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ABSTRACT 

ANALYSIS OF HUMAN AND AUTOMATED SEPARATION ASSURANCE AT 

VARYING TRAFFIC LEVELS 

by Jeffrey R. Homola 

As part of the Advanced Airspace Concept, an algorithm for automatically 

resolving aircraft conflicts has been developed to partially offset air traffic controller 

workload and provide consistency. This study evaluated the differences in performance 

between humans resolving conflicts in a manual and interactive mode as well as a fully 

automated conflict resolution mode. This was done at current day, twice, and three times 

that level of traffic. Workload impact and acceptability of the algorithm's resolutions 

were also investigated. Results suggest that the automation provided significant benefits 

in terms of safety and efficiency particularly at higher levels of traffic. There was also a 

significant reduction in workload. The resolutions provided by the automation were also 

rated as being generally acceptable. 
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INTRODUCTION 

By any method of estimation, the National Airspace System (NAS) of the United 

States is very busy. For example, there are approximately 7,000 aircraft in the air at any 

given time throughout the day across the United States (Federal Aviation Administration 

Air Traffic Organization, 2006). This figure translates to roughly 50,000 aircraft 

transiting the NAS each day. As the airspace is busy, so too are the more than 39,000 

men and women that make up the air traffic controller workforce. These individuals are 

responsible for the safe handling of the roughly 46 million aircraft that the 800 million 

passengers and over one trillion dollars in cargo depend upon for their travel and business 

needs each year. 

Safety 

Despite the sheer volume of air traffic and the inherent danger with which that 

brings, the air safety record for the United States has remained strong. For instance, the 

FAA reported that 2005 saw the "lowest airline fatal accident rate in the history of 

aviation" (Federal Aviation Administration Air Traffic Organization, 2006, p. 10). 

According to some estimates, an individual could board a domestic flight every day for 

36,000 years before being involved in a fatal accident (Barnett, 2001). This consistent 

level of safety at which the air transportation system operates is in no small part due to 

the manner in which the air traffic controllers across the country perform their duties. 

A System Under Stress 

However, there are some ominous signs that the current air traffic system is under 

stress. Although the fatal accident rates are at an all-time low, other measures of safety 
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paint a different picture. For example, in 2005 there were a total of 681 Category A and 

B operational errors (Federal Aviation Administration Air Traffic Organization, 2006). 

An operational error is defined as an error committed by an air traffic controller that 

results in two aircraft exceeding the defined separation minima of five nautical miles 

(nm) laterally and 1000 feet (ft) vertically. Related to the cited figure, a Category A error 

is one in which the error is labeled as being high in severity whereas a Category B error 

refers to an error that is moderate-uncontrollable in which the controller lacked sufficient 

time to avoid the error despite being aware of its impending occurrence (Federal Aviation 

Administration, 2004). Although this number was down from figures reported in 2003, it 

exceeded the acceptable limit of 637 set by the FAA (Federal Aviation Administration 

Air Traffic Organization, 2006). Additionally, when taken in the context of a longer time 

span, these numbers indicate a 68% increase in operational errors when compared to 

those reported in 1998 (Carroll & Guadiano, 2006). 

There are also more benign indications of a system under stress. One indication 

can be seen through the use of Ground Delay Programs (GDP). Implementation of GDPs 

is one way of dealing with the problem of over-congestion in that they can be called upon 

when the volume of traffic directed toward an airport exceeds its handling capacity. In a 

study of the rate of GDP implementation, researchers found that its use has increased 

each year since 1998 (Krozel, Hoffman, Penny & Butler, 2003). Delays do not come 

without associated costs, however. It has been estimated that the average financial cost 

incurred by delays -not just those resulting from ground delay programs but all 

conditions that may lead up to its initiation- is 5.9 billion dollars in direct operating costs 
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per year (Air Transport Association, 2006). When viewed in a broader context with 

respect to commercial and private interests, the impact of delay is estimated to cost 

upwards of 30 billion dollars per year as a result of people and products not making it to 

their destinations on time (Joint Planning and Development Office, 2004). 

Operational errors and delay are but two examples of problems stemming from 

the increasingly dense and complex traffic situation in the NAS today. There is no 

indication that these trends will change any time in the near future either. Using the 

number of enplanements as an example, domestic figures show that between the years of 

2004 and 2005 alone there was a 6.6 increase (Federal Aviation Administration, 2006). 

Additionally, when compared to earlier numbers, there has been a progressive twofold 

increase in enplanements since the mid-1970s (Bonnefoy & Hansman, 2005). In fact, 

according to forecasts made by the FAA, commercial aviation appears to be set to handle 

1 billion passengers annually by the year 2015 (Federal Aviation Administration, 2006). 

This translates to a further estimate that there will be a threefold increase in air traffic by 

the year 2025. According to a Joint Planning and Development (JPDO) document, the 

current system is ill-equipped to handle the over-saturation brought on by even a twofold 

increase (2004). 

Looming Air Traffic Control Staffing Crisis 

As alluded to earlier, air traffic controllers can be considered the glue that holds 

the current air transportation system intact. However, even this aspect of the system 

faces a potential crisis with its origins rooted in the bitter Professional Air Traffic 

Controllers Organization (PATCO) strike of 1981. In response to the demands set forth 
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by the striking union, former president Reagan summarily fired over 11,000 air traffic 

controllers. A replacement force was hired in roughly equal numbers within the 

following decade, which provided a relatively stable workforce for the years that 

followed. However, with a mandatory retirement age of 56, the mass hirings of the 

eighties would serve to undermine that stability as the majority of the workforce would 

become eligible for retirement between the years of 2002 and 2012 (Nolan, 2004). More 

specifically, a 2004 FAA report stated that 73 percent of the controller workforce would 

be eligible to retire within the next 10 years. This leads directly to the issue of 

understaffing at a time when air traffic density levels are concurrently increasing. 

According to a National Air Traffic Controllers Association (NATCA) article, "even in 

the best case scenario, the system will be left woefully understaffed for years to come" 

(National Air Traffic Controllers Association, n.d.). 

Recognition and Response to Problem 

In response to the looming situation outlined above, there has been a call from 

all corners and levels of the aviation industry and government for a necessary and 

decisive change to the existing air transportation system. In a 2004 speech to the Aero 

Club of Washington, then secretary of transportation Norman Mineta stated that, "The 

changes that are coming are too big, too fundamental for incremental adaptations of 

infrastructure." And in heeding the calls for revolutionary change, the Next Generation 

Air Transportation System (NextGen) initiative was enacted to address the needs of an 

increasingly stressed system. 
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Advanced Airspace Concept (AAC) 

Since the birth of the NextGen initiative, a number of concepts have been 

developed that serve as the fuel for the changes necessary for the air transportation 

system to be able to handle the forecasted increases in traffic and the issues that it would 

entail. Among these concepts is the Advanced Airspace Concept (AAC) developed by 

Dr. Heinz Erzberger at the NASA Ames Research Center (Erzberger, 2001; Erzberger, 

2004). This concept involves changes to the existing ground-based equipment and 

cockpit avionics as well as the communication technologies that would facilitate the 

interaction between the two. Some researchers contend that current air space capacity 

limits are dictated by the workload that handling traffic imposes on air traffic controllers. 

It is envisioned that the changes involved in the AAC, along with the revised roles and 

responsibilities of the system players that these changes would enable, would ultimately 

allow for the predicted increases in air space capacity due to the beneficial effects on air 

traffic controller workload. 

One of the primary contributors to an air traffic controller's workload lies in their 

responsibility for providing separation assurance for all aircraft. This refers to the 

responsibility that the controller has for ensuring that all aircraft under their control are 

safely separated by the prescribed separation minima of five nm laterally and 1000 to 

2000 ft vertically depending on the aircraft's altitude. Because of its centrality both to 

safety and capacity, the area of separation assurance has been one of intense focus for a 

number of researchers. One particularly important area of research has been on the 
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potential benefits that the development and use of automation would have in support of 

separation assurance. 

A central component of the Advanced Airspace Concept is the further 

introduction of automation into the current suite of tools used both on the ground and in 

the air. In terms of separation assurance, this would involve the development of a 

ground-based computer system that is capable of automatically generating both efficient 

and conflict-free clearances in response to aircraft pairs that appear to be in conflict. 

These automatically generated clearances could then be executed by the aircraft. This 

latter step highlights another key element of the overall concept in that the clearance 

would be able to be transferred from the ground system directly to the Flight 

Management System (FMS) of the appropriate aircraft via Controller Pilot Data Link 

Communications (CPDLC) channels (Bolczak, Gonda, Saumsiegle, & Tornese, 2004). 

This would enable the clearances generated by the ground-based system to be uplinked to 

the aircraft without any required voice communication from the air traffic controller. 

Within the context of the AAC and, more specifically, the ground-based computer 

system, the particular area that this study focused on was the automated conflict 

resolution algorithm that is responsible for generating the clearances outlined earlier. 

This algorithm, also developed by Dr. Heinz Erzberger, was designed to provide 

automated separation assurance through the analysis of a given conflict situation and a 

subsequent generation of a resolution. The main benefit that the use of this algorithm is 

said to provide is that, assuming the infrastructure necessary for the AAC to be realized is 

in place, conflict resolutions can be generated and automatically sent to the involved 
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aircraft without the need for controller involvement. Such advancements would, 

presumably, offload a great deal of the air traffic controller's workload to the automation, 

which would then allow for an increased capacity of the airspace that they are responsible 

for. 

While there have been other tools and algorithms developed for the conflict 

resolution task such as MITRE's Problem Analysis, Resolution and Ranking (PARR) 

enhancement (Kirk, Bowen, Heagy, Rozen, & Viets, 2001) and Eurocontrol's Conflict 

Resolution Assistant (CORA) (Kirwan & Flynn, 2001) (see Kirwan & Flynn, 2002 for an 

extensive literature review of existing conflict resolution tools), the one used in this study 

is unique in that it not only accounts for a wider range of conflict types than the others 

but it also accounts for the various ways in which conflicts can be and are, in fact, 

resolved by air traffic controllers. Perhaps a more important point of uniqueness relates 

to the role that the automated algorithm is ultimately envisioned to assume. While most 

of the other conflict resolution tools have been developed to assume a supporting role, the 

tool in this study is proposed to occupy a niche within the air traffic management 

architecture that would remove the human from the conflict resolution equation thus 

permitting it to orchestrate the resolution of conflicts autonomously. As this is a rather 

radical proposal, the functioning of the conflict resolution tool/algorithm warrants an 

investigation into a number of relevant issues. 

Before detailing the issues that were investigated in this study, however, a brief 

description of the algorithm and its logic will be presented. A more detailed description 
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of the algorithm can be found in Dr. Heinz Erzberger's paper, "Automated Conflict 

Resolution for Air Traffic Control" (2006). 

Automated Conflict Resolution Algorithm 

The conflict resolution algorithm is basically made up of four components, 

arranged hierarchically, which operate iteratively in both a feedforward and feedback 

manner (see Figure 1). The algorithm takes as input information associated with a pair of 

aircraft (e.g. altitude, speed, coordinates) that are predicted to lose separation. This 

information is passed to the Resolution Aircraft and Maneuver Selector (RAMS), which 

identifies the type of conflict under consideration (e.g. both aircraft at level flight, one 

aircraft climbing, etc.) and generates a prioritized set of possible resolution maneuvers 

accordingly. This prioritization is based on RAMS's identification and selection of the 

aircraft most appropriate for the maneuver in addition to the type of maneuver that is to 

be executed. Once this set has been constructed, it is then fed to the Resolution 

Maneuver Generator (RMG). Based on the set of resolutions generated by the RAMS, 

the RMG creates simplified trajectories for those resolutions. The first maneuver 

template in the prioritized list from the RMG is then fed into the 4D Trajectory 

Synthesizer (TS). It is at this point that a finalized version of a flyable trajectory is 

formulated. This final formulation includes and accounts for more detailed information 

concerning a number of variables such as atmospheric conditions, aircraft performance, 

and operational procedures. Before continuing, however, the trajectory is verified to be 

indeed flyable by the selected aircraft. In the event that it is not, a message is sent back 

to the RMG for the next maneuver in the set to be sent forward for final trajectory 
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Figure 1. Flow chart of the resolution algorithm. 

Note. From "Automated conflict resolution for air traffic control," by H. Erzberger, 

2006, Proceedings of the 25f international congress of the aeronautical sciences, p. 2. 

Copyright 2006 by H. Erzberger. Reprinted with permission. 
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formulation and verification. Once an acceptable trajectory is formulated by the TS, it is 

sent to the Conflict Detector (CD). Here the resolution trajectory is checked in order to 

ensure that it will successfully resolve the current conflict, and that in doing so it has not 

inadvertently created a secondary conflict downstream. Similar to the communication 

between the TS and RMG, in the event that the finalized resolution trajectory does not 

successfully resolve the conflict, a message is sent back to the RMG with a request for 

the next resolution in the list to be sent forward for review. Each time a failure like this 

occurs, the algorithm uses that case as diagnostic information for consideration in the 

formulation of subsequent trial resolutions. Once a finalized, conflict-free resolution is 

generated, it is finally ready for transmission to the intended aircraft. 

Having outlined the manner in which the algorithm generates conflict resolutions, 

it is important to explain some of the logic that underlies their formulation. Built into the 

algorithm is the ability to set the priorities and order for the types of resolutions that 

would be tried for a given conflict. For example, in the current study the algorithm was 

implemented as a horizontal first resolver. This meant that the process of generating a 

conflict resolution followed a preferential order such that lateral maneuvers were 

attempted first before moving on to altitude changes. It should be noted that the 

algorithm's design does include an additional capability of generating speed resolutions 

but that it was not implemented in the current study. In terms of lateral resolutions, the 

way in which they are implemented is through the positioning of a waypoint that is offset 

from the aircraft's original flight path a sufficient number of degrees to clear the conflict. 

An additional waypoint serves as the position where the maneuvering aircraft would 
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rejoin its original flight path following its conflict avoidance maneuver. A guiding 

principle in the selection of these waypoints is the minimization of flight path deviation 

and delay. 

In the event that the magnitude of flight path deviation becomes too extreme or a 

flyable solution simply does not exist, the algorithm next attempts to resolve the conflict 

through a change in altitude. In this case, the preference is to first look for resolutions 

involving a climb as they are generally considered more fuel efficient. In this study the 

algorithm searched for conflict-free altitudes in 1000 foot increments, not accounting for 

the maneuvering aircraft's direction of flight. If a climbing resolution cannot be found, a 

descent is then attempted in the same manner. Similar to the way in which lateral 

resolution trajectories are flown, altitude changes involve the aircraft climbing or 

descending to the assigned altitude and temporarily maintaining that altitude for a 

specified period of time. The aircraft then returns to its previous altitude and rejoins its 

original flight path. 

