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ABSTRACT

CAYLEY GRAPHS AS MODELS FOR
PARALLEL PROCESSING SUPERCOMPUTER ARCHITECTURES

by Karl Yorston

This thesis traces efforts in recent literature to
construct graphs -- principally Cayley graphs -- with
desirable characteristics as models for parallel processing
supercomputer architecture. Bounds on the diameters and
expansion constants of such graphs are found, particularly
through the use of eigenvalues of associated matrices.

While construction of exotic Cayley graphs with
relatively low diameters proved possible, it was generally
achieved at the expense of efficient routing algorithms and
flexibility in design, leaving doubt as to whether these
exotic graphs improve upon the benchmark hypercube. This
thesis develops an alternate approach of Cayley graphs based
on the common group Z,. Such groups provide for a high
degree of design flexibility and lead to Cayley graphs that

are of practical improvement on the hypercube architecture.



ACKNOWLEDGMENT

My thanks go to my thesis advisor, Dr. Roger Alperin,
for his patient explanations and support during this
undertaking. I am also grateful to Dr. Bradley W. Jackson
and Dr. Brian Peterson for agreeing to wade through this
lengthy tome: I hope that they felt it worth the effort.

I wish also to express my appreciation to the SJSU Math
and Computer Science Department faculty and the "superstaff"
of the department office, the former for their high standard
of math instruction both in and out of class, and the latter
for their patient aid in navigating the murky waters of

university policy and paperwork.



TABLE OF CONTENTS

GRAPH MODELLING OF SUPERCOMPUTER ARCHITECTURE
1.1 Desirable Architectures and Graphs

1.

2

Cayley Graphs

RELATIONSHIPS ON DIAMETER TO EIGENVALUES

2.

NN NN
S0 R VS B S ]

1

Introduction .

Alon and Milman's work on A
Chung's Upper Bound on Diameter
The Relationship of A; and u
How Useful Are These Bounds?

KAZHDAN CONSTANTS AS BOUNDS ON VARIOUS CONSTANTS

3.

(V8]

W w ww
oUW

N

Introduction
The Expanding Constant and the Cheeger Constant

Background on Representations

The Kazhdan Constants

Evaluating The Kazhdan Bounds .o

How Useful Are The Bounds of Theorem 3. 4 39

EIGENVALUES AND THE EXPANSION CHARACTERISTICS OF A GRAPH

4.

4.

4.
4.

1
2

3

4

Introductlon

[

18
18
19
41
43
45

52
52

53
73
85
99
129

140
140

Some General Knowledge About the Spectrum of A(G)

Various Expansion-Related Characteristics of a
Graph .
Families of Ramanujan Graphs

SCHIBELL AND STAFFORD'S ROUTING ALGORITHM

5.1
.2

5

Introduction
Routing in Cayley Graphs Based on Subgroups of

141

150
181

194
194
Sq

195



5.3 The Routing Algorithm . . . . . . . 208
5.4 Algorithmic Diameters and Other Concerns . . 215
CAYLEY GRAPHS OF Z, AS NETWORK MODELS . . . . . . . . . 221
6.1 Introduction . . e e e e e e e .. 221
6.2 Following the Slmpler Path e e e . 226
6.3 Basic Routing in a 4-Regular Cayley Graphs on 7z,
. 228
6.4 Constants for Cayley Graphs on Z w1th S {+1, £[n¥]}
.. 238
6.5 Cayley Graphs on Z32 vs. the Hypercube on n=2°
e e e e e e e e e e e e e e e e e .. .. 253
6.6 More Complicated Cayley Graphs, with Larger n
e e e e e e e e e e e e e e e 263
6.7 Network Construction and Routing Issues . . . 287
6.8 Comparison of Diameters to Theoretical Optimums
e e e e e e e e e e e e e e e e 291
6.9 Conclusions and Unanswered Questions . . . . 305
REFERENCE LIST . . . . . . . . . . . « « « « « <« « « . . 313
APPENDIX A . . . . . . « . ¢ v« v v o v v v v+ o . . . 31s
APPENDIX B . e+ e e+« « . . . . 320
B.1 Kazhdan Constant Program e+« « « « < . . . 320
B.2 Lovasz Eigenvalue Program . . . . . . . . . . 326
APPENDIX C 331
APPENDIX D 337
APPENDIX E 353
APPENDIX F . . . . . « ¢ ¢« ¢ v v « o v« « v « « v o« . . 357
INDEX 361



Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

HEmWomOmaoOnAannANNNOO WWWN

MENMNMNRPROOGOAGKUONUREOANG U WV

NRHENVNRORWHENRNRGR

LIST OF TABLES

49
114
137
139
223
245
254
260
264
279
293
304
324
328
329
354
356



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

aocgnonoanoU Ul WWR
Wwwwwwbhbhwoo N

;blAJNI-'I—‘IhO\NI-‘N
1]

S
o}

LIST OF FIGURES

11
136
138
167
207
213
232
233
234
235
236



d(a,B),
d(u,v)
Diam(G)
AlgDiam(G)

A(G)

K K(G)

Q Q(G)

}\1 = A(G)

spec (M)

U

m(E)

Ea

E(A,B)

N(a)

oA

K. (S,m), K (S) ,K(8)
h(G)

Crax = Cnax (G)

c = c(G)

(£,9)

*

clt, )
CY

p(A,B)

LIST OF SYMBOLS

cyclic group of order n

the permutation group on n letters
group (generic)

generating set of a group

graph

vertex set of graph G

edge set of graph G

edge of G between vertex u and vertex v
degree of vertex v

(maximum) degree of graph G

path from u to v in a graph

distance from set A to set B in a graph
distance from vertex u to vertex v
diameter of graph G

algorithmic diameter of graph G
standard adjacency matrix of graph G
diagonal matrix of G, K;;=deg(v;), v;eV
matrix of G, where Q = K-A(G)
smallest nonzero eigenvalue of Q
spectrum (set of eigenvalues) of M
spectral radius of A(G)

multiplicity of eigenvalue §

set of edges with both ends in set A
bridge of sets A and B
neighborhood of set A
boundary of set A

various Kazhdan constants (Def.
Cheeger constant of G
expanding constant of G
magnifying constant of G
vector product of £ and g
combination

floor function of a

3.4.1)



CHAPTER 1

GRAPH MODELLING OF SUPERCOMPUTER ARCHITECTURE

1.1 Desirable Architectures and Graphs

In recent years, we have all come to expect regular
increases in the speed and power of computers. For this
trend to continue, many computer experts believe that we
must continue to develop the design of massively parallel
processing supercomputers. Such computers depend on the
concept of many relatively simple processors connected by a
network architecture and instruction set designed to take
advantage of their simultaneous calculation power.

For such a large number of processors, designing a
desirable interconnection network between them is a

formidable challenge. When a processor is finished with a



particular task, it must pass the resulting information on
to another processor which will further manipulate that
information. It would, of course, be ideal if the "next"
processor in this sequence of operations were directly wired
to the "previous" processor. However, computers are designed
to perform many different tasks, so it would severely
restrict a computer's usefulness to be wired into a
particular processing sequence since the "next" operation
required will vary from task to task. Thus, to enhance the
versatility of the computer, it must be wired in such a way
that any processor can send information to any other
processor.

Unfortunately, with many processors the cost in
materials, labor, and service is prohibitively high when
wiring every processor directly to every other processor. In
addition, it may be physically nearly impossible to wire it
up in such a fashion. However, if information must often be
passed through many processors to reach its next processing
destination, valuable clock ticks are wasted in this "hand-

off" process, thus slowing the computer's speed at



accomplishing a task.

Clearly, then, we have a trade-off between how closely
connected the processors are to each other and how expensive
and difficult the wiring job will be. If a processor has
more processors hard-wired to it then the chances improve
that a given processor will be reached in fewer information
hand-offs; that is, the "distance" (the number of hand-offs
required) between any two processors should decrease on
average. However, it seems apparent that a clever design for
the processor network might reduce the maximum (and thus,
logically, the average) number of hand-offs required between
any two processors without increasing the number of
interconnections. Thus, smarter wiring should lead to less-
expensive and faster computing.

Hence, for a fixed number of processors, it is
desirable to keep both the number of wires connected to each
processor (the degree of the processor) and the maximum and
average distances between any two processors (the diameter
and average diameter of the network, respectively) as small

as possible. In addition, it is much easier to construct and



program such a computer if it is "vertex-symmetric"; that
is, if the network structure is the same as viewed from any
processor. Among other things, this requires that the degree
of processors in the network be regular, meaning that the
degree of each network processor is the same.

Reducing the wiring diagram of such a computer
architecture to its simplest form would yield a drawing of
dots for processors, with the lines connecting those dots
representing the wires between processors. Such a figure in
mathematics is called a graph, which we define with the help

of Chartrand and Lesniak [CL] as follows:

DEFINITION 1.1.1: A graph G is a finite nonempty set of
objects called vertices together with a (possibly empty) set
of unordered pairs of distinct vertices called edges. The
vertex set of G is denoted by V(G), while the edge set of G
is denoted by E(G). If e={u,v} is an edge of graph G, then u
and v are adjacent vertices, while u and e are incident, as

are v and e. A graph is called simple if it has no loops (no



vertex is adjacent to itself) and no multiple edges between

pairs of vertices. O

If, as is customary, a (simple) graph is drawn by a
diagram of dots or circles for vertices and line segments
for edges, we immediately see its usefulness in depicting
the wiring "blueprint" of a processor network. Then we may
use such representations to bring the tools of graph theory
into the study of processor networks. Of course, the
concepts of degree, distance, and diameter in a processor

network have their counterparts in graph theory.

DEFINITION 1.1.2: The degree of a vertex v, denoted by
deg(v), in a graph G is the number of edges of G incident
with v. The degree of a graph G is the maximum value of the
degree of any vertex in G. If the degree of each vertex in G
is equal to the same constant k, then G is a k-regular

graph. O



Clearly, in a graph representing a processor network,
the degree of a vertex is the same as the number of wires
connected to its represented processor which lead to other
processors. Similarly, the distance between any two

processors in a network has an analogous definition.

DEFINITION 1.1.3: A u-v path in a graph G is a sequence of
vertices alternating with incident edges which traces a
connected route in G that begins with vertex u, ends with
vertex v, and repeats no vertex (and hence no edge). The
length of a path is the number of edges listed in the
sequence of that path. The distance d(u,v) between vertices
u and v in graph G is the minimum length of all possible u-v
patﬁs in G. If no such connected route exists in G, the

distance is given to be infinite. ]

Thus, the distance between any two processors is the

shortest path through the graph of that network between



their corresponding pair of vertices. The diameter of a

network and its modelled graph follow in a natural way.

DEFINITION 1.1.4: The diameter of a graph G, denoted by
Diam(G), is the maximum distance found in the set of

distances between all possible pairs of vertices in G. The
average diameter of G is the sum of the distances between

all possible pairs of vertices in G divided by the number of

such pairs. O

With these definitions taken care of, it is possible to

formalize the definition of vertex-symmetry for graphs.

DEFINITION 1.1.5: A graph G is vertex-symmetric if the
automorphism group on the graph G acts transitively on the

vertex set of G. O



Since any element in the automorphism group on the
graph G must preserve the structure (i.e., adjacencies) of
G, we see that the ability of an automorphism group to act
transitively on the entire vertex set of G would fulfill our
desire to construct a network that looks the same when
viewed from each vertex.

Finally, it is important to recognize that computers
send information between processors using a routing
algorithm. Since an exhaustive search of the shortest path
between processors is extremely cumbersome, the distances
found in the graph representation of a network may in fact
be shorter than the actual algorithmic routes taken by
information sent from one processor to another. We thus
expand on Definition 1.1.4 to state that the algorithmic
diameter of a network with respect to its routing algorithm
is the maximum length of any route taken by the algorithm
between any pair of processors in the network. The average
algorithmic diameter is the corresponding average of such
routes, and is again algorithm dependent.

Hence, our goal is to find vertex-symmetric graphs with



small degree, diameter, and average diameter which model
computer architectures with efficient routing algorithms
leading to algorithmic full and average diameters as close

to the true graph diameters as possible.

1.2 Cayley Graphs

In the last decade or so, much research has been
devoted to the structure resulting from modeling a processor
network with a graph whose underlying vertex set is composed
of a group. This construction allows the use of various
techniques in graph theory, group theory, and linear algebra
to look at the properties of such graphs. In particular, the
constraint of structural symmetry on the search for a clever
processor network has usually steered the choice of
candidates to the so-called Cayley graphs.

The following definition and theorem show that Cayley

graphs possess the requisite vertex-symmetric property.
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DEFINITION 1.2.1: Let I' be a group and let S=S*! be a

generating set for I' which is closed under inverses and
does not contain the identity. The Cayley graph of I" with
respect to S is the graph G=G(V,E) with vertex set V=I' and

edge set

E = {{v,,V,} | s;v; = v, for some s;eS} O

Note that such a graph is clearly |S|-regular with no
loops, since each vertex will have one edge leaving it for
each element in S and the restriction that S does not
contain the identity prevents any of those edges from
returning to that same vertex. In addition, it follows that
G is a connected graph, since S is a generating set for the
group I', thus ensuring that a path exists from any vertex
to any other vertex.

Figure 1.2.2 shows the Cayley graph on S, with respect
to the generating set S={a,a?,b} where a=(123), a!=(132),

and b=(12). Observe that, by convention, an edge is given a
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aba

ba a a*ba

Figure 1.2.2: Cayley graph of S; with respect to the
generating set S={a,a?,b}, where a=(123) and b=(12).

direction to indicate the movement resulting from left
multiplication if the generator is not its own inverse,
while it is not given an arrow if the generator is its own

inverse. 1Inspection of the Cayley graph in Figure 1.2.2
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tends to confirm the belief that Cayley graphs are vertex-
symmetric. Theorem 1.2.3 shows conclusively that this is

indeed the case.

THEOREM 1.2.3 ([SS], Proposition 1.1): Let I' be a group.
Then the Cayley graph G on I' with respect to a generating

set S is a vertex-symmetric graph.

Proof: From Definition 1.1.5, we must show that the
automorphism group of G acts transitively on the vertex set
V(G). That is, we must be able to reach every vertex from
any other through such automorphisms.

Let S be the permutation group on the elements of T.

Then, for hel', we define the permutation o©,eS; by

o,L(x) = x+sh for every xel.

On, will be an automorphism of G if its relabeling preserves

adjacency. That is, we must demonstrate that if x and y are



I3

adjacent in G, then o,(x) and o,(y) were also adjacent in G.

We reason as follows:

Two vertices x,y in G are adjacent
iff the edge connecting them is in the generating set S
iff {x,y} € E(G)
iff there exists s;eS such that s;=x = y

iff y-x?t € S.

But

y.x‘l = y‘(h.h-l).x-l = yOh'(h-l'x-l)

y»hn [x-h]?

(079 (Y) O}, (x)t.

Hence, we have that x and y are adjacent in G if and only if
on(x) and o,(y) are adjacent in G, demonstrating that o,
preserves structure and is therefore in the automorphism
group of G.

Then, for any pair of vertices x and y in G, the

permutation O,-1, is in the group of automorphisms of G since
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xtsy € I', and we have

Ox-1w (X) = Xe(xly) = y.

Thus, we find that the automorphism group on G is
transitive on the vertex set V(G), and hence the Cayley

graph is vertex-symmetric. O

Since any finite group may be the basis for a Cayley
graph, we have an infinite source of vertex-symmetric graphs
available. In addition, any generating set (without the
identity) will do, so each group alone may produce a wide
range of alternative graphs.

According to [SS], most of the current large-scale
parallel-processing computers are based on a vertex-
symmetric architecture. They mention the 12-dimensional
binary hypercube of the Connection Machine, the 256x256
torus-connected 2-dimensional mesh for the MPP at

NASA/Goddard, the butterfly network, and the cube-connected
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cycle network as widely accepted models for network
architectures, all of which are vertex-symmetric graph

structures.

1.3 The Hypercube Design

The standard against which to compare the performance
of proposed architectures is often that of the binary
hypercube (or n-cube). The underlying Cayley graph for this
computer is based on the group I' = Z,xZ,x...x2, of order 2k
and generating set S$={(1,0,...,0), ..., (0,0,...,1)}. Since

each generator is its own inverse, S is closed under

inverses and is of order |S|=k. The hypercube may be

visualized as a k-dimensional cube -- each vertex being a
"corner" -- of degree k, diameter k, and average diameter
k/2.

However, since we are dealing with a computer
application, we again note the importance of finding the
values of the algorithmic diameter and the average

algorithmic diameter, since these will provide a more
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realistic appraisal of how fast and efficient an
architecture's routing algorithms will be. Each vertex in
the hypercube is named with a binary string, so determining
a path between two vertices is as simple as subtracting the
starting vertex's value from that of the target vertex. The
resulting "road map" is a binary number where every nonzero
entry indicates a generator's edge that is necessary to
travel in order to reach the target vertex.

Because of this simplicity in the hypercube's routing,
the algorithmic diameter and average diameter match the
theoretical k and k/2, respectively. In addition, any edge
with a corresponding 1 in the binary road map may be taken
at any step. This offers convenient altermative routing to
avoid bottlenecks in information transfer. This perfect and
bottleneck-free routing algorithm makes the hypercube an
attractive design.

However, the hypercube does have its disadvantages.
First, the degree is rather high for the number of
processors used. This results in high wiring costs. In

addition, [SS] state that vertex degrees above 6 may cause
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data path bandwidth problems for switches in the network,
though their argument is perhaps questionable and in any
event may not reflect current technology.

Second, the hypercube may only be constructed on 2k
vertices. Hence the choices for network size and wiring are
quite limited, and adapting an existing machine to a
hypercube of a different size would be quite difficult and
expensive.

In this thesis, we survey both theoretical and
practical efforts to provide graphs with improved properties
as compared to the hypercube. Chapters 2 through 4 follow
several researchers' theoretical work to develop bounds on
diameters and expansion-related constants of various graphs.
Chapter 5 examines a routing algorithm proposed in [SS], and
considers its impact on diameter and average diameter.
Finally, Chapter 6 contains a study of Cayley graphs on
groups of class Z, as candidates for supercomputer
architecture, demonstrating that such networks are in many

ways superior to the benchmark hypercube.



CHAPTER 2

RELATIONSHIPS ON DIAMETER TO EIGENVALUES

2.1 Introduction

This chapter evaluates two efforts to find an upper
bound on the diameter of a connected graph G on n vertices
as a function of certain eigenvalues. Chapter 2.2 will
examine the work of Alon and Milman ([AM], Section 2) who
focus on A,;, the smallest nonzero eigenvalue of the matrix
0=K-A(G), where K is the diagonal matrix whose entry
K;;=deg(v;) and A(G) is the standard adjacency matrix of G.
Chapter 2.3 will discuss the results of Chung [Ch] who
focuses on the spectral radius p of the standard adjacency
matrix A(G), where G in this case is a connected k-regular

graph. Chapter 2.4 will show the relationship of these two

18
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eigenvalues, while Chapter 2.5 demonstrates that both bounds
are quite "soft" in terms of providing useful limits on the

diameters of Cayley graphs of the cyclic groups Z,.

2.2 Alon and Milman's work on A,

We first define and discuss the matrix Q used by Alon
and Milman. Further discussion of the quadratic form on Q
results in establishing some facts about the eigenvalues of
Q, particularly about its smallest nonzero eigenvalue A,. We
then follow Alon and Milman's development of several
theorems built around characteristics of A,, the last

theorem of which demonstrates an upper bound on the diameter

of a graph.

The Matrix Q:

Let G=(V,E) be a connected graph on |V|j=n vertices, and
let D be an orientation of G. Let C be the |E|x|V| incidence
matrix for the orientation D of G, so that it has |E| rows

indexed by the edges of D and |V| columns indexed by the



20

vertices of D. Note that

1 if v is the head of e; that is, if v=e*.
Cev = -1 if v is the tail of e; that is, if v=e-.
0 otherwise.

Then the i*" row of C consists of zeros except for a
"+1" in the column corresponding to the vertex e;* at.the
head of edge e;, and a "-1" in the column corresponding to
the vertex e;” at the tail of edge e;. Hence, for f a real-
valued function on the vertex set V (i.e., an n-tuple with
real entries), we have that Cf is an |E|x1 "vector" (or |E|-

tuple) whose i*® entry is

+f(ei+) - f(ei-) .
Thus,

(Cf,Cf)

[E(e,")-f(ey), ..., E(ef) -£(e)]
s[f£(e)-f(e7), ..., E(er)-£f(e )]

[E(e,*)-£(e, ) ]2 +...+ [E(er)-f(e,)]?

Y [(f(e*)-f(e’)]2.

ecB
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Define Q = C'C. Then Q is clearly an nxn matrix, since
CT is nx|E| and C is |E|xn. In addition, Q=K-A(G), where K is
the diagonal nxn matrix such that K;;=deg(v;) and A(G) is the

standard nxn adjacency matrix of G. That is, we have

+1 if  (vy,v;) € E
A(G)ij = A(G’)ji =
0 otherwise.

Note that the conventional "standard adjacency matrix" has
zeros in the diagonal since a vertex is not considered
adjacent to itself. That is, there are no "loops" at each
vertex and the identity is not in the edge set of the graph.
Hence, A(G);;=0, and the sum of the entries ("row sum") of

row i is equal to the degree of vertex v;.

Consider the entry Qi;:
It is formed from the dot product of row i of CT and
column i of C, which, of course, is equivalent to the

dot product of column i of C with itself. Hence
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Qi; = ¥Cy;®, where j runs from 1 through m=|E|.

But from above, C;;=+1 whenever vertex v; is adjacent to
vertex v; in G. Since v; is adjacent to deg(v;) vertices
in G, there will be precisely deg(v;) nonzero terms in
the summation, each term of which is (x1)? = +1. Hence,

Q;;=deg(v;) for each v;ev.

Consider the entry Q;y (i=j):
It is formed from the dot product of row i of CT and
column j of C, which, of course, is equivalent to the

dot product of column i of C with column j of C. Hence

Q;; = YL (CCyy), where k runs from 1 through m=|E|.

Suppose for a given value of k that C,; and C,; are both
nonzero entries. Then this implies that in row k of C
there is a "+1" in either column i or column j, and a
"-1" in the other. That is, edge e, in D goes from v;

to vy or from vy to v;. In either case, what this says
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is that v; and v; are adjacent to each other in G.
Clearly, this can occur only once for each pair of i
and j. Hence, Q;; can have a nonzero term in its sum at
most once, that occurring only when v; and v; are

adjacent in G. Thus, for all i#j, we have

-1 if v, and v; are adjacent in G
Qi = Qi3 =
0 otherwise.

Clearly, then, Q may be separated into the difference
of the nxn diagonal matrix K and the nxn adjacency matrix
A(G). In addition, this result is independent of the
orientation D chosen since both K and A(G) are only
functions of G. Finally, Q is symmetric, since it is the sum
of two symmetric matrices. (Any diagonal matrix K is by
definition symmetric, and A(G) is symmetric since if
A(G);;=1, then v; is adjacent to v; in G and therefore v; is

adjacent to v; in G, and so A(G);;=1 as well.)
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The Quadratic Form on Q (For background on inner product

spaces, bilinear forms, and quadratic forms, see [FIS]):

Consider the set of functions that assign real values
to each vertex. Such functions g and f may thus be
represented as n-tuple with real entries. That is, g,f ¢ R".
Since Q is a symmetric, real-valued nxn matrix, we may
consider the symmetric bilinear form H: R°xR" » R defined by

H(g,f) = g™Qf. The associated quadratic form is defined as

K(f) = H(f,£)

£7Qf

fTQ™f, since Q is symmetric so Q=QT,

(Qf) T£

(Qf,£f), since Qf is simply a vector in R".

A quadratic form is called positive semi-definite if
K(f) = H(f,£f) > 0 for every feR".
It is called positive definite if
H(0,0) = 0 only when £=0 ¢ R®

K(f) =
H(f,£f) > 0 whenever 0zf e R~.
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In our case, we have

(Qf, £) £TQf = £TC'CE

(CE) ™ (CE)

(CEf,Cf)

Yo [E(e*)-£(e)]?
> 0,

since it is the sum of the squares of real numbers.

Hence, (Qf,f) > 0 for every feR". Observe that if f is
a constant function (i.e., an n-tuple with all identical
entries) we have Cf=0, since f(e*)-f(e) = 0 for every ecE,
and so (Qf,f) = (Cf£,Cf) = (0,0) = 0. Therefore, we have
that the quadratic form (Qf,f) is positive semi-definite.

Note also that if £ is not a constant function, then
for at least one pair of vertices v; and vy we have that
f(v;)#£(vy) . Because D is connected, there exists a chain of

edges between v; and v; in D, and thus we have that

CE = [£(e")-f(e)), ..., E(eg*)-E(eg)] = O
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since eventually two end-vertices of an edge e, in the chain
must have different values assigned by f in order for
f£(v;)#£(vy) to be true. Then Cf will have at least one non-

zero entry corresponding to edge e, and, therefore,

(Qf,£) = (CE,Cf) = Y [£(e;*)-£(e;7)]2 > [fler)-fle)]1% > 0.

Thus, if £ is a nonconstant function that is an

eigenvector of Q in R", the corresponding eigenvalue A; must

be positive, since

0 < (Qf,£) = (Ag£, £)

YA [f(et)-£(e;7)]) [E(ey*) -£(e;) ]

YA [f(e*)-f(e;7) ]2

Ay [E(e,*) -£(e,7) 12,

A well-known theorem (see [FIS], Theorem 6.29, p 362)
states that, for a finite dimensional vector space V over a
field F not of characteristic two, every symmetric bilinear
form on V (and hence each corresponding quadratic form on V)

is diagonalizable. Since any symmetric matrix A e M, (F) is
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congruent to its diagonal matrix and thus shares the same
eigenvalues, we know that Q has n eigenvalues, with each
appearing according to its multiplicity. Clearly, 0 appears
only once as an eigenvalue, since the subspace of all
constant functions has dimension 1. By the above analysis,
all the remaining n-1 eigenvalues are positive. Hence, we

have as the eigenvalues of Q

THEOREM 2.2.1 ([AM], Lemma 2.1): Let G=G(V,E) be a
connected graph on |V|=n vertices. Let A and B be two
disjoint subsets of the vertex set V, and p be the distance

(in G) between the set A and the set B. That is

p = min{d(v,,vy): V.€A, v,eB},

where d(v,,v,) is the length of the shortest path between

vertex v, and vertex v,. Then,
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An < p2(1/a + 1/b) (|IE|-|Eal~|Es]) ,

where a=|A|/n (or b=|B|/n), the fraction of total vertices
contained in A (B); and E, (E;) is the set of edges with

both endpoints in A (B).

Proof: Define a function (n-tuple) geR" by

g(v) = 1/a - [(1/p)(1/a + 1/b)min(p(v,A),p)],

where p(v,A) = min{d(v,a;): a;eA}, the distance from vertex
v to set A. Hence, g is a nonconstant function, since it

sends vertex v to one of the following values:

i) 1/a, if veA, since then p(v,A)=0, implying that
[(1/p) (1/a + 1/b)min(p(v,A),p)] = 0;

ii) -1/b, if veB, since then p < p(v,A), and so we have
1/a - p*(1/a + 1/b)p = 1/a - 1/a - 1/b = -1/b;

iii) a value between 1/a and -1/b (inclusive) if v is in

neither A nor B.
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Observe that if two vertices u and v are adjacent, then

lg(u) -g(v)| = |1/a -[p*(1/a + 1/b)min(p(u,A),p)]
- (1/a -[p?*(1/a + 1/b)y'min(p(v,A),p)]1)|
= p*(1/a + 1/b)-jmin(p(v,A),p)-min(p(u,B),p)|

< p*(1/a + 1/b),

since |min(p(v,A),p)-min(p(u,d),p)| < 1 due to the adjacency
of u and v implying that the difference in distance is at
most one edge.

Define a=(1/n)2;g(v). Since there are n vertices to

ve

run through, o is simply the average of all the g(v)'s. Set
f=g-a. Then f is a nonzero function (an n-tuple) in R®,
since we observed above that g is a nonconstant function.
However, since the average value of g(v) is subtracted from

each entry, the sum of the entries in £ is thus zero. That

is

Y £(v) = Y (g-a) (v) Y [g(v)-al

veV velV veV

[Y g(v)]-na

veV

no-no = 0.
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Consider a constant (real-valued) function keR", where

k(v)=c for every veR. Then

(£,k) = £k = [(g-a) (vy), (g-a) (v;), ..., (g-a) (V) Is(c,c,...,C)

Y [c(g-a) (v)]

veV

cY (g-a) (v)

veV

c0 = 0.

Hence, we have created a nonzero function feR® that is
orthogonal to the constant functions in R". By a slight
adaptation of the standard proof involving the Rayleigh
quotient (see Appendix A) we have that (Qf,f) > A f|>.

Then we may argue as follows:

[(1/a%?) - 20/a + o*Ja + [(1/b?) - 2a/b + o?]b

l/a - 200 + ofa + 1/b + 20 + o?b

1/a + 1/b + o?(a+b)

v

1/a + 1/b , since o220, a>0, and b>0.

Hence, we clearly have that
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An(l/a + 1/b) < An{l(1/a?) -2a/a +02la + [(1/b?) -20/b +o2]b}

Anf(l/a - a)2a + (1/b + o) ?b]

N[(1/a - a)%na + (1/b + o)2nb].

Obviously, na=|A| and nb=|B|. In addition, f£(v)2 = (1/a - a)?
for every veA, while £(v)? = [(-1)(1/b + a)]? = (1/b + o)?

for every veB. Hence,

An(l/a + 1/b) < MIY £(v)2 + ¥ £(v)?2]
ved veB
= A Y £(v)2.
veAuB

Noting that f£(v)? > 0 for every veV and that AuB c V,

we get

A Y £(v)?2 < MY £(v)?,

veduB veV

since AuB ¢ V, so at least as many vertices are counted in

the right-hand sum, and thus

N Y £(v)? = NI, since |f] = fof = Y £(v)2.

veAuB veV
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But

NIEl < (Qf,£), by Rayleigh's Principle,
< (Cf,Cf), by definition,
= Y [f(e*)-f(e)]?
ecB

= Y [g(e*)-g(e’)]2, since f(v)=g(v)-a,

eeB

= Y [g(e*)-g(e)]?,

ecB-(B By)

since g(e*)-g(e’)=1/a-1/a=0 if ecE, and -1/b-(-1/b)=0 if

ecE;.

Recalling from above that

p?(1/a + 1/b)? > [g(e*)-g(e’)]1* for every ecE,

then for the sum over (|E|-|E,|-|Ez|) terms we get

Y Ig(e*)-g(e)]? < p?(1/a + 1/b)*(|E|-|E,|-|Eg]) .

ecB-(B By

Hence

Mn(l/a + 1/b) < p2(1/a + 1/b)2(|E|-|E,|-|Eg]),
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or

An o< p2(1/a + 1/b) (|E|-|EA|-|Eg)]) ,

as desired. a

THEOREM 2.2.2 ([AM], Theorem 2.5): Let all notations be as
above, and let d be the maximum degree of a vertex of G.

(d=k if G is k-regular). If p>1, then

b < (1-a)/[1+(A,/d)ap?].

Proof: Observe that E- (EjuE;) is the set of all edges
that don't have both endpoints in A or both endpoints in B.

Hence, any edge in this set fits one of the following

categories:

a) one end in A and the other in B;
b) one end in A and the other end is in neither A nor B;

c) omne end in B and the other end is in neither A nor B;
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d) Dboth ends are non-A or non-B vertices.

