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ABSTRACT 

DEEP DATA ANALYSIS ON WEB 

By 

Xuanyu Liu 

Search engines are well known to people all over the world. People prefer to use keywords 

searching to open websites or retrieve information rather than type typical URLs. Therefore, 

collecting finite sequences of keywords that represent important concepts within a set of 

authors is important, in other words, we need knowledge mining. We use a simplicial concept 

method to speed up concept mining. Previous CS 298 project has studied this approach under 

Dr. Lin. This method is very fast, for example, to mine the concept, FP-growth takes 876 

seconds from a database with 1257 columns 65k rows, simplicial complex only takes 5 seconds. 

The collection of such concepts can be interpreted geometrically into simplicial complex, 

which can be construed as the knowledge base of this set of documents. Furthermore, we use 

homology theory to analyze this knowledge base (deep data analysis). For example, in mining 

market basket data with {a, b, c, d}, we find out frequent item sets {abc, abd, acd, bcd}, and 

the homology group H2 = Z (the integer Abelian group), which implies that very few 

customers buy four items together {abcd}, then we may analysis possible causes, etc. 

Roughly speaking, this can be regarded as a new discipline in data science based on Dr. Vasant 

Dhār’s (Ph.D., Editor-in-Chief of Big Data, a professor of NYU) definition of data science 

(“Data Science is a study of generalizable extraction of knowledge from data.”). 
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1. Introduction 

The development of science and technology makes the exchange of information more rapidly 

and instant. People can access information more conveniently through a variety of clients and 

terminals. Nowadays, the Internet is the main way of disseminating information because it is 

cheap and information can spread rapidly over a wide range. There will be a variety of 

emerging information on the Internet every day, and how people quickly find the information 

they want is through the keyword search. Each keyword has its concept behind it, and this 

concept signifies what kind of information people are looking for. Therefore, concept mining 

is imperative. 

In topology, mathematicians examine holes (also known as calculation of homology [4]) to 

distinguish different shapes in high-dimensional spaces. When we put each keyword as a point 

in space and connect these points, a high-dimensional geometry can be formed. By calculating 

homology, we can examine these holes in the geometry constituted by those concepts, and 

these holes can be understood as concepts that we have not invented or undiscovered. It is 

also valuable and helpful in scientific research because applying the same method to different 

areas will have new discoveries [1]. For example, in biology, we can find out genes that are 

associated with each other in some way that we are not aware of yet. 

In the high-dimensional space, there are shapes called the simplicial complexes [12]. A 

simplicial complex is a high-dimensional geometric combination of triangles composed of 

lines segments and points. Converting concepts into a simplicial complex [14] is the primary 

method we use here. Through the establishment of a chain complex, we analyze the holes in 
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a simplicial complex. We also refer to the Smith normal form [9] in the calculation to simplify 

the calculation. However, in the present study, we can determine whether the holes exist or 

not or find out the number of holes. A further study and exploration are still needed to 

discover what generators cause the holes. 
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2. Background 

2.1 Fundamental Terminologies in Concept Based Search Engine 

The Concept Based Search Engine [12] is a program that generates semantic concepts from 

websites. Some terminologies used in it are defined below. 

 Token: A token is a single English word that produced by the tokenizer. 

 Token frequency: Token frequency is an informal representation of concept frequency. It 

represents the total number of occurrences of a concept in all the documents.  

 Document frequency: It represents the total number of documents that contain a concept. 

 Concept: A concept is a finite sequence of data pattern produced by the Search Engine. A 

concept is an abstract or general idea or the notion that can be derived from a particular 

instance of an English word or some combinations of them. A concept is used to represent 

human thoughts and ideas in symbol notion or language basis. For example: 

1) Wall Street: A wall is a physical structure that divides an area and provides security. 

A street is a thoroughfare built by human to provide convenient transportations. 

However, Wall Street physically denotes a street in New York City, but over time 

it refers to the financial market of the United States as a whole. 

2) White House: While house represents the government building of the president of 

the U.S. or the government of the U.S. 

 Knowledge base: A knowledge base is a large organized collection of concepts produced 

by the Search Engine. 
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 Stop words: A stop word is an English word that has no substantial significance in mining 

concepts or search queries. Stopwords should be removed in data processing. Some 

examples of stop words are: about, above, across, also, always, have, please, yet, yourself, 

and so on. 

2.2 Overview of the Concept Based Search Engine 

The Concept Based Search Engine takes a set of documents as input and produces a list of 

concepts with information such as token count, token frequency, document frequency as well 

as the documents that contain them. It tokenizes input streams into single tokens and takes a 

paragraph of tokens as an input for generating concepts. Within a paragraph of tokens, the 

program generates different combinations of individual tokens to form concepts and stores 

them into a hashmap. After processing all the documents, the program will eliminate concepts 

based on the input settings. The eliminating process guarantees that most useless and nonsense 

concepts will be removed from the map. The last step is to transport all the useful concepts 

to a database. Figure 2-1 shows the workflow of the search engine. More specific details and 

algorithm in the search engine are not shown here.  

The Concept-based Search Engine takes a major role because it produces our knowledge-

based for homology calculation.  



5 

 

 

Figure 2-1 

2.3 Secondary Storage Management 

The current Search Engine works well in generating concepts, but there is a problem with it. 

For a real world large input data set of documents, the Concept Based Search Engine will 

eventually run into error due to insufficient memory. For example, to generate concepts up to 

4 tokens from 2000 documents, the memory usage is about 7 Gigabytes. As a result, machines 

with memory size less than 4 gigabytes will not successfully process all the input data in a 

single execution, and today, the average memory size of PCs is 8 Gigabytes, which implies that 

some tricks are needed in the process of generating concepts. 