In addition to the factors that are weighed in the formulation of lateral and altitude 

resolutions, an overriding factor depends upon which of the aircraft in the conflict pair is 

chosen to be the maneuvering aircraft. One of the most deciding factors in this case is if 

one of the aircraft in the conflict pair is an arrival or departure. For example, in most 

cases, the overflight aircraft would be chosen as the maneuvering aircraft so as to not 

impede the progress of the other aircraft. 

By virtue of the resolutions being generated by an algorithm that has set 

parameters, a proposed benefit of using it, in addition to a reduction in air traffic 
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controller workload, is consistency. Use of the algorithm would arguably provide 

consistent benefits in terms of the efficiency of flight due to the fact that it has a defined 

strategy that is geared towards efficiency and that this strategy is applied in a repetitive 

and consistent manner. This may be in contrast to air traffic controllers, who, by virtue 

of being an aggregate of individual human beings, exercise different strategies in 

resolving aircraft conflicts. 

It is as of yet unclear whether or not the consistency offered by the algorithm 

provides the same, if not better, results in terms of system performance than what human 

air traffic controllers would in the same environment. This is an important measure to 

address because, after all, any proposed piece of automation must first be able to provide 

at least equivalent levels of performance of assigned tasks as the human it would 

ultimately complement or replace. This requires a measure of comparison between the 

automated algorithm and the human in identical situations. Additionally, it would be 

important to make this comparison not only in the context of current day levels of traffic 

but also at the levels that the NAS is projected to reach in the near future. 

Current Study 

The purpose of this study was to establish this comparison between the human 

and the automation in terms of system performance with the intent of identifying how 

each agent performs both individually across progressively higher levels of traffic density 

as well as how they perform relative to one another. In doing so, it was hoped that their 

strengths and weaknesses would come to bear with respect to the ability to safely and 

efficiently manage the traffic as well as how that might change as the level of traffic 
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increases. An additional intent of this study was to gauge the human air traffic 

controllers' acceptability of the manner in which the automation performs the task of 

conflict resolution and how access to that automation by the human impacts their 

workload. 

Levels of Comparison 

As the automated conflict resolution algorithm was designed for the task of 

resolving conflicts, the focus of comparison in this study was isolated to that task. 

Therefore, the measures of system performance had to be framed in terms of what impact 

the potentially different ways that the human and automation resolve aircraft conflicts 

had on those measures. Also, as the scope of this study was limited to conflict 

resolutions, the traditional issues of automation (e.g. bias, failure, situational awareness, 

etc.) were not examined. This also meant that, for comparison purposes, the 

responsibilities of the air traffic controller were strictly limited to conflict resolution. 

As mentioned earlier, the measure of comparison between the human and 

automation was going to be in terms of system performance. For the purposes of this 

study, system performance was defined as the safety and efficiency of the traffic as it 

transited a prescribed sector. More specifically, safety was defined as the number of 

separation violations that occurred as well as the overall minimum separation distances of 

the aircraft over a certain amount of time. Efficiency was further defined as the time and 

lateral and vertical distance added to the airspace system as a result of the resolutions 

executed. Acceptability was defined by the air traffic controllers' subjective impressions 
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of the automation as well as more objective measures related to the way in which they 

used the automation when it was made available. 

With respect to the levels of comparison that were instituted in this study, the first 

basic level dealt with traffic density. As the increases in traffic density for the NAS are 

predicted to grow to up to three times current day levels, this study investigated conflict 

resolution performance at three separate traffic density levels: current day (IX), twice 

current day levels (2X), and three times current day levels (3X). 

The other level of comparison was related to the conflict resolution mode. There 

were three separate modes investigated in this study: manual, interactive, and fully 

automated. 

The title of manual mode of conflict resolution in this study is a bit of a misnomer 

as it implies that the air traffic controller has no automated tools available to assist in the 

task. However, in this study, the air traffic controllers operating in the manual mode had 

automated conflict detection and a trial planning function. The data gained from this 

aspect of the study served as both a point of comparison for the fully automated mode as 

well as an opportunity to observe the air traffic controllers of today attempt to cope with 

the potential traffic environment of tomorrow. Perhaps due to the uncertainties of what 

changes will be introduced in the future this is a surprisingly understudied area of 

research that is deserving of analysis in its own right. 

The interactive mode involved the same basic environment as found in the manual 

mode with automated conflict detection and trial planning capabilities, but the key 

difference was that the air traffic controller now had access to conflict resolution 
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suggestions provided by the automated algorithm. The suggestions offered by the 

algorithm were able to be accepted, modified, or rejected depending on the assessment by 

the controller. The inclusion of this interactive condition was a necessary component due 

to the understanding that any introduction of an automated tool for conflict resolution 

would likely need to be phased in first in a supporting role before being able to assume 

the full burden and responsibility for the conflict resolution task as is envisioned. Thus, 

the controllers' performance while having the automated tool available would need to be 

assessed in order to ensure that there was some benefit it terms of performance and 

workload relative to when the tool was not available. An additional benefit to including 

the interactive condition was that it provided an implicit and objective means by which 

the acceptability of the algorithm's suggested resolutions and ultimate functioning could 

be gauged. 

The final resolution mode was the fully automated mode in which the algorithm 

resolved conflicts completely autonomously. Once again there was automated conflict 

detection from which the algorithm based its resolutions on. The fully automated mode 

not only served as an important point of comparison with the human air traffic controllers 

but provided the opportunity to observe and analyze the behavior and potential of the 

algorithm in the future operations for which it was designed for. 

Research Questions 

As this was the first human-in-the-loop study of the Advanced Airspace 

Concept's automated conflict resolution algorithm, its conduct was more exploratory in 
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nature. Through the levels of comparison just outlined, a number of questions were 

addressed. 

Given that the chief purpose of the automated algorithm is to provide separation 

assurance, the first question addressed was what kind of impact the different resolution 

modes had on the system performance metric of safety across the three traffic density 

levels? This involved an analysis of separation violations and minimum separation 

distances. 

The second question that this study addressed was how the efficiency of flights 

was affected by the different resolution modes, and how they might have changed as a 

result of the increasing traffic density levels. The answers to these questions resided in 

the system performance metric of efficiency with respect to the total delay added to the 

system as a result of the resolutions as well as the lateral distance added and vertical 

distances traversed. With its relationship to time and expense, the topic of efficiency was 

assessed as it ranks high on the list of airspace system users' priorities. 

The third question investigated concerned how the increases in traffic levels and, 

more importantly, access to the automated algorithm in support of the conflict resolution 

task affected workload relative to when the automation was not available. This was an 

important measure to address as one of the primary benefits of the algorithm is to reduce 

the air traffic controller's workload. Although this benefit refers more to the stage at 

which the algorithm is functioning autonomously, it would still need to be examined in 

the context of a transitional, supporting role that it would most likely need to fulfill first. 
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The final question that this study addressed related to the acceptability of the 

algorithm's resolutions. More specifically, what is the general acceptability of the 

resolutions generated by the algorithm both in terms of subjective impression and 

willingness to actually implement the resolution at each level of traffic density, and does 

acceptability change as the levels increase? The issue of acceptability was necessary to 

include as the introduction of any tool into the air traffic controller's arsenal would face 

stiff opposition and potentially impassable roadblocks without it. 
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METHOD 

Participants 

Nine participants volunteered to take part in this study. Four of the participants 

were retired air traffic controllers with over 20 years experience. Four of the other 

participants were general aviation pilots and recent graduates of San Jose State 

University's Aviation program. One participant was a student preparing to enter the air 

traffic controller training and selection program. Participation was solicited via email 

with subsequent inclusion based on availability. During the planning and recruitment 

process, participants were assembled into groups of three as the intent was to run three 

participants in parallel. With a total of nine participants, this meant that there were three 

groups. As this was a within-subjects study the composition of each group was not a 

concern with respect to bias. All participants were paid for their time. There were also 

nine supporting participants that were all general aviation pilots. 

Apparatus and Stimuli 

Participants used individual personal computer (PC) workstations equipped with 

the Multi-Aircraft Control System (MACS) software (Prevot, 2002) and connected to a 

28" display monitor. The equipment that the participants used was located in the 

Airspace Operations Laboratory (AOL) at the NASA Ames Research Center and can be 

seen in Figure 2. Supporting pseudopilot functions were performed with networked 

computers from an adjacent room in an automated mode. These stations were monitored 

by supporting participants for situations in which manual intervention was needed. 
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Figure 2. MACS workstations in the Airspace Operations Laboratory. 
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Objective data was logged at each participant and supporting workstation as well as at 

dedicated data collection stations through MACS's data collection processes. Movie 

screen captures of each run were recorded with the commercial Camtasia Studio software 

at each participant's workstation. Subjective data on workload was gathered at five 

minute intervals during each ran via MACS's workload assessment keypad emulation. 

Subjective data was further gathered through the presentation of questionnaires presented 

to the participants at the conclusion of each run (see Appendix A). 

The objective data collected from the participants were in reference to their 

performance in resolving conflicts at three progressive levels of traffic density and two 

different conflict resolution modes. This was made possible by MACS and the tailoring 

of the system by Dr. Thomas Prevot and his software development team for the needs of 

this study. 

One major development in MACS that was introduced for this study concerned 

the display system replacement (DSR) graphical emulation that the participants used for 

controlling air traffic. One configuration of the DSR display in MACS provides the user 

with a nearly identical display to what is seen in today's en route ATC environment. 

However, with the increased traffic levels that were planned for the study, it was clear 

that keeping the display in its current day configuration would not be a viable option. For 

example, as shown in Figure 3, aircraft present on a current day DSR display are each 

represented by an aircraft position symbol with an associated data block that contains 

basic information about that aircraft such as its callsign, assigned altitude, and speed. 
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Data block 

Aircraft posit ion symbol 

Figure 3. Current day display in MACS with basic information highlighted. 
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By keeping this setup, particularly at the 3X level of traffic, the display became so 

cluttered with all of the aircraft's data blocks (see Figure 4) that an individual would have 

to devote nearly all of their time and effort to decluttering the display with little time left 

to resolve conflicts. Even if one were to forego decluttering the display and simply 

attempt to resolve conflicts using the current day configuration, the clutter from all of the 

symbology and data blocks would become so unruly that resolving most conflicts would 

be nearly impossible. 

These difficulties led to the modification of the current display to one in which 

aircraft that were not in conflict had collapsed data blocks and the color of the symbology 

for these aircraft were dimmed down to a point where they nearly blended in with the 

background (see Figure 5). This modification was also in keeping with one of the 

purposes of this study, which was to isolate and limit the tasks of the controller to conflict 

resolution, freeing them from the responsibility for attending to any of the other more 

routine tasks that they are currently responsible for. 

In contrast to the dimmed down aircraft not in conflict, those that were in conflict 

were made salient to the participants by highlighting the aircraft symbols with different 

hues that indicated the time to imminent loss of separation (LOS). As shown in Figure 5, 

there were three colors used for this highlighting, with the aircraft in white representing a 

loss of separation in anywhere from 12 to eight minutes. Aircraft with yellow symbology 

represented a predicted LOS in between eight and five minutes. Finally, aircraft that 

were presented in orange represented a predicted LOS in between five and two minutes. 
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Figure 4. Current day display at 3X level of traffic, 
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12-8 min. 
to LOS 

8-5 min. 
to LOS ' 

Figure 5. Advanced display settings at 3X level of traffic. 
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All of the aircraft in conflict were also shown to the participants in a conflict list, which 

had the conflict pairs ordered according to the times to loss of separation. This meant 

that those aircraft pairs that were predicted to lose separation most immediately appeared 

at the top of the list while those with greater times to LOS appeared further down the list. 

With less than two minutes, the aircraft in conflict dropped out of the conflict list 

and became dimmed out once again. Additionally, their collapsed data tag flashed red 

until the aircraft pair was outside of the prescribed separation minima. This essentially 

ended the time available for resolving the conflict at which point the participant would 

move on to the next conflict. The reason for taking these measures was that the 

automated algorithm stopped generating conflict solutions with less than two minutes to 

LOS. Allowing the conflicting aircraft to remain highlighted past this two minute point 

would not have allowed for a fair comparison between the automation conditions as well 

as a fair assessment of how the tool was used when it was available. It should be noted 

here that the presentation of aircraft in conflict only applied to those that were predicted 

to lose separation within the boundaries of the test sectors. Those aircraft that would lose 

separation outside of the test sector were not presented to the participants as they were 

only responsible for conflicts happening inside of their sector. 

With regard to simulated air traffic, it was decided early on to base the traffic 

scenarios on those used in a previous study that looked at Trajectory Oriented Operations 

with Limited Delegation (TOOWiLD) (Prevot et al., 2007). The scenarios from this 

previous study were based on airspace that included sectors from the Kansas City Air 
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Route Traffic Control Center (ZKC) and Indianapolis Air Route Traffic Control Center 

(ZID) (see Figure 6). 

A total of six scenarios were developed with two scenarios per level of traffic: 

IX, 2X, and 3X. For the scenarios used in the current day (IX) traffic level condition, 

the same two scenarios used in the TOOWiLD study's current day, datalink condition 

were adapted. The only difference was that as a result of the scenarios from the previous 

study being 75 minutes in length with gradual traffic build-up times, a recording of both 

scenarios needed to be made that would tailor them to the target 30 minute duration time 

of this study. This was done with the MACS recording function by playing the original 

scenarios for approximately 20 minutes, which was the point at which the original 

scenarios had reached the peak traffic levels of approximately 15 aircraft in both ZKC 50 

and ZID 91 test sectors. After reaching this point the recordings started. The end product 

was basically two separate IX scenarios that mirrored the original scenarios except for 

the fact that they had, from the start, a fairly steady stream of approximately 30 aircraft at 

any given time transiting the combined test sectors shown in Figure 6. The two scenarios 

created here served as the basis for the remaining four scenarios at the 2X and 3X levels 

collectively. 

