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ABSTRACT
ALGEBRAIC THEORY OF DIFFERENTIAL EQUATIONS
By Thomas J. Little

The question of whether the indefinite integral of an elementary function is
always elementary is the first of two investigations in this thesis. A precise
criterion is developed that depends solely on elements, their derivatives and
constants in a base field of a tower, starting with the original field and culminating
in a field containing the indefinite integral. Several classical examples are given.

Similar to ordinary Galois theory, differential Galois theory addresses the
nature of the differential field extensions generated by solutions of differential
equations. The corresponding differential Galois group of automorphisms of an
extension field, fixing the base field, provides insight to the soivability ofa
differential equation. We show that the differential Galois group corresponding to
a Picard-Vessiot extension is an algebraic matrix group and there is a one-to-one
correspondence between the intermediate differential fields and the algebraic
subgroups of the differential Galois group. In the case of Airy’s equation, we find
that a generalized Liouviile extension of the field of rational functions can give us

no solutions.
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Introduction
The question is old: Is the indefinite integral of an elementary function
always elementary? In other words, can the indefinite integral of an elementary
function be expressed “explicitly” (or in “closed form” or “in finite terms”)? The
answer, attributed to Liouville, is also old, and among mathematicians it is
commonly known to be “no.” With the broadness of mathematics it seems very

probable that a student may advance well into a career in mathematics only

having heard that it is a familiar fact that a closed form solution to J' e 2dx is

nonexistent. The lucky ones may know that the proof is among the many
accomplishments of Liouville but still have not experienced a demonstration.

Part | follows Rosenlicht's paper closely with the motivation to make the material
accessible to the interested upper division undergraduate by adding another level
of detail and explanation. The original work is wonderfully organized and concise
and every effort has been made to preserve those virtues.

We take elementary functions to be elements of fields of meromorphic
functions, closed under differentiation, on given regions in the fieid of real
numbers or the field of complex numbers. With careful formulation the problem
becomes algebraic and the integral of an elementary function that is expressible
in finite terms corresponds to a tower, starting with the original fieid and
culminating in a field containing the indefinite integral. We develop a precise
criterion for the existence of an elementary indefinite integral that depends solely

on elements, their derivatives and constants in the base field. The resultis
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expressed in an abstract generalization of Liouville’s theorem. We show several

examples of integrals of elementary functions that are not elementary, including

perhaps the most famous I ¢ Tdx (a solution to the differential equation

y"+xy'=0). Partlis divided into six sections.

Section 1 Elementary Functions: This section is devoted to specifying very
clearly the notion of elementary function as described in the second paragraph of
this Introduction.

Section 2 Differential Fields: Here we define a differential field to be a field
together with a derivation mapping of the field into itself such that derivation sum
and product rules hold. The development of the quotient and power rules follows
immediately. We then are able to define the exponential of an element of the
differential field as well as the logarithm of an element of the differential field.

Section 3 Algebraic Extensions of Differential Fields: This section is
devoted to showing that a differential structure on a differential field may be
uniquely extended to an algebraic extension of the original differential field.

Section 4 Differential Extension Fields: A differential extension field is an
extension of a differential field such that the derivation on the extension field
extends the derivation on the original field. A lemma and its proof are presented
for central use in the proof of Liouville’s theorem.

Section 5 Elementary Extensions: An elementary extension of a

differential field is a differential extension defined by successive adjunction of



elements, finite in number, such that each is algebraic over the previous field, or
the logarithm of an element of the previous field, or the exponential of an element
of the previous field. An abstract generalization of Liouville’s theorem and proof
are presented.

Section 6 Examples: The approach is to employ Liouville's theorem and
the key lemma frcm Section 4 to show that f(z)e*” ( f(z), g(z) rational

functions) has an elementary integral if and only if the field of rational functions of

a complex variable contains an element asuch that f =a'+ag’. Several

examples are then immediate.

Part |l focuses on differential Galois theory and may be considered
independent of Part |. Similar to ordinary Galois theory, differential Galois theory
addresses the nature of the differential field extensions generated by solutions of
differential equations. The corresponding differential Galois group of
automorphisms of the extension field that fix the base field provides insight into
the solvability of a differential equation. We show that the Galois group
corresponding to a minimal differential extension field containing a solution space
for a linear differential equation and no new constants over a base field of
characteristic zero is an algebraic matrix group. Such an extension field is called
a Picard-Vessiot extension and there is a one-to-one correspondence between
the intermediate differential fields and the algebraic subgroups of the differential
Galois group. Kaplansky observes that with additional refinements one can

detect from the Galois group the possibility of solving a linear homogeneous



equation by integrals alone, or by exponentials of integrals alone (40).
Unfortunately there does not seem to be sufficient insight provided by the theory
to detect the possibility of elementary integrals.

It is known that for a first order linear differential equation a field containing
a solution (i.e. containing a solution subspace) may be obtained by finite

adjunction of an integral or the finite adjunction of the exponential of an integral.

Indeed classically a solution of y'+a(x)=0 is — J' a(x)dx and a solution of

“J4 " \\hat then should follow for a second order equation?

y' +a(x)y=0is e
Is it always possible to obtain a solution field for an equation by a similar process
of adjunction? Again it is known from classical theory that the general
homogeneous linear equation y” +a(x)y’'+b(x)y =0 can be expressed in the

form u” - f(x)u=0 where y(x) = u(x)w(x), w(x)=e 5 and

f(x)= (a(ox)) +(a(7x))- -b(x). Hence for the general second order equation,

the answer for the equation u” — f(x)u =0 will be sufficient. In particular we take
a simple form, Airy’s equation found in wave theory, y" +xy=0. We find that a
generalized Liouville extension of the field of rational functions can give us no
solutions to Airy’s equation.

Part | may be viewed as a short course in differential algebra with
emphases on differential Galois theory. Algebra intertwined with topology (to a

lesser degree) in an interesting way is brought to bear on a seemingly classical

xi



elementary calculus and differential equation problem. Differential algebra
emerged in the 19" century and during the first three-quarters of this century was
advanced by Ritt and Kolchen. Their contribution was so dominant that some
regarded the phrase “the work of Ritt and Kolchen” to be a description of
differential algebra. Part |l closely follows Kaplansky’s book that, according to
Kaplansky, is written to make the work of Ritt and Kolchin more accessible. The
book, concise and short, has been acclaimed by many, but still its difficulty is
such that many students will find it a little out of reach. There has been a
resurgence of interest in differential Galois theory in recent years. Hopefully this
effort will make a small contribution to the field that is worthy to be in the
shadows cast by the leaders of the past and present. The presentation here
reflects the portions of his book that Kaplansky attributes principally to the work
of Kolchin.

Chapter 1 Differential Rings: The fundamental theory of differential rings is
covered to the extent needed in later developments. The chapter begins with the
basic definition and properties of derivations and extensions of derivations. The
theory of differential rings, differential homomorphisms and differential ideals are
developed and we get an isomorphism theorem analogous to an isomorphism
theorem of ordinary ring theory. We discover that in a differential ring the
condition of an algebra containing a copy of the field of rational numbers is

necessary for the radical of a differential ideal to be a radical differential ideal.
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Chapter 2 Extensions of Isomorphisms: As in ordinary ring theory any
radical differential ideal is the intersection of prime ideals. An isomorphism
between two fields both contained in the same larger field is defined to be an
admissible isomorphism. There are several key results on extensions of
admissible isomorphisms that underlie the remaining chapters.

Chapter 3 Preliminary Galois Theory: The rudiments of differential Galois
theory are covered without the benefits of the theory of algebraic matrix groups
or point set topology. If M is a differential field and K a differential subfield of
M , the differential Galois group of M over K is the group of all differential
automorphisms of M leaving K elementwise fixed. The foundational lemmas
are developed which ultimately lead to the conditions for the existence of a one-
to-one correspondence between the intermediate differential fields and algebraic
subgroups of the differential Galois group. The essential steps to considering
solutions of differential equations are taken here based on the introduction of two
types of extensions of a differential field. First, a Picard-Vessiot extension of a
differential field is defined to be one obtained by the adjunction of the solutions of
a linear homogeneous differential equation, linearly independent over constants,
and such that there are no new constants in the extension field. Second, a
Liouville extension of a differential field is defined to be one obtained by a finite
adjunction chain such that no new constants are added and where each
adjunction consists of integrals of elements in the previous field in the chain or of

the exponential of the integral of elements in the previous field in the chain.
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Chapter 4 Algebraic Matrix Groups and The Zariski Topology: The focus
of this section is putting into place the point set topology and algebraic matrix
group machinery sufficient to complete the Galois theory of Chapter 5 and the
application to equations of order two in Chapter 6. The topology of principal
interest here is the Zariski topology, which may be derived by using algebraic

manifolds as closed sets to define a 7, topology on an »-dimensional vector

space over any field (the finite union of algebraic manifolds is an algebraic
manifold and the arbitrary intersection of algebraic manifolds is an algebraic
manifold). The resuits are numerous and many are used later. Notable among
them are 1) the conditions under which a C-group will have a solvable
component of identity, and 2) a solvable, connected (in the Zariski topology)
multiplicative group of nonsingular matrices over an algebraically closed field can
be put in simultaneous trianguiar form.

Chapter 5 The Galois Theory: Here we reach our principal theoretical
results. We find that the differential Galois group of a Picard-Vessiot extension is
an algebraic matrix group over the field of constants and that the Galois Theory
implements a one-to-one correspondence between the intermediate differential
fields and the algebraic subgroups of the differential Galois group. And we
develop the conditions under which a Picard-Vessiot extension field can be

obtained by a generalized Liouville extension over the same base field.

Xiv



Chapter 6 Equations of Order Two: This section addresses several special
results with respect to the Wronskian of the solutions of a Picard-Vessiot

extension. Included is the result discussed above for Airy’s equation, y” +xy=0.



Part | — Differential Fields And Integration In Finite Terms
1) Elementary Functions — First we must be specific and careful
concerning the notion of elementary functions. Following Rosenlicht, an
elementary function may be constructed by using one variable and constants
with repeated algebraic operations and taking exponentials and logarithms, e.g.
e —e"

7x"%¢* +10In(x* +5) . Take the variable to be complex, then sinz = T
1l

[~4 -

e +e
cosz =

s

. sin”' z = —ilog[iz+(1-z%)"], cos™ z=—~ilog[z+i(1-z*)"] and

i+z

tan”' z = -;—log . So the trigonometric functions and the inverse trigonometric

i-z
functions are elementary. The integral of a rational function of one real variable is
elementary since it is a linear combination of logarithms, inverse tangents and
rational functions. For our purposes here we will agree without loss of generality
that the exponential base and the logarithmic base are both the familiar number
¢ . The awkward issue of multivaluedness may be handled in the most direct
fashion by restricting the function's domain to nonempty connected open subsets
in the real numbers R or complex numbers C in such a way that the function in
question is unambiguous. We consider only meromorphic functions on the
regions in question. A meromorphic function being the usual notion: a function
such that in the neighborhood of any point z, the function may be represented as

a convergent Laurent series in z—z,, that is, a convergent power series in z -z,

with at most a finite number of negative powers of z -z added. Thus the



functions contained in the field of rational functions C(z), obtained by adjoining

the identity function z to the field of constant functions C , are all meromorphic
on all of R or C. The exponential function ¢’/ of a function f meromorphic on a
subregion A of R or C is a function meromorphic on a subregion obtained by
deleting those points z, of A where |f| - « as z — z, if AcC and in addition
taking a connected component of A if AcR. The function log // may be
considered meromorphic on a subregion A where f =0 and |/] is finite by
choosing one of its many values at any pointin A. Next consider a polynomial
equation with coefficients functions f,(z) meromorphic on a region A, where the
leading coefficient is not zero, f,(z)z" + f,_,(2)z"" ++ + fi(2)z+ f,(2) =0,
f,(z)#=0. Hence we may write F(f,,f, . /,,z)=0. Choosing z €A such that
E(fos frmrr o Jo,2) 2 0, by the implicit function theorem we have the existence of a
meromorphic solution z =h(f, f,_, -+, f,) on a suitabie subregion of A. Thus an
elementary function expressed as a complicated combination of algebraic
operations, exponentials and logarithms is meromorphic on some region. Then
under the operations of function multiplication and addition the totality of
meromorphic functions on a region form a field and the restriction of these
functions to a subregion gives an embedding of fields. That the derivative of a
meromorphic function on a region is a meromorphic function on the region may

be deduced from the Laurent series and if the integral exists, the integral of the

function is also meromorphic. Thus we observe that the field of rational functions



on a region is a field of meromorphic functions on the region that is closed under
differentiation (restricting C(z) to the region in question). Suppose we are given
a field of meromorphic functions on a region closed under differentiation and we
adjoin the exponential or logarithm of a function in our field or a solution of a
polynomial equation with coefficients in the field. The field obtained is a field of
meromorphic functions on the region closed under differentiation. Thus our view
is that elementary functions are elements of fields of meromorphic functions on
R or C, closed under differentiation (963-965).

2) Differential Field — A differential field is defined to be a field F,
together with a derivation on F. A derivation is a map of F' into F, denoted

a—»a', and such that (a+b)'=a'+b' and (ab)'=a'b+ab' forevery a,be F.The

expected quotient rule, power rule for integers and derivation of constants follow

with a little effort. Let a,b,c € F such that ¢ = %,b #0. Then

a'b-abd'

bZ

a'=(chy=c'b+ch'= c'b+(%)b’, and a'b—ab'=c'b*. Therefore, (%) =

Also, by repeated use of (ab)'=a'b+ab', associativity, and commutativity, we
have for n>0,

(@")'=((a-"") . g)a'+((a-"H) g)a' a + -+ a' (@) .a)) = na"'a’ . Then
applying (a")'=n(a"")a', n>0,to I'=(1*)'=2-1-1', we conclude I'=0. For n<0,

let m=-n. Then,



’ o\ m-1 ! (RS P '
(a")'=[i,,,) =[(-1-) ] =m(l) (—1-) =m ,},_l(la ’la)=_n:z| =na""a'. So,
a a a a a a a

(@")=n(a"")a' for every integer n. If we let the constants of F beall ce F

such that ¢'= 0, then the constants form a subfield of F since 0,1 e F,

(a+b)=a'+b'=0, (ab)=a'b+ab'=0 and if b= 0 then (%) =4 bb"z“b' =0, for all

constants a,b € /. For a constant the familiar rule (ab) =ab’ is immediate.

Let a,be F, a#0 and F a differential field. We define a to be the

exponential of b, or 5 to be the logarithm of a, if b’ = -‘i. We observe from the
a

'

relations above that(a) ---a*)' =v,(a)' '} ---a’)a, +--+v,(a}' --a")a, , for

a,;-a, € F,and v v, integers. Suppose (a,"---a,) =0, then dividing by

v Vo ' '
al...a" ) a,

a
(al"l ---a,f") we have —l;._;—=vl—l—+”'+vn
1 (]
(a)*---a;) a, a,

, the logarithmic derivative

identity.

3) Algebraic Extensions of Differential Fields — Continuing to follow
Rosenlicht, we let K be an algebraic extension of the differential field F of
characteristic zero. Then for every x e K, x is algebraic over F and if

f(x)=0, f(X) e F[X], where X is an indeterminate and F[.X] a polynomial
ring, we have a(x)=c"'f(x) =0 as well, where ¢ is the nonzero leading

coefficient of £(X) and h(X) e F[X] is monic. So we will consider f(x) monic



and irreducible over F. Let us define the maps D,, D,: F[.X]—" F[X] by

Do(zoa,X')=Zo:a,'X’ and Dl[zoa,X')=Zo:ia,X"‘ , for aya,---a, € F. Suppose

K has a differential field structure extending that of F* and that x is a simple
root of the monic irreducible polynomial f(X)over F, then

(f(x))' =(Dpf Xx)+ (D fN(x)-x' =0. But(D,f)(x)#0. So
x'=—(D,f)x)/(D.f)x). Thus, ifit exists, the differential structure on X that
extends the differential structure on F is unique (965-966).

Addressing existence we presume that our extensions are finite, that is if

F(a) is a simple extension of a differential field F, then F(a)may be viewed as

a vector space over F with basis {l,a,a’--,a"'}, where n is the degree of the
irreducible polynomial for o over F. Fraleigh provides the appropriate field
theoretic Theorem 9.14 that we adapt to our notation: Let K be a finite separable
extension of a field 7. Then there exists x € K such that K = F(x) (475). He
also tells us in Theorem 9.12 that for every field of characteristic zero every finite
extension is separable, that is, the irreducible polynomial for « over F of degree
n has n distinct zeros in an algebraic closure for F* (473).

Let K = F(x) be a finite algebraic extension of F and f(X)the monic
irreducible polynomial of x in F[X]. Again using the maps D,, D, defined
above, for some g(X) e F[.X], letthe map D:F[.X]— F[X] be defined by

DA=D,A+g(X)D, A, forany 4 eF[X]. Since D(A+B)=DA+DBand



D,(AB) =(D,A)B+ A(D,B) for i =0,1, we have D(A4+ B)= DA+ DB and

D(AB) =(DA)B+ A(DB) forall 4,B eF[X]. Also, Da=a’' forall a eF. Next
consider the surjective ring homomorphism ¢: F[ X]1— F(x), which is the identity
on F and sends X — x. We have that Kerg =() and since f(X)is irreducible
(f) is maximal, thus F[X]/(f)=Im¢g= F[x] is a field. Hence F[x]=F(x)=K.
Then the map D on F[X] will induce a map on K extending that on F so long
as D(Kerg) < Kerg. But Kerg=(f). Thus we want to show that

D((f)) = (f) which is equivalent to (Df)(x) =0, thatis, x is a root of the image
of £(X). Then (D,f)(x)+g(x)(D,f)x)=0. Butwe have (D,f)x)=0 and
F(x) = F[x], so a polynomial g(X) e F[.X] can be found such that (Df)(x)=0.
Therefore we have found a unique differential structure on K extending the

differential structure on F.

