identified as Assessment, Metrics, Storage, and
Optimization. These uniquely identify the properties for EBTs obtained earlier. The

other layer, which lies above this layer, provides a list of common patterns that help in

914'

achieving the goals specified by the EBTs in Performance Evaluation. The details on
each layer are provided in the following chapters. Table 1 gives an overview of the

various analysis and design patterns for Performance Evaluation.

Patterns Class Type Pattern Type | Related Design patterns
Evaluation EBT Analysis AnyPerformance, Assessment
Measurement EBT Analysis AnyPerformance, Metrics
Collection EBT Analysis Storage

Analysis EBT Analysis Optimization

Assessment BO Design AnyParty, AnyEntity

Metrics BO Design AnyPerformance

Storage BO Design AnyMedia, AnyEntity
Optimization BO Design AnyEntity, AnyParty

Table 1: Patterns for Performance Evaluation

As shown in the table, there are fours analysis patterns and four different design
patterns obtained for Performance Evaluation. The map, which is provided in chapter 5,
gives a more detailed picture of various analysis and design patterns and phases in pattern

language.

2.3 Comparison with existing work

The main objective of this section is to compare and contrast this thesis work with
existing material. There are several process models and techniques available for
Performance Evaluation with respect to software performance engineering. For
comparison, consider the discussion from Performance Evaluation and Monitoring
(Henry, 1971), a paper that deals with techniques to evaluate performance. This
discussion mainly handles the performance evaluation of a computer. Several techniques
like benchmarks, analytical models, simulation, etc., have been proposed. But there is no

pattern defined that can be used for performance evaluation of a computer in terms of

-15-

speed, multiprogramming and multiprocessing features. Using software stability
modeling approach to model the patterns for performance evaluation mainly provides a
stable pattern that can be applied to any domain that uses Performance Evaluation. It also
has the flexibility of providing hooks to these patterns that can handle any modifications.
This can include discarding several existing functionalities or encompass new features.
These patterns are also generic enough to be applied to any application. This might
include providing links to the existing code and modifying it to hook to the new domain
specific features. Therefore, using patterns modeled using Software Stability technique

has several advantages over processes and techniques that already exist.

-16 -

CHAPTER 3

3.1 Goals and Classification for Performance Evaluation PL

Classification, which also represents the core knowledge of the system, mainly
contains those patterns that deal with cooperating EBTs (Fayad, 2002) that make up the
pattern language (Fayad, Pradeep, 2004). A number of analysis patterns can be obtained
that are related to performance evaluation. Phase 1, which deals with the activities
involved in extracting the core knowledge of the system for Performance Evaluation is
addreséed in the next section. It illustrates the steps involved in obtaining the relevant

EBTs for Performance Evaluation.

3.2 Phase 1: Identification of Goals, Classifications and Missions

Phase 1 is the first step that needs to be considered when the pattern language for
performance evaluation is developed. It illustrates a step-by-step approach to finding the
right stable analysis patterns (Hamza, 2002), (Hamza, Fayad, 2002a), (Hamza, Fayad,
2002b), (Hamza, Fayad, 2002c), required for Performance Evaluation.

o Consider what the system is intended to do: This helps to obtain those patterns
that lead to the core knowledge and the objective of the system. For examplla,
the system is required to evaluate some entity based on the collection of data
obtained from a particﬁlar task and provide the results of evaluation as a
measurement, based on some algorithms that are used for following a procedure,

or optimizing the existing processes etc.

-17 -

e Obtain relevant patterns: Based on the system’s intention, obtain relevant
patterns that will solve the problem under consideration.

e Obtain pattern interrelation: Once the patterns are obtained, it is important to
study how these patterns ‘are related to each other. Studying this relationship
will help in obtaining the right group of patterns. For example, examine if the
patterns obtained for performance evaluation are really related to each other in a
way they are supposed to be.

o Examine a redesign cause: Consider and speculate the causes that might lead to
redesigning of the system and the way the patterns relate to each other. This will
help in obtaining a broader perspective of the problem and how the patterns that
are already obtained can encompass these issues.

Because the goal of Performance Evaluation is to evaluate the performance of any
task performed by an entity, Evaluation (Fayad, Pradeep, 2003) is one of the EBTs
needed as it addresses the'goal of evaluation. When a task that is to be evaluated is
performed, the data or metrics obtained from it is handled by another EBT,
Measurement. Another related EBT for performance evaluation is Collection as the data
collected is stored for further processing. This addresses the goal of collection of any
kind of information or .data and handles related collection activities. Analysis, on the
other hand, includes all the analysis techniques needed for performance evaluation
process. These EBTs, together wiih the BOs, provide a generic framework that can be

used to develop implementations based on the application by providing relevant hooks.

- 18 -

The related BOs, the workhorses of the system, are addressed in the next chapter. Table

1 provides a list of EBTs required for Performance Evaluation.

Goals/Missions/Classification/
Stable Analysis Patterns

Class Type

Description

Evaluation

EBT

Defines the process of judging the
competence with which a party has
performed the task assigned to it or the
process of data collection and analysis to
determine the success or failure of
performers for a specific task, as a result of
performance

Measurement

EBT

Represents the process of obtaining data
for measuring any task or process
performed by an entity

Collection

EBT

Represents the collection of any data that
can be obtained during the process of
performance evaluation. It includes all the
relevant information that can be used for
any analysis that needs to be done once a
task is performed and evaluated.

Analysis

EBT

Represents all the analysis techniques used
for performance evaluation process. This
can include all the processes that perform
analysis of the tasks that are evaluated or
the analysis of the performance evaluation
process itself.

Table 2: Classification patterns for Performance Evaluation

To provide concrete functionality for any system, the relationship between different

EBTs needs to be identified based on the system needs. The EBT Evaluation interacts

with Measurement to obtain the metrics details for a particular task performed. This

might need to interact with Collection EBT to obtain the stored results. Analysis is

required only when analysis of the evaluation report from Evaluation analysis pattern is

needed.

-19-

3.3 Conclusion

The Classification and Goals category in developing pattern language for
Performance Evaluation helps provide all the stable analysis patterns that help the system
in evaluating performance. Phase 1 provides an overview of the steps and activities
involved in identifying the goals of the system. The patterns obtained in this category

form the stable analysis patterns.

-20 -

CHAPTER 4
4.1 Capabilities and Properties for Performance Evaluation PL

The category capabilities and properties for Performance Evaluation pattern language
represents all the properties exhibited by the patterns identified during classification.
This category uses phase 2 for identifying the properties, représented in terms of patterns,
for the goals specified in the Classification category. Phase 2 is important because it
helps obtain the workhorses of the system under consideration. The next section deals

with this phase in detail.

4.2 Phase 2: Identification of Properties and Capabilities

This phase helps in identifying the design patterns, which reflect the BOs of a system
under consideration. Because these are to remain stable and still provide the
functionalities of the workhorses, helping EBTs achieve the goals, keeping them general
enough to address core issues is important. Hence, these are usually abstract classes with
methods to achieve general functionality. These are extended to provide hooks, to suit
the application needs. Certain steps are given below for finding the set of capabilities for
each goal or a set of properties for each pattern obtained during classification.

® Read each pattern to obtain an overview: Each pattern, for which the properties

have to be obtained, has to be understood thoroughly by paying particular
attention to the sections - Consequences, Results, Tradeoffs, and Solutions in the

pattern template.

221 -

o Study the CRC cards, Participants, and Pattern structure: Emphasize on the
classes in the pattern to understand how they relate to each other with respect to
EBTs and their BOs. This provides the possible patterns that might represent the
properties of the pattern.

e Consider applicability of the pattern: Check to see which domains the pattern can
be applied to in order to obtain the properties appropriate to encompass the
domain features. |

o Identify the patterns in properties: Once the properties are identified, examine the
recurring classes in those properties to check if they form a pattern. Choose the
right name for the pattern that will appropriately signify the property of the
pattern under consideration.

In the process of performance evaluation, there are certain BOs that actually
help EBTs accomplish their goals. These can be categorized as unique properties and
general properties for the EBTs. AnyPerformance pattern (Fayad, Pradeep, Siddiqui,
2003) falls under the general property in this phase because it does not uniquely
identify any EBT. But it is a type of measurement and is hence associated with
Measurement. Patterns Assessment and AnyMetrics are uniquely associated with
Evaluation (Fayad, Pradeep, 2003) because they signify the function of evaluation.
Similarly, Optimization identifies Analysis and Storage identifies Collection. There
are several other patterns like AnyParty (Fayad et, al. 2005), AnyEntity (Fayad et, al.
2005), and AnyConstraints, which are used commonly used in all the analysis

patterns. The details of their relationship and the overall patterns interaction are

-2

explained in detail in the next chapter, Pattern Language Knowledge Map. Here are

several different patterns identified during classification with their properties.

Classification | Capabilities/Properties Description

Evaluation Represents the process or the property
of observing and evaluating a party’s
performance, recording the assessment,
providing the status, findings, evidence,
and result of any evaluation process. It
also indicates how assessment is
influenced by the constraints or the
external factors that are introduced in
the system

Measurement | Metrics Describes performance evaluation as a
type of measurement, which provides
the metrics or measurements of the task
that is evaluated

Analysis Optimization Represents the attributes of all the
optimization techniques that are used in
any analysis to enhance its utilization
and the process of performance
evaluation as a whole

Collection Storage Represents the property of storage used
by data collection for the purpose of
performance evaluation

Assessment, Metrics

Table 3: Patterns for Capabilities for Performance Evaluation Pattern Language

4.3 Conclusion

Properties and capabilities play an important role in defining pattern language for
Performance Evaluation. Phase 2 in developing pattern language helps in deriving the
workhorses of the system. These workhorses, termed Business Objects, are usually

represented by stable design patterns.

-23.