For the creation of the two scenarios used to represent the 2X traffic level, the 

same two scenarios created for the IX condition were used as their foundation. However, 

these IX scenarios were altered in a number of ways in order to achieve the desired 

sector counts. As previously mentioned, the original scenarios that the IX scenarios were 

based upon had a duration that was much longer than what was necessary for this study. 
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Figure 6. Airspace used in the study. 
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As a result, a number of aircraft from the IX scenarios never entered the test sectors 

during the desired 30 minute time frame. Therefore, to achieve and maintain the 

necessary traffic levels of 60 aircraft in the 2X condition, those aircraft that were too far 

away in the IX scenarios were moved closer to the test sectors while ensuring that they 

remained on their original routes. However, this left at least half of the aircraft in the 

scenarios identical to what was used in the IX scenarios. Consequently, in order to avoid 

recognition of the aircraft by the participants, a number of steps were taken. One such 

step was to essentially randomize the callsign of each aircraft in the scenario to at least 

render the aircraft unidentifiable to the participant at the name level. A further step was 

taken to reduce the similarities of the IX and 2X scenarios by randomizing the starting 

points and altitudes of all aircraft in both 2X scenarios. Care was taken to ensure that the 

new altitudes were consistent with their direction of flight such that aircraft flying in an 

easterly direction were at odd altitudes and those flying in a westerly direction were at 

even altitudes. 

While moving aircraft closer to the test sectors was sufficient for generating 

scenarios at the 2X level, additional measures were needed in order to reach the desired 

traffic count of 90 aircraft at any given time in the combined test sectors at the 3X level. 

As each of the two scenarios in the 2X condition was based on one of the two IX 

scenarios, the first step in creating a 3X level scenario was to take one of the 2X level 

scenarios and combine it with the IX scenario that it was not based on. This was done by 

copying aircraft from the IX scenario and inserting them into the 2X scenario until the 

proper traffic count was finally attained. Upon reaching this point for both of the final 
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3X scenarios, the same randomization process used in the development of the 2X level 

scenarios was applied. 

Before proceeding to the details of how the number of conflicts in each of the 

scenarios was achieved, it may be important to explain an assumption that was made that 

guided the initial scenario development process. Although the aircraft in the IX 

scenarios all followed structured routing, it became clear during the development process 

that this would have to be changed somewhat as the traffic levels increased. While every 

effort was made to maintain each aircraft's original structured routing for the 2X and 3X 

scenarios, it quickly became evident that this would not be completely possible due to the 

fact that as the traffic level increased, the areas in the test sectors where many of the 

transiting aircraft shared a common waypoint -ENL and PXV specifically (see Figure 6) 

- became so overwhelmed with traffic that the conflicts occurring in those areas became 

completely unmanageable because there was no room to maneuver. As a result, a 

number of aircraft transiting those high density areas were given routes that were offset a 

given distance and ran parallel to the other traffic so as to at least maintain that particular 

flow of traffic. 

Having reached the desired traffic counts for all six scenarios with the route 

structures just described, the issue of conflict counts was addressed. In terms of the IX 

scenarios, because they were considered representative of current-day levels of traffic, 

the number of conflicts that ultimately resulted in a separation violation from simply 

allowing the scenarios to run open-loop was established as the baseline number from 

which those in the 2X and 3X scenarios would be derived. After playing out the two IX 
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scenarios, the total number of conflicts in each were eight and six respectively. As an 

underlying goal in this scenario generation process was to provide a challenging traffic 

environment that would provide ample opportunities for the excitement of differences 

between conditions, the greater number of eight was originally chosen as the base number 

that the conflict counts in the subsequent scenarios would be based upon. 

In determining how this initial number of eight conflicts could be scaled to meet 

the most appropriate number for the 2X and 3X scenarios, the relevant literature 

described the increase in conflict counts in relation to traffic levels as being non-linear. 

For example, Georges Maignan, in his 1992 article "Safety Aspects of Increased Capacity 

of Airport and ATS," referred to a formula proposed much earlier by Robert Machol 

(1979) from which Maignan based his conclusion that two and threefold increases in air 

traffic would result in four and ninefold increases in conflicts respectively. This 

conclusion has since been supported particularly with respect to aircraft with structured 

routing as seen in today's environment and, for the most part, the scenarios used in this 

study (Jardin, 2004). This rationale has also been adopted and implemented in 

subsequent studies on issues related to traffic density increases (Hoekstra, Ruigrok, & 

van Gent, 2000). As a result, the number of conflicts that were used for the 2X and 3X 

scenarios in this study was based on squaring the magnitude of traffic density increase 

and then multiplying that number with the original base number of eight. This meant that 

the 2X scenarios eventually had approximately four times the number of conflicts as the 

IX scenario, which translated to approximately 32 conflicts. The 3X scenarios had nine 
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times the number of conflicts as the IX scenario, which were approximately 72 conflicts 

for the 30 minute time frame. 

With the number of conflicts for each scenario decided, additional work was 

needed in reaching that level since there were too few in the scenarios at this point. The 

goal in generating these additional conflicts was that the scenario would have a fairly 

steady number of conflicts throughout its duration and that there would be a variety of 

conflict situations (e.g. arrival vs. cruise, cruise vs. departure, etc.). This required the 

scripting of conflicts through an iterative process in which each scenario was played out 

in real time and potential conflict pairings were identified. Many of the conflicts that 

were ultimately scripted were done so by adjusting the altitude of one of the aircraft such 

that the resulting trajectory would lead to a loss of separation without some form of 

intervention. 

Although the desired number of conflicts was eventually reached, a few late 

changes altered these numbers somewhat. One of these changes was a result of the 

scenarios being developed using a wind environment that was different from what was 

planned for use in the final study. Changing the wind characteristics of the study's 

airspace resulted in a change to the nature of some of the conflicts such that the original 

counts were later found to be different. Another change involved the "smoothing" of 

aircraft routes due to the observation that some of the existing routes in the scenario 

contained rather unrealistically sharp kinks. It was found that if an aircraft was given a 

direct-to by deleting one of the kink's waypoints, it would result in distance and time 

savings that were out of the norm and unlike anything that would be seen today. As a 



32 

result, many of the routes in the scenarios were smoothed out by strategically inserting 

waypoints at particular points along the route in order to reduce the angle between some 

of the existing waypoints. Great care was taken to allow all of the aircraft's routes 

through the test sectors to remain identical, but a few alterations were needed which also 

resulted in a minor change to the number of conflicts. Attempts were made to reclaim the 

previous number of conflicts with moderate success in the IX and 2X scenarios, but one 

of the final 3X scenarios ultimately had 61 conflicts as opposed to its previous count of 

72. However, this change in number did not appear to have detrimental effects as it 

proved to be a number that was just as difficult for the participants to deal with as the 

other 3X scenario, which contained 73. 

In addition to the six test scenarios that were created, six training scenarios were 

developed through much the same process as described earlier. The main difference in 

this case was that instead of increasing the number of conflicts in the scenarios, the 

number was reduced in order to provide the participants with the opportunity to 

familiarize themselves with the flow of traffic through the test sectors. This reduced 

number also gave participants the time to get comfortable with using the display and tools 

for conflict resolution, which also allowed them to focus on the task itself without the 

need to worry about keeping up with the conflict frequency that they would encounter 

later during the test runs. 

Before continuing on to the explanation of this study's experimental conditions, it 

may be important to explain some of the basic characteristics and assumptions that 

governed the air traffic environment that the participants operated in. An important 
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assumption that was made was that the conflict detection system that alerted the 

participants to the conflicts was one hundred percent accurate and participants were 

informed that it should be trusted completely. This absolved the participant from having 

to monitor and search for potential conflicts and also served to limit the scope of this 

experiment solely to the task of conflict resolution. With respect to the actual aircraft in 

all of the scenarios, all were data link equipped and automatic dependent surveillance -

broadcast (ADS-B) equipped with a one second update rate on the display. As far as 

control and ownership of these aircraft was concerned, the participant owned all aircraft 

from the start of the scenario and could send clearances via data link to any aircraft 

regardless of whether or not it was in the test sectors. Additionally, the participants were 

only alerted to and responsible for conflicts that would result in LOS within the test 

sectors. The participants were not alerted to nor were they to be concerned with conflicts 

that would happen outside of the test sectors. 

Conflict Resolution Conditions 

The purpose of this study was to investigate the performance of humans and 

automation in the task of conflict resolution across different levels of traffic density. This 

resulted in a total of nine experimental conditions: 

1. IX Manual: Participants managed approximately 30 aircraft at any given 

time with the aid of an automated trial planning tool for the construction of 

resolutions (see Figure 7). 

2. 2X Manual: Participants managed approximately 60 aircraft at any given 

time with the aid of an automated trial planning tool. 
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3. 3X Manual: Participants managed approximately 90 aircraft at any given 

time with the aid of an automated trial planning tool. 

4. IX Interactive: Participants managed approximately 30 aircraft at any given 

time with the aid of an automated trial planning tool. Additionally, the 

participants were equipped with the conflict resolution algorithm, which 

automatically generated and made available conflict resolutions once 

activated. 

5. 2X Interactive: Participants managed approximately 60 aircraft at any given 

time with the aid of an automated trial planning tool and the conflict 

resolution algorithm. 

6. 3X Interactive: Participants managed approximately 90 aircraft at any given 

time with the aid of an automated trial planning tool as well as the conflict 

resolution algorithm. 

7. IX Fully Automated: The automated conflict resolution algorithm attempted 

to resolve all conflicts without human involvement in an environment with 

approximately 30 aircraft occupying the test sectors at any given time. 

8. 2X Fully Automated: The automated conflict resolution algorithm attempted 

• to resolve all conflicts without human involvement. Approximately 60 

aircraft occupied the test sectors at any given time. 

9. 3X Fully Automated: The automated conflict resolution algorithm attempted 

to resolve all conflicts without human involvement. Approximately 90 

aircraft occupied the test sectors at any given time. 
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Figure 7. Example of the manual trial planning tool used for conflict resolution. 
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Design and Procedure 

In this 3x3 within-subjects repeated measures design, the two independent 

variables (IV) that were manipulated across conditions were traffic density and conflict 

resolution mode. The traffic density IV consisted of three levels: IX, 2X, and 3X. The 

conflict resolution mode IV consisted of three levels: manual, interactive, and fully 

automated. The matrix created by the mixture of these IVs and their associated levels 

consisted of nine conditions as outlined above. However, as the fully automated 

conditions did not involve any human intervention, participants were only exposed to the 

six conditions that related to the manual and interactive modes of conflict resolution. 

The dependent variables that were used to measure the effects of these 

independent variables dealt with system performance metrics related to safety, efficiency, 

workload, and acceptability. Safety was measured in terms of separation violations and 

minimum separation distances. Efficiency was measured by the total delay imposed on 

the system, the average delay per resolution, the average lateral distance deviation per 

lateral resolution clearance, and the average vertical distance traversed by aircraft given 

altitude clearances. Workload was measured during each run through prompts every five 

minutes on each participant's display. The peaks and means of this metric were included 

in the final analysis. An additional measure of workload was obtained through post-run 

questionnaires that, in part, asked participants to rate their peak workload for the run just 

completed. The final dependent measure was acceptability, which included separate 

objective and subjective components. The objective measurement was taken from the 

participants' usage characteristics of the automated conflict resolution algorithm when it 
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was available for assistance. This involved how often the automation was used, and how 

often the suggested resolutions were accepted or rejected. The subjective measure of 

acceptability was taken from the responses that participants gave to the post-run 

questionnaire following runs in the interactive condition. 

With the independent variables decided upon, the instruments in place, and 

receipt of the proper approvals (see Appendix B), the formal experiment began in the 

Airspace Operations Laboratory at the NASA Ames Research Center. With respect to 

the runs in which participants were involved, there were a total of 12 runs - one run per 

each of the six conditions with one repetition. All participants were exposed to all 

conditions with the order of runs following the schedule presented in Table 1. The 

administration of these runs was accomplished over the course of two days. 

Upon arrival of the first group of participants on the first day of the experiment, 

they were given an initial briefing on the details of the study and what would be expected 

of them over the next two days. The participants were then asked to read the consent 

form (see Appendix C) and, if the terms and conditions were deemed agreeable, sign. 

Following this step, the participants were seated at one of the three workstations 

configured for the study, after which the training commenced. This involved first loading 

a IX training scenario into each of the three MACS simulation manager stations -one for 

each participant- and then playing it. Each participant trained and later performed for the 

data collection runs in parallel such that all three workstations were always running the 

same exact scenarios with the same exact configuration. Additional preparation steps 

included the initiation of the supporting controller and pilot stations for each of the three 



Table 1. 

Study schedule used throughout study. 

D a y l 

9:00 
9:30 
12:15 
1:15 
2:00 
2:50 
3:40 
4:30 

Admin./Brief 
Begin training 
Lunch 
Resume training 
Data Collection: Run 1 
Run 2 
Run 3 
Run 4 

IX 
2X 
3X 
IX 

Manual 
Interactive 
Manual 
Interactive 

Day 2 

9:00 
10:00 
11:00 
11:30 
12:30 
1:20 
2:10 
3:10 
4:00 
4:30 

Run 5 
Run6 
Run 7 
Lunch 
Run 8 
Run 9 
Run 10 
Run 11 
Run 12 
Debrief/Make-up runs 
if needed 

2X 
3X 
3X 

2X 
IX 
3X 
2X 
IX 

Manual 
Interactive 
Interactive 

Manual 
Interactive 
Manual 
Interactive 
Manual 
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clusters associated with each participant in the rooms adjacent to the experimental room. 

At this point, however, the data collection stations were not activated. The stations 

within each of the three participant clusters were linked via the aeronautical datalink and 

radar simulator (ADRS) system. 

With the lights dimmed in the experiment room and the first training scenario 

running, each participant was trained on the basics of the MACS DSR display with 

particular focus on the composition of the data blocks, aircraft symbology, data link 

operations, and the manual trial planning tool. They were also briefed and given the 

chance to familiarize themselves with the airspace that they were responsible for and the 

traffic flow characteristics of that airspace. Additionally, the participants were briefed on 

their responsibilities being limited to conflict resolution only and that the task was further 

limited to only resolving those conflicts that were presented to them as being predicted to 

occur in their sector. The two IX training scenarios were run once, which gave the 

participants ample time to get a feel for the basic operations that they would be asked to 

perform in the experimental runs. 

Following the training with the IX scenarios, the 2X training scenarios were 

loaded at each simulation manager station and subsequently played. These scenarios had 

a greater number of conflicts at a greater yet still relaxed frequency. This gave the 

participants numerous chances to practice the different methods of resolving conflicts 

manually while getting a better feel for the tools and the simulated environment. The 2X 

scenarios were played approximately three times with the first run being devoted to 

resolving conflicts manually and the remaining two runs being devoted to resolving 
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conflicts with the automated resolution tool. At this point, the participants were fairly 

well practiced with using the tools and sufficiently familiar with the simulated 

environment whereas they were prepared to tackle the more complex problem presented 

by the 3X environment. Therefore, the final run before lunch was an introductory 3X 

training scenario. Aside from the schedule of training runs, the participants were given 

15 minute breaks at the bottom of each hour until the lunch break. 