4) Differential Extension Fields — A differential field X that is an
extension of a differential field F such that derivation on K extends the
derivation on Fis cailed a differential extension field of 7. Rosenlicht

introduces the next Lemma as a central element in the proof in Liouville’'s

Theorem.

Lemma — Let F be a differential field of characteristic 0, F(¢) a

differential extension field of F having the same field of constants, with

t transcendental over F, and with either ¢’ e F or tT eF. If t' eF, then for any



polynomial f(¢) e F[t]of positive degree, (f(¢))’ is a polynomial in F[¢] of the

same degree as f(¢), or degree one less, according as the highest coefficient of

f(@) is not, oris, a constant c,i.e. ¢'=0. If tT e F, then for any nonzero g e F

and any nonzero integer n we have (at")' =", for some nonzero h € F, and
furthermore with IT e F, for any polynomial f(¢r) € F[t] of positive degree,

(f()) is a polynomial in F[t] of the same degree, and is a multiple of f(¢) only
if £(¢) is a monomial.

Proof — Forthe case t'=becFwelet f(t)=a"+a, "' +---+a,for n>0
with a,,--,a, e F,a, #0. Then (f(t))' =a't" +(nab+a._)t"" +--- is a polynomial
in F[t], since the coefficients are in F, and of degree » if a, is not constant. If
a,=0 and nab+a,_, =0 we have (f(t))' of degree less than n—1 and
(nat+a, ) =nab+a,,=0. Then na,t+a, , €F,since F[t] and F have the
same field of constants. Hence ¢ € F, which contradicts the hypothesis that ¢ is

transcendental over F. Therefore if a, is constant, (f(t))’ has degree n-1.
Next let +'/t =b e F. Consider the monomial at” € F[r], where

a eF,a=0and nanonzero integer. Then (at") =a't" +nat™'t' = (a’ +nab)t". If

a'+nab=0,then (at") =0 and at" e F since it is constant, contradicting the

hypothesis that ¢ is transcendental over F. Hence (at")' =" for some

heF.h+0.



Still assuming ¢'/t =b e F, let f(t) € F[t] be of positive degree. Let a,”
be the leading term. By the analysis above we see that the degree of f(¢) and

(f(0)) are the same. Thus if (f(1))' is a multiple of f(¢) it must be by a factor
in F. Suppose that f(¢) is not monomial, 4" and a,¢™ two different terms of

f(),and (f(1)) is a multiple of f(¢t). Then, (f(2))' =hf(¢), for some he F and
cothat"+---+hat" +---=--«(a. +nab)t" +---+(a, +ma,b)" +---. But

a,,a,,(a. +nab),(a.,+mapb)eF S0 ha,=(a,+nab) and ha, =(a,, +ma,b).

a' +nab a’ +mab a t' a t L
2 =N . Then 2 +n—=-"+m—. By the logarithmic
a a a ! a {

n m n m

Hence

derivative identity we have () _ ol ) ,and (a,t")(at™)—(a,t"Xa,t")' =0.
(at") (a,™)

So dividing by (a,¢")*, we see that (a," /a,,,t"')' =0 and a,t"/a,t™ €F, again
contradicting the transcendence of rover F. Therefore (f (1))’ is of the same
positive degree as f(¢) and (f (1))’ =hf (+) forsome heF,h=0 onlyif f(r) is
monomial. The proof is complete (966-967).

5) Elementary Extensions — Let F be a differential field. An

elementary extension of F is a differential extension of the form F'(¢,,---,¢,),
where for each i =1,--, N, the element ¢, is either algebraic over the field
F(t,,-+t,_,) or the logarithm or exponential of an element of F(¢,,--,¢_). Each

intermediate field F(¢,,--,¢,_,) is a differential field and an elementary extension of



F . Rosenlicht then presents an abstract generalization of Ostrowski's 1946
generalization of Liouville’s 1835 theorem on the subject.
Theorem — Let F be a differential field of characteristic zeroand a e F.

If the equation y’' =« has a solution in some elementary differential extension

field of F having the same subfield of constants, then there are constants

’

U
¢,-c, €F and elements u,,--,u,,ve Fsuchthat =3 ¢ —+v'.

1=1 t

The essentiality that 7 and its elementary extension field have the same

subfield of constants is quickly discerned from the example F =R(x), the field of
real rational functions of a real variable where we let x' =1 and a =1/(x* +1).
Recall that tan™ x is an elementary function (Section 1) and (tan™ x)’ = 1/(x* +1).

So j(l/(xz +1))dx is an element of an elementary extension field of R(x). We

now demonstrate that the assumption ( ,1 D = Zc, 4 +v', where ¢ ¢, €R
X+ =1 U

1

and u,,--u,,v € R(x) leads to a contradiction. Suppose , =(x?+1)" g,(x) such

that x> +1 does not occur in g (x) for some g,(x) eR(x) and v, a nonzero

' ’ 2 v, 2 v,-1 '
nteger. Hence 1 - G 1" +E(02vx(E + 0™ _ gir) | dvx

u, (x* +1)" g,(x) Tg(x) (4D
ﬁ-——z—,v—f— is an element of R(x) without x* +1 in its denominator. Consider
u  (xP+1)

C 2vx = u  2vx , 2 .
now——-Y ¢ ——= ¢ L —-—=*—]|+v'. If x*+1 occurs once in the
x+1 & T+ T u (x*+1)



denominator of v, it occurs twice in the denominator of v’ . It does not occur

twice in the denominator of Zc, % for then 2 - ( Z,V’xl) would have it in the
u X"+

=1 ' ]

n !

. ) . 1 U .
denominator for some i. Since v'=——-Y ¢,—, then x* +1 does not occur in
=1

!

ul

the denominator of v. But then x* +1 divides I—ZZc, v,x , which is impossible,

=
therefore we have our contradiction. Now tan™' x is an elementary extension of
R(x) which does have new constants, e.g. the extension generated over R(x)
by i, In(i +x) and In(i-x).

When our fields are fields of meromorphic functions on some subregion of
R or C, the field F and the elementary extensions fields of £ will automatically

satisfy the conditions that the subfield of constants be the same so long as

C c F, since any constant meromorphic function is a complex number

(Rosenlicht 967-968).

Proof of Theorem — Following Rosenlicht's proof of Liouville's theorem,
expanding on a few details, we let F < F(t)) c---c F(t,--,t,) be an assumed
tower of differential fields all with the same subfield of constants and each ¢,
being algebraic over F(¢,,--t,_,), or the logarithm or exponential of an element of
F(t,+-t_,), such that there exists an element y e F(¢,,-~¢,) for which y'=c.

The proof is by induction on N . Noting that the case N =0 is triviai since then

v = y' = ¢ meets the need, we assume that ¥ >0 and the theorem is true for

10



N —1. Thus for the fields F(¢,) c F(¢,,;--,t,) we have a=Zc,i"+v' with

=1 [

u-u,,veF(t). Putting + =¢, then ¢ is algebraic over F, or the logarithm or

. . S TH .
exponential of an elementin F and a =) ¢, —+v', with ¢,,--c, constants of F
1=] U

and u,,--,u,,v € F(t). We now need a similar expression for o with all
u ;- u,,veF perhaps for another n.
Let ¢ be algebraic over F. Then F(r) may be viewed as a vector space

over F with the basis {1,¢,---,t™"'} where m is the degree of + over F. Thus

every element of F(r) may be represented as a linear combination of {1,,---,t""'}
with coefficients in F. Hence there exist polynomials U, --,U,,V over F such

that U,(t) =u,,--,U,(t) =u,V(t) =v. Letthe distinct conjugates of + over F in

some suitable algebraic closure of F(¢) be 7, =t,7,,-,7, (In the event we are
involved with meromorphic functions on R or C, the functions r,,---,z, are then

taken as meromorphic on a suitabie subregion.) Recall our result on the

extension of the differential structure for an algebraic extension of a differential

n U ’
field in Section 3. Thus a =3¢, o)

+WV(z)) for j=1,..s5, sinceitis true
27T ) ¥ (z,)) J

s n U MY 5
for j=1. Adding the s relations we have sa =) > ¢, (—U‘—((i’))l+Z(V(rj )’ .
J=11=1 i Tj =1

Then interchanging the summations in the first term on the right and applying the

logarithmic derivative identity derived in Section 2 to the sum on j and

11



rearranging the second term gives

a=3 & UE)U(r)) +(V(T')+M+V(T-‘))’- But U (z,)---U(zr,) eF and
= s Ulr)---Ulz,)) s : ATy

V(z)+---+V(z,) eF since U,(r,), U, (z,) and V(z)), - V(r,) are symmetric
polynomials in the conjugates r,,--,r, with coefficients in F. Hence for ¢

algebraic over F we may express « in the desired formin F.

Now let us consider the cases where ¢ is the logarithm or exponential of
an element of /. We assume : is transcendental over F. Recalling our
induction hypothesis, the circumstance is evidently special that there are

constants ¢, --,c, € F and elements u,(¢),--u,(t),v(¢) € F(t) of such form that the

terms on the right side of o = Zc, 9"—(([[))—)'+(v(t))' add up to o e F. Now each

=] ul
u(t)=a(g,(t))" - (g.())'~ , where a e F a nonzero element and
g,(t), - g,(t) € F[t] all monic irreducible elements with v ,.--,v, nonzero integers.

h Q)

u,(t)

Thus we may use the logarithmic derivative identity to write eac in the

form Zv, & sowe may assume that u,(¢),--,u,(r) are distinct each being an

=] [

element of F or a monic irreducible element of F[¢], and no ¢, is zero. Next we
consider for later use the partial fraction decomposition of v(¢) =h(t)+Z-—g'Lt)—

=S0AG)

where a(t) e F[t], each f,(¢) e F[t] is monic and irreducible, each , is a positive

12



integer, and each g, (¢) € F[t] not zero and of degree less than the degree of
f,(t). We now separate the logarithm and exponential cases.

Continuing to follow Rosenlicht, suppose that ¢ is the logarithm of an

element of F, then ¢’ -2 forsome aeF. Let f(t) e F[t] be monic and
a

irreducible over F. Then (f(¢))' € F[t] and (f(¢))' has degree less than the

degree of (). Hence f(¢) does not divide (f(¢))’. Thusif 4 (¢)= f(¢), then

——-——("'((’t)))' is in lowest terms and the denominatoris f(¢). Soif f(t) is one of the
ul

u (t)'s then f(¢) appears in «, a situation that cannot happen. Since this is true

for every monic irreducible f(r) we must then have each u () € F. Now

suppose _81) appears in the partial fraction decomposition for v(r) and as

(f @y
above with g(t) e F[t] of lesser degree than f(r) and r >0 maximal for the
given f(r)(there may also be terms with (f(¢))"the denominator, s an integer

and 0<s<r). Then (v(¢))’ will consist of terms having f(r) in the denominator

at most r times plus —%. Since F[t] is a UFD and f(¢) is irreducible

and hence a prime element in F[¢] not dividing g(¢) or (f(¢))', then f(¢) does

not divide g(£)(f(1))’. Thus a term with the denominator (f(¢))"*' appears in
(v(r))'. Hence if f(¢) appears in the denominator of the partial fraction

decomposition of v(¢) it will appear in a , which is not possible. Therefore f(¢)

13



does not appear in the denominator of v(¢) for any irreducible f(+) and we

conclude v(t) € F[r]. It must be that (v(¢))' e F since (v(t))'=a~ Zn:c, L('t)))'
1=] ul

and each g@ e F, thus (v(¢))’ is no more than cne less in degree than v(¢).
1

i

'

Hence by the lemma in Section 4 and the assumption ¢’ =L eF, v(t) isnota
a

monomial and we conclude v(t) =cr+d and (v(t)) =ct'+d'= eL +d', where
a
c,d e F and cis a constant. Then we have an expression in the form desired

n ! r
u a .
a=Y c—+c—+d' eF with c,c,,c constants of F and u,,u,,a,d F.
=1 u, a

To complete the proof let %: b', b e F, our final case to consider where ¢

is the exponential of an element of 7. The lemma in Section 4 and its proof

imply that if £(¢) e F[t] is @ monic irreducible other than ! itself, then

(f() eF[t], (f(t)y ¢ F and f(r) does notdivide (f(¢))’ even though the
degree of f(¢) is the same as the degree of (f(¢))’. Thus the argument above,
that no monic irreducible f(¢) € F[¢] can occur in the denominator of v(t) and
that no «,(¢) can be equal to some monic irreducible f(r) € F[t], is the same
here when ¢ is the exponential of an element of F, with the possible exception

that some u,(¢) =t ; otherwise we will have f(r) appearin . Thus we write

v(t):Zjajt’ , where each a, e F and ; ranges over a finite set of integers,

14



positive, negative, or zero, and we take each of the quantities u,(¢) € F, with the

h 0y

u(t)

1

possible exception of say () =¢. Then eac e F and we must have

v'(t) e F, so the lemma implies that v(r) e F since ¢’ =bt. Hence we write

’ n ul n ul . . .
a=c—+ —L+v'=) —L+(ch+v) , With u,-u,,ch+v e F. The proofis finished
4 =2 Y =2 Y, )

(968-970).
6) A Few Examples — Before looking at selected non-elementary

indefinite integrals let's consider the function ¢*“’, where the non-constant

function g(z) eC(z), the field of rational functions of a complex variable. Then
g(z) will have at least one pole in the entire complex plane or on the Riemann
surface and thus ¢*’ will have at least one isolated essential singularity, unlike
an algebraic function. By Picard’s theorem we know ¢**’ assumes every value,
with one possible exception, an unbounded number of times in every

neighborhood of the isolated essential singular point. For instance consider e E

at the origin: e ' = for an infinite sequence approaching zero,

{z,.} = ———2——:k =0,£1:-->. All this leads us to conclude ¢* is
(1+4k)m

transcendental.
An algebraic argument on the transcendental nature of ¢*'~ over C(z) is a
little more tedious, but perhaps more satisfying. Consider the monic irreducible

equation over C(z) that ¢*) would otherwise satisfy, say

15



e®+ae" M8 +...4aq =0, where qa,,-,a, eC(z). Differentiating the latter we have
1 n 1 n

ng'e™ +(a; +(n—1)a,g")e""* +---+a,,' =0. Under these conditions we know that

{(e®)"",(e*)" -, (e5),1} is a basis for a vector space over C(z). Hence
e® =—(ae"" ++a,)= ———17((a,' +(n~1a,g"e" "% +...+a,) are identical linear
hg

combinations so the coefficients must be equal. Hence ng’' = In . But
a

n

’

4 eC (z) . So == is the ratio of polynomials over C. The denominator may be
a a

n n

a

factored into linear factors and there exists a partial fraction decomposition with
constants in the numerators and linear polynomials in the denominators, or

’

% - (. However ng’ can have no linear factors to only the first power in its
a

n

denominator so g’ =0 is the only possibility, which contradicts the assumption
that gis non-constant. Hence the assumption that ¢**' is algebraic over C(z)

leads to a contradiction.

There is a criterion which Rosenlicht attributes to Liouville that will assist

us in examining some of the classical cases: j f(2)e*¥dz is elementary if and

only if there exists an a eC(z) such that f =a’'+ag’, where f(z),g(z) €C(2),
f(2) =0 and (g(z))' #0. First we derive the latter. Let ¢ =¢. Then [T= g'. Let

F=C(z). Then F(t)=C(z,t) is a pure transcendental extension of FF=C(z). If

16



5y, =~ u
I f(2)e*Pdz is elementary we have ft =) ¢ —-+v', where ¢, -.c, <C and

=1 ul
u, - u,,v € F(r). Using the same argument we used in Section 5, each
u(t)y=a(g,®)" ---(g,()"~ , where a e F a nonzero element and

g,(t),++ g.(t) € Ft] all monic irreducible elements with v,,.--,v, nonzero integers.

Thus we may use the logarithmic derivative identity to write each (—u‘i('l))— in the
u(t

i

form » ¢ 5’—, so we may assume that u (1),---,u (¢) are distinct, each being an
[ 1 n g

=1 1

element of F or a monic irreducible element of F[¢], and no ¢, is zero. Suppose
v is expressed as a partial fraction decomposition with respectto F(r). The
Section 4 lemma and its proof imply that if 4(¢) e F[t] is a monic irreducible other
than ¢ itself, then (h(+))’ € F[t] and A(¢) does not divide (4(r))’ even though the
degree of A(¢) is the same as the degree of(h(r))’. Hence ¢ is the only possible

monic irreducible factor of a denominator in v and the only possible u & F. Thus

Zc,-’f‘— e F and the formof v is ) b+’ for j ranging over some integers and

=] 1

b, e F. Hence we have ft=(b/+bg")t since f e Fand ¢’ =g’t. Changing the
nomenclature we let a =5, and we have f =a’+ag’' with a eC(z). Conversely,

if there is an a eC(z) such that f =a’ +ag’, then one elementary integral of fe*

17



is [ fefdz = J'(a’ +ag')e*dz = [ d(ae*) =ae* . Therefore fe* has an elementary
integral if and only if there is an a eC(z) suchthat f =a’'+ag’.

For j e~"dz, we have g’ =2 and we are searching for an a C(z) such

P

that 1=a’'~2az. But no a €C(z)can be a solutionto 1=a’'-2az for a= =R
qz

p,q €C[z]. If q is not constant a has a partial fraction decomposition with
powers of linear factors of g in the denominators and with constant numerators.

Then a' will have terms with these same factors in the denominator to at ieast

one higher degree, so that 1= a'-2az. If ¢ is constant then 4’ is at least one
less degree than 24z and again 1#a’'-2az. Hence J' e~ dz is not elementary.

Magid also demonstrates this resuit but empioys a little different definition of an

elementary function (80-82).