But p>1, so case (a) is not possible since the distance
between any vertex in A and any other vertex in B is greater
than one, and therefore cannot be spanned by one edge. Thus,
each edge contained in E- (E,uE;) has at least one endpoint

on a vertex in set V'=V-(AuB), all the vertices in neither A
nor B. Noting that |V'| = |V|-]A|-|B|] = n-na-nb, and observing
that the maximum degree in G is d, the most edges that could
be incident with set V' is the maximum degree sum, which

totals d(n-na-nb). Hence,

|E|-|Eal-|Esl < n(1l-a-b)d,

since E, and E; are disjoint. Combining with Theorem 2.2.1,

we get

An < p2(1/a + 1/b) (|E|-|Ey|-|Eg|)

n

p2(1/a +1/b) [n(1-a-b)d]

p2[(b+a) /ab] [n(1-a-b)d]

A

p2[1/abl [n(1-a-b)d], since a+b < 1.



Cancelling n's and working further yields

p?abA, < d(1-a-b)
= b1 + (p*a)h,/d)] < 1-a

= b < (1-a)/[1 + (A,/d)ap?]. g

THEOREM 2.2.3 ([AM], Theorem 2.6): Let all notation be as

above. For p:1 (not necessarily an integer) we have

b < (1-a)exp(-1n(1+2a)|(A,/2d)%p] )

where exp(y), for real number y, represents eY; and the

symbol x|, for real number x, is called the floor function

and represents the greatest integer not exceeding x.

Proof: Since G is connected, the minimum degree of a

vertex in G is greater than zero. Let u be a vertex of G

35

with minimum degree. Suppose we were to set A={u}, B=V-{u}.

Then we have that: deg(u)=(|E|-|E,|-|Ez|]), since |E,|=0 and all
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bridge edges are those leaving u; p=1, since the distance

between A and B is clearly 1; and a=1/n while b=(n-1)/n.

Then we know from Theorem 2.2.1 that

An < (n + 1/[(n-1)/n])deg(u)

< [n + n/(n-1)]deg(u)

n{i + 1/(n-1)]ldeg(u)

n[n/(n-1)J]deg(u),

or

A, < [n/(n-1)ldeg(u).

Define n=(2d/X,)32.

Since d > deg(u), we have A, < [n/(n-1)]d. For n»2, we

have n/{(n-1) < 2, and thus

n > (2d/[n/(n-1)d])? = (2/in/(n-1)1)2 > (2/2)% = 1.

For a subset of vertices FcV and positive real number

r, define F, = {veV: d(v,F)<r} as the set of all vertices

in V within distance r of subset F. Set k=p/nj. (Note that
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k<p since n<1l.) Then for integer j such that 0 < j < k, we
have that A;, is the set of all vertices within distance ju
of A, and V-A(,;), is the set of all vertices not within
(j+1)n of set A.

Hence, in A,), we have created a set with a "border"
or "buffer" of width n around A;,, thereby ensuring that,
for all j, the distance between any vertex in A, and any

vertex not in A, is strictly greater than n. That is,

s; = min{d(v,V-Ay.,): VEA,} > 1 2 1.

In keeping with the notation of a=|A|/n, define
a;y=|Asl/n and so 1l-aj, = |V-Ay,y,//n. Then, since the distance
between such sets is at least one, Theorem 2.5 applies, and

for every j such that 0 < j < k we have

A

1 - A(j+1)n (1"aju)/[l + (hl/d)ajquZ]

n

(1-a3,)/[1 + (A/d)a;n®l, since s;* 2 1?7,

n

(1-a;,) /[1 + (A;/d)an?], since ay, 2 a,

+

(A/d)a(2d/X,)]1, since n?=2d/x,,
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= (l-a;,)/[1+2a].

Observing, then, that

1-a(0+1)n < (1-a0n) /[1+2a]

and multiplying both sides by the next inequality for j=1 we

see

(1-a(1+1)n ) (l—a(ou)n ) < {(1‘a1n)/[l+2a] } (1'a0n) /[1+2a]

= (1-a.n ) € (1-a,,) /[1+2a]2.

Continuing this process for each j up through k-1 yields

l-a,, < (1-ay)/[1+2alk
= (1-a)/[1+2al*, since ay=a,
= (1-a)exp{-1ln(1+2a)k}
= (1-a)exp{-1n(1+2a)[p/nJ}, since k=[p/n],

= (l-a)exp(-1n(1+2a)|(A,/24)2%p)) .

Since B ¢ V-Ay,, we have that b < 1-a,,, thus yielding
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b < (1-a)exp(-In(1+2a)|(),;/24)%p]). O

And, finally, we come to the theorem which provides an

upper bound on the diameter of G.

THEOREM 2.2.4 ([AM], Theorem 2.7): Let G=G(V,E) be a

connected graph on |V|=n > 1 vertices, with maximal degree

d. Then the diameter of G is at most

Diam(G) < 24((2d/A,)%¥)-log.n].

Proof: Suppose we have that p = nlog,n = ((2d/A7;)¥)-log,n.
Without loss of generality, choose A to contain at least
half of the vertices, so |A|/n > ¥. Our first goal is to
demonstrate in the notation of Theorem 2.2.3 above that for
such a set A, A,=V. That is, there are no vertices in V
that are further than |p| from set A. Hence, we shall show

that the set B=V-A, must be the empty set.
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Recalling notation from Theorem 2.2.3 that k=|p/n], it

is clear that kn = |p/n] n < |p), implying that A, c A,, and

therefore that a., < a,. Hence,

b = l"aLpJ < l-a,m

A

(1-a) (1+2a)*, from Theorem 2.2.3,

W

(%) (¥)k, since ax¥%,

(%) k+1

($)les . ml+ - gince k = |p/n] = [log.n],

A

(¥)ls: ) gince log,n < [log,nj+1 and %<1,

1/[2%?9:®™] = 1/n.

Hence |B|/n = b < 1/n, implying that |B|<1. That is, B
contains no vertices, and is thus the empty set. It follows
immediately that A=V, since e=B=V-A, and A, c V.

For any veV, consider {v},, the set of all vertices no
further than |p] from v. We shall show by contradiction that
our diameter must be no greater than twice |p|, which is the

desired result.

Suppose |{v},]| < n/2. Define A=V-{v},, the set of all
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vertices further from v than |p|. By the supposition,
|A|>n/2. Then, by the work just performed, A =V, which says
that all vertices in V are no further than |p| from set A.
Since veV, we have that d(v,A) < |p], a direct contradiction
to the definition of set A as the set of all vertices
further from v than |p]. Hence, the supposition is false and
we have that [{v}, | = n/2.

Again by the above work, we may conclude that
V={{v},}s which is the set of all vertices less than or
equal to distance |p| away from {v},, which is the same as
the set of all vertices less than or equal to distance 2|p]
away from wv.

That is, from any veV, we can reach any other vertex in
V within two steps of size |p]. By definition, we thus have

that

Diam(G) < 24p] = 2{((2d/A;)%¥)-log.n]|. ]

2.3 Chung's Upper Bound on Diameter

This section addresses Chung's [Ch] efforts to
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establish an upper bound on diameter. For the particular
case of our Z,-based Cayley graphs, her formula appears not
to be an improvement over the bound established in Theorem
2.2.4 above (see Chapter 2.5). Hence, we present only the
results of her work. First, we require the following

definition:

DEFINITION 2.3.1: The spectral radius pu of a connected k-

regular graph G is defined by

p = max{|E|: £ is an eigenvalue of A(G) and |E|<k]}. a

That is, p is the absolute value of the "largest"
eigenvalue of A(G) less than k, where A(G) is the standard
adjacency matrix of G.

One property of the standard adjacency matrix is that
powers of the matrix result in entries which indicate the

number of distinct walks between the vertices corresponding
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to the indices of that entry. Any power for which it has all
nonzero entries thus corresponds to an upper bound for the
diameter of the graph. Chung [Ch] has worked with this
property to establish the following upper bound on the

diameter of G:

THEOREM 2.3.2 ([Ch]l, Theorem 1): For a k-regular
(connected) graph G on n vertices with spectral radius p of

the adjacency matrix A(G), we have

Diam(G) < [log(n-1)/log(k/u)7. O

2.4 The Relationship of A, and u

Recall from Chapter 2.2 that Q=K-A(G). In the case
where G is k-regular, we have that K=kI, since K is a
diagonal matrix with K;;=deg(v;)=k. Any eigenvector f of Q is

also an eigenvector of A(G), by
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Nf = Of = (K-A(G))f = KE-A(G)f = kf-A(G)f

SO

A(G)f = kf-NEf = (k-\)E.

From our work in Chapter 4 we have that the eigenvalues

£, of A(G) are constrained as

[€al < [Enal < ... < |E5] < &, < &, = k.
Since we have k as an upper bound on |£;|, then [k-A;] < k,
forcing 0 < A; < 2k. From our work in Chapter 2.2, we know

the lower bound on the eigenvalues of Q, so we now have that

0 = A, < Ay = 0M(G) < A, < ... < A, < 2k,

Hence,

1§21

max{|k-X,|, [k-An-al};

1€

27 max{|k-Al, [k-Anaals k=N, [K-2pol} 5

etc.



45

The first such |§;] that is strictly less than k is selected

as the value for pu, the spectral radius. The net result of

this is that

p = |k-A;| for some i such that |k-A;| > |k-A;| since A,>0.

Then
po2 k- = k-A,
and so

k2 k-A; or, equivalently, A; > k-pu.

Note that, again from work in Chapter 4, if G is
bipartite, then the multiplicity of £; and -£; are the same
for each i, thus forcing that A, = 2k-XA,,, and hence

equality holds for u=k-A,.

2.5 How Useful Are These Bounds?
Now that such upper bounds have been found, the

question remains as to how good they are. Chung claims to
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have found a superior boundary. Though there may be some
basis for her claim, we show that it is not true in the case
of Cayley graphs based on groups of the form Z,. In
addition, we demonstrate that both are rather poor bounds
when it comes to predicting the diameter of Cayley graphs on
Z,.

When studying the theory of Cayley graph structure, it
is desirable to work with as general an underlying group as
is possible. Since A, is often difficult to determine in
general for a large group, we initially used the two
diameter bound formulas (Theorems 2.2.4 and 2.3.2) to
examine the constraints they provide for A, with a group of
known diameter. As such a model, we used Z,, with the
generating set of S={3,7}. This Cayley graph is small enough
to draw and find by exhaustion that the diameter is 4. Then

we have from Theorem 2.2.4 [AM] that

Diam(G) < 2{(log,n) (2d/A,)¥]
= Diam(G) < 2(log,n) (2d/A,)*%

= Diam(G)? < 4(log,n)2(2d/A,)
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= A, < 8d(log,n)?/Diam(G)?

= A, < 84-(log,21)2/42

- A, < 2-(4.39)2 = 38.6.

This is clearly not a helpful bound since we already
know from Chapter 2.4 that A, < 2k = 8. Similarly, we have

from Theorem 2.3.2 that

Diam(G) < [log(n-1)/log(k/u)]
= Diam(G) -1 < log(n-1)/log(k/u)
= 3 < log(20)/log(k/p)
= log(k/pn) < log(20)/3 = .4337
- 4/p < 1047 = 2,714

- ko2 4/(2.714) = 1.474.
But we have that pu > |k-A,|, so even if we make the
assumptions that |k-A;|] = p4 > 1.474, we may only conclude

that

4-1.474 = 2.53 2 A, or 4-(-1.474) = 5.474 < A,
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which doesn't provide us with any useful bounds on A, at
all. Certainly, evaluating their usefulness in this "reverse
engineering"” direction with only one example is not
definitive, but Theorem 2.2.3 appears to be woeful while
Theorem 2.3.2 doesn't help at all.

However, working in the opposite direction, we can
rather easily evaluate the two upper bounds on the diameters
of Cayley graphs of the cyclic groups Z, by using the Lovasz
algorithm discussed in Appendix D to find exact values of
A,. In Chapter 6, we have developed a method of finding an
algorithmic upper bound on the diameters of such graphs, and
below in Table 2.5.1 we compare those diameter bounds with

those obtained from Theorems 2.2.4 and 2.3.2.
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TABLE 2.5.1: COMPARISONS OF UPPER BOUNDS ON DIAMETERS OF
CAYLEY GRAPHS OF VARIOUS Z_'s FOUND FROM CHAPTER 6 METHODS
AND THEOREMS 2.2.4 AND 2.3.2

Group, Generating Set, and Alg. A Diam: u Diam:
Degree Diam: Lovasz Thm. Lovasz Thm.
Ch 6 224 2.3.2
[AM] [Ch]
Z,,S={1,4}, k=4 4 1.358 20 3.444 20
Z,,, $={1,5}, k=4 5|1 0927* 28 | 3.072% 14
Z,, S={1, 6}, k=4 6 0.681 36 3.722 53
Z,, S={1, 10}, k=4 10 0.382 60 3.902 186
Z,,, S={1, 32}, k=4 32 0.038 280 3.990 2866
Z,62s, S={1,10,100}, k=6 14 0.369 114 5.818 225
Z,62s> 5={1,6,36,216}, k=8 9 1.201 72 7.142 62
Z,024> $={1,4,16,32,256}, k=10 8 2.000 30 8.304 38
* note that A, +pu=4 in this case. That is, k-A,=p, so that we get a diameter from
Theorem 2.3.2 that is lower than usual when considering the other results.

The clear result of all these examples is that the
upper bounds found by the two theorems shown in this chapter
are so soft as to be useless, at least for the case of the
Cayley graphs on Z,. In addition, Chung's claim that Theorem
2.3.2 is superior to Theorem 2.2.4 does not seem valid for

such Cayley graphs. (In fact, it appears to be generally
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worse for the cases examined.) It should also be noted that
Theorem 2.2.4 is a stronger theorem in that it does not
require the graph to be k-regular as does Theorem 2.3.2.
Since all Cayley graphs are by definition regular, this is
not significant to our findings, but it does indicate that
Theorem 2.2.4 is applicable over a much broader set of
graphs. In theory, adapting it to cover just the k-regular
graphs could improve its upper bound, thereby making it far
better than the bounds of Theorem 2.3.2 established by
Chung.

Upon reflection, it is clear that Theorem 2.3.2 is
quite sensitive to small variations in p whenever pu is
quite close to k in value. In this instance, the value of
log(k/u) can skyrocket, resulting in a poor upper bound.
(Note that the diameter upper bound for Z,,,, when S={1,32}
is 2866!) On the other hand, Theorem 2.2.4 is relatively
insensitive to such variations in A, since it follows the
square root of 2d/A;. In those occasional cases when k-A,=p,
the value of u is as far away as possible from k, and

Theorem 2.3.2 may provide a somewhat better upper bound.



(See row two of Table 2.5.1 for such a case.) Hence, the

wide fluctuations of the bounds supplied by Theorem 2.3.2.
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CHAPTER 3

KAZHDAN CONSTANTS AS BOUNDS ON VARIOUS CONSTANTS

3.1 Introduction

Constructing a processor network model with a
relatively small diameter is desirable since it improves the
chances of low travel time for information through that
network. However, as demonstrated above, it may not always
be possible to establish good bounds on the diameter of
various classes of graphs.

Thus, much of the theory under current consideration
has been focused on alternative characteristics of a graph.
Two of these characteristics are: the expanding constant,
related to the rate at which a subset of vertices connects

to neighboring vertices; and the Cheeger constant, a similar

52
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constant using edges instead of vertices.

This chapter follows Bacher and de la Harpe [BdlH] in
their development of Kazhdan constants and their use as
bounds on the expanding constant, the Cheeger constant, and

A, for finite graphs.

3.2 The Expanding Constant and the Cheeger Constant

Here we define the expanding constant and the Cheeger
constant and then follow the proof of a theorem which
establishes relationships among both constants and A,.

Let G=(V,E) be a finite simple (i.e., no loops and no
multiple edges between pairs of vertices) graph on vertex
set V and edge set E. Let A and B partition V. (That is, AcvV
and B=V-A.) Note that this implies that p=1. Then we have

the following definitions.

DEFINITION 3.2.1: The boundary of subset A is

oA = {veB: v is adjacent to a vertex in A}. a
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Hence, 0A is, in essence, all the immediate "neighbors"
of set A. Note that 9A does not contain any of the vertices

in set A itself, so we are counting only "new neighbors" of

the vertices in set A.

DEFINITION 3.2.2: The bridge of sets A and B is

E(A,B) = {ecE: e=(v,,v,) where v,eA and v,eB}. O

Thus, the bridge is the set of all edges "bridging the

gap" between set A and set B.

DEFINITION 3.2.3: The expanding constant of G is
Cox = max{c > 0: [8A| > c(1-|A|/n)|A| for every AcV, Are},

or, alternatively,

Cox = max{c>0: |3A|/|A| > c¢|B|/n for every AcV, Aze}. O
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Thus, to find the expanding constant, consider all

possible subsets o#A; ¢ V. Find c; for each such subset where

c; = (n/[B]) (|aal/|a]) .

The minimum such c; will equal ¢, since it will be the
maximum value of c that still keeps the requirements true.
Hence c,. establishes the minimum fraction A will grow when
absorbing immediate neighbors relative to the fraction of

vertices not already inside A.

DEFINITION 3.2.4: The Cheeger constant of G is

h(G) = min{|E(A,B)|/min{|a|,|B|}: A,B partition V}. m)

Thus, the Cheeger constant is the smallest ratio of
"bridge edges" to the size of the smaller subset of V, for
all possible partitions A,B of V. For a finite graph, h(G)

may be tediously evaluated by testing the edge connectivity



56

of every possible subset of V from order 1 to order n/2, and
then dividing by the order of that subset. The smallest such
quotient will yield h(G). As an immediate consequence of the
definition we know that d,;,, the minimum degree of any one
vertex in V, is an upper bound for h(G), since we have for
every v that deg(v) = |E(v,V-v)/|{v}|. In addition, if G is
not connected, then h(G)=0 since there would clearly be a
subset with no bridge edges to connect it to the rest of the
vertices. Then it is possible to link the values of these

constants to each other and to A, in the following ways.

THEOREM 3.2.5 ([BdlH], Appendix, Proposition 5): Let G be a
connected graph of maximum degree d. Let A, be the smallest

nonzero eigenvalue of Q as defined in Chapter 2.2.

Then
(a) C.. 2 h(G)/d
(b) h(G) 2> ¥%Cu
(c) h(G) = %A,

(4) A, > h(e)2/(24).
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Proof:

(a) By the definition of c,,, there exists a subset AcV

such that

|0A]/|A| = C..(1-]A]/n) = c..(|B|/n).
Hence,

Cue = [IGA|/|A]] (n/|B]) = |8AIn(]A||B])?,
and so

Cn.d = dloA[n(|A]|B|)*.

Clearly, the maximum possible number of bridge edges
between sets A and B can occur only when each vertex in B
that is adjacent (an immediate neighbor) to set A is, in
fact, adjacent to d vertices in set A. Otherwise, the number
of bridge edges is certainly less than d|dA|. Thus, we have
that

d|oA| > |E(A,B)/|,
and hence

¢..d = nlE(A,B)|/(|A||B]) .

Without loss of generality, assume that |A|<|B|. Then
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n/|Bj>1 and |E(A,B)|/]|A| = h(G), so that

Cma,‘d 2 l'h(G) = h(G) ’

thus yielding the desired result that

Cnx 2 h(G) /4.

(b) By the definition of h(G), there exists a partition A,B

of V with |A|<|B| such that |E(A,B)|/min{|A|,|B|]} = h(G). Then

h(G) |E(A,B)|/|A|

v

|6A|/|A}, since < one new neighbor per bridge edge,

v

Cox (1-|A|/n), by definition,

> ¥c..., since |A| < n/2.

(c) From Theorem 2.2.1, we have
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An < p*(n/|A] + n/|B|) (|E|-|Eal-|Es]) ,

where A and B are two non-empty disjoint subsets of V, p is
the distance between set A and set B, E is the edge set of
G, and E, and E; are the edges internal to sets A and B,

respectively. Then, for any partition of V, p=1 and |E|-|E,|-

|Es] = |E(A,B)| will be the bridge edge set. Thus, we have

that

An < 7 (n/[A] + n/|B|) (|E|-|Ex|-|Es|)
< 1-(n/|a| + n/|B|):|E(A,B)],
and so
A, < (1/|A] + 1/|B|) |E(A,B)|

= [(|a]+|B]) /(|A]|B])]1-|E(A,B)|, for partition A,B of V.
As in part (b) above, choose a partition A,B of V such
that h(G) = |E(A,B)|/min{|A|,|B|} and, without loss of

generality, that |A|<|B|. Then

A, < [(JA[+|B])/ (|A[IB]) 1-|E(A,B) |
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[(Aa[+]|B]) /[BII-I|E(A,B) |/]A[]

[ (|a]+]|B]) /|B|]1-h(G)

n

[(|B[+|B]) /|B|I*h(G), since |A|<|B|,

= 2h(G) .
Hence,
h(G) > ¥%¥A;.
(d) (Per [Lub], Proposition 4.2.4.) (Note that initial

attempts to follow [BMS] Theorem 3.2 for an equivalent proof
turned up an error between lines 6 and 7 on page 206. In
addition, [BMS] uses the isoperimetric number, which is not
as strong a conclusion.) Let g be a unit eigenvector
corresponding to A, of Q. That is, let Qg=A,g and (g,g)=1.

Then

(Cg,Cg) = (Qg,9) = (Ag,9) = M(g,9).

Let V" = {veV: g(v)>0} and define the related n-tuple £ as

g(v) if vev+
£(v) =
0 otherwise.
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Since we could replace g with -g, we may assume without loss

of generality that |V*| < ¥|V|. Then we have that

(Cf, Cf) (Qf, £)

(£,Qf)

Y [E(WV)Y QuE(v)-£(u))],
veV ueV
since the i** entry of £ (the i*" term in the first
summation) is to be multiplied by the i*" entry of Qf, which
is simply the dot product of the i*® row of Q with £, as
represented by the second summation.

However, we have g(v)=f(v) for every veV*, so the
right-hand side may, by working with the summations, be

written as

= X [g(V)Z;Qvu(g(V)-f(u))]

= Y g {Y Qu(g(v)-E(u)) + ¥ Qn(g(v)-£(u))}]

veV uey* uey*

= ¥ [G(V{Y Qulg(v)-g(u)) + ¥ Qu(g(v)-£(u))}]
vey* uey* ueV*

= Y [gn) (Y Qulg(v)-g(u)))]
vey* uelV*

+ Y [g(v) (¥ Qulg(v)-£(u)))]

vel* uey*
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= Y [gV) (X Quig(v)-g(u)))] + ¥ [g(V) (X Qug(v))],

vey” uey* vey* uey”

since f(u)=0 for ueVv*.

Recalling that g(v) is positive for every veV*, that Q.
is either zero or 1 for each entry, and that g(v) is either
zero or negative for every ve¢V*, we have for the right-hand

term

Y [gv) (X Qug(v))] < O.

vep* uev

Hence

(CE,CE) < ¥ [g(V) (Y Quig(v)-g(u)))].

vey* uey-

But Y Qu(g(v)-g(u)) is simply the v*® entry of the n-tuple

uel’*

Qg, so we have that

Y [ (Y Quig(v)-g(u)))] = ¥ g(v)Qg(v)

vey* uey” vepy*

Y g(vIag(v)

vey*

A Y g(v)?

vey*

N(EVE) .
Thus, we have that

(CE,CE) < A (F,£).



Let o be the constant defined by a = Y} [f?(e*)-£f2*(e”)|. Then
ecB

a = Y |[f2(e*)-f2(e)|
ecB
= ZE:B |£ (e*)+£(e’) |'|E(e*)-£(e)]
= { [% |£(e*) +£ (e”) |"|E (e*) -£ (e”) |1%}*.
Claim: [Y [E(e*)+£(e”) |'|E(e*) -f(e)|]?
¢€eB

< Y |E(en)+£(e”) 22X |E(e*) -£(e7) |2.
ecB [1=:1
Let a; = |f£(e*)+f(e”)| and b; = |f(e*)-f(e’)| for edge e;.
Suppose |E|=1.
Then (a;b,)? = a,%b,?, so the claim is true when |E|=1.
Let |E|=n be a value for which the claim is true.
Then
(a;b,+...+ab, + ap,bpe)?
= [(a;b,+...+a,b,) + a . bn.l12
= (a,b;+...+a,b,)? + 2(a;b,+...+a,b,) (Anubni) + (3n1bnea) 2,
while
(a;2+...+a,,,2%) (b2+. . .+b,,,?)

= [(a,®+...+a,%) + a,,;?1[(b,%+...+b2) + b,,,2]

63
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= (a,%+...+3,%) (b2+...4b2) + (a;%+...+ay?) (b,,,)?

+ (b?+...+b.?%) (an,1)? + (Qp.abn.g) 2.

By the inductive hypothesis we have

(a,b,+...+ab,)2 < (a,2+...+3,.?) (b2+...+b.2).

Hence, it remains to compare the middle terms. That is

2(a;b,+ ... +a,0,) (8,41bn41)
< (a%+ ... +3.?) (b)) 2+ (b%+ . ..+b%) (a,,,)?
had 2a;b 8,000t . . . +28,bpan,,b0yg
< a,’by,® +...+ a’b,,,? +...+ b?a,,? +...+ bja,,,?
hat 0 < a,’bn,® - 2a;ba,,,b5.; + bi2an,? +...+ a,?b,,,?
- 28,b,a41bn + bplag.,?
- 0 < (ajbpu - biangy? +...+ (apbn - bnanag)?,

which, of course, is true since the sum of the squares of
real numbers is never negative.

Thus the claim is true, and we have that
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o = {[XE:H|f(e*)+f(e')|-|f(e")—f(e')|]2}"

< {Y IE(e)+£(e) =Y |E(e*) -£ (e7) |2}*.
ecB eeB
By completing the square, we observe that

Y |£E(e*)+£(e) |2 < 2) [f(e*)2+£(e")?].
[1=1

eeB

Then, since Y |f(e*)-£f(e")|? = (CE,Cf), by definition, we
ecB

have by substitution that
o < {2 [f2(e*) +£f2(e")] }#(CE,CE)*%.
ecB

Since each vertex in G appears in Y |f?(e*)+f2(e")| precisely
ecB

as many times as the number of edges adjacent to it (i.e.,

its degree), no vertex appears more than d times, where d is

the maximum degree of G. Therefore

R
"

{2Y [f2(e*)+£2(e”)]}¥(CE,CE)*
eel

n

{2[aY £2(v)1}%(CE,CE)*

veV

(28)¥(Y, £2(v))*(CE,CE)*

veV
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= (2d)*%(£,£)*(CE,CE)*.

Since we showed above that (Cf,Cf) < A, (f,f), we have that

(CE,CE)% < (A)%(£,£)%¥ and thus

o < (2dA,)%*(f, £) (*)

by substitution.

It remains to be shown that o > h(G) (f,f).

Recall that o = % |£2(e*) -f2(e”) |. Note that in

.

evaluating o by considering each eeE, any edge e=(v,u) where
f (v)=£f(u) contributes nothing to the summation.

Let V={v;,...,V,} denote the vertex set of G and let
f(v;) denote the i*" entry in the n-tuple f. There are n such
entries, some of which may be equal. Thus, we may specify a

strictly increasing sequence of n real numbers

0=Yy < ¥1 € ¥2 € ... < ¥i

where each of the real number entries in f appears once in
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the sequence. For each entry of £ that is a repeated value,
the sequence contains a "filler" number of some intermediate
value in order to yield the full sequence of n real numbers.
For example, perhaps f(v;) = £(v;) = y,. Then, at least one
value y, will not be equal to any of the entries in the n-
tuple £, since there are at most n-2 distinct values of
entries left. Y, thus becomes a "filler" number in the
sequence, unassociated with any vertices in G.

Define F, as the subgraph of G induced on the vertices

Vk = {V: f(V) ZYk}

so that V, is the set of all the vertices associated with an
entry of £ that is greater than or equal to yi.

Let D, be the orientation of F, whose edges are
directed so that edge e goes from e*=v; to e*=v; where
f(v;)2£(vy) . This ensures that while evaluating a summation
on any D, each term in the summation will be positive
inside the absolute value sign, and therefore that it will

be possible to eliminate them. That is, for each k
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|£2 (e*) -f2(e”)| = f£2(e*)-f%*(e”), for every eeD,.

Define S, = {ecE(G): f(e*)=yx}, the set of all edges in
G whose initial vertex in any D, is assigned the value y, in
f. Then, it is possible to make the following statement

about o:

o = Y |£2(e*)-f2(e)|

el

Y [T (£2(e") -£2(e)) 1,

Bl eeSy

since this double summation looks at edges whose initial
vertex corresponds to an entry with value y, in £, and looks
at all possible k's (and thus all possible entries), it

looks at each edge in E precisely once.

Claim: Z”: [Y (£2(em)-£f2(e))] = Y [ Y (vi®-ve®) 1,

Bl eeS, bl ecdV,

where 8V, = {ecE: e has exactly one vertex in V,}. That is,
9V, is the "bridge edge" set of V.

To substantiate this claim, consider an edge e=(v,u) in
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Sk. Its initial vertex v is such that £ (v)=y, while its
terminating vertex u has the property that f£(u)=y, < y,. If
f(u) =yx, then edge e contributes only zero to each
summation. However, if f(u)<y,, then e is clearly a bridge
edge for each of the subgraphs {Fk,Fbl,sz,...,Fwd}, since
vertex v is in each of the sets {V,,V,,, Vi, ..., Vy,} vet
vertex u is in none of them since F(u)=y,. Hence, e appears
in each of the bridge edge sets {BF;,aFki,anz,...,aF$4} and
yet appears in no other bridge edge set since every other
vertex set V; either contains both v and u or contains

neither v nor u. Hence, the edge e will contribute the terms

{ (¥i®-¥Yi-2®) o (Yie-®=Vie2?) o o o (Ygr?-Yq) }

to the right-hand side summation. But

Yii-¥Yq Vil = (Yi1®Yel®) - o- (Yau?-Yau?) - ¥4

(YVi®-¥i-2®) + (Viea®-Via®) +o o+ (YVan®-y4)

while

f2(e*) -£2 (e")

Ykz - Yq2
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which is precisely what each edge in S, contributes to the
left-hand side summation. Thus the claim is verified.

Then we have that

o = ): [Y (n-ve-lD) 1.
k1

eciVy

For each value of k, each edge ecdV, contributes the
same value (y,*-Yx-1’) to the summation. Hence, for each value

of k, we get |9Vy| (yi®-VYk-,?) added to the summation, so that

n
a = ; oV (Vi - ¥Yi-22) 1«
1
Recall that by our choice of g and our construction of £ we
have [0Vy| < %|V|. Hence, by the definition of the Cheeger's

constant we have that |9V,| > h|V,| for every k from 1 through

n. Then, by substitution, we have
n
o > hi(G)Y [Vl (ye*-Yk-1?)]
k-1

= h(G) {: Vil - % Yk-12|Vk|}
x| =
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n n-1
&1 0

n-1 n-1
= h(G) {§ Vi Vil + o2 |Val Eszlvjul - Yoy}

n-1

zl: Yi*1Vsal}, since y,=0,
j-

n-1
= h(G) {g Vi |Vl + Yo | Vil
n-1
= h(G) {Y vi® (IVi|= Vi) } + h(G) y,2|V,].
k-1
Since there are no vertices in V,,,, we have that |V,,|=0 and

thus h(G)y.,?|V...] = 0. Hence, we can add zero to both sides

as

Q
]

n-1
h(G) {AE Yié Vil = 1Viaa) } + h(G) y2 |Vl - h(G)Ya?[Vaul,

h(G) g Vi (Vi = [Vigea])

Recall that V., consists of all vertices whose
corresponding entries in £ have a value of y, or greater.
Similarly, Vi,, contains all the vertices whose corresponding
entries in £ have a value of y,,, or greater. Thus, (|V.|-

|Visal) is simply the number of entries in f whose value is vy,
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since the sequence was constructed in such a way that every
vertex's corresponding entry in £ has a value that is
precisely one of the y;'s. So, as the above summation is
evaluated at each value of k, we get y,? times the number of
vertices whose entries in f correspond to the value y,.