Chapter 5

5.1 Performance Evaluation Pattern Language Knowledge Map

The pattern language map (Hamza, Fayad, 2002) provides the interrelationship
between patterns, how they interact, and their properties, along with the different routes
that can be adopted to obtain architectural patterns based on the application needs.

Figure 4 shows the pattern language map for performance evaluation (Fayad,
Pradeep, 2004). The main categories ‘like Goals, Capabilities, Development and
Deployment, for the pattern language map are given in rectangles within rectangles. The
other rectangles represent the various aspects and patterns needed for Performance
Evaluation. The categories Goals and Capabilities are explained in detail in Chapter 3
and Chapter 4 respectively. Development and Deployment are dealt with in the Chapter
that follows next. The arrows in the map indicate the routes that can be takeﬁ to obtain
‘sensible architectural patterns for any domain that requires these patterns. For instance,
AnyParty (Fayad al, al. 2005) initiates the process of performance evaluation that needs
to be done for AnyEntity (Fayad al, al. 2005), taking into consideration AnyCriteria that
is specified by AnyParty. The metrics obtained based on performance of AnyEntity are
ihen sent to AnyMetrics, which in turn is used by Evaluation for evaluation purposes.

The figure for pattern language map for Performance Evaluation follows next.

-4 -

Performance Evaluation

Specific Knowledge
@ Triggerpoint for Performance Evaluation
the patterns @%@ Specific Patterns
Pattems presented with
this paper

Figure 4: Pattern Language Map for Performance Evaluation

Section 5.2 provides a simple architectural pattern for performance evaluation

5.2 Architectural Pattern for Performance Evaluation

An architectural pattern is a result of using a particular route in the pattern

language map. Thus, when a route, shown in the figure for pattern language map is

-25-

adopted, an architectural pattern is for Performance Evaluation is obtained. The Figure 5
shows the interaction between the EBTs and BOs. This pattern contains two EBTs,
Measurement and Evaluation and several BOs, AnyPerformance, AnyCeriteria,

AnyMetrics, AnyEntity, AnyParty, and AnyAssessment.

» <<Pattem BO>>
utilizes- Amyhl etrics
al
provides
<<Paltern EBT>» *w:"‘ <<Paftern B0>> I a#ects
W easurement AmyP erformance
i—partiu’{mtes———l
e tor anyE ntity <<Pattem BO>» | <<Pattem BO>» |
1] AQyE rtity AnyCrieteria
1.*
<<Pattern EBT>> =f;ct
[| Evalustion =
»
T — nd:- anyParty <<P attem BO>> ‘ :dentl fies
e 1.+ AnyParty
S ' -
Drovid :;P attem BO;: influences

Figure S: Architectural Pattern for Performance Evaluation

Each EBT forms an analysis pattern and the BOs, the design patterns. This pattern
contains two EBTs, Measurement and Evaluation (Fayad, Pradeep, 2003), and BOs,

AnyPerformance (Fayad, Pradeep, Siddiqui, 2003), AnyCriteria, AnyMetrics,

=26 -

AnyEntity, AnyParty, and AnyAssessment. Evaluation and AnyPerformance patterns
are provided in Appendix A.

The architectural pattern, Performance Evaluation, deals with providing feedback
for a activity that is time-bound and provides assessment based on the success or failure
of that activity. This begins with AnyParty evaluating performance of AnyEntity. This
is based on AnyCriteria, the requirements or standards that AnyEntity needs to satisfy.
AnyPerformance measures the performance of any task performed by AnyEntity and
forwards the result to AnyMetrics. The performance data from AnyEntity, stored in
AnyMetrics, is then used by Measurement. Evaluation pattern provides assessment,

AnyAssessment, based on the criteria.

5.3 Conclusion

The pattern language map for Performance Evaluation provides all the relevant
patterns required for performance evaluation. Any route can be chosen to from the set of
patterns in the map to provide a meaningful architectural pattern. This chapter provides

an example of an architectural pattern Performance Evaluation.

-7 -

CHAPTER 6

6.1 Development for Performance Evaluation Pattern language

The development category deals with the process of improving and developing the
patterns obtained in capabilities and properties phases. The focus is to evolve or develop
the patterns from the Goals and the Capabilities categories to present a more productive
and meaningful stage. This phase provides a set of possible scenarios that can be
obtained when different routes in the map are adopted. The routes result in different
architectural patterns that are usually a combination of several EBTs and BOs (Fayad,
2002).

Consider the case of the architectural pattern Performance Evaluation (Fayad,
Pradeep, 2004), to understand the concept of route better. The route, which this
architectural pattern adopts, is shown in detail in the pattern language knowledge map.
The EBTs Evaluation and Measurement are involved along with the BOs, AnyParty,
AnyEntity, AnyPerformance, AnyMetrics, AnyAssessment, and AnyCriteria. The
architectural pattern is} involved in the complete cycle of evaluating the performance of
any task performed. A few examples to illustratei the development route of architectural

pattern for Performance Evaluation are shown in Table 4.

Development Description Application
Route
Benchmarking Used in performance

Represents a structured approach
for identifying the best practices,
comparing and adapting them to
achieve intended results, and
suggesting ambitious goals
improvement.

benchmarking in
industries, government,
devices performance, etc.

-28 -

Used in computational
speed of devices like
computers, cell phones,
loading and storing
operations for memory,

Speed Describes the rate at which any
. specified operation is performed.

etc.

Review Represents a formal or official Ad(')pted' for perf.orm.ance
examination for evaluation to reviews in organizations,
polish performance. art, and technology

Transmission | Describes the process of Used for data and voice
transmitting information in any transmission in networks,
form from source to destination etc.

using a specified media.

Table 4: Development routes for performance evaluation knowledge map

6.2 Deployment for Performance Evaluation Pattern language

The deployment phase represents all the issues related to deployment. There are
certain patterns that are used for representing this. They are discussed in the following
section.

* Scalable: This pattern represents the properties related to scalability with respect
to various patterns and the participants for the same.

® Adaptable: This presents the properties related to the adaptability of the
developed patterns when they are deployed.

Only a few patterns related to deployment are mentioned here. The idea behind
having different categories and phases is to provide the flexibility to choose the desired
route in order to meet the requirements specified for an application. The next chapter
concludes the thesis based on why software stability modeling (SSM) (Fayad, 2002) is an

important methodology for designing patterns and systems on the whole.

-29.

6.3 Conclusion

Development and Deployment categories are an important part of the pattern
language map since they give the user the flexibility to choose any route based on the
application or system requirements. Architectural patterns are a result of choosing

several meaningful, related EBTs and BOs.

-30-

REFERENCES

Alexander, C., Ishikawa, S., Silverston, M., Jacobson, M., Fiksdahl-King, I., & Angel,
S., (1997). A Pattern Language. Oxford University Press, NewYork.
Deepak Alur, John Crupi, & Dan Malks (2001). Core J2EE Patterns, Best Practices and
Design Strategies, Sun Microsystems Press, Prentice Hall.
Erich Gamma, Richard Helm, Ralph Johnson, & John Vlissides (1994). Design Patterns:
Elements of Reusable Object-Oriented Software, Addisbn-Wesley.
H. Hamza & M.E. Fayad (2002). Towards a Pattern Language for developing Stable
Patterns. Tenth Conference on Pattern Language of Programs (PLoP 03), 1llinois,
USA, September 2002.
Henry C Lucus, Jr,. (1971). Performance lEvaluation and Monitoring. Computing Surveys,
Vol.3, No 3.
M. E. Fayad. (2002). Accomplishing Software Stability. Communications of the ACM,
Vol.45, No 1.
M. E. Fayad & Rohini Pradeep (2003). Evaluation Analysis Pattern. Stable Patterns,
workshop # 8, UML 2003.
M. E. Fayad & Rohini Pradeep. (2004). Pattern Language for Performance Evaluation.
SugarLoaf PLoP’04, The Fourth Latin American ~ Conference
on Pattern Languages of Programming, Brazil, August 2004.
M.E. Fayad, Rohini Pradeep, & F. Siddiqui. (2003). Aspects in Communication:

Performance. Aspect-Oriented Modeling with UML, workshop #4, UML 2003.

=31 -

APPENDIX A: STABLE PATTERNS

A.1 Abstract

This section deals with how Stable Analysis Patterns (Hamza, Fayad 2002, 2003)
can be used to develop patterns that can be used in Performance Evaluation (Fayad,
Pradeep 2004). The obtained Evaluation, AnyPerformance, and Performance
Evaluation patterns can be applied to any domain as a time-bound activity that attempts
to assess systematically and objectively the relevance, performance, and success of an
ongoing or completed activity. Because performance evaluation covers multiple
domains, it is not easy to come up with a model that encompasses all the features. There
are several methodologies available for developing patterns. Unfortunately, developing a
good pattern with an appropriate methodology is expensive and has drawbacks, and may
not necessarily be applicable to multiple domains. Stable Patterns provide a solution for
developing patterns that will be simple enough to learn and still provide enough features
that can be used quickly to hook multiple applications with minimal changes. This also
ensures that the pattern is flexible enough to be applied to many domains and remain

stable even after addressing new requirements and design changes.
A.2 Introduction

Patterns form an important part of any object-oriented analysis and design
methodology. A pattern should be general enough to address and encompass future
requirements and problems. Because a pattern needs to be reusable, avoiding redesign of
the entire system, it becomes important to develop a good pattern that can be applied to
multiple applications and domains. There are a number of methodologies available for
developing patterns. But developing a good pattern with an appropriate methodology can
sometimes be expensive with drawbacks. The developed pattern may not necessarily be
suitable to be applied to multiple domains. This Appendix section deals with how
Software Stability Modeling (Fayad, Altman, 2001), (Fayad, 2002), and the concept of
Stability Analysis Patterns (Hamza, Fayad, 2002), provide a solution for developing a

-32-

good pattern. The pattern thus modeled will be complete with enough features to provide
flexibility and extensibility with hooks to attach to several applications. The following
section provides the problem and the solution, along with the applicability for the pattern

indicated earlier.