 

END 
Output: Concepts in database 

Tokenize words, remove stop 
words and get paragraphs 

Creating concepts into a Map 

Filter concepts based on Token 
Frequency and Document 

Frequency 

START 

Input: Set of  documents 
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In ancient time, when programmers deal with data larger than the memory size, a secondary 

storage management technic needs to be implemented. A solution to our problem is to use 

secondary storage management, for example, an external merge sort.  

At some proper phases of the program when the memory is taken large enough, we export all 

the data from the Hashmap to a temporary file on the local hard drive. After all the concept 

finding, we merge all the temporary files into one single file and then do the eliminating 

process. This idea is based on the theory that external space is infinity that we do not need to 

worry about. Temporary files produced by the program would take a tremendous amount of 

space, and the maximum space taken is twice as final merged file because of the merging 

process. Though the speed of hard drives is hundreds to thousands of times slower than the 

main memory, memory is not easily expandable and cannot expand to ideally infinity as we 

desire.  

The algorithm of the external merge sort for the Search Engine is: 

 

 

   

    
    

Output sorted concepts to temporary files T n

While T.size  > 1

     Read each line L1 and L2 from T 1  and T 2

     If order L1  < order L2  Write L1 and L2 to file T'

     Else If order L1  > order L2  Write L

()

2 an

    
 

d L1 to file T'

     Else If order L1  == order L2  Merge L2 and L1 to file T'

     Place file T' into the last position of files T n

End

 

 

The idea of secondary storage management is used later in homology calculation because the 

data set processed is usually large and takes a significant amount of memory.  
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2.4 Homology 

Homology [2][4][5] in topology is a theory used to distinguish and describe spaces. We are 

particularly interested in simplicial homology because our concepts can be triangulated into a 

simplicial complex, and the homology can tell the holes in the simplicial complex. These holes 

can be understood as concepts that we have not invented or undiscovered.  

The dictionary meaning of homology is the quality of being similar or corresponding in 

relation. Therefore, we can interpret homology in such a way. For any shape in space, we look 

at cycle paths on its surface to determine whether those cycle paths can expand or shrink to 

each other without cutting the shape. If those cycle paths can turn into each other by 

expanding and shrinking, they are considered being in the same homology class and 

homologous to each other. Furthermore, if those cycle paths can shrink into a point, they are 

also said to be homologous to 0. For example, in Figure 2-2(a), a sphere S has  ,  cycle a b and 

c on its surface in the counterclockwise rotation. By shrinking  cycle b and expanding  ccycle , 

they can transform into  cycle a , and by the same operation, they can transform into each 

other. They can also shrink to a point without cutting the sphere. Therefore, cycle ,  a b and c

are homologous to 0. If we traverse cycle a  in the direction, which is counterclockwise 

rotation in the figure, the traversal can iterate any number of times. If we say each cycle is p, 

then we can add all the iterations together as p p p   . This addition is the same as the 

integer space Z , and p is called the generator.  On the other hand, if we traverse an iteration 

of cycle a  clockwise, then each cycle would be represented by p , and a clockwise traversing 

followed by a counterclockwise traversing would result in 0 p p . However, not all cycle 

path can be transformed to each other. In Figure 2-2(b), cycle a  and cycle b in a torus cannot 
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shrink into a point nor transform to each other without cutting the torus. We say that they are 

not in a same homologous group. If we say each cycle of a is p and each cycle of b is q , then 

we can add all the iterations together as p p p q q q       , which is homology 

group Z Z . 

 

Figure 2-2 

 

2.5 Simplex and Simplicial Complex 

An (open) n-simplex[13][15] is an n-dimensional geometry that consists of (n+1) vertices in 

Euclidean space n . It can be viewed as the complete graph on (n+1) vertices in n dimensions. 

For example, if we have a single point in space, then it can be seen as an open 0-simplex, an 

open 0-simplex has only one single vertex. If we add another point in the space and connect 

those two points, then we have a line segment, forming an open 1-simplex. An open 1-simplex 

can be interpreted as the 1-simplex has only the line segment, and the points connecting it are 

not included. Adding a third point and connecting each two of them will result in an open 2-

simplex, which is also a triangle. An open 2-simplex is the open triangle connected by the three 
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points, but the points and the edges are not included. As we continue adding the fourth point 

and connecting each 2 of them, an open 3-simplex can be built in three-dimensional space, 

and an open 3-simplex is known as a tetrahedron. The open 3-simplex can be seen as a 

tetrahedron without its faces, which are four open 2-simplex (triangles), six 1-simplex (line), 

and four 0-simplex (vertices). A closed n-simplex is a simplicial complex that has an open n-

simplex and all its faces. A simplicial complex [14] is a collection of simplexes such that any 

set consisting of one vertex is a simplex and any nonempty subset of a simplex is a simplex. 

 

 

Figure 2-3 

 

Table 3.2 shows the number of faces for an n-simplex. 

 0-faces 
(vertices) 

1-faces 
(edges) 

2-faces 
(triangle) 

3-faces 4-faces 5-faces 6-faces 

0-simplex 
(point) 

1       

1-simplex 
(line) 

2 1      

2-simplex 
(triangle) 

3 3 1     

3-simplex 
(tetrahedron) 

4 6 4 1    

4-simplex 5 10 10 5 1   

5-simplex 6 15 20 15 6 1  
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6-simplex 7 21 35 35 21 7 1 

…        

Table 3.2 

2.6 Simplicial Homology and Chain Complex 

Before we define simplicial homology, we need to introduce another property of simplex, 

which is orientation. The orientation of a simplex is simply the order of its vertices as we write 

it. Therefore, every simplex has two orientations. For example, an orientated simplex 

( , , )a b c is equal to the negative of a pair-reverse order of the simplex, that is 

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )a b c a c b c a b c b a b c a b a c            

Having the idea of Simplicial Complex, we can see that the n-dimensional simplexes of space 

are not unique, but the homology groups of the same Euclidean space are the same. The 

construction of the homology groups depends on the free groups of n-simplex and the 

boundary operator that maps an-simplex to an (n-1)-simplex. We can think of simplicial 

homology group of the n-dimensional cycle bounded by the (n+1)-dimensional cycle. What 

we need to do is to determine whether the (n+1)-dimensional boundary exists for the n-

dimensional cycle or not. If the boundary cycle exists, the (n+1) dimensional hole is covered, 

and the solid enclosing can be shrunk to a point.  