Then, for any value of k such that no vertex has an entry in
f equal to vy, |Vkl-|Viwal = 0, and that term contributes
nothing to the sum. (Note that |V,|-|V,,;| = |V,] is the number
of vertices whose entries in £ have the value y,.) Hence,

working through the summation, we get that

Y iUVl -1Via]) = Y £(w)2 = (£,£),
k1 k=1
and so

o > h(G)-(£,£). (**)
Combining equation (*) above with equation (**) yields
(2dM,)%(£,£) 2 o > h(G)- (£, £)

and so

(2dA,)* > h(G)
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or, equivalently

A, > h?(G)/(24). a

3.3 Background on Representations

This chapter briefly examines the subject of group
representations as necessary background for a thorough
understanding of the Kazhdan constants. Also presented are
some special examples of such representations and several
theorems particularly applicable to the evaluation of
Kazhdan constants for abelian groups. Much of this material

is from Diaconis' text {[Dia], Chapter 2.

DEFINITION 3.3.1: The representation nm of a group I' is a
group homomorphism which sends each element g € I' to an
invertible (hence square) matrix with complex entries. That
is

n: ' » GL(V)
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where GL(V) is the set of linear maps (invertible matrices

of size nxn, with dim(V)=n) on vector space V.

The binary action in GL(V) is, of course, matrix

multiplication, and each such matrix is denoted by n(g).

the properties of homomorphisms, for s,t € I' and e the

identity of I', we have

(i) n(st) = n(s)u(t)

(ii) 1 (e)

Inxn

(iii) 1nf(e)

Observe that the order of I' and the size of the
matrices need not be the same. For example, if Ker (m)
contains other than the identity of I', then clearly
|z (T") |<|I"], so that n(I') may be represented by a set of

|m(T") |x|x(T") | matrices. In addition, it may simply be

possible to provide a group in GL(V) where dim(V)<|I’| that

is nonetheless isomorphic to the original group I'. In any

n(s?s) = n(s?)n(s) so n(s?) = [m(s)]?.

By
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case, the dimension of nm is designated to be the same as
the dimension of the vector space V. In theory, the dim(V)
could actually be larger than |I'|, by adding extra ones to
the diagonal entries of additional (unused) dimensions.
However, in practice this seems unnecessary, as the
permutation matrices (also known as the regular
representation of I') are the most commonly used

representation with matrices of size |I'|.

DEFINITION 3.3.2: A representation m has a
subrepresentation m, (restricted to W) if W is a subspace
of V that is stable under I'. That is, if m(g)w € W for every
gel’ and for every weW. A representation m is irreducible if

it has no non-trivial subrepresentations. O

Then a representation m is irreducible if there is no
subspace -- except for V itself and the zero subspace --

which is stable under I'. In essence, irreducibility
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corresponds to saying that you have used the minimum size
possible for the matrices used to form the group
representation. Otherwise, if it could have been represented
by a group of matrices of smaller size, then a suitable
change of basis matrix applied to each of the original
representations' matrices would have allowed at least one
dimension to go unused. Hence, a representation is
irreducible if the dimension of nm is the minimum possible
matrix size in any group of matrices that is isomorphic to
a(rl’) .

Presented here are some examples of representations of

S,, the permutation group on n letters:

a) The trivial representation. That is, nm sends each peS,
to the identity matrix. Thus, we have Ker(m)=S,. Now, the
dimension of m could be anything, since we could choose to
send each p to any size matrix I, and still satisfy all the
homomorphism properties, since n(S,) is a trivial group.
However, any size that is chosen other than matrices of size

1x1 will be reducible, since clearly any subspace W of space
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V is stable under S, when n(p)w = Iw = w for every weW.

Thus, it is conventional to consider this trivial
representation as the homomorphism sending each peS, to 1,
where 1 may be viewed as a 1x1 matrix. The dimension of m in

this case is thus 1.

b) The alternating representation. That is, I sends a
permutation peS, to -1 or +1, depending on whether p is an
odd or even permutation, respectively. (Observe that this
could again be any dimension representation, using -I and +I
of the desired size as the target matrices.) However, as for
the trivial representation, convention dictates that this

representation has dimension 1, since we are sending to 1x1

matrices.

c) The classic regular (or permutation) representation.
Here, n sends a permutation peS, to its so-called
pefmutation matrix M,. Consider how p acts on the n elements
h;, h,,..., h,. For each i from 1 through n, p sends h; to

some other element p(h;)=h; in the set. Then M, is the
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invertible nxn matrix in which the elements of the ith
column (for each i) are all zero except for the entry in the
j* row, which is a 1. As such, multiplication of an n-tuple
by any such matrix m(p) simply permutes the entries of the
n-tuple in a manner corresponding to the way the n letters
are shuffled by the permutation p. Clearly, m is n-
dimensional. Note that it is simple to show that m is
reducible. Consider the set of all constant real-valued n-
tuples, which is a 1-dimensional subspace WcR". Obviously,
the shuffling of the entries of a constant n-tuple yields
the same n-tuple, so W is stable under the subgroup of
permutations I'j as represented by n. The complement of W is
the subspace W° = {feR": Yf;=0}, since any vector in R® may
be formed from these two subspaces, yet the only constant n-
tuple whose entries sum to zero is the zero vector itself.
Observing that the sum of the entries of an n-tuple does not
change merely from shuffling their order of addition, it is
clear that W° is also stable under I', as represented by 1.
Recall that any group I'={h,,...,h,} is isomorphic to its

permutation group I'y by ¢: I' » I'), where ¢ is defined by
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¢(h)=p, € 'y, and py(h;) = h*h; € I' for every i. Hence, we may

construct the regular representation of any group.

The fact that both W and its complement W° are stable

in the above example gives rise to the following theorem:

THEOREM 3.3.3 ([Dial, Ch. 2, Thm. 1): Let m: T" » GL(V) be
a linear representation in V and let W be a subspace of V
stable under I'. Then there is a complement W° (where V=W+W°

and WnW°=0) that is stable under I'.

Proof: Let a={o,,...,d,} be a basis for W and
B={B,, ...,B.} be a basis for W°.
Suppose there exists xeW’ such that n(g)x ¢ W° for some gel.

Then

n(g)x = a;o+...+a,0,+b,B,+...+b.p., where at least one a;+0,

= w + w°, for some nonzero weW and some w°cW°.
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But

w
"
H
»
]

[m(gt)n(g)]lx = n1(g?) [n(g)x]
= 1(g™?) [w+w’]

= n(gtw + o(gt)w.

However, since W is stable under I', we have m(g?*)w € W.
Also, n(gt)w # 0 since if Aw=0, then w = A*Aw = A0 = 0,
contradicting that w is nonzero. But this says that x is
composed partly of a nonzero vector in W, a contradiction to
xeW’. Hence, the supposition that there exists such an xeW°
is false. That is, W° is stable under I' by the

representation of m. a

COROLLARY 3.3.4 ([Dia], Chapter 2, Theorem 2): Every
representation is a direct sum of irreducible

representations.

Proof: Clearly, by induction, Theorem 3.3.3 may be

applied repeatedly, yielding a given representation n
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decomposed (eventually) into irreducible parts. (The
terminology is that the representation m on V splits into

the direct sum of W and W°, and we write V = WeW°.) a

The above theorem and its corollary are extremely
important since they allow study of the action of T on V by
separately studying the action on its irreducible
subrepresentations. In fact, further exploration of
representations gives rise to the following two theorems
(given without proof here) which prove useful in

understanding and evaluating Kazhdan constants.

THEOREM 3.3.5 ([Dia), Ch. 2, Coro. 1 to Prop. 5): Every
irreducible representation W; is contained in the regular

representation with multiplicity equal to its degree. 0O
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THEOREM 3.3.6 ([Dial, Ch. 2, Theorem 8): The following

properties are equivalent:

(1) I' is abelian.
(ii) All irreducible representations of I' have degree
1 over the complex numbers. O

Finally, we present two more definitions needed to

untangle the meaning of the Kazhdan constants. These are:

DEFINITION 3.3.7: A representation m of a group I' is

unitary if every matrix in the group representation is a

unitary matrix. |

Definition 3.3.7 is somewhat reflexive in that it needs
elaboration on the subject of unitary matrices. A matrix B
is unitary if it is nxn and satisfies BB' = BB = I, where B*

is the conjugate transpose of B. Typically, the term unitary
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is reserved for those times where B contains complex (non-
real) entries, while such a matrix with exclusively real
entries is called orthogonal. Thus, if m is a unitary
representation on the group I', then [a(h)v| = |v] for every
hel’ and veV, the vector space of dimension n. Clearly, if
VcR®, then to say that nm is unitary is to say that each

matrix in the representation is "length preserving".

DEFINITION 3.3.8 ([AM], Definition 4.5): A unitary
representation m of a (finite) group I into the vector
space V is called essentially nontrivial if, for any nonzero

vector feV, there exists an hel’ such that o(h)f = £. O

The concept of essentially nontrivial may be viewed as
saying that every nonzero n-tuple in V is "moved" by at
least one of the nxn matrices in the representation m.
(Here, "moved" is used in the sense that a different n-tuple

emerges as the product.)
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If m is essentially nontrivial then the isomorphism of
I' onto the group M, cannot be represented by a group of
smaller size matrices, but, in fact, must be represented by
a group of nxn matrices. To justify this conclusion, suppose
it was possible to represent I' by a group of (n-1)x(n-1)
matrices. Then it would also be possible to represent I
with the same group of matrices "embedded" into the lower
right-hand corner of nxn matrices with the only nonzero
entry in row one and column one being a 1 in the upper left-
hand corner. Call this representation ¢ and the embedded
group of matrices M,. Then we would have constructed the
isomorphisms m: I' » M, and ¢: I' » M, and thus the
isomorphism

® = @ert: M » M,.

But this is simply equivalent to a change of basis
matrix. Since M, clearly has the n-tuple f=(c,0,...,0) as a
simultaneous eigenvector, M, must have as an eigenvector the
n-tuple obtained from f after the same change of basis. But

this contradicts that m is essentially non-trivial, so no
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such representation of I' exists onto a group of (n-1)x(n-1)
matrices. Of course, any smaller-sized matrices are also
ruled out, since they may be embedded into an (n-1)x(n-1)
format. Hence, there is no (1-dimensional) subspace of V for
which m has a trivial subrepresentation, so @ is nontrivial

in an essential way.

3.4 The Kazhdan Constants

Let T" be a countable group. We denote by I'" the set of
all unitary representations of I' in separable Hilbert
spaces. We also denote by I'" the subset of I' consisting of
all irreducible representations. Let S be a finite
generating set for I', and let nel™ be a unitary
representation of I' on some Hilbert space H,. Then we have

the following definition of Kazhdan constants:

DEFINITION 3.4.1 ([BAlH]): The Kazhdan constants are

(a) x.(S,m) = inf{max{In(s)E-E|: seS}: Eel, and |E|=1}
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(b) x:(S) = inf{x.(S,nm): m is essentially nontrivial}

(c) K. (S) = inf{x.(S,n): m is irred. and ess. nontr.} O

In keeping with these definitions, we say that I' is
Kazhdan if K:(S)>0. We now have the tools to work through

the following theorem.

THEOREM 3.4.2 ([BdlH], Appendix, Proposition 6): Let
G=G(V,E) be the Cayley graph of a finite group I' of order n
with respect to a set S=S* of |S|=k generators, with 1¢S
(i.e., no loops). Then

(a) Coax 2 ¥K:(S)?

(b) K.(S) =2 A /k.

Proof:
(a) ([Lub], Prop 4.3.1): Clearly, if T is not Kazhdan,
then K.(S)=0, so C,. > ¥K.(S)? = 0 since c,.>0 by definition.

If ' is Kazhdan then, by definition, x.(S)>0. Obviously, for
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a particular essentially nontrivial unitary representation

n of ', we have by the definition of inf that

K. (S,m) 2 K. (S).

In addition, for a particular unit vector § on I', by

definition of inf there exists an s € S such that

In(s)E-€1 = k.(S,m).

Let n be the regular representation on I' described

above in Chapter 3.3. Then n is:

a) unitary, since n(x)f just permutes the entries of
any n-tuple £ to form a new n-tuple £", where £
and f" clearly have the same total when summing
entries.

b) essentially nontrivial on I' in the vector space
of n-tuples whose entries sum to zero. This may be
justified by the following reasoning:

In the left regular representation on I', we have that
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if f

(E(h,),£(h,),...,£(h,)),

then n(h)f = (£(hh,),f(hkh,),...,£(hh)).

Suppose f (h;)#£(h;), for some h;,hye I'.
Since I' is a group, there exists hel’ such that heh;=h;.
Then, clearly

o(h)f = £,

since the i*" entry of f is f£(h;) while the i*h entry of
n(h)f is f(hh;)=£(h;) and we know that £(h;)#£(h;) . As
such, the only n-tuples which are candidates for not
being moved by some m(h) are the constant n-tuples.
However, the only constant n-tuple in the space of n-
tuples whose entries sum to zero is the zero n-tuple,
which is excluded from consideration as a vector to be
moved in the definition of essentially nontrivial
unitary representations. Thus, m is essentially

nontrivial.

Partition I' into (nonempty) sets A and B of group
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elements and let a=|A| and b=|B|. Then we may define the

function £ from I' into the integers by

b if heA
£(h) =
-a if heB.

Then g = f£(x)/|f] is a nonconstant unit vector whose entries

sum to zero (since the entries of £ sum to zero), so it is

clear that there exists seS such that

I(ri(s)g)-gl 2 k.(S,m) > x:(S).

Noting that

I(m(s)g-gl = W (n(s)E£/IEN) - (E/IED I = In(s) £-£I/£l,

we have that

Iz (s) £-£1/1EF > %:(S).
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Since there are |A| entries of value b and |B| entries of

value a, straightforward calculation yields

I£1? = £ (h;)?

b2a+ (-a)?b

b2a+a?b

ab(a+b) = abn,

while

Im(s) £-£)* = Y[ (n(s)£) (h;~-£ (hy)]2. (1)

Note that if (heA and ssheh) or (heB and s+heB), then

[m(s)£] (h)=£(h). Also, if (heA and s+heB) or (heB and sshed),
then [o(s)£f(h)-£(h)| = |b-(-a)| = [(-a)-b] = (a+b) = n. This
means that each vertex v;eV associated with its h,el’ in the
summation of equation (1) will have an edge corresponding to
generator s and an edge corresponding to generator st (if s
is not its own inverse; only one such edge otherwise). These
two edges will connect vertex v; to two other distinct

vertices, say v, and v, in G, by multiplication in I'. If

(vi,v,) has one vertex in A and one in B, then it is a
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"bridge" edge between sets A and B. Similarly, (v;,v,) may

be a "bridge" edge in the set E(A,B). Each such bridge edge

will contribute n? to the summation. Then,

Yi(n(s)f) (h)-£(h)]? = n*E,(A,B)

1

where E,(A,B) is the number of s or s "bridge" edges in G

between sets A and B. Thus, we have

E,(A,B) Yl(n(s)£) (h)-£(h)]12/n?

Im(s)E£-£)2/n?.

But (m(s)£-£|/1£] 2 k.(S) and |f|* = abn, so

Im(s)£~-£I* > k.(S)2%abn,
and thus

E,(A,B) 2> K.(8)?abn/n?

K-(S)2ab/n.

Clearly, the set of vertices in B that are

adjacent to set A
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contains the vertices reached by bridges corresponding to
generator s or s', since the set of bridges corresponding
to s or s is a subset of the entire bridge set E(A,B).

That is,

0A, c 04,

where 0A, is defined as the set of vertices in B adjacent to
a vertex in A via an edge corresponding to s or s'!, and aA
is the set of vertices in B adjacent to a vertex in A via
any edge in G. But

|6A,| > ¥E,(A,B),

where the % allows for the possibility that an adjacent
vertex in B may be joined by s and s! to distinct vertices
in A, and therefore contribute two edges to E,(A,B).
Hence,

|0A] = [0Rg] > %E,(A,B) > %[k .(S)%*ab/n]
so

|8Aa|/ |A| Y%K, (S)2b/n

vV

¥K.(S)2(n-a) /n



¥K.(S)2(1-a/n)

%K. (S)2(1-|A]/n) .

Since the only restriction on A is that A and B partition V,
we have that this is true for all proper, nonempty subsets
of V.

Then, c,.. > ¥K.(S)?, by definition.

(b) ([Lub], Theorem 3.3.2, pg 65, (iv) = (i)): Let £ be a
(necessarily nonconstant) unit vector whose entries sum to
zero.

Since Q is an nxn symmetric real matrix, a well-known
linear algebra theorem (e.g., [FIS], Theorem 6.20) states
that it is orthogonally equivalent to a real diagonal
matrix. This implies that we may select an orthonormal basis
B={x%Xo,%X1, . ..,%,.} Of eigenvectors of Q such that, for each
i, Ox; = Ax;, where A, 2 A\, , > ... > A\; > A\, are the
previously found real eigenvalues of Q. Since £ is a unit
vector whose entries sum to zero, x, is not required for

producing £ as a linear combination of those eigenvectors,
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as demonstrated by the arguments in Appendix A. Hence, f may

be written as £ = a,x;, + ... + a,,X,,. Then
Qf = Qla,x;, + ... + &, X,..]
= a,0x; + ... + a,,0%,,;
= a;NX, + ...+ AN X -

Because we have an orthonormal basis, X;X;=0 when izj,
and x;?=1 for every i between 1 and n-1. Then, since A, is

the smallest nonzero eigenvalue, we have

Qf'Qf = a12}\12x12 + ... + a'n-J.z}\'n-lz}{ﬂ'l2
> a,2N%%,2 + ... o+ a, 2% 0
= A% Ya,®.

Observing that

1 = |f] = fof = Ya,%x,2 = Ya,>
we have

Qf«Qf > A,?,
or,

IQEI > A,.
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Recall that Q=K-N, where K is the diagonal matrix with K;;=k
and N is the adjacency matrix for the Cayley graph. If 1 is
the regular representation of I' on the vector space of n-
tuples whose entries sum to zero, then the matrix m(s) has
as entries

1 in the ij*® entry if h,.s=h;

n(s);; =
0 otherwise.

Therefore, the adjacency matrix N may be viewed as

N = Y n(s),
88
since each entry of 1 is picked up exactly once by the
appropriate s. (Each edge of the Cayley graph is affiliated
with one element seS.) Hence

Qf [K-N] £

[I+I+...+I-11(s,)-n(s,)-...-m(s)1f

[I-m(s,)]Ef +...+ [I-m(s.)]E

[m(e)-ni(s,)1f +...+ [n(e)-n(s,)1f, since m(e)=1I,

n(e-s;)f +...+ n(e-s,)f, since n is a homomorphism.



Thus

IQEl = In(e-s,)f +...+ m(e-s,) £l

< Ia(e-s,) £l +...+ u(e-s.) £l, by Cauchy-Schwarz.

Since there must exist seS such that

Iz (e-s)fl = max{|n(e-s;)£f|: s;eS}
we have

A, < IQf| < kin(e-s)fl = kIE-n(s) £,
and, thus

A/k < |E-m(s) £].

Recall from Theorem 3.3.5 above that every irreducible
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representation p is contained in the regular representation

n. Hence, for an £ with nonzero entries only in those

positions affected by p -- that is, in the subspace stable

under p -- we get that p(s) and n(s) will produce the

identical "moves" on f, and so

If£-m(s) £} = |£-p(s)f].
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But f was an arbitrarily chosen unit vector whose entries
sum to zero, and so it is true for particular f£'s chosen to
allow p and i to act equivalently on f£. Hence, it is always

true that

A/k < 1E-p(s) £

when £ is chosen in the subspace stable under p. That is,
when fef, as defined in the Kazhdan constants.
Hence, we have that k.(S,p) > A,/k for every irreducible p,
and so

E.(S) 2 \,/k

as desired. a

Finally, in a straightforward manner, Theorems 3.2.5
and 3.4.2 may be combined to yield the promised Kazhdan

constant bounds on A,, h(G), and c,..



98
THEOREM 3.4.3 ([BdlH], Coroc. to Prop. 6, Appdx.): With the

notations as above, we have
(a) K:.(8)%/(32K) < A, < kK. (S)
(b) K:(S)2/4 < h < k(2K (S))¥*

(c) ¥K:(S)? < c,.. ¢ 2k (2K (8))*%.

Proof:

v

(a) A, h?/(2k), by Theorem 3.2.5, part (d),

v

(4c...2) / (2k), by Theorem 3.2.5, part (b),

[\

cmax2 / ( 8k)

\¥4

[¥K.(S)?]1%2/(8k), by Theorem 3.4.2, part (a),

K:(S)*/(32k),

thus completing the left-hand inequality; and

A, < kK (S), direct from Theorem 3.4.2, part (b).

(b) K-(S)?/4

% (%K (8)2)

n

%C., + by Theorem 3.4.2, part (a),

n

h, by Theorem 3.2.5, part (c),



thus completing

k(2K (S))*

thus completing

(c) %K. (S)?

thus completing

cmax

thus completing

3.5 Evaluating

Now that c¢

Theorem 3.4.3,
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the left-hand inequality; and

(2Kk*K - (S) ) *

> (2kA;)*, since kK. (S)2A,, by Theorem 3.4.2,

> h, since 2kA,>h?, by Theorem 3.2.5,

the right-hand inequality.

£ Cnx , from part (a) of Theorem 3.4.2,

the left-hand inequality; and

< 2k(2K.(S))%¥, from h>¥%c,. and Theorem 3.4.3,

the right-hand inequality. O

The Kazhdan Bounds

ertain bounds have been established by

it remains to be seen how useful these
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boundaries are. Clearly, this all depends on how sharp the
bounds are and on how well we may evaluate the Kazhdan
constants K. (S) and K.(S). Recalling from Definition 3.4.1,

we have

(a) k. (S,m) = inf{max{In(s)E-§|: seS}: Eel, and |E|=1}
(b) K. (S) = inf{x.(S,m): & is essentially nontrivial}

(c) K (8) = inf{k.(S,n): m is irreducible and ess. nontr.}.

In general, it is difficult to evaluate these
constants, but we can take advantage of the fact that the
irreducible representations on any abelian group all have
degree (or dimension) 1 over the complex numbers (Theorem
3.3.6, above). This means that such a n represents an
abelian group by a group of 1x1l matrices with complex
entries; in other words, n sends elements of an abelian
group to the complex numbers. Hence, any such 1 on an

abelian group A is a homomorphism of the form

m: A~ C* = C-{0}.
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(Zero is removed since it has no inverse. C* is a group

under multiplication of complex numbers.) In addition, since
n is unitary, we are restricted to values in C* which lie on
the unit circle, thereby preserving length when multiplying

by a "l-tuple" in the complex numbers.

CASE 1: A=2,.

Since Z, is a cyclic group, the representation group in
C* is fully defined by where m sends a generator of Z,. In
particular, it is fully defined by where nm sends 1le¢Z,. For
example, m(5) must be sent to the 5* power of m(1). That is

n(5) = n(1+1+1+1+1) = o()o(T) (D) () n(T) = [m(T)]5.

Similarly, n(s) must be sent to the gth power of n(1), for
every s from 0 through n-1. By the properties of
homomorphisms, we know that identity must be sent to

identity. Hence
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thereby implying that 1 must be sent to a number in C* whose
n*" power is 1. Thus there are just n distinct choices for
where to send 1, those being the n distinct n** roots of
unity. Therefore, there are just n distinct possibilities
for irreducible unitary representations of Z,: they are

g, -..,0,,, where

m (1) = e'*™/n - cos(2nk/n) + isin(2nk/n).
Clearly

m.(s) = [m(1)]° [cos(2nmk/n) + isin(2nk/n)l®

cos(2nk's/n) + ilsin(2nk-s/n),

by repeated application of DeMoivre's Theorem. In addition,
we may discard m, (which sends 1 to 1) since it is the
trivial representation, and therefore does not satisfy the
condition of essentially non-trivial.

Since we are operating in a l-dimensional space, the

choice for the unit vector f is also restricted to a
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complex number on the unit circle when evaluating x.(S,m).
Fortunately, we can see by the following that we need not
evaluate at each of the (infinitely!) many such complex
numbers, but instead need only evaluate at £=1, since all
such values yield equivalent results.

Let &=a+bl, arbitrary on the complex unit circle. Then,

since [c+dl] = |c+dl| = (c?+d?)¥, we have

Im (s) E-E) = [(m(s)-1) &} = [(m(s)-1)E|

Hm(s)-1)a + (m(s)-1)bi|

[(m(s)-1)%a? + (m(s)-1)2b2]*%

| (m () -1) | (a®+b?) #

| (m (s)-1) |1

[1r (s) -1].

Thus, the task for evaluating K .(S) for a specific

generating set S reduces to finding the value of

maX,. |m.(s)-1|
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for each of the (finite number of) m's, and taking the
minimum of these results as the value of K_.(S). For a

particular seS, we have

| (s) -1] = |cos(2nmks/n) + Ulsin(2nks/n)-1]|

[(cos(2nks/n)-1)2 + sin?(2nks/n) 1%

[cos?(2mks/n) - 2cos(2nks/n) + 1 + sin?(2mks/n)]*

[2 - 2cos(2nks/n)]¥

= 2%¥[1 - cos(2nks/n)l%

(2%)2[{1 - cos(2nks/n)}/2]1%

= 2|sin(nks/n)|, by the half-angle identity.

Hence, it is relatively straightforward, though perhaps
laborious, to evaluate K. (S) on Z, for various generating

sets S.

EXAMPLE 3.5.1: 2,, with generating set S={1}.
Evaluating for k=1 through 20 it is clear that this term has

its minimum value when k=1 or 20, since these are the two
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values for which the angle is closest to horizontal on the

unit circle. Hence

E.({1}) = 2 sin(m/21) = 2sin(20m/21) = .2981.

Note that K.({s}) = 2sin(n/n) for amy single generator

generating set, since we always get that

ks = 1(mod n)

for some value of k between 1 and n-1. ///

Then, for the general case of generating sets on Z,, we

have the following theorem:

THEOREM 3.5.2: For %, with generating set S={p,q} where the
gcd(p,q)=1, we have that K.(S) = 2sin(m/a), where

a=max{p,q}.
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Proof: We have from above that
m.(p) = cos(2nk/q) + ilsin(2nk/q)
and
m, (Q) = cos(2mk/p) + lsin(2mk/p).
Also
o (p) -1| = 2|sin(mk/q)| and |m(qQ)-1| = 2|sin(mk/p)]|.

Observe that when k=tq for some tel, sin(nk/q) = sin(mt) =

0. Similarly, when k=tp, we have sin(nk/p) = sin(mt) = 0.
In these cases, then, the other generator provides the

maximum value of x.(S,m). Hence, if we look for:

>
]

min{2|sin(mk/q)|: k a multiple of p}, and

(s9]
]

min{2{sin(ok/p)|: k a multiple of q},

we have that

K.(S) < min{A,B}.

To evaluate A: since the closer nk/q is to a multiple of m,
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the smaller 2|sin(mk/q)| is, we look for k/gq to be as close

to an integer as possible while k is a multiple of p. That

is, we search for the minimum value of t where

k = zt(mod ¢g) and k = 0(mod p).

Clearly, there are q-1 candidate values of k as a multiple

of p to check since k runs from 1 through (pg-1).

Case 1:

each value of k that is a multiple of p yields a
distinct value modulus q.

Then, since there are only g-1 possible distinct
values of a number when considered modulus q, each

such value is represented. In particular,

k = 1(mod q)

for one of the values of k that is a multiple of

p. Hence, |sin(nmk/q)| = sin(m/q) for one of the

values of k.
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Case 2: Not all the values of modulus q are represented.
Then, for at least two distinct values x and y
between 1 and g-1, we have, by the Pigeonhole
Principle, that their resulting distinct values of

k are equivalent modulus q. That is

xp-yp = 0(mod q),
= (x-y)p = 0(mod q),

= q divides (x-y),

since gecd(q,p)=1. But 1 < |x-y| < g-1, so it is not
possible for q to divide (x-y), contradicting the

possibility of Case 2.

Hence, Case 1 applies at all times, and we get
sin(nk/q) = sin(n/q) for one of the values of k for which k
is a multiple of p.

This argument is, of course, equally valid for arriving
at the conclusion that sin(mk/p) = sin(n/p) for one of the

values of k for which k is a multiple of g. Then
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K.(S) < min{2sin(n/q),2sin(m/p)},

selecting, of course, the value of the term with the larger
of g or p. Clearly, though, whenever k is neither a multiple

of g or p, we have

2|sin(nk/q)| > 2sin(n/q) and 2|sin(ok/p)| > 2sin(n/p)

since nk/q cannot be an angle closer to horizontal than mn/q
(without actually being horizontal!) thus allowing us to
conclude that
K (S) = min{2sin(n/q), 2sin(n/p)}
= 2sin(m/a)

where a=max{p,q}. ]

EXAMPLE 3.5.3: Z,, with S={3,7}.

Then, by Theorem 3.5.2 above, we have

K.({3,7}) = min{2sin(m/3),2sin(n/7)}
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= 2sin(mm/7) = .8678. /17

Observe that Zn:%wwn' all p; primes, can be generated
by any pair of distinct primes S={p;,p;}, since gcd(p;,p;)=1.
Then, evaluating the Kazhdan constant for this generating

set S is the same as for Z,,, except that the denominator

will be the full product of the p;'s. That is

K:(8) = 2sin(an/[p1p2 e Pel)

where a=min{p;,p;}. However, this value of ¥, can clearly be

raised (improved) by treating our group as 2, and choosing

a generating set S={p,q} where

P = ppyp, 300 q = pppy

such that the p;'s are partitioned into the products forming

p and q, and min{p,q} is maximized for a partitioning where

gcd(p,q) =1. Hence
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K. (S) = min{2sin(n/q),2sin(n/p)}

which, when t24, will usually produce a higher Kazhdan
constant than choosing even the best pair for S={pu1%}
since p;/n and p;/n will generally both be less than
min{p/n,q/n}.

In a similar fashion, we may deal with groups of the
form Zy,hgm, for gcd(p,q)=1, by using the generating set
S={p",g"} and evaluating as if our group were Z,, with a=p"
and b=g®, since we still have that the gcd(p®,gq®) = 1.

For those cases that don't fit into a nice category, we
may still find K .(S) for Z, with generating set S={x,,...,x.}

as follows:

Define £, = max{|kx;(mod n)|: x;eS, 0 < |kx;(mod n)| < n/2} for
each value of k from 1 through n-1. That is, we look for the
maximum absolute value of the various kx;(mod n) where the
value modulus n is written in plus form if it is between 0
and n/2 (inclusive) but written in minus form if it would be

between n/2 and n-1. For example 9 would be written as
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2(mod 7), while 12 would be written as -2{(mod 7), not

5(mod 7). This search yields our best case numerator, since

Kl‘(slnk)

max{lm, (x;) -1]: x;eS}

max{2|sin(nx;k/n)|: x;eS}

2sin(fa/n) .

Note that it is unnecessary to consider both x; and x; if
they are inverses of each other in Z,. (E.g., for 3 and 7 in
Z.,,.) This is because

lkx; (mod n) | k (n-x;) (mod n) |

|kn-kx; (mod n) |

|-kx; (mod n)| = |kx;(mod n)|

so they both contribute the same values when evaluating f,.
This implies that K. .(S)=K.(S8'), where S' is the closure of S
under inverses. Similarly, it is unnecessary to evaluate

using values of k beyond n/2 since
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|kx; (mod n)| |-kx; (mod n) |

Inx; -kx; (mod n)|

| (n-k)x; (mod n)|,
and hence

Kl‘(slnk)

2sin(f,a/n)

2sin (£, 1a/n)

Kr(Srnn—k) .

Then we have that

K:(S) = min{2sin(f,m/n): kel, where 1 < k < n/2}.

For small values of n, it is not too tedious to compile this

"table" of values to locate the minimum value of £,. For

larger values of n, we resort to computer calculations of

this Kazhdan constant, as presented in Appendix B.

EXAMPLE 3.5.4: Z,, with various generating sets.