A.3 Evaluation Analysis Pattern

Evaluation Analysis pattern can be applied to any domain as a time-bound activity
that attempts to assess systematically and objectively the relevance, performance and
success of an ongoing or completed activity. Several functionalities can be evaluated
using this pattern. Those functionalities can include: checks for accuracy, adaptability,
changeability, clarity, compliancy, conformity, efficiency, efféctiveness, feasibility,
interoperability, maturity, operability, readability, recoverability, security, stability,

suitability, or testability.

A.3.1 Problem

The Evaluation analysis pattern covers many domains that are different in nature
and functionality. Therefore, modeling a generic analysis pattern that can be applied to
these domains is a problem. Moreover, the requirements of each domain vary based on
the users of the system and the participants. The entity that needs to be evaluated can be
from different domains. For e.g., different generations of wireless networks need to be
evaluated based on different features, lands need to be evaluated to verify their suitability
for agriculture, etc. Hence, obtaining a model or a pattern that covers all the
functionalities is a complex and tedious task. The main challenge that needs to be

addressed is obtaining a model that handles these variations.

-33-

A.3.2 Context

Evaluation is an important concept in any domain that requires a response or
feedback for a time-bound exercise that assesses various factors like relevance,
performance, success or failure of an ongoing or completed activity in a systematic and
objective way. The entity involved in the activity can be anything from an artist to an
employee, an engine, or a network whose evaluation needs to be done by a party,
essentially an evaluator like a person or a system. For example, an engine can be
evaluated in an assembly line; the audience in a theatre can evaluate an artist. Wireless
networks or networks in general can be evaluated for comparison based on certain
constraints that influence the assessment provided. These constraints can be any factor

that affects the overall judgment or assessment either directly or indirectly.

In general, Evaluation has several distinguishing characteristics that relate to
focus, methodology, and function. Thus, Evaluation as a pattern, assesses the
effectiveness of an ongoing activity in achieving its objectives, relies on the standards
used by the activity to distinguish any other activity’s effects or external constraints, and
aims at the activity improvement through modification of current operations. This

concept can be applied to multiple fields as already mentioned earlier.

A.3.3 Forces

Many contexts and domains that are completely different in nature are covered by
the evaluation analysis pattern. Evaluation for any entity can be done by one or more

entities simultaneously, based on multiple constraints. Hence, the pattern needs to handle

-34 -

multiple constraints and entities. The main challenge lies in handling different kinds of
constraints and entities for different domains. Flexibility with respect to handling
domain-specific features is also another challenge for this model. Assessments can be
different based on the context it occurs in. The features for assessment are domain

specific and addressing these features is a limitation faced by this model.

A.3.4 Solution

The stable pattern that is obtained in Figure 1 is a proposed solution for handling the
issues mentioned earlier in the Problem [A.1.4] section. This concentrates on providing a
generic pattern that can be applied to any domain, leaving out the domain specific

features.

A.3.5 Pattern Structure

The relationship between (EBT), which is evaluation in this case and the (BOs), for
evaluation analysis pattern is shown in the figure below.
Participants
The participants in the pattern structure are described based on the classes and
patterns occurring within the evaluation pattern.
Classes
o Evaluation: This is the core of the stable analysis model and represents a time-
bound activity that attempts to assess systematically and objectively the

relevance, performance, and success of an ongoing or completed activity process.

-35-

Patterns

e AnyParty: This represents parties that are involved in the task of evaluation of
any activity performed by any entity or in some cases, the entity itself and provide
assessments for the same. This party can be an evaluator of some task that is
already completed, or in the process of completion. The evaluator can be an
employer, an intelligent process that evaluates any task, or a network agent

evaluating the performance of the network elements.

AryE ntity

+requestE valuation()
+provideDatal)

A
done for

Evaluation
AryP,
« : « ryParty

Aszessment | id —
Ay Proides— il easwrement([andles TdentiyConsrants)

+analyseAssessment()
+provideAssessment) + evaluateE ntity() +defineE valRules)
|
affect
| &
- AnyConstraints -
infllences—m——————| identifies

+defineC onstraint()
+modifyC onstraint()

Figure 6: Evaluation Analysis Pattern

e AnyEntity: This represents any entity that needs to be evaluated. It can be a
wireless system, an engine part, etc., that needs to be evaluated. These are usually

termed as the Evaluation requestor.

-36 -

e AnyAssessment: Provides the status, findings, evidence, and result of any
evaluation process. It also indicates how assessment is influenced by the
constraints or the external factors that are introduced in the system.

. AnyConstrain.ts: This provides the details of issues related to the external factors
and the constraints that affect the effectiveness of an ongoing activity in achieving
its objectives. It can also be the standard used by the activity to distinguish any

other activity’s effects or external constraints that need to be considered during

evaluation.

A.3.6 CRC Cards

The CRC cards shown in the following tables provide details on collaboration and

responsibilities of various participants in the pattern.

Evaluation (Evaluation facilitator)

Responsibility Collaboration
Represents a time-bound Client Services
activity that attempts to assess defineEvaluation(),

systematically and objectively | AnyParty,

the relevance, performance, AnyEntity, _
and success of an ongoing or | AnyAssessment, evaluateEntity()

completed activity process AnyConstraint

Table 5: CRC Card for Evaluation

analyzeAssessment(),

AnyEntity (Evaluation Requestor)
Responsibility Collaboration
Requests evaluation to be done Client Services
based on the criteria and Evaluati requestEvaluation(),
standard set aluation provideData()
Table 6: CRC Card for AnyEntity
AnyParty (Evaluator)
Responsibility Collaboration
Client | Services

Qattina tha rilac alana writh

-37-

identifying the constraints identifyConstraint(),

under which the evaluation of ivaluatlon, . defineEvalRules()
o nyConstraints
any entity is done

Table 7: CRC Card for AnyParty

AnyConstraints (Constraint Definer)

Responsibility Collaboration
Describes the rules, standards |-—hent Server _
and the external factors that | Evaluation, deﬁt}eConstralr.u()
need to be considered before | AnyParty modifyConstraint()
any task can be performed

Table 8: CRC Card for AnyConstraints

AnyAssessment(Assessment Provider)

Responsibility Collaboration

Client Server
provideAssessment ()

Provides the status, findings, .
evidence, and result of any Evaluation,

evaluation process AnyEntity,
AnyConstraints

Table 9: CRC Card for AnyAssessment

A.3.7 Consequences

The pattern has certain consequences that aid the pattern in supporting its
objectives. They are listed below:

¢ - Reduces Complexity: The evaluation pattern modularizes the various aspects
involved in the evaluation process (example: assessment, constraints), and makes

the pattern simple to understand.
e Facilitates adding new Industrial Objects: The pattern enables adding new
“Industrial Objects” (IOs) based on the application domain. By enabling this
capability, it provides the users of the pattern a core model that remains stable and

encompasses all the important features of evaluation required in any domain.

-38-

Provides Flexibility and Scalability: Applicable to various domains with sufficient
flexibility and scalability in terms of constraints, entities, and parties.

Presents Uniform Interface: The pattern provides a uniform interface to all
applications that use evaluation. The underlying interactions between the EBTs
and the BOs, which can be complex, are hidden, and a simpler interface that is
easier to understand is presented instead.

Improves adaptability and extensibility: The pattern is adaptable and provides a

high level of extensibility to handle additioh of new complex features.

A.3.8 Tradeoffs

The evaluation pattern has the following tradeoffs:

Constraints Identification: The identification of constraints that influence the
assessment process in evaluation is difficult to identify in certain domains. For
example, when evaluating an artist in the theatre, there can be certain assessments
provided on the basis of the artist’s ethnic background or origin, which can be
very difficult to capture in an actual code for constraints. The pattern has the
drawback of its inability to take such constraints into consideration.

Feature extraction: Different features exist for different types of domains and
contexts, i.e., the features for industries will be different from the features for
wireless networks and hence it is difficult to extract the common features and

make them applicable in this pattern in an in-depth manner.

-39-

A.3.9 Results

The modeling of the stable evaluation pattern results in a model with several
advantages that resolve several issues related to Evaluation in terms of

e Generality: Obtained a generic pattern for evaluation that is applicable across
various domains.

e Pattern Applicability: Aids for improving the existing evaluation process. This is
done by providing modular layers in form of EBTs (evaluation) and BOs that
form the core of any system that uses evaluation. The various aspects like
assessment, and constrains related to the evaluation process are all handled in a
single pattern.

e Reusability: Promotes a cleaner partitioning of EBTs like evaluation, which
remains stable throughout and BOs that can change dynamically internally, thus
encouraging reuse. The Industrial Objects for various applications can be added
and removed transparently from the existing model without affecting the standard
interface. Thus, any combination of industrial objects related to assessment,

party, entity, and constraints can be used with the pattern with few modifications.

A.3.10 Applicability with illustrated examples

Problem Description
The pattern can be used for evaluation of the task of transmission of data in

networks, speed of computer processing, order completion status, etc.

- 40 -

Problem Class Diagram
The diagram below depicts the class diagram for the scenario of a manufacturing
industry. The stable parts of the system, i.e., the EBTs and BOs are shown in different

columns of the table.

EBTs BOs 10s
Qualityinspection
+requestEvaluation()

AnyEntity +provideData()
{ q_
done for
» +requestEvaluation() q OrderStatus
+provideData()
+requestEvaluation()
+provideData()
Evaluation
| AnyParty Dealer
+obtainMeasurement()| _ handles—
+analyzeAssessment() — _ +identifyConstraints()
+evaluateEntity() +identifyConstraints() +defineEvalRules()
+defineEvalRules()
Qualitylnspector
affect . -
< identifies | I onffyConstraints()
+defineEvalRules()
AnyConstraints DeliveryDate
+defineConstraint() E +defineConstraint()
+modifyConstraint(), +modifyConstraint()
v v l QualityStandards
. influences
provides
+defineConstraint()
AnyAssessment +modifyConstraint(),
+provideAssessment()
EvaluationReport
+defineConstraint()
+modifyConstraint()

Figure 7: Evaluation Class Diagram for Manufacturing Industry

-41 -

The next figure shows the class diagram for evaluation pattern when used for
checking the performance of running a typical game application. AnyParty in this case is
ScenarioBenchmark, which provides evaluation based on the AnyConstraints,

ThresholdValues in this case.