We use chain complex to construct homology group and discern the relation between cycles 

and boundaries in different dimensional spaces. The boundary operator is written as  . Given 

an-simplex 
0 1 2[ , , , , ]nx x x x , the boundary operator [3]

0 1 2[ , , , , ]nx x x x is the (n-1)-chain 

of the chain complex, defined as the weighted sum of the facets of the n-simplex: 
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0 1 2 0 1

0

ˆ[ , , , , ] ( 1) [ , , , , , ]
n

i

n i n

i

x x x x x x x x


   , 

Where 
0 1

ˆ[ , , , , , ]i nx x x x is the facet opposite vertex 
ix , which is removed from the 

calculation. For example, 

[ , , , ] [ , , ] [ , , ] [ , , ] [ , , ]

[ , , ] [ , ] [ , ] [ , ]

[ , ] [ ] [ ]

[ ] []

a b c d b c d a c d a b d a b c

a b c b c a c a b

a b b a

a

    

   

  

 

 

From above four differential equations, we can see that for a 3-simplex, the three-dimensional 

tetrahedron bounds four faces of triangles. A two-dimensional triangle bounds three faces of 

line segments. A one-dimensional line bounds two faces of vertices. A vertex is just a basis in 

0-dimension.  

Formally, a chain complex [10] is a sequence of  vectorZ-  space 
1 2, , , nC C C , connected by 

the homomorphism 
1:n n nC C   , which is the boundary operator defined above. 

1 2 1

1 1 00 0n n

n nC C C C  
        

The group 
nC  is the set of open n-simplexes, and 0 is the trivial group that consists of only 

one element. The chain complex has a property that any two consecutive boundary operation 

will result in trivial group 0. That is, 

1  0 ,  n nFor all the n    , 
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where  is the operator connects two consecutive boundary operation. This represents that 

the continuous mapping sends all the elements in 
nC  to the group identity in 

1nC 
. This 

property tells us that the boundary of a boundary is trivial as in mathematical definition: 

1im( ) ker( )n n   , 

where 
1im( )n is the image of the boundary operator 

1n and ker( )n is the kernel of the 

boundary operator 
n . We define elements in 

1( ) im( )n nB X   as boundaries and elements 

in Z ( ) ker( )n nX   as cycles. Then we can compute the nth homology group of X by 

identifying the quotient group, 

1

Z ( ) ker( )
( )

( ) im( )

n n
n

n n

X
H X

B X 


 


 

However, the computation of the boundaries and cycles is difficult in general because the size 

of generators is usually large. By the fundamental theorem of the finitely generated abelian 

groups [11], 

"              ."Every finitely generated abelian group is isomorphic to a direct sum of cyclic groups   

We have, ( ) ( / )n

n i
i

H X d


 Z Z Z  

n  is an integer value called Betti number of the nth dimension, and the components in the 

direct sum, , idZ Z  is the torsion subgroups. We use a Smith Normal Form method that will 

change the basis of the 
nC but gives a well formatted linear boundary mapping that we can 

easily find kernels and images.  
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2.7 Smith Normal Form 

Smith normal form [9] is a well-defined method to calculate homology, in particular for the 

simplicial complex. Let R and S be an m n matrix, and * *R U S V , where U is an m m  

matrix, and V is an n n matrix. If matrix S has the property that all the elements in S are 

integers and all entries are 0 except for its diagonal entries, 
1 2[ , , , ]ndiag d d d , where 

1nd 

dives 
nd . Then, we say matrix S is the Smith Normal Form of matrix R, An example of Smith 

Normal Form: 

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

 

As the example shows above, some 7 7 matrices have the same Smith Normal Form as this 

one. The differences are their left and right invertible matrix U and V. To get the Smith 

Normal Form of a matrix, only basic row and column operations are needed, such as 

multiplying a row or column by an integer, adding a multiple of one row or column to another, 

and interchanging two rows or columns. The matrix U and V are formed from the basic 

operations done over the matrix R. Before any operations over R, initialize diagonal of U’ and 

V’ with all 1s and 0’s for all other entries. Apply any basic row operations over R on U’ and 

apply any basic column operations over R on V’. After getting the Smith Normal Form of R, 

taking the inverse of U’ and V’ will result in U and V. 
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3. Implementation 

3.1 Triangulation of Concepts 

The first step is to read the knowledge base, and then convert each English word to vertices 

of a simplex. For example, the concept, “Deep Data Analysis” is a three token concept.  Each 

concept “Deep”, “Data”, and “Analysis” would be represented by open 0-simplexes. “Deep 

Data”, “Deep Analysis”, and “Data Analysis” would be represented by open 1-simplexes, and 

“Deep Data Analysis” would represent by open 2-simplex. From the example, we can clearly 

understand the idea of an “open” simplex. “Deep data Analysis” as a whole has its concept, 

and it does not have a concept of “Deep Data” or “Deep Analysis”. So, we represent it as an 

open 2-simpex. A close 2-simplex, on the other hand, has all the faces of the open 2-simplex. 

Those faces are “Deep Data”, “Deep Analysis”, “Data Analysis”, “Deep”, “Data”, and 

“Analysis”.  