Compiling the table of kx; (mod 21) we get
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TABLE 3.5.5: VALUES OF kx(mod 21)

X;
1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 -9 -7 -5 -3 -1

3 3 6 9 -9 -6 -3 0 3 6 9

4 4 8 -9 -5 -1 3 7| -10 -6 -2

k 5 5 10 -6 -1 4 9 -7 -2 3 8
6 6 -9 -3 3 9 -6 0 6 -9 -3

7 7 -7 0 7 -7 0 7 -7 0 7

8 8 -5 3] -10 -2 6 -7 1 9 -4

9 9 -3 6 -6 3 -9 0 9 -3 6

10 10 -1 9 -2 8 -3 7 -4 6 -5

Then we have

i)

ii)

iii)

for S={4,5} we get the smallest f,=4 when k=5, yielding
K. {(S) = 2sin(4n/21) = 1.127.
for S={4,8} we get the smallest f,=2 when k=5, yielding
K. .(S) = 2sin(2n/21) = .5895.

For the best pairs possible ({4,5}, {2,8}, {2,710},

{1,5}, and {8,10}) we get the smallest f,=4 in each
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case, thereby yielding ¥.(S) = 1.127.

iv) We can find "triples" of x;'s with smallest £,=6,
yielding ¥ .(S) = 2sin(ém/21) = 1.564.

V) Also, for S={all of Z,,}, we get that the smallest f,=7,
so K. (all of Z,) = 2sin(7m/21) = 1.732, which agrees
with the claim in [B4lH] for Z, with all of Z,

available for the generating set. ///

CASE 2: A IS ABELIAN, BUT NOT CYCLIC:

Life gets only slightly more complicated when the
underlying (finite) group A is abelian, but not cyclic.
Since such an abelian group is isomorphic to the direct sum

of finite cyclic groups, we have that

A = Zm‘eZmze...eZm’.

where m;>1 and m; | m, | ... | m.
Since A is abelian, all irreducible representations are

still l1-dimensional, so that every candidate m used to
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determine K (S) must still be a homomorphism of the form

II: A —» C*,

Of course, such a homomorphism is clearly defined by where

it sends each member of the standard generating set

T = {(1,0,...,0),(0,2,...,0),...,(0,0,...,1)}.

Hence, the set of homomorphisms sending A to C* is the
direct product of the sets of homomorphisms sending each of

the z,  to C*. I.e., we have

Hom(A,C*) = Hom(zm,c*)x - xHom(zm,C*).

Then the calculation of K (S) for a specific generating set
is again actually fairly straightforward, reducing to the

somewhat tedious process of evaluating each possible

Kp (S [ njl’z"jr) = max{ l llj

g (8) -1|: seS}
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where we must consider each possible variation on L -
described by allowing each j; to run from 1 through m;. (For
example, 1,,,,, would be the representation that sends
(1,0,0,0) to (1,0,0,0), (0,1,0,0) to (0,2,0,0), (0,0,1,0) to
(0,0,2,0), and (0,0,0,1) to (0,0,0,3). Thus,

m,,.,0(2,3,4,5)] = (2,6,8,15), where each i*!" entry would

then be reduced modulo Z,.) Then

K. (S) =.min{mJS,q%%)} over all possible I, .
In some specific cases, we may use some knowledge of
the situation to "prune" the list of candidate irreducible
representations down to a manageable size. To elaborate on
this "pruning" process, consider the group A = Z.xZ, where n

divides m. Then any irreducible mm ¢ Hom(A,C*) is of the form

where m; is the standard irreducible representation on the

group 2, into C* which sends 1 to e!'?/r and nm, is the
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irreducible representation on the group 2, into C* which

sends 1 to e!?™/n  Hence

My [(1,1)] = 1y [(1,0)+(0,1)]

ij(l, O)ij(ol 1)

 (T) m (1)

- elznj/n . elznk/m

elzn[j/n + k/m] .

Then, by previous calculations,

5. (1,1) -1] = 2|sin(nlj/n + k/m])|

and, for general s=(a,b) in the generating set, we have

In;c(a,b) -1| = 2f{sin(n[ja/n + kb/m])]|.

Let ceN be such that cn=m.

Then

ja/n + kb/m = (jac+kb) /m.
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Since the numerator is a positive integer, we have that the
smallest nonzero value possible for this quotient is 1/m.

that is

Imy(a,b) -1| = 2|sin(m[ja/n + kb/m]) |

> 2sin(nx/m) when m / (jac+kb).

If, for a particular n;, we have that m(s)=1 for every
s€S, then m; is the trivial representation and is not to be
considered when calculating K.(S). Hence, for every m; we
need to consider, for at least one seS we have that e (s) #1.
Then

I (s) -1] > 2sin(m/m) .

Clearly, in the course of considering all the possible

I 's, we must consider those when j=0. Then

| (2, b) -1 2|sin(m[0a/n + kb/m]) |

2|sin(kb/m)|.
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If s={(1,0),(0,1)}, the standard generating set, then b=1
and we are done since for k=1 we have found a representation

,, for which the value of

Kr(srnol)

max{|n°1(1, 0) "lll lno1(011) "1|}

|no1(0: 1) '1l

2sin(z/m)

is the minimum possible k.(S,m,,) under consideration.
Then

K (S) = 2sin(n/m) .

By extension, if the generating set S contains only
generators of the form s=(a,b) for one fixed b where
gcd(b,m)=1, while all other generators are of the form
(a,0), then we can be sure that, for some value of k between

1 and m-1, we will have by the Pigeonhole Principle that kb

1(mod m), meaning that we would have

K (S) = 2sin(m/m).
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In the general abelian case of A = Zy 82, e..0Z, wWith the
standard generating set or one with the same such
restrictions on the t*! entries of the generators, we get by
the same reasoning that

K (S) = 2sin(mo/m,) .

Hence, we have established methods of evaluating ¥ . (S)
for various abelian groups, particularly the cyclic group
Z,. The difficulty encountered here is that we have not yet
developed a simple way to calculate K.(S), so we do not have
the lower bounds of Theorem 3.4.3 in place. However, there
is a relation between K .(S) and k.(S) that provides a lower
bound on X:(S) which will give us a starting point. The

relationship is provided here as the following theorem:

THEOREM 3.5.6 ([BdlH], Proposition 2): For any finite

generating set S of the finite group I', we have that

K. (S) = K. (S) = Ier(S)/[ISIM] .
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Proof: The left-hand inequality is obvious from the
definitions of the two Kazhdan constants, since the set of
irreducible representations to be considered for ¥,.(S) is a
subset of the representations to be considered for x.(S).

For the right-hand inequality, we prove as follows:

Suppose there exists m, a unitary representation of I' such

that

K(S,m) < K (8)/[IsS|*].

We shall show that this forces m to be essentially

nontrivial.

By the supposition there exists a unit vector £ such that

11 = 1

and

(max,elm(s) E-E1)2 < (B (S))?/|S|.

By complete reducibility of 1, we may break it down into

its irreducible subrepresentations. That is, we find the



direct sum of nontrivial subspaces of the vector space V
over which n is invariant. We denote this family of

subspaces by (V,).n. Using an appropriate basis for this
direct sum, we may write f as the sum of vectors in each

subspace. That is

E = (gm)meol
where £,eV, for every weQ.
Then, for &=(f,,...,£f,) we have
1= |2
= (£,,...,8) (£,,...,£)
= L’

Y (clusters of £;?> arranged as desired)

LIEal?.

In addition, we may see that, for a particular seS

In(s)&-€1* = 1(a(s)£,-£,, ..., 0(s) £,-£,) I

= [(m(s)£,-£,1% +...+ [(m(s)E,-£,]?
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= E "nm(s) Eu- Et.)"zl
wel

since again the summation of terms may be grouped as

desired. Hence, for all seS, we have that

Y Imy(s) §u-8.1° = In(s)E-EN)? < (R (S))?/|S]|.

weld

Define for each seS

Q, = {0e: I, (s) Eu-Eul > ®(S)IEN} .
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Then
(Ier(s))z/lsl > E "nm(s) Ea)_gm“z
weld
2 2 "nm(s) Eto_gullz
wel),
> (R(8))2Y &7
weld,
and so
1/1sl > X 180>
weQ),
Set Q' = ul,. Since the sum of the sizes of all subsets Q,

s€e8

must be greater than or equal to the size of the union of

all those subsets, we have |Q'| < ¥ |Q.]. Then

s€8
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Y P X Y N8P
welY 268 we),
< |s]1/]s]
=1
= 3 18al?.

weld

Since this last is a strict inequality, it must be the
case that Q' is a proper subset of Q. Then the set Q-Q' is
non-empty. So, by the definition of the sets Q,, there
exists a weQ for which, no matter what generator seS is

chosen, it is true that

"nm(s) Em"gm" < I'er(s) “Em" .

That is

maXg.q “nm(s) Eu- Em“ < K r (S) “Em“ .

Then

Ier(s) > (l/llgco“)maxsss "nu(s)gm-gmll

= MaXges IM,(8)E,"-E,'l

where §,' is the unit vector equal to £,/[E,l.
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Since §,' is a unit vector, by the definition of ¥ .(S)
we may conclude that 1, cannot be an essentially nontrivial
representation. That is, n itself is not essentially
nontrivial. Hence, no n satisfying the supposition may be
essentially nontrivial, implying that all m's that are

essentially nontrivial satisfy the statement

K.(S,m) 2> K. .(S)/|S|*.

But K:(S) = inf{k.(S,m): m is essentially nontrivial}, so we

have that

Kr(S) 2 Ier(s) /|S|%l

thereby proving the right-hand inequality. O

In order to make best use of this theorem for
evaluating the lower bound for the case of our Cayley graphs
on abelian groups I', observe that, for every irreducible

nontrivial n we must evaluate, we have
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K. (S,I) < K. (S',1m)

where S' is the closure under inverses of S. This is clearly

the case since ScS' and

max{|n(s)-1|: seS} < max{|m(s)-1|: seS'}.

Then we have K. .(S) < K (S8') and x.(S) < K.(S') since K .(S) and

K.(S') evaluate for the same set of irreducible n's, while

K:(S) and k.(S') also evaluate over their same set of m's.
Combining theorem 3.4.6 and these inequalities, we get

that

K (8') 2 K:(S) 2 K (S) > K (S)/IS|¥ (2 K. (S)/|S'|¥)

and so

K (8') 2 K:(8) 2 R (S)/[S[¥ (> R (S)/IS'|* ).

Thus, when considering a Cayley graph with a generating
set S' (since a Cayley graph requires that the generating

set be closed under inverses) we can conclude that
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X.(S') = I&\r(s)/lsl%l

where S is a "stripped-down" version of S' with the
extraneous inverses cast out. This allows us to use the
usually smaller divisor of [S|%, rather than |S'|¥, thereby
improving the lower limits of Theorem 3.4.3. In addition (as
observed above for the more limited case of Z,) no ground is
lost in the general abelian case by evaluating the bounds

using K .(S) rather than K.(S'), since we have

lsin(x)| = |sin(-x)]|
- 2|sin(mlj,s; + ... + Fe8cd/(G23.73e)) |
= 2|sin(m[j,(-5,) + ... + J.(-8)1/(F13"F)) |
for every s=(s,,...,s.) €S
= Im(s) -1 = Im(-s)-1]
= Im(s) -1} = |m(s™?)-1)
- max{lm(s)-1|: seS} = max{|n(s)-1]: seS'}
= K:(S,1) = K. (S',m) for every candidate m

-~ R.(S) = ®.(S').
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3.6 How Useful Are The Bounds of Theorem 3.4.3?

Recall from Theorem 3.4.3 that, when G is a Cayley

graph on the group I' with generating set S=S! and |S|=k, we

have that

(a) K- (S)*/(32k) < A, (G) < kK. (S)
(b) K-(S)?*/4 < h(G) < k[2€.(S)]¥%
(c) %K (S)? < Coe(G) < 2kI[2K . (S)]%.

Then it would seem appropriate to select a graph with small
enough n that we can examine its structure to find the
constants A,, h, and c,,, and compare their actual values to
the bounds supplied by Theorem 3.4.3. Consider the Cayley
graph G of Z,, with generating set S={3,7}. (Note that S' =
{3,7,3*,7* = {3,7,18,14}, so k=4.) By physical
construction and examination of its structure, we have

h(G)=2/3 and C..(G)=1.05 (case when A=20 vertices = ¢

max

n/(n-1) = 21/20 = 1.05). By the Lovasz algorithm, we get

}\-I(G) = 0.753.

Earlier in Example 3.5.3 we calculated that
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K.(S)=0.8678, so K.(S) > K.(S)/2%¥ = 0.6136 and Theorem 3.4.3

yields:

(a) (.6136)%/[32:4] < A\, < 4(.8678)
or 1.107x107® < A, < 3.4712.

(b) (.6136)2/4 < h < 4(2-0.8678)%
or 0.0941 < h < 5.270.

(c) %(.6136)% < C,x < 8(2:0.8678)%
or 0.1882 < C., < 10.54.

Certainly the bounds seem rather soft. Although we
don't need part (a) to evaluate A, for abelian groups (since
we have the Lovasz algorithm) the spread on the ratio of
upper bound to lower bound is of order 3000. This is
indicative of how poor these bounds are. Parts (b) and (c),
though better, are still not very good, providing a spread
on the same ratio of order 56. Examining the spread produced

for Z,, and Z,,, produced the following results, where the
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(highest) value of K .(S) for generating sets of that size:

Z¢o S={1,7}, B (S) = .717

Z¢o S={1,4,13}, ¥.(S)=1.26

Ze, S={1,2,6,18}, K. (S)=1.62

Zise S={1,14}, K.(S)=.4384

Z9s S={116:31}: K.(S)=.9404

spread

spread

spread

spread

spread

spread

spread

spread

spread

spread

for

for

for

for

for

for

for

for

for

for

(a) :

(b)

(a) :

(b)

(a) :

(b)

(a) :

(b)

(a) :

(b)

5500

& (c):

3400

& (c):

3850

& (c):

24000

& (c):

12300

& (c):

The authors [BdlH] themselves report that part (a)

74

54

156

111

provides an estimate of that is "rather bad" when comparing
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the bounds on A, for the symmetric group on n letters with a

generating set containing all transpositions. For

appropriate constants c,, c¢,, they show

while the

heartened

constants

about all

Also

cn’t <

exact value
by the fact
fall within
the help we

of interest

A, < cn¥?

is known to be A;=n. We may be

that the actual values for the

the boundaries provided, but that is
can get from these bounds.

is to consider what happens to the

lower bounds as n gets very large. That is, what is the

effect on the Kazhdan constant as n increases? If we fix the

size of the generating set, does the Kazhdan constant

approach zero as n gets very large, or does it have some

lower bound? If it were to have a lower bound, this would be

useful information,

since we would then know that the

expanding constant c,, has a lower bound for the class of Z,

groups, indicating that they have some favorable traits for

keeping diameter small.
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Consider Z, and the generating set fixed at |S'|=4
(includes inverses). Using the set S={1,x}, where x=|n¥| ,

the truncated square root of n, we get f,=x, and thus

K.(S) = 2sin(xn/n).

This is easily seen by considering the following cases for

ranges of k:

k=1: [1x(smod n)| = x, so f=x.
2 <k g (x-1): |kx(smod n)| > x, so Fx.

X <k < n/2 k1 (tmod n)| = k > x, so f2x.

Clearly, we may conclude that the generating set
S={1,y} yields f,=y for all y such that 2 < y < x, and hence
produces an inferior value of ¥,.(S) to that of S={1,x}.
Unfortunately, moderate efforts using number theory to
continue this argument have not succeeded, so we have no
conclusive proof that the generating set S={1,x} is the best

we can do for |S'|=4. However, computer calculations for
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values of n from 1 through 200, as well as for a number of
scattered higher values of n, have without fail produced
this generating set as the optimum for producing the highest
value of £, and hence K .(S). Should this indeed be the
optimum value for K.(S), then it is clear that there would
be no lower bound on K.(S) for |S'|=4 since we would have
that

K. (S) = 2sin(m1/n%)

which tends toward zero as n gets very large.

Studying the shape of some graphs of K.(S) vs. |S| would
appear to be a useful way to get some feel for this subject
as to the behavior of K.(S) as n increases. Figures 3.6.1
and 3.6.2 and their accompanying tables (below) will help in
this regard. Figure 3.6.1 led initially to an exploration of
whether the first jump from |S|=1 to |S|=2 always makes it to
the halfway point for |S|=n, and then to an exploration of
the weaker supposition as to whether it is always the
largest jump. However, the slope of the graph of 2,

(Figure 3.6.2) makes clear that neither of these are the
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case. (It is also not true for the graph of 2Z,,, though the
values of the first jump and the second jump are quite
close.) Also clear is the fact that these curves are not "s-
shaped", so there does not appear to be an optimum choice
for |S| to get the most Kazhdan constant for your "buck"
(size of |S]). Finally, observing that for fixed value of |S|
and increasing n we have a dwindling value for K.(S), we
visually confirm that there will not likely be a lower bound

on K.(S).
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Figure 3.6.1: K .(S) for Various 2, as a Function of Size of
Generating Set S. Vertical axis is K (S), horizontal axis is
|S|. Note that the generating sets indicated are the
smallest in size of the possible generating sets resulting
in an improvement over the previous Kazhdan constant
produced by a smaller generating set. Note also that these
generating sets do not contain inverses.
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TABLE FOR FIGURE 3.6.1: VALUES OF x(S) AND f, FOR VARIOUS Z, AS

SHOWN IN FIGURE 3.6.1
Z, Z, Z, Z, Z, Z,
IS| | & [ & i | & f| & | & £ | & i | &
11 7651 1 416 | 1 3931 1 329 1 2981 1 .261
2] 2 141 ] 3 1.18 | 4 141 | 4 123 | 4 1.13 ] 4 1.00
3| 4 2001 5 1.73 1 5 1.66 | 6 1.67 | 6 156 | 6 1.41
4 8 200 7 1.83| 7 1.73 | 8 1.73
5 8 1.94
all | 4 200} 5 1.73 | 8 200| 9 1.99 | 7 1.73 § 8 1.73
Note that the term "all" implies that all seZ, are represented in S. Blank areas indicate
that no further gains in f, may be obtained by a larger set of generators.
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Figure 3.6.2: ¥ .(S) for Various Z, as a Function of Size of
Generating Set S. Vertical axis is ¥ .(S), horizontal axis is
|S|. Note that, with the exception of Z,,,, the generating
sets indicated are the smallest in size of the possible
generating sets resulting in an improvement over the
previous Kazhdan constant produced by a smaller generating
set. Z,o 1S done by an approximation program which uses the
previous best generating set to find the best set with one
more generator added on. Note also that these generating
sets do not contain inverses.
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TABLE FOR FIGURE 3.6.2: VALUES OF k,(S) AND f, FOR VARIOUS Z, AS

SHOWN IN FIGURE 3.6.2
Zy, Z Zy Z 1000
Is| | % | & £ | & £ | &
1 1 .209 1 .126 1 .090 1 .006
2 5 1.00 7 .852 8 .703 31 .194
3 9 1.62 12 1.37 16 1.32 93 576
4 10 1.73 15 1.62 20 1.56 130 .794
5 25 1.80 190 1.12
6 230 1.32
all* 10 1.73 20 1.90 28 1.90 400 1.90
*Note that "all" implies all s€Z, are represented in S. Blank areas indicate either that no
further gains in f, may be obtained for a larger generating set, or that no larger
generating sets were tested due to excessive calculation time.




CHAPTER 4

EIGENVALUES AND THE EXPANSION CHARACTERISTICS OF A GRAPH

4.1 Introduction

We found in the previous chapter that the Kazhdan
constants were able to supply us with bounds on the
expansion characteristics of a graph as described by the
constant c¢,.. Though we found that such bounds were not
particularly useful for the set of graphs constructed from
groups of form Z,, the study of other bounds on expansion-
related constants of Cayley graphs seemed to offer some
promise.

There is extensive literature on the subject of
families of graphs with good expansion characteristics, and

on methods of construction and evaluation of such graphs.

140
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This chapter again explores the relationship of A, with an

expansion-related constant of the underlying graph.

4.2 Some General Knowledge About the Spectrum of A(G)
First, it is necessary to develop several facts (used
here and in Chapter 2) about the eigenvalues (spectrum) of
the standard adjacency matrix A(G) of the Cayley graph G.
Recall that A(G) was defined as the nxn symmetric matrix

whose entries are given by

+1 if (Vilvj) = (leVi) € E(G) ’
A(G)i; = A(G) 4 = the edge set of G
0 otherwise.

Note that this definition sets each entry of the diagonal to
zero, since a vertex is not adjacent to itself. Then we have

the following theorem:
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THEOREM 4.2.1 ([Sch]l, Proposition 2.1): Let G=(V,E) be a
finite, simple k-regular graph, with |V|=n, and let m(£)

denote the multiplicity of the eigenvalue £ € spec(A(G)).

Then
(a) |&] < k, for every £ € spec(A(G)).
(b) k € spec(A(G)).
(¢) G is connected if and only if m(k)=1.
(d) G is bipartite if and only if -k € spec(A(G)), in
which case m(§)=m(-§) for all £ e spec(A(G)).
Proof:
(a): Observe that each row of A(G) has d ones in it,

since G is k-regular. Suppose A(G)f = £f; i.e., that £ is
the eigenvalue for some eigenvector £ = (f,,f,,...,£f,) . Then

there exists £;, the i*®" entry of £, such that

|£:] = max{|f{: 1 < j < n}.

Since there are k ones in each row of A(G), there are k ones

in the i** row of A(G), and so the absolute value of the ith
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entry of A(G)f is

|g1-+f; +...+ QJ, these values being the k entries of

f picked up by the ones in the i,,

row,

A

|£; + £; +...+ £i|, since |f;| = max{|f5|: 1 < j < n},

K|£;].

But, the i, entry of A(G)f is also Ef;, so

IEI-IEs] < [E£5] < kIEy],

implying that

€] < k.
(b) : Observe that if £ = (c,c,c,...,c) is a constant
vector, then

A(G)Ef = kf,

since the i** entry of df is the sum of k c¢'s, for every
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value of i. Then f is an eigenvector of A(G), and k is its

associated eigenvalue. Hence, by definition, k € spec(A(G)).

(c):
(=) Suppose G is not connected.

Then G consists of a set of subgraphs, each G;=(V,,E;)
of which is a connected k-regular graph with |V;|=a;, with V
partitioned by the V;'s and E partitioned by the E;'s. Then
the adjacency matrix A(G) consists of block submatrices A;
along the diagonal (with zeros everywhere else) where each
A; is a;ta; and is identical in form to the adjacency matrix
of the corresponding subgraph G;.

Consider the function g = (¢,...,c,0,...,0), where

there are a, consecutive c's. Then we have

A(G)g = kg,

since the first a, rows of A(G) each have all k of their

ones packed into the first a; columns, so k c's are summed
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to yield each of the first a, entries of A(G)g; since all of
the entries of rows a,+1 through n are zero in the first a,
columns, each of these rows provide only zero in A(G)g.
Hence, we have found an eigenvector g (with
corresponding eigenvalue of k) which is not a constant
function, and so the dimension of k's eigenspace is at least

two. That is, m(k)>2, and so, clearly, m(k)=1.

(=) Suppose m(k)>2.
Then there exists a nonconstant function g such that
A(G)g=kg. Then, as in part (a), there exists nonzero g;, an

entry of g with corresponding vertex v;, such that

lg;l = max{|g;l: 1 < j < n}.

But every vertex in G is adjacent to only k vertices,
so for the sum of v;'s k vertices to yield kg;, each of
those vertices must have a corresponding entry in g equal to
that of g;. In order for that to be possible, each of those

vertices may only be adjacent to vertices whose
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corresponding entries in g are equal to g;. By continuing
this reasoning, it is clear that all vertices connected
(with a path) to v; must have entries in g equal to g;.
Then, in order for g to be nonconstant, there must be
another "cluster" of vertices not connected to v;, each
vertex of which must have the same value of its
corresponding entry in g as the other vertices in its
"cluster", and that value must be different from g;.
Hence, G has at least two unconnected clusters; that
is, G is not connected, since it has subsets of vertices

which are only adjacent to vertices within their own subset.

(d) :
(=) Suppose G is bipartite by partitioning into vertex
subsets A and B.

Clearly, a count of edges leaving set A must be the
same as the count of edges entering set B. But G is
bipartite on sets A and B, so there are no edges internal to

set A nor internal to set B. Since G is also k-regular, each
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vertex in A and each vertex in B must have k adjacent edges,
all of which bridge the gap between the two subsets. That
is, a vertex in A is adjacent only to vertices in B, and

vice versa.

Define a function g on the n vertices by

+C if veA
g(v) =
-c if wveB.

Then

A(G)g = -kg,

since the i*® row of A(G) will contribute a sum of k "-c's"
if g;=+c, or will contribute k "+c's" if g;=-c, due to the
adjacency structure of sets A and B; hence, the i, entry of

A(G)g is -kg;. Thus, -k is an eigenvalue, by definition.

(<) Suppose -k € spec(A(G)).
Without loss of generality, we may assume that G is

connected, since the argument may otherwise be given for
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each subgraph G;.

By the same argument used in the proof of part (c), any
candidate eigenvector g with -k as its eigenvalue must
consist of entries whose absolute values are the same for
all vertices in a "cluster". Since G is assumed to be
connected, this means that every vertex in G has the same
absolute value of corresponding entry in g. That is, |g;|=|g;]
for every i,j from 1 through n. In addition, for the ith
entry of A(G)g to be -kg;, each of the k vertices adjacent
to v; must have been assigned the value -g;. In turn, each
of those vertices must have their adjacent vertices assigned
+g;, and so on.

Since there are only two choices of signs, we must be
able to partition the vertices into two sets based on
adjacency. Thus, by definition, G is bipartite.

Clearly, for each separate bipartite subgraph, there
exists a different nonconstant function (n-tuple) with
eigenvalue -k, so we get that m(k)=m(-k).

Suppose that G is bipartite on the partition of

vertices into sets A and B.
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Let g be an eigenvector with eigenvalue {. Then define

the function g' by

g(v) if veA
g'(v) =
-g(v) if veB.

Then the i®*® entry of A(G)g' will be:

-Eg(vy;) 1if wvyeA, since summing the opposite of all the
same terms as for A(G)g;
Eg(vy) if wv;eB, since summing all the same terms as for

A(G)g.

Hence

A(G)g' = -Eg' '

and thus, by definition, -{ is an eigenvalue of g'.
Therefore, whenever § is an eigenvalue for a function g on
the vertices of a bipartite G, we have shown that -{ is an

eigenvalue for the function g'. That is
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m(g) = m(-E), for every £ € spec(A(G)). a

4.3 Various Expansion-Related Characteristics of a Graph

The diameter of a graph may be loosely interpreted as a
measure of how close every vertex in that graph "lives" to
all the other vertices. Hence, it makes sense to explore
characteristics of graphs which are related to the density
of the "neighborhood" surrounding a vertex or set of
vertices. If it may be shown that any such set of vertices
has a relatively large set of new neighbors, then the path
length from a vertex to any other vertex should (on average)
be relatively short.

Two such characteristics have already been introduced
into the discussion in Chapter 3: the expanding constant c,.
of a graph G, which is related to how many "new neighbor"
vertices are in the boundary region (all new adjacent
vertices) of any given subset of G's vertices, and the
Cheeger constant h(G), which is essentially its edge-related

equivalent. At this point, we introduce several more
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expansion-related concepts, and explore the nature of their
roles in helping to understand the structures of certain

graphs.

DEFINITION 4.3.1: Let G=G(V,E) be a graph on |V|=n
vertices and let A be a nonempty subset of V. Then the

neighborhood N(A) of A is defined by

N(A) = {veV: v is adjacent in G to some vertex in A}. O

Note that N(A) includes all vertices in 6A (the
boundary of A, Definition 3.2.1), as well as any vertices in
A that are adjacent to another vertex in A. Hence, the
neighborhood is at least as large as the boundary, but may
not include every vertex of A since it is possible that the
only neighbors of a vertex in A are external to the set A.

That is, we have
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[0A| < |IN(A)| < |0A] + |4].

Another way to view this is to recognize that the
boundary of A is just the neighborhood of A with all the
included vertices of A removed. That is, in set notation, we

have 6A = N(A)-A,

DEFINITION 4.3.2: An (n,d,c)-magnifier is a graph G=G(V,E)
on |V|=n vertices, such that for every subset AcV where
|Alsn/2, we have

|oA] = |N(A)-A| > c|Al. 0

Hence, for any collection of up to half the vertices,
the size of the set of "new neighbors" of that collection is
at least the constant c times the size of that collection.
Then any such subset A would "magnify" its size by (1+c)
when incorporating all its immediate new neighbors. That is,

suppose we begin with a subset A ¢ V where |A|<n/2. Then all
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vertices in the boundary (one edge away), plus the original
set, comprise at least (1+c)|A| vertices, two edges away is
at least (1+c¢)?|A| vertices, etc., until it is clear that
there are at least (1l+c)k¥|A| vertices within distance k of
the original set -- valid up until such a growing set is
more than half of the entire set V of vertices. Clearly, if
a graph is an (n,d,c)-magnifier with a large value of c,
then it should have a relatively small diameter since it

"expands" well to meet many new neighbors.

DEFINITION 4.3.3: An (n,d,¢)-enlarger is a graph on n
vertices with maximal degree d and A,>g, where A, is the

smallest nonzero eigenvalue of the standard matrix Q. O

Clearly, if we can find A, for a given graph G, then it
is by definition an (n,d,A,)-enlarger. Hence, if we
establish a relationship between enlargers and magnifiers,

we will have once again related A, to the expansion
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(magnification) characteristics of the graph. The following
two theorems accomplish just that, the first stating that
every connected k-regular enlarger is a magnifier for
suitable ¢, the second demonstrating that every magnifier is

an enlarger for suitable .

THEOREM 4.3.4 ([Al, Corollary 2.3): Let G=(V,E), |V|=n,
be a connected k-regular graph. Then G is an (n,k,c)-

magnifier, where ¢ is at least

c = 2A,/(k+21,).

Proof: By definition, an (n,d,c)-enlarger is a graph on n
vertices with maximal degree 4 and A,>c, where A, is the
smallest nonzero eigenvalue of the matrix Q. Clearly, then,
G is an (n,k,A,) -enlarger, since we trivially have A,2A, and
d=k.

Let AcV be a subset of V such that |A|sn/2.

Define B = V- (AuN(A)), where N(A) is the neighborhood of A
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from Definition 4.3.1.

CASE 1: B=eo.
Then [6A| = |N(A)-A| > n/2 > |A|, implying that, for this case,

c=1 > 2XA,/(k+2)A;) will work.

CASE 2: |B|>1.

By definition, B contains only vertices which are not
adjacent to A, meaning that any vertex in B is at least two
edges away from any vertex in A, and so p>2 where p=p(A,B),
the length of the shortest path from set A to set B.

Define a=|A|/n and b=|B|/n.

Then

1 - (JA|+|N(A)-A])/n IVi/n - (|JA]+|N(A)-A|)/n

[IV]- (|A]+IN(A) -A]) 1 /n

|B|/n

b

[y

(1-a)/[1 + (A /k)ap?], by Thm. 3.2.2,

(1-1A]/n) /1 + (A;/k) (JA|/n) 22]

(1-|A|/n) /[1 + 4X,|A]/(kn)].
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Hence
IN(A) -A|l/n 2> [1-|A]/n] - (1-]|A]/n)/[1 + 4X,|A|/ (kn)]

= (1-]a|/n) [1 - 1/{1 + 4A,|A|/ (kn)}].

Multiplying through by n yields

v

IN(A) -A] (1-1A|/n) [n - n/{1 + 4\ |A|/(kn) }]

= (1-]A|/n) [n{1 + 4N A}/ (kn)} - nl/{1 + 4A]A|/(kn)}
= (1-|a}/n) [n + (4MJAI/K) - nl/{1 + 4A,|A|/ (kn)}

= (1-|a|/n) [4A,|A]/k]1 /{1 + 4N |A|/ (kn) }

= (1-]a|/n)-|al-(4),) /{k + 4a\,|A|/n}

= [(1-|A|/n) (4N;) /{k + 4A;|A|/n}]1]A|.