For j %dz, we have g’ =1 and we are searching for an a €C(z) such that

-!-=a’+a. As before no a=£(—?e C(z), p,q € C [z], can be a solution to

z q(z

=a'+a. For q not constant, the denominators in the partial fraction

[SER R

decomposition of g are powers of linear factors of ¢ and a4’ will have these

same factors in the denominators to at least one degree higher so that

18



z

&

—=#a'+a. For g constant a’ +a has no z in the denominator. Hence j——dz is

not elementary.

Replacing z by ¢° in j i-dz we get je‘"’ dz since d(e_-) =dz. So je"dz is
z e

not elementary. And replacing z by logz we get j

dz since
og‘

e“¥*d(logz)=dz. So I

dz is not elementary.
logz

For J'Slr_lzdz we make the change in variables replacing z with V-1z

sinz e‘” e _ gk Sll’h/_.
Recall that = I— J'

d(J_7) =

——J'———d Thus
we need to show that fldz is not elementary. To do so consider again

F=C(z) and F(t)=C(z,t), where ¢ =¢’

. If the integral is elementary, Liouville's
— -l —
theorem tells us £=* L

n
U,
=Zc,-— v', where ¢, ,+-,c, €C and

u-u,,v €F(t). Inthe same manner as before we can have u's eitherin F or

monic irreducible elements of F(¢t)and v expressed in its partial fraction form

and then use the Lemma of section 4. And again we conclude that the only

’

possible u, ¢ F is ¢, hence Zc, 4 e F, and the only possible monic irreducible
i=1 ul

factor in the denominator of v is . As before we write v= Zb t’ , with each

19



b, € F, concluding l=b,'+bl since r=t'and for v=5;t we have

v =bit +bt' =(b/+b)r. By the same argument as before, there is no 5, eC(z) a

dz is not elementary (970-972).

solution to + = bi+b,. Therefore J sinz
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Part Il — Differential Algebra
Chapter 1

Differential Rings

1) Derivation — A derivation on aring 4 isamap of 4 into 4, denoted
a—» a' and such that (a+b)' =a'+b' and (ab)’' =a’'b+ab’ forevery a,be 4. If 4
contains unity then 1'=(1-1y=1'-1+1-1'=1"+1’, and we conclude !'=0.
Successive derivatives are written a’,a’',---,a""’. We note that
(ab)" = (a'b+ab')’ =a"b+2a'b' +ab'",
(ab)'"' =(a'"b+2a'b' +ab'")' =a'"'b+3a'"'b’' +3a'b’' +ab'" , and so on. Thus by
induction we have Leibnitz's rule: (ab)” =a'"b+-+,Ca" 6" +--+ab™. If 4 is
commutative, by repeated use of (ab)'=a'b+ab', associativity and commutativity,

we have for n>0,

(= factors)

(@) =(a-\"" . gya' (a0 -a)a'a+-+-+a'(a .a))=na""'a. If

aa=a'a=1then a'a” +a(@") =0 so (a') =-a'a'a =-a'(a”')’.

Suppose D is an integral domain with a ring derivation as defined above
and F the field of quotients with a field derivation as defined in Part | Section 2.
Then for a,b € F,b#0, we have (a+b)' =a'+b’, (ab) =a’'b+ab’, and we showed

a'b—ab'

~ and
b-

for any field a direct consequence of the latter is (%J =

(a‘"’)' =na™ g’ for every integer n. Next consider the ring isomorphism
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assured by ordinary ring theory from D onto D, = {% e Fla eD} c F defined by

a)'_a’-l—a-l'

a—)%. Then D, is an integral domain. But D, c F', so (T T fll

and under the ring isomorphism 4’ is sent to (%J forevery a eD. It follows

that the sum and product rules are preserved by the isomorphism. Hence D and
D, are isomorphic with respect to the corresponding derivations of D and F.
The derivation on an integral domain has a natural extension to the field of

quotients. As in ordinary field theory, elements in the field of quotients £ are

regarded as quotients of elements in D and equality of %2 e F defined by

if and only if ad =cb, a,b,c,d €D, b,d #0. Our extended derivation on

a_<
b d

F, defined by a5 (9—) , is well defined since (ﬁ) = (-‘—) if £ =X . To see that
b b b b d

the latter is true consider fb’-=§ eF. Thenad=cbeD. So a'd+ad’' =c'b+cb’

'd (adb' b (c\bd
'd—cb' =c'b—ad'. Hence 5|25 =22-|=|-= and
and a'd-cb'=c'b-a T1 (b)l =11 (d)

a'bb—zab' = cld‘;fd' . Thus (%) = (3) . To assert that our extension is indeed a

derivation on F we need to verify that the sum and product rules work properly,



ac'_gl 3' (ac'_a\'c aYe\
(3+§) _(b) +(d) and kbd) _(;) (E)*[Z)(i) . To do so, on the left of

the sum rule we apply the quotient derivation to the sum

(ad+bc) _| (ad +be) (bd)~(ad +be)ba) | it ces to @Bab, cd=cd"
bd (bd) b’ d’

after some tedium. In the product case with more tedium we show that

(ac) (bd) - (ac)(bd)” _ (a’b —ab' )( c ) +(a )(c’d ~cd’

. = |+ = = . Thus following Kaplansk
) e PE ) g Rap Yy

d b

we write the first theorem in Part Il

Theorem 1.1 — A derivation on an integral domain has a unique
extension to the quotient field (9).

2) Differential Rings — A differential ring is a commutative ring with
unity together with a derivation. Adopting the same examples as Kaplansky, we
see that imposition of the trivial derivation, the map that sends every element into
0, will convert any commutative ring with unity into a differential ring. The ring of
infinitely differentiable functions on the real line with the derivation we know from
calculus meets the needs of our postulates and hence we have a differential ring.
The ring of entire functions again with the customary derivation is the differential
ring of entire functions. We recall that an entire function is analytic at each point
in the entire finite complex plane and the zeros of a nonzero analytic function are

isolated—none is a limit point. Let f(z) and g(z) be arbitrary entire functions.

Then f(z)g(z) =0 if and only if f(z)=0 or g(z) =0. Thus there are no divisors of

23



zero and we have the differential integral domain of entire functions. Hence by
our Theorem 1.1, the field of quotients of this integral domain, the field of
meromorphic functions, is a diffarential field by the extension of the derivation
from the differential integral domain of entire functions. Quotients of entire
functions then have convergent Laurent series representations at every point in
the finite plane so the notion of meromorphic here is consistent with the notion of
meromorphic advanced in Part |. In fact we may take functions analytic in a
domain of the complex plane.

Next we let 4 be any differential ring and 4[x] be the ring of all

polynomials in the indeterminate x, with coefficients in 4. If 4 is a differential

field we have that A[x] is an integral domain and we let 4(x) denote the field of
rational functions in x. The derivation on 4, that is the map 4 into 4 defined by
a — a', may be extended to a map of A[x] into A[x] by assigning x — x’
arbitrarily, defining (x")’ = nx""'x’ and applying the rules of sum and product to
the elements f(x)=a,x" +a, x""'+-+a, € A[x] to give

(f(x)) =a'x" +(na, +a’_)x""'+-+a;. Then we have

(f(x)+g(x)' = (f(x)) +(g(x)) and (f(x)g(x))’ = (f(x))' g(x)+ f(x)(g(x))" for
every f(x),g(x) e4[x]. Againif 4 is a differential field then by Theorem 1.1 with
the latter extension to A[x] we may extend the derivation to the field of
quotients, A(x) (9-10). This example is actually a special case of the next and

there our treatment will be more careful.
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To continue with Kaplansky we need additional notation. Let 4 be a

differential ring and A[x,] be the polynomial ring in an infinite number of ordinary
indeterminates x,,x,,x,---. We extend the derivation on 4 to a unique derivation

on A[x,] by the assigned relations x; =x,,, and changing the notation we

1+]
havex,=x, x, =x™. Hence (x"’) =x"" . This is called the adjunction of a

differential indeterminate and we adopt the notation 4{x} for the resulting

differential ring, elements being differential polynomials in x (or in other words,
ordinary polynomials in x and its derivatives).

That the latter extension is indeed a derivation on 4{x} satisfying the sum

and product postulates deserves a few comments and it seems appropriate to
make them in a more general setting (Peterson suggested the approach taken
here in private communication with the author.) Magid displays the Lemma
below as an observation in a slightly different context (2). By definition the
derivation on a differential ring is an additive group homomorphism satisfying the

R[x]

derivation product rule. Let R be a commutative ring. Let R = ,\ and let

X
e=x+(x")eR. Thus we have R = R[¢] with elements of the form r+ss, r,s R

and £2=0. Let D:R — R be any additive group homomorphism. Then it follows
that ¢,:R — R defined by ¢,(r) =r+ D(r)¢ is an additive group homomorphism.
Lemma 2.1 — The additive group homomorphism D is a derivation if and

only if 4,, is a ring homomorphism.
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Proof — For r,s e R we have ¢,(rs) =(rs)+ D(rs)e and
(1P, (8) = (r+ D(r)e)(s+ D(s)e) = (rs)+(D(r)s+rD(s))e. So
@ ,(rs) =@ ,(r)d,(s) if and only if D(rs)= D(r)s+rD(s).

Let 4 be any differential ring with the derivation d:4 — 4. Let {x,|a €A}
be any family of (algebraically independent) indeterminates over 4. Finally let
R = A[x,|a €A] be the polynomial ring over 4.

Theorem 2.2 — For any map y:A — R, there exists a unique derivation

D:R — R with D(a)=d(a) forall ac4 and D(x,)=y(a) forall a €A.

For the case at hand we take {x_|a €A} to be {x,x",x*,.-:] and

y(iy=x"" for i =0,1,2,---, the derivation extension from 4 to
A[x,x’,x(z’,---]= A{x} follows. We note that 4{x} is an integral domain if 4 is a

field. By Theorem 1.1 it follows that the derivation may be extended to the field
of quotients containing elements that are quotients of differential polynomials. We
denote the field of differential rational functions of x by A(x). The notation

{ }and ( ) will also be used when the elements adjoined are not differential
indeterminates, but rather elements of a larger differential ring or field.
Elaborating, by the use of { } we mean the adjunction of elements and all their

derivatives from a larger differential ring or field so that the elements of the
extended ring are all the polynomial expressions in the adjoined elements and

derivatives of elements with coefficients from the original differential ring or field.
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In the cases we use ( ) the elements of the extension are all the rational

expressions in the adjoined elements and derivatives of elements from the larger

differential ring or field over the original differential ring or field.
Proof of Theorem 2.2 — The set {xala eA} generates R as a ring over
A. If two derivations of R agree on 4 and agree at each x, , the sum and

product rules for derivations show that they agree on all of R. Thus if it exists, a

derivation on R extending d is unique.

For existence, first let 7 ,7,:R — R be two projection maps given by
7, (r+sg)=r and 7z,(r +s¢) =s where like above R = R[¢] with £’ =0. Then 7,
is a ring homomorphism and =, is an additive group homomorphism and for any
7 €R we have 7 = r (F)+7,(F)e.

Since d: 4 — A is a derivation, by Lemma 2.1 we have a ring
homomorphism ¢,:4— A = A+ A¢ givenby ¢,(a)=a+d(a)e foraecd. We
may view this as the ring homomorphism ¢,:4 — R since A is a subring of R .

Now suppose a map »:A — R is given and we define 7:A — R by
7(a)=x, +y(a)e. By the universal mapping property for polynomial rings, there
is a unique ring homomorphism ¢: R — R such that ¢(a) = ¢,(a) for a €4 and
#(x,)=7(a) for a eA. Then 7 (4(a)) = ,(4,(a)=r (a+d(a)e)=a forac 4

and 7,(4(x,)) = 7,(7(a)) = 7,(x, +y(a)e) =x, for a eA. Thus (7, ¢)(a)=a and
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(7,0 ¢)(x,) =x,. But z,o4 is a ring homomorphism and {x,|x A} generates R
over A. So (z,0¢)(r)y=r forevery r eR.

Nextlet D=7r,04. Then D:R— R is an additive group homomorphism.
For any r e R we have ¢(r) = z,(¢(r)) + 7,(¢(r))e =r + D(r)e = ¢,,(r), and hence
¢=¢,. Since ¢ is a ring homomorphism Lemma 2.1 tells us D is a derivation.
For any a € 4 we have D(a) = 7,(#a)) = 7,(,(a)) = w,(a+d(a)¢) = d(a). Finally
for any a €A we have D(x,)=7,(x,)) =7,(7(a)) = 7,(x, +y(a)e) =y(a) .
Thus D is the required extension of d to R. This completes the proof of
Theorem 2.2.

The elements of any differential ring 4 whose derivatives are zero form a

subring C called the ring of constants. The latter follows immediately by

application of the derivation sum and product rules. If 4 is a differential field
then C is a subfield since (a7')’ =-a'(a™")* (Section 1). It follows from 1’ =0 that

C contains the subring generated by 1, the unity of 4.
If I < 4 is an ideal in the differential ring 4, we say that / is a

differential ideal if a </ implies a’ €/, or equivalently I'c /. Inthe ring 4/

we introduce the derivation (a+1I) =a'+1I, thatis, amap of 4// into 4/ defined

by a+/—a’+1. Satisfaction of the sum and product rules is immediate:
((a+1)+(b+[))' =(a+b)'+I=(a’+b')+[=(a’+I)+(b'+1)=(a+1)’ +(b+1) ,and

(@+1)b+1)) =(a'b+ab’)+ I =((a'b)+1)+((ab')+1)=(a+1) (b+1)+(a+I)b+1)

28



Next we have a+I=b+1I ifandonlyif a—bel. Then a'-b'=(a-b)' ! ifand
only if '+ I =b'+1. Thus our derivation of a coset is independent of the choice

of representative and we have defined a derivation on 4// .

Let 4 and B be differential rings. A differential homomorphism from 4
to B is a ring homomorphism that commutes with derivation. If / is a differential

ideal in A the natural homomorphism from A4 to A/! is differential. The terms

differential isomorphism and differential automorphism are defined as
expected.

Theorem 2.3 “The First Isomorphism Theorem for Differential Rings” —
Let / be the kernel of a differential homomorphism defined on a differential ring

A. Then [ is a differential ideal in 4, and 4// is differential isomorphic to the

image (Kaplansky 10-11).
Proof — That / is an ideal follows from regular quotient ring theory. To

see that / is differential, let ¢: 4 — ¢{ 4] be the differential homomorphism in
question (adopting Fraleigh’s [ ] notation for the image of a set.) For a e/ we
have ¢(a)=0 and (¢(a))’' =0. Hence #(a')=0,and a’ /. That 4/] is

differential follows from the definition of derivation on cosets above and the
canonical homomorphism 7: 4 — /% that sends a’' to a’'+/ forevery ac 4.

We see that ~ is a differential homomorphism since

m(@)=a'+I=(@+1) = (n(a))' for every a € A. Again by regular quotient ring
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theory there exists an isomorphism s:4/ — ¢ 4] such that p(a+I) = ¢(a) for
every aeAd. Then (u(a+1)) =(g(a))' =¢(a’). But u(a’+I)=¢(a"). So
(u(@+ D)y = u(@' + 1) = p((a+1)) . Hence 4/ — ¢ 4] is a differential
isomorphism.

3) Radical ideals — An ideal | is defined to be a radical ideal if a” €/
implies a e/, the usual definition.

Lemma 3.1 — If ab 1, a radical differential ideal, then ab’ e/ and
abel.

Proof —We have abel. So a'b+ab'=(ab)’ el , ab'(ab)’ €l, and
ab'(a'b)=a'b'(ab) e I. Thus (ab’)’ =ab'((ab)’' —(a’'b))=ab'(ab)’ —ab'(a'b) ! .
Therefore ab’ €/ and a’b=(ab)' —ab' el .

Lemma 3.2 — Let / be a radical differential ideal in a differential ring A4,
and let S be any subset of 4. Define T to be the setofall x in 4 with xSc /.
Then T is a radical differential ideal in 4.

Proof — It follows that 0s=0 e/ and foreach x T, z €T and for every
seS wehave (x+z)s=xs+zsel and —xs e/, so T is an additive subgroup of
A. Suppose yeA. Then (yx)s=y(xs) el since (xs)el/. Hence yxeT and T

is anideal in 4. Next suppose x T and x' ¢T. Then x'sg/ and xs e/ for

some seS. So (xs)' €l since [ is aradical differential ideal in 4. Hence by
Lemma 3.1 x's /. Thus the assumption that x’' ¢ T leads to a contradiction.

Thus T is a differential ideal in 4. Finally, suppose x" eT. Forany seS it
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follows x"s" =(x"s"")s el. Butthen xs el since [ is a radical differential ideal
in 4. Therefore x €T and T is a radical differential ideal in 4.

Let {/,|a €A} be a collection of radical ideals in a commutative ring 4.

Leta" e ﬂla . Then a eI, for every a €A since each I, is a radical ideal.
a€eA

Hence (!, is a radical ideal. Similarly if {/,|a €A} is a collection of differential

a€eA

ideals in a differential ring 4, then ﬂla is a differential ideal in 4. It follows

a€eA

that any intersection of radical differential ideals is a radical differential ideal.
Therefore for any set S in a differential ring 4 there is a unique smallest radical

differential ideal containing S, the intersection of all the radical differential ideals
in A containing S, denoted {S}.

Lemma 3.3 — Let g be any element and S any subset of a differential
ring 4. Then a{S}c{aS}.

Proof — Let {a} be the singleton subset containing the element a. The
set T={x € dlax ex{a} < {aS}} is a radical differential ideal by Lemma 3.2. We
have § < T since as es{a} = {aS} for every s eS. But {S} is the intersection of
all the radical differential ideals in 4 containing S. So {S}<T. Therefore

a{S}c{aS}.