 

Figure 3-1 

We only analysis simplicial complexes that are closed. If any faces of a simplex are missing, 

those are not worth analyzing because the basis is not well-formed. Our program will check if 
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the simplicial complex is closed based on the input data. Recall that a simplicial complex is a 

collection of simplexes such that any set consisting of one vertex is a simplex and any 

nonempty subset of a simplex is a simplex. Therefore, for any input simplex, its subset is 

generated by the algorithm shown in Figure 3-2, and the existence of each result in the subset 

is checked in the knowledge base. 

 

Figure 3-2 

 

To understand the homology with triangulated concept vertices, see Figure 3-3, 0-dimensional 

simplex “Deep”, “Data”, and “Analysis” have “Deep Data”, “Data Analysis”, and “Deep 

Analysis” in 1-dimensinal space as their boundary. Therefore, there are no 1-demensional 

holes. 1-dimensional simplex “Deep Data”, “Data, analysis”, and “Deep Analysis” have “Deep 

Data Analysis” in 2-dimensional space as their boundary. Therefore, there are no 2-

deminsional holes. 
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Figure 3-3 

Another example without boundary is that suppose “apple pencil”, “pencil store”, and “apple 

store” are frequent concepts in document sets. Then, the simplex can be formed as Figure 3-

4 

 

Figure 3-4 

In this example, an Apple Store is the store that is selling Apple products such as MacBook’s 

and iPhones. An Apple Pencil is the product for iPad Pro designed by Apple. A Pencil Store, 

in general, a store that sells pencils. As we know, the concept, “Apple pencil store” does not 

exist because there are no stores just selling Apple pencil only. As a result, the concepts “Apple 
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Pencil”, “Pencil Store”, and “Apple Store” are not a boundary cycle in 2-dimenstional space, 

leading to a hollow triangle in space. The cycle, therefore, cannot shrink to a point, and the 

homology group for the 1-dimensinal space is Z . 

 

3.2 Generation of Chain Complex 

Recall that a chain complex is a sequence of  vectorZ-  space 
1 2, , , nC C C , connected by the 

homomorphism 
1:n n nC C   , which is the boundary operator defined above. 

1 2 1

1 1 00 0n n

n nC C C C  
      

 

After treating each one-token concept as vertices, the basis for 0C  would be all the one-token 

concepts. Similarly, all the two-token concepts form the basis of 0C , and the same idea applies 

to all the higher dimensions. For example, 

0

1

2

:  ( ),  ( ),  ( )

:  (  ),  (  ),  (  )

:  (   )

deep data analysis

deep data deep analysis data analysis

deep data analysis

C

C

C

  

  



 

Our program will find the basis for all the dimensions and store basis of each dimension in 

(dimension)_basis.txt file rather than keep this information in memory.  
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Figure 3-5 

 

Once all the basis has been formed, the boundary operations can calculate the linear 

mapping between any two consecutive dimensions. 

0 1 2 0 1

0

ˆ[ , , , , ] ( 1) [ , , , , , ]
n

i

n i n

i

x x x x x x x x


    
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Figure 3-6 
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Similarly, the linear mapping is stored in partial_(higher_demension – 1).txt file. 

 

3.3 Basis Transformation Using Smith Normal Form 

The idea of using Smith Normal Form (SNF) to calculate homology is to generate a 

corresponding SNF to the boundary operator 
n . Then, the 

nU  and 
nV  matrices could be 

thought as the new bases in their dimensions. After we get each 
n  for thn dimensional space, 

based on the knowledge of Smith Normal Form, we can generate a new linear mapping 
n  

for the same space with a complex new basis. The 
n  is the Smith Normal Form of 

n  such 

that * *n n n nU V  , where 
nU  and 

nV  are the new basis of 
nC  and 

1nC 
. Since 

n  is in a 

diagonal form, kernels and images of 
nC  and 

1nC 
 would be easy to see. In Figure 3-7, the 

calculation of Smith Normal Form of each 
n  is stored in text files as well to save the memory. 

The algorithm used to calculate Smith Normal Form is the same as the one in Matlab, and an 

example of calculation of Smith Normal Form is shown is Appendix A.  The new construction 

of the chain complex is shown below: 

 

Figure 3-7 

𝐶2 𝐶1 𝐶0 

𝑁2 𝑁1 𝑁0 

0 

0 

𝜕2 𝜕1 

𝛿2 𝛿1 

𝑈2 𝑉2 𝑈1 𝑉1 𝑈0 𝑉0 

𝜕0 

𝛿0 
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Figure 3-8 
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3.4 Smith Normal Form Based Homology Calculation 

Recall that we have ( ) ( / )n

n i
i

H X d


 Z Z Z because of the homology isomorphism. We 

now have  

1

2

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

i t

b

b

b 

 
 
 
 
 

  
 
 
 
 
 

 

1( / ) ( / )r t

i tH b b   Z Z Z Z Z  

In the formula, ( )ir nullity  , 
1( )it rank   , and 

1 2, , , tb b b are corresponding to the 

diagonal of 
1i 
. 
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4. Computation of Homology 

In this section, the homology calculation of some known object will be shown to make sure 

the correctness of the program, and a real world data is calculated in 4.6. 

 

4.1 Hollow Triangles 

A hollow triangle is a simplicial complex that consists of faces {“A B”, “A C”, “B C”, “A”, 

“B”, “C”} as shown in Figure 4-1, 

 

Figure 4-1 

Since it is a single path-connected, which means there is no isolated points, and the boundary 

“A B C” is missing, the homology group should be 

0

1

H

H





Z

Z
 

The calculation from the program is shown in Figure 4-2, which is the expected result. 
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Figure 4-2 

 

 

4.2 Solid Triangles 

A Solid triangle is a simplicial complex that consist of faces {“A B C”, “A B”, “A C”, “B C”, 

“A”, “B”, “C”} as shown in Figure 4-3 

 

Figure 4-3 

Since it is a single path-connected, which means there is no isolated points, and the boundary 

“A B C” exist, the homology group should be 

0

1

2

0

0

H

H

H







Z
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The calculation from the program is shown in Figure 4-4, which is the expected result. 