EBT= BOs 108
AnyEntity GameApyplication
daone for- -l—
» +requestE valuation() +requestE valuation()
+provideData() +provideData()
Evaluation
- ScenarioBenchmark]
Pal
bl casuemeng—handies— AnyParty
+analyzesssessment() — | +identifyC onstrain
+evaluateE nlity() +dentifyConstraints() +deﬁnef§c valR ules(t)so
+defineE valRules{)
affect l"’
> | identifies
ThresholdValues
AryConstraints
+defineConstraint()
+modi fyC onstraint()
+defineCongtraint() (]
+modifyC onstraint()
v|
" infuences
provides I
AnyAssessment £ valuationR eport
|
+provideAssessment() +defineConstraint()
+modifyC onstraint(),

Figure 8: Evaluation class diagram for running a Game Application

42 -

A.3.11 Related Patterns

There are several patterns that usually interact with the above described analysis
pattern. They are usually classified as: |
Related Analysis Patterns

® Measurement: Represents the process of obtaining data from measuring any task
or process performed by an entity.

e Collection: This represents the collection of any data that can be obtained during
the process of evaluation. It includes all the relevant information that can be used
for any analysis that needs to be done once a task is performed and evaluated.

e Analysis: The pattern includes all the analysis techniques used for evaluation.
This can include all the processes that perform analysis of the tasks that are

evaluated."

A.3.12 Design/ Implementation Issues

Hooks Description
This section provides the description on various hooks that can be attached to this
pattern.

e AnyParty: The party that identifies an evaluator can be extended, by attaching an
IO. For example, the party or an evaluator for a wireless network can be an
operator who can change over a period of time and get replaced by an
administrator. For the land evaluation process, the evaluator can be a different
party in charge of carrying out the evaluation task. Thus, the party can be in any

domain without requiring the entire code to be rewritten for a particular domain.

-43 -

e AnyAssessment: This BO can have a hookb attached to it to encompass different
assessments that can be associated with that domain. For example, in a network
scenario, the assessments can change, while the pattern remains stable. That is,
the Industrial Objects (IOs) for assessment change with minimal modifications
required to encompass these changes.

e AnyConstraints: This can have hooks attached to it to handle external factors and
the constraints that affect the evaluation process. These can be considered IOs that
can be replaced or modified without affecting the structure of the overall system.
Since it can also represent standards that can be modified or updated based on the

requirements of a domain, hooks can be provided to handle these changes.

-44 -

A.4 AnyPerformance Design Pattern

A.4.1 Pattern Name

AnyPerformance: This name indicates that the pattern AnyPerformance is the
process of accomplishing a task in accordance with a set standard of accuracy and
completeness. Because it begins with “Any”, it indicates that any domain that has any

kind of performance involved can use this.

A.4.2 Problem

Since the pattern AnyPerformance spans many contexts that are completely
different in nature, modeling a generic concept that can be applied to all domains is the
problem at hand. This is due to the fact that the requirements differ based on the domain
or the context.

The performance of the system or a party can be different based on the
requirements, objectives, and measures. For example, objectives for performing a task
for wireless networks will be different from that of a performer in a theatre, or an
employee at work. Hence, obtaining a generic model or a pattern in this case that
encompasses all the features of different domains can be a difficult task to accomplish.

How a single model addresses these variations is the challenge faced by this model.

A.4.3 Context

Performance is an important concept in any domain that needs its party to perform

some task according to the standards desired. A reason as to why a task needs to be

- 45 -

carried out may also be specified to the performer along with the criterion for the desired
performance. In general, this term can be a criterion objective or an enabling objective.
For example, the domain based on the type of the services desired may specify the
objective for a network in performing a particular task. There might be some actions or
data that can be objectivel‘y observed, collected, and measured to determine if a task
performer has performed the task to the prescribed standard or that which can be used for
further analysis and evaluation.

In some aspects, like telecommunication networks, performance is an important
concept for carrying out the task of delivering data and voice in a wireless mode
according to the set standard. There can be other aspects, like specifying the channel
allocation strategy, protocols, architecture, or security features that form the requirements
for a particular performance. Performing a task will also be required in industries that are
involved in assembling or manufacturing. Therefore, evaluating performance across
domai'ns becomes easier using a stable pattern. This pattern can be reused with many
applications by using simple hooks that require minimal changes without the entire

system being rewritten.

A.4.4 Solution

The solution that is proposed concentrates on obtaining a generic pattern for
performance that can be used with any domain, leaving out the domain specific features.
This allows any application to be hooked to Anyperformance pattern with a few changes.

The Figure 6 shows the diagram of the AnyPerformance pattern.

- 46 -

AnyEnti
YEntity AnyCriteria
+performTaski
+SrovideperfD(;ta() +identifyConstraints()
l +defineEvalRules()
participates affects
v‘

< AnyPerformance ‘1

Measurement | type of_| defines
+obtainPerfData()
+specifyMeasurementy() +calculatePerformance()
+compareMetricsResults() A
handﬁes
provides |

v AnyParty
- AnyMetrics -+modifyCriteria()
utilizes ——————— +defineCriteria()

+provideMetrics()
R |
handles

Figure 9: AnyPerformance Design Pattern

The pattern AnyPerformance consists of the following participants:
Classes:
e Measurement: This represents the EBT that the BO performance is derived from.
It utilizes the data and the observations that are obtained as a result of some task
being performed and checks if the task is performed to the set standard, which is
provided by the BO criteria.
Patterns:
e AnyPerformance: This is the core of the stable design mode and represents the
process of accomplishing a task in accordance with a set standard of accuracy and

completeness.

-47 -

e AnyParty: This represents parties that are involved in the task of performance

directly or indirectly. They can be involved in the process of requesting a task to
be performed or in the process of observing and providing measures. For
example, the party can be an employer who requests the performance or some
task to be performed to make relevant observations and data collections. In more
technical aspects, it can be an operator requesting a network to transmit data.
AnyEntity: This represents any entity that needs to perform a task. ‘It can be a
wireless system or an engine that needs to finish or perform a task assigned. The
engines may pérform the task of running some machinery in an industry or a
network, which can be wireless or wired, may perform the task of transmitting
data.

AnyCeriteria: This provides the details of all those issues that affect performance
directly or indirectly. It can be a standard that needs to be achieved, some
conditions, and a reason for the performance that needs to be carried out as a task.
Its also specifies a criterion for the desired performance by the performer. In
general, this term may either be a criterion or an enabling objective. It also
represents all separate acts or things that are required to satisfactorily complete
any party’s performance on the job. It includes the act (behavior), the conditions
under which the behavior is performed, and the standard of performance required
by the incumbent.

AnyMetrics: Describes the actions and data that can be objectively observed,

collected, and measured to determine if a task that a performer has performed is to

-48 -

the prescribed standard. In general, this represents all the assessment data that
can be collected, or the observations that can be made after the completion of a

performance. This metrics can be further used for analysis and evaluation.

A.4.5 CRC Cards
AnyPerformance (Performance facilitator)
Responsibility Collaboration
Client Services

Defines the process of AnyParty, definePerformance(),
accomplishing a task in AnyEntity, analyzeEntityPerformance(),
accordance with a set standard AnyCriteria, performanceResult(),
of accuracy and completeness. Measurement, caICI.llat.ePerformz.mcc 0,

AnyMetrics criteria (), metrics ()

Table 10: CRC Card for AnyPerformance

AnyEntity (Performer)
Responsibility Collaboration
Performs a task to a standard Client Services
set. o performTask(),
AnyPerformance providePerformanceData()

Table 11: CRC Card for AnyEntity

AnyParty (Performance Requestor)

Responsibility Collaboration
Setting the rules under which the Client S_CI'V 1ces
performance of any entity is AnyPerformance, | evaluateEntityPerformance (),
measured. AnyCriteria defineCriteria()

Table 12: CRC Card for AnyParty

AnyCriteria (Criteria Definer)

Responsibility Collaboration

Describes the rules, standards and Client Server

- 49 -

the external factors that need to be AnyPerformance, defineCriteria(),
considered before any task can be Measurement, modifyCrietra()
performed. AnyParty

Table 13: CRC Card for AnyCriteria

Measurement (Measurement)

Responsibility Collaboration

Utilizes the data and the Client Server
observations ’obtalned as a result of AnyPerformance, specifyMeasurement(),
some task being performed to . .

. - AnyMetrics, compareMetricsResults()
check if the task is performed to - AnvCritera
the set standard. y

Table 14: CRC Card for Measurement
AnyMetrics (Metric Provider)
Responsibility Collaboration

Describes the actions and data that can Client Server
be objectively observed, collected, and provideMetrics ()
measured to determine if a task that a AnyPerformance,
performer has performed is to the AnyEntity,
prescribed standard. Measurement

Table 15: CRC Card for AnyMetrics

A.4.6 Consequences

Pattern supports its objectives in the following ways

e The pattern achieves its objectives by providing a generalized process for
performance evaluation in various domains with sufficient flexibility.

e This is applicable to various domains that use performance.

e Sufficient flexibility and scalability is provided by this pattern for
performance.