Since we have |A|sn/2, we know that (1-|A|/n) > % and |A|/n<Y%,
so
IN(A) -A| > [%(4),) /{k+%4)}]1"|A|

= [2}\1/ (k+2}\1) ]'|A| .

But AcV was randomly chosen with the restriction that

|Alsn/2. So, by definition, G is an (n,k,c)-magnifier, where
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c is at least

c = 2X,/(k+2X,;) . g

Note that this result may be adapted for use with the
value of the spectral radius of G. As established in Chapter

2.4, we have that A, > k-u. Then we have that

Q
]

27,/ (k+2X,)

2/1 (k/}\l) +2]

v

2/[(k/(k-p))+21]

2(k-p) / [k + 2(k-p)]

(2k-2p) / (3k-2p) .

Clearly, Theorem 4.3.4 establishes that, for a k-
regular graph, knowing A, provides a minimum value for the
constant c¢: for fixed k, as A, increases, the minimum value
of ¢ increases. Since all Cayley graphs are k-regular,
Theorem 4.3.4 applies, showing that comparing A;'s among

proposed network models gives some idea as to their relative
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expansion characteristics.

Recalling from Theorem 3.2.5 that c,, > h(G)/d and h(G)
> ¥\,, we already showed that c.. > A,/2d, where d is the
maximum degree of the underlying graph G. It is tempting to
assert that the result from Theorem 4.3.4 is superior.
However, the allowed range of the subset AcV is different
when defining c,, from the range used to define c. This
prevents us from easily drawing any conclusions as to their
relative sizes, and therefore limits comparison between the
two theorems. In addition, theorem 3.2.5 is valid for all
connected graphs with maximum degree 4, while Theorem 4.3.4
holds only for k-regular graphs.

In short, we have only succeeded in demonstrating once
again that A, is directly related to the expansion
characteristics of the underlying graph. The choice between
using Theorem 3.2.5 and Theorem 4.3.4 to evaluate the
expansion of graphs is thus dependent upon the specific
nature of the constants of interest. For the sake of
closure, we present essentially the converse of Theorem

4.3.4, which provides a lower bound for A, in terms of c.
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THEOREM 4.3.5 ([A], Lemma 2.4): Let G=(V,E) be an
(n,d, c) -magnifier. Then G is an (n,d,¢)-enlarger, where

£ = c?/(4+2c?). I.e., A, = N (G) 2 c?/(4+2c?).

Proof: Let £: V » R be an eigenvector of Q corresponding
to A,. That is, £ is an n-tuple with real entries of the
form £ = (£(vy),£(v,),...,£(v,)). From work done in Chapter
2, we know that the constant functions (n-tuples) are
eigenvectors of A,=0, and that any nonconstant eigenvectors
of Q are orthogonal to a constant function. Since f is
associated with A; > 0, we know £ is a nonconstant

eigenvector, and so

o
[}

f'(lrll e .. ll)

(E(vy) , E(vy), o0, E(vy))e(2,2,...,1)

YE(vy) .

Since f is nonconstant, it cannot be the zero function,
so in order for the sum of its entries to be zero, some

portion of the entries must therefore be positive and some
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negative. Without loss of generality, we may assume that no
more than half are positive. (If not, we may simply choose
to use the eigenvector -f for the following argument.
Clearly, if f£ is an eigenvector of A,, so is -£, so this
assumption is wvalid.)

Set V¢ = {veV: £(v)>0} and V- = V-V* = {veV: £(v)<0}.

Define with standard notation

E(V+,V*)

{(u,v)€E: uev*, vev+}
and

E(V*, V")

{(u,v)€eE: uev*, vev-}.

Then E(V*,V*) is the set of edges internal to the set V*,
while E(V*,V') is the bridge of sets V* and V-.

Finally, define a new function (n-tuple) g: V » R by

f(v) if wvev*
g(v) =
0 otherwise.

Since Qf = Mf = N (£(vy), ..., £(vy)), we have that
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Qfef = M(E(vy), o E(VL) ) e (E(vy), oo E(VL))

= MYE? (V)

and hence

A= [Y (QE) (W E(WI/LY £E(v)-£E(V)].
veV veV
But Qf (v;) = Nf(vy) = Ag(vy) for every v, € V¢V, so,
clearly, if we restrict the above equality to count only

vertices veV*, the equation is still valid, and we have

A= [Y (QE) (WIE(WI/LY £(v)-£(v)].

vev* vey*

Recalling that Q = K-A(G) where K is the diagonal

matrix with K;;=deg(v;) and A(G) is the standard adjacency

matrix for G, we have

Y (Qf) (v)-E(v) Y [{[K-A(G)IE) (v)E(W)],

vey” vey*

= Y [(KEf) (v)-£(v) - (A(G)E) (v)-E(v)]

vey*

= Y [deg(v)-f2(v) - (A(G)Ef) (v)-£(V)].

veV*

Since A(G) is the adjacency matrix for G, the i*" entry
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of A(G)f = (A(G)E) (v;) is the sum of the entries of f whose
positions correspond to the subscript of vertices adjacent
to vy in G. That is, A(G)f is an n-tuple which is of the

form

Recalling the definition of the neighborhood N(A) of a
set A of vertices, when the set is the single vertex v we

have

N(v) = {uev: (u,v)eE},

which is simply all the vertices adjacent to v in G.

Then we have that

Y (Qf) (v)-£(v) = ¥ [deg(v)£*(v) - ¥ £(u)-f£(v)]. (*)

ver* vey* 4eN()

Consider what this summation looks like when broken down

into sections, one for each v;eV*. Each such v; contributes

deg(v;)£2(vy) - [E(vy)+E£(v))+...+E (vh(voi) 1£(vy),
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where vy; is a vertex of V adjacent in G to v;. (There are
deg(v;) of them.)

Then we claim that the following expression, which sums
edges in E(V*,V*) and E(V*,V"), yields the same total as the

right-hand side of equation (*) above:

Yy (E@-£(w))2+ ¥ fu(f(u)-£(v)).
wEEEY) WHEBFT)

Clearly, for each edge e=(u,v) € E(V*, V') we get

f2(u)-2E(u) E(v)+£2(v) = [E2(u)-fE(u)E(v)] + [£f2(v)-f(v)Ff(u)]

while for each edge e=(u,v) € E(V*,V) we get

f2(u) - f(u)f(v).

Each vertex v;eV* will appear deg(v;) times in counting these

edges, since

deg(v;) = (# of verts in V* adj to v;)

+ (# of verts in V- adj to wv;)



164

= (# of edges in E(V*,V*) containing v;)

+ (# of edges in E(V*,V") containing v;).

Hence, it is clear that each vertex v;eV* has its
contributions matched in the two expressions, so our claim

is true. That is

Y (Qf) (v)-E(v) Y [deg(v)f3(v) - ¥ f£(u)-£(v)]

veV* vey* ueN()

Yy (E(u)-f£(v))?
WHEBTF)

+ Y f(u)lf(u)-£(v)].
@B V)

Now, consider the expression Y I[g(u)-g(v)]?, taken
(v)eB

over all edges in E. For any edge (u,v) € E(V*,V*) we have

[g(u)-g(v)]? = [£(u)-£(v)]?,

since g(v)=£(v) for every veV*, while for any edge (u,v) €

E(V*,V') we have

[g(u)-g(v)1? = [g(u)-0]2, since g(v)=0 for veV-,
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g?(u)

£2 (u)

n

f2(u)-£(u) £(v),

since f(v)<0 for all vev- and f(u)>0 for uev‘.

Finally, for any edge (u,v) € E(V-, V")

[g(u)-g(v)]? = [0-0]%2 = 0.

Since this covers all the edges of E, we have that

Y (E)-f£(v))* + ¥ £(u)lf(uw)-£(v)]
@BV wHEET)

> Y [g(u)-g(v)]?,

(v)eB

and so
Y (QF) (w)E(v) > ¥ [g(u)-g(v)]2.

vepy* V)8

Clearly Y f2(v) = ¥ g*(v) = ¥ g?(v). So, recalling that

vep vev* veV

A= [Y (QE)(WMIE(W)I/LY E(v)-E(V)],

vey* vey*
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we have by substitution of the above previous two equations

that

A2 (Y [gu)-g(v)]A) /(X g2 (v)). (1)
wV)eB vev

We now use the Max-flow Min-cut theorem from graph
theory (see [CL), Theorem 5.15) to show that the magnifying
properties of G supply a lower bound for the right-hand side
of inequality (1). Consider the network N(G) with the vertex
set {s,t}uXuY, where s is the source, t is the sink, and
X=V* and Y=V are disjoint sets of vertices. (A sample such
network is shown in Figure 4.3.6.) Construct the arcs of
N(G) as follows:
(a) For every ueX, the arc (s,u) is assigned capacity 1+c.
(b) For every ueX and veY, the arc (u,v) is assigned

capacity 1 if (u,v)eE or u=v; capacity 0 otherwise.

(Note that Alon omits to make mention of assigning arcs

with a capacity of 1 if u=v. However, this is required

in order to validate his claim, as discussed in

Appendix F.)

(c) For every veY, the arc (v,t) is assigned capacity 1.
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Direction of Flow

each arc in this column has capacity 1 or 0

Figure 4.3.6: Sample network with capacities labeled for
each arc. Flow is from left (source side) to right (sink
side) . Note that an arc from the set X to the set Y will be
assigned capacity 1 if its end vertices are joined by an
edge in the underlying graph or if its end vertices are the
same vertex in the underlying graph. Otherwise, such an arc
is assigned a capacity of zero. Note the dashed line
representing a possible sample cut in the network flow.
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Claim: the value of the min-cut of N(G) is (1+c)|V*|.
Clearly, the cut consisting of the partition of
vertices into {s} and {all other vertices} leads to a cut
with this capacity, since this consists of all arcs (s,u)
for every ueX, with each such arc having capacity 1+c and
[X|=|V*|. For any other cut C(G), the network is partitioned

into the sets

left side

Il
[
]

{suUuT}

and

right side

]
s
]

{(X/U)u(¥/T)ut}

where U = {ueV*: C(G) does not contain the arc (s,u)} and T
is some (possibly empty) subset of Y.

From network construction, each arc from s to a vertex
in X has capacity l1l+c. Hence, cut C(G) contains |X|-|U| arcs
each with capacity 1l+c yielding a subtotal of capacity
(1+c) (|X|-1U]) .

Due to the magnifying properties of graph G, the subset
UcX has (possibly multiple) arcs of capacity 1 to at least

c|U| "new neighbor" vertices (thus distinct from any
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"subscript partner" vertices) in Y as well as having arcs of
capacity 1 to |U|] "subscript partners" in Y by the
construction parameter (b). Hence, there are k > (1+c)|U]
vertices in Y that are endpoints of arcs of capacity 1 from
one or more vertices in U. Considering each yeY of these k
vertices, there are two possible scenarios:
(1) yeL, in which case the arc (y,t) is in cut C(G@),
thereby contributing capacity 1 to cut C(G).
(2) Y€R, in which case each arc (u,y) is in cut C(G)
where ueU. Each such arc has a capacity of 1, so

that each such yeR contributes at least capacity 1

to cut C(G).

Clearly, in either scenario, each of these k vertices
contributes a capacity of at least 1 to cut C(G).

The result of this examination is that cut C(G) has
capacity

Cap([C(G)]

[\

(1+c) (IX|-1U]) + k(1)

v

(1+c) (|X|-[U)) + (1+c)|U]|

(1+c) |X|
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={1+c) |V¥].

Hence, the claim that the min-cut is (1+c¢)|V*| is verified.

Then, by the Max-flow Min-cut Theorem, we can assign a
flow to the network equal to (1l+c)|V*| such that it fits the
constraints of the capacities. That is, there exists a flow
function

h:E' » R,

where E' is the edge set of an orientation G' of G (with the
addition of a loop at each vertex), such that
(i) flow is between 0 and 1 for each directed arc of G' (0
when capacity is assigned as 0).
(ii) by conservation of flow through all non-source, non-
sink vertices, we know that
a) the sum of outflow from each veV* is l+c.
(Including the flow from v directly to the sink,
where capacity is 1, so h(v,t)<1.)
b) the sum of the inflow to each veV* is 1l+c, since

each flow from the source must be at maximum
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d)
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capacity in order to achieve max flow of (1+c)|V*].
the sum of the outflow from each veéV* is < 1 (else
it would exceed capacity from v to the sink).

the sum of the inflow to each véV* is < 1 (since

it must equal its outflow).

Then, the assignments of flow functions to the actual edges

of the graph G are listed below:

uevt:

Yh(u,v) = 1+c, where outflow counts flow from u
to other vertices in G. (Note that within the set
V* flows between such vertices are assigned to 0,
except for a flow of 1 being assigned from each
vertex to itself as a loop.) The summation is

taken over all possible v's, including u itself.

Yh(v,u) = 1, where the inflow is 1 only because
we assign a flow of 1 from u to itself. The rest

are all set to 0.
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uev*: Yh(u,v) = 0, so that each of these outflows is
assigned a value of 0. (All loops are set to zero.
Note that the only flow out from these vertices in
the constructed network is out to the sink, which

is not a vertex of the graph, so no such edges

exist in G.)

Yh(v,u) < 1, since all inflows must sum to < 1.
(These are the flows from the ueV*. All loops are

set to zero.)

Note that each summation is taken over all possible v's,
including u itself. Observe also that these are all natural
constraints of the network constructed in Alon, with the
additional property that capacity of arc (u,u)=1 for every
uev*.

Combining this function with our previously defined

function g:V » R, we find that the following two claims are

valid:
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Claim (1): Y h%*(u,v)[g(u)+g(v)]? < 2(2+c?) ¥ g?(u).

(wv)eB’ ueV

proof:
Y. bh*(u,v) [g(u)+g(v)]?
(wv)eB’

= Y h%(u,v) [g®(u) +2g(u)g(v) +g?(v) ]

(v)eB’

< Y h*(u,v)[2g*(u)+2g*(V)],
(wV)eB’
since 2a%+2b? > a?+2ab+b?
~ a?+b? > 2ab

« a?-2ab+b? > 0

» (a-b)? > 0, which is true,

2 ¥ h*(u,v)[g?(u)+g*(v)]

@B’
= 2 Y h*(u,v)g*(u) + 2 ¥ h*(u,v)g?(v)
(wv)eB’ (uv)eB’

2 Y bh*(u,v)g*(u) + 2 ¥ h%(v,u)g®(u),

(uv)eB’ (v)eB’

by an index change,

2y g*(w[ ¥ Dh*(u,v) + ¥ hi(v,u)].
ueV veV; (uv)eB’ veV; (va)eB’

This last step is done by factoring out the g2(u) from
each term and summing by considering each ueV, and then
considering each oriented edge affiliated with that

particular u for the subtotals. Clearly, each oriented edge
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contributes just as in the line above. Finally, when
considering each ueV, if u¢V+*, then g(u)=0, so that the only
parts of the last line which contribute nonzero terms are
when ueV*. Evaluating the first term for a particular ueV* we
have

Y h%*(u,v) h?(u,u) + )y h?(u,v)

vel; (uv)eR’ veV-{u}; (u,V)eB’

12 + y h?(u,v),

veV-{u}; (wV)eB’

since h(u,u)=1. But we know that the total outflow assigned
to any vertex ueV* is 1l+c, so that the remaining vertices in
V{u} can receive at most a flow of total c from vertex u,
since h(u,u)=1. Since all flows are positive, we have that

the summation excluding h?(u,u) is

Ih?(u,v) < (Th(u,v))? = c2.
Thus
Y h?(u,v) < 1l+c? for each ueV*.

veV-{u}; (uv)eB '

Evaluating the second term, we get
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Yy hi(v,u) = 12 + 0 =1

vel; (vu)eB
since, as noted above, the only inflow to a vertex ueV* is
from itself, so that 1 = h(u,u) = h?(u,u) while all other
values of h(v,u) are set to zero when v#0. Thus, for each

particular ueV* we have that

[ ¥ h*(u,v) + Y h*(v,u)] < 1+c2+1 = 2+c2.
veV; (uv)eB ' vel; (vu)eB '’

Hence, when summing over all ueV*, we have that

Y h*(u,v) [g(u)+g(v)]? < 2(2+c?) ¥ g2(u),

(wv)eB’ ueV

and claim (1) is verified. (0O)

Claim (2): c={Y h(uv)g®(u-g>(v)1}/T g*(u) .
v)es’ uev

proof:

Y h(u,v)I[g*(u)-g*(v)]

(uv)eB’

= ¥ h(u,v)g*(u) - ¥ h(u,v)g*(v)
(uV)eB’ @V)eB’



176

Y hiu,v)g*(u) - ¥ h(v,u)g*(u),

(uv)eB’ wv)eB’

by a change of index,

>g*(wl ¥ h(u,v) - ¥ h(v,u)l,

ueV veV: wy)eB ! veV: (vu)el !

by again considering these sums while working through each
ueV. As before, since g(u)=0 for any ue¢V*, we need only
consider the nonzero terms in the summation over all ueV+,

SO

Y hu,v)[g?(u)-g*(v)]

@v)eB’

= Y g*u)l ¥ hiuv) - Y hi(v,u)l.

uep* vel; (uv)eB '’ veV; (vau)eB '

The first term in the parenthesis, evaluated for a

particular ueV*, yields

Y h(u,v) = 1+c,

vel; (uv)eB’

by the same reasoning as above, while a similar evaluation

of the second term yields

Y h(v,u) =1,

vel; (vu)eB’
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since all flows into u are zero except for h(u,u)=1. Thus,

for every uev*

Y hu,v) - Y h(v,u) = (1+c)-1 = c,
veV; (uv)eB’ veV; (vu)eB’
and so
Y h(u,v)I[g*(u)-g2(v)] = c¥ g*(u).
(wv)eB’ ueV
Hence
c={Y h(uv)ig®u)-g2(v)1}/¥ g*(u),
(uv)eB’ uelV
and claim (2) is verified. (0O)

Recall that

A2 (Y [g(u)-g(v)13) /(X g2(v))

()l vel

(Y [gu)-g(v)12)( ¥ h2(u,v) [g(u)+g(v)]1?)

- uey” (uv)eB’

(X g*(v)) ( Y h*(u,v) [g(u)+g(v)]?

velV wv)eB’

which is simply from multiplying by one. Considering the
numerator, we see that the first factor sum may be viewed as

the dot product of a vector with itself (i.e., the square of
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the norm) where that wvector has |E| entries. That is

Y [g(u)-g(v)]? = xex

uey*

=02,

where x = (X;,X5,...,Xpg) and x; = g(u)-g(v), where u and v

are the end vertices of the i*® edge in E. Similarly, we may
view the second factor sum of the numerator as a dot product
of a vector with itself where the vector has |E'|=|E]|

entries. That is

Y hi(u,v)Ig(u)+g(v)]? Y {h(u,v)[g(u)+g(v)]}?

(uv)eB’ (v)eB’
=YY
= lyl?

where y = (V:,¥2,---,Yg) and y; = h(u,v) [g(u)+g(v)], where u

and v are the end vertices of the i*® edge in E'. Then we

have for the numerator that

Y [gu)-g(v)1* ¥ h*(u,v) [g(u)+g(v)]?

uey* (uv)eB’

= Ixi*lyl®
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v

|xey|?, by Cauchy-Schwarz,

| Yy (xy) |?

(wv)eB’

| ¥ [g(u)-g(v)Ih(u,v) [g(u)+g(v)]|?

(uy)eB’

| ¥ h(u,v) [g®(u)-g*(v)]]?

(uv)eB’

(Y h(u,v)g®(u)-g*(v)])2.

@v)eB’

Recalling from inequality (1) above, that

Y h*(u,v)[g(u)+g(v}]? < 2(2+c?) ¥ g?(u)

(u,v)eB’ uelV

we have directly for the denominator

(Y g*(v)) ¥ h?*(u,v) [g(u)+g(v)]?

veV @v)eB’

< (Y g*(v)) [2(2+¢c?) X g2(u)]

veV ueV

= 2(2+c?) [g*(v)]12.

Then we may finally evaluate A; as

(Y [gu)-g(v)13) (Y h*(u,v) [g(u)+g(v)]?)

}\1 > uey* uv)eB’

(X g*(v)) (Y h*(u,v)Ig(u)+g(v)]?

veV (w,v)eB’
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> (Y hu,v)Ig2(u)-g2(v)1)2/{2(2+c?) [ g*(v) 12}

(v)eB’ vey
= [1/(4+2c3)]{( ¥ h(u,v)[g?(u)-g*(v)]1)2/[T g2 (v)]?}
weB’ ver
= [1/(4+2c)1{[ ¥ h(u,v)][g*(u)-g*(v)]1/ [Z;g"’ (v)1}?
(w)eB’ ve

\"2

[1/(4+2c?)]c?, by statement (2) above.

Hence

A, > c?/(4+2c?) . O

It is of interest to note that this inequality may be
manipulated to provide an upper bound for ¢ in terms of A,,
but that this boundary is no longer valid for A,»%, and is
quite sensitive when A, is near ¥%. (Clearly, c2/(4+2c?) can
never exceed %, regardless of how large c may be.) For this
reason, the inequality (8dA,)¥ > ¢, provided by Theorem

3.2.5 is a preferred form for finding the upper bound on an

expansion-related constant.
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4.4 Families of Ramanujan Graphs

In [A] and [AM], the results of Theorems 4.3.4 and
4.3.5 are used as the conceptual building blocks for
techniques in the construction of desirable expanders,
superconcentrators, and infinite families of linear
enlargers. In particular, [AM] introduce the concept of a
group having property (T), which is similar to the concept
of a group being Kazhdan, as examined in Chapter 3. Their
emphasis is placed on producing families of graphs with
"verifiably good" expanding properties.

In [Sch], [LPS], and [Ch], the initial focus of
discussion about Theorem 4.3.4 is on obtaining some sense of
the limits of expansion capabilities of graphs and, in
particular, infinite families of graphs. As stated in [Sch],
"the question arises how small p can be made" (or,
equivalently, how large can XA, be made) for an infinite
family of k-regular graphs? Such a focus led to establishing
the benchmark Ramanujan graphs.

Subsequently, these authors attempt to produce graphs

of equal or superior expansion to those of Ramanujan graphs.
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We present here the theorem leading to the Ramanujan bounds,
and will, in Chapter 6, examine the family of Cayley graphs

on Z, for Ramanujan characteristics.

THEOREM 4.4.1 ([LPS], Proposition 4.2): Let {G,} be any
family of k-regular (connected) graphs on n vertices, where

k is fixed and n takes on infinitely many values in N. Then

lim,, . inf{u(G)} = 2(k-1)%.

Proof: Let A(G) be the standard adjacency matrix of
G=G(V,E) for |V|=n.

Let A(G)® denote the t*" power of the adjacency matrix. Using
the notation that 3;;® is the ij*" entry of A(G)%, we recall
a straightforward property of incidence, or adjacency,
matrices that the value of 3;;!® gives the number of walks
of length t joining vertex v; to vertex v; in graph G. (Note
that these entries provide the number of walks (not paths!)

as conventionally used in the terminology of graph theory,
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since it counts routes with repeated vertices. For a simple
example, consider the adjacency matrix of a graph with two
vertices and an edge between them. A(G)?® clearly says that
there is a walk of length three from one vertex to the
other. In order for this to be possible, eaéh vertex must be
repeated.) Recall two properties of the trace of an nxn

matrix:

(1) tr(aAB) = tr(BA). proof:

n
E [ailbli+aizb2i+ PPN +ainbni]
i=1

tr (AB)

- PRY o JPE SUPUIE - PN o NP - VO o D R - T « SO -1 o JIR R - WA o W

({row 1 of B) (col 1 of A)+(row 2 of B) (col 2 of A)

+...+(row n of B) (col n of A)

tr(BA) . (0)

(2) The trace of similar matrices are equal. proof:
tr(QAQ?) = tr[(QA)Q?]

tr[Q*(QA)]

tr[(QQ)A] = tr(a). (O)
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Hence, for any diagonalizable matrix M, we have that

tr (M)

tr(M's diagonalized matrix).

Since A(G) is a symmetric real matrix, a standard
linear algebra theorem ([FIS], Theorem 6.20) states that it
is orthogonally equivalent to a real diagonal matrix
(ensuring that it has a full complement of eigenvalues).
That is, we can find an orthogonal matrix Q of eigenvectors
of A(G) and a diagonal matrix D consisting of the

eigenvalues of A(G) such that QA(G)Q = D. Thus

tr(A(G)) = tr(D)

where D is the diagonal matrix with its entries the

eigenvalues of A(G), since D is similar to A(G). That is

Eaii = Zn: Eil

=1 -1

where k=§; > |§,] 2 ... 2 || are the eigenvalues of A(G).
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Consider higher powers of A(G) such as A(G)®, for t>2.
Since A(G)*® is still symmetric and therefore remains a
diagonalizable matrix, its trace is equal to the trace of

its diagonalized (eigenvalue) matrix. That is

Y (eigenvalues of A(G)®) = tr(A(G)t) = ¥&,,

where &;;®) is the ii** entry of A(G)® (not the t*! power of
the ii*" entry of A(G)). Observe that if § is the eigenvalue

of A(G) corresponding to £, then

A(G)?f = A(G) (A(G)E) = A(G) (Ef) = E(A(G)E) = E(Ef) = E°f.

Hence, &? is an eigenvalue of A(G)?, and, of course, an
inductive argument shows that £® is an eigenvalue of A(G)*.

Then we have that

YE:® = Zaiim-

Since it is simpler to obtain formulas for the number

of certain kinds of possible walks in the k-regular tree T*,
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it is useful to compare the k-regular tree with the k-
regular graph on n vertices. Consider a walk of length t
that begins at a particular vertex in T* and ends back at
the same vertex. Such a walk will have a corresponding walk
in our k-regular graph. (Note that the issue of t being
larger than the diameter of G is irrelevant: for each walk
in T* that extends more than diam(G) from the starting
vertex, a cycle in G can "take up the slack". In this way,
walks in G can continue on for as large a value of t as
desired to match a walk in Tk.)

In addition, the availability of loops in the k-regular
Cayley graph G provides additional choices for walks, while
the k-regular tree is acyclic (has no loops). Hence, the
number of distinct walks of length t from a vertex back to
itself in A(G)* is greater than or equal to the number of
such distinct walks in the k-regular tree. That is, for
every vertex in G, and thus for every i between 1 and n, we
have

5,4 > p(t)
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where p(t) is the number of walks of length t starting and

ending at a given vertex in T*. Thus

Y E » np(t).

=1

Subtracting §,* = k* from both sides yields

”n

Y E:;f > np(t)-kt.

12

Subtracting £,* < k* from both sides yields

n
Y B = (X&) - &° > np(t)-k-k* = np(t)-2k".
3 12

Recalling from Theorem 4.3.1, part (c), that the
eigenvalue k (and also, in the bipartite case, -k) is simple
(of multiplicity 1), we have that u>|f;| for any i between 3
and n, and so clearly also for u® > |E;|* > E;*. Then

1

(n-2)u* > ¥ E;* > np(t)-2k=,
-3
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Since the above equation is true for all t, it is true

for all 2t. Substituting yields

v

T [np(2t) -2k?**] / (n-2)

(n/(n-2))p(2t) - 2k*/(n-2)

v

p(2t) - 2k?*/(n-2).

Obviously, p(2t) 2 p'(2t), where p'(2t) is the number of
walks of length 2t beginning at a vertex and returning to
the same vertex for the first time (in T*). From work on

Catalan numbers in Appendix C, we have that

p'(2t) = (1/t)C(2t-2,t-1)k(k-1)?,

where C( , ) is the standard combination notation.
Hence,
u > p(2t) - 2k**/(n-2)
> p'(2t) - 2k?t/(n-2)
= (1/t)C(2t-2,t-1)k(k-1)*?* - 2k?**/(n-2)

> (1/£)C(2t-2,t-1) (k-1) (k-1)t? - 2k?t/(n-2)
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(1/t)c(2t-2,t-1) (k-1)t - 2k2t/(n-2)

(1/t)C(2t-2,t-1) [(k-1)*12 - 2k**/(n-2).

Considering the limit of this as n tends to infinity, we get

lim, .. p** 2 lim,, . {(1/t)C(2t-2,t-1) [(k-1)%]2* - 2k2¢/(n-2)}

= (1/t)C(2t-2,t-1) [(k-1)%¥]2,

since 2k?*/(n-2) goes to zero as n—» while the rest remains

unaffected. Then

lim, .. g > [(1/t)C(2t-2,t-1)]12/@8) (k-1)%.

Since the assumption that the last term is essentially zero
is valid for any t that is "significantly smaller" than n,
we can see what the trend is for the value of the
coefficient of the remaining term for various values of t.
The lower bound on p will then depend on what the largest
value of that coefficient can be. We have for the

coefficient



(1/t)C(2t-2,t-1) (1/t) [(2e-2)!11/1(t-1) ! (t-1)!]

[(2t-2) (2£-3)3-2] /[t (t-1)2(t-2)2-32-22]

where the numerator contains 2t-3 factors (including the
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"central" factor of 2t-t=t), while the denominator contains

2(t-2)+1 = 2t-4+1 = 2t-3 factors as well. After cancelling

the factor of t from both top and bottom, we can compare
sequential pairs of top factors with sequential pairs of

bottom factors, where we have that

(2£-2) (2t-3)/(t-1)2 » 4 as tww,

which approaches 4 from below, since 2t-3 < 2t-2,

(2t£-4) (2t-5)/(t-2)%2 » 4 as trmo, (again from below)

and so on.

Hence, we get (t-1)-1 = t-2 such terms in the limit,

that

SO
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lim, . [(1/£)C(2t-2,t-1)]¥@) = 1im, ., . [(4)t2]r/@z0

limt - .(22t-4) 1/(2¢t)

limf_ 2 (2t-4) /(2t)

= 2,

where the limit approaches 2 from below. Hence, the
coefficient is always less than 2, though we can get
arbitrarily close with an appropriate value of t. (Note that
the coefficient gets "close" rather fast: when t=5, its
value is approximately 1.30; when t=10, it is 1.53; when
t=20, it is 1.97; and so on.) Therefore, we can say that the

limit for u as n gets very large is

lim,.,. g > 2(k-1)*%. a

Thus, we arrive at a "benchmark" of sorts, the lower
bound for how small p may be for infinite families of
expanders. Clearly, a smaller pu (or larger A,) provides a

better lower bound for the expansion coefficient c¢. As noted
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before, producing families with high coefficient ¢ is the
thrust of much of the literature we surveyed. This bound,
therefore, is apparently important enough to name (if,

indeed, it was not already named for other reasons).

DEFINITION 4.4.2: a k-regular graph G on n vertices is

called a Ramanujan graph if

p(A(G)) < 2(k-1)*%.

A family of Ramanujan graphs is a sequence of Ramanujan

graphs on n; vertices such that n;~»~ as i-w. O

Through extensive work with the techniques of number
theory, [LPS] construct families of Ramanujan graphs, while
[Ch] focuses on families of so-called k-sum and k-difference
graphs, which she shows to be good (though not Ramanujan)

expanders with small diameters. [Sch], however, attempts to



193

construct individual graphs with substantially smaller
spectral radius than the Ramanujan bound. This approach
follows the premise that individual graphs (not families)
are used in real-world applications, so constructing
specific graphs with superior expansion characteristics is a
better goal.

Our efforts in Chapter 6 also follow this tactic:
though we show that Z,-based Cayley graphs will not produce
Ramanujan families, we do find good expansion
characteristics (large A,) and small diameters for specific

graphs.



CHAPTER 5

SCHIBELL AND STAFFORD'S ROUTING ALGORITHM

5.1 Introduction

Although there exist general algorithms for finding the
shortest path from one vertex to another in a graph (e.g.,
Dijkstra's), the processing power and time required to
obtain such paths are prohibitive in parallel-processing
networks where the processors are basic and routing time is
critical. Current network architectures are thus generally
constrained to models which allow extremely efficient,
specifically-designed routing algorithms.