 

Figure 4-4 

 

 

4.3 Two Triangles with A Shared Edge 

The simplicial complex shown in Figure 4-5 has faces {“A B”, “A C”, “B C”, “B D”, “C D”, 

“A”, “B”, “C”, “D”} 

 

Figure 4-5 

Since it is a single path-connected, which means there are no isolated points, and the boundary 

“A B C” and “B C D” do not exist, the homology group should be 
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0

1

H

H



 

Z

Z Z
 

The calculation from the program is shown in Figure 4-6, which is the expected result. 

 

Figure 4-6 

 

The result matches each other, where the notation ^ 2Z is the simple expression of Z Z .  

 

4.4 Two Triangles with A Shared Edge and Two Extra Vertices 

The simplicial complex shown in Figure 4-7 has faces {“A B C”, “A B”, “A C”, “B C”, “B 

D”, “C D”, “A”, “B”, “C”, “D”, “E”, “F”} 

 

Figure 4-7 
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Since it has three single connected components, and boundary “B C D” do not exist, the 

homology group should be, 

0

1

2 0

H

H

H

  





Z Z Z

Z  

The calculation from the program is shown in Figure 4-8, which is the expected result. 

 

Figure 4-8 

4.5 Real Projective Plane 

The simplicial complex shown in Figure 4-9 has faces {"A B E", "A B F", "A C D", "A C 

F", "A D E", "B C D", "B C E", "B D F", "C E F", "D E F", "A B", "A C", "A D", "A E", 

"A F", "B C", "B D", "B E", "B F", "C D", "C E", "C F", "D E", "D F", "E F", "A", "B", 

"C", "D", "E", "F"} 
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Figure 4-9 

The homology group for projective plane 2 is known as, 

0

1 2

2

/2

0

H

H

H



 



Z

Z/ Z Z  

The calculation from the program is shown in Figure 4-10, which is the expected result. 

 

Figure 4-10 
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4.6 Document Data Set 

For a simplicial complex with 11830 row of oriented database data generated from the 

previous students’ work [6], the homology calculation is, 

 

Figure 4-11 

The calculation shows that in the database, there are 111 separate data sets, called concept 

cluster in (WI2008, ICDM2006) [7][8] (connected components) – distinct clusters are totally 

unrelated. Also, there are at least 3284 missing data (1-dim holes) – each hole represents that 

there are three 2-itemsets that surround an un-existed 3-itemsets homologously. The rest of 

the homology has the same idea of missing high dimensional information in one-dimensional 

higher itemsets. 

  



30 

 

5. Conclusion and Future Work 

Concept mining is an important task because concepts can be treated as a catalog of all 

knowledge. Even though we can apply some technics such as external merge sort to the 

current Concept-based Search Engine to solve some problems, the search engine still needs 

to be improved to capture concepts more intelligently such that it should work with semantic 

and grammar approaches, not just a frequency-based algorithm.   

More importantly, the homology analysis is a new discipline of data science. In this project, 

we combined homology with text, and it shows us there are hidden concepts behind the data. 

If we apply the same idea to another area of science, some new breakthrough may be made. 

However, current work is just an indicator to tell if there is and approximately how many 

hidden relations are there, the generators for that hidden relation are not as clearly as we saw 

currently, and we are still working on it. 
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Appendix A 

An example of finding the Smith Normal Form of a matrix 

1 2 3 4 5

3 2 4 5 6
 

1 2 2 2 3

3 2 3 2 1

R

 
 
 
 
 
 

 

Step 0:  

From the beginning, we have 
0R R , 

0U and 
0V  are initialized with diagonal 1’s: 

0 0 0                                                                       

1 0 0 0 0
1 2 3 4 5 1 0 0 0

0 1 0 0 0
3 2 4 5 6 0 1 0 0

              0 0 1 0 0
1 2 2 2 3 0 0 1 0

0 0 0 1 0
3 2 3 2 1 0 0 0 1

0 0 0 0 1

R U V

 
     
     
     
     
     
      

 

Step 1: 

Subtract 3 times row 1 from row 2  

Subtract 1 times row 1 from row 3  

Subtract 3 times row 1 from row 4  

1 1 1                                                                                      

1 0 0 0 0
1 2 3 4 5 1 0 0 0

0 1 0 0 0
0 4 5 7 9 3 1 0 0

              0 0 1 0 0
0 0 1 2 2 1 0 1 0

0 0 0
0 4 6 10 14 3 0 0 1

R U V

   
   

    
   
      
   

       
1 0

0 0 0 0 1

 
 
 
 
 
 
  
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Step 2: 

Subtract 2 times column 1 from column 2  

Subtract 3 times column 1 from column 3  

Subtract 4 times column 1 from column 4  

Subtract 5 times column 1 from column 5  

2 2 2                                                                                          

1 2 3 4 5
1 0 0 0 0 1 0 0 0

0 1 0 0 0
0 4 5 7 9 3 1 0 0

              
0 0 1 2 2 1 0 1 0

0 4 6 10 14 3 0 0 1

R U V

   
   
   

    
   
      
   

       

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 
 
  

 

Step 3: 

Swap rows 2 and 3  

Swap columns 2 and 3  

Negate row 2  

Add 5 times row 2 to row 3  

Add 6 times row 2 to row 4 

3 3 3                                                                              

1 3 2 4 5
1 0 0 0 0 1 0 0 0

0 0 1 0 0
0 1 0 2 2 1 0 1 0

              0 1 0 0 0
0 0 4 3 1 2 1 5 0

0 0 0 1 0
0 0 4 2 2 3 0 6 1

0 0 0 0 1

R U V

   
    
    
    
     
         








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Step 4: 