The performance pattern has the following benefits:

-50 -

e It is adaptable for different kinds of entities. The performance pattern has
high level of adaptability making it possible to adapt this pattern for different
kinds of entities. For example, from base standards like the IEEE 802.3 and
IEEE 802.11, different 'protocéls are developed. This performance pattern is
used to evaluate all the protocols developed from these standards.

e Itis easy to use. The performance pattern developed here is a general pattern
to be adapted for different parties and for different kinds of entities. This
provides a high level of extensibility to handle adding new and complex

features to this model.

A.4.7 Tradeoffs

The pattern AnyPerformance has the following tradeoffs:
e This pattern introduces a trade-off between generalization and flexibility.
e Different features exist for different types of domains and contexts, i.e., the
features for industries will be different from the features for wireless networks
and hence it is difficult to extract the common features and make them

applicable in this pattern in an in-depth manner.

A.4.8 Results

e Obtained a generic pattern for performance evaluation applicable across

various domains.

e Obtained a stable, reusable pattern for performance, to which various

applications can be hooked.

-51-

e Obtained a scalable pattern, in terms of entities, metrics, participants, and the

media.

A.4.9 Applicability with illustrated Examples

Problem Description

The pattern can be used for performance of the task of transmission of data in
networks.

Problem Description

The pattern can be used for performance of the task of transmission of data in
networks along with several other applications like industries, medicine, etc.
Problem Class Diagram

The diagram below depicts the class diagram for the scenario of data transmission
in networks. The stable parts of the system, i.e., the EBTs and BOs are shown in

different columns of the table.

-52 -

1Os
EBTs BOs e et
ireles sNetworks
AnyEntity
AnyEntity
. WViredMetvorks
= l
A:yﬁﬂmb AnyStandards
] nyCrwcia [& keria
4 nyCriter 4
psas -
affects l
Constraints
AnyCritedsg
Meas Part Pert
rement typ’to(AnyPerformance Aadefines
Pert Parf
Meas| Meas Qperator
arequesty AnyParty
nales Ay Party
3 - ARy PBIGy EndUser
A Anyparty <
| Amyddetrics [Anyletrics Performancelog
ARy IETEE]
utifizes

Figure 10: Performance Class Diagram for a Wireless Network

-53-

EBTs

BOs

10s
AnyCriteria MemoryConstraint
+identifyConstraints() +identifyConstraints()
+defineEvalRules() +defineEvalRules()
AnyEntity q___ Computer
g
+performTask() +performTask()
+providePerfData() agects +providePerfData()
! . A
participates defines
AnyPerformance
Measurement
— type of —{__
+obtainPerfData()
+specifyMeasurement() +calculatePerformance()
+compareMetricsResults() | MemoryManagementSW
hanaes
‘ +modifyCriteria()
v AnyParty +defineCriteria()
provides
+modifyCriteria()
+defineCriteria()
« ’ |
LN handles T\ ‘
- SpeedData
utullzves AnyMetrics <}___l
+provideMetrics(),
+provideMetrics()

Figure 11: Performance Class Diagram for a Computer

-54 -

A.5 Performance Evaluation Architectural Pattern
A.5.1 Performance Evaluation Architectural Pattern

Performance Evaluation architectural pattern can be used with any application that
involves evaluating the performance to assess the relevance, along with the success or

related results of an ongoing activity.

A.5.2 Problem

The Performance Evaluation architectural pattern covers domains that are different
in several respects, which include functionality and other aspects. Hence, obtaining a
pattern that encompasses and addresses these functionalities is a problem. Moreover, the

requirements of each domain vary based on the users of the system.
A.5.3 Context

The aspect Performance Evaluation is of vital importance in any area that requires
selection of an entity or design and development of new applications based on the
performance of existing ones. Evaluation in these cases is done with a specific goal in
mind, i.e., to assess the performance of an activity. In some case, the goal of evaluation
can be to maximize the throughput of any activity at a reduced cost. For example, the
throughput of a computer system may be evaluated or workload of the same system can
be maximized at a lower cpst. Thus, several special features can also be evaluated based

on certain aspects that affect the considered system either directly or indirectly.

-55.-

In general, Performance Evaluation has several distinguishing characteristics
that relate to focus, methodology, and function. And Performance Evaluation as a
pattern assesses the effectiveness of an ongoing activity in achieving its objectives, while

relying on the constraints specified.

A.5.4 Forces

Because many applications that are different in nature are covered by Performance
Evaluation architectural pattern, the main challenge lies in thoroughly understanding the
requirements and aspects involved. Evaluation is usually undertaken with a specific goal
and purpose, and the techniques employed must be considered in light of the objectives
of the evaluator. Obtaining these objectives and handling them is a difficult task to
accomplish. Assessments can be different based on the context it occurs in. The features
for assessment are domain specific and addressing these features is a limitation faced by

this model.

A.5.5 Solution

The stable architectural pattern that is obtained in the figure below is a proposed
solution for handling the problems mentioned earlier. This concentrates on providing a

pattern that can be applied to any domain, leaving out the domain specific features.

A.5.6 Pattern Structure

The relationship between different layers of stability model, which are EBTs like
Evaluation and Measurement, along with the BOs like AnyPerformance,

AnyAssessment, AnyMetrics, AnyParty and AnyEntity is shown in the figures below.

-56-

Participants

The participants in the pattern structure are described based on the classes and

patterns occurring within the evaluation pattern.

Classes

Evaluation: This represents the process of evaluation of a time-bound activity
that attempts to assess the performance of an ongoing activity in an objective way.
Measurement: This represents the EBT that the business object performance is
derived from. It utilizes the data and the observations that are obtained as a result

of a task

Patterns

AnyParty: This represents parties that are involved iﬁ the performance evaluation
process. They can either request evaluation of an activity or evaluate an activity
that is already completed or in the process of completién. For example, the party
can be an employer evaluating the performance of an employee or a scenario
benchmark that is requesting evaluation of a typical game in a wireless device.
AnyEntity: This represents any entity whose performance needs to be evaluated.
It can be a wireless system, an engine part, or a computer that needs to be
evaluated.

AnyAssessment: Provides the results and findings for performance evaluation,
along with relevant status. It also gives an indication of the effect of the external

factors that are introduced in the system.

-57-

AnyCriteria: This provides the details of the external factors, like the standards

and constraints that affect the effectiveness of an ongoing activity in achieving its

objectives.

AnyMetrics: Describes the actions and data that can be objectively observed,

collected, and measured to determine if a task that a performer has performed is to

the prescribed standard. In general, this represents all the assessment data that

can be collected, or the observations that can be made after the completion of a

performance. This metrics can be further used for analysis and evaluation

done for

v AnyCriteria
+performTask() — -]
ot oot S g
participates afiect
¥
AnyPerformance .
- defines
Measurement | type of—
+obtainP erfData()
specifyll easurement() +calculateP erformance()
+comparehl etricsResuts() ,,E
————handle:
provides _ |
¥ AryParty
- AryMetrics +modityC riteria()
utilizeg————— +defineCriteria()
+providel! etrics() infuences
' v
4
| handles-
Evaluation
> AnyAssessment

+obtainlteasurement() ——provides
+analyzesssezsment() +providesssessm ent()
+evaluateE ntiby}

Figure 12: Architectural Pattern for Performance Evaluation

-58 -

A.5.7 CRC Cards

The CRC cards shown in the following tables provide details on collaboration and

responsibilities of various participants in the pattern.

Evaluation (Evaluation facilitator)
Responsibility Collaboration

Client Services
Represents a process that
attempts to assess the AnyParty, defineEvaluation(),
performance of an ongoing or AnyEntity, analyzeAsse:ssment(),
completed activity. AnyAssessment, | evaluateEntity()

AnyCriteria

Table 16: CRC Card for Evaluation

AnyEntity (Evaluation Requestor)
Responsibility Collaboration
Requests performance Client Services
evaluation to be done based on Evaluation requestEvaluation(),
the criteria and standard set. AnyPerformance provideData()

Table 17: CRC Card for AnyEntity

AnyParty (Evaluator)
Responsibility Collaboration
Setting the rules, along with Client .Serv1'c s -
identifying the criteria, under Evaluation, ;d?ntlfgC:lt;timnt(),
which performance evaluation AnyCriteria efineEvalRules()
of any entity is done.

Table 18: CRC Card for AnyParty

AnyCriteria (Criteria Definer)

Responsibility Collaboration
Describes the rules, standards Client Server -
and the external factors that Evaluation, deﬁgeConstrau'lt()
need to be considered before AnyParty modifyConstraint()
any task can be performed.

Table 19: CRC Card for AnyCriteria

-59-

AnyAssessment(Assessment Provider)

Responsibility Collaboration
Provides th findi Client Server
rovides the status, findings,) rovideAssessment ()
evidence, and result of any Evaluatl.on, P
evaluation process. AnyEntity,
AnyConstraints

Table 20: CRC Card for AnyAssessment

AnyMetrics (Metric Provider)

Responsibility Collaboration
Describes the actions and data that can Client Server
be objectively observed, collected, and provideMetrics ()
measured to determine if a task that a AnyPerformance,
performer has performed is to the AnyEntity,
prescribed standard. Measurement

Table 21: CRC Card for AnyMetrics

A.5.8 Applicability with illustrated examples

Problem Description

The pattern can be used for evaluation of the task of transmission of data in

networks, speed of computer processing, order completion status, etc.

Problem Class Diagram

The diagram below depicts the class diagram for the implementation of

Performance Evaluation pattern in the wireless field. The stable parts of the system, i.e.,

the EBTs and BOs are shown ih different columns of the table.