Since [SS] wished to propose a different class of
groups as the underlying basis for Cayley graph models of

parallel-processing networks, they set out to develop a

194
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general purpose routing algorithm for such Cayley graphs.
This chapter follows the development of their algorithm, and

examines its efficiency in several cases.

5.2 Routing in Cayley Graphs Based on Subgroups of S,
Routing from one vertex to another in a Cayley graph
requires finding a path along the graph edges between these
two vertices. Suppose the string of edges s,--s,--...--s,
represents such a path from vertex x to vertex y in the
Cayley graph G. Since movement along an edge corresponds to
left multiplication by that edge's generating element in the
underlying group I' (see Chapter 1.2), such a path

corresponds to the string of elements

X~ -8;,X--8,8,X~~...-~5¢."S;8,X~ - SS,_,"S,8,X=y

in group I'.
Clearly, then, s.-s,s, = yx'el', so any path from x to y

may be represented by a "word" of generating elements.



196

Conversely, any factorization s,s,,-s,s, of yx! into
generating elements represents a valid path s,--s,--...--s,
from x to y in the Cayley graph.

Hence, if a convenient algorithm for obtaining such a
factorization can be found, the problem of routing in the
Cayley graph is essentially solved. Furthermore, if a
factoring algorithm is valid for an entire class of groups,
then the routing for the class of Cayley graphs based on
such underlying groups is solved. Specifically, [SS] propose
that the Sims factoring algorithm be used to factor
permutation groups with generating sets that are "strong
with respect to an ordered base". The following definitions

provide the meaning to this phrase.

DEFINITION 5.2.1: An (ordered) base for a permutation
group I'cS, is defined to be an ordered subset Bc{1,2,...,n}
such that if o is a permutation in I' that sends every beB to

itself, then o must be the identity permutation. O
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For example, B={3,1} is an ordered base for the
permutation group S;, since any permutation in S, that sends
1 tol and 3 to 3 must also send 2 to 2. That is, it must be
the identity permutation. Note, however, that B={1} is not
sufficient to be an ordered base for S,, since the
permutation (23)eS, sends 1 to 1, but is not the identity
permutation. In essence, an ordered base must contain enough
entries so that any permutation is completely determined by
where it sends each member of the ordered base.

It is useful here to establish notation for a nested
set of subgroups of I' with respect to a strong base

B={b,,...,b.}. We define the subgroup

' = {cel': o(by)=b;, 1 < i < k}

containing every permutation of I' which fixes the first k
elements of the ordered base. Clearly, I'*** is merely the
identity permutation in I', since it is the only permutation
to fix every element of the ordered base, by definition.

Also, '™ c T'* since every permutation in the left-hand set
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must fix the first k-1 elements of the ordered base in
addition to fixing the k*! element. Then we clearly have a

nested set of subgroups of I" which stabilizes to the

identity in the sequence

M=F 5T >TI2% > ,.. oIt > It

Definition 5.2.2: A set of generators S of I" is said to
be a set of strong generators with respect to the ordered

base B={b,,b,,...,b.} if S contains a set of generators for

each of the subgroups in the nested sequence

P s o ... oIt

This definition simply ensures that the intersection of
any particular nested subset (produced by the ordered base)
and the generating set S will contain sufficient elements to

generate that nested subset. Note that the definition is not
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concerned with generating the identity subgroup. It is
enough to acknowledge that the identity permutation is the
only permutation in I which fixes every element in the
ordered base. (This exception is necessary since, by
definition, the generating set of a Cayley graph does not
contain the identity.)

The Cayley graph on A,cS, with generating set
Ss={(12) (34),(123), (132)} is an example of a set of strong
generators with respect to the ordered base B={4,1}. 3.2 is
the cyclic subgroup of A, that is generated by the
permutation (123)eS, while A;? is the subgroup containing
only the identity permutation. Hence, the definition is
satisfied.

Recall that I'** c I'* for each k from 1 through t. That
is, I'™' is a subgroup of I'*. Then we note that there exists
a set of cosets of '™ in I'’. Denote U* as a complete set of
coset representatives of I'**! in I’*, Since the nature of
cosets is to partition the main group into subsets of like
behavior, we explore that behavior by supposing that the two

elements ¢ and p are in the same coset of T'¥! in I'*. Since
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every element in I'* fixes the first k-1 elements of the
ordered base B, ¢ and p also fix those first k-1 elements.
The question is where each sends b,. Since they are in the
same coset of I'! in I'*, we have that oI'*** and pI'**! are
simply different names for the same coset. That is, oIl**! =

pI'’***. But this implies that

p-lclﬂkﬂ. = l-lk+1
= p-lc € r‘k+1
= [pc] (by) = Dby

= o(b,) = p(b).

Hence, elements from the same coset of I'! in I'* send
b, to the same value. Then U*, the complete set of coset
representatives of I'* in I'* is a set of permutations, each
of which sends b, to a different value. Since the cosets of
! in I'* partition I'*, the set of values where b, may be
sent by the elements of U* is the complete set of values for
all the elements of I'*. The result of all this is shown in

the following theorem:
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THEOREM 5.2.3 (Correction of [SS], Propositiomn 2.2): Let

I'cS, be a permutation group with strong generating set S
with respect to the ordered base B={b,,...,b.}. Let Ui be a
complete set of coset representatives of I''*! in I't, for
every i from 1 to t. Then every element of I" has a unique

representation of the form U,oU,e.. .U, ;°U., where U,eU.

Proof: Suppose |B|=t=1. Then B={b,}, so I'?’={e}, the
identity permutation. Then U!=I", since all the elements in I
are required to name each of the coset representatives of
{e}. Then, trivially, any element in I' may be uniquely
written by a word that is an element of U!, the complete set
of coset representatives for {e}. Hence, the claim is true
for any permutation group with a strong generating set on an
ordered base of cardinality 1.

Let k:1 be a positive integer such that the claim is
true.
Consider t=k+1.
Suppose we have cel’ such that o(b,)=x; for some x;e{1,...,n}.

Then, since U' is a complete set of coset representatives, o
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must share a coset with precisely one of the elements of U!.
That is, there is a unique coset representative U,;eU* that
also sends b, to x;. Note, then, that (U;)™* sends x; to b,.

Define the following:

@ = [(Uy)tlec
g2 . gnI?
and B® = B-{b,}.

Clearly, o' fixes b,, and so c®el'?, by definition.
In addition, it is now apparent from definitions that I'? is
strongly generated with base B® and strong generating set
S, Since the cardinality of base B® is [B-{b,}| = t-1 = k,
by the inductive hypothesis we have a unique representation
for o of

o® = U,Use. . .oU,
and so, uniquely,

C = Uljoc(z) = U1j°U2°U3°. . .°Uc-

Hence, the claim is true for t=k+l, and, by induction, for

all cardinalities of the ordered base. a
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It is appropriate to note here that [SS] present a
version of Proposition 2.2 which claims that the
representation found is of the form U.U.,~U,U,, instead of
the reverse order shown in Theorem 5.2.3 above. During their
proof, they set o® = o0°[Uy;]"! and claim that o'®el. This is
simply an incorrect conclusion: it is unknown where [U,;]1°?
sends the first base point b, and it is certainly not
guaranteed that it will send b, to the value which o sends
back to b,. The only known quantity about 0°[U;;]17* is that it
fixes x;. The result of this alteration in the
representation found is that [SS] believe that the first
edge named by their full algorithm will be the first edge
needed to travel the path from vertex x to vertex y. In
fact, this is not the case, and an adjustment to their
algorithm must be made. This will be discussed in Chapter
5.3.

Clearly, if we can construct an algorithm that produces
such coset representatives and factors each oel’ into a word
of those representatives as in Theorem 5.2.3 above, then we

have accomplished our goal of factoring each element in TI'.
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Since we assume a strong set S of generators with respect to
an ordered base, each of the coset names in a given set U!
may be written as a word in generators from S = SnI. In
section 2.3 of their paper, [SS] supply a simple algorithmic
loop for naming these cosets with words composed of
generators in S™®. They call this loop, and the resulting
factoring process, the Sims factoring algorithm.

For each I'*, the loop begins by finding its generating
set s®={s,%,...,s,7} by set intersection. Then each s;% is
applied to base point b; to see where it is sent. Each image
of these previous applications is in turn checked to see
where each s;*) sends it, and so on until all possible
results have been found as to where base point b; may be
sent by a word composed of elements from S%'. This method by
exhaustion identifies all possible cosets (one for each
value b; may be sent to) of I''*' in I'Y, and names them with
words from elements of S,

The above loop, then, develops a path from base point
b; to each of the possible values it may be sent to by a

word in strong generators in S‘Y. Such a pattern may be
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represented by a tree T; which has as its root the base
point b; and its remaining vertices the distinct values to
which b; is sent. The edge between a vertex x and its son
vertex y will be labeled by the first strong generator found
by the algorithm to have sent x to y.

Consider again the example of A,cS, with strong
generating set S={(12) (34), (123), (132)} with respect to the
ordered base B={4,1}. Then for tree T,, we consider all the
values where base point b,=4 may be sent by the generating
set S¥=8, the entire generating set. Letting a=(12) (34),
b=(123), and b*=(132), and applying them in the order a, b,
b in each round, we see that a(4)=3, b(4)=4, and b(4)=4.
Reapplying to the only new value of 3 yields a(3)=4 (which
is not new), b(3)=1, and b*(3)=2. Clearly, all possible
values have been reached, so the algorithm would stop. For
T,, consider all the values to which base point b,=1 may be
sent by the generating set S‘?=8nI*. But I’ is the subgroup
of T" where each element holds base point b,=4 fixed. Thus
snr? = {b,b?*} = {(123),(132)}. Applying b and b in order

to base point b,=1 yields b(1)=2 and b*(1)=3. Clearly, 4 may
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not be reached, since these all hold 4 fixed, implying that
if 4 were reachable by application of some generator, 4
could be moved by that generator's inverse. Hence, the
algorithm stops since all possible values have been reached.
(In practice, the algorithm would simply perform another
loop only to find that no new values turned up.) Trees T,
and T, are shown in Figure 5.2.4.

Each distinct path in tree T; thus corresponds to the
name (as a word in strong generators) of a distinct coset of
I'i*! in I''. Since all reachable values are represented as
vertices, there is a one-to-one correspondence between these
distinct paths and the elements of Ui. For example, in tree
T, of Figure 5.2.4, the path from base point 4 through to
vertex 1 corresponds to applying generator a followed by
generator b. That is, any permutation in A, that sends 4 to
1 is in the coset named bea.

Hence, it is clear from Theorem 5.2.3 and the above
work that a factorization of any element of I' may easily
and efficiently be achieved for a Cayley graph based on a

permutation group with a strong set of generators with



207

T;: 4 @

base point

base point

Figure 5.2.4: Trees produced by the Schibell and Stafford
algorithm for the group A,cS, with strong generating set

S={(12) (34), (123), (132)} with respect to the ordered base
B={4,1}.
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respect to an ordered base.

5.3 The Routing Algorithm

Once such a Cayley graph has been selected as the model
for the parallel-processor network architecture, each
processor is assigned the name that is the permutation of
its corresponding vertex in the Cayley graph. Each processor
must store its own permutation name, the inverse of its
name, and the full set of trees for the given ordered base.
It is sufficient to note here that [SS] describe a method
for computers to conveniently store the information in these
trees in the form of Schreier vectors. For the purposes of
this thesis, it is simpler to follow the algorithm using the
trees.

As mentioned directly after the proof of Theorem 5.2.3,
[SS] believe that the first edge named by their full
algorithm will be the first edge needed to travel the path
from vertex x to vertex y. In fact, this is not the case,

and an adjustment to their algorithm must be made. To
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illustrate this problem, consider the following example from
the previously shown group A, with the strong generating set
S={a=(12) (34) ,b=(123),b*=(132) } with respect to the ordered
base B={4,1}, as used to find trees T, and T, in Figure
5.3.4. To find a path from x, the identity permutation, to
the permutation y=(134), clearly we have that yx? is the
permutation y itself.

Hence, the task is to factor y using the tools just
developed. By Theorem 5.2.3, we should be able to factor
into y=U,°U,, where U, is a word in strong generators which
names the coset containing all the permutations sending 4 to
the same place y sends it, and U, is a word in strong
generators which names the coset of (A,)2 in A, containing
all the permutations in (A,)? sending 1 to where [U,] oy
sends it. Evaluating for the first base point, we see that
y(4)=1, so we examine tree T, in Figure 5.3.4 and observe
that application of b to 3 yields 1, and application of a to
4 yields 3, so that bea(4)=1. (A simple calculation verifies
that this is the case.) Then U,=bea, and we conclude that

U,=[U,] *oy. But a calculation shows that
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([U;]17%ey) (1) = ([bealtey) (1) = (alebley) (1) = 2

so that U, is the path in T, which goes from 1 to itself.
Hence, U, is the identity permutation, and the factorization
is complete with y=bea. A quick check verifies that this is
indeed the case.

This factorization, of course, describes a path from x
to y that is x--aex--beasx=y. Certainly this path differs
from one which would use edge a (the first strong generator
found by the algorithm) then edge b (the next generator
found) . Were this latter path to be correct, it would

certainly make routing in practice as simple as in theory:

Simply take the first edge found, move along it to x',
calculate where ye[x']* sends the first base point, and
repeat the process. If ye[x']' doesn't move the current
base point, check the next base point for movement, and
use its Schreier vector (tree) to find the next edge.
If no base point is moved, then ye[x']-! must be the

identity permutation, and the trip is finished.
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This process outlined by [SS] requires only that each
processor check to see where the composition of y and its
inverse send the current base point, and then check in its
appropriate Schreier vector to find the next edge to travel.
Unfortunately, it doesn't work this way.

Fortunately, however, there is a minor variation that
allows this process to work much as [SS] envision. Suppose
we found the complete factorization of xoy?! instead. From
Theorem 5.2.3, we would obtain something of the form
U,eUz0. . .°U.. Then this corresponds to a path from y to x
along the sequence of edges U."--...--U,"--U,", where each
section U;" corresponds to the reverse of the sequence of
strong generators making up U;. That is, if U;=s;o.. .08,
then U;" is the sequence of edges Sjc--...--8;,--S;,.

Clearly, then, tracing this entire sequence in reverse
is a path from x to y. If U, is a word in strong generators
of length k, then the first k edges for this path from x to
y are traced by going the "wrong way" along the sequence of
edges s,,--...--8,: that is, by the path s,;"*--...--8,™".

However, s,, is the first strong generator found in tree T,
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when looking up the results of where xoy! sent the first
base point. Hence, a move along edge s,;* would be a first
step along a path from x to y, and could be taken
immediately after the first operation in calculating the
path from y to x.

To see this, consider the following example. Let
H;=(246) (357), H,=(167) (254). Then we have H,*=(264) (375) and
H,'=(176) (245) . Let F,; letters of order 21, generated by the
strong generating set S={H,,H,, H,"!,H,"*} with respect to the
ordered base B={1,3}. Suppose we wish to find a path from
x=(1576342) to y=(154) (236). (x=H,H,H, while y=H,?H,?H,, so
both are in F,,.) A calculation shows yox'=(132) (467), and it
sends base point 1 to 3. From tree T, in Figure 5.3.1, we
get U,=H,°H,"*. Then we find U, from tree T, of Figure 5.3.1 by
determining that U, loyex™ = (H,oH,™?) loyex™* = H,oH, loyex'! sends
the second base point (3) to 7. Thus, U,=H,*. Then yex? =
H,H,*H,"* (verified by calculation), and a path from x to y
follows the sequence of edges H,* to H,* to H,.
Unfortunately, the entire sequence must be calculated

initially before any moves can be made.
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2
4
T,: 1
3
base point
H, 5
H, 5
T 2 3
base point 7

Figure 5.3.1: Trees produced by the Schibell and Stafford
algorithm for F,;, the permutation group of order 21 with
strong generating set S={H,,H,,H,* H,'} with respect to the
ordered base B={1,3}. H,=(246) (357), H,=(167) (254),
H,'=(264) (375), and H,'=(176) (245) .



214

Contrast this result with the following "reverse"
method. Calculate that xeoy™* sends the first base point (1)
to 2. From tree T,, 2 is reached via H,, so H,! is the first
step on the path from x to y. Determine that H, 'oxoy ! sends
1 to 6, which is reached (direct from 1) via H, in tree T,.
Thus, H,* is the second edge to traverse in the path from x
to y. Since 6 was reached direct from 1 in tree T,, we are
done finding U,, so it is time to evaluate where H,H,‘xy™
sends the second base point (3). A calculation shows that it
sends 3 to 7, which tree T, shows is reached (direct from 3)
via H,*. Then the last step in the path from x to y travels
along edge (H;™!) '=H,. This path coincides perfectly with
that found by the conventional method in the previous
paragraph. Even were the paths different, the results would
be the same: a path from x to y is found.

Clearly, this general-purpose routing algorithm is
feasible for Cayley graphs based on permutation groups. The
questions remain as to how efficient it is with regard to

diameter, bottlenecking, and processor requirements.
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5.4 Algorithmic Diameters and Other Concerns

Since the algorithmic loop in [SS] for finding the
complete coset names works on a "first-reached" examination
by exhaustion, the paths in the corresponding trees will be
of minimum length for that particular strong generating set
and ordered base. This suggests that the algorithmic
diameters produced will be of reasonable size when compared
to the actual true diameters.

The method of construction for the factorization of any
element makes it clear that the algorithmic diameter of a
particular Cayley graph is the longest word length (in
strong generators) of any factorization of the set of
elements in the underlying group. The longest such word will
be the sum of the longest path lengths in each of the trees
required. Since there is one tree for each base point, so,
if we let b=|B| and P; be the length of the longest path in

tree T;, the algorithmic diameter will simply be

b
AlgDiam(G) = Y P;.
11
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This suggests that an upper bound may be found in
general, based on the fact that a tree with k vertices may
not have a path length greater than k-1. Then, assigning n;
the value of the number of vertices in tree T,, there is a

strict upper bound on the algorithmic diameter of
b
AlgDiam(G) = Y} (n;-1).
=1

Since tree T; cannot show a path to the first i-1 fixed
base points, it can have at most k-(i-1) vertices, where k
is the number of letters on which the permutations act.
Hence, without any knowledge of the particular trees
involved, if the cardinality of the ordered base is known,

then

b
Y [k-(i-1)]

=1

b
b(k+l) - Y i

i-1

b(k+1) - (b+1)b/2

AlgDiam(G)

b(2k-b+1) /2. (*)

In practice, the average tree produced by the Sims
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algorithm will not contain a path near as long as k-i+l, so
this upper bound will not be very good. Note also that
calculating average algorithmic diameter is a much more
involved process. Even though it is possible to assert that
the average path length in each tree cannot be more than
half the worst case length of k-i+l, it may be the case that
the longer paths are used more often in the factorization
process for a particular graph, so this cannot be used to
obtain an upper bound for the average algorithmic diameter.
To establish some feel for this algorithm, we consider
the graphs used previously for examples. For A, with
generating set and base as before, inspection of the Cayley
graph yields a true diameter of 3. Summing the tree lengths
from Figure 5.2.4, we also get an algorithmic diameter of 3.
(The upper bound from equation (*) above is 7.) For our
example of F,;, inspection of the Cayley graph shows a
diameter of 3, and summing the tree lengths in Figure 5.3.1
yields an algorithmic diameter of 3. (The upper bound from
equation (*) above is 13.) Certainly, for relatively small

groups and good choices of generators and ordered bases, the
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algorithm can produce a very good (in these two cases,
perfect) diameter.

However, [SS] provide an example of a larger group
which demonstrates that the algorithm is not always so
efficient. According to ([SS], the sporadic simple Mathieu
group M;; is of order 7920 and has a permutation
representation of degree 12. They list a strong generating
set of 8 elements with respect to the ordered base
B={1,2,3,4}. Though they state this graph has diameter 7 and
average diameter 5.25, they claim an algorithmic diameter of
12 and an average algorithmic diameter of 7.2. These values
are respectively 71% and 37% above their corresponding true
diameters. Unfortunately, as noted in chapter 6, no such
algorithmic values are given for their proposed network
architectures SS1, SS2, and SS3. As such, it is not possible
to ascertain the efficiency of the routing algorithm in
their cases, though the example of M,, suggests that there
will be a sizable increase over the true diameters.

Regarding the problem of bottlenecks in the routing of

information between processors, [SS] suggest that two
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methods of coping are possible. The first is based on the
fact that it is usually possible to construct more than one
set of coset representatives for each base point. As such,
different trees would be produced for each base point. If
more than one Schreier vector (computer format for the tree)
were stored by each processor for each base point, then the
distinct routing provided by each tree could be used to
choose an alternate path in the case of a routing conflict.
Though this would require more storage and an occasional
extra look-up by the processor, it is a conceivable plan.
Alternatively, were the group to be constructed with a
set of generators that are strong with respect to more than
one base, alternative routings may be found by selecting the
route provided by a different base. However, this extra
constraint on group construction would often force the
generating set to be larger than otherwise necessary, so an
undesirable by-product of this adaptation is that the degree
of this more-flexible graph would likely be higher.
Evaluating the effects on computer performance of all

these possible extra storage and processing requirements is
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beyond the scope of this thesis. However, it is clear that
some decrease in performance would result when compared to
the simplicity of the hypercube's routing. [SS] reference a
paper by Pittelli and Smitley [PS] that used some of their
candidate architectures in a computer optimization study.
Though the specific underlying assumptions of this study
have not been examined, it seems that proposals of [SS]
perform better than some of the current architectures in
existence or under consideration at the time of the study.
However, the hypercube was not included in this study due to
a degree 6 constraint related to technology limits for
maximum bandwidth of switches.

Overall, then, ([SS] have proposed several interesting
candidate architectures and an applicable general-purpose
routing algorithm that could prove to yield a viable,
efficient parallel-processing supercomputer. In Chapter 6,
we suggest an alternative class of Cayley graphs and routing

algorithm that may be competitive as supercomputer models.



CHAPTER 6

CAYLEY GRAPHS OF Z, AS NETWORK MODELS

6.1 Introduction

As discussed earlier, much of the literature on network
models is focused on trying to construct graphs with high
expanding constants. This focus is based on the general
relation that a highly expanding graph will have a low
"branching-back" occurrence, behaving locally like a tree
everywhere and thus resulting in as low a diameter as
possible. The search for such graphs led many of these
researchers into the realm of various rather exotic graphs.
The k-sum and k-difference graphs of Chung [Ch] and the
Ramanujan-style graphs of Lubotzky, Phillips, and Sarnak

[LPS] are examples of this. Schibell and Stafford [SS] state

221
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that abelian groups do not fit the description of graphs
with low "branch-back" occurrence, and instead turn to
simple groups and Sylow-2 subgroups of exotic graphs with
generating sets chosen to consist mainly or entirely of
generators which are their own inverses.

Schibell and Stafford [SS] are the only ones of the
literature surveyed to provide the diameters of specific
graphs. A tabulation of some of their efforts as compared to
other proposed and currently used graphs is shown below in
Table 6.1.1.

Clearly, researchers have had some success in producing
graphs of low degree and low diameter when contrasted with
the benchmark hypercube. However, there are several problems
to consider. First, as pointed out in [SS], the sparse
distribution of the orders of simple groups makes it
unlikely that there will be many such groups of the desired
size to consider as candidates. Although there are quite a
number of various groups of, for example, order 1024, it is
no easy task to construct a group with favorable expansion

characteristics and a specific size. Even should one succeed
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in doing so, the construction technique may not transfer
easily to a group of a different size should that be
desired. In short, good graphs may be hard to come by, and

are limited in their useful sizes by design constraints.

TABLE 6.1.1 ([SS]): COMPARISON OF VARIOUS PROPOSED NETWORK
MODELS TO THE HYPERCUBE BENCHMARK

Graph Format Vertices Degree Diameter Avg Diam
Hypercube 1024 10 10 5.0
Toroid (32 by 32) 1024 4 32 16.0
Toroid (8 by 8 by 16) 1024 6 16 8.0
Butterfly (128 by 8) 1024 4 10 6.6
Super Toroid 1024 4 12 6.8
SS1: PSL(2,13) 1092 4 9 6.2
SS2 : subgroup of M,, 1024 5 8 5.2
SS3 : subgroup of S, 1024 6 7 4.5
Note that SS1 through SS3 are the proposals of [SS], though SS1 is of the
structure proposed by [LPS]. The other groups are generally known current
proposed or existing architectures.

Of course, the above problem is moot once such a group

is found of a desired size. The work is done, and the group
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has been constructed. Unfortunately, many of the groups
shown in Table 6.1.1 accept a poor (high) absolute or
average diameter for the advantage of lower degree. Though
there are cost and construction advantages to lower degree
(and, according to [SS], possibly some performance
improvements related to data path width), increasing either
(or both) diameter(s) beyond the benchmark of the hypercube
indicates that it will be slower than the hypercube due to
the higher number of clock ticks required to send
information around the network.

However, the biggest problem with many of the exotic
graphs presented in Table 6.1.1 is that the task of routing
information between processors is cumbersome and
inefficient. Certainly, Schibell and Stafford [SS]
recognized this issue: they spend much of their paper trying
to construct general purpose routing algorithms for such
networks. Their efforts in this regard are presented in
Chapter 5, but it is still in question whether their
proposal is efficient enough.

First, their routing algorithm requires some
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programming and processor enhancements which may not be
trivial. This might lead to significant cost increases for
processors and a slowdown for information transfer due to
increased complexity of routing calculationms.

Second, the performance of a network with a true
(average) diameter substantially superior to that of the
hypercube, may, in fact, perform in inferior fashion if the
routing algorithm required produces an algorithmic (average)
diameter equal to or larger than that of the hypercube. In
defense of this concern, note that [SS], while demonstrating
their routing algorithm, use a Cayley graph on the Mathieu
Group M,;;, which has order 7920. Their calculations show
that, although the true and average diameters are 7 and
5.25, respectively, the algorithmic equivalents are 12 and
7.2. These are increases by a factor of 1.7 and 1.4,
respectively. Were these ratios to remain the same for the
groups proposed by [SS] in Table 6.1.1, it is clear that the
"functional" (algorithmic) diameter and average diameter of
each group would be inferior to those of the hypercube. (The

hypercube has essentially "perfect" routing: algorithmic and
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true diameters are equal, as discussed in Chapter 1.)
Unfortunately, algorithmic values are not presented by [SS]
for their proposals, so doubt remains on the subject of
superior performance by SS1 through SS3, even though [SS]
present experimental modelling results by Pittelli and

Smitley [PS] which seem to support their claims.

6.2 Following the Simpler Path
With the above issues in mind, this thesis took the

approach of trying to use clever choices of generators for
more common groups in an effort to improve on the hypercube
benchmark. Ultimately, attention focused on graphs with the
underlying groups of Z, configuration. Clearly the issue of
constructing groups of a desired size is no longer a
concern: groups of any size may be chosen. In addition, the
generating set may be chosen to be of any even size if n is
odd, or of any size whatsoever if n is even (using n/2 as a
generator to get a generating set of odd size). Hence, for

any desired n, there exists extensive flexibility to trade
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off the degree with the diameter. For example, choosing to
match the degree of the equivalently-sized hypercube makes
direct comparisons of the diameters a valid process. Taking
the opposite tack of constructing a graph with the same
diameter as the hypercube allows direct comparison of their
degrees.

However, the major strength of this approach really
becomes apparent when the simplicity of the routing
algorithm is taken into consideration: since for virtually
all cases the routing method is the well-known, extremely
simple "greedy" algorithm, the algorithmic average and full
diameters are found to be either identical or very close to
the true diameters. Hence, elaborate processors are not
required, and the routing algorithm is "perfect" in the same
sense as that of the hypercube's, thus validating direct
comparison of diameters. In essence, the decision to pursue
this approach depends on the assumption that, in order to
improve on the hypercube, there is no need to create graphs
with wonderful true diameters if, instead, it is possible to

create graphs with merely good diameters yet perfect routing
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algorithms. At least when compared to the hypercube, this
assumption proves to be wvalid.

Finally, in what appears to be a concern for current
research in parallel-processing computers, increasing or
decreasing the number of processors in an existing machine
would not be a difficult task, although the resulting
machine may not be as well-optimized as the original
construction for the new number of nodes. Certainly, it
would be much simpler to perform than on the hypercube, and
would allow full flexibility in terms of the number of nodes
added or subtracted, something the hypercube construction
does not allow. (In the hypercube, the number of processors
may only go up or down by a power of 2 in order to maintain
its structure.) Basically, the physical structure of a
network with Z,-based Cayley graphs is quite simple to

construct and adapt.

6.3 Basic Routing in a 4-Regular Cayley Graphs on Z,

This section shows the evolution of how to best
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represent, and route in, the basic 4-regular Cayley graph,
since keeping the generating set small allows for simpler
analysis of the graph's properties. First examined were
Cayley graphs based on groups of the form Z.q, where p and g
are distinct primes. Consider the graph of 2,,, where p=3
and g=7. Using the generating set S = {3,7,-3=37,-7=7"1} =
{+3,+7}, this Cayley graph may be represented by a sequence
of 21 vertices (labeled from 0 through 20) equally spaced
around a circle, with each vertex connected by an edge to
the vertices both 3 and +7 places away from its position in
the circle. Figure 6.3.1 shows this Cayley graph
representation.

Unfortunately, it is clear from examining this graph
that any routing algorithm is a mess. By exhaustion of
possibilities, the diameter is 4, but there is no smooth way
of predicting the shortest route to any particular vertex
from any other. This issue led to reconceptualizing the way
of representing Z,, with those generators: consider Z,, as
Z,xZ,, label vertices as ordered pairs, and set 7=(1,0) and

3=(0,1) . This representation is shown in Figure 6.3.2.
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Clearly, routing on this graph is much simpler: from
any vertex, one travels the shortest route in Z, by +(1,0)
to the value of the first entry of the target vertex's
ordered pair, then moves in Z, to match the second entry.
Such a routing method may be viewed as nearly identical to
that of the hypercube: move by ones to match the entries as
written in some m-tuple.

One problem with such a Cayley graph, however, is that
it has one of the same major limitations found with the
hypercube. For example Z,, may only be viewed as Z,xZ, or as
Z,, itself. Hence, other generators cannot be considered as
candidates in order to ascertain whether advantage may be
taken of certain structural characteristics. 2Z,, would be
even more severely limited in choices.

A third alternative for a Cayley graph of 2,, combines
some aspects of both the previous two, yet opens the door
wide for flexibility in generating sets and routing.
Initially, the routing in Figure 6.3.2 strikes one as taking
jumps around the graph to get to the proper "cluster" of

three vertices, and then finishing the route by moving to
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the desired vertex of that cluster's triangle. However, it
may also be viewed as moving to the starting triangle's
vertex contained in the desired 7-gon, then tracing the
shortest route around the 7-gon to the destination vertex.

If Z,, is redrawn in circle form as in Figure 6.3.1,
this routing is similar to using a generating set of
S={+1,+7} to get to the proper multiple of (+)7, then
finishing the trip with (%)1's to reach the final vertex.
Algorithms similar to this routing method are often known as
"greedy" algorithms, because they take the greediest bites
possible (here, jumps of 7) to zero in quickly on the target
area, then finish up with "dainty" bites (jumps of size 1).
Such a graph is shown in Figure 6.3.3.

On the surface, there is no improvement here over the
routing for Figure 6.3.2. However, Figure 6.3.2 depends on
the size of the group being a multiple of the size of the n-
gons. Hence, its only possible shape is nested 7-gons and
triangles. This constraint does not apply to Figure 6.3.3.
The generating sets S={#1,46,} or S={+1,+8} may just as

easily be used. In addition, a group of any size may be
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Figure 6.3.1: The 4-regular Cayley graph on Z,, with
generating set S={+3,:+7}.
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Figure 6.3.2: The 4-regular Cayley Graph of Z,, with
S={%3,+7} as generating set. The labeling here views Z,, as
isomorphic to Z,xZ, with generators a=(1,0) and b=(0,1) and
their inverses.
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Figure 6.3.3: The 4-regular Cayley graph on Z,, with
generating set S={%1,:7}.
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Figure 6.3.4a: The 4-regular Cayley graph on 2, with
generating set S={+2,+5}, redrawn with vertices connected
by +2 shown as adjacent in the circle.
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Figure 6.3.4b: The 4-regular Cayley graph on Z,, with
generating set S={+1,+8}. Note that it has the identical
shape to that of the Cayley graph with generating set
S={+2,+5} shown in Figure 6.3.4a.
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used, regardless of its factor set, with total flexibility
in choice of generating sets. The only requirement is that
#1 is included in the generating set. This ensures that S
does indeed generate Z, and allows the use of a
straightforward greedy algorithm.