Subtract 2 times column 2 from column 4  

Subtract 2 times column 2 from column 5 

4 4 4                                                                                 

1 3 2 2 1
1 0 0 0 0 1 0 0 0

0 0 1 0 0
0 1 0 0 0 1 0 1 0

              0 1 0 2 2
0 0 4 3 1 2 1 5 0

0 0 0 1 0
0 0 4 2 2 3 0 6 1

0 0 0 0 1

R U V

 
    
    
     
    
   

     






 
 
 
 

 

Step 5: 

Swap columns 3 and 5  

Add 2 times row 3 to row 4 

5 5 5                                                                                   

1 3 1 2 2
1 0 0 0 0 1 0 0 0

0 0 0 0 1
0 1 0 0 0 1 0 1 0

              0 1 2 2 0
0 0 1 3 4 2 1 5 0

0 0 0 1 0
0 0 0 8 12 7 2 16 1

0 0 1 0 0

R U V

 
   
   


     
    
   

    


 
 
 
 
 
  

 

Step 6: 

Subtract 3 times column 3 from column 4  

Add 4 times column 3 to column 5 

6 6 6                                                                                   

1 3 1 2 2
1 0 0 0 0 1 0 0 0

0 0 0 0 1
0 1 0 0 0 1 0 1 0

              0 1 2 4 8
0 0 1 0 0 2 1 5 0

0 0 0 1 0
0 0 0 8 12 7 2 16 1

0 0 1 3 4

R U V

 
   
   


    
   
   

    



 
 
 
 
 
 
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Step 7: 

Add 1 times column 4 to column 5 

7 7 7                                                                                 

1 3 1 2 1
1 0 0 0 0 1 0 0 0

0 0 0 0 1
0 1 0 0 0 1 0 1 0

              0 1 2 4 4
0 0 1 0 0 2 1 5 0

0 0 0 1 0
0 0 0 8 4 7 2 16 1

0 0 1 3 1

R U V


    
    
      
   
   

    







 
 
 

 

Step 8: 

Swap columns 4 and 5  

Negate row 4  

Add 2 times column 4 to column 5 

8 8 8                                                                                   

1 3 1 1 1
1 0 0 0 0 1 0 0 0

0 0 0 1 2
0 1 0 0 0 1 0 1 0

              0 1 2 4 4
0 0 1 0 0 2 1 5 0

0 0 0 1 0
0 0 0 4 0 7 2 16 1

0 0 1 1 1

R U V


   
   


      
   
   

     



 
 
 
 
 
  

 

Step 9 (Last step): 

1 1

8 8 8

1 2 3 4 5
1 0 0 0 0 1 0 0 0

0 0 1 2 2
0 1 0 0 0 3 5 1 0

 , ,   0 4 0 3 1
0 0 1 0 0 1 1 0 0

0 3 0 2 0
0 0 0 4 0 3 6 2 1

0 1 0 1 0

S R U U V V 

 
     
     
           
     

             
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We can verify * *R U S V  

 

Figure 0-1 
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Appendix B 

 

Example of Homology Group 𝑯𝟏 in 𝑹𝑷𝟐 

A chain complex is a sequence of  ℤ-vector spaces (Abelian groups) 𝐶1, 𝐶2, … , 𝐶𝑛, connected 

by homomorphism 𝜕2:𝐶2 ⟶ 𝐶1, where 𝜕2 is known as the boundary operator. The Smith 

Normal Form of 𝜕2 is 𝜕2 = 𝑈2 ∗ 𝛿2 ∗ 𝑉2, where 𝛿2 is a diagonal matrix with integers arranged 

in increasing order at entries.  ℤ-matrices in such forms permit us to compute the images and 

kernels easier. 

Taking advantage of such special matrices, we can compute the homology groups; we will 

illustrate the idea of computing the 𝐻1 of  𝑅𝑃2, real projective plane. Using the triangulation 

given in Figure 0-1, its chain complex can be denoted by 𝐶2 ⟶ 𝐶1 ⟶ 𝐶0. Our first goal is to 

find a ℤ-basis of 𝐶1, whose basis contains the ℤ-basis of ker(𝜕1), moreover the latter ℤ-basis 

may express the ℤ-basis of 𝑖𝑚(𝜕2) by a diagonal matrix with integers. 

ker⁡(𝑉2𝑈1𝛿1) is isomorphic to ker(𝜕1) because both V and U are isomorphisms, and the 

same isomorphism map 𝑖𝑚(𝛿2)  isomorphically onto 𝑖𝑚(𝜕2) , so the quotient group 

ker⁡(𝑉2𝑈1𝛿1)⁡

𝑖𝑚(𝛿2)
 is isomorphic to 

ker⁡(𝜕1)

𝑖𝑚(𝛿2)
. Therefore, 𝐻1 =

ker⁡(𝜕1)

𝑖𝑚(𝛿2)
=

ker⁡(𝑉2𝑈1𝛿1)⁡

𝑖𝑚(𝛿2)
, where the row 

vectors of  𝑉2 ∗ 𝑈1 is the row vectors of  𝑈1 represented in terms of the basis of 𝑉2. 
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Figure 0-1 

𝐶2 natural basis (geometric basis): 

Δ (A, B, E), Δ (A, B, F), Δ (A, C, D), Δ (A, C, F), Δ (A, D, E), Δ (B, C, D), Δ (B, C, E), Δ (B, 

D, F), Δ (C, E, F), Δ (D, E, F) 

 

𝐶1⁡natural basis (geometric basis): 

Δ (A, B), Δ (A, C), Δ (A, D), Δ (A, E), Δ (A, F), Δ (B, C), Δ (B, D), Δ (B, E), Δ (B, F), Δ (C, 

D), Δ (C, E), Δ (C, F), Δ (D, E), Δ (D, F), Δ (E, F) 

 