Lemma 3.4 — Let S and T be any subsets of a differential ring. Then

{sHT}<={sT}
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Proof — The set P = {x|x{T} < {ST}} contains S, since for s S by

Lemma 3.3 s{T} < {sT} < {ST}. Now P is a radical differential ideal by Lemma

3.2. Hence {S}c P. Thus {SHT}c{ST}.

4) Ritt Algebras — The radical of an ideal / is defined to be the set of all

elements with some power in the ideal, denoted Rad /. Let H be the radical of
an ideal / in the commutative ring 4. We have 0 e H since 0 /. Suppose

h,g €H then h",g™ eI for some n,m positive integers. Take n>m and consider

the binomial expansion of (h+g)"" = h"*"'+--+(n+ m)h”g"’+--.+g"’”'. We have the
m

term [n+m)h"g’" e/ and every term to its left can be written as a product of
m

some element of 4 with #" and every term to its right can be written as a
product of some element of 4 with g”. Hence (h+g)"" el and h+geH. For
every 4" e/ then —i" e/, so H is an additive subgroup of 4. Forany a e 4 we
have (ah)" =a"h" el. Hence ahe H and H is anideal in 4. For the integer
n>0,if /" e H we have A" =(h")'" el for some integer m>0 and hence heH.

Therefore the radical of an ideal in A4 is a radical ideal in 4.

A differential ideal example — Over a field of characteristic 2, let A be
the two-dimensional algebra with basis 1,x where x* =0 and 1 is unity. Define a
derivation of A by setting 1’ =0 and x’ =1. The radical of the zero ideal is

generated by x but x’ =1 is not an element of the radical since 1" =1 for every
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integer n>0. Thus the radical is not a differential ideal. With this example
Kaplansky observes that it is not true without suitable additional hypothesises
that the radical of a differential ideal is a differential ideal.

Definition — A Ritt algebra is a differential ring containing the field of
rational numbers (which is necessarily a subfield of the ring of constants). A Ritt
algebra is actually an algebra over the rational numbers in the usual sense.

Lemma 4.1 — Let / be a differential ideal in a Ritt aigebra, and let 4 be

2n-1

an element with a” /. Then (a')" e/.

4

Proof — Applying our derivation power rule gives us na"'a’ = (a") el.
Thus «"'a’ el since we have multiplication by yn in the Ritt algebra. The

latter is the case k =1 of the statement a"*(a")**"! /. Assume the statement
true for arbitrary &, then differentiating we have

(n—k)a"*"(a")* + 2k -1)a""*(a’y**a" 1. Multiplying by a’ and taking b as
the result, b =(n—k)a"*"'(a")*"' + 2k - 1)a"*(a’)*"'a" e1. The second term of 5

is in I by the induction assumption. Hence

a”* N a ) = —l—k(b ~(2k-1)a"*(a")*"'a") e, the k +1 case of the statement

we are proving by induction. Continuing we finally come to £ =n and we have

the conclusion (a’)""' e!.
Lemma 4.2 — In a Ritt algebra the radical of a differential ideal is a

differential ideal.
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Proof — Let / be a differential ideal in a Ritt algebra. We showed above

that the radical of an ideal is a radical ideal. Thus it will suffice to show that the

radical of / is differential. Let a e Rad I. Then a" e for some integer n>0. By

Lemma 4.1 (a')""" €. Then a’ cRad I . Therefore the radical of / is a

differential ideal (Kaplansky 11-12).



Chapter 2
Extension of Isomorphisms

5) Krull’'s Theorem — Like ordinary ring theory, in differential rings any
radical differential ideal is the intersection of prime differential ideals. Kaplansky
bases the proof of this theorem on the following lemma.

Lemma 5.1 — Let T be a multiplicatively closed subset of a differential
ring A. Let QO be a radical differential ideal maximal with respect to the
exclusion of T. Then Q is prime.

Proof — Suppose the contrary. Then there exist abeQ,a¢Q and beQ.
Then {Q,a}={{a}u 0} and {Q,b} = {{b} L O} are radical differential ideals
properly larger than Q. Hence {Q,a} and {Q,b} contain t,,r, eT. But

({a} v Q)({b} v Q) < O since its elements are finite sums of products of the form
aq,,bq,.9,9, and ab, all elements of O, where g,,q, €0 and {a}, {b} are
singleton sets. So rt, €{0,a}{0.6} = {({a}w Q)({b}w Q)} = Q by Lemma 3.4 a
contradiction that Q is maximal with respect to the exclusion of the

muiltiplicatively closed T.

Theorem 5.2— Let [ be a radical differential ideal in a differential ring 4.
Then [ is the intersection of prime differential ideals. |

Proof — Let x be an element notin 7. Our task is to find a prime
differential ideal containing / but not containing x, for then I will equal the

intersection of these various ideals. Let T be the set of powers of x. Consider
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the set {U WA eF} of all radical differential ideals containing / but not containing

x. Zorn's Lemma says that if the nonempty partially ordered set A is such that

every chain in A has an upper bound in A, then A contains a maximal element.

Containment is a partial ordering on {U,|4 eI'}, I €{U,|4 eT'} and any chain

{U/l,lj eJ} in {U,|4 eT'} has an upper bound in {U,|4 €[’} namely | JU, . By

J€J

Zorn’s lemma we select a maximal radical differential ideal Q containing / and
excluding x. But O contains no powers of x, for otherwise x €. Hence Q isa

radical differential ideal maximal with respect to the exclusion of 7. Lemma 5.1
asserts that Q is prime.

6) Extension of Prime Ideals — Let 4 be a differential ring contained in
B. We tacitly assume that 4 and B have the same unity. Suppose P is a
prime differential ideal in 4 and / is a radical ideal in Bwhich contracts to P,
thatis /~ 4= P. In Theorems 6.1 and 6.2 respectively we address the
conditions under which, (1) / may be enlarged to a prime ideal that contracts to
P, and (2) I is the intersection of prime ideals contracting to 7.

Theorem 6.1 — Let B be a differential ring with a differential subring 4.
Let / be a radical differential ideal in B suchthat P=/n 4 is a prime
differential ideal in 4. Then / can be enlarged to a prime differential ideal in B
which also contracts to P.

Proof — Take T to be the complementof P in 4. Then T isa

multiplicatively closed subset of 4 and hence of B, forif 1,1, T then 1, e P is



a contradiction since P is a prime differential ideal disjoint from 7. We have |
disjoint from 7 in B since T is a subset of A disjoint from P=1n 4. Again
Zorn's lemma guarantees the existence of a radical differential ideal Q in B
containing / and maximal with respect to the exclusion of T. Then 9n4=P.
Therefore by Lemma 5.1 Q is the prime differential ideal in B we seek that
contains / and contracts to P.

Theorem 6.2 — Let Bbe a differential ring with a differential subring 4.
Let / be a radical differential ideal in B such that ab e/, a € 4, b € B implies that
ael or bel (Notethat P=/n 4 is consequently a prime differential ideal in
A.) Then [ can be expressed as an intersection of prime differential ideals in
B, each of which also contracts to P.

Proof — First the parentheses: suppose a,be4 and abeP=1INA4.
Note that a,b € B hence abel,ac A,b e B, whichimplies ael or bel. Thus
acP orbeP and P is aprimeidealin 4. We have P differential since it is the
intersection of differential subrings. Next let x € B and x ¢ /. We are searching

for a prime ideal in B which contains 7, contracts to P, and does not contain x.

Let T= {ax"[a €A,a¢P,nz0an integer}. We see that T is multiplicatively

closed. We have a ¢/, x ¢ and [ is a radical differential ideal so x" «/.

Since a €4 and x" € B by our hypothesis ax" I for every n so T is disjoint
from I. Once again Zorn's lemma assures the existence of a radical differential

ideal Q in B containing / and maximal with respect to the exclusion of T'. By
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Lemma 5.1 Q isaprimeidealin B. f aeQn A4 andif ag P, then a €T and
aeQnT, acontradiction. Hence OnAcP=INnAcQn A4, and Q contracts to
P. Finally, x Q since x eT.

7) Lemma on Polynomial Rings —

Lemma 7.1 — Let K and L be fields with K< L. Let B be the ring
obtained by adjoining a (possibly infinite) set of indeterminates to L, 4 the ring
obtained by adjoining the same indeterminates to K. Let P be anidealin 4, J
the ideal in B generated by P, and I the radical of J. Then: (a)if P isa
radical ideal, T~ 4= P. (b) Suppose that P is a prime ideal and that ab e/ with
acA, beB. Theneither aeP or b el. (c) Suppose that the characteristic is 0
and that P = 4 ( P need not be a radical ideal). Let y be one of the

indeterminates and s an element thatisin L butnotin K. Then y-sg/.

Proof — Regard L as a vector space over K. Then foreach /, e L we

have a unique expression /, =3 k,,u, where {u, elly eI‘,} is the basis of L
rel

over K, I' anindex set, and k, €K, and all but finitely many £, are 0. With no
implication that " is of countabie cardinality we let 4, =1. Then for b € B = L[x]

where x =(x,|v eN) we have

4, Ava) (4.7) (Ava) -
b= 1(x, Y (x, YA =3 Y kL (x, ) (x, YA =Y a,u, , where
AeA

ieAyel yel

A is a finite indexing set and each g, € 4 is of the form
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>k, (x, )40 (x, ). Hence b e 4 only when all a, € 4 vanish except ;.
ieA

We observe that J = {b = Z p,u,{ p, € P} . Hence Jn 4= P (for arbitrary P).

a) Take P to be aradical idealin 4 and belIn A. Then since [ is the
radical of J we have »" eJ for some integer n>0. But " € 4. So

b"eJNnA=P. Since P isaradicalideal, beP. Hence /InA4c P. Forthe
reverse containment P=JNAcIn A since [is the radical of /. Therefore
INnA=P.

b) Suppose further that P is prime andthat abe/,ac4,beB. Then

a"b" e J for some n since / is the radical of /. Take " =) a,u,. Thus
Z(a”ar)ur =a"b" eJ. Then each a"a, € P since J={Z P4, |p, eP}. Now P
is prime, hence a € P or each q, € P, in which case 5" =Za,u, e J and hence

bel.

c) Presume that y—s /. We will find a contradiction. First, (y-s)" eJ
for some m. Let I, ={ fO) el f») eJ}, the set of polynomials in y over L
contained in /. Then (y—s)" e1,. Now since J is anideal in B, L is a field
and I involves only one indeterminate then /; is a principal ideal whose

generator divides (y—s)". The generator cannot be a nonzero element of L
(constant) for then J would be all of B, and P=Jn 4 would be all of 4,

contradicting our hypothesis. Thus the generator must be of the form (y—s) with
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r>1. Again invoke the vector space basis {4, }, taking » =1 and u, =s. We
have from above that when (y-s)” is expressed as a linear combination of the
u,'s, each separate coefficient must be in P and hencein J = {Z p,u, Ip, € P} .
In particular the polynomial coefficient of «, say p,, is over K and p, € J since
P is the generator of J={f(y) =Y pulp, € P} in B=L{y}. Thus

)} e[o={f(y)eL[y]|f(y)eJ}=<(y—s)’>. But p, isover K, s &K and by the

binomial formula p, = y" +0y""' +0y"*+--- is monic of degree rin y, so
p=-5) =y —rsy” +1r(r-1)s*y"---. We have rs =0 since the
characteristicis 0. Hence we found our contradiction.

8) Admissible Isomorphisms — An isomorphism between two fields K
and L will be called admissible if there exists a field M containing both X and
L.

Theorem 8.1 — Let M be a differential field of characteristic 0, K and L
differential subfields, and let there be given a differential isomorphism S of X
onto L. Then S can be extended to an admissible differential isomorphism

defined on M.

Kaplansky asserts that by the principal of transfinite induction it will suffice
to show for e M and u ¢ K that we can define an extension of the isomorphism

S to u so that the image of « lies in a suitable extension of L. It is our purpose
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here to modestly expand the justification of the assertion by outlining a method
employing Zorn's lemma after proving the following:

Lemma 8.2 — Let M be a differential field of characteristic 0, X and L
differential subfields, and let there be given a differential isomorphism § of K

onto L. Let ue M and u ¢ K, then there exists an extension of the isomorphism

S to u so that the image v of « liesin L{v} and the fields of quotients of K{u}
and L{v} are differential isomorphic.

Proof — Let K{u} be the differential integral domain obtained by
adjoining u to K where ue M and u K, and let K{y} be the differential
integral domain obtained by adjoining the differential indeterminate y. Let P, be
the kernel of the differential homomorphism ¢ from K{y} onto K{u} defined by
sending y into u. Let ab e P,. Theng(a)g(b) =g(ab) =0 and either g(a) =0 or
#(b)=0 since K{u} has no divisors of zero. Hence acP, orbeP,. Thus P isa
prime differential ideal in K{y}. If we apply the differential isomorphism S of K
onto L to a map of K{y} —» L{y} sending y to y and employ the commutative

property of derivation and differential isomorphisms we can demonstrate that the

result is a differential isomorphism from K{y} onto L{y} with the usual tedium.
in this manner we apply the differential isomorphism S to £ and obtain a prime

differential ideal P in L{y}. Welet J be the ideal in M{y} generated by P.

Then J consist of all the finite sums Y pm,, p, € P and m, € M{y}, so
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(X pm) =3.(pim,+ pm) eJ and J is a differential ideal. Let / be the radical

of J. Then [ is aradical ideal for if a" </ we have (a") =a™ eJ and a el
Since M{y} contains M, a field of characteristic 0, it is a Ritt algebra, so by
Lemma 4.2 | is a differential ideal. Thus / is a radical differential ideal in A{y}.
Now P is a prime differential ideal in L{y} so itis necessarily a radical

differential ideal since if a"'a=a" ¢ P we conclude ¢"' € P or ae P and ifitis
a""' e P we continue and after at most n—1 tries a € P. By Lemma 7.1(a),

InL{y}=P(K and L arereplaced by L and M respectively so B
corresponds to M{y} and 4 corresponds to L{y}). By Theorem 6.1 / can be

enlarged to a prime differential ideal O in M{y} which contracts to P,

onL{y}="P.

Let v be the image of y under the natural homomorphism from A7{y} onto

M {y% , a differential integral domain. Next we define a differential

homomorphism from X{y} onto L{v} in two steps. The first step is from K{y}

onto L{y} by means of the isomorphism S and the second step is from
L{y} onto the differential integral domain L{v} = L{% A Ly} by sending y to

v. Hence the kernel of the composite map K{y} onto L{v}is = P=0n L{y}.

But P, is the kernel of the differential homomorphism K{y} onto K{u}. Thus we
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get a differential isomorphism between differential integral domains K{u} and
L{v} extending S. By Theorem 1.1 the isomorphism extends uniquely to a

differential isomorphisms between the quotient fields K(x) and L(v) of K{u} and

L{v}. We have K{u)c M and L(v)c My} - But M may be viewed as a

4

differential subfieid of 1/} [ by the natural injection A - M {y% sending
me M into m+Q . So the quotient field N of the differential integral domain

Miy % is a field containing both K(u) and L(v). This concludes the proof of

Lemma 8.2.

Now we turn to the proof for Theorem 8.1. We will offer an outline
containing enough details to comfortably continue beyond without further
discourse (Peterson suggested the approach taken here in private
communication with the author.) In doing so we will need a more robust notation
than we currently have.

Proof of Theorem 8.1 (outline) —

1. Start by choosing a set M with M < M and |M]> [M|.

2. Let Sbe the set of all 6-tuples (E, F,+.,,d:,T) where
a. E is adifferential subfield of A/ containing X,

b. McFc M,
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c. (F.rrr.d;) is adifferential field having M as a differential subfield (i.e.,
+, and -, are binary operations on F extending addition and
muitiplication in M and making (F,+,,,-F) afield,and d.:F—> F isa
derivation extending the derivation on M),

d. T:E - F is adifferential isomorphism of E into (a differential subfield of)
F extending S, the isomorphism from K to L in the theorem, and

e. F isgenerated over M by T(E) ( as a differential subfield of itself and
hence, as one can prove, as a subfield), i.e., F = M(T(E))= M(T(E)).

3. Define a relation < on S by componentwise containment. Thatis

([ )(Eys Botr o, .dg,,T,) if and only if E, is a differential

subfield of E,, (F,+.5.dy;) is a differential subfield of (£,,+ ,,.d;,) and T,

is an extension T, . If we view all binary operations as functions and all

functions as sets (of ordered pairs), this means exactly that £, c £,, F,c F,,

+p CHp, p oy dycdy,and T T,

4. Show that < is a partial order on S (i.e. reflexive, transitive, antisymmetric).

The steps here are straightforward and follow from the definitions above.
5. Show that the union of any chain in S is an upper bound in S for that chain.

There are numerous verifications that lead to the result that for each chain

e={(E..F.tr, ir,-dr, T )@ cA} there exists an upper bound, namely



U(Ea,Fa r ,-F",dFQ,I;) €S, where we take the union to mean
a€A

componentwise union.

6. Now positioned to invoke Zorn's lemma, we conclude S has a maximal
element, call it (E, F,+..x.d:,T).

7. By Lemma 8.2 we have an extension of S to an admissible isomorphism of
K(u) onto L(v). Then we may prove E= M by assuming E = M to obtain a
contradiction to (E, F,+,,,d.,T) being maximal in S.

8. Since E= M, T:M — T(M)c F is the required extension of S to an

admissible differential isomorphism defined on A, and M is a differential
subfield of F
Theorem 8.3 — Let K be a differential field of characteristic 0. Let s be
an element in a larger differential field L, s ¢ K. Then there exists an admissible
differential isomorphism on L which actually moves s and is the identity on X.
Proof — Following the same approach used in the previous proof, for a

differential indeterminate y let P be the kernel of a differential homomorphism
from the differential integral domain X{y} onto the differential integral domain
K{s}. We have K{y%z K{s}, so P is a prime differential ideal in K{y} and
P=K{y} since s=0. Let J be the differential ideal in L{y} generated by P,

where we are taking L = K(s). Let I be the radical of /. Then [/ is a radical

differential ideal in L{y} andin K{y} contracts to P by Lemma 7.1 (a). Invoking
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Theorem 6.1 suppose that / has been expanded to a prime differential ideal O
in L{y} which contracts in K{y} to P. We will be in the position to construct an
admissible differential isomorphism of K(s) onto K(r), sending s to + and equal

to the identity on K, once we write ¢ for the image of y in the homomorphism of

L{iyt onto L{y} = K{s}. To meet our need we must move s and we have
Q

equalto s only if y—seQ.