It may at first appear that this is still too
restrictive on S. After all, Z,, may be generated by the set
S={+3,+7}. However, this generating set does not allow the
employment of a simple routing algorithm, while any set
containing 1 will be suitable for the greedy algorithm. Note
also that forcing 1 to be in the generating set is merely
equivalent to saying that one of the elements in S must
generate Z, by itself, a seemingly much less restrictive
requirement. To see this, consider Z,, with generating set
S={+2,+5}. Since 2 will generate Z,, by itself, this Cayley
graph may be redrawn as a circle of 21 vertices labeled in
sequence counting by 2's (since such vertices would be
adjacent to each other), with every pair of vertices whose
labels differ by 5 connected by an edge. Figure 6.3.4a would

be the result.
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However, in Figure 6.3.4a, vertices in sequence are
adjacent and the long jumps span a gap of 8 vertices when
counting around the circle. Hence, Figure 6.3.4a has exactly
the same shape as Z,, with generating set S={+1,+8} drawn in
the conventional manner shown in Figure 6.3.4b.

Hence, for the 4-regular case, such a construction
method appears a good candidate to allow any size of
underlying group desired, efficient routing, and a
relatively flexible choice of generating sets of the form

S={+1, zy}.

6.4 Constants for Cayley Graphs on Z, with S={+1, +/n*[}

A logical choice enabling y to be a fairly ideal
"partner" for 1 in the generating set seemed to be a value
close to n*. Consider if n=100 and y is chosen too large,
say S={+1,+30}, then the greedy algorithm makes big jumps
with 30, but it will take up to fifteen steps to close on a
target vertex from there. Conversely, if y is too small, say

for S={+1,+5}, then it takes too many jumps of size 5 to get
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half-way around the circle. This reasoning, plus the
influence of the fact that f, (used in Chapter 3 to
determine the Kazhdan constant) always seemed optimal at
{1,|n*]} for the 4-regular case, prompted the initial study
of S={#1,+x}, where x=[n*|, the greatest integer not
exceeding n%*. In other words, x is the truncated square root
of n. This led to the following theorem regarding the

diameter of such Cayley graphs.

THEOREM 6.4.1: Let G be the Cayley graph on Z,, with

generating set S={+1,+x}, where x is the truncated square

root of n. Then

Diam(G) < x.

Proof: View the Cayley graph as a circle of n vertices,
with each vertex adjacent to its neighbors in the circle and
also adjacent to each vertex x vertices away in the circle.
Since Cayley graphs are symmetric and therefore appear the

same from every vertex (see Chapter 1), finding the maximum
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distance from vertex 0 to any other vertex establishes the

diameter. Consider the following two cases.

Case 1: x is odd.
Then both the clockwise and counter-clockwise paths
tracing (x+1)/2 steps from vertex 0 along the edges which

jump x vertices at a time will have landed on or jumped past

Xx[(x+1) /21 + x[(x+1)/2] = x%+x

total vertices. Counting vertex 0, this trip will thus have

"spanned" a total of x*+x+1 vertices. ("Spanned" is used

here to mean that a vertex was either landed upon or jumped

over during this trip.) Since x is the truncated square

root of n, we have that

x2 ¢ n < (x+1)2 - 1 = x2+2x.

Observing that
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n - (xXT+x+1) < X2+ 2x - (X* + x + 1) = x-1

we have that there are at most x-1 unspanned vertices
remaining. Thus, any of these vertices is at most (x-1)/2
from the end vertex of either the clockwise or counter-
clockwise path. In a similar argument, there are x-1 spanned
vertices between each vertex that was landed on (a "landing
pad") in our two paths. Clearly, then, any vertex between
landings is at most (x-1)/2 short edges away from one of the
landing pads. The result of all this is that any vertex in

the Cayley graph is at most

(x+1)/2 + (x-1)/2

It
o

steps away from vertex O.

Case 2: x is even.
By a similar argument, tracing either a clockwise path
or a counter-clockwise path from vertex 0, each of length

x/2 + 1, along edges which jump x vertices at a time will



242

span all the vertices of the Cayley graph, since

x(x/2 + 1) + x(x/2 + 1) = x*+2x = (x+1)2 - 1 > n.

Since there will be x-1 vertices between each pair of
landing pads, we can see that the midpoint of those x-1
vertices will be x/2 steps from either of the landing pad
vertices. Since either landing pad vertex will do, choosing
the first one landed upon means that any "midpoint" vertex

may be reached within

x/2 + x/2 = x

steps. Clearly, any "between" vertex that is not a midpoint
vertex is within x/2 - 1 short edges of a landing pad
vertex, so we have as the worst case that such a vertex will

be a distance

(x/2 + 1) + (x/2 - 1)

I
»

away from vertex 0.
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Hence, the diameter is less than or equal to x for such

Cayley graphs. [

This result begs the obvious question: is x the lower
bound for the diameter as well? In addition, is the diameter
better with a generating partner for 1 other than x?
Unfortunately, the answer to both these questions is: "It
depends." After examining a number of Cayley graphs for
values of n ranging from 10 to 50, it is clear that for some
of these values, the diameter of the Cayley graph using
S={+1,+x} was indeed equal to x and no partner other than x
could improve upon this diameter.

However, many graphs do not follow this pattern. For
example, Z,, has a diameter of 3 when S={+1,+8}, yet x=4. 2,
has a diameter of 3 when S={+1,+5}, yet x=4. In addition, Z,
with S={+1,+5} has a diameter of 4 which is less than x=5,
even though +5 is the generating partner. Similarly, for Z,,
a choice of S={+1,+3} yields a diameter of 3 while the

choice of S={+1,+4} yields a diameter of 2. It is also
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interesting to note that S={+1,+4} does not produce as large
a Kazhdan constant as S={:1,+3} (f,=2 compared with £,=3) yet
produces a Cayley graph with a smaller diameter. There are a
number of other examples demonstrating that optimal Kazhdan
numbers and optimal diameters do not necessarily correlate.
Table 6.4.2 shows the results of the exploration of the
diameters achieved for various generating sets of size 4 for
the values of n={10,15-25,32,35,36,45,48,49}. It should be
clear from the results that there is no simple answer for
any given n as to whether or not x can be improved upon for
the diameter. For n=20, 24, 35, 36, and 48, no generating
sets were found which provided a diameter less than x. For
each of the remaining values, at least one generating set
was found which yielded a diameter of x-1. The choice of
generating sets to reach these improved diameters ranged
from {x1,:x} itself, to {+1,+(x+1)} to something entirely
different, though it seems worth noting that {+1,:(x+1)}
worked most of the time. Also, as the value of n approaches
(x+1)?, it should be more difficult for the diameter to be

less than x. This proved to be the case for 2Z,,, Z,,, and 3Z,,.



TABLE 6.4.2: BEST ACHIEVABLE DIAMETERS AND A, FOR 4-REGULAR

CAYLEY GRAPHS ON Z. WITH S={1,+y}
n= 10 15 16 17 18 19 20 21 22
Best Diameter 2 3 3 3 3 3 3 3 3
Examples of 1403|0141, ](,8) ] (1,8 ] 1,6
gen. sets for (L4) | (1,6) | (1,5) | (1,5) | (1,5)
best diameter (1,5)
Best A, 300|238 200 1.95|200| 162 1.771 1.51{ 149
All generating | (1,3) | (1,4) [ (1,4) | (1.4) | (1,5) | (1,4) | (1,8) | (1,6) | (L,5)
sets for best A, (L7) | (1,9) (1,8) | (1,6)
(1,9)
A, if S=(1,x) 300} 1.56} 200 | 1.95] 1.77| 1.62 | 148 | 1.36 | 1.25
(TABLE 6.4.2 cont'd)
n= 23 24 25 32 35 36 45 48 49
Best Diameter 3 4 4 4 5 5 5 6 6
Examples of | (1,5) | (1,4) [ (1,5) [ (1,7) | (1,6) | (1,6) | (1,6) | (1,6) | (1,6)
gen. sets for (1,5) | (1,6) (1,5) an | @nlan
best diameter (1,6) | (1,7) 1,19 | (1,8) | (1,8)
Best A, 1.67 | 1.55]| 147 | 1.17 ]| 1.08 | 1.00 94 | 0.80| 0.75
All generating | (1,5) | (1,5) | (1,7) | (1,7) | (1,6) | (1,6) | 1,19 | (1,7) | (1,7)
sets for best A, | (1,9) (1,9) 1,14
1,21
A, if S=(1,x) 1.15]1 1.07 | 1.38| 093 | 0.79 | 1.00 | 0.68 | 0.60 | 0.75

245
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In addition, for those values of n which approach
(x+1)2, it seems that a strictly "greedy" algorithm likely
will not achieve the true diameter; that is, often one must
include a path to a vertex which uses the larger entry to
come in from the "back side" of the graph's circle. For
example, in Z,;,, in order to yield a diameter of 3 with set
S={x1,+8}, the vertex 4 may be landed on only by a route of
0-13-5-4, this being a sequence of adding -8 twice, then -1.

Similarly, such a "backdoor" route is the only way that
Z,, using S={+1,+6} can have a diameter of 3 instead of x=4.
Hence, even though the true diameter is better, the routing
algorithm will be more complex to achieve such a value. With
the conventional "greedy" algorithm, both of these graphs
will have algorithmic diameters of 4.

It is of interest to note from Table 6.4.2 that for
each tested value of n except n=10, at least one of the
generating sets producing the optimal (highest) A, also
produced a Cayley graph with the best achievable diameter
found. This could be a useful correlation for finding true

diameters of larger groups with larger generating sets if it
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holds for such groups, and if such a correlation can be
easily adapted into a computer program to search all
possible generating sets.

It seems likely that a generating set of the form
S={+1,+y} will yield the best A, for each value of n, though
this has not been proven. The alternatives for such sets
must be of the form S={+p, +q}, where gcd(p,q) generates Z,
yet gcd(p,n)>1 and gcd(q,n)>1. There is a fairly limited
choice of such sets for each n<50, based on its factor sets,
so a search by exhaustion could be an interesting test of
this idea. For example, S={+3,+7}, S={6,+7}, and S={+9,+7}
are the only such candidates for Z,,. A search of these
generating sets showed each Cayley graph has the same value
of A;=.753, which is substantially inferior to the value of
A, in Table 6.4.2.

However, to reiterate, if the true diameter requires
the use of an algorithm that is an exhaustive search of all
possible paths, including the "backdoor" routes discussed
above, it is not a useful result. That is, an improvement of

diameter by only 1 is not worth a major blow to the
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efficiency of the routing. If a different choice of
generating sets yields an improvement of the diameter by 1
(or more) using the "greedy" algorithm, then it is a better

result; otherwise not.

THEOREM 6.4.3: Let G be the Cayley graph on Z,, with
generating set S={%1,+x}, where x is the truncated square

root of n. Then the value of the Cheeger constant h is

4x/n if n is even
h(G) =
4x/(n-1) if n is odd.
Proof: The definition of the Cheeger constant h for a

specific graph G=G(V,E) is

h(G) = min{|E(A,B)|/(min{|A|,|B|}: A,B partition V},

where E(A,B) is the set of "bridge" edges with one end in A

and the other in B. Then the value of h occurs with the
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worst case partitioning of G. (Note that for a Cayley graph
to be 4-regular, it must have at least 5 vertices. Thus, n»5

in all cases.)

Case 1: 1 < |A| < x.
No matter how such a partition is made, each vertex in
set A will be connected to at least 2 vertices in set B,

thereby yielding a candidate h that is

h > 2|a|/|a] = 2.

Case 2: x < |A|] < n/2.

Again, no matter how such a set A is chosen, there will
always be at least 2x edges connected to the vertices in set
B = V-A. In an attempt to make all the vertices in A
adjacent along the edges of 1 and 1!, the nearest x
vertices on each end of the string of |A| vertices will be
adjacent along the edges x and x*. An attempt to make all
the vertices of A adjacent through the edges of x and x*

produces "stars" of x vertices; positioning k of these
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"stars" next to each other -- i.e., one vertex clockwise or
counter-clockwise from each other -- will yield x "strings"
of k vertices adjacent along the short edges, where each of
these "strings" will have an adjacent vertex from set B on
each end. Any mixture of these two methods will increase the
number of bridge edges.

Since we must have at least 2x neighbors in this case,
the worst case would be when |A|l=n/2 (if n is even) or

|Al=(n-1) /2 (if n is odd). Hence, in this case we have

h > 2x/(n/2) = 4x/n or h > 2x/[(n-1)/2] = 4x/(n-1).

Since x<n*¥, and n>5, we have that x/n < 1/2. Thus, Case 2

provides a lower bound for h and we have that

h > 4x/n if n is even

or h > 4x/(n-1) if n is odd.

However, if we choose the set A such that it consists

of a string of n/2 or (n-1)/2 adjacent vertices (along the
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short edges of 1 and 1), then we get a value for h that

is, in fact, equal to this lower bound. Hence:

4x/n if n is even
h(G)

4x/(n-1) if n is odd. ]

THEOREM 6.4.4: Let G be the Cayley graph on Z,, with
generating set S={t1,+x}, where x is the truncated square

root of n. Then

2-2cos (211/n%) if n is a perfect square;

4-2[cos(2n/n) +cos (2nx/n) ] otherwise.

Proof: Given in Appendix D. O

Recalling from Theorem 4.3.4 that c = 2,/ (k+2},), we

see that the constant ¢ may be easily evaluated when

S={+1,+x}. Clearly these results are lower bounds for the
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expansion constant c¢ for the graph using the best generating
set possible. However, as may be seen in Table 6.4.2, the
best value for A, for 4-regular Cayley graphs on Z, is not
significantly better, and likely will tend toward zero as n
gets large, just as the value for A, tends toward zero when
S={+1, +x}.

This brings us unswervingly toward the following
conclusion: for the family of graphs on Z, with S={#1, +x} it
is apparent that every significant constant we have
established in the theoretical work tends toward zero as n
gets very large, with the obvious exception of diameter,
which gets very large as n increases. To recall, diameter is
proportional to n*¥, h is inversely proportional to n*¥ (and
thus both Kazhdan constants are inversely proportional to
n'/4), and A, drops as cos (2m/n¥%) approaches 1.

On this note, it is also apparent that such a family
will not be Ramanujan, for which the requirement was that pu
< 2(k-1)*%. Recalling that p > k-J,, we observe that a graph
will certainly not be Ramanujan if A, < k-2(k-1)% = 4-2(3)¥%

= 0.535. Since as n gets very large, A, tends toward zero,
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there is no hope of constructing a Ramanujan family out of
the 2,'s for S={t+1,+x}. Indeed, the chances seem remote that
allowing any generating set of a fixed size k will possibly
provide an infinite family of Ramanujan graphs, given the

trends for the case when S={+1,+x}.

6.5 Cayley Graphs on Z,, vs. the Hypercube on n=2°

This section compares the characteristics of Cayley
graphs based on Z,, with the performance of the hypercube of
the same size. We choose n=32, since this conforms to the
hypercube size of 2°, yet is still a manageable size for
examination by exhaustion.

From Theorem 6.4.1, it is possible to construct a 4-
regular Cayley graph on Z,, with diameter less than or equal
to |[32%¥]=5. Since the hypercube on n=32 has degree 5 and
diameter 5, this would seem to be a promising start. Table
6.5.1 compares the diameter, average diameter, algorithmic
diameter, and average algorithmic diameter of several such

Cayley graphs to those of the hypercube.



TABLE 6.5.1: COMPARISON OF Z, GRAPHS vs. HYPERCUBE, FOR n=32

Graph Design and Degree | Diam. | Avg. Algor. | Avg. Alg.
Generating Set Diam. | Diam. | Diam.
Hypercube (32=2%) 5 5 2.5 5 2.5
Z,, S={£1z24} 4 5| 288 5 2.8
Zy, S={x125} 4 51 275 5 2.75
Z, S={£1,6} 4 5| 266 5 2.78
Z,, S={£1x7} 4 4| 263 5 2.75
Z,, S={+1,4, 16} 5 4| 228 4 2.28

Each diameter and average diameter is the best that can be found, even allowing
for "backdoor” routes. Note that for S={x1,+7}, the backdoor route provides a
lower true diameter. Algorithmic values are using strictly greedy algorithms, with
no backdoor routes allowed. Since 16 is its own inverse in Z,,, it contributes only
one generator to the size of S.

It is encouraging to observe that, by using
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S={+1,+4,16}, we can match the degree of the hypercube for

n=32 and improve upon its algorithmic diameter and average

algorithmic diameter performance. Conversely, we can watch

the diameter with a graph of lower degree, though there is a

small sacrifice in average algorithmic diameter performance.

This suggests that if we can find a model for construction

of larger graphs (higher n) using these as building blocks,
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we will have the flexibility in design to improve on the
hypercube's performance in either way desired.

Finding the true diameter and average diameter of many
graphs of the form 2, with S={+s;} is a difficult task due
to the presence of "backdoor" routing opportunities to
reduce path lengths between vertices. Since these
opportunities tend to be quite case-specific, the only
obvious sure-fire method will be examination by exhaustion.
For the graphs in Table 6.5.1, this is easily done, and
those values are shown in the columns labeled Diameter and
Average Diameter. However, for larger values of n, these
values will not be found.

Instead, we focus on the more important measures of the
performance of the graph as a processor network: the
algorithmic average and full diameters. It is a
straightforward matter to calculate these algorithmic
diameters, as the "greedy" routing algorithm forms easily
recognized patterns of the number of steps required to reach
all other vertices. Finding the highest value in the pattern

of a particular graph clearly identifies the algorithmic
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diameter of that graph. To calculate the average algorithmic
diameter of a graph, we need a weighted average for the
pattern of the number of steps required to reach each target
vertex starting from zero. This may be arrived at by the

following formula:

n-1

> (M) (Fy),

10
where N; is the number of steps required to reach vertex i
and F; is the fraction of time that vertex i would be the
desired target vertex.

Since each processor (vertex) should theoretically be
the target an equal fraction of the time, in simple cases
this formula reduces to summing the number of steps and
dividing by n. To find the number of steps to reach a given
target vertex, we view the Cayley graph of Z, with full
generating set S'={-s.,...,-8,,-8,=-1,8,=1,8,,...,8.} as a
circle of n vertices. Each vertex is connected by an edge to
its immediate neighbor (since 1 is in the generating set),
its +s,*® neighbor, its +s,*" neighbor, and so on up through

its #s.* neighbor. Without loss of generality, we may assume
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that the starting vertex is at the top and is labeled zero.
Going clockwise, label the next n/2 (or (n-1)/2, if n is
odd) vertices in sequence from 1 through n/2 (or (n-1)/2,
for n odd), while those in the counter-clockwise direction
are labeled -1 through -[(n/2)-1] in sequence.

The basic "greedy" algorithm will search out a path to

a target vertex by the following strategy:

1. By subtracting the conventional label of the starting
vertex (call it b) from the label of the target vertex,
and converting that value to modulo n in symmetric
format, it is equivalent to assuming that the starting
vertex is at zero and the target is some known distance
away that is less than or equal to n/2 and the shortest
direction (clockwise or counter-clockwise) is known. In
short, we have the situation described in the paragraph
above. For example, in Z,,, if you began at vertex 7,
and the target vertex was labeled 20, this is
equivalent to saying that the target is +13 vertices

away, or 13 vertices in the clockwise direction.



258

However, if the target vertex were labeled 26, then it
would be -13 vertices away, or 13 vertices in the

counterclockwise direction.

2. Let ¢ be this distance from the starting vertex to the
target vertex. If c=0, the target vertex is the
starting vertex. Otherwise, find r=is;, the largest (in
absolute value) generator of the same sign as ¢ such
that |c| > |r|/2. This finds the optimum generator to
travel on in order to move closer to the target vertex.
Jump to vertex b+r, and return to step 1, replacing b

with b+r, the label of the new starting vertex.

Below are the breakdowns for the diameters of the
Cayley graphs in Table 6.5.1 based on Z,,. These graphs are
small enough to list the number of steps required to land on
each vertex. Again, since each individual vertex is equally
likely as a target vertex, this category requires only that

we sum the list of required steps and divide by the number
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of vertices. Table E.1 in Appendix E provides such lists for
many of these smaller Cayley graphs. Note that only the
positive values are listed; the negative values contribute
equally, though we must be careful not to count 0 and n/2
twice, as we do for those in between. Such totals will play
a role as building blocks in analyzing the averages for more

complicated graphs.

Example 6.5.2: 32, using S={1,7}.

Table 6.5.3 shows an excerpt from Table E.1 specific to
this Cayley graph. Landing on vertices 1 through +15
contribute 2:42=84 steps if the greedy algorithm is used or
2:40=80 if "backdoor" routes are allowed. Reaching vertex 16
takes 4 jumps in either case, while staying at vertex zero
takes no jumps. Hence, we get an average true diameter of
84/32=2.625 and an average (greedy) algorithmic diameter of

88/32=2.75. Observing that the maximum number of steps
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required is 4 with the "backdoor" routes allowed and 5
without them, we get a true diameter of 4 and an algorithmic

(greedy) diameter of 5. These values are reflected in Table

6.5.1. /17

Example 6.5.4: Z,, using S={1,6}.

From Appendix E, landing on vertices +1 through +15
again contributes 2:42=84 steps if the greedy algorithm is
used or 2-40=80 if "backdoor" routes (to reach 14 and 15)
are allowed. Reaching vertex 16 takes 5 jumps in either
case, for an average diameter of 85/32=2.66 and an average
(greedy) algorithmic diameter of 89/32=2.78. Observing that
the maximum number of steps required is 5 with or without
the "backdoor" routes, we get a diameter of 5 and an

algorithmic (greedy) diameter of 5. ///

Example 6.5.5: Z;, using S={1,5}.

Landing on vertices :1 through #15 contribute 2:42=84,
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plus 4 to reach 16, for an average diameter (no backdoor

routes are of help) of 88/32=2.75. The diameter is 5. ///

Example 6.5.6: Z,, using S={1,4}.
Landing on vertices +1 through +15 contribute 2:44=88,
plus 4 to reach 16, for an average diameter (algorithmic or

not) of 92/32=2.88. The diameter is 5. ///

Example 6.5.7: Z;, using S={1,4,16}.

Since 4 and 16 divide 32 evenly, no backdoor routes are
possible. Thus, landing on vertices +1 through +15
contribute 2:36=72 steps. Jumping to vertex 16 is only one
step, while staying at zero obviously contributes zero steps
to the total. Hence, we have an average algorithmic diameter
of 73/32=2.28. Observing that the maximum number of steps to

reach any vertex is 4, we have an algorithmic diameter of

4. /17
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6.6 More Complicated Cayley Graphs, with Larger n

Logically, if using the truncated square root of n was
a reasonable starting point for 1's partner in the
generating set for 4-regular graphs, using the truncated
cube root of n and the square of that value (i.e., the
truncated 2/3* root of n) as the partners of 1 would make a
good starting point for a 6-regular graph. Similar reasoning
should also work for larger values of k, thus providing an
approach to explore more complicated graphs. In addition,
there is hope that analysis of such graphs could be broken
down into steps. If the problem may be reduced to examining
blocks of vertices equivalent to smaller graphs with
generating sets of size 4, then the work done in Chapter 6.5
could be used to finish the process.

Fortunately, we find that this is the case. Table 6.6.1
shows the results of this analysis for a number of examples
on Z,,,, and compares them with the figures for the hypercube
and Schibell and Stafford's [SS] best result. (See Table

6.1.1.)
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TABLE 6.6.1: COMPARISON OF DEGREES AND VARIOUS DIAMETERS FOR

THE HYPERCUBE, SS3, AND SEVERAL CANDIDATE Z,,,, GRAPHS
Graph Design and Degree | Diameter | Average | Algor. Avg. Alg
Generating Set Diameter | Diameter | Diameter
Hypercube (1024 = 2'°) 10 10 5.0 10 5.0
SS3 Subgroup of S, [SS] 6 7 4.5 | unknown | unknown
Z,0s S={1, 4, 16, 64, 256} 10 <8 <4.64 8 4.64
Zyose S=(1, 7, 32, 224}%* 8 <8 £5.25 10 5.5
Z,0:s S={1, 6, 36,216} 8 <9 <5.41 9 5.41
Zy0se S={1, 8, 64, 512} 7 <11 <6.37 11 6.37
Z,oe S={1, 12, 128} 6 <14 <7.52 14 7.52
Z,02s S={1, 10, 100} 6 <14 <7.46 14 7.46
** The diameter and average diameter presented here are upper bounds using backdoor
routing that yield an improvement over the values obtained with the greedy algorithm
shown in the last two columns. For each Z,,, considered, it is possible that the true and
average diameters are smaller than the algorithmic, but these have generally not been
pursued.

Presented below are the calculations for each of the

entries in Table 6.6.1 based on Z,,,,. Note that the true

diameter and average diameter are not presented for most of

these, the exception being for S={1,7,32,224}, where

allowing backdoor routing showed an improvement on the

greedy algorithm results. For those graphs whose generating
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sets are all powers of 4, it is unlikely that the true
diameters are better than the algorithmic, since no backdoor
routing will help. For the others, it is possible that an
improvement over the algorithmic numbers exists, but no

effort was made to find such values.

Example 6.6.2: Z,,,, using S={1,8,64,512}.

The task in this more complicated graph is to determine
how the greedy algorithm will get from zero to a particular
multiple of 64, and from there to a target vertex. Each
multiple of 64 may be considered a "landing pad", from which
its (roughly) nearest 32 vertices in each direction may be
most efficiently reached. In essence, if we can figure the
weighted average of getting to each landing pad, the problem
for figuring the number of steps from a landing pad becomes
equivalent to the problem of finding the values for a graph
of Z¢, with generating set S={+1,+8}. This may be
accomplished just as in Chapter 6.5.

Since the greedy algorithm works by getting as close as
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possible with each jump, some of these landing pad multiples
of 64 will be preferred over others. For example, to reach
vertex 480, jumping to vertex 512 (1 jump of 512) and then
heading back toward zero 32 vertices (4 jumps of -8) is
clearly faster than moving to 448 (7 jumps of 64) and then
going 32 more vertices (4 jumps of +8) clockwise. Jumping to
512 and then going back four jumps of -8 is also faster than
jumping to 512, then to 448 (1 jump of -64), then moving
clockwise four jumps of +8. In other words, though 480 is
equidistant from each of the potential landing pads 512 and
448, passing through 448 is less efficient, and the greedy
algorithm will not bother to land there. In this sense, 512
is the preferred landing pad for 65 vertices (itself, and
the 32 on each side) while 448 is preferred for only 64
vertices (itself, the 32 vertices before it, and the 31
vertices after it). We call landing pads such as 512 "master
landing pads", since the intervals or domains of vertices
that they control are as large as possible.

On the flip side of this analysis, some landing pads

will be the landing pads of last resort, with the landing
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on both sides of it being the preferred way to reach

the equidistant vertices between them. We call these "minor

landing pads". Then consider the following multiples of 64:

0, 512:

+256:

Clearly, these are the master vertices for multiples of
64. Each will have 65 vertices in its domain, with an
average distance from the master vertex of 256/65 =
3.94. The average to reach a master vertex is .5 steps,
for a total average of 4.44 for 265 = 130 such

vertices.

These are the minor landing pads. Each will have a
domain of 63 vertices with an average distance from the
landing pad of 248/63 = 3.94. The average to reach one

of these vertices is 4, for a total average of 7.94 for

126 vertices.
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Remaining vertices:
There are 12 standard landing pads, each with a domain
of 64 vertices an average of 252/64 = 3.94 steps away.
The average to reach one of these remaining vertices is

15/6 = 2.5 steps, for a total average of 6.44 steps to

reach 1264 = 768 wvertices.

Thus, we get a weighted average of

[4.44-130 + 7.94'126 + 6.44768]/1024 = 6.37.

Observing that the maximum number of steps to reach any
multiple of 64 is 4, and the maximum to reach a vertex no
more than 32 away is 7, we obtain an algorithmic diameter of
11.

Note that simply assuming that every domain is
equivalent in weight and simply calculating an average of
[2:19 + 1]1/16 = 2.44 steps to get to any particular multiple
of 64 and 3.94 steps thereafter, we arrive at an overall

average of 2.44+3.94 = 6.38 steps to any given vertex. This
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is certainly adequate as an estimate whenever our numbers go

into n evenly and the size of each landing pad's domain is

relatively large. ///

Example 6.6.3: Z,,,, using S={1,7,32,224}

Assume all landing pads that are multiples of 32 are of

equal weight. Then this amounts to two levels of evaluating

Z,, using S={1,7}.

1.

Step 1:

Step 2:

Sum the steps for reaching landing pads that are
between 1 and 15 multiples of 32, and double this
total.

Add the number of steps required to reach 512 to
this total. (Reaching zero does not require any
steps, and so does not contribute to this total.)
divide the total by 32 (the number of possible

landing pads) .

sum is 42, doubled is 84.

4 steps are required to reach 512, so the new
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total is 88.

Step 3: divide by 32, yielding an average # of steps to

reach the proper landing pad of 88/32 = 2.75.

From the proper landing pad, the target vertex is
equally likely to be any in its domain, so that we need to
perform a similar summation on the average number of steps
needed to reach the 16 vertices further from zero and the 15
nearer zero, plus considering the landing pad itself. Going
to the column labeled "1,7" in Table E.1l, Appendix E, we
must sum the entries in rows 1 through 15, double that
total, add the entry in row 16, and divide by 32. This
yields the average number of steps required to finish the
journey from a landing pad to the target vertex. This
process is, of course, the same as Steps 1 through 3 above,
so that we again achieve an average of 2.75.

Hence, using a greedy algorithm, this set gives us an
average (algorithmic) diameter of 5.5 and a maximum
(algorithmic) diameter of 10, since trying to reach vertex

11 takes 5 steps in each table. However, if we use the
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algorithm that allows the "backdoor" route to reach +11,
then our sum is 40, doubled to 80, plus 4 is 84, divided by
32 is 2.625, so we obtain an average diameter of 5.25 and a
maximum diameter of 8, as shown in Table 6.6.1.
Unfortunately, the routing used to achieve these numbers
requires a higher level of sophistication than the greedy

algorithm, and may be difficult to implement. ///

Example 6.6.4: Z,,,, using S={1,6,36,216}.

Again envisioning the Cayley graph as a circle of
vertices with appropriate labels and connecting edges, we
can see that we must consider the average and frequency of

occurrence of the following "domains":

The domain of the 0! multiple.
The domains of the #1 through #13*" multiples of 36.
The domain of the 14* multiple of 36.

The domain of the -14*" multiple of 36.
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-14:
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This domain contains 37 vertices with an average of
108/37 = 2.92 steps required from 0. Hence, the total

average is 0+2.92 = 2.92 steps for these 37 vertices.

These 26 domains each contain 36 vertices with an
average of 105/36 = 2.92 steps required from its
landing pad. The average number of steps to reach each
base (arrived at by adding rows 1 through 13 of column
"36, 216" in Table E.2, and dividing by 13) is 33/13 =
2.54, yielding an average of 2.54 + 2.92 = 5.46 for

these 26-36 = 936 vertices.

This domain contains 24 vertices, with an average
number of steps from 504 of 68/24 = 2.83, while it
takes 4 steps to reach 504, yielding an average of 6.83

for these 24 vertices.

This domain contains 23 vertices, with an average from

-504 of 65/23 = 2.83 steps, while it also takes 4 steps
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to reach -504, yielding an average of 6.83 for these 23

vertices.