- 60 -

EBTs " BOs 10s
WirelessDevice
+performTask()
+providePerfData()

AnyEntity
AnyCriteria < Inteference
+performTask()
+providePerfData() +identifyConstraints() +identifyConstraints()
‘ +defineEvalRules() +defineEvalRules()
participates r"gc‘s WirelessStandards
done for +identifyConstraints()
< AnyPerformance +defineEvalRules()
A Measurement | type of —
+obtainPerfData()
" fyMeasurement() +calculatePerformance()
+compareMetricsResults(),
define®
provides PerformanceLog|
v
handles +provideMetrics()
< AnyMetrics A
utilizes
+provideMetrics(), q
FeatureBenchmark|
influe@es
+modifyCriteria()
+defineCriteria()

Evaluation AnyParty \"J

— [MobileOperator]

-~ +modifyCriteria

+obtainMeasurement() d efineyg riteri a(()) <]/\—|
-+analyzeAssessment() « e
+evaluateEntity() +modifyCriteria)
+defineCriteria()
handles
EvaluationReport
» AnyAssessment
provides -+provideAssessment()
+provideAssessment()

Figure 13: Performance Evaluation Class Diagram for Wireless Devices

The figure below shows the class diagram for the implementation of performance
evaluation class diagram for evaluating the performance of a computer in terms of

processing of instructions

-61 -

" EBTs BOs 10s
Computer
+performTask()
+providePerfData()
AnyEntity
AnyCriteria Firmware
+performTask()
+providePerfData() +identifyConstraints() +identifyConstraints()
’ +defineEvalRules() +defineEvalRules()
participates r’f‘ec's——“ -
done for < AnyPerformance
A Measurement | type of]
+obtainPerfData()
+specifyMeasurement() +calculatePerformance()
+compareMetricsResults()
define®
provides Performancel.og
v
- handles +provideMetrics()
< AnyMetrics A
utilizes: l
+provideMetrics() q
inﬂues:es PerformanceApplication
- AnyParty A +modifyCriteria()
Evaluation qr +defineCriteria()
+obtainMeasurement() :?;g:eng:;;())
+analyzeAssessment() >
+evaluateEntity()
handles
EvaluationReport
» AnyA ment
provides +provideAssessment()
+provideAssessment()|

Figure 14: Performance Evaluation Class Diagram for Computer Instruction
Processing

A.5.9 Related Patterns

There are several patterns that usually interact with the above described analysis

-62 -

pattern. They are usually classified as:
Related Analysis Patterns
e Collection: This represents the collection of any data that can be obtained during
the process of evaluation. It includes all the relevant information that can be used
for any analysis that needs to be done once a task is performed and evaluated.
e Analysis: The pattern includes all the analysis techniques used for evaluation.
This can include all the processes that perform analysis of the tasks that are

evaluated.

AS5.10 Design/ Implementation Issues

Hooks Description
This section provides the description on various hooks that can be attached to this
pattern.

e AnyParty: The party that identifies an evaluator can be extended, by attaching an
IO. For example, the party or an evaluator for a wireless network can be an
operator who can change over a period of time and get replaced by an
administrator. For the land evaluation process, the evaluator can be a different
party in charge of carrying out the evaluation task. Thus, the party can be in any
domain without requiring the entire code to be rewritten for a particular domain.

e AnyAssessment: This BO can have a hook attached to it to encompass different
assessments that can be associated with that domain. For example, in a network

scenario, the assessments can change, while the pattern remains stable. That is,

-63 -

the Industrial Objects (IOs) for assessment change with minimal modifications
required to encompass these changes.

e AnyConstraints: This can have hooks attached to it to handle external factors and
the constraints that affect the evaluation process. These can be considered 10s
that can be replaced or modified without affecting the structure of the overall
system. Because it can also represent standards that can be modified or updated
based on the requirements of a domain, hooks can be provided to handle these

changes.

-64 -

APPENDIX B: APPLICATION SCENARIOS FOR PERFORMANCE PATTERN

B.1 Order Processing and Quality Inspection in Manufacturing Industry

This section provides an explanation of how stable performance design pattern can
be applied to the domain of a manufacturing industry to keep track of an order and
inspection process. Both of these processes are based on certain standards and criteria.
For example, the criteria for the order processing would be the deadline specified by the
dealer and the criteria for inspection, the standard specified by the industry for the
inspection process. The following section provides the details for each use case.

B.1.1 Use Case Description
Use Case Id: 1.0

Title: Check Order Processing

” ﬁarty | Daler
AnyEntity OrderProcessingSystem

Table 22: Actors and Roles for Use Case 1.0

Measurement EBT measurementId specifyMeasurement()
measurementType | compareMetricsResults()
AnyPerformance BO taskld evaluateTask()
taskType providePerformanceData()

analyzeEntityPerformance()
performanceResult()
calculatePerformance ()

AnyParty BO partyld evalEntityPerformance ()
partyName identitfyCriteria()
partyType

AnyEntity BO entityld performTask()
entityName providePerformanceData()

- 65 -

entityType

AnyCriteria BO criteriald defineCriteria()
criteriaType modifyCriteria()
crietriaDescription

AnyMetrics BO metricsType provideMetrics ()
metricsId

Table 23: Classes with Attributes and Methods for Use Case 1.0

Description:

1.

The dealer, who is AnyParty, sends a request to the AnyPerformance to
obtain the status of the order placed based on the taskId or the orderId.
AnyPerformance sends a request to AnyCriteria to check for any
conditions specified for that task. In this case, the deadline or the delivery
date specified by the dealer.

The result of the request is then sent back by AnyCriteria to
AnyPerformance, thus providing details on the conditions specified by the
dealer.

To check the status of the task of order completion, AnyPerformance then
forwards the request to AnyEntity, which is th;a OrderProcessingSystem,
to check the status of the order placed based on the taskId.

AnyEntity, which is the OrderProcessingSystem, then checks if the task
specified in the request is completed or is in the process of completion.
The result.of the task, which is the order in this case, is sent back to
AnyPerformance.

AnyPerformance then compares the result sent by AnyEntity based on the

criteria sent by AnyCeriteria.

- 66 -

8. The results obtained from the comparison are then sent to AnyMetrics.
9. Results of thé updated process are then sent back to AnyPerformance from
AnyMetrics.
10. AnyPerformance then forwards the result of the order status to AnyParty,
who is the Dealer who requested the status of the order placed.
Use Case Id: 2.0

Title: Inspect Product

Anyarty QitInspecor
AnyEntity OrderProcessingSystem

Table 24: Actors and Roles for Use Case 2.0

A%

o i Wk i s it e
Measurement EBT measurementId specifyMeasurement()
measurementType | compareMetricsResults()
AnyPerformance BO taskld evaluateTask()

taskType providePerformanceData()
analyzeEntityPerformance()
performanceResult()
calculatePerformance ()

AnyParty BO .| partyld evalEntityPerformance ()
partyName identitfyCriteria()
partyType

AnyEntity BO entityld performTask()
entityName providePerformanceData()
entityType

AnyCriteria BO criteriald defineCriteria()
criteriaType modifyCriteria()
crietriaDescription

AnyMetrics BO metricsType provideMetrics ()
metricsld

Table 25: Classes with Attributes and Methods for Use Case 2.0

-

-67 -

Description:

1. AnyParty, who is the QualityInspector, sends a request to the AnyPerformance to
obtain the quality of the product or order placed based on the taskld or the
orderld.

2. AnyPerformance sends a request to AnyCriteria to check for the standards
specified for the quality of the product and the conditions specified by the dealer
who places the order. For example, the dealer may specify the color and the
material to be used for the production of the order. Some standard body that takes
care of the overall quality assurance in the industry may specify the standards for
the same product.

3. The result of the request is then sent back by AnyCriteria to AnyPerformance,
thus providing details on the conditions specified by the dealer along with the
standards that need to be met for the product or the order to be accepted.

4. To check for the quélity of the product, which has the task of quality assurance for
the order, AnyPerformance forwards the request to AnyEntity, which is the
OrderProcessingSystem, to obtain the details of the order placed based on the
‘taskld.

5. The OrderProcessingSystem, which is the AnyEntity, then provides the order
details of the orderld specified in the request.

6. The details of the order based on the orderld specified, is sent back to

AnyPerformance.

- 68 -

7. AnyPerformance then checks for the quality of the product based on the
specifications provided by the dealer and the standards, which are sent by
AnyCriteria that need to be considered for the quality assurance of the product.

8. The results obtained from the che;:k are then sent to AnyMetrics for the updating
the inspection results.

9. Results of the updating theA quality results of the product in AnyMetrics are then
sent back to AnyPerformance from AnyMetrics.

10. AnyPerformance then forwards the result of the inspection process based on the

taskId to AnyParty, who is the Inspector who requested the quality of the order

placed.

- 69 -

B.1.2 Sequence Diagram

Check Order Processing

<<BO>> <<BO>> <<BO>> <<BO>>

<<BO>>

P-_------.‘

requestTaskStatus())r

obtainTaskCriteria()

returnCriteria()

requestTaskStatus() al'

k returnTas kStatus()
> compareTaskCriteria(

updateTaskMetrics()

returnUpdateStatus()

returnTaskStatus()

Figure 15: Seqlience Diagram for Checking Order Processing

1. The dealer, who is AnyParty, sends a request to the AnyPerformance to obtain the
status of the order placed based on the taskld or the orderld with the message
requestTaskStatus().

2. On receiving the above message, AnyPerformance sends a request to AnyCriteria,
dbtainTaskCriteria() to check for any conditions specified for that task. In this
case, AnyPerformance needs the deadline or the delivery date specified by the

dealer.

-70 -

10.

. The result of the request, which is returnCriteria(), is sent back by AnyCriteria to

AnyPerformance; providing details on the conditions specified by the dealer.

To check the status of the task of order completion, AnyPerformance then
forwards the request to AnyEntity, which is the OrderProcessingSystem, to check
the status of the order placed based on the taskId.

AnyEntity, which is the OrderProcessingSystem, then checks if the task specified
in the request is completed or is in the process of completion.

The result of the task, which is the order in this case, is sent back to
AnyPerformance with the message returnTaskStatus(), which provides the task
status résults.

AnyPerformance then compares the result sent by AnyEntity based on the criteria
sent by AnyCriteria which triggers the function compareTaskCriteria().