At the conclusion of the first 3X training scenario, participants were given a one 

hour lunch break after which they returned to run one final 3X scenario before 

commencing the data collection runs. Following this final training run, the participants 

were given a 15 minute break while the laboratory was prepared for data collection. This 

basically involved restarting all of the stations associated with each participant, loading 

the first scenario, and ensuring that the data collection stations were running and that 

each of the relevant stations were actively linked. Each of the three simulation manager 

stations had the start times for the run synchronized such that all three stations would 

start the air traffic at the same time automatically. 

Prior to the start of the data collection runs, the participants were given a final 

briefing in which they were reminded of their roles and responsibilities. Additionally, 

because the experimental 3X scenarios were known to be quite difficult, particularly in 

the manual conditions, the participants were told that if at any time they felt 

uncomfortable or overly frustrated during any run they were free to withdraw from the 

run or the entire experiment if so desired without any adverse consequences. And in fact 

this did actually happen on four separate occasions all during a 3X manual run. 
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Following this quick brief, the movie captures on each workstation were initiated, 

the lights in the experiment room were dimmed, and the first of four data collection runs 

for the day began. This and all other runs were 30 minutes in length. During that 30 

minute period, the participants attempted to resolve all of the conflicts that they could 

while rating their subjective workload every five minutes through the workload 

assessment keypad appearing on their display. Meanwhile, supporting participants in the 

adjacent room were monitoring the associated support stations to intervene with aircraft 

out of performance or to take care of datalink messages that had not been automatically 

accepted by the intended aircraft. It should be mentioned here that for the entire duration 

of the experiment, the supporting participants only very rarely needed to step in and 

perform any action. At the 30 minute mark, the lights were brought back up to full 

intensity and the participants were informed of the run's completion. They were then 

given a post-run questionnaire to fill out after which they were free to go on a 15 to 20 

minute break. In the meantime, the scenarios were kept running for an additional 10 

minutes to allow for the traffic to exit the test sectors. This meant that each scenario was 

run for a total of 40 minutes although the participants were only required to resolve 

conflicts for the first 30. 

After this 10 minute extension, all of the stations in each of the three clusters were 

brought down and then restarted. The next scenario was then loaded into the simulation 

manager stations with the timers set to start the traffic at the next scheduled time. At this 

point, the participants had returned from their break and had assumed their place at the 

same workstation as before. The movie captures at each station were then started and the 
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lights were dimmed in preparation for the start of the next run. At the preset time, the 

traffic in the next scenario started and the participants performed the same conflict 

resolution task as before for the next 30 minutes. 

This cycle of procedures just described was performed for all four data collection 

runs on the first day. At the conclusion of the final run, after filling out the questionnaire, 

the participants were reminded of the next day's start time and were then free to leave. 

At this point, all of the data collected from each of the participants' runs were compiled, 

organized, and stored on password protected computers. There was also no immediately 

identifiable information associated with any of the participants on any of the files. All of 

the consent forms and questionnaires were also locked in a secure room for storage. 

As shown in Table 1, the schedule for the second day consisted of a total of eight 

data collection runs. The runs were divided evenly with four in the morning and four 

scheduled for the afternoon. The administration of these runs was much the same as how 

it was accomplished on the previous day. The only difference was that due to limited 

space available for data storage on some of the computers, the lunch break was used as an 

opportunity to clear out the data from the morning's runs in preparation for its eventual 

organization and storage at the end of the day. 

At the conclusion of all 12 runs, the participants were debriefed and thanked for 

their valuable contributions. This session also provided an opportunity for an open 

discussion in which a variety of issues and concerns ranging anywhere from the overall 

operating concept to the behavior of the algorithm could be addressed. These debrief 

sessions provided valuable insight and informed some of the planned changes to the 
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algorithm and MACS software following the completion of this study. Following the 

debrief, the data collected during the day was compiled, organized, and added to the data 

collected from the previous day's four runs such that one virtual folder contained all of 

the data associated with all 12 runs for each of the three participants in the first group. 

Again, this data was stored on password protected computers in a secure room. 

The steps just described were repeated for the remaining two groups of 

participants without deviation. Careful attention was paid to accurately and promptly 

organize and store all data collected from each run while simultaneously making every 

effort to protect and maintain the anonymity of all participants. 

Having completed the data collection for all three groups, the final step was to 

collect the data for the fully automated condition. This was done over the course of one 

morning in two sessions. The first session involved initializing all three computer 

clusters much in the same way as when participants were involved, starting the movie 

captures at each station, and loading the first set of scenarios such that each of the three 

clusters would be working one of the three IX, 2X, and 3X scenarios. After the start, the 

automated algorithm worked the traffic independently by solving all conflicts 

automatically without human assistance in the task. Staff members were present for these 

runs, however, to monitor the progress as well as to intervene in the event of a 

malfunction of sorts. No conflicts were resolved by any of the staff members; the 

automated algorithm was the only agent to close the loop in resolving conflicts for these 

runs. One parameter that the automated algorithm was working under that differed from 

what the participants were was that it would only attempt conflict resolutions on conflicts 
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with eight minutes or less to LOS. In contrast, participants were allowed to solve 

conflicts from 12 minutes out. This differential was the result of the algorithm's creator's 

assertion that conflicts with greater than eight minutes to LOS stand a greater chance of 

turning out to be false conflicts and attempting to resolve them could lead to unnecessary 

clearances being sent to and flown by the aircraft. 

After the completion of this first round of data collection for the fully automated 

condition, the workstations were all restarted and prepared for the final round much in the 

same way as for the previous round. In this case, the second set of scenarios was loaded 

and ran once the movie captures had been started. 

Following this final set of data collection runs, the data from all of the fully 

automated runs were compiled, organized, and placed in the same location as all of the 

data collected from the participants. This meant that data from the entire study was 

organized into one central folder. However, due to the risk of loss, this folder was copied 

and placed in four separate locations, all with security measures in place to prevent 

unauthorized access. 
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RESULTS 

This study sought to analyze the conflict resolution capabilities of humans and 

automation in terms of system performance across three progressively higher levels of 

traffic density: IX, 2X, and 3X. System performance was broken down into the specific 

areas of safety, efficiency, workload, and acceptability. 

It should be noted here that due to the assumption that the performance of the 

automated algorithm in the fully automated conditions would always yield identical 

results, they were only run once for a total of six runs- each of the three traffic levels had 

two associated scenarios. This was in contrast to the manual and interactive conditions 

with humans in the loop that were run a total of 12 times for all nine participants. 

Because of the homogenization of variance in the fully automated conditions that resulted 

from the single run, the data gathered could not be included for comparison in the 

inferential statistical analysis. The descriptive statistics from these runs were included, 

however, as a means of comparison and for identifying trends. 

Another important item of note is that although there were originally nine 

participants from whom data were collected for in this study, only eight could be used in 

much of the final analysis. The reason for this change was that, as stated earlier, 

participants were always given the option of discontinuing their participation in a run if 

they ever felt uncomfortable or overwhelmed. In this case, one of the retired air traffic 

controllers quit during both exposures to the 3X manual conflict resolution mode 

conditions for just those reasons. Although this fact was taken as a broader data point in 

and of itself, the result was completely missing data that basically excluded this 
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individual's data from being able to be adequately compared with the other participants' 

data. 

Safety 

Since the ultimate measure of performance for both the human and the automation 

in both today's and the future's traffic environment is safety, it was analyzed first so as to 

set a framework for the viability of the automation as well as to gauge the performance of 

the humans in this most critical area. 

Separation Violations 

The first measure of safety that was analyzed was the number of separation 

violations. This dependent measure was composed of a raw count of the number of 

aircraft in a given run that violated the separation minima defined by the FAA. A 

separation violation was said to have occurred if two aircraft passed each other within a 

distance that was less than five nautical miles laterally and 1000 feet vertically. 

As seen graphically in Figure 8, the descriptive statistics for this measure show 

that for the manual mode of conflict resolution, there was a large increase in the number 

of separation violations as the traffic levels increased. At the IX, current day level, the 

average number of violations was, as should be expected, minimal (M= 0.06, SD= 0.18). 

The raw numbers show that across all 16 runs for this IX manual condition, there was 

one separation violation. As the traffic level increased from the IX to the 2X level in the 

manual condition, there was an increase in the average number of separation violations to 

1.81 (SD = 1.56). Although this was a considerable increase over the IX condition, the 

greatest increase in the number of separation violations for all conditions in the study was 



47 

35 

30 

25 
(A 
C 

o 

^ 2 0 

••5 1 5 

a. 

10 

1X 2X 

Traffic Level 

g Manual 

• Interactive 

• Full Auto. 

3X 

Figure 8. Separation violations for each conflict resolution mode and traffic level. 



48 

when the participants were exposed to the 3X level of traffic in the manual conflict 

resolution mode (M- 28.19, SD = 9.4). The resultant number of 28.19 translates to 

nearly one separation violation per minute of each trial in the 3X manual condition, 

which would be unacceptable by today's standards for safety. 

In terms of the descriptive statistics for the interactive condition, one might notice 

immediately that the numbers are clearly different at the higher levels of traffic. Since 

the number of separation violations at the IX manual level was so low, it was not 

surprising to see similar numbers in the interactive condition for the IX level. In fact, the 

numbers were identical (M= 0.06, SD= 0.18). Again there was only one separation 

violation across all runs in this condition. The first departure, then, in terms of 

differences between the manual and interactive conditions came at the 2X level of traffic, 

which saw a reduction in the average number of separation violations (M- 0.56, SD = 

0.56). A further departure between the manual and interactive conditions came at the 3X 

level of traffic. As before, there was an increase in the number of violations, but it was 

not as stark as in the manual condition (M = 4.13, SD = 2.80). 

For the fully automated conditions, the descriptive statistics reveal performance 

characteristics that were somewhat more in line with those observed in the interactive 

conditions. At the IX traffic level, there were no separation violations (M = 0.00, SD = 

0.00). At the 2X level, however, the average number of separation violations saw an 

increase to 1.00 (SD = 0.00). There was a further increase in the number of separation 

violations at the 3X level of traffic, but the fully automated conflict resolution mode 

resulted in the fewest average number of violations out of all of the conflict resolution 
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modes (M= 3.50 ,SD = 0.00). Note that the results for the fully automated condition all 

had standard deviations of 0.00. This was because the runs for this condition were not 

repeated due to the operating assumption that the automation would always behave 

identically in a given scenario regardless of the number of iterations. Therefore, there 

was nothing to compare the results from the single runs to in order to measure standard 

deviation. More conceptually, even if the trials in the fully automated condition were to 

be run multiple times, there would not be any standard deviation to report because of the 

consistency of the automation. 

Based on these descriptive statistics, the use of the automated conflict resolution 

algorithm in both the interactive and fully automated modes had a clear advantage over 

the manual mode of conflict resolution in terms of separation violations. This advantage 

was seen most clearly at the 3X level of traffic where the manual mode conditions saw an 

average of 28.19 separation violations in contrast to the 4.13 and 3.50 of the interactive 

and fully automated modes respectively. However, in order to further investigate the 

statistical significance of these differences, a 2 (manual vs. interactive resolution mode) x 

3 (IX, 2X, 3X traffic levels) repeated measures analysis of variance (ANOVA) was 

conducted on the number of separation violations. As a reminder, the fully automated 

conditions were not included in this stage of the analysis. 

The inferential statistics for the analysis of separation violations revealed 

significant main effects for the mode of conflict resolution, F(\, 7) = 72.13, p< .01, as 

well as traffic level, F(2, 14) = 62.30, p< .01. There was also a significant interaction 

between the two variables, F(2, 14) = 51.91, p< .01, suggesting that there was a certain 
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point at which the use of automation had a significant impact on the number of separation 

violations that occurred. Through subsequent paired /-tests of the manual and interactive 

resolution modes at each traffic level, it was found that the point at which this occurred 

was seen as early as the 2X level of traffic, t(l)- 2.59, p< .05, and continuing on to the 

3X level of traffic, f(7)= 7.69, p< .01. These results point to the potential benefits that the 

automated tool could have in terms of safety in both the near and far term levels of traffic 

that are predicted to occur. 

Minimum Separation Distances 

In McNally and Gong's "Concept and Laboratory Analysis of Trajectory-Based 

Automation for Separation Assurance," (2006) they outline the minimum separation 

metric that was developed as a means of comparing the number of times that unique pairs 

of aircraft pass within or near the legal separation distances for a given duration. This 

metric was meant to provide a straight-forward method of assessing workload, airspace 

complexity, and safety between different levels of automation. 

Having established the overall number of separation violations in the previous 

section where aircraft passed within less than five nautical miles laterally and 1000 feet 

vertically, the results for the minimum separation metric build on those numbers by 

including the number of unique aircraft pairs that also passed within five to 10 nautical 

miles (nm) laterally and 1000 feet vertically. The total numbers for both of these 

measures are also subdivided by five minute increments according to the times at which 

they occurred. In this study, the final result for this metric affords a fuller picture of the 

way in which the conditions played out with respect to the ways in which the different 
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modes of conflict resolution impacted the complexity and composition of the traffic flow 

across the three levels of traffic density. As this metric was intended to be a means of 

simple comparison, statistical analyses were not conducted. However, the trends and 

characteristics that came out of this comparison will be presented. 

As seen in Figure 9, the three conflict resolution modes are presented for the IX 

level of traffic. Because each of these three conditions involved the same two simulation 

scenarios, it is not surprising to see that the first five minutes are nearly identical across 

the three resolution modes in terms of the number of aircraft within 10 nm of one 

another. Each of the three conditions has at least one aircraft pair within 10 nm of each 

other within the first five minutes. However, by the 10 minute mark this number 

decreases, and differences between the resolution modes can already be seen with the 

fully automated mode showing no aircraft pairs within the 10 nm criterion while the 

manual and interactive modes did produce a few discernable number of pairs. Following 

this initial decrease, each condition exhibits a progressive increase in the number of 

aircraft pairs within 10 nm of one another. Of note here is that the manual condition 

appears to have a shallower rate of increase over time relative to the other two modes. 