Lemma 7.1 (b) assures the hypotheses of Theorem 6.2 (K{y}and L{y} in
place of 4 and B respectively). Consequently the intersection of Q's such as
aboveis /. Soif we always have y~seQ, then y—se/. Thisisa

contradiction to Lemma 7.1(c). Finally by Lemma 8.1 we may extend our
admissible differential isomorphism to an admissible differential isomorphism

moving s and equal to the identity on K defined on all of L (Kaplansky 13-17).



Chapter 3
Preliminary Galois Theory

9) The Differential Galois Group — Let M be a differential field, K a
differential subfield of M. We define the differential Galois Group G of M/K to
be the group of all differential automorphisms of M leaving K elementwise
fixed. For any intermediate differential field L define L' to be the subgroup of
G consisting of all automorphisms leaving L elementwise fixed (thatis, L' is
the differential Galois group of M/L). For any subgroup H of G define H' to
be the set of all elements in M left fixed by H. Necessarily H' is an
intermediate differential field between K and M. Evidently L” o L since it must
lie between L and M. And L o L, implies L;c L;. Wehavenow." > L
implies L < L’. But the automorphisms of L’ leave L" fixedso L'c L.
Hence L'= L™ . Similarly H" o H, the set of all the automorphism that leave H’
fixed contains H, H, o H, implies H/c H;, and H'=H'". \We say a field or
group is closed if it is equal to its double prime. Thus we have the result that
any primed object is closed, and priming sets up a one-to-one correspondence
between closed subgroups and closed intermediate differential fields. Which
subgroups or subfields are closed? This important question remains untouched.

Lemma 9.1 — Let N be a differential field with differential subfield K.

Let L and M be intermediate differential fields with A/ > L and [M:L]=n. Let
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L' and M' be corresponding subgroups of the differential Galois group of N
over K. Thentheindexof M’ in L' isatmost n, (L= M')<n.

Proof — Since the relative degrees of fields and relative indices of groups
are both muitiplicative we need only to consider a simple extension, say

M = L(u). Then the right cosets of L'mod M’ correspond to the images of «

under automorphisms keeping L elementwise fixed. There are at most »n such
images, namely the zeros of the irreducible polynomial for uover L.

Lemma 9.2 — Let G be the differential Galois group of a differential field
extension M of K. Let H and J be subgroups of G with H>J and J of
index n in H. Let H' and J' be the corresponding intermediate differential

fields. Then [J:H']<n.
Proof — Suppose [J:H'] > n. Then there exist u,,---,u,,, €/’ which are

linearly independent over H'. Let S,,---,S, be any representatives of the right

cosets of Hmod J, cosets of automorphisms which fix the elements of M

n+l

contained in H’. Suppose S, =/. Form the equations > a,(«S,)=0, for

=]
j=1,---,n. We have n linear homogeneous equations in n+1 variables. Hence
there exist nontrivial solutions in M and we choose one with a maximum number

of zeros, say the nonzero elements q,,---,a, followed by 0's. We can suppose

that a, =1. Itis not possible that all the a's lie in ', for then the first equation

n+l
where S, =/ becomes Za,u,. =0 and contradicts the linear independence of the

=1
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u's. Suppose a, ¢ H'. Then some automorphism in H moves a,, say this
automorphism lies in the right coset JS,. The «'s are invariant under the

automorphisms of J, so we are free to choose our representative of the coset.

n+|

Thus we can suppose a.S, = a,. Finally applying S, to Za,(u,S j) =0 and
=1

n+l
subtracting the results from > a,(uS,)=0, for j=1,---,n, we have a shorter

=]

solution since S, does not move all the a's. Thus we have a contradiction to our

choice of a solution with a maximum number of zeros.

A direct consequence of Lemma 9.1 and Lemma 9.2 follows:

Lemma 9.3 — Let G be the differential Galois group of a differential field
extension M of K. Then any finite-dimensional extension of a closed
intermediate differential field is closed. Also any subgroup of G having a closed

subgroup of finite index is itself closed.

Proof — Let L and N be intermediate differential fields with N o L and

[N:L]=n suchthat L=L". Then (L',N')<n by Lemma 9.1. Hence
[N":L"]<n by Lemma 9.2. But Nc N” and[N:L"]=n since L=L". So
N=N". Nextlet H and J be subgroups of G with H>J, (H:J)=n and such
that J=J". Then [J':H']<n by Lemma 9.2. Hence (H":J")<n bylemma 9.1.
But H" > H and (H:J")=n,since J=J". So H"=H.

Theorem 9.4 — Let M be a differential field, K a differential subfield, G

the differential Galois group of M/ K. (a) If H is a normal subgroup of G, then
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any differential automorphism of M/ K sends H’ onto itself. (b) If L is an
intermediate differential field with the property that any differential automorphism
of M/K sends L onto itself, then L’ is a normal subgroup of G,and G/ L' is
the group of all differential automorphisms of L/ K which can be extended to M.
Proof — (a) Let S eG. We have STS™' ¢ H forevery T e H. Hence

xSTS™' =x forevery x e H'. Thus xST=xS and H'Sc H'. Hence an

automorphism of M/ K sends H' into itself. The same argument is true for S™'.
Therefore an automorphism of M/ K sends H' onto itself.

(b) — Let L be an intermediate differential field, M > L > K. Suppose
that for S G we have LS= L. Thenforany T e L' we have xST = xS for every

xeL. Hence STS™ e L'. Consider the homomorphism ¢ of G onto the

differential Galois group of L/ K defined by restricting the automorphisms of M

to L. The kernel of ¢4 is L', the automorphisms of M /K thatfix L (thatis, the

differential Galois group of M/ L). Then %, = ¢[G] differential automorphisms

of L/ K which can be extended to M.

Let A be a normal subgroup of the differential Galois group of M/ K. By
Theorem 9.4 (a) H' is an intermediate differential field with the property that any
differential automorphism of M/ K sends H' onto itself. By Theorem 9.4 (b)

H" is normal. Hence the closure of a normal subgroup of a differential

Galois group is normal.
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We define the differential field M to be normal over the differential
subfield X if any elementin M but notin K can be moved by a differential
automorphism of M /K. Suppose M is normal, then elements of K" notin K
can be moved by differential automorphisms of M/ K. But K" is the set of
elements fixed by the automorphisms of K’ , the automorphisms that fix K,
hence K"=K. So if M is normal, X is closed.

Suppose H is a normal subgroup of the differential automorphisms of
M/K. Then H' is sent onto itself by any differential automorphism of M /K.
Hence any element that lies in /' and notin K can be moved by differential
automorphisms of A/ K restricted to /', a differential automorphismof H'/ K.
Hence the differential subfield corresponding to a normal differential Galois
subgroup is normal. The converse is not true unless we have additional
hypotheses.

Lemma 9.5 — Let L be a closed subfield, A the corresponding
subgroup. Then the normalizer of H (N u ={S eG|SHS‘l = H}) consists of all S
in G that map L onto itself.

Proof — Let SeN,. Then ISH S =! forevery I eL and H, eH.
Hence ISH_ =IS and IS € L since L= L" and we have LS =L (equality since S

must be automorphism of L). The last argument works in reverse, so N,

contains every S in G that maps L onto itself.

5



Lemma 9.6 — Let L be a closed subfield of A, L normal over K. Let
H be the subgroup corresponding to L. Assume that the normalizer N, of H
is closed and that every differential automorphism of L over K can be extended
to M. Then H is normal and furthermore G/ H is the full differential Galois
group of L over K.

Proof — If N, =G, then H is normal, so we need only to show N, =G.

Suppose L, is the subfield correspondingto N, . Then since N, is closed,
N, contains all the automorphisms of G that fix L, elementwise and we need
only to show that L, =K. We have that L, is necessarily closed, thus by

Lemma 9.5 VN, consists of just those S G that map L onto itself. By
hypothesis every differential automorphism of L/ K can be extended to M .
Hence N, must contain all the differential automorphisms of L/ K. Now we

assumed L normal over K, so no elements of L other than elements of XK are

fixed under the automorphisms of ~,. Hence L, =K, and N, =G. Therefore

H is normal. Then we have L with the property that that any differential
automorphism of M/ K sends L onto itself so by Theorem 9.4 G/ H is the
group of all differential automorphisms of L/ K.

10) The Wronskian — The Wronskian # of n elements y,,y,,---,y, ina

8 2 Y, Ya
. o oo Vo
differential ring is defined as usual ¥(y,,»,, --,»,) =det : ’
iy yoy
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Theorem 10.1 — Let F be a differential field with field of constants C.
Then n elements of F are linearly dependent over C if and only if their

Wronskian vanishes.

Proof — Let y,.---,y, be linearly dependent over C. Then Zc, y, =0 with
not all ¢'s equal 0. Differentiating this equation n—1 times we have » linear
homogeneous equations for ¢,,--,c,, Zc,y,“’ =0for j=0,---n—-1. The ¢'s are
not all zero, so W(y,,y,,*-,¥,)=0.

Conversely, suppose W#(y,,y,,~,¥,)=0. Thenin F there exists a
nontrivial solution ¢,,--,c, to the equations > ¢y’ =0, j=0,--,n—1. If ¢,=0
then we may rearrange terms of the equations so that ¢, # 0; otherwise there is

no nontrivial solution. Take c, =1 then we suppose #(y,,--,y,)#0. Otherwise

Y ¢y =0 has a nontrivial solution and repeating the process we eventually

122

arrive at a point with a nonzero Wronskian or all our 's may be expressed as a
constant multiple of a single y and we are done (since then ¢, =--=¢,_, =1,
yn-l = cnyn ! yn-l’ = nyn' ' and diﬁerentiating yn-l = cnyn we get yn—l' = Cnyn, +cn'yn

implying ¢, =0). Taking #(y,,--,y,)#0 we have -y’ =Y ¢y, j=0,--,n-1.

22

Differentiating the first n—1 equations we have —y{/ = Z(c y ¢ yud )

222

j=1---,n—-1. Substituting —y{” => ¢y for j=1,--,n-1into
222
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—yl(j) =Z(c‘y,(/) '*'C,'}’,U_l)). j= l,“',n—'l, we have ZC"})‘(J) =0, j=0,"',n—2.

22 122

Thus ¢, =--=¢,' =0 and the ¢'s are constants since #(y,,-,y,)#0.

Theorem 10.1 makes it possible to discuss linear dependence over
constants unambiguously since the vanishing of the Wronskian is independent of
the choice of field.

11) Picard-Vessiot Extensions — Consider a linear homogeneous
differential equation L(y) =y +a,y" " ++a,_y'+a,y =0 with coefficients in the
differential field K. Let u,,---,u,,, be solutions of the equation in a certain

(possibly) larger differential field. The equation L(y) =0 shows that the last row
of the Wronskian W(u,,---,u,,,) is a linear combination of the proceeding rows
and W(u,, --,u,,,)=0. Thus u,---,u,, are linearly dependent over constants.

Definition — Let L(y) = y'" +ay" "+ --+a,_y'+a,y =0 be a linear
homogeneous differential equation with coefficients in a differential field K. We
say that a differential field M containing X is a Picard-Vessiot extension of X
(for the equation L(y)=0) if, (@) M = K(u,--,u,) where u,,---,u, are n solutions
of L(y) =0 linearly independent over constants, and (b) M has the same field of

constants as X.
In regards to the issue of existence and uniqueness of Picard-Vessiot
extensions, Kaplansky refers the issue to Kolchin both by works and personail

communications. He observes that the existence and uniqueness are assured in



the case where KX is of characteristic 0 and has an algebraically closed field of
constants. It seems appropriate to remind ourselves that when X is a differential
field of meromorphic functions on a domain in the field of complex numbers €
and €c K, existence and uniqueness of Picard-Vessiot extensions follows from
the theory of linear differential equations.

Let M be a Picard-Vessiot extension of X, and S a differential

automorphism of M over K. Then S is a linear combination of the «'s with

coefficients in the constant field C, u,S = ZC,]uj , i=1-,n. The matrix c, is

non-singular since the inverse matrix may be derived from the inverse
automorphism. Since u,,---,u, generate M = K(u,,---,u,), the differential Galois
group of M/ K is isomorphic to a mulitiplicative group of non-singular matrices
over C.

Lemma 11.1 — Let K c L c M be differential fields. Suppose L is a
Picard-Vessiot extension of K, and that M has the same field of constants as
K. Then any differential automorphism of M over K sends L onto itself.

Proof — Suppose L(u) =0 is the linear homogeneous differential
equation of our Picard-Vessiot extension. For every differential automorphism S
of M/ K and every solution u, of L(u)=0, we have L(uS)= L(u,)S=0S=0
since S commutes with derivation and K is elementwise fixed by S. Hence

uS el forevery uS. Since L=K(u,,u,) it follows that IS e L forevery/eL.

Then we have LS = L since S is an automorphism of M /K.
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12) Two Special Cases — The first is adjoining an integral.
Lemma 12.1 — Let K be a differential field of characteristic 0. Let u be
an element of a larger differential field with 4’ =a € K, where a is not a derivative

in K. Then u is transcendental over X, K(u) is a Picard-Vessiot extension of

K, and its differential Galois group is isomorphic to the additive group of
constants in XK.

Proof — Suppose u satisfies an irreducible polynomial equation over X,
take the equation u” +bu""'+--=0. Differentiating, we get nu""'a+b'u""'+--=0,
where we display only the terms of greatest degree, n—1. We have that u isa
zero of an irreducible polynomiai of degree n over K. Hence u is not the zero
of a polynomial of degree less than » over K. Thus the coefficients of the

polynomial (na +b')u""'+-- are zero. Then na=-b' and a is then the derivative

of =0 e K, a contradiction to our hypothesis. Hence u is transcendental over X.
n

To show that K(u) has no new constants, first suppose that the
polynomial b,u™ +b,u™ '+ -- is a constant. On differentiating,

b'u" +(mba+b, " +--=0. Hence b’ =mba+b, =0 and

14

) again a contradiction. Suppose now that the

a=

~b, _ ~mbb, +mbb, _ [ —b,

mb, m’b} mb,
rational function pAC)] is a constant, where J@ is in lowest terms and g(u)
g(u) 8(u)



contains » with a leading coefficient of 1. Differentiating f_g—ng’_z 0, and
g

I L, But g’ is a polynomial of lower degree than g. So we have a

g 8

contradiction to our assumption that LEE)Z is in lowest terms. Hence the
g\u

assumption that we have new constants in K(u) leads to a contradiction to our

hypothesis.

By hypothesis W 1. Thus differentiating , (u—') = u—"f—_,—uzl—’- =0. Hence
a a

a

[

u and 1 are solutions to the differential equation y"—(f—)y' =0, linearly
a

independent over constants. Thus K(u) is a Picard-Vessiot extension of K.
In a differential automorphism of K(u) over K, u must be sent into

another element with derivative a. Sending u into u+c with ¢ eC the field of
constants and fixing K elementwise will do the job for us. That the mapping

u — u+c induces an automorphism of K(u) over X in the usual algebraic sense

is deduced by tediously showing that it is a bijection and preserves addition and
muitiplication. Let S be the name of our mapping uS=u+c. Toshowthat S is a

differential automorphism of K(u) we first demonstrate validity for the polynomial

> Au'. Thelatteris sentto > 4,(u+c) . Differentiating we have
> [iii(u +c)a+d, (u+ c)'] , the image of (z Au )' = Z[iﬂ,,u"‘a + l,'u‘] . Next
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for —f—((f)l € K(u), where f(u) and g(u) are polynomials over X we have
g(u

! ( ’ ! ’ 14
(f(u)) oo | L) g~ fu)(gw) | _| (fu+e)) glu+e) = flu+e)glu+c))
g(u) (g(u))2 (g(u+c))2

reducing to

g(u) gu+c) g(u)

/N

(ﬂ_‘_‘lJ ]S - (_f (u +C)J = ((MJSJ . Thus Sis a differential

automorphism. Since K is elementwise fixed by automorphisms of K(u)/K, our

automorphisms induced by the mappings u — u+c¢, ¢ eC cover all the possible

images of u under differential automorphisms of X(u)/K and we have the
desired result: the differential Galois group for K(u)/K is isomorphic to the

additive group of constants in K, the fact that the given bijection between the
differential Galois group and the additive group of constants preserves the group
operation being immediate.

The second type of extension is the adjunction of an exponential of an
integral.

Lemma 12.2 — Let K be a differential field, « an element satisfying the

equation y'—ay =0, a K. Suppose K(u) has the same field of constants as
K. Then K{u) is a Picard-Vessiot extension of K, and its differential Galois

group is isomorphic to a subgroup of the multiplicative group of nonzero

constants in XK.
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Proof — By the definition, K(u) is a Picard-Vessiot extension. If v is

=0. Hence

3

I
v viu-u'v avu—auv
—— —4 Y p—1
u u-

another solution to y'—ay =0, we have (
u

v=cu with ¢ a constant. Thus every differential automorphism of K(u)/ K is of

the form u — cu.
13) Liouville Extensions — We define M to be a Liouville extension of
K if there exists a chain of intermediate differential fields

K=K cK, c--cK,=M such thateach X

1+1

is an extension of X, by an

integral or an exponential of an integral.

Theorem 13.1 — Let M be a Liouville extension of the differential field
K, having the same field of constants as K. Then the differential Galois group
G of M over K is solvable.