𝐶0 natural basis (geometric basis): 

Δ(A), Δ(B), Δ(C), Δ(D), Δ(E), Δ(F) 

 

 

𝐶2 𝐶1 𝐶0 

𝑁2 𝑁1 𝑁0 

0 

0 

𝜕2 𝜕1 

𝛿2 𝛿1 

𝑈2 𝑉2 𝑈1 𝑉1 𝑈0 𝑉0 

𝜕0 

𝛿0 
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𝜕2 (the ℤ-linear map from 𝐶2 to 𝐶1) 

1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0  

1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0  

0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0  

0 1 0 0 -1 0 0 0 0 0 0 1 0 0 0  

0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0  

0 0 0 0 0 1 0 -1 0 0 1 0 0 0 0  

0 0 0 0 0 0 1 0 -1 0 0 0 0 1 0  

0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1  

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1  
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According to Smith Normal Form 𝜕2 = 𝑈2 ∗ 𝛿2 ∗ 𝑉2, we can get 𝑈2 and 𝑉2 

𝑈2 (the matrix whose row vectors form a new basis of 𝐶2, called normal basis of 𝑁2) 

1 0 0 0 0 0 0 0 0 0  

1 0 0 1 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0  

0 1 1 0 0 0 0 0 0 0  

0 0 1 -1 0 0 -1 0 0 0  

0 0 0 0 1 0 0 0 0 0  

0 0 0 0 1 1 0 0 0 0  

0 0 0 0 0 1 1 -1 0 0  

0 0 0 0 0 0 0 1 1 0  

0 0 0 0 0 0 0 0 1 -1  
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𝛿2 (the linear map 𝜕2 from 𝑁2 to 𝑁1, expressed in terms of normal basis of 𝑁2⁡and 𝑁1,  

where 𝑁1⁡is the row vectors of 𝑉2 in terms of geometric basis). 

 

 

  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 
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𝑉2 (the matrix whose row vectors form a new basis of 𝐶1, called normal basis of 𝑁1) 

1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0  

0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0  

0 0 1 0 -1 0 0 0 0 -1 0 1 0 0 0  

0 0 0 1 -1 0 0 -1 1 0 0 0 0 0 0  

0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0  

0 0 0 0 0 0 1 -1 0 -1 1 0 0 0 0  

0 0 0 0 0 0 0 1 -1 -1 0 1 -1 0 0  

0 0 0 0 0 0 0 0 0 -2 1 1 -1 -1 0  

0 0 0 0 0 0 0 0 0 2 0 -2 1 1 1  

0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0  

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  
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𝜕1 (the linear map from 𝐶1 to 𝐶0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

-1 1 0 0 0 0  

-1 0 1 0 0 0  

-1 0 0 1 0 0  

-1 0 0 0 1 0  

-1 0 0 0 0 1  

0 -1 1 0 0 0  

0 -1 0 1 0 0  

0 -1 0 0 1 0  

0 -1 0 0 0 1  

0 0 -1 1 0 0  

0 0 -1 0 1 0  

0 0 -1 0 0 1  

0 0 0 -1 1 0  

0 0 0 -1 0 1  

0 0 0 0 -1 1  
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Again, according to Smith Normal Form 𝜕1 = 𝑈1 ∗ 𝛿1 ∗ 𝑉1, we can get 𝑈1 and 𝑉1 

𝑈1 (the matrix whose row vectors form a new basis of 𝐶1, called normal basis of 𝑁1′) 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0  

-1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0  

-1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0  

-1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0  

0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0  

0 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0  

0 -1 -1 -1 0 0 0 1 0 0 0 0 0 0 0  

0 -1 -1 -1 -1 0 0 0 1 0 0 0 0 0 0  

0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0  

0 0 -1 -1 0 0 0 0 0 0 1 0 0 0 0  

0 0 -1 -1 -1 0 0 0 0 0 0 1 0 0 0  

0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0  

0 0 0 -1 -1 0 0 0 0 0 0 0 0 1 0  

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1  

 

 

  



44 

 

𝛿1 (the linear map 𝜕1 from 𝑁1⁡to 𝑁0, expressed in terms of normal basis of 𝑁1
′⁡and 𝑁0,  

where 𝑁0 is the row vectors of 𝑉1 in terms of geometric basis). 

1 0 0 0 0 0  

0 1 0 0 0 0  

0 0 1 0 0 0  

0 0 0 1 0 0  

0 0 0 0 1 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  
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𝑉1 (the matrix whose row vectors form a new basis of 𝐶0, called normal basis of 𝑁0) 

1 -1 0 0 0 0  

0 1 -1 0 0 0  

0 0 1 -1 0 0  

0 0 0 1 -1 0  

0 0 0 0 1 -1  

0 0 0 0 0 1  
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As we discussed, 𝐻1 =
ker⁡(𝜕1)

𝑖𝑚(𝛿2)
=

ker⁡(𝑉2𝑈1𝛿1)⁡

𝑖𝑚(𝛿2)
, we need to find ker(𝑉2𝑈1𝛿1) and 𝑖𝑚(𝛿2). 