The peak number of 3.33 is also less than the interactive and fully automated conditions' 

peaks of 4.44 and 5.00 aircraft pairs respectively. These numbers suggest that having to 

manage the resolution of conflicts manually somehow enabled the participants to achieve 

a more conservative and safe level of separation between aircraft. 
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Progression from the IX to the 2X level of traffic saw an increase in the overall 

number of aircraft pairs passing within 10 nm of one another (see Figure 10) due in part 

to the decrease in airspace available to accommodate the increase in traffic. In contrast to 

the results from the IX level, differences between the resolution modes at the 2X level 

can be seen almost immediately. As opposed to the manual and fully automated 

conditions, the timeline for the interactive mode shows that separation violations were 

occurring within the first five minutes of the scenario. Despite this tenuous start, it turns 

out that the manual mode of conflict resolution resulted in the most frequently occurring 

number of separation violations as seen in Figure 10 where it is shown that violations 

occurred over four consecutive time steps starting from the 10 minute mark. Although 

this is a grave safety concern, it is interesting to note that despite those separation 

violations in the manual condition, much like at the IX level, the overall count of aircraft 

pairs passing within 10 nm of one another remained low compared to the other two 

modes. And, once again, the manual condition had the smallest average peak at 13.72 

compared to the 14.56 and 15.50 peaks of the interactive and fully automated conditions 

respectively. However, given the frequency of separation violations in the manual 

condition, it appears as though the interactive condition was the safest at the 2X level of 

traffic, all things considered. Despite having a slightly higher peak than the manual 

condition, the interactive condition actually had a slightly lower overall average number 

of aircraft pairs that exceeded the separation criterion. The average number for an entire 

run in the interactive condition was 61.25 whereas the average number in the manual 

condition was 62.31 and the fully automated condition was 70.00. 
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While it seemed as though the automated conflict resolution tool at the IX level 

of traffic did not provide great benefits in terms of safety and complexity reduction, it did 

appear to do so at the 2X level of traffic. Interestingly, it seems as though the greatest 

benefit was seen when a human was in charge of using the tool selectively as opposed to 

the tool being applied in a completely autonomous manner. 

As the 2X level of traffic showed an overall increase in the number of separation 

violations and aircraft pairs that passed within 10 nm miles and 1000 ft of one another, 

this trend saw a stark increase at the 3X level of traffic, particularly in the manual mode 

of conflict resolution. Although this trend was not surprising as the sheer volume of 

traffic essentially choked the airspace thus reducing the degrees of freedom for safe and 

conservative resolution maneuvers, it is interesting to note the stark differences between 

the different resolution modes at this level. 

As shown in Figure 11, participants in the manual mode experienced a number of 

separation violations at each time step, with numbers at one point reaching 10 separation 

violations during a single five minute period. These kinds of numbers also meant that the 

overall number of aircraft pairs within lOnm was greatly increased. Figure 11 shows the 

timeline for the manual mode where the number of aircraft pairs increased dramatically 

to a point at which the peak number of 40.76 was achieved. This stands in contrast to the 

interactive and fully automated modes where the numbers of aircraft pairs barely 

exceeded 25. With respect to the latter conditions, much like at the 2X traffic level, the 

interactive condition showed the least average overall number of aircraft pairs within the 

separation criteria with an average of 121.81 pairs per run as opposed to the 125.00 pairs 
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seen in the fully automated condition. However, as presented in the previous subsection, 

the fully automated condition had the fewest separation violations at this traffic level out 

of any of the conflict resolution modes. One point worth mentioning here is that 

particularly at the 3X level of traffic, it was interesting to see how greatly the results for 

the manual and interactive conditions differed. In this case, the interactive condition was 

much more similar to what was seen in the fully automated condition. Perhaps the results 

from the participants' usage characteristics of the automation presented in the 

Acceptability section will shed some light on this matter. 

Efficiency 

For this study, efficiency was defined in terms of four separate yet related 

measures. The first measure was the total delay added to the airspace system as a result 

of the conflict resolution clearances executed. The average delay per resolution was also 

included as part of the definition of efficiency. The next measure was the average lateral 

distance deviation, relative to the original flight path, per lateral resolution clearance. 

The final measure was the average vertical distance traversed by aircraft given altitude 

clearances. 

Total Delay 

Total delay was measured in seconds and was the result of both lateral and 

altitude conflict resolutions. The descriptive statistics for this measure show that for the 

manual condition's IX level, instead of imposing delays, conflict resolutions actually 

afforded an average time savings of -28.25 seconds (SD= 185.94) (see Figure 12). 
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This affordance of time savings related to conflict resolutions did not persist, however, as 

the traffic level was increased to 2X (M= 2908.06, SD= 1636.97). This trend continued 

to the 3X level of traffic where the conflict resolutions enacted resulted in greater average 

delays (M= 3954.81, SD= 2556.08). 

Unlike the IX traffic level in the manual conflict resolution mode, the interactive 

mode at IX did actually result in delay with an average of 24.63 seconds (SD= 

180.78).However, at the 2X level of traffic, the interactive mode imposed less delay than 

what was observed in the manual mode (M= 1770.38, SD= 346.96). The 3X level of 

traffic also saw the interactive mode providing less delay than the manual mode (M= 

3476.13, SD= 668.31). Note that the standard deviation values for the interactive 

condition were also much less than what was observed in the manual condition. 

The fully automated mode of conflict resolution turned out to have delay results 

that were between what was seen in the manual and interactive conditions with one 

exception; At the IX level of traffic, the fully automated condition actually had the 

highest average amount of delay out of any of the resolution modes at 58.00 seconds 

(SD= 0.00). However, the 2X (M= 2180.50, SD= 0.00) and 3X (M= 3567.00, SD= 0.00) 

levels of traffic saw an average amount of delay that was less than what was observed in 

the manual conditions. 

In terms of the delay aspect of efficiency, based on the descriptive statistics just 

presented, it appears as though at current day levels of traffic, the participants were able 

to provide the most efficient resolutions without the aid of the automated resolution tool. 

However, this was only the case at the IX level. As the traffic levels progressed to 2X 
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and 3X, it appeared as though the automated tool provided efficiency benefits relative to 

when the tool was not available in the manual condition. For the least amount of delay at 

these levels, however, the results showed that keeping the human involved in the process 

did have an advantage as the interactive conditions had less delay compared to when the 

application of the tool was fully automated. 

Although the descriptive statistics showed that the interactive condition had the 

least delay at the higher levels of traffic while the manual condition had the least delay at 

current day levels, a further exploration of these differences was needed in order to 

understand their significance. To that end, a 2 (manual vs. interactive resolution mode) x 

3 (IX, 2X, 3X traffic levels) repeated measures analysis of variance (ANOVA) was 

conducted on the total delay added to the system as a result of the conflict resolutions. 

Despite the differences in total delay between the two resolution modes that were 

evident in their descriptive statistics, no significant main effect was found, F(l , 7)= 1.76, 

p> .05. However, there was a significant main effect for traffic level, F(2, 14)= 45.68, 

p<.01. This did not result in a significant interaction between the two variables though, 

F(2, 14)= 1.70, p>.05. The fact that there was a significant main effect for traffic level 

did not come as a surprise given the extreme differences between the three levels both in 

terms of the scenarios as well as the resulting numbers outlined in the descriptive 

statistics. 

The preceding statistics referred to the measure of total delay imposed on the 

system as a result of all conflict resolutions given over the course of an experimental 

condition's run. This was an important measure to include as the total delay is, in the 
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end, a quantifiable and translatable metric that is of definite interest to all stakeholders of 

the air transportation system. However, the results just presented do not provide a full 

picture of delay as each condition afforded the participants the ability to send up a 

different number of clearances based on time available and the complexity of the 

situation. As a result, some of the differences in delay observed thus far were simply the 

result of there being a fewer or greater number of clearances issued. Therefore, an 

additional measure of the average delay per clearance was included in order to equalize 

the various resultant delays across all of the study's conditions. 

Average Delay 

The descriptive statistics for the average delay characterized in Figure 13 show 

that in the manual condition's IX level of traffic, the average delay per clearance uplink 

was still minimal (M- 0.06, SD= 34.76). At the 2X level, the average delay per 

resolution increased dramatically to 70.49 seconds (SD= 40.42). The increase continued 

to the 3X level, but at a far lesser rate (M= 80.62, SD= 63.88). 

For the interactive conditions, the average delay per clearance at the IX level was 

greater than its manual condition counterpart (M= 6.65, SD= 32.56). The 2X level 

showed an increase to an average of 35.25 seconds (SD- 6.42). Interestingly, the 3X 

level only saw a slight increase in average delay over the 2X level (M= 37.03, SD= 5.40). 

At the IX level of traffic for the fully automated condition, the average delay turned out 

to be considerably more than what was observed in the other two resolution modes with 

an average of 15.95 seconds (SD= 0.00) per uplink. At the 2X and 3X levels, however, 

the delay looks somewhat more in line with what was seen for the interactive conditions 



62 

B Manual 

• Interactive 

D Full Auto. 

Traffic Level 

Figure 13. Average delay per resolution in each condition. 



63 

with averages of 46.83 seconds (SD= 0.00) and 45.43 seconds (SD= 0.00) respectively. 

The descriptive statistics just presented seem to show that at the IX level of 

traffic, the manual mode of conflict resolution appeared to have the least impact on delay 

relative to the interactive and fully automated modes. However, this benefit was short

lived as the manual mode showed the highest average delay out of any of the modes at 

the 2X and 3X levels. Conversely, the interactive mode appeared to have the least 

amount of delay associated with each clearance at these levels of traffic. 

To further probe the differences in average delay between the manual and 

interactive conditions, a two-way, repeated measures ANOVA was conducted with 

resolution mode and traffic levels serving as the variables. In terms of resolution mode, 

despite the differences highlighted in the descriptive statistics, there did not appear to be 

a significant main effect, F(\, 7)= 3.41, p> .05. There was, however, a significant main 

effect for traffic level, F(2, 14)= 30.82, p< .01. Unlike the results observed for total 

delay, a significant interaction was found between resolution mode and traffic level for 

average delay, F(2, 14)= 5.60, p< .05. Despite the significant interaction that was found, 

subsequent paired t-tests of the manual and interactive resolution modes at each level of 

traffic failed to find any significant differences. While initially this might come as a 

surprise, a look back at the standard deviations presented in the descriptive statistics 

shows that the variance in many of the conditions was quite high, which ultimately 

served to weaken the effects of the observed mean differences between resolution modes. 
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Lateral Distance 

Another measure of efficiency analyzed in this study was the added lateral 

distances flown, relative to the original flight path, by aircraft given lateral conflict 

resolutions. In this case, the average lateral distance flown per clearance was the measure 

of comparison because a cumulative measure would not translate to anything meaningful. 

Finally, distance was measured in nautical miles (nm) and the comparisons involved 

resolution mode and traffic level much like in the analysis of delay. 

The descriptive statistics for the manual condition show that at the IX level of 

traffic, participants were able to reduce the amount of distance flown as the average 

added distance was actually negative (M= -1.25, SD= 4.97) (see Figure 14). This finding 

is similar to what was observed for the total added delay outlined in the previous section 

where the IX manual condition resulted in time savings. There is, however, some 

concern of a possible confound influencing the results for this condition in terms of 

participant behavior that will be discussed in the Discussion section. As the traffic level 

increased to the 2X level in the manual condition, there was an expected increase in the 

added lateral distance in that the average total distance added was 4.38 nm (SD= 3.20). 

The distance increased once again as the traffic level reached 3X (M= 11.58, SD= 5.56). 

For the interactive mode of conflict resolution, the IX level of traffic showed greater 

average distances flown by each conflict aircraft than in the manual condition with an 

average lateral distance of 1.25 nm (SD= 3.65) per resolution clearance. 
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However, at the 2X level, the interactive condition had a lower average lateral distance of 

3.49 nm (SD= 1.97). At the 3X level of traffic, the difference between the two conditions 

was even more pronounced with an average of 5.66 nm (SD= 1.22) per clearance. 

At the IX and 2X levels of traffic, the fully automated mode of conflict resolution 

resulted in the greatest average lateral distance per clearance out of all resolution modes 

with values of 1.84 nm (SD= 0.00) and 4.97 nm (SD= 0.00) per resolution respectively. 

However, the 3X level of traffic showed that the fully automated condition only had a 

slightly larger average lateral distance than the interactive condition, which had the least 

amount of lateral distance added per clearance (M= 5.84, SD= 0.00). 

These descriptive statistics suggest that giving the participants access to the 

automated conflict resolution tool allowed them to construct lateral conflict resolution 

clearances that were more efficient at the higher levels of traffic than when they did not 

have the tool. Likewise, it appeared as though the participants having the tool and being 

able to judge and apply it selectively resulted in more efficient lateral resolutions than 

when the automated tool was allowed to operate independently. 

Given the differences observed between the manual and interactive modes of 

resolution at each level of traffic, it was important to further investigate these differences 

in order to understand their significance. To that end, a two-way, repeated measures 

ANOVA was conducted on the average lateral distance per clearance. With regard to 

resolution mode, a significant main effect was not found, F(l, 7)= 3.43, p> .05. A 

significant main effect was found, however, for traffic level, F(2, 14)= 33.91, p <01. A 

significant interaction was found between the resolution mode and traffic level, F(2, 14)= 
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8.03, p <01. As highlighted in the descriptive statistics, the most profound differences 

between the resolution modes in average lateral distances were found at the 3X level of 

traffic. Subsequent paired f-tests confirmed that the differences between the manual and 

interactive modes were only significant at the 3X traffic level, t(J)= 3.56, p<.Q\. A look 

back at the descriptive statistics showed that the interactive mode of conflict resolution 

provided the most efficient lateral resolutions at the 3X level of traffic with an average 

distance of 5.65 nm compared with the 11.58 nm seen in the manual condition. 

Vertical Distance 

The final measure of efficiency was the average vertical distance traversed by 

aircraft in each vertical conflict resolution that was implemented. The distances used in 

the analysis were defined in units of feet (ft) and were taken in absolute terms without 

regard to the directions -up or down- that the resolutions involved the aircraft flying. 

The descriptive statistics for the manual resolution mode show that at the IX level 

of traffic, the average vertical distance for each vertical clearance was 3229.78 ft (SD= 

1374.26). As shown in Figure 15, the average distance decreased slightly as the traffic 

level increased to 2X with an average distance of 3151.25 ft (SD= 1014.39) per vertical 

resolution. This decrease continued to the 3X level where the average distance was 

2761.55 ft (SD= 826.86). 

The interactive conditions followed similar trends as seen in the manual condition 

but with less distance associated with each resolution. For example, at the IX level of 

traffic, the average vertical distance flown was found to be 2022.00 ft (5X>= 1298.03). 
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The 2X level resulted in an average of 1944.81 ft (SD= 507.80) with a further decrease at 

the 3X level of traffic (M= 1996.82, SD= 242.55). 