Proof — Let the chain of intermediate differential fields be

K=K cK, c--cK,=M such thateach K

1+]

is an extension of X, by an
integral or an exponential of an integral. By Lemmas 12.1 and 12.2, K, is a

Picard-Vessiot extension of K. Then Lemma 11.1 tells us that an automorphism

of M/ K sends K, ontoitself. Let A, be the Galois subgroup of G
corresponding to K,. By Theorem 9.4 H, is normalin G and G/ H, is the
group of all the differential automorphisms of X, / K which can be extended to
M. Hence G/ H, is a subgroup of the differential Galois group of X, / K. Again

by Lemmas 12.1 and 12.2 the differential Galois group of K, / X is isomorphic to
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the additive group of constants or multiplicative group of constants in K. Hence

the differential Galois group of X, / K is abelian. So G/ H, is abelian. Repeated
application of the above argument to the automorphisms of M/ K, ,---, M/ K, | we
have a chain G H, o H, >---o H, , o {1}, such that H, is normal in H,_, and

H

1+]

/ H, is abelian for every i. Therefore G is solvable.

14) Triangular Automorphisms — Until we have more machinery
available to us we must settie with the next theorem, a partial step toward a
converse to Theorem 13.1.

Theorem 14.1 — Let the differential field M be normal over its differential

subfield K. Suppose that u,,---,u, € M are elements such that for every
differential automorphism o of M/ K we have yo=a,u +a,, u, + +a,u,,

i =1,--,n, with the a's constants in M and depending on o. Then K{u,,---,u,)
is a Liouville extension of K.

Proof — The equation for i =» is u,0 =a,u,. Differentiating gives

u o=a,u, since o is a differential automorphism. Taking u, = 0, for otherwise

! '
u,o U,

we simply suppress u,, and dividing gives us . But

u,o u

n

u U U

n n n

u,oc

n

’ ’ ’
- - U u U .. .
=(u,0) '=y'c. So [ L ]0'= »_ and - is invariant under o. Hence

’

u,

e K since M is normal over K. Thus the adjunction of u, to X is the
U

n
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adjunction of the exponential of an integral. Next dividing each of the equations

WO =au, +a, U, +-+au,, i=1-,n-1,by uoc=a,u, weget

u a, u a,,, U a . e .
[—' oc=—t Lyt Tml T Differentiating gives us

U ann un ann un a"ll

as our original equations in the elements (

’

) a=-ai(i} +---+£‘—"’—‘—'—(ﬁ:'—) , i=1--,n—-1. The latter are of the same form
a n

= |e

nn n

4

ﬂ) fori=1,---,n—-1. The process

n

'

may be repeated and we have by induction on », the adjunction of (i) to K
U

n

yields a Liouville extension. Then the adjoining of % means adjoining of
u

n

integrals (Kaplansky 18-25).
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Chapter 4
Algebraic Matrix Groups and The Zariski Topology

15) Z -spaces — Let F be any field. Let V' be an n-dimensional vector
space over F, specifically the set of n-tuples with elements in F together with
the usual axioms of vector space addition and scalar multiplication. Let
Flx,,-+,x,] be the polynomial ring in n indeterminates over F'. We define an
algebraic manifold in I/ to be all the zeros of a collection S of polynomials in
Flx,,-+,x,], thatis, the set of zeros common to every polynomial in S .
Enlarging S to the set I of all polynomials which vanish on the manifold, we
then have an ideal in F[x,,---,x,], since it is closed under polynomial addition
and the product of any polynomial in F[x,,---,x,] with any member of the
collection is again a polynomial possessing the set of common zeros. Thus an
equivalent definition is that an algebraic manifold in ¥ is the set of zeros of an
ideal in F[x,,---,x,]. Sinceidealsin F certainly satisfy the ascending chain
condition, we know by the Hilbert basis theorem that ideals in F[x,,---,x,] satisfy
the ascending chain condition. Each ideal in the chain corresponds to an
algebraic manifold, so we conclude that algebraic manifolds of I must satisfy a
descending chain condition, i.e. a descending chain of closed manifolds will
stabilize in a finite number of steps.

We adopt the fact from algebraic geometry that a finite union of algebraic
manifolds is an algebraic manifold and that an arbitrary intersection of algebraic

manifolds is an algebraic manifold. Then we use algebraic manifolds as closed
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sets to define a 7, topology on V', called the Zariski topology . We recall that
the usual definition for a 7, topology on V' is given two distinct points in I/ each
has an open neighborhood not containing the other. A familiar result of point set
topology applicable here is that points are closed sets if and only if the

topology is 7,. So we can see that the Zariski topology is indeed 7| since any
point (a,,---,a,) in V is the zero set of the collection of polynomials

{x,-a,,,x,~a,}. Itfollows that any finite collection of points is closed since the

finite union of closed sets is closed. It seems natural now to define a Z -space

to be a T -space satisfying the descending chain condition on closed sets (or

equivalently the ascending chain condition on open sets since the complement of
a closed set in is open.)

Lemma 15.1 — a) Every subspace of a Z -space is a Z-space. b) Ifa T -
space is a continuous image of a Z -space, it is itself a Z -space. c) A Hausdorff
Z -space is finite (A space is Hausdorff, or 7, , if each two distinct points have
nonintersecting respective open neighborhoods.)

Proof — a) Suppose we have a non-empty non-Z -subspace X ofa Z-
space Y. Suppose X does not satisfy the descending chain condition on closed
sets. Then there exists an infinite descending chain of closed sets in X, say the

sets C,, n=12,---. Each C, is the intersection of some closed set D, in ¥ with

X . Thus we may construct an infinite descending chain of closed sets in Y

since an arbitrary intersection of closed sets is closed. We display our
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chain: D, > D, D, > D, D, D;---. We are assured that it is not an empty
descending chain since D, >C,, D,>C,, D;oC,-- and (,oC,oC >+
Hence the assumption that the Z -subspace X does not satisfy the descending
chain condition leads to a contradiction. Thus the subspace of a Z -space

satisfies the descending chain condition. To see that X is 7; note that for any
point p € X we have that the set {p} is closedin ¥. Then {p}n X ={p} is

closed in X. Thus the subspace of a Z -space is a Z -space.

b) Suppose it is not. Then there exists an infinite descending chain of
closed sets in the image T, -space. But the pre-image of each closed set in the
chain is a closed set in the Z -space since the image is the result of a
continuous, surjective map and the totality of pre-images form a descending
chain. Thus we have an infinite descending chain of closed sets in the Z -space,
a contradiction. Therefore the continuous image of a Z -space that is a 7;-space
is itself a Z -space.

c) ltis a direct consequence of the Hausdorff axiom that every infinite
Hausdorff space has an infinite number of disjoint open sets. For suppose not,
then there exists an open set that is infinite and contains no disjoint open sets, a
contradiction to the Hausdorff axiom. Thus we may construct inductively a
countably infinite ascending chain of open sets. Therefore a Hausdorff Z -space
is finite.

Lemma 15.2 — A Z-space is the union of a finite number of disjoint open

and closed connected subsets.



Proof — Let X be a Z-space. If X is not connected it is the union of
two disjoint open and closed sets. If either of these two is not connected, it may
be similarly split. The descending chain condition on closed sets makes this
process terminate in a finite number of steps, and we reach an open and closed
component of X . In the complement we may similarly extract a second open
and closed component, and so on until in a finite number of steps we have
extracted all the open and closed components. In this way we may build an
ascending chain of unions of open disjoint components of X which in a finite
number of steps terminates with X by the ascending chain property.

16) T,-groups and Z -groups — The group GL, of all non-singular nxn
matrices over a field F is a subset of »’ -dimensional space and thus “carries”
the Zariski topology.

Lemma 16.1 — Let V' and ¥ be m-dimensional and »-dimensional
spaces over F, taken in the Zariski topology. Let r,,---,r, be rational functions in
m variables x,,---,x,. Let S be the set where any of the denominators of r,,---,r,
vanish, and let 7 be the complement of S in ¥ . Then the mapping from T to
W, defined by (x,,---,x,,) = (¥, ¥,) With y, =r(x,,-+,x,), is continuous.

Proof — We have to show that the inverse image of a closed set is

closed. Given a closed set on W , it is evidently the set of zeros of a collection of

polynomials g, (y,,---,y,). The inverse image of this set of zeros in # is the set

of zeros of the rational functions g, (r,(x;, -, x,),"-*,%,(%;,-++,X,)) in T, which is the
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same as the set of zeros of the numerator polynomials of

g, (n(x;, 5%, ), (X000, x,)) in T, a closed set in the Zariski topology for T.

We may conclude by this last lemma that in the “topological group” G
multiplication is separately continuous in its variables, and that the inverse is
continuous. It can be shown that if multiplication is jointly continuous in its
variables then the space Hausdorff and Lemma 15.2 tells that a Hausdorff Z -
space is finite.

Definition — We say that G is a T, -group if it is a group and a T, -space
in such a way that the inverse is continuous and multiplication is separately
continuous in its variables. Equivalently, we may say that left multiplication, right
multiplication and inversion are homeomorphisms of G onto itself. A Z -group
is a 7;-group whose space is a Z -space.

We recall that components are equivalence classes that partition a space
into connected disjoint subsets whose union equals the space. The equivalence

relation is defined on a space X by taking x~ y if there is a connected subset of
X containing both x and y. The component containing the identity element of a

group is called the component of identity.

Lemma 16.2 — The component of identity in a 7, -group is a closed
normal subgroup.
Proof — Let C be the component of identity in the 7,-group G. By C”'

we mean the set of multiplicative inverses of elements of C. Thus by definition



ofa T -group, C™' is the continuous image of a connected set, hence C™' is

connected and contains 1. Thus C™' < C since every connected subset
intersects only one component. Similarly, for ¢ e C we have that ¢C is
connected and shares the element ¢ with C and so cCcC. Thus C isa
subgroup. Now for any x eG, x™'Cx is connected and contains 1. Hence
x"'Cx < C and C is normal.

Recalling that the index of a subgroup in a group is the number of right
cosets of the subgroup in the group, by Lemmas 15.2 and 16.2 we have:

Lemma 16.3 — The component of identity in a Z -group is a closed
normal subgroup of finite index.

17) C -groups — Adopting a weaker axiom than for the Z -groups we
obtain the next few results which will be sufficient for our needs.

Definition — A C-group is a 7, -group in which for fixed x the mapping

a — a”'xa is continuous.

invertible matrices under the Zariski topology form a C-group. To see this
let X be a fixed matrix. The entries of 47' X4 are rational functions in the entries
of the matrix 4. By lemma 16.1 4 - 4™'X4 is continuous where 4 is taken in
the subspace of invertibie matrices, the complement of the subspace of non-
invertible matrices.

Lemma 17.1 — Let G be a C-group whose component of identity has a

finite index k. Then any finite conjugacy class of G has at most k¢ elements.
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Proof — Suppose there exists a finite conjugacy class of more than &

elements for some x G . By definition of C-group, for every a eG the mapping

a— a”'xa is continuous. The image set {a'xala G} is a finite subspace with

the 7, topology so each singleton subset is closed and open. Then the pre-
image of each conjugate is an open and closed setin G since the mapping
a— a'xa is continuous. Thus we have a decomposition of G into more than &

disjoint open and closed sets, a contradiction.

Lemma 17.2 — In a connected C -group any non-central element has an
infinite conjugacy class.

Proof — For elements in the center conjugation is the identity map. The
Lemma follows immediately by the observation that if there were a finite
conjugacy class then there would be a separation of the C-group since the pre-
image of each element in the class is an open and closed set in the C-group, a

contradiction.

Theorem 17.3 — If G is a connected C -group, the commutator subgroup

G' is again connected.

Proof — Let D, be the set of products of £ commutators in G. Then
D, c D, =-- and the union of all the D's is G'. It will suffice to prove that each
D, is connected. Consider the mapping a, — a;'b;'a,ba;'b; 'a,b,---a;'b; 'a b, with
all elements other than a, being held fixed. The mapping is continuous since

conjugation (a;'5;'a,) is continuous and right multiplication
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a;'ba\(ba;'b;"'a,b,---a;'b;'a,b, ) is continuous. Thus the image is connected since
the continuous image of a connected set is connected. When a, = b, the image
has a point in common with D, . Now let g, vary over G . In this way then we
express D, as the union of connected sets, each having a point in common with
the set D,_, and D,_, is connected by induction by beginning the process with
k=1. Thus D, is connected since the union of a collection of connected sets
each with a point in common with a connected subset of the union is connected.
(Proof of the latter assertion follows: Let {4, } be a collection of connected
subspaces of a space X each having a point in common with the connected
subspace AcY=U4,. Suppose Y has a separation. Then Y=Cu D where
CnD=¢, C and D are open and nonempty. Then 4cC or Ac D since 4 is
connected. Say A< C. Each 4, is eitherin C or D, since each 4, is
connected. Butino 4, canbein D,since AcC and 4,n 4= ¢ forevery 4, .
Hence Y=U 4, cC and D=¢, acontradiction. Therefore Y=U4, is

connected.)

We inciude the next two results for later use.

Lemma 17.4 — Let G be a C-group, H a closed subgroup of G.
Suppose that either (a) H is of finite index in G, or (b) H is normal and G/ H is
abelian. Suppose further that the component of identity in A is solvable. Then

the component of identity in G is solvable.
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Proof — (a) We know that component of identity C,, in H is a connected
closed and open normal subgroup of /. Since H is closed in G, C,, is closed

in G. There are finitely many closed right cosets of / in G since H is of finite
index in G and right multiplication is a homeomorphism of G onto itself. The

complement of C,, in H is closed in H and hence closed in G. Then the
complement of C, in G is closed in G since it is the finite union of all the right
cosets of H in G other than H and the complement of C,, in H (all closed in
G). Thus C, is an open, closed, connected subgroup in G. Hence C,, c C;,
the component of identity in G, since both contain | and C, is the largest
connected subset of G containing 1. But the complement of C,, is openin G
thus C,, u(G-C,) is a separation of G. So C; = C, since C,nC, # ¢.
Therefore C,, and C; coincide and C is solvable.

(b) Againlet C; and C, be the components of identity for G and H

respectively. Let C,' and G’ be the commutator subgroups of C, and G

respectively. Then # oG’ since H innormal and G/ H is abelian. Thus

H>G' oC, . By Theorem 17.3 C, is connected. Hence C,' < C,, since they

both contain1 and C,, is the largest connected set in A containing 1. By
hypotheses C, is solvable, hence C, is solvable. Therefore C, is solvable

since C, is normalin C, and C,/C, is abelian.
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Lemma 17.5 — In a C-group the normalizer of a closed subgroup is
closed.

Proof — Let G be a C-group. Let S be a closed subgroup. For fixed s

in S, consider the continuous mapping a > asa™', say ¢. The inverse image of

S is closed and consists of all a with asa™ €S. We take the intersection of
these closed sets for all s €S. Thus the set of a with aSa™" < S is closed, since
an arbitrary intersection of closed sets is closed. In the same manner we

conclude that the set of a with a”'Sa c S is closed. The normalizer of S is

Ng = {a eGla"Sa = S} which is the intersection of our two closed sets of .

Therefore the normalizer of a closed subgroup of a C group is closed.

18) Sclvable Connected Matrix Groups —

Theorem 18.1 — Let G be a solvable multiplicative group of nonsingular
matrices over an algebraically closed field. Suppose that G is connected in the
Zariski topology. Then G can be put in simultaneous triangular form.

Simultaneous triangular form is illustrated by the next proposition that we
shall need in the proof of Theorem 18.1. We present it over the algebraically
closed field F .

Proposition 18.2 — Let F be a family of commuting matrices in M, (F).
Then there exists a matrix P e GL,(F) such that PAP™ is upper triangular for

every 4 eF.
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Lemma 18.3 — Let 4,B € M,(F) commute multiplicatively. Let 1 be an
eigenvalue of 4 and E,(4) the corresponding eigenspace. Then B stabilizes
E,(4), thatis for v e E,(4) we have Bv e E,(4).

Proof — Let v e £,(4). Then Av=JAv. Thus BAv = B(iv)=A(Bv). But
BAv = A(Bv). So Bvek,(A4).

Lemma 18.4 — Any C <F stabilizes any £,(4)nE (B) for 4,B eF.

Proof — Immediate from Lemma 18.3. Lemma 18.4 may be generalized
to the any finite intersection of eigenspaces.

Lemma 18.5 — Let F be a family of commuting matrices in M,(F). Then
there exists a non-zero v € F" that is an eigenvector for all 4 eF.

Proof — Let 4 cF. Let 1 be an eigenvalue of 4 and V, = E,(4) the
corresponding eigenspace. By Lemma 18.3 each B eF operates on /. Case 1:
Every B eF has all of 7, as a single eigenspace. Then take v be any non-zero
element of V,. Case 2: Some B <F has for its operation on /; some eigenspace
v, that is a proper subspace of ¥; = £,(4). Repeat the operation procedure with
each B <F for subspace V,, and so on (n-1 times at most) until Case 1is

achieved.

Proof of Proposition 18.2 — We use induction on ». Choose a basis for

F" which starts with v, = v, an eigenvector for all 4 <F provided by Lemma

18.5. Take P~' eGL,(F)to have these basis vectors as column vectors. Thus
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PAP™' expresses the matrices 4 Finthe new basis. They are all of the form

I U o* o *
O - . . O

. 4 , that is, another is like| . B , and so on. By induction
. | M 1

0 0

hypotheses, the 4,,B,,--- can be put in simultaneous triangular form, say by

-1

1 * % 1 * *
O .
some Q,, then : 0 P4 : 0 P| s triangular.
0 0

Proof of Theorem 18.1 — We proceed by induction, first for the case that
G is reducible and then for the case that G is irreducible.