The resu!ts obtained from the comparisqn are then sent to AnyMetrics to update
the data or the details related to the task present in AnyMetrics, with the message

updateTaskMetrics().

“After the details related to the task based on the taskId are updated, the results of

the updated process are then back to AnyPerformance from AnyMetrics with
returnUpdateStatus().
AnyPerformance then forwards the result of the order status to AnyParty, who is

the Dealer that requested the status of the order placed with returnTaskStatus().

-71 -

Inspect Product

<<BO>> <<BO>> <<BO>> <<BO>> <<BO>>
i i |
requestTaskinspection() §
obtainTaskCriteria()
returnCriteria()
requestTaiskDetails() i
k returnTas;kDetails()
> compareTaskCriteria(]
updateTaskMetrics () I
k returnUpdateStatus()
returnTaskinspecResults()

|

.

Figure 16: Sequence Diagram to Inspect Product

1. A message, requestTaskInspection(), requesting the product inspection is sent

from the Qualitylnspector, who is AnyParty, to AnyPerformance to obtain the

quality of the product or order placed based on the taskId or the orderId.

2. AnyPerformance sends a request to AnyCriteria to check for the standards

specified for the quality of the product and the conditions specified by the dealer

who places the order. For example, the dealer may specify the color and the

material to be used for the production of the order. Some standard body that takes

-72-

10.

care of the overall quality assurance in the industry may specify the standards for
the same product.

The result of the request is then sent back by AnyCriteria to AnyPerformance,
thus providing details on the conditions specified by the dealer along with the
standards that need to be met for the product or the order to be accepted.

To check for the quality of the product, which has the task of quality assurance for
the order, AnyPerformance forwards the request to AnyEntity, which is the
OrderProcessingSystem, to obtain the details of the order placed based on the
taskld.

The OrderProcessingSystem, which is the AnyEntity, then provides the order
details of the orderld specified in the request.

The details of the order based on vthe orderld specified, is sent back to
AnyPerformance.

AnyPerformance then checks for the quality of the product based on the
specifications provided by the dealer and the standards, which are sent by
AnyCriteria that need to be considered for the quality assurance of the product.
The results obtained from the check are then sent to AnyMetrics for the updating
the inspection results.

The results of the updating the quality results of the product in AnyMetrics are
then sent back to AnyPerformance from AnyMetrics.

AnyPerformance then forwards the result of the inspection process based on the

taskld to AnyParty, the Inspector who requested the quality of the order placed.

-73 -

B.1.3 Package Structure

geehpatienicor,

4

"

£

. performance %

& - 1 applications {

| El -+ { manufacturing - package stablepatterns.performance.pattern.core; e

L RS H

~ = oey H
P4 import java.util.Hashtable: 5

® Created by Rokini Pradeep.

¢ User: Administrator

Dater dct 27, 2093

* Time: 1:50:48 PN

To chawye this template use Options | File Tewplates.
y

public interface AnyPerformance {

static public final int JASK COMPLETE = 0;
static public final int TASK IN PROGRESS = 1.
static public final int TASK NOT STARTED = 2;

3

& 4 pattem L public AnyCriteria getCriteria(String taskId):
B ok core . public AnyMetrics getMetrics(String taskId):

] ; public int calculatePerformance ():

; public String providePerformanceData():
public int updateMetrics(String taskId);
public hoolean evaluateTask():

[b odd B AnyMetrics
| D B AnPaty
L g

40y _AeuiDiowk.

& {C:\rohiniithesis\pattern-mplementation | 4 tevs i ¢ fles }

B} - { St 4itams in 4 Fles)

[} { stablepatterns | ¢ tems in ¢ fles)

] R - T . th:w H:]]lnsert Hmmm | 1eMof25m [T

Figure 17: Package Structure for Performance Pattern Implementation in
Manufacturing Industry

The figure above depicts the package structure used for developing application for
performance pattern. The classes for the pattern are put under “pattern”, then “core”
directory. Classes related to different applications are put under relevant directories. The
next section shows a series of screen shots for the performance pattern, when used in

manufacturing industry for checking the order status and inspection processes.

-74 -

Sample Screen Shots for the application: Manufacturing Industry
The Figure 4 shows.the first screen that is displayed to the user during login to either:
1) Login as a dealer to check the status of the order placed or

2) Login as an inspector to carry out the inspection process.

2 ihttpsfflocalliost BOBO/exomples/StablePatterns home jen Missesallinls

de JO X
i Bo E Yew Favorkes Joos el -
PO O BE G Psewch Gorovtes Eheds @3- %2106 3
| Address L@mm*w“ plesistablepattornsihome. ¢ EY Go : Liks 288 (31 [B) My vehoo! [B) vehoo! [Yohoo! Mal [E) Yehoo! News »
(Googeel B Gvewoww - @ Memmo Howee B4 WSl »
Stable Design Patterns:Performance togi | nete
This action requi thaoticati For ity purp we ask you to type your password,
loginName: =~ Passwords
jpradeep ilesss] | [iogin]
5an José State
NIVERSITY
&) oore)

Figure 18: Screen Shot for Login Screen in Manufacturing Industry

The user has the option of either choosing the role of a “Dealer” or “Inspector.”

The “login” button is chosen after the user enters the login name and the password.

=75 -

| Pe EM Vew Favortes Jook Hep ‘
P Qakc O Bl Osech VxFavorkes @Mede @ 137 % 31 Y 3

loceihost;080/examplesStabe

W

o itnks E268 (lp [Myvehoo! [Vahoo! [T Yehoo!Mal [E] Vahoo! News »

w P e, o -4 W[»

Stable Design Patterns:Performance -
Order Processing System '
Viav: {order status
OnderRaterance #1123 1[ES)
San José State
JMIVERSITY
& oore R LT s

Figure 19: Screen Shot for the Order Processing System

Once the user logs in as a dealer, the order processing system is displayed. The
order status of a particular product based on the order reference number can be checked.
The dealer enters the order reference number and clicks the “Go” button after which the

screen with the order details is displayed. The next screen shot describes this.

-76 -

S E
iom & D&‘N’n Psemch - Favokes e -3 ﬁ-mmu’@a

Meread

links 08 axp [My vahoo! [E3 vahoo! [B) Yahoo! Mol (g Yahoo! News »

e @ P‘%ﬁ .Opﬂors m » wa l »

a_i_dness i@ ‘7

éG@%kﬁﬂwmww;;jmw”Ja,

Stable Design Patterns: Performance toaeut et

June 01, 2001 2158 pm PST| 1234 Company - 1 1-Braskdown 3| TRK UPS N8 Partial shipment

5an José State
ANIVERSITY

& oore . L ﬁwvm

Figure 20: Screen Shot for the Order Details

The figure above displays the screen that provides the user with the details of the
order placed. This is the result of entering a valid order reference number. This screen
uses the information from the performance class, which interacts with the metrics class to

provide the relevant details.

=77 -

B.2 Performance of a Game Application and Animation in Wireless Devices

This section provides an illustration of how stable performance design pattern can
be applied wireless devices using screen shots in different use cases. The cases of
checking the performance of running a typical game in a benchmark and performance of
animation in wireless devices are considered. The following section provides the details
for each use case.

C.2.1 Use Case Description

Use Casé Id: 1.0

Title: Check Game Performance

AnyParty

GeBenchmark

AnyEntity

GameMidlet

Table 26: Actors and Roles for Usecasel.(

Measurement EBT measurementId specifyMeasurement()
measurementType | compareMetricsResults()
AnyPerformance BO taskld evaluateTask() .
taskType providePerformanceData()
analyzeEntityPerformance()
performanceResult()
calculatePerformance ()
AnyParty BO partyld evalEntityPerformance ()
partyName identitfyCriteria()
partyType
AnyEntity BO entityld performTask()
entityName providePerformanceData()
entityType
AnyCriteria BO criteriald defineCriteria()
criteriaType modifyCriteria()
crietriaDescription
AnyMetrics BO metricsType provideMetrics ()
metricsId

Table 27: Classes with Attributes and Methods for Use Case 1.0

-78 -

Description:

1.

The GameBenchmark, which is AnyParty, sends a request to the AnyPerformance
to obtain data related to the performance of the game application.
AnyPerformance sends a request to AnyCriteria to check for any conditions
specified for that game application. For example, it can be the acceptable
threshold value for running that game in an ideal situation.

The result of the request is then sent back by AnyCriteria to AnyPerformance,
thus providing details on the conditions to run the application.

To begin capturing the required data, AnyPerformance then forwards the request

to AnyEntity, which is the game MIDlet, to start running the game application.

. AnyEntity, which is the MIDlet, then stafts a timer to compute the run time for

running the application.

Once the game is run to completion, which is based on a typical scenario of
running that game, the computed value of running that application is sent to
AnyPerformance.

AnyPerformance then compares the result sent by AnyEntity based on the criteria
sent by AnyCeriteria.

TheAresults obtained from the comparison are then sent to AnyMetrics.

Results of the updated process are then sent back to AnyPerformance from

AnyMetrics.

-79 -

10. AnyPerformance then forwards the result of the performance of game application

to AnyParty, which is the GameBenchmark that requested that particular data.

-80 -

Use Case Id: 2.0

Title: Animation Performance

| nyParty FeatureBenchmark
AnyEntity AnimationMIDlet

Table 28: Actors and Roles for Use Case 2.0

- LR SR IET i cidiil e

measurementId specifyMeasurement()

measurementType | compareMetricsResults()
AnyPerformance BO taskld evaluateTask()

taskType providePerformanceData()

analyzeEntityPerformance()
performanceResult()
calculatePerformance ()

AnyParty BO partyld evalEntityPerformance ()
partyName identitfyCriteria()
partyType

AnyEntity BO entityld performTask()
entityName providePerformanceData()

_ entityType

AnyCeriteria BO criteriald defineCriteria()
criteriaType modifyCriteria()
crietriaDescription

AnyMetrics BO metricsType provideMetrics ()
metricsld

Table 29: Classes with Attributes and Methods for Use Case 2.0

- Description:
1. AnyParty, which is the FeatureBenchmark, sends a request to the
AnyPerformance to obtain data related to the performance of animation feature in

any wireless toolkit.