From 𝛿2, we can see the 𝑖𝑚(𝛿2) is,  

AB-AE+BE 

AC-AD+CD 

AD-AF-CD+CF 

AE-AF-BE+BF 

BC-BD+CD 

BD-BE-CD+CE 

BE-BF-CD+CF-DE 

-2CD+CE+CF-DE-DF 

2CD-2CF+DE+DF+EF 

2(CD-CF+DF) 

 

where the first 9 vectors are multiplied by 1, and the 10th vector is multiplied by 2. 
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To get the basis of ker(𝑉2𝑈1𝛿1), we let  

1

2

3

4

5

6

7

8

9

10

11

12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

x

x

x

x

x

x

x

x

x

x

x

x

2 1 1

13

14

15

* * * 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

U V

x

x

x



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
    

Solve the equation we get  

{
 
 

 
 
𝑥1, 𝑥2, … , 𝑥10 ∈ ℤ

𝑥11 = 0
𝑥12 = 0
𝑥13 = 0
𝑥14 = 0
𝑥15 = 0

 

Therefore, we can choose the basis as follows 

𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 0,… , 𝑥10 = 0, 𝑥15 = 0 as the 1st vector basis for the kernel 

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 0,… , 𝑥10 = 0, 𝑥15 = 0 as the 2nd vector basis for the kernel 

… 
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𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 0,… , 𝑥10 = 1, 𝑥15 = 0 as the 10th vector basis for the kernel 

that is,  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Where each row represents the coordinates of normal basis vector of 𝑉2 
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Therefore, the basis of ker(𝑉2𝑈1𝛿1)  is   

AB-AE+BE 

AC-AD+CD 

AD-AF-CD+CF 

AE-AF-BE+BF 

BC-BD+CD 

BD-BE-CD+CE 

BE-BF-CD+CF-DE 

-2CD+CE+CF-DE-DF 

2CD-2CF+DE+DF+EF 

CD-CF+DF 

 

That is, ker(𝑉2𝑈1𝛿1) = ℤ(𝐴𝐵 − 𝐴𝐸 + 𝐵𝐸)⨁ℤ(𝐴𝐶 − 𝐴𝐷 + 𝐶𝐷)⨁ℤ(𝐴𝐷 − 𝐴𝐹 − 𝐶𝐷 +

𝐶𝐹)⨁ℤ(𝐴𝐸 − 𝐴𝐹 − 𝐵𝐸 + 𝐵𝐹)⨁ℤ(𝐵𝐶 − 𝐵𝐷 + 𝐶𝐷)⨁ℤ(𝐵𝐷 − 𝐵𝐸 − 𝐶𝐷 +

𝐶𝐸)⨁ℤ(𝐵𝐸 − 𝐵𝐹 − 𝐶𝐷 + 𝐶𝐹 − 𝐷𝐸)⨁ℤ(−2𝐶𝐷 + 𝐶𝐸 + 𝐶𝐹 − 𝐷𝐸 − 𝐷𝐹)⨁ℤ(2𝐶𝐷 −

2𝐶𝐹 + 𝐷𝐸 + 𝐷𝐹 + 𝐸𝐹)⨁ℤ(𝐶𝐷 − 𝐶𝐹 + 𝐷𝐹) 
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Therefore, we can calculate homology group 𝐻1 

𝐻1 =
ker(𝑉2𝑈1𝛿1)

𝑖𝑚(𝛿2)
=

ℤ(𝐴𝐵−𝐴𝐸+𝐵𝐸)⨁

ℤ(𝐴𝐶−𝐴𝐷+𝐶𝐷)⨁

ℤ(𝐴𝐷−𝐴𝐹−𝐶𝐷+𝐶𝐹)⨁

ℤ(𝐴𝐸−𝐴𝐹−𝐵𝐸+𝐵𝐹)

ℤ(𝐵𝐶−𝐵𝐷+𝐶𝐷)⨁

ℤ(𝐵𝐷−𝐵𝐸−𝐶𝐷+𝐶𝐸)⨁

ℤ(𝐵𝐸−𝐵𝐹−𝐶𝐷+𝐶𝐹−𝐷𝐸)⨁

ℤ(−2𝐶𝐷+𝐶𝐸+𝐶𝐹−𝐷𝐸−𝐷𝐹)⨁

ℤ(2𝐶𝐷−2𝐶𝐹+𝐷𝐸+𝐷𝐹+𝐸𝐹)⨁

ℤ(𝐶𝐷−𝐶𝐹+𝐷𝐹)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
ℤ(𝐴𝐵−𝐴𝐸+𝐵𝐸)⨁

ℤ(𝐴𝐶−𝐴𝐷+𝐶𝐷)⨁

ℤ(𝐴𝐷−𝐴𝐹−𝐶𝐷+𝐶𝐹)⨁

ℤ(𝐴𝐸−𝐴𝐹−𝐵𝐸+𝐵𝐹)

ℤ(𝐵𝐶−𝐵𝐷+𝐶𝐷)⨁

ℤ(𝐵𝐷−𝐵𝐸−𝐶𝐷+𝐶𝐸)⨁

ℤ(𝐵𝐸−𝐵𝐹−𝐶𝐷+𝐶𝐹−𝐷𝐸)⨁

ℤ(−2𝐶𝐷+𝐶𝐸+𝐶𝐹−𝐷𝐸−𝐷𝐹)⨁

ℤ(2𝐶𝐷−2𝐶𝐹+𝐷𝐸+𝐷𝐹+𝐸𝐹)⨁

ℤ(2(𝐶𝐷−𝐶𝐹+𝐷𝐹))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

  

=
ℤ(𝐴𝐵−𝐴𝐸+𝐵𝐸)

ℤ(𝐴𝐵−𝐴𝐸+𝐵𝐸)
⨁…⨁

ℤ(𝐶𝐷−𝐶𝐹+𝐷𝐹)

ℤ(2(𝐶𝐷−𝐶𝐹+𝐷𝐹))
  

=
ℤ

ℤ
⨁…⨁

ℤ

2ℤ
=

ℤ

2ℤ
  

 

𝑟 = 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝛿1) = 10 

𝑡 = 𝑟𝑎𝑛𝑘(𝛿2) = 10 

𝐻𝑖 ≅ ℤ𝑟−𝑡⨁(
ℤ

𝑏1ℤ
)⨁⋯⨁(

ℤ

𝑏𝑡ℤ
) =ℤ10−10⨁(

ℤ

ℤ
)⨁⋯⨁(

ℤ

2ℤ
) =

ℤ

2ℤ
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