Hence, the weighted average for this generating set is:

2.92-(37/1024) + 5.46-(936/1024) + 6.83-([24+23]1/1024)

= 5.41.

Observing that the maximum number of steps to reach a
multiple of 36 is 4 and the maximum number of steps to reach
a vertex up to 18 vertices away (using 1 and 6) is 5, we

obtain a maximum (algorithmic) diameter of 9. ///

Example 6.6.5: Z,,,, using S={1,4,16,64,256}.

Consider the following domains of multiples of 16:

0: 17 vertices with 32/17 = 1.88 steps from 0 on average.
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Then
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62 sets of 16 verts with an average of 30/16 = 1.875
steps from a landing pad. The average number of steps
from a landing pad will be 88/31 = 2.839, yielding an

average of 4.71 steps for 62:16 = 992 vertices.

15 vertices with an average of 14/15 = .933 steps from

32:16 = 512, plus two steps to 512, for an average of

2.933 steps for these 15 vertices.

the weighted average is

[1.88:17 + 4.71:992 + 2.93:15]/1024 = 4.64.

Again, note that we could have considered it as Z,

using S={1,4,16} to get to the nearest landing pad of 16,

with

each pad given equal weight. Reaching the desired

multiple of 16 would require [2:88 + 2]/64 = 2.78 steps on

average, with the vertices in the domain of each multiple of

16 being reached in an average of [2:14+2]/16 = 1.875 steps.
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Hence, this would give an overall approximation of
2.78+1.875 = 4.66 steps to a desired vertex. This matches
quite well with the weighted average above.

Observing that the maximum number of steps to reach a
multiple of 16 is 5 and the maximum number of steps to reach
a vertex up to 8 vertices away (using 1 and 4) is 3, we

obtain a maximum (algorithmic) diameter of 8. /77

Example 6.6.6: Z,,,, using S={1,12,128}.

Consider the following domains of multiples of 128:

0: 129 vertices with an average of 720/129 = 5.58 steps

from O.

1-3 6 sets of 128 vertices with an average of 711/128 =
5.55 steps from a landing pad. The average number of
steps to a landing pad will be 2, for an average of

7.52 steps for 6:128 = 768 vertices.
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4. This lands on 512, so its domain is 127 vertices, with
an average of 702/127 = 5.53 steps from 512. It

requires 4 steps to reach 512, so we get an average of

9.53 for these vertices.
Then the weighted average for this generating set is
(5.58129 + 7.52:768 + 9.53:127)/1024 = 7.52.
Observing that the maximum number of steps to reach a
multiple of 128 is 4 and the maximum number of steps to

reach a vertex up to 64 vertices away (using 1 and 12) is

10, we obtain a maximum (algorithmic) diameter of 14. ///

Example 6.6.7: Z,,,, using S={1,10,100}.

Consider the following domains of multiples of 100:

Each of these landing pads we can consider to have 100
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vertices in its domain, with each vertex an average of
[2:245 + 5]/100 = 4.95 steps from its landing pad. The
average to a landing pad is 20/9 = 2.22 steps, for an

overall average of 7.17 steps for 900 vertices.

+5: This lands on 500, so we have a domain of 50+12 = 62
vertices, with an average of (250+35)/62 = 4.6 steps
from 500. Since it takes 5 to reach 500, we have an

average of 9.6 for these vertices.

-5: We have a domain of 61 vertices, with an average of

(250+32) /61 = 4.62 steps from -500, thus yielding 9.62

on average for these vertices.

Then the weighted average for this generating set is

(7.17-900 + 9.6°62 + 9.62:61) /1024 = 7.46.

Observing that the maximum number of steps to reach a

multiple of 100 is 5 and the maximum number of steps to
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reach a vertex up to 50 vertices away (using 1 and 10) is 9,

we obtain a maximum (algorithmic) diameter of 14. ///

Example 6.6.8: Z,,,, using S={1,8,64}.
Though this result is not listed in Table 6.6.1, we
note that a similar analysis yields an average algorithmic

diameter of 7.93 and an algorithmic diameter of 15. ///

Finally, we also present the results of analysis for
several graphs based on Z,,,, as compared with the hypercube,
since this is the size of hypercube used in the Thinking
Machine. (See [H1l] and [H2] for details.) These results are

listed in Table 6.6.9.
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TABLE 6.6.9: COMPARISON OF DEGREES AND VARIOUS DIAMETERS FOR

THE HYPERCUBE AND SEVERAL CANDIDATE Z,,,, GRAPHS

Graph Design and Generating Degr. | Diam. | Average | Algor. Average
Set Diameter | Diameter | Algor.
Diam.
Hypercube (4096 = 2'%) 12 12 6.0 12 6.0
S={1, 4, 16, 64, 256, 1024} 12 <10 <5.56 10 5.56
S={1, 8, 64, 512, 2048} 9 <13 <7.27 13 7.27
S={1, 8, 64, 512} 8 <14 <7.83 14 7.83
S={1, 10, 100, 1000} 8 <15 <8.03 15 8.03

Example 6.6.10: Z,, using S={1,4,16,64,256,1024}.

This can be broken down into two levels, each level

will be the equivalent of evaluating Z,, using S={1,4,16} as

the generating set. Hence, consider the totals for {1,4,16}

over the first 16 vertices in Table E.2, this being a sum of

37. Over the next 16 vertices, each entry will be one higher

so the sum of the next sixteen entries would be 37+16 = 53.

Hence, for vertices 1 through 31, we get a sum of 53-2+37 =

88. Double this to cover , we get 176, add 2 for landing on

vertex 32, and we get an average of 178/64

vertex.

2.78 steps per
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It will be a close approximation to assume that the
need for reaching each multiple of 64 in the Cayley graph of
Z,05s 1s equal, thereby allowing us to state that it requires
an average of 2:2.78 = 5.56 steps to reach any vertex
desired. Since the maximum number of steps to reach any
desired vertex in Z, using S={1,4,16} is 5, the maximum

algorithmic diameter of this Cayley graph is 2:5 = 10. ///

Example 6.6.11: 2Z,, using S={1,8,64,512,2048}.

Consider the domains of the following multiples of 64:

0,+8,+16,+24,32:
Here, we have 8 master domains of 65 vertices with an
average of 256/65 = 3.94 steps from the landing pad,
with an average of 11/8 = 1.375 steps to the proper
landing pad This yields an average of 5.32 steps for

520 vertices.
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+4, +12, +20, +28:

Without loss of generality, we may assume that these
are the toughest multiples of 64 to get to, and hence
the minor landing pads. We have 8 sets of 63 vertices,
an average of 248/63 = 3.94 steps from the nearest
multiple of 64. The average number of steps to one of
these multiples of 64 is 20/4 = 5, yielding an average

of 8.94 steps for 863 = 504 vertices.

remaining:
The remaining vertices all have domains that are fed by
master vertices and themselves feed other landing pad
vertices (possibly minor ones). We thus have 48 sets of
64 vertices an average of 252/64 = 3.94 steps from the
multiple of 64, with an average of 81/24 = 3.375 steps

to get to the proper landing pad yielding an average of

7.32 for 4864 = 3072 vertices.

Thus, the weighted average is
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[520-5.32 + 8.94:504 + 7.32-3072]1/4096 = 7.27.

Observing that the maximum number of steps to reach a
multiple of 64 is 6 (to reach 2064 = 1280) and the wmaximum
number of steps to reach a vertex up to 31 (or 32; in this
case they are the same for trying to reach 28 or 29 away)
vertices away (using 1 and 8) is 7, we obtain a maximum
(algorithmic) diameter of 6+7 = 13. The degree is 9 because
2048 is its own inverse in Z,,,, while each of the others

yields a distinct inverse under closure. /77

Example 6.6.12: Z,, Using S={1,10,100,1000}.

Consider the following domains of multiples of 100:

0: Zero is clearly a master vertex with a domain of 101

vertices, an average of 500/101 = 4.95 steps from

zZero.

+10: These multiples are both master vertices (reached by
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one jump of 1000) with domains of 101 vertices, an
average of 500/101 = 4.95 steps from +1000. It is only
one step to either of these master vertices, yielding

an average of 5.95 for 202 vertices.

+6, *+16:
These multiples may be viewed as minor landing pads.
(Without loss of generality, we may have chosen +5 and
+15 to serve in their stead.) Each has a domain of 99
vertices an average of (70+110+65):2/99 = 4.95 steps
from the landing pad vertex. The average number of
steps to these end-of-the-road vertices is 5.5, for an

average of 10.45 steps to 4:99 = 396 vertices.

+20: Each of these multiples is a master vertex, but each
has a domain consisting of 50 vertices back toward
zero, itself, and 48 (for one, 47 for the other)
towards 2048. Hence, 99+98 = 197 vertices an average of
[250+239+250+232] /197 = 4.93 steps from its master

vertex. With two steps to reach either +2000, we have



an average of 6.93 steps for 197 vertices.

Remaining landing pad vertices (1-5, 7-9, 11-15, 17-19):
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Each of these 32 vertices contains 100 vertices in its

domain, an average of (250+245)/100 = 4.95 steps from

the landing pad. It takes an average of (70-14)/16

3.5 steps to reach these remaining landing pads,

yielding an average of 8.45 steps for 3200 vertices.

Thus, we have a weighted average of

[{101-4.95 + 202'5.95 + 396-10.45 + 8.45-3200]/4096 = 8.03.

Observing that it takes at most 6 steps to reach a landing

pad and at most 9 steps to reach a vertex up to 50 away

(using 1 and 10) we get an algorithmic diamter of 15. ///

Example 6.6.13: 2,,, using S={1,8,64,512}.

Consider the following domains of multiples of 64:



285
Any multiple of 512 (0, %1, %2, +3, 4):

Clearly, any multiple of 512 will be a best
intermediate landing pad vertex, and hence a master
vertex. Each has a domain consisting of the vertex

itself, plus 32 vertices on either side. Hence, we have

8 sets of 65 vertices with an average of 256/65 3.94

steps from landing pad, with an average of 16/8 = 2

steps to the proper landing pad. This yields an average

of 5.94 steps for 865 = 520 vertices.

+4, +12, +£20, +28 multiples of 64:
Without loss of generality, these are the toughest
multiples to get to, thus being the minor landing pad
vertices. We have 8 sets of 63 vertices, an average of
248/63 = 3.94 steps from the nearest multiple of 64.
The average number of steps to one of these multiples

of 64 is 22/4 = 5.5, yielding an average of 9.44 steps

for 863 = 504 vertices.
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remaining:
The remaining are 48 sets of 64 vertices (32 toward
lesser landing pad vertices, the vertex itself, and 31
vertices back in the direction of a higher order
landing pad -- possibly a master vertex) an average of
252/64 = 3.94 steps from the multiple of 64, with an
average of 96/24 = 4 steps to get to the proper landing
pad yielding an average of 7.94 steps for 4864 = 3072

vertices.

Thus, the weighted average is

[5205.94 + 9.44:504 + 7.94-3072] /4096 = 7.83.

Observing that the maximum number of steps to reach a
multiple of 64 is 7 (to reach 2864 = 1792) and the maximum
number of steps to reach a vertex up to 31 (or 32; in this
case they are the same for trying to reach 28 or 29 away)
vertices away (using 1 and 8) is 7, we obtain a maximum

(algorithmic) diameter of 7+7 = 14. ///
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6.7 Network Construction and Routing Issues

Clearly, we have identified proposed graphs based on %,
which show superior values to those of the hypercube. For
example, the graph based on Z,,,, with generating set
S={1,4,16,64,256} has degree matching the hypercube on
n=1024 vertices, yet has an algorithmic diameter of 8 (20%
smaller than the hypercube's value of 10) and an average
algorithmic diameter of 4.64 (an 8% reduction over the
hypercube's value of 5.0). The flexibility in design shows
that we can optimize in favor of either degree or diameter,
depending on what is desired. In addition, any size graph
may be used as a model, and a small amount of subsequent
effort can identify an appropriate generating set.

For large values of n, physical construction of such a
network should not be too difficult, since the circle of
vertices may "accordion" into a donut shape, with "hinges"
falling at the landing pad vertices and connections at the
inside of the donut hole. Adding or subtracting vertices
should not require too much rewiring, as the vertices are

sequential, though jumps across the additions would need to
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be adjusted.

In short, only the concern about the possibility of
routing bottlenecks need still be addressed. In the 1024
hypercube, routing is trivially determined by a 10-tuple
with a 1 in any entry that requires a step along a
corresponding edge. Travel along any of these identified
vertices may be performed at any time during the routing
with equal results, and hence the routing is bottleneck-
free. Schibell and Stafford [SS] go to great pains to
describe alternate routing methods in case of bottlenecks,
but the process seems quite cumbersome and would clearly
contribute to increasing the algorithmic diameters of their
proposed networks.

One disadvantage of our greedy algorithm is that it is
more likely to require a first step on a "large" generator
rather than a "small" one, since a larger fraction of the
possible target vertices are typically beyond the largest
generator's reach than within it. This may cause some
bottlenecking, depending on how the routing and processing

timing is performed. However, it may not be too difficult to
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predetermine all the required jumps which would be produced
by the steps above, and to select them in any order. Making
a jump to another vertex would then require taking that
"list" of jumps along, and crossing off each as it is
performed.

Better still, though, is that any generating set
consisting entirely of powers of a single generating element
would allow an algorithm very similar to that used in the
hypercube. For example, consider the graph based on the
group Z,ps, with generating set S={1,4,16,64,256}. Labeling
all the vertices in base two would give us 10-tuples again,
while the generators would also be 10-tuples, each
consisting of one 1 and the rest zeros when written in base
2. The routing problem is thus nearly reduced to that of the
hypercube's: eliminating 1's from the 10-tuple representing
the difference between the current vertex and the target
vertex. It would thus be a simple matter to determine which
of the generators would contribute to that elimination

process.

Labeling each vertex in base 4 might be even better,
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yielding a tidy generating set of + versions of (0,0,0,0,1),
(0,0,0,1,0), (0,0,1,0,0), (0,1,0,0,0), and (1,0,0,0,0), with
the need to match the entries of the target route, rounding
up where required by the greedy algorithm. For example,
consider Z,, with generating set S={+1,+4}. This may be seen
as having the generators x(0,1) and #(1,0). For a target
route of, say, (1,2) (equivalent to +6 vertices away), the
routing would obviously be to add two of the last entry
(0,1) and one of the first entry (1,0). For a target route
of (1,3), the second entry would be considered closer to
four (3 rounds up) so we would see this target route as
(2,-1), and this clearly requires 2 of (1,0) and 1 of
-(0,1).

In either case, the routing is certainly
straightforward and bottleneck-free. This routing and
labeling concept explains why we put such an emphasis in
Tables 6.6.1 and 6.6.9 on generating sets consisting of

powers of a single number.
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6.8 Comparison of Diameters to Theoretical Optimums

It is of some interest to compare the results of the
above efforts to generate useful Cayley graphs with the
theoretical optimums possible. Upper bounds remain in the
realm of Theorems 2.2.4 and 2.3.1. These bounds were found
to be quite soft, but there is no better alternative at this
time. However, we may construct theoretical lower bounds on
Cayley graph diameters based on both non-abelian and abelian
groups. These lower bounds will be established using the
following combinatorial arguments.

Clearly, if starting from a particular vertex in a
Cayley graph of degree k on n vertices, no more vertices may
be reached in d steps than may be reached in the same number
of steps in an infinite k-regular tree. (This is because a
tree never repeats a vertex, while a Cayley graph will
eventually repeat vertices.) Hence, the distance from a
vertex in an infinite k-regular tree to the nearest n
vertices in the tree will be the smallest possible diameter
for a Cayley graph on n vertices.

Because of the branch-back aspect of Cayley graphs, not
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all generators are available at any given position to seek
out new vertices. Hence, we may refine this general argument
on the infinite k-regular tree to those of rooted trees with
specific numbers of branches available at each generation,

depending on whether the underlying group is abelian or non-

abelian.

Case 1: Non-abelian groups.

For a non-abelian group, the Cayley graph of degree k
may be simulated by the tree beginning with a root with k
branches extending from it. Each vertex at the end of a
branch will then have k-1 possible branches extending from
it to a new vertex. (The k*! branch would correspond to
tracing back along the edge just arrived on, thus repeating
a vertex.) At each new level, this process is repeated, so
that, for p:2, we have the following number of vertices in p

generations below the root:

Vo =1 + k + k(k-1) + k(k-1)2 +...+ k(k-1)°?
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Then, for a degree-6 Cayley graph on 1024 vertices, it
would be impossible to do better than the smallest p for
which V,21024. From Table 6.8.1, p is 5, and so the diameter
of such a Cayley graph must be at least 5. By this standard,
Schibell's SS3 on 1024 vertices with degree 6 and diameter 7

is a pretty good attempt.

TABLE 6.8.1: Vp FOR NON-ABELIAN TREES OF VARIOUS DEGREES (k)
AND p GENERATIONS BELOW THE ROOT

p=2 p=3 p=4 p=5 p=6 p=7

k=4 17 53 161 485 1457 4373
k=5 26 106 426 1706 6826 27306
k=6 37 187 937 4687 23437

k=7 50 400 2500 15100 90700

k=8 65 585 4225 29705

k=10 101 911 8201 73811

k=12 145 1597 17569 | not found

Case 2: Abelian groups (e.g., the Z.'s).

Finding the number of vertices for a tree emulating an



294

abelian group takes a bit more work, since the path a+b.a
will lead to the same vertex as the path a-asb. Hence, the
task is to construct a tree that, for each new generation,
has no path that contains the same number of each of the
same generators. In addition, the path a+b-a*sb+«a is the same
as the path bsbs«a, since one "a" and its inverse "a" will
cancel each other. Hence, we must count the number of paths
without matching pairs of a generator and its inverse. The
analysis of such trees is a combinatorial problem which is
best broken down into the counting of distinct sets with no

inverse pairs.

Degree is 4, with S'={a,b,a"*,b*}:

Consider for this generating set how many distinct
elements a path of generators may contain. Since there are
only 2 generators and their inverse partners, we can only
have paths that are either:

1. A sequence of only one generator. since there are
only four distinct generators, there will be 4 such paths

for each generation value, or a total of 4p of them.
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2. A sequence of exactly two distinct generators.
Since the group is abelian, the order of these generators is
not important, but rather only the number of each of the two
generators distinguishes it from any other path containing
these two generators. That is, asb«a is not distinct from
a-a+sb, since each sequence contains two a's and one b;
however, asa«asb is distinct from a-a+s since the first
sequence contains 3 a's while the second contains only 2
a's. Clearly, there are C(4,2)=6 ways to pair up the four
generators, where two of these must be discarded since they
contain inverse pairs. Thus, we have a total of 4 such
sequences to consider.

Our task is to consider one such allowed pair of
generators and to count how many distinct sequences we can
construct with them of length 2 through p, where order is
not important. For the pair {a,b} and a sequence of length
y, this amounts to counting all the ways to have x of
generator a and (y-x) of generator b, with at least one of
each. This is a classic "ice cream distribution" problem in

combinatorics. It comes under the heading "Combination with
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Unlimited Repetition", and can be found in [JT], pages 66
through 70.

For two distinct generators, this is the equivalent of
having a row of y-2 empty cones (two of the initial y cones
are filled with one each of ice cream style a and ice cream
style b) and deciding where to put a dividing partition
between, or at the end of the row of, cones. Each place you
can put a divider yields a different unordered sequence of
y-2. For example, if y is 5, we can have the partitions
"alb,b,b,b", or "a,alb,b,b", etc. Clearly, there are y-1
choices for where to put the divider. (For larger sets, we
will use the combinatorial value of C(y-1,s-1) for each set
size s and for y=s through y=p. Hence, we have for two
distinct generators C(y-1,2-1) = C(y-1,1) = y-1, as above.)

Thus, for degree 4, our tree will have

V, =1 + 4p + 4[(2-1)] = 1+48+4 = 13 vertices,
V, =1 + 4p + 4[(2-1) + (3-1)] = 25 vertices,
Vo, =1+ 4p + 4[(2-1) + (3-1) + (4-1)] = 41 vertices,
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or, in general,

Vo =1+ 4p + 4[1 + ... + (p-1)] for p=22.

Thus, we can generate these by noting that

Vour =V, + 4 + 4p

when the degree is 4. Then for an abelian Cayley graph of
degree 4 with 32 vertices, we must have a diameter of at

least 4. We have, in fact, accomplished this with S={1,7}
allowing a backdoor route. With only the greedy algorithm,

our best diameter is 5.

Degree is 6 with S'={a,b,c,a?, b, c}:
A similar argument to that shown in the degree 4 case
has

1. 1 root vertex.

2. 6p sequences consisting of only one generator and of
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length 1 through p. (6 of each such length, since 6
distinct generators.)

Sequences of exactly two distinct generators. There are
C(6,2) - (# of inverse pairs) = 12 such possible pairs of
generators, each of which contributes [1+2+...+(p-1)]
distinct vertices (sequences) as reasoned above in the
degree 4 case.

Sequences of exactly 3 distinct generators. There are
2°=8 such generating trios, since such a sequence must
contain only (a's or a''s) and (b's or b*'s) and (c's
or c*'s). Each such trio will contribute C(y-1,2)
distinct sequences for each value of y from 3 through
p. ("Ice cream distribution" of choosing among y-1
places to put 2 dividers. For example, when y=7, three
of these are taken up by distributing one each to a, b,
and ¢, leaving 4 more choices. Then we have 4 more
generators and 2 dividers left to position. This
amounts to deciding where among 4+2 = 6 spots to place
the two dividers, since that determines how many of

each generator is in the sequence. Hence, we would have
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C(6,2) = C(7-1,2) = C(y-1,2) such sequences for y=7.)

Hence, we get for degree 6 that

Vo =1 + 6p + 12[1+2+ ... + (p-1)]
+ 8[C(2,2) + C(3,2) + ... + C{(p-1,2)]
and so
V, = 1+6 = 7
V, = 1+ 62 + 12 = 25

S
]

1 + 63 + 12[1+2] + 8[1] = 63

and

Vour = Vo, + 6 + 12p + 8[C(p,2)] for p=3.

Running through some of these, we get that V,=129,
Vs=231, V=377, V,=575, Vz,=833, V,=1159. This tells us that
the best we could do for an abelian group of size 1024 and
degree 6 is a diameter of at least 9. In comparison, our

algorithmic diameter is 14.
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Degree is 8 with S'={a,b,c,d,a*,b?,c?,d}:

The same arguments as above apply, though we need to
modify the coefficients appropriately and to add a term for

sequences of exactly 4 distinct generators. Hence we have

1. 1 root vertex.

2. 8p sequences consisting of only one generator and of
length 1 through p,

3. C(8,2)-(4 inverse pairs) = 87/2 - 4 = 24 possible sets
of generator pairs, each of which again contributes
[1+...+(p-1)] distinct vertices (sequences).

4. C(8,3)-(# of sets with inverse pairs)

8:7-6/[3:2] - (4 pair choices):(6 partner choices)

56-24 = 32 possible trios of exactly 3 distinct
generators. Again, each trio contributes C(y-1,2)
distinct sequences for each value of y from 3 through
p.

5. 24=16 allowed sets of 4 distinct generators. Each
"quad" contributes C(y-4+3,3) = C(y-1,3) distinct

sequences for each value of y from 4 through p.
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Hence, we get for degree 8 that

Vo =1+ 8p + 24[1+ ... +(p-1)]1 + 32[C(2,2)+ ... +C(p-1,2)]
+ 16[C(3,3)+ ... +C(p-1,3)]
and so
V, = 148 = 9
V, = 1 + 82 + 24 = 41
Vy, =1 + 83 + 24[1+2] + 32[1] = 129
Ve, = 1 + 84 + 24[1+2+3] + 32[1+4C(3,2)] + 16[1] = 321

and

Voo = Vo, + 8 + 24p + 32[C(p,2)] + 16[C(p,3)] for px4.

Running through some of these values we get V.=681, Ve=1289,
V,=2241, V,=3649, and V,=5641. This tells us that the lower
limit for an abelian group of degree 8 and size 1024 is
diameter 6, while for degree 8 and size 4096 the lower limit
on diameter is 9. Our algorithmic diameters are 9 (8

allowing "backdoor routes") and 14, respectively.
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Degree is 10 with S'={a,b,c,d,e,a*,b?,ct,d?* e1}:

The same type of argument leads to

Vo =1 + 100 + 40[1+...+(p-1)] + 80[C(2,2)+...+C(p-1,2)]

+ A[C(3,3)+...+C(p-1,3)] + 25[C(4,4)+...+C(p-1,4)]

where

b
1]

# of allowed sets of 4 distinct generators

C(10,4) - (# of sets with one or two distinct pairs)

C(10,4) - [5C(8,2) - C(5,2)]

210 - [5-28 - 10} = 210-130 = 80.

Hence, for p:x5, we have

Vour = Vo, + 10+ 40p + 80[C(p,2)] + 80[C(p,3)] + 32[C(p,4)].

Running through some totals, we get V,=11, V,=61, V,=231,
V,=681, V;=1683, V,=3653, V,=7183. Hence, the lower limit for
an abelian group of degree 10 and size 1024 is diameter 5,
while for degree 10 and size 4096 the lower limit on

diameter is 7. We have only examined a group of size 1024
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with degree 10, for which we found a diameter of 8.

Note that the previous analysis only considered
generating sets of even size. It would not be difficult to
include odd-sized generating sets (i.e., S contains the
element n/2) as the odd element n/2 is its own inverse and
therefore may only be used once in the sequence. However,
this was not pursued, since we are primarily interested in
even generating sets and the analysis is used only to get a
rough idea of how "tree-like" the Z,-based Cayley graphs
are.

Note also that, when all the recursion relations are
examined together, a clear trend emerges: each increase from
p to p+l increases the number of vertices in the tree by a
polynomial in p of degree (k/2)-1. This is a direct result
of the "ice cream distribution" evaluation. For a given
sequence length p (the number of "cones") and a given
subset of generators of size s, this evaluation yields a
result of C(p-1,s-1). Hence, for p+l and a maximum s=k/2
(inverse pairs are not allowed in the same sequence) the

highest term will be a of degree (k/2)-1 in p. That is, for



each degree k=2m, we have

Vo = Vo + 8, + @10 +...+ a,,0™?,

for appropriate constants a;

In Table 6.8.2 we present these results, which

generally average around 50% over the theoretical lower

limit found with the previous combinatorial argument.
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TABLE 6.8.2: THEORETICAL MINIMUM DIAMETERS FOR GRAPHS BASED

ON ABELIAN GROUPS vs. DIAMETERS OF Z -BASED GRAPHS
Degree 4 6 8 10 8 10
n= 32 1024 1024 1024 4096 4096
Theoretical Bound 4 9 6 5 9 7
Z, 5(4*) 14 9 8 14 *x

** No such Z -based graph was studied.

* Note that 4 is the diameter allowing backdoor routing.
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6.9 Conclusions and Unanswered Questions

From all the explorations in Chapter 6, it is clear
that Cayley graphs based on the groups of form Z, may be
used to improve on the hypercube network model for parallel
processing supercomputers. At each value of 2¢ examined, the
equivalent Z, on k generators yields an algorithmic diameter
that is roughly 20% smaller and an average algorithmic
diameter that is on the order of 8% smaller. For n=1024, a
reduction in generators by 20% (over the hypercube's 10) may
also be accomplished with a 10% better algorithmic diameter,
though at a sacrifice of roughly 8% in average algorithmic
diameter. (Table 6.6.1.) With the "building block" concept
of generating set construction, these trends should be valid
for every possible value of 2k,

In addition, the family of Cayley graphs based on Z,
has no restriction on values for n, so full flexibility in
network size is available. Finally, routing for appropriate
generating sets is simple and bottleneck-free.

It is not clear how to evaluate or weight all the

trade-offs between the Cayley graphs on Z, and those on some
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of the more exotic, theoretically superior groups mentioned
in Table 6.1.1. Though [SS] admit to the somewhat
inefficient nature of their general-purpose routing
algorithm described in Chapter 5, it is possible that case-
specific routing would significantly improve the performance
of their candidate architectures listed in Table 6.1.1. It
would be interesting to explore the underlying assumptions
of Pitelli and Smitley's [PS] computer simulation on network
performance, and to see how the equivalent % 's would
compare in appropriate simulation to the candidate
architectures proposed by Schibell and Stafford [SS] or
other researchers.

The proposed Cayley graphs based on exotic groups were,
in principal, designed to optimize the theoretical constants
explored in earlier chapters, so it is reasonable to assume
that those constants have better values than Cayley graphs
based on Z,. However, since we claim performance
improvements over the hypercube with our family of Z,, we
should show at least roughly comparable values of A, (and,

therefore, expansion characteristics) to those of the
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hypercube for equivalent n.

Alon and Milman [AM] assert that A,=2 for every
hypercube. We claim here that this value may be at least
matched by the Z, architecture for each n=2%, where k is
even. By the Lovasz algorithm in Appendix D, we have that
the eigenvalues of the adjacency matrix A(G) on the Cayley

graph based on Z, with generating set S={1,22,2%, ...,2%2} are

. = 2[cos(2nt/n) + cos(2:22nt/n) +...+ cos(2:2x2nt/n)]

= 2[cos(2nt/n) + cos(8nt/mn) +...+ cos(mt/8) + cos(mt/2)]

for t from 1 through n-1. When t=2%2, the corresponding
eigenvalue is k-2, since the first term in the parenthesis
is zero while all other terms are equal to 1. Hence, A,<2.
Clearly, the last term in the sum is zero whenever t is
odd, and is -1 whenever t is a multiple of 2 but not of 4.
Hence, only for t=0(mod 4) does the hope remain that £.,>k-2.
However, this argument repeats itself when considering the
second to last term in the summation. For t a multiple of 4,

the second to last term will be zero or -1 for all such
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multiples except when t=0(mod 16); that is, for every fourth
multiple of four. Obviously, this process of elimination
continues until t=2%2?, from which we originally obtained the
value of §.=k-2. Hence, &.<k-2 for every t, implying that
A22, and so A,=2.

So, we have constructed an infinite family of Cayley
graphs built on Z, with A, always equal to 2. (It is
possible that a better choice of generating sets exist for
each n to improve on this number, but no efforts have been
made to establish such a claim.) Note that this result
forces all the theoretical constants explored in earlier
chapters to be bounded away from zero for this family of
graphs.

However, we have mot constructed a Ramanujan family,
since p > k-A;, = k-2 > 2(k-1)*¥ for all k»7, yet our degree
grows infinitely as log,n. We did show, though, that if the
degree is allowed to expand as log,n, we can describe an
infinite family of graphs with A;=2, clearly bounded away
from zero. Observe thét, for fixed positive integer r, there

exists mel such that log,n < n/r for every n>m. Thus, by
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dropping all the graphs with n<m from the sequence described
above, the remaining infinite (sub-) sequence forms an
infinite family of graphs with A;=2 and degree less than
n/r. Hence, we can construct an infinite family of graphs of
degree less than any fixed fraction of n where A,=2, thus
bounded away from zero.

Earlier, we showed that, as n gets very large, it is
impossible to bound A, (or other constants) away from zero
with fixed degree of 4 and generating set S={z1,+x}.
Expanding on this, we speculate that if the degree is
bounded above by any fixed number, then A, will tend toward
zero as n gets very large, regardless of the choice of
generating sets. Certainly the lower bounds achieved in
Theorem 3.4.3 go to zero. Also, it appears obvious that the
Lovasz algorithm sends max{f.} to k as n gets very large,
thus sending A, to zero. (Intuitively, as n gets very large
yet the number of terms in the summation remain fixed, there
should be enough "gaps" in the generator values to allow a
choice of t that sends each of the values of the cosine

terms to very near 1.) Establishing an elegant proof (or
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refutation) of this speculation would be satisfying.

It is unclear if there is some n-related function that
is a "break" point for restrictions on the degree of the
Cayley graphs to construct an infinite family of graphs with
A, bounded away from zero. We have shown that it is possible
if the degree is allowed to increase by log,n, yet not