(1) Suppose that G is reducible. By this we mean the vector space
has a proper, non-trivial invariant subspace W under the set of linear
transformations of V' onto V' corresponding to G, each element of G being the
matrix representation of a linear transformation in the set. It is a familiar result of

linear algebra that if we take a basis of # and expand it to a basis of V', then

*

. By the
o) o

t

B
relative to this basis the matrices of 4, G take the form 4, -_-( 0‘

rules of matrix multiplication we can easily determine that the set of matrices B,
selected in this manner above form a group say G,. Then the mapping of G
onto G, defined by 4, — B, is a homomorphism. By Lemma 16.1 our
homomorphism is continuous hence G, is connected. It is a familiar result that

every (subgroup and) homomorphic image of a solvable group is solvable.
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Hence, since G is connected and solvable G, is connected and solvable. Thus
by induction on the size of the matrices, the matrices of G, can be putin
simuitaneous triangular form. A similar argument applies to C,. Hence we have

the result that G reaches triangular form. In the inductive process should we
reach an irreducible matrix before achieving triangular form we switch to step 2).
(2) Next we assume G to be irreducible. Let G' be the commutator

subgroup of G. Recall that matrices under the Zariski topology form a C -group,

then by Theorem 17.3 G’ is connected. Let G =G’ and in general
G" = (G""’)’ . Then we have the so-called derived series G > G" > G?... where

in the case at hand G = (/) for some n. Each G is normal in GY",

connected and solvable, and each G /G is abelian. Thus for every matrix

X, eG" we have X,G'"" X' < G"". It can be shown that for every

homomorphism of G onto G that G“ is invariant. Thus G is normal in G.
Hence by the above resuits by induction on the length of the derived series we
may assume G' is in triangular form.

(3) Let W be the subspace of / spanned by all joint eigenvectors of G'.
We have W =0 since the triangular form of G’ will yield at least one joint

eigenvector. To see that ¥ is invariant under G, let a be a joint eigenvector of
G'. Then aT = A,a for T eG'. And for any S eG we have STS™ G', thus

aSTS™' = A.a. Nextwe write aST=1_..aS . So &S is an eigenvector of G’

Srst

74



and W isinvariant under G. But G isirreducible. So W =V . Hence we can
suppose that G’ is in diagonal form.

(4) We may take any element of G' to be a diagonal matrix. The
conjugates in G of a matrixin G' are again in G’ and hence diagonal. The only
possible conjugates are obtained by permuting the eigenvalues. Hence each
matrix of G’ has a finite conjugacy class. By Lemma 17.2 G’ lies in the center
of G.

(5) Suppose there exists a non-scalar matrix T eG'. Let A be an

eigenvalue of 7. Define W ={alaT = Aa}. Let SeG and a W . Then

(aS)T = (aT)S =(Aa)S = MaS), since T commutes with all of G. Thus aS e
and W isinvariant under G. Hence W=V and T = A/. This contradiction
proves that the matrices of G’ are scalar.

(6) The elements of G’ are generated by elements of the form aba™'67",
a,b e G and thus have determinants equal to 1. Hence the elements on the
diagonal of a matrix must be n-th roots of unity. There are only a finite number

of these, so G’ is finite. G’ is connected (Theorem 17.3). Hence G' =(1). But
G is abelian if and only if G’ = (1) We showed by Proposition 18.2 that sets of

commuting matrices can be put in simultaneous triangular form. This completes

the proof of Theorem 18.1.
19) A Result To Use in Chapter 6 — The next result will be a key

element in examples of equations of order two.
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Theorem 19.1 — Let G be a group of 2 x2 matrices with determinant 1,
over an algebraically closed field. Assume G is an algebraic group, i. e. is
closed in the Zariski topology, and that K, the component of identity in G, is
solvable. Then at least one of the following statements holds:

(a) G is finite,

(b) K can be put in diagonal form and [G:K]=2,

(c) G can be put in simultaneous triangular form.
Proof — We have that G is an algebraic group, hence a Z -group. First

consider the case where K can be put in diagonal form. Then K consists of
. . a 0 . . . . .
certain matrices [0 -1)- Since X is closed in G, K is an algebraic group.
a

Thus K consists of all the matrices for which the 2°-tuples (a,0,0,a™') are zeros

of some polynomials f(w,x,y,z). Either K is finite and then G is finite or K
consists of all the matrices (:1) 9,) By lemma 16.3 K is normal in G. Thus
a

as in part (3) of the proof of Theorem 18.1 the joint eigenvectors of X are carried
by G into joint eigenvectors of K. Thus any element of G either leaves fixed or

interchanges the one-dimensional subspaces given by the two basis vectors of
F?. If an element of G fixes both subspaces it lies in K. Hence [G:K]=1o0r2.

Now consider the case that X does not admit diagonal form. By Theorem

0
18.1 K admits triangular form. So the elements of X have the form (Z _,).
a
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Now (1 0) is ajoint eigenvector for X . If there were another joint eigenvector
independent from (1 0) then K would admit diagonal form, a contradiction. So

again as in part (3) of the proof of Theorem 18.1 the span of (1 0) must be

invariant under G and G must admit triangular form.
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Chapter 5
The Galois Theory
20) Three Lemmas —
Lemma 20.1 — Let K be a differential field with algebraically closed
constant field C. Let L be a differential field extension of K, with constant field

D. Let f,, g be polynomials in a finite number of ordinary indeterminates over
K, a ranging over a (possibly infinite) index set. If the equations f, =0 and

inequality g # 0 have a solution in D they have a solutionin C.
Proof — Let {u,,} be a vector space basis of K over C. Then there are
unique expressions f, =Zha,,uﬂ where #,; €C[x,,--,x,] and x,,---,x, are

ordinary indeterminates. The «'s are linearly independent in K over C. Hence
the Wronskian of any finite set of the «'s does not vanish. In section 10 we
observed the consequence of Theorem 10.1 that the vanishing of the Wronskian
is independent of the choice of fields. Thus the independence of the u's over

constants survives in L. Suppose we have a solutionto f, =0 and g=0 in D.

Then there exists a € D" such that #,,(a)=0 for every ,5. Hence the ideal
generated by {haﬁ} in Dx,,---,x,] has azeroin D". If the ideal generated by
{haﬂ} in C[x,,---,x,] does not have a zeroin C", theniitis all of Clx, ]

(follows from Hilbert's Nullstellensatz.) Butthen >’ g .4, =1 for some
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8.5 €C[x,,-+-,x,]. Hence there are no zeros to all the #,,'s in D", a
contradiction. Thus the #,,'s have a solution in C.
Similarly we have g=> r,u, where 1, C[x,,--,x,]. If g=0 where all the

h,s's equal 0 so each ¢, =0 at all such points, then each ¢, is in the radical of
the ideal 7, generated by all the 4,,'s in C[x,,--,x,]. Thus each (7 e for

suitable r,, by Hilbert's Nullsteilensatz. Then any pointin D" which is a zero of
all f,'s willbe a zeroof all 4,,'s, hence of all ¢ 's, hence of g, a contradiction.

Therefore we have some solution of f, =0 and g=0 in C.
Lemma 20.2 — Let K be a differential field with constant field C. Let
k,,--+,k, be constants in some differential extension field of K. If £,,---,k, are

algebraically dependent over K they are algebraically dependent over C.

Proof — There exist a polynomial relation over K such that

fky-k,)=0. Let {u,} be a vector space basis of K over C. Again consider
the unique expression f, = Zhaﬁuﬁ where the #_,'s are nonzero polynomials

over C. The u,'s are linearly independent over C, hence hop(kyyeee,k,) =0 for

every .. Therefore k,,---,k, are algebraically dependent over C.

Lemma 20.3 — Let F be any field, / an integral domain over F with
finite transcendence degree over F. Let P be a prime idealin 7, P=0 or
P = [. Then the transcendence degree of I/ P over F is strictly less than that

of I over F.
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Proof — An element « of P cannot be algebraic over F. Otherwise

there exists some relation a,u" +a, 4"+ +au+a,=0, a, e F. We can take

a a - a e
a,#0. Hence 1=——"y" ——2=Ly"™' ..~ "Ly e P. Thus P =1, a contradiction.
a, a, a,

Next we take u =u, the first element of a transcendence basis {y,,---,u,} of I
over F (u,-,u, are algebraically independent over F and [ is algebraic over
its subring F[u,,---,u.].) These elements map into 0,v,,---,v, in the integral
domain // P. If we can show that any y e// P is algebraically dependent on
v,,-+-,v, then we are done. Take x e/ mappingon ye//P. We know x
satisfies some polynomial equation with coefficients polynomials in the «'s. Let
f(X)=r.X* +r_ X"+ +rX +r, be a polynomial in X with the r's polynomials
in the u's, such that f(.X) is of minimal degree among the nonzero polynomials
with f(x) lying in P. Mapping modulo P, the resuit gives us y dependent on
the v's unless all the r's arein P. The latter event cannot be, since then
flx)=(rx*" +r x*2+-4n)xeP,but x g P, S0 rx*" +r,_x* 2+ 4r e P,
contradicting the minimality of the degree of the degree of f(X).

21) Normality of Picard-Vessiot Extensions — Let M = K(u,,---,u,) be

a Picard-Vessiot extension of X. Then u,,---,4,, linearly independent over
constants, are solutions to some linear homogeneous differential equation in X,

say L(u)=u" +au"+-+a,_u'+a,u=0,and M has the same field of constants
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as K. Let o be an admissible differential isomorphism of A7 over X. Then
there is a larger differential field ¥ > M and o is a differential isomorphism of

M onto another subfield of N leaving K elementwise fixed. Since o
commutes with differentiation then L(uc)=(L(x,))o =0, so every uo isa
solution to the underlying differential equation of the Picard-Vessiot extension.

Thus each u,a=Zk,juj with constants £, in N. Hence each o givesrisetoa

non-singular matrix of constants.

Lemma 21.1 — Let K be a differential field with constant field C. Let

M = K(u,,---,u,) be a Picard-Vessiot extension of K. There exists a set S of

polynomials (in »* ordinary indeterminates) with coefficients in C such that, (a)
every admissible differential isomorphism of M over K gives rise to a matrix of
constants satisfying S, and (b) given a differential field extension N of M, and a

non-singular matrix &, of constants of ¥ satisfying S, there exists an admissible

differential isomorphism of Af/ K into N sending u, into Zku“/-

Proof — Let y,,---,y, be differential indeterminates over K. Define a
differential homomorphism of K{y,,---,y,} into M = K(u,"--,u,) by keeping K
fixed and sending y, to u,. The kernel I is a prime differential ideal in
K{y,,---,y,} since itis a differential ideal by Theorem 2.3 and for ab €I letting ¢
be our differential homomorphism it follows that ¢(ab) = ¢(a)¢(b) =0 and either

#a)=0 or g(b)=0.
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Let ¢, for i,j=1,---,n be a set of n* ordinary indeterminates over M.
Define a differential homomorphism y of K{y,,---,y,} into M|c,] by the mapping
Y= 2cu, . Let y[T]=A. Then A is anideal in the image of K{y,, -, y,}
contained in Mc, |. Thus the elements of A are ordinary polynomials in »*
ordinary indeterminates ¢, with coefficients in the field M, Zm,(nc;'" )/ for

m eM. Let {w,} be a vector space basis of M over C. Then each coefficient

of the polynomials of A may be written as a linear combination of the w's with

coefficients in C, m = k,w, for k,, eC. Next rearranging the polynomials of

A we write each as a linear combination of w's with coefficient polynomiais over

C, Zm,(nc") =Z(Zﬂ: . a)(l_[c") =§Z(k,a(nc;"’)l)wa. The collection

S of all these polynomials over C is our candidate to meet the needs of the
lemma.

(a) Suppose there exists an admissible differential isomorphism o of

M/ K such that y, is sent into Zk with the k's constants of the larger field.

b) J
We perform the homomorphism of X{y,,---,y,} into K{u,,---,u,} (by keeping K
fixed and sending y, into 4, ) followed by o . In the composite homomorphism y,

is sent toz K isfixed and I is sentto 0. Next consider the mapping

U!’

given by sending y, into Zc,juj followed by a mapping sending c, into k,. This
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time as before in the composite homomorphism y, is sent toz ku,, K is fixed
but I" goes to A evaluated at ¢, = k,. Hence all the polynomials of A vanish at
k,. As above expressing each polynomial in terms of the vector space basis w,
of M over C, we have that the polynomials in our set S vanish at £, .

(b) Let N be a differential field extension of A/. Let &, be a non-singular
matrix of constants in N satisfying S. As before we define a homomorphism of

K{y,>+,y,} into N by y, > k,u, intwosteps y, —» > c,u, and ¢, > k,. We

Ly

know that the kernel contains I and so we have a homomorphism o of
K{u,,---,u,} onto K{uo.---,u,c}, where uo= Zk,,uj . We need now to show
that o is one-to-one, for then we can finish the proof by extending it to the

quotient field of K{u,---,u,}. Assume & is not one-to-one with the non-trivial

kernel I,. Let 6K(y,, --,u,)/K denote transcendence degree of K(u,,--,u,) over
K that we know to be finite since each u, is the solution of a differential

equation. Then K{uo,--,u,0}= Kk {u"'"’u’% and by Lemma 20.3 it follows that
0

oK(u,, -, u,)/ K> 0K(uo,-,u,0)/ K. Adopt the abbreviation K(u) for

Klu,,-,u,), K{uc) for K(uo,,u,c) and C(k) for C(k,'s). By the additivity of
transcendence degrees we get 9K(u,uc)/K(u) < 0K(u,uc’)/K(uc). And we have
by Lemma 20.2 0K{u,uc’)/K(u) = 6C(k)/C . Similarly 6K(u,uc)/K(uc)=0C'(k)/C’

where C’ is the field of constants in K{(uo). But 8C'(k)/C’' <8C(k)/C. So the
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assumption that & is not one-to-one leads to a contradiction. Therefore our
proof is complete.

Recall that the differential Galois Group G of M/K is the group of all

differential automorphisms of M leaving K elementwise fixed. Suppose that in

part (a) of Lemma 21.1 each admissible differential isomorphism of M/K was
actually a differential automorphism of M/K. Then each automorphism

corresponds uniquely to a matrix of constants satisfying the polynomials of §.
Thus the foliowing is a special case of Lemma 21.1.

Theorem 21.2 — The differential Galois group of a Picard-Vessiot
extension is an algebraic matrix group over the field of constants.

The issue now is existence.

Lemma 21.3 — Let K be a differential field with an algebraically closed

field of constants. Let M be a Picard-Vessiot extension of K. Suppose that we

are given an element z and two subsets {x,} and {y,} of M, a ranging over a

(possibly infinite) index set. Suppose that there exists an admissible differential

isomorphism of M over K sending x, into y, and moving z. Then there exists

a differential automorphism of M over K sending x, into y, and moving z.
Proof — Suppose our admissible differential isomorphism o is given by

u,0'=Zk,juj , the £'s being constants in the larger field. Take any elements

x,y € M=K(u,,u,). Then x=P(u)/O(u), y = R(u)/S(u) where P(u), Q(u),

R(u) and S(u) are polynomials in the «'s and their derivatives. Suppose further



that y =xo. Then R(u)/S(u) =(P(u)/O(u))o = P(uc)/Q(uc) and
S(u)P(uc) = R(u)Q(uc). By our hypothesis we have one such equation for each

a, x,o=y,. Substituting yo= Zku“/ we get a polynomial expression in the

k's with coefficients in M for each a, Y m,([]4) =0. Include with these

equations the equations of the set S of polynomials in Lemma 21.1. By

hypotheses we have zo =z and [k,,| #0, k, the matrix representation of o. So

writing z as the ratio of polynomials in the «'s and their derivatives, we can

rewrite zo # z in the form g(k,j) #0, a polynomial in the k's with coefficients in
M. Lemma 21.1(a) gives us a constant solution for the equations of the set S in

the larger field, and we have Z”’a/(n ky )/ =0 and g(k,)=0. Thusthereisa

constant solution to all the equations combined in the larger field. By lemma 20.1
there is a constant solution in C. This and Lemma 21.1(b) gives us an
admissible differential isomorphism of A/K onto M < N, the differential
automorphism we are seeking.

Theorem 21.4 — Let X be a differential field of characteristic zero with an
algebraically closed constant field. Then any Picard-Vessiot extension M of K
is normal.

Proof — Let ze M and z ¢ K. By Theorems 8.1 and 8.3 there exists an

admissible differential isomorphism AM/KX moving z. Then by Lemma 21.3 there

exists a differential automorphism of M/K moving z. Therefore M is normal.
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Theorem 21.5 — Let X be a differential field of characteristic zero with
an algebraically closed constant field. Let A/ be a Picard-Vessiot extension of
K. Then any differential isomorphism over K between two intermediate
differential fields can be extended to a differential automorphism of A7. In
particular any differential automorphism over K of an intermediate differential
field can be so extended.

Proof — Using Theorem 8.1 we extend the given differential isomorphism
to an admissible differential isomorphism defined on all of . By Lemma 21.3
our theorem follows.

22) Completion of the Galois Theory —

Theorem 22.1 — Let K be a differential field of characteristic 0 with an
algebraically closed constant field. Let M be a Picard-Vessiot extension of X .
Then the Galois theory implements a one-to-one correspondence between the
intermediate differential fields and the algebraic subgroups of the differential
Galois group G. A closed subgroup F is normal if and only if the corresponding
field L is normal over K and G/H is the full differential Galois group of L over
K.

Proof — Let M be a Picard-Vessiot extension of K a differential field of
characteristic 0 with an algebraically closed constant field. If L is any
intermediate differential field, it follows from the existence and uniqueness that
M is a Picard-Vessiot extension of L (adjunction of the solutions to L gets us

M). Then by Theorem 21.4, M is normal over L. In section 9 chapter 3 we



concluded that if a differential field is normal over a differential subfield then the
subfield is closed. Hence all intermediate differential fields of a Picard-Vessiot
extension are closed. If we can show that the corresponding differential Galois
subgroups are Galois-closed (closed in the sense of Galois theory) then the
correspondence is one-to-one (recall our discussion early in section 9 of Chapter
3).