The fully automated condition had the least vertical distances per clearance at the 

IX and 2X levels of traffic with respective averages of 1666.67 ft (SD= 0.00) and 

1572.71 (SD= 0.00). At the 3X level, however, the average distance was 2363.39 ft (SD= 

0.00), which was actually higher than what was observed in the comparative interactive 

condition. 

Based on these descriptive statistics, it seems as though the fully automated mode 

of conflict resolution allowed the tool to find vertical resolutions that required the least 

amount of vertical change at the IX and 2X levels. However, at the 3X level, the 

interactive condition added the least amount of vertical distance per clearance, which 

suggests that the participants were somehow better able to use the automated tool at their 

discretion to find more efficient vertical resolutions when the traffic reached such an 

elevated level. 

The differences observed in the descriptive statistics required further analysis in 

order to see the significance of each condition's effect on average vertical distance. Once 

again, a two-way, repeated measures ANOVA was conducted on average vertical 

distance with resolution mode and traffic level as the variables. With respect to 

resolution mode, it turns out that there was a significant main effect, F(l , 7)= 8.21, p<.05. 

However, traffic level did not have a significant main effect, F(2, 14)= .45, p> .05. There 

was no significant interaction between the two variables, F(2, 14)= .28, p>.05. Given the 

differences between the manual and interactive conditions observed in the descriptive 
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statistics, a significant main effect was not a surprising result with the interactive 

condition clearly enabling more efficient vertical clearances. 

Workload 

Following efficiency, the subsequent focus of analysis was workload. Measures 

of workload were taken via two different sources. The first source of workload data was 

derived from responses to prompts of an emulated workload assessment keypad (WAK) 

in MACS taken during each run at five minute intervals. From these responses, the 

average and peak workload data was used for analysis. The second source of workload 

data was taken from post-run questionnaires that asked for the peak workload 

experienced during the previous run. 

For the workload ratings given during the run, participants rated their subjective 

workload over the preceding five minutes on a scale from one to seven, with seven 

representing the highest workload possible. The first point of analysis for this data was 

the average workload experienced for each condition. As in the previous results detailed 

thus far, the sample size was N= 8 due to the fact that one participant did not complete 

both runs of the 3X manual condition. Additionally, the workload analysis will 

obviously only include the manual and interactive conditions at each of the three traffic 

levels as the participants were not involved in the fully automated condition. 

As shown in Figure 16, the obvious trend was an increase in average workload as 

the traffic level was increased. However, the rate of increase was not the same between 

the manual and interactive conditions. To be more specific, the descriptive statistics for 

the average workload in the manual condition show that at the IX level of traffic, the 
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average workload was nearly as low as possible with an average of 1.05 (SD= 0.10). 

Average workload appeared to increase at the 2X level of traffic as participants reported 

an average of 2.57 (SD- 1.21). Not surprisingly, the largest increase in workload came at 

the 3X level of traffic where an average of 5.12 (SD= 1.44) was recorded. 

The interactive condition showed slightly lower average workload levels at thelX 

and 2X levels of traffic with mean reports of 1.01 (SD= 0.03) and 2.06 (SD= 0.64) 

respectively. At the 3X level of traffic, however, the average recorded workload was 

2.88 (SD= 1.16). This represented a rather large difference between the manual and 

interactive modes of conflict resolution, which suggests that the aid of the automated 

conflict resolution tool begins to provide the greatest benefit in terms of workload 

reduction in particularly highly dense and complex traffic situations as seen at the 3X 

level of traffic in this study. 

To investigate whether or not there was any significance to the differences 

observed in the descriptive statistics, a two-way, repeated measures ANOVA was 

conducted on average workload in which the resolution modes of manual and interactive 

were compared with the three levels of traffic. 

Results of the ANOVA revealed significant main effects for resolution mode, F(\, 

7)= 31.21, p< .01, and traffic level, F(2, 14)= 48.60, p< .01. A significant interaction 

between the two was also found, F(2, 14)= 7.18, p< .01. After conducting subsequent t-

tests to isolate the differences in workload, it was found that, as seen with the descriptive 

statistics, the point at which there was a significant difference between the two resolution 
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modes was at the 3X level, ?(7)= 3.79, p< .01. Again, the interactive mode showed the 

greatest benefit in reducing workload relative to the manual mode. 

The results for average workload were included in order to get a general sense of 

workload experienced by the participants throughout each condition's runs. However, as 

always with averaging, some of the more interesting results get diluted and their 

importance is lost. In this case, it was felt that the peak workload ratings across the 

conditions would be important to analyze as they would give a truer sense of the impact 

that use of the automated tool had on workload. To that end, the highest reported 

workload rating per run was used in the following analysis. One item to note before 

proceeding is that as the previous analyses used a sample size of N= 8, the analysis of 

peak workload included the addition of the ninth participant due to the assumption that at 

the point that the individual decided to withdraw from the 3X manual runs, the workload 

rating was basically equivalent to the highest possible rating of seven and was included in 

the analysis as such. 

The descriptive statistics for the manual condition at the IX level show that the 

peak level of workload hardly ever exceeded the lowest possible rating of one (M- 1.39, 

SD= 0.60) (see Figure 17). The 2X level showed a noticeable increase with an average 

peak rating of 3.67 (SD- 1.48). The 3X level of traffic resulted in by far the highest 

average peak ratings at 6.39 (SD= 1.32). The interactive conditions followed the same 

trends observed in the manual Condition, but with lower peak workload ratings. The IX 

level of traffic was similar to what was seen in the manual condition with an average 

peak rating of 1.06 (SD= 0.17). The 2X level showed an increase in peak workload that 
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was still slightly less than its manual condition counterpart (M= 3.22, SD= 1.20). The 

greatest difference between the resolution modes was seen, as in other measures, at the 

3X level of traffic with the interactive condition's average peak ratings being 4.11 (SD= 

1.50). 

As before in the average workload analysis, a two-way, repeated measures 

ANOVA was conducted on peak workload in order to test the significance of the 

differences between the conflict resolution modes across each of the three levels of 

traffic. The only difference here was that as the analysis involved peak workload ratings, 

all nine participants were able to be included. Results of the ANOVA showed a 

significant main effect for resolution mode, F(l , 8)= 26.65, p< .01, as well as traffic 

level, F(2, 16)= 95.26, p< .01. A significant interaction between the two variables was 

also found, F(2, 16)= 4.79, p< .05. To further explore the nature of the significant 

interaction, multiple paired f-tests were conducted using the resolution modes for 

comparison at each level of traffic. Much like in the previous analysis of the average 

workload, the results of the /-tests showed that it was at the 3X level of traffic that the 

benefit of the automated tool in reducing workload was maximally realized with a 

significant result of t(8)= 5.35, p< .01. 

As mentioned previously, a secondary source of workload data was gained from 

post-run questionnaires that asked participants to rate their peak workload, on a scale 

from one to seven, over the entire previous run. Although this information could be 

gained directly from the runs as was just presented, it was thought that asking for peak 

workload responses following each run would allow for more informed, holistic ratings 
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of peak workload after the participants had time to reflect on the run that they had just 

completed. 

Figure 18 shows that the results for peak workload in this case were very much 

similar to what was observed in the previous analysis of peak workload. The descriptive 

statistics for the manual conditions showed that at the IX level, the average peak 

workload was 1.28 (SD= 0.44). Average peak workload at the 2X level was 4.39 (SD= 

1.50). The 3X level of traffic resulted in extremely high peak ratings with an average of 

6.94 (SD= 0.17). This basically meant that at some point during the run, each participant 

had reached workload levels that were nearly intolerable. 

The interactive conditions showed slightly lower peak ratings than the manual 

condition particularly at the IX and 2X levels of traffic with results of 1.00 (SD- 0.00) 

and 3.17 (SD= 1.00) respectively. The 3X level of traffic produced the largest difference 

between the resolution modes with the average peak workload rating being 4.89 (SD= 

1.65). Overall, perhaps the most interesting item to note from these descriptive statistics 

was the extreme magnitude of the 3X manual condition's peak ratings of nearly the 

maximum of seven for all nine participants. 

For analysis of the inferential statistics, the same two-way, repeated measures 

ANOVA was conducted with essentially the same results: a significant main effect for 

resolution mode, F(l , 8)= 59.80, p< .01, a significant main effect for traffic level, F(2, 

16)= 142.75, p< .01, and a significant interaction between the two variables, F(2, 16)= 

4.70, p< .05. Following the discovery of the significant interaction, paired /-tests were 

conducted, and it was here that a noticeable difference emerged between the previous 
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Figure 18. Peak workload ratings from post-run questionnaires. 
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peak workload analysis and the current analysis. In the previous analysis, the point at 

which a significant difference was found between the manual and interactive modes was 

at the 3X level of traffic. In the current analysis of peak workload ratings gathered from 

questionnaires, results from the paired Mests showed that there was a significant 

difference between the two modes at the 2X level of traffic, t(8)= 4.05,p<.01, as well as 

at the 3X level of traffic, t(S)= 3.79, p< .01. Another look at the descriptive statistics 

shows that it was the interactive mode of conflict resolution that served to reduce 

workload levels. This provides further support to the earlier results in that use of the 

automated conflict resolution tool by the participants provided an advantage in terms of 

workload over conditions where such aid was unavailable. 

Acceptability 

The final measure addressed in the current study was the acceptability of the 

automated conflict resolution tool's suggested resolutions. Acceptability was determined 

through two different means, one being objective and the other subjective. The objective 

measure of acceptability was obtained from the participants' usage characteristics of the 

automated resolution tool. The subjective measure of acceptability was derived from 

responses to an item on the post-run questionnaires given after completion of each run in 

the interactive conditions. 

The data related to the objective measure of acceptability was gained by looking 

at the relationships between the number of times the automated conflict resolution tool 

was used relative to the overall number of resolutions that were attempted, and then 

contrasting the number of times the tool was used with the number of times that the 
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suggested resolution was modified or rejected. The latter metric served as the proxy for 

acceptability as it was thought that the use of a resolution suggested by the algorithm 

meant that it was, for whatever reason, deemed acceptable by the participant. 

Conversely, rejection of the suggested resolution through either its modification or 

cancellation was considered an indication of unacceptability. 

The following analysis was intended to be used more for the general 

understanding of the automated tool's acceptability and the trends associated with how it 

may have been impacted differently across the IX, 2X, and 3X levels of traffic. It was 

not intended to discover the statistical significance. Consequently, the results presented 

from this analysis will be purely descriptive in nature. Additionally, as this portion of the 

analysis solely considers the use of the automated conflict resolution tool by the 

participants, all results presented are in relation to the interactive conditions only. 

Figure 19 presents the mean number of resolutions attempted, the number of 

times the automated resolution tool was called upon, and the number of times the 

suggested resolution was modified. Given the differences between traffic levels, it is not 

surprising to see that the number of attempted resolutions increases steadily as the traffic 

level increases. To be more specific, the average number of attempted resolutions at the 

IX level of traffic was 7.44 (SD= 1.33). Of those attempted resolutions, the average 

number of times that the automated conflict resolution tool was used was 5.44 (SD= 

2.10). After using the tool and reviewing the suggested resolution, the average number of 

times that the resolution was chosen to be modified was a minimal 0.50 (SD= 0.66). 
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Moving to the 2X level of traffic resulted in an average of 62.78 (SD= 8.62) attempted 

resolutions, a sharp increase over what was seen at the IX level. Out of those attempted 

resolutions, the average number of times that the automated tool was called upon was 

54.28 (SD= 7.89), from which there were an average of 3.56 (SD= 3.85) modifications to 

the suggested resolution. The 3X level of traffic, of course, showed the highest values for 

each of these measures with an average of 109.33 (SD= 12.33) attempted resolutions, an 

average of 105.22 (SD= 12.26) times that the automated tool was used, and an average 

3.06 (SD= 2.54) modifications. 

From the results just presented, it appears as though as the traffic level increased, 

so did the use of the automated conflict resolution tool. On the other hand, it also appears 

that with the increase in the tool's usage at the progressive levels of traffic, there was a 

decrease in the number of modifications to the resolutions by the automation. 

To get a clearer picture of these trends and to neutralize the numerical differences 

brought about by the inherent differences between traffic levels, percentages of tool 

usage and resolution modifications were calculated. Figure 20 presents the percentages 

just referred to, and as one can see, the trends identified by the total values remained 

consistent. As the traffic level increased, so did the percentage of the time that the 

automated tool was used. More specifically, at the IX level of traffic, the tool was used 

73.13 % of the time. As the traffic increased to the 2X and 3X levels, the tool's usage 

increased to 86.46% and finally 96.24% of the time respectively. As the frequency at 

which the automated tool was used increased, the number of modifications decreased. 
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At the IX traffic level, the percentage of suggested resolutions that were modified was 

9.18%. At the 2X level the percentage decreased to 6.55%, and finally at the 3X level the 

percentage of modifications fell to 2.90%. 

Given the interpretation of acceptability previously outlined for these results, it 

appears as though the resolutions suggested by the automated tool were increasingly 

acceptable as the traffic density increased. The reasons for this are not entirely clear; 

however some possibilities will be discussed in the Discussion section. 

The final measure of acceptability was subjective in nature and consisted of the 

participants' responses to an item on the post-run questionnaire following each 

interactive condition's run. The response was to a question that asked, "How acceptable 

do you feel the suggested conflict resolutions from the automation were?" This response 

was on a scale from one to seven with one representing the lowest level of acceptability 

and seven representing the highest level of acceptability. 

Figure 21 presents the average responses to the acceptability question for each of 

the three levels of traffic. Right away one can see that there is an obvious decline in the 

reported acceptability of the automation's suggested resolutions as the traffic levels 

increased. Descriptive statistics across the traffic levels show that the acceptability 

ratings were highest at the IX level with an average of 6.61 (SD= 0.99). The 

acceptability at the 2X level declined slightly to an average of 6.28 (SD= 1.00) followed 

by a further decline at the 3X level to 5.72 (SD= 1.41). These results show that for some 

reason, as the traffic levels increased and the airspace became more complex, the 
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behavior of the automated conflict resolution tool was such that the participants felt that 

the resolutions that it was suggesting became less acceptable to them. 

To see whether or not the differences between the traffic levels were significant, a 

one-way, repeated measures ANOVA was conducted, with the three traffic levels serving 

as the variable levels. Results for this inferential statistic showed that the differences in 

acceptability between the traffic levels were significant, F(2, 16)= 8.21, p< .01. Paired t-

tests with an adjusted Bonferroni procedure revealed that average acceptability ratings 

differed significantly between IX and 3X levels, t(8)= 3.25, p< .05, as well as between 

the 2X and 3X levels, /(8)= 3.16, p< .05, but not between the IX and 2X levels, t(8)= 

1.63, p> .05. 