-81-

10.

AnyPerformance, which is AnimationPerformance, sends a request to AnyCriteria
to check for the threshold value specified for running the animation feature in the
ideal scenario.

The result of the request is then sent back by AnyCriteria to AnyPerformance,
thus providing details on the conditions to run the feature benchmark, animation.
To begin capturing the required data, AnyPerformance then forwards the request
to AnyEntity, the AnimationMIDlet, to start the animation of any given image.
AnyEntity, the AnimationMIDlet, then starts a timer to compute the run time for
executing the animation feature benchmark.

Once the animation is done for a specified cycle, the computed value of running
that feature benchmark is sent to AnyPerformance.

AnyPerformance then compares the result sent by AnyEntity based on the criteria
sent by AnyCriteria.

The results obtained from the comparison are then sent to AnyMetrics.

Results of the updated process are then sent back to AnyPerformance from
AnyMetrics.

AnyPerformance then forwards the result of the performance of the animation
feature benchmark to AnyParty, which is the AnimationBenchmark that requested

the data.

-82-

B.2.2 Sequence Diagram

Check Game Performance

<<BO>>

<<BO>> <<BO>> <<BO>> <<BO>>
AnyParty:Dealer AnyPerformance:Performance| | AnyCriteria:Criteria | | AnyEntity:OrderProcessSystem | | AnyMetrics:Metrics
| s |
requestTaskStatus())r {
obtainTaskCriteria()
returnCriteria()
requestTaskStatus () [
i
k returnTaskStatus()
> compareTaskCriteria(]
updateTaskMetrics()
returnUpdateStatus()
returnTaskStatus()

"

Figure 21: Sequence Diagram for Checking Game Performance

1. The GameBenchmark, which is AnyParty, requests data related to the

performance of the game application from AnyPerformance with the message

getGamePerformance().

2. On receiving the above message, AnyPerformance sends a request to AnyCeriteria,

getGameCriteria() to check for any conditions, like threshold value or ideal game

application values specified for the game scenario benchmark.

-83-

. The result of the request, which is returnCriteria(), is sent back by AnyCriteria to
AnyPerformance; providing details on the conditions for running the game
application.

. To check the run time of the game, AnyPerformance then forwards the request to
AnyEntity, which is the GameMIDlet, to run the application.

. The game application is run, during which the startup time and the wrap up time
is stored.

. The result of the game application run time is sent back to AnyPerformance with
the message returnGamePerformance().

. AnyPerformance then compares the result sent by AnyEntity, and the criteria sent
by AnyCriteria which triggers the function compareGameCriteria().

. The results obtained from the comparison are then sent to AnyMetrics to update
the data or the details related to the task present in AnyMetrics, with the message
updateGameMetrics().

. After the details related to the performance of the game application are updated,
the results of the updated process are sent back to AnyPerformance from

AnyMetrics with returnUpdateStatus().

10. AnyPerformance then forwards the result of the order status to AnyParty, which is

the GameBenchmark that requested the performance time of running a typical

game application, with returnGamePerfTime().

-84 -

B.2.3 Package Structure

4
0
¢
e §
i i
d i
. : R : "
&} LI (mﬂ* s . g1 N O - N -
Loy ' package stablepatterns.performance.pattern.core; g
Bl .3 manufacturing S 13
o 3 e {core !
é 8 ” import java.uril.Hashrtable; g
- E /v’a";‘ 3
* Created by Rokasi Pradeep.
= - # User: Administrator
! ~© b OrderProcessingSystem b ¢ parer nct 27, zoos
- 14 | dataaccess | ¢ Tims: 1:50:48 By
; Bl o 4inspection iR # Ty change this template use Options | File Templates. ;.
! - % Inspectionlog ‘ <
i - €3 B InspectionStandards 'f public interface AnyPerformance {
€ B Inspector IO
B s orderstatus ‘f- static public final int TASK COMPLETE = 0;
£ % Deder R static public final int TASK IN PROGRESS = 1;
- €) % DeliveryDetais - © static public final int TASK NOT STARTED = 2
- & B OrderStatus i

public AnyCriteria getCriteria(String taskId);
public AnyMetrics getMetrics(String taskId):
public int calculatePerformance ();

public String providePerformanceData();

public int updateMetrics(String taskId):
public boolean evaluateTask():

B - "{ C:rohinithesis\pattern-implementation { 4 ibews in ¢ Fles)
B} s ysrei{ diamsind fles)

N[. (stablepatterns { 4 temsin 4 fles)

[[z][] [insert] [Popupints o [tamof 2t [8

Figure 22: Package Structure for Performance Pattern Implementation in Game
Application

The figure above depicts the package structure used for developing application for
performance pattern. The classes for the pattern are put under “pattern”, then “core”
directory. Classes related to different applications are put under relevant directories. The
next section shows a series of screen shots for the performance pattern, when used in

checking the performance of running a typical game application.

-85-

Sample Screen Shots for the application: Game Application Performance
The Figure 10 shows the screen when the wireless toolkit that is used to run the

game application is used. The desired project is loaded and “Run” is selected to run the

MarsRoverGame application.

File Edit Project Help

@ New Project .. 5 Open Project ... | @, Settings .. § Buicl @) Run | [Z% Clear Console
Device gDefeultColorPhone

Pro:ect "HarsRove:Demu" loaded
Project settings saved

Figure 23: Screen Shot for Loading the Game Application Using a Wireless Toolkit

The wireless toolkit starts a default color phone to start the game application. The

next screen gives the details of the simulated wireless device.

- 86 -

Figure 24: Screen Shot for Choosing the Game Application

Once the game is displayed on the phone screen, the user can start the game using
the “Launch” button provided on the wireless device. The next screen displays the game

application running.

-87 -

Figure 25: Screen Shot for the Game in Progress

The figure above displays a typical game scenario running on a wireless device.
The relevant classes in the BOs and IOs are triggered to handle the data obtained during

runtime.

-88 -

File Edit ojecl: Help

. QgNew Project ... S Open Project .. $¢ Settings ... &' Build Q} Run g Clear Console

E Device: ,DefaultColorPhone . “W«N~ }

6710 dynamic objects allocated (341788 byt.es) @l
garbage collections (83668 bytes collected) !
pplication start time is:1088106082425| 1
lApplication end time is:1088106097777

Performance of wireless toolkit in running the app is:15352 milliseconds 1
i xecution completed. =
15814543 bytecodes executed

3636 _thread svitches n] o 4

Figure 26: Performance Results of Running a Typical Game Application

Figure 12 shows the results of running the game application in milliseconds.

-89-

APPENDIX C: CODE SAMPLES

The code sample below shows the implementation of the IO for AnyEntity, i.e., the

MarsRoverDemo. This is used for running the game application on a wireless toolkit.

import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import javax.microedition.lcdui.Display;
/* *

* Created by IntelliJ IDEA.

* User: Rohini

* Date: Jun 11, 2004

* Time: 10:52:41 AM

* To change this template use Options | File Templates.

*

/
public class MarsRoverDemo extends MIDlet implements Runnable,
AnyEntity{

private static final int ITERATIONS = 1200;
private Display display;
private MarsRoverCanvas marsRoverCanvas;

private String backGroundImégePath;
private String tilesImagePath;

private int loopCount = ITERATIONS;
private long appStartTime = 0;
private long appEndtime = 0;
private long appRunTime = 0;
private AnyPerformanceImpl perf;

/**
* startApp displays a Mars landscape with obstacles
* and a Mars rover the user can move. A predefined sequence of

* user input moves the rover across the landscape.<p>
*

*/
protected void startApp() throws MIDletStateChangeException {

appStartTime = System.currentTimeMillis () ;
display = Display.getDisplay(this);

System.out.println("Application start time is:" +

appStartTime) ;

backGroundImagePath = "/background.png";
tilesImagePath = "/tiles.png";

try {

marsRoverCanvas = new

MarsRoverCanvas (backGroundImagePath, tilesImagePath) ;

Thread gameScrollerThread = new Thread(this);
display.setCurrent (marsRoverCanvas) ;

-90 -

gameScrollerThread.start () ;
// start the thread to play the demo
try {
gameScrollerThread.join() ;
// wait till the game iterations complete
} catch (InterruptedException e) {
}
} catch (Exception e) {
/* This happens if there is a problem while loading Tiles
*/ Image or BackgroundImage.

try {
destroyApp (false) ;

notifyDestroyed() ;
} catch (MIDletStateChangeException ex) {

}

protected void pauseApp () {

}

protected void destroyApp (boolean unconditional) throws
MIDletStateChangeException {
}**
* Advances the game for each iteration.
* After each iteration, metricUnitFinished(UNIT_FRAME) will be
* invoked.
* This thread sleeps 1 milli second for each iteration.
*
/
public void run() {
int lc = 0;
while (lc++ < loopCount) {

if (lc >= 400 && lc <= 450) {
marsRoverCanvas.setDelay((lc /10) % 10); //slow down
}

if(lc >= 800 && lc <= 850) {
marsRoverCanvas.setDelay (5 -((lc / 10) % 10)); //speedup
} .

if (!marsRoverCanvas.advance()) break;
//1if road is over return
appEndtime
appRunTime

System.currentTimeMillis () ;
appEndtime - appStartTime; .

[}

public long getAppRunTime () {
return appRunTime;
}

-9] -

	San Jose State University
	SJSU ScholarWorks
	2004

	Pattern language for performance evaluation
	Rohini Pradeep
	Recommended Citation

	tmp.1290447007.pdf.3_Pcg