Suppose H is a normal subgroup of the differential Galois group G.
Then L= H', the differential field corresponding to /, is sent onto itself by any
differential automorphism of M/ K, by Theorem 9.4(a). Hence any element that
liesin H' and notin K can be moved by a differential automorphism of M/ K
restricted to H', a differential automorphism of #'/ K. Hence the differential
subfield corresponding to a normal differential Galois subgroup is normal. By

Theorem 21.5 all differential automorphism of L/K are extendable to Af. Next
by Theorem 9.4(b) G/H is the group of all the automorphisms of L/K which can
be extended to M. Thus L is normal over K and G/H is the full differential
Galois group of L/K.

Now the converse. We observed in Chapter 4 section 17 in connection
with the definition of C-groups that matrices under the Zariski topology form a
C-group. By Theorem 21.2 G is an algebraic matrix group and hence a C-
group. Then by Lemma 17.5 (if H is topologically closed then) the normalizer of
H is topologically closed. Next it follows by Lemma 9.6 that if L is closed in M

and normal over K then the corresponding subgroup H is normalin G. But
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since L is an intermediate field of a Picard-Vessiot extension, it is closed. Our

hypotheses are that L is normal over X and G/H is the full differential Galois

group of L over K. So we need only the closure of H to complete the proof.

Since G is an algebraic matrix group so are all the subgroups
corresponding to the intermediate differential fields (Theorem 21.2). If we can
show that the algebraic subgroups of G are Galois-closed then we will be
finished.

Let H be a subgroupin G. Our task is to show that H is Zariski-dense
in H",i.e. H' < H, the algebraic closure of H. It will then follow that H = H"

since H" < H= Hc H". Suppose H" ¢ H then there exists a polynomial f in

n? variables coefficients in C which vanishes on A but noton H”. Continuing
with the supposition that A is not closed we follow Kaplansky’s construction for

the case n =2 to arrive at a contradiction and give us the flavor of why it works in
general. Let M = K(u,v). The matrix (u, v,) is non-singular since the
u v
determinant is the Wronskian of linearly independent solutions of an ordinary
. . . A B . . .
differential equation. Let c D be the inverse. Let y and z be differential

indeterminates over M. Let F be a differential polynomial defined by
F(y,z)= f(4y+By', Az+ Bz',Cy + Dy',Cz + Dz') where f is a polynomial in 2?
variables with coefficients in C which vanishes on H but noton H”. Take

y=uc and z =vo for some o € H. Then for the matrix £, of o, we have

a8



u v

/ k. K
uo ve ) = ( v )( ! /;") . Multiplying by the inverse of ( u, v,) we get
u Vv

’ ! ’ ’
\yo vo ky by

(A B\ uoc vo ky, k,
= = |. Hence F(uc, = f(k, .k, k>, Ky ) =0 for
\C D)(u'a v’a) [kl‘.’ Ky (o vo)=F (ko kanrkiz en)

o € H and not for all & « H”. Among all the differential polynomials in M{y,z}

with this property pick one which when written as the sum of monomials has the
smallest possible number of terms. Name it £ and take one of its coefficients to

be 1. Let E, be the polynomial obtained by replacing the coefficients of £ by
the image of the same coefficient under some r e /. Let
m(uc)'(vo) (w'o) (v'c)’ be atermin E(uc,vo). Replacing m by mr and then
applying ™'z gives us

(m z‘(ua)"(va')'(u'a)’(v’a)q) = (m(uar")s(var"' )I(u’ar")r(v’ct")q)z‘ . Hence
E,(ua,vo')=[E(uo*r",vaz'")]r. But for o e H then or™' eH. So

E.(uo,vo)= [E(uar“,var“ )]r =0 for every o e H. The polynomial £-E_ is
shorter than £ since 17 =1. Thus it must vanish for every uo,vo with c e H”.
If E—~E, is not identically 0, there exist y « M such that £—y(E - E,) is shorter
than £. But E—-y(E-E,) shares with £ the property that it vanishes at uo,vo
forall o € H and not all o € H” since £ - E, vanishes for every uc,vo with

o e H". So we have a contradiction, except when E—~E_=0. Butin the case

E =E,, every coefficient m=mzr liesin L= H' the elements of M left fixed by
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the automorphism of H and H” is ali the automorphisms of G leaving L = H’

elementwise fixed. So E(uo,vo)=0 for all o € H", a contradiction. Therefore

H is closed and the proof to Theorem 22.1 is compliete.

23) Liouville Extensions —

Lemma 23.1 — Let M be a Picard-Vessiot extension of X where K is a
differential field of characteristic 0 with an algebraically closed constant field. Let

N = M(z) be an extension of M with no new constants. Write L = K(z). Then

N is a Picard-Vessiot extension of L, and its differential Galois group is
isomorphic to an algebraic subgroup of the differential Galois group of M over
K, namely the subgroup leaving M N L fixed.

Proof — Since there are no new constants in N, then N and L have the
same constant field. The solutions of the underlying differential equation
generating M over K also generate N over L since we may choose the order
of adjunction. Hence N is a Picard-Vessiot extension of L. Since K< L and

K < M any differential automorphism of N/L is a differential automorphism of
N/K and hence sends M onto itself by Lemma 11.1. Thus we have a map of all
of the differential automorphisms of N/L into the differential automorphisms of
M/K. In other words we have a homomorphism of the differential Galois group
of N/L onto a subgroup G, of the differential Galois group of M/K since the

group operations are preserved by the map. Any automorphism in the kernel

leaves M and L fixed and hence fixes MU L. But then it fixes all of N and is



the identity. So our homomorphism is an isomorphism and the image G, is

isomorphic with the Galois group of the Picard-Vessiot extension N of L. Then
by Theorem 21.2 G, is an algebraic matrix group over a field of constants. All
the automorphisms of G, fix at least X of M and are isomorphic to
automorphisms of N/L that fix all of L > K. Hence the fixed field of G, is

Mn L. We note that the identity subgroup of G, is closed and normal so by
Theorem 22.1, G, is the whole group of differential automorphisms of M leaving
Mn L fixed. The proof is complete.

Theorem 23.2 — Let M be a Picard-Vessiot extension of K where KX is
a differential field of characteristic 0 with an algebraically closed constant field.
Suppose that the differential Galois group of M over K has a solvable
component of identity. Then M can be obtained from K by a finite-dimensional
normal extension, followed by a Liouville extension.

Proof — Let G be the differential Galois group, C its component of
identity. Let L be the intermediate differential field corresponding to C. By
Theorem 16.3 C is a closed, normal subgroup of finite indexin G. Hence L is
closed and normal over K by Theorem 22.1 and its proof. Lemma 9.2
guarantees that L is a finite-dimensional extension of K. Since C is the group

of all the automorphisms of AM/K that fix L elementwise, then C is the
differential Galois group of M/L and by Theorem 22.1 and its proof M is a

Picard-Vessiot extension of L. Hence by hypothesis and Theorem21.2 C isa
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solvable algebraic matrix group over the field of constants. Thus by Theorem
18.1 C can be put in simultaneous triangular form. Finally, Theorem 14.1 gives
us that M is a Liouville extension of L.

Definition — A differential field N is a generalized Liouville extension
of K if ¥ can be obtained from K by a finite number of steps, each of which is a
finite algebraic extension, or the adjunction of an integral, or the adjunction of an
exponential of an integral.

Theorem 23.3 — Let M be a Picard-Vessiot extension of K where K is
a differential field of characteristic 0 with an algebraically closed constant field.
Suppose that A/ can be embedded in a differential field ~, which is a
generalized Liouville extension of K with no new constants. Then the
component of identity of the differential Galois group G is solvable (whence by
Theorem 23.2, M can be obtained from K by a finite-dimensional normal
extension followed by a Liouville extension).

Proof — We use induction on the number of steps in the Liouviile chain

from K to N. Let K(z) be the first step of the chain. In the same manner as
that used in the proof of Theorem 13.1 we conclude that the Galois group of
M(z) over K{z) is solvable and hence has a solvable component of identity. By
Lemma 23.1 this group is isomorphic to the subgroup H of G leaving M N K{(z)

fixed. Suppose z is algebraic over K. Then by Lemma 9.1 H is of finite index
in G. It follows by Lemma 17.4 that the component of identity in G is solvable

and we are done. Next suppose that z is either an integral or the exponential of
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an integral. By Lemmas 12.1 or 12.2 K(z) is a Picard-Vessiot extension of K

with abelian Galois group (hence normal subgroups). Thus the differential fields

between K and K(z) are normal over K. In particular M K(z) is normal over

K with an abelian differential Galois group. Thus H is normaiin G and by

Theorem 22.1 G/H is abelian. Again by Theorem 17.4 the component of identity

in G is solvable (26-40).
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Chapter 6

Equations of Order Two

24). The Wronskian — Let ¥ = W(ul,--o,u,,) be the Wronskian of u,,---,u,
where M = K(ul,n-,un> is a Picard-Vessiot extension.

Lemma 24.1 — Let o be a differential automorphism of M over K, with

corresponding matrix c,. Then Wo =|c, [ .

Proof —We have w0 =) cu, . Thus
wo - O U, | Cm
: N o : : ;¢ 1| But
o o wa) (W™ w" Ny, Co
uo - uo u, U,
det : i |=|detf : : : | lo since muitiplication and
ugn-l)o_ . ll,(,"—l)O' ul(n—l) . u,('n-l)

addition are preserved by o. So Wo =lc,[V.

Lemma 24.2 — The field K(¥) corresponds to the unimodular subgroup
of the differential Galois group.

Proof — Lemma 24.1 tells us that # is fixed if and only if |c,j| =1.

Lemma 24.3 — If the underlying differential equation reads
y 4@y V4.=0, then W' =—aW .
Proof — The derivative of a determinant of a nx» matrix is given by the

sum of determinants of the » matrices given by taking the derivative of rows in



the original matrix a row at a time. In the case of a Wronskian taking the
derivative of any row but the last gives a matrix with a determinant of 0since it

yields a matrix with two identical rows. Thus we have

ul e un-l un
w'=detl ., (2 (2 |- Substituting the differential equation in to the
U Tt Uy Uy
d
ul un-l Uy
last row gives W' = det (n-2) ' (n-2) (n-2) where each
u " Uny U, -~
—aul™ = o —ad =k, —ad™V —h,

h, is a linear combination of the elements above it in the matrix. Evaluate the

determinant by a cofactor expansion of the last row, the sum of the product of
each row element with its cofactor. We see that the sum of the products of #'s
with cofactors contribute 0. Hence W' =-al¥.

Corollary — If a =0 then W is a constant and the differential Galois

group consists only of unimodular matrices.
The classical method of removing the term ay""" from an n-th order

equation is at the expense of an exponential of an integral. The usual

substitution is to let y = wz where w is a solution to the equation nw' +aw=0
(w —e) "). The resulting equation in z has no termin ). For example in the

case of the equation y” +x*y’ =0 we note that the substitution removes ej 2 and
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4
gives the equation z" - (1;—+x)z =0. We now consider the second order

equations of the form y” +ay=0.

25) Connection with a Riccati Equation —

Theorem 25.1 — Let X be a differential field of characteristic 0 with an
algebraically closed field of constants, and let a € K. Let M be a Picard-Vessiot
extension of K for the equation y” +ay =0. Suppose that M is a generalized
Liouville extension of K but is not finite-dimensional over K. Then the equation
1’ =1* +a has a solution either in K or a quadratic extension of X .

Proof — By the corollary to Lemma 24.3, the differential Galois group G
of M over K is an algebraic matrix group of 2 x2 matrices with determinant
equal tol. By our hypothesis Theorem 23.3 tells us that the component of
identity in G is solvable and by Theorem 23.2 M can be obtained from K by a
finite dimensional normal extension followed by a Liouville extension. Our
hypothesis ruled out the case of finite G and we consider the remaining two
cases provided by Theorem 19.1 and its proof: (b) C the component of identity in

G can be put in diagonal form and [G:C]=2, (c) G can be put in simultaneous

triangular form. In case (b) there is a quadratic extension L of K (corresponding
to C) such that the differential Galois group of M over L can be putin diagonal
form (G/C is the full differential Galois group of L over K ). In case (c) we may

take L =K (the degree of the extension is 1 since as we saw in the proof of

Theorem 19.1 the triangular matrices have one joint eigenvector). Thus there is



a non-zero solution u of y” +ay =0 carried to a constant multiple of itself by

every automorphism of M over L. Thus X eL,since uo =bu for b a constant
u

’ 4

. . u u .

implies —oc=—. Putt=-—. Then u"=—-uw't—wt'=u(t"-t'). But u”" =-au.
u 1 u

Sot'=t*+a.

Lemma 25.2 — Let K be a differential field, « an elementin K, and ¢ an
algebraic element over K satisfying ¢’ =+’ +a, and having 1’ +rt +s=0 as its

irreducible equation over XK. Then r” +3rr'+r’ +4ar+2a'=0.

Proof — We use computation only. Differentiate
(£ +rt +s)' =21t'+r't+rt'+s' =0. Substitute ¢' =+ +a,
20 +rt* +(2a+r')t +ar+s'=0. Next 2(f* +rt +5)=26>+2rt* + 251 =0,
Subtracting the last two equations, rt* +(2s—2a—r')t—ar—s'=0. Then
r(t +rt+s)=r* +r’t+rs=0. Comparing the last two equations yields

r2=2s-2a—r" and rs=—ar—s' OF rs+ar+s' =0. Write 2s=2a+r'+r’,
differentiate 25’ =2a’ +r" +2rr'. Substitute the last two for 25 and 2s' into
2(rs+ar+s')=2rs+2ar+2s'=0 we have r" +3rr' +r’ +4ar +2a' = 0.

26) An Example — Consider the classical case y” +xy =0 (known as

Airy’s equation) with a base field K of all rational functions of x with complex
coefficients. The solutions are entire functions and there is a well-defined Picard-

Vessiot extension M inside the field of functions meromorphic in the whole
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plane. Algebraic entire functions are polynomials and there are no polynomial
solutions to Airy’'s equation, we conclude that [M: K] is not finite.

We will show that it is not possible that ¢’ =¢* + x has a solution in K orin
a quadratic extension of K. Then by Theorem 25.1 a solution of y” +xy =0
cannot be obtained from the field of rational functions of x by any sequence of
finite algebraic extensions, adjunction of integrals and adjunction of exponential
of integrals.

Let t = f/g where f and g are relatively prime polynomials. Then
substituting into 1" =¢* +x and clearing denominators we get gf' - fg'— /> =g°x.
Let a =degree of f and b =degree of g. If a>5 then f* is the unique leading

term and the equation cannot be cancelled. If 5>a then g’x is the unique
leading term and the equation cannot be cancelled. Hence we have no solution
of t'=r"+x in K.

Now consider the case that ¢’ =¢* + x has a solution in a quadratic
extension of X but notin X. Lemma 25.2 gives us the equation

r" +3rr' +r’ +4xr +2 = 0where 1> +rt +s=0. We take the partial fraction

expansion of the rational function . Let Y c,(x-k)" be the portion of the

=]

expansion of r for the linear factor (x - k) of the denominator of . Substituting

into r”+3rr' +r* +4xr +2 =0, the highest degree term in the denominator of



!

P (icl(x_k)“)" is of degree n+2, for 3rr' = 3(:2"[:0. (x-4)" )(i c'(x—k)-l)

=]

n 3
the highest degree in the denominator is 2n+1, and for r* = (Z c,(x—k)") the

1=1
highest degree in the denominator is 3n. We must have equality among at ieast

two of the three highest so that r” + 3rr' + r* +4xr +2 =0 will hold. This can only

be true for n=1. Thus there can be no repeat linear factors in the denominator

_aa? 3
of . Then for the term —— we get 2¢ T 3¢ - and i - from r",
x—k (x-k) (x—k) (x~k)
3rr’ and r’ respectively. Hence 2¢—3c®+c¢*=0,80 c=10rc=2.
Next let's look at the representation r= f/g. r’ =g———-,fi and

3pn_ 20 _ 2 140 ' _ 2 3
&S o828 8f +2 () 4, 30838 . S ang

4 r=

g g g

2
'

4xf

4xr =——. Bringing every term to the common denominator g* we have the
g

following terms in the numerator: g’/ , fz’g", g°f'g'. gf(g')’, f/'g*. figg'
fg, xz°, and g*. Again we let degree of f =a and degree of g=5. Then:
The degree of g°f", fg’g”, g°f'g’, and gf(g')2 =a+3b-2,
The degree of ff'g? and fgg’ =2a+2b-1,
The degree of (g =3a+b,

The degree of xfg’ =a+3b+1,
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The degree of g* =4b.
If a=b then xfg’ cannot be cancelled. If a >bthen f’g is uniquely the highest
term. Butif b>a and a=b6-1, xfg’ and g* can cancel and f’g can cancel with
g f", f2'g", g2f'g',and gf(g')’. ¥b>a+1, g* cannot be cancelled.

Hence in the partial fraction expansion of r there will be no polynomiai

Cl

term. And from above we must have the form z with ¢, =10r ¢, =2.

(x~a)

Thus we must have g(x)=x"+-- and f(x)=ax""+--- with a a positive integer.
But then the cancellation between the terms xfg’ and g*, arising from the terms

4xr and 2 in r"+3rr' +r* +4xr +2 =0, will not occur since 4 +2 0. Henceit
is not possible that 1’ =¢* + x has a solution in K or in a quadratic extension of
K. Then by Theorem 25.1 we write:

Theorem 26.1 — The solutions of the equation y”+xy =0 cannot be
obtained from the field of rational functions of x by any sequence of finite
algebraic extensions, adjunction of integrals, or adjunction of exponentials of
integrals.

Kaplansky observes that by additional considerations it can be established
that the Galois group of the equation y" +xy =0 is the full unimodular group of
2 x2 matrices. This follows from the fact that any proper algebraic subgroup has

a solvable component of identity (41-44).
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