According to the results just outlined, the resolutions suggested by the automated 

tool were least acceptable at the 3X level of traffic. However, a look back at the average 

acceptability rating shows that it was 5.72 out of a possible 7. This rating is still rather 

high despite being the lowest. In fact, the ratings across all levels of traffic suggest that 

the resolutions provided were acceptable overall. However, one might notice that the 

trend in this aspect of the analysis of decreasing acceptability is contrary to what was 

observed in the previous analysis of acceptability. In that instance, the interpretation was 

that acceptability increased as the traffic level increased. This is an interesting point to 

address and is deserving of further discussion in the following section. 
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DISCUSSION 

The purpose of this study was to analyze the conflict resolution capabilities of 

humans and automation across three progressive levels of traffic. The focus of the 

analysis was on the impact that the different modes of conflict resolution had on the 

measures of system performance involving safety and efficiency, as well as the measures 

of workload and acceptability. The results just presented showed that the use of the 

automated conflict resolution tool had a beneficial impact on system performance and 

workload especially as the level of traffic increased. For example, the results for safety 

indicated that the use of the automation allowed for a significantly lower number of 

separation violations as early as the 2X level of traffic and continuing to the 3X level 

when compared to the results for the manual mode of conflict resolution. The automation 

also provided benefits for the measures of efficiency with significantly lower amounts of 

delay and lateral deviated distances associated with the conflict resolutions. 

Interestingly, while the differences in these efficiency measures between the manual and 

automated conflict resolution modes increased with the level of traffic, the opposite was 

observed for the measure of vertical distance. In addition to the system performance 

measures, the automation also had a beneficial impact on the workload reported by the 

participants. Once again, the benefits provided by the automation were most apparent 

particularly at the 3X level of traffic. Finally, the behavior and performance of the 

automated conflict resolution tool was generally acceptable to the participants though 

these results were not as easily interpretable. The results from this study have provided a 

number of topics for discussion as they relate both to the automation itself and the larger 
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issues at hand for the national air transportation system. These topics will be discussed in 

turn with their implications incorporated into the discussion. This will be followed by the 

limitations of this study and the future directions that research could take in building 

upon what was accomplished through this initial study. 

Safety 

In terms of safety, although the number of separation violations was quite 

different among traffic levels and conflict resolution modes, the overall results were 

rather distressing. For instance, at the current day, IX baseline traffic level there was one 

separation violation per manual and interactive resolution mode condition. While this 

might not sound like much, the gravity of a separation violation is such that even one 

occurrence is cause for alarm. In this case, with nine participants working a IX scenario 

twice, the time that it took to observe a separation violation was only nine hours of 

operations. Keep in mind that this was confined to a specific airspace. If these numbers 

were to be translated to the national scale the frequency of separation violations would be 

much higher. 

However, as detailed earlier, the current day system is much safer than these 

results would suggest. Therefore, the separation violation results for at least the IX 

conditions should be interpreted cautiously. Perhaps one positive sign was that the fully 

automated condition for the IX level of traffic did not produce any separation violations 

as was expected. The fact that there were any separation violations at this level in both 

the manual and interactive modes of resolution came as a bit of a surprise. It should be 

noted, however, that even though there was a separation violation in the interactive 
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condition, participants were not forced to use the automated tool for each conflict that 

they encountered. In fact they did not use the tool as often at the IX level in particular. 

This makes it a bit difficult to attribute the occurrence of the separation violation at this 

level to the tool per se. Nonetheless, it did occur in an interactive condition and was a 

surprise. 

Less surprising, though, was that the number of separation violations was 

significantly higher at the 2X and 3X levels of traffic. Nowhere was this more apparent 

than at the 3X level of traffic where the mean number of separation violations in the 

manual condition was a staggering 28.19. This number was clearly unacceptable and 

provided further proof and support for drastic changes in the way air traffic is managed if 

it is ever to increase to 3X levels safely. 

Despite the high number of separation violations in the manual 3X condition and 

given that the focus of this study was to explore and compare conflict resolution 

capabilities across resolution modes, it was interesting to see how the automation 

provided safety benefits as the traffic levels increased. This was observed as early as the 

2X level of traffic where the interactive mode allowed significantly lower numbers of 

separation violations than the manual mode. This trend continued to an even greater 

extent at the 3X level of traffic where both the interactive and fully automated resolution 

modes resulted in measurably fewer separation violations than the manual mode. 

The results concerning separation violations suggest that the greatest benefit of 

the automation would be realized as the levels of traffic increased. However, although 

the interactive and fully automated resolution modes provided obvious safety benefits, 
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even the results for those conditions would be unacceptable to both industry and the 

flying public. However, it should be stressed that these results only pertain to a 

component of the overall Advanced Airspace Concept. The integration with other 

components for short-term conflict detection and resolution is intended to provide the 

safety assurance function required to eliminate these separation violations. Perhaps an 

examination of the concept's remaining components, in addition to the tool used in this 

study, would yield results that would be more in line with the safety standards in place 

today. 

The minimum separation distance metric was the other measure used to define 

safety in this study. One interesting item of note that followed the results at the IX level 

of traffic was that the time step characteristics shown in Figure 9 were quite similar to the 

baseline measures used to represent current day traffic in McNally and Gong's 2006 

paper from which this metric was borrowed. This was a reassuring observation as it 

provided support for the use of the IX scenarios as the foundation for the 2X and 3X 

levels of traffic. 

With respect to the minimum separation distances at the IX traffic level, the 

manual and interactive resolution modes were quite comparable to one another. It was 

the fully automated mode that resulted in the greatest number of aircraft that passed 

within 10 nm of one another. However, as mentioned earlier, there were no separation 

violations that occurred in this mode, which is the ultimate measure. Perhaps in this case 

having to deal with a greater number of aircraft closer in to one another is a price that 

must be paid in order to avoid a serious incident. 
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As the traffic levels increased, however, the differences became more apparent 

between the manual and interactive conditions. At the same time, the interactive and 

fully automated conditions showed results that were more in line with one another. 

Particularly at the 3X level of traffic, the manual mode of resolution resulted in the 

greatest number of aircraft within 10 nm of one another. Contrasted with the automated 

conditions, the manual mode of resolution not only had the greatest number of separation 

violations, it also resulted in the most dangerous situation in that so many aircraft were so 

close to one another that the degrees of freedom to maneuver were severely reduced. 

This meant that without the automated tool suggesting or executing resolutions at these 

higher levels of traffic, the path to recovery from a difficult and complex traffic situation 

would be difficult if not impossible. 

Continuing with the 3X level of traffic, another item of interest was the apparent 

benefit that keeping the aircraft greater than 10 nm from one another provided. As shown 

in Figure 11, both the interactive and fully automated modes of resolution had much 

fewer aircraft that were less than 10 nm from each other when compared to the manual 

mode. Apparently the automated tool provided the ability to keep aircraft outside of 10 

nm, which in turn vastly reduced the number of aircraft that ultimately lost separation. 

Taken together, the results for the safety aspect of this study showed that 

separation assurance simply cannot be adequately handled without at least the support of 

an automated decision support tool. Having the automation available afforded the 

participants more time and opportunity to deal with the conflicts, which eventually not 

only significantly cut down on the number of separation violations, but the overall 
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number of aircraft within 10 nm of one another. This not only meant that the immediate 

traffic situation was safer, but that in the event of an off-nominal situation arising, there 

would be more space and time with which to address the event than if automation was not 

available. 

Efficiency 

Following safety, efficiency was the next concern addressed in this study. Within 

this larger measure were the three more specific sub-measures of average delay, lateral 

distance, and vertical distance associated with each resolution clearance. An additional 

measure included in the analysis of delay was the total delay imposed on the system as a 

result of all conflict resolutions. Outwardly this measure simply provided a very broad 

overview of the delay impacts of each resolution mode at the three levels of traffic. This 

served as a quick and easily quantifiable measure of comparison. From this comparison 

the results showed that, similar to what was observed in safety, access to the automation 

in the interactive and fully automated conditions provided benefits relative to the manual 

condition. In this case it meant that the total delay imposed on the system at the 2X and 

3X levels of traffic was consistently less when the automated conflict resolution tool was 

available. Despite the fact that there were no statistically significant differences between 

the manual and interactive conditions, Figure 12 shows a clear trend favoring the 

automation in terms of reduced delay. 

One relevant issue that needs to be addressed before proceeding relates to the 

delay results observed at the IX level of traffic. The manual mode of resolution in this 

case actually afforded a time savings. While this might lead one to simply conclude that 
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resolving conflicts manually was more efficient, a potential confound was present that 

allowed for the greater efficiency. Although the participants were instructed to only send 

clearances related to conflict resolutions and that their role was limited to that task, some 

participants were still observed attempting to provide services to both conflict and non-

conflict aircraft through extensive route optimization. Although this action was caught 

and the offending participants ceased their attempts at providing services, the number of 

these route optimizations was apparently enough to skew the results somewhat at the IX 

level of traffic. 

Moving past this issue, the results for total delay ultimately reflected more than 

simply the overall delay. Due to the fact that total delay was a cumulative measure, the 

results may have been affected by the number of resolutions enacted: the more conflicts 

that were resolved meant that there could very likely be more overall delay. Interestingly 

this was not necessarily the case. Although the interactive and fully automated 

conditions sent more conflict resolutions than the manual condition, particularly at the 3X 

level of traffic, overall delay was relatively less. This meant that despite sending fewer 

resolutions to conflict aircraft, the manual mode of conflict resolution resulted in a 

cumulative amount of delay that exceeded what was observed in the other two modes. 

In order to remove the uncertainties brought about by the different number of 

resolutions and get at a more comparable measure of delay, the average delay per uplink 

was subsequently analyzed. Results from this analysis made the greater delays associated 

with the manual condition even more evident than what was seen earlier. By neutralizing 

the effect of the number of conflict resolutions, it is clear that on a per resolution basis, 
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resolutions in the manual conditions produced much greater delays as the traffic levels 

increased. 

In addition to delay, the average lateral distance that aircraft deviated as part of a 

resolution was analyzed as part of the overall measure of efficiency. As pointed out in 

the discussion of delay, results for the manual condition at the IX level of traffic were 

somewhat suspect due to the route optimizations that some of the participants were 

attempting. In this case, the results showed that for the IX manual condition there was a 

distance savings associated with each resolution. At the 2X and 3X levels, however, the 

results for the manual condition were more in line with what might be expected. 

Interestingly, though, the manual condition did have a lower average than the fully 

automated condition at the 2X level of traffic. Apparently at this level participants were 

able to find resolutions on their own that required less deviation than what the automated 

algorithm could generate. 

This ability did not last, however, as the traffic reached the level of 3X. At this 

point the lateral distances per resolution in the manual condition were quite high relative 

to the interactive and fully automated conditions suggesting that without having the 

automated tool available participants had to resort to more extreme lateral deviations in 

an attempt to ensure adequate separation and maintain some semblance of control. This 

observation and the statistically significant interaction particularly at the 3X level of 

traffic once again highlight the important role that automation must play in the 

accommodation of greater levels of traffic. 
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The final measure of efficiency analyzed in this study was the average vertical 

distance associated with each vertical conflict resolution. For this measure, the 

interesting finding was that unlike the delay and lateral distance measures of efficiency, 

results for vertical distance showed that as the traffic levels increased the differences 

between the resolution modes decreased. This was a departure from the previous 

efficiency measures as the manual mode generally resulted in greater inefficiencies as the 

traffic level increased. 

Another interesting departure observed with this measure was that the average 

vertical distances associated with each resolution actually decreased as traffic levels 

increased. This was certainly not the case in the previous efficiency measures where 

increases in traffic level brought with it overall increases in delay and lateral distance. 

The reason for this is not entirely clear but one possibility might be that the increased 

complexity brought about by the increased traffic levels required a more tactical approach 

to altitude resolutions: whereas altitude resolutions for the IX and to a lesser extent the 

2X level of traffic allowed for greater vertical distances to be used to completely resolve 

a conflict, the 3X level of traffic may have had fewer safe altitudes with which to work 

with and may have consequently required participants to solve immediate conflicts with a 

minimal altitude change in exchange for a secondary conflict downstream that required 

another tactical, minimal altitude change. 

Having discussed the measures of efficiency thus far, one final issue related to the 

topic concerns the overall reduction in variance observed through the usage of the 

automated conflict resolution tool. A comparison of the manual and interactive modes 
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for each of the three efficiency measures shows that the standard deviation is nearly 

always less for the interactive mode, which only became more pronounced at the higher 

levels of traffic. The reduction of variance and more specifically the introduction of 

consistency to the task of conflict resolution was, in fact, one of the stated benefits of the 

automated tool. The results observed for efficiency seem to support that claim and 

further the case for implementing this type of tool in some capacity in preparation for the 

looming increase in air traffic. 

Workload 

As consistency was a stated benefit of the automated conflict resolution tool, the 

reduction of workload was as well. One of the concerns often cited as being a key barrier 

to the predicted increases in traffic level is workload. Part of the impetus for the 

automated conflict resolution algorithm's development was in answer to this concern. 

Although the ultimate role envisioned for the algorithm and tool that would employ it is 

in a fully automated capacity, it is assumed that there would be a transitional period 

where it would serve as a decision support tool for the operators. In this study, the 

workload of participants was compared between the manual and interactive conditions in 

order to gauge the automated tool's impact. 

Before proceeding any further in the discussion of the workload results, it is 

important to make a qualification for the measure of workload used in this study. For this 

study, workload was in reference to the singular task of resolving conflicts. This is in 

contrast to the wider set of tasks normally performed by controllers such as making and 

accepting handoffs of aircraft, maintaining voice communications with each aircraft, 



96 

accommodating arrival and departure traffic for their upcoming phases of flight, as well 

as the monitoring, detection, and resolution of conflicts. These are but a few of the tasks 

required of controllers. But even if one were to perform these tasks, a very different 

picture of workload would emerge. For example, the previous TOOWiLD study (Prevot 

et al., 2007) involved participants performing many of the tasks normally required of air 

traffic controllers as well as some unique tasks at current day levels of traffic, the 

equivalent of IX. In this environment, the average workload reported by participants was 

nearly 4 out of 7. This stands in contrast to the workload ratings in this study at the IX 

level of traffic, which rarely exceeded the lowest rating of 1. This difference highlights 

the fact that workload in this study has a somewhat limited scope and its interpretation 

and generalization should be treated with care. This does not detract, however, from the 

more basic issue of whether or not the automation reduces workload. 

In this case, the results showed that regardless of whether the average or peak 

workload ratings were analyzed, the interactive mode of conflict resolution provided a 

reduction in reported workload at every level of traffic. Trends in the data showed that 

the automated tool had an increasingly beneficial impact on workload as the traffic level 

increased. Results from the post-run questionnaires actually showed a significant 

difference between the two conditions as early as the 2X level of traffic and continued to 

the 3X level. These results not only provide a basis for support for the proposed benefits 

of the automated algorithm but it also showed that the benefits in these terms could be 

reaped early on. In answer to the concerns of workload being a barrier to the increase in 
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traffic, these results highlight the possible instrumental role that this tool could play in the 

accommodation of the predicted levels of air traffic. 

Acceptability 

The final concern addressed in this study was the acceptability of the resolutions 

suggested by the automated conflict resolution algorithm. This was a critical area of 

interest as the path to implementation of any tool in the air traffic control domain is often 

dictated by its acceptance from the controllers. To that end, acceptability was measured 

by the participants' usage characteristics of the automation as well as through a more 

subjective means via questionnaire. 

In terms of how the automation was used in the interactive condition, the obvious 

trend was that the participants came to rely on the automated resolutions to a far greater 

extent as the traffic levels increased. Conversely, the percentage of times that those 

resolutions were modified decreased. This latter measure was used as the proxy for 

acceptability as the modification of a suggested resolution would imply that it was in 

some way unacceptable. Taking these results together one could conclude that the 

acceptability of the automation increased along with traffic levels. Results from the 

questionnaires somewhat contradict this interpretation, however. 

Responses to the questionnaire item showed that the acceptability of the 

automation's suggested resolution actually decreased as a function of traffic level such 

that the 3X level of traffic produced significantly lower acceptability ratings than the two 

lesser levels. That being said, it should be kept in mind that these low ratings were still 

fairly high with an average response of nearly 6 out of a possible 7. However, the trend 
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of decreasing acceptability cannot be denied, particularly when the trend for the previous 

measure of acceptability was opposite. This requires further discussion of these results in 

order to attempt the reconciliation of this disparity. 

As mentioned earlier, the participants came to rely on the automation more as the 

traffic levels increased and accepted its resolutions without modification at a greater rate 

as well. Given the progressive workload and difficulty associated with the levels of 

traffic, it seems as though the automation ended up being used almost as a time saving 

tool. If this was indeed the case, the automation's suggested resolutions may have been 

more acceptable out of necessity. It is still interesting to see then that the resolutions 

were subjectively less acceptable given the fact that the resolutions used were, regardless 

of the measure, almost universally more beneficial than what was observed in conditions 

without the automation. Perhaps general frustration with the complexity and pace of the 

3X level of traffic was in some way included in the ratings of acceptability and could 

explain the differences in acceptability. 

It may have also been that interpreting the participants' usage characteristics of 

the automation was not necessarily an adequate measure of acceptability. This is not to 

say that these results were not valuable. It merely points to a possible, yet minor, 

limitation of the study. A larger limitation worth discussing was the variance observed in 

many of the results that were presented. The variance between the manual and 

interactive conditions was so large at times that it very well likely masked some 

significant results. This was most likely due to the small sample size and the mixture of 
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participant types that were included. This leads to the discussion of some possible 

directions that future research could take. 

Future Research 

The first and perhaps most obvious course to take for follow-on research would 

be to conduct a similar study with a larger, more homogenous sample. However, the 

results presented from this study beg for further investigation into other relevant issues. 

One of the first possibilities that stand out is that since this study focused on automation, 

it naturally follows that an investigation into some of the traditional concerns of 

automation be addressed. This could involve such issues as trust, bias, and failure 

recovery. With respect to failure recovery, it would be very interesting to examine how 

failures in conflict detection would be dealt with in terms of being able to identify that 

there has been a failure and then having the time and ability to successfully avert a loss of 

separation. This type of study within the framework of the current study would also 

allow for the fully-automated conditions to be included in the statistical analysis, which 

was not the case here. Another possible direction for future research would be to build 

upon this study by having essentially the same conditions but instead have the 

participants perform, in addition to resolving conflicts, the other tasks normally 

associated with the job. 

Conclusion 

The results from this study highlight two issues that have immediate relevance to 

the automation analyzed for this study as well as the future viability of the air 

transportation system in the United States. First, with respect to the automation, the 
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results showed that it provided significant benefits relative to the manual condition in 

terms of safety, efficiency, and workload. This was particularly true at high levels of 

traffic. The behavior of the automated conflict resolution tool and underlying algorithm 

also proved to be generally acceptable. However, these same results highlight the second 

issue, which is that the NAS and all of its stakeholders face some serious challenges if the 

predicted threefold increase in air traffic is to be realized. With safety being of 

paramount importance, the results showed that even with trajectory-based automation, a 

great deal more must be done fairly quickly in order to be able to maintain safety in the 

increasingly crowded skies. Despite this fact, the results of this study demonstrated that 

using the automation for conflict resolution as part of a near term decision support tool 

was an example of exactly the types of changes that need to take place if the increases in 

air traffic are to ever be handled safely and efficiently. 
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APPENDIXES 



Appendix A 

Post-Run Questionnaire for the Manual Condition 

Part-Task Study Jul/Aug 2007 Date: Run#_ 
Post-Run Questionnaire Exp. Condition: M Position: 

Workload 

1. Mental Demand: What level of mental and cognitive effort (e.g. thinking, analyzing, searching, 
etc.) did performing the tasks require? 

Low 1 2 3 4 5 6 7 High 

2. Effort: What do you feel your peak level of workload was for the run just completed? 

Low 1 2 3 4 5 6 7 High 
Operations 

3. Efficiency: How efficient (e.g. degree of path deviations, magnitude of flight level changes) do 
you think your clearances were in the resolution of conflicts? 

Low 1 2 3 4 5 6 7 High 

4. If you feel the clearances could have been more efficient, what factors do you think might have 
been the cause of the inefficiencies? 

5. Rate the level of manageability of the traffic encountered in the completed run. 

Unmanageable 1 2 3 4 5 6 7 Fully manageable 

Strategies 

6. What general strategies did you develop and/or employ as the run progressed with respect to 
managing the traffic and resolving conflicts? 

7. Which conflict resolution method (e.g. lateral path stretch or altitude change), if any, did you 
come to rely on most and why? 
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Post-Run Questionnaire for the Interactive Condition 

Part-Task Study Jul/Aug 2007 Date: Run# 
Post-Run Questionnaire Exp. Condition: I Position: 

Workload 

8. Mental Demand: What level of mental and cognitive effort (e.g. thinking, analyzing, searching, 
etc.) did performing the tasks require? 

Low 1 2 3 4 5 6 7 High 

9. Effort: What do you feel your peak level of workload was for the run just completed? 

Low 1 2 3 4 5 6 7 High 
Operations 

10. Efficiency: How efficient (e.g. degree of path deviations, magnitude of flight level changes) do 
you think your clearances were in the resolution of conflicts? 

Low 1 2 3 4 5 6 7 High 

11. If you feel the clearances could have been more efficient, what factors do you think might have 
been the cause of the inefficiencies? 

12. Rate the level of manageability of the traffic encountered in the completed run. 

Unmanageable 1 2 3 4 5 6 7 Fully manageable 

Automation 

13. Acceptability: How acceptable do you feel the suggested conflict resolutions from the automation 
were? 

Unacceptable 1 2 3 4 5 6 7 Acceptable 

14. What were the most common reasons for modifying or rejecting conflict resolutions suggested by 
the automation? 

Strategies 

15. What general strategies, if any, did you develop and/or employ as the run progressed with respect 
to managing the traffic and resolving conflicts? 
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16. Which conflict resolution method (e.g. lateral path stretch or altitude change) did you come to rely 
on most and why? 
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Appendix B 

Human Subjects Approval Form 

RECEIVED 
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Principal Investigator 
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Phone 
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Mail Stop 

Expected Start Date Org Code or Affiliation 
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E-mail 

NASA Point of Contact (if P.I. Non-NASA) Org Code 

Phone Mail Stop E-mail 

See reverse/page 2 for definition of "exemption" and "minimal risk." If the PI, Branch and Division Chief all agree that 
the research satisfies the definition of exemption and does not impose greater than minimal risk, an exemption may 
be requested. 

1. Attach a copy of your research protocol. Refer to Ames Procedures and Guidelines, APG 7170.1, "Human 
Research Planning and Approval" for details and format. 

2. Route through management, obtaining appropriate signatures. 

Exemption Requested 

yes no 
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\tsr 

Minima) Risk 
yes no 
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Chief Division/Organization Date 
3. Send this form with original signatures, protocol, consent form and attachments to the Office for the 

Protection of Research Participants (OPRP), M/S 243-2. 
NOTE: Signatures also indicate that this protocol has been reviewed and has been determined to have 
scientific merit. 

The Principal Investigator will be notified by the OPRP 
A. If the request for exemption is approved, or 
B. Following disposition/approval of the protocol by the Human Research Institutional Review Board (HRIRB) 

I understand I may not proceed with any research until I have received notification either in terms of "A" 
or "B" and the requirements of APG 7170.1 have been met. 
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Initials o f Principal investigator Date 

For OPRP use only: 

Requested Exemption Approved j j 

Protocol Approved I ; 

Assigned HR number HRII-07-03 
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Chief. Office for the Protection of Research Date 
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Chair, Human Research Institutional 
Review Board 
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9^0 

San Jose State 
UN I VERS i f Y 

Office of the Provost 
Associate ¥le» President 
<&radvat0 Stuttf&s & ViesmmreH 

One Washington Square 
San Jose, CA 95192-0025 
Voice: 403-924-2427 
Fax: 408-924-2477 

E-maiJ: gradstudies@sjsu-edu 
http://www.sjsu.edu 

The California State University: 
Cnancallor's Office 
BahersfietcJ, Channel Islands, Chico. 
Oominguez Hilis, East Bay, Fresno. 
"r'tJilerton. Humboldt, Long Beach, 
las Angeles, Maritime Academy. 
Mofiferey Bay. Norlhridga, Pomona, 
Sacramento. San Bernardino. San Diego, 
San Francisco. San Jose. San Luis Obispo, 
San Marcos. Sonoma, Stanislaus 

To: Jeffrey Homola 

From: Pamela Stacks, Ph.D. 
Associate Vice President 
Graduate Studies and Research 

Date: March i, 2007 

The Human Subjects-Institutional Review Board has approved your 
request to use human subjects in the study entitled: 

"'Analysis of Automated and Air Traffic Control Operator Conflict 
Resolution Strategies" 

This approval is contingent upon the subjects participating in your 
research project being appropriately protected from risk. This includes the 
protection of the anonymity of the subjects' identity when they participate 
in your research project, and with regard to all data that may be collected 
from the subjects. The approval includes continued monitoring of your 
research by the Board to assure that the subjects are being adequately and 
properly protected from such risks. If at any time a subject becomes 
injured or complains of injury, you must notify Dr. Pamela Stacks, Ph.D. 
immediately. Injury includes but is not limited to bodily harm, 
psychological trauma, and release of potentially damaging.personal 
information. This approval for the human subject's portion of your project 
is in effect for one year, and data collection beyond March 1, 2008 
requires an extension request. 

Please also be advised that all subjects need to be fully informed and 
aware that their participation in your research project is voluntary, and that 
he or she may withdraw from the project at any time. Further, a subject's 
participation, refusal to participate, or withdrawal will not affect any 
services that the subject is receiving or will receive at the institution in 
which the research is being conducted. 

If you have any questions, please contact me at (408) 924-2480. 

cc. Kevin Jordan, 0120 

http://www.sjsu.edu
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Appendix C 

Consent Form 

AGREEMENT TO PARTICIPATE IN RESEARCH AT 
SAN JOSE STATE UNIVERSITY 

V i i , i-'Sv • t i c 

Department of Industrial & 
Systems Engineering 
Engr 485 

OfiR Washington Square 
San Jose. CA 9S192-1020 
Voh:e 406 924-3301 
Fax: 408-924-4040 
www.Gngr.sjsu.ydu 

'Hie C^ifemia St.it, 

Responsible Investigators): Jeffrey Homola 

Title of Protocol: Analysis of Human and Automated Conflict Resolution Capabilities at 
Varying Levels of Traffic Density. 

You have been asked to participate in a research study investigating the aircraft conflict 
resolution strategies of air traffic control operators and an automated algorithm. 

You will either be asked to manage simulated air traffic at an air traffic control 
workstation or to fly simulated aircraft at a flight simulation workstation. This study will be 
conducted at the NASA Ames Research Center's Airspace Operations Laboratory 
between the dates of March 15, 2007 and June 30, 2007. Your participation will only 
involve one day with frequent breaks for refreshment and lunch. 

There will not be any risks present in this study outside of what are present in daily life. 

Direct benefits from participation in this study may include skill maintenance and the 
gaining of greater insight into the possible advances in the air transportation system. An 
indirect benefit may be the feeling of reward gained from the knowledge that your 
participation may be contributing to these advances. 

Although the results of this study may be published, no information that could identify 
you will be included. The data collected from your participation will also be stored on 
password protected computers, with access granted only to those with the password. 

Compensation for your participation will be provided for by Perot Systems based on your 
qualifications and task. 

Questions about this research may be addressed to Jeffrey Homola, (650) 604-4603. 
Complaints about the research may be presented to Dr. Louis Freund, Ph.D., 
Department Chair of Industrial & Systems Engineering Department, (408) 924-3890. 
Questions about a research subjects' rights, or research-related injury may be presented 
to Pamela Stacks, Ph.D., Associate Vice President, Graduate Studies and Research, at 
(408) 924-2480. 

No service of any kind, to which you are otherwise entitled, will be lost or jeopardized if 
you choose to "not participate" in the study. 

By signing this document, you acknowledge that your consent is being given voluntarily. 
You may refuse to participate in the entire study or in any part of the study. If you decide 
to participate in the study, you are free to withdraw at any time without any negative 
effect on your relations with San Jose State University or with any other participating 
institutions or agencies. 

At the time that you sign this consent form, you will receive a copy of it for your records, 
signed and dated by the investigator. 

Your signature on this document indicates agreement to participate in the study. 

The signature of a researcher on this document indicates agreement to include 
the above named subject in the research and attestation that the subject has been 
fully informed of his or her rights. 

Signature Date 

Investigator's Signature Date 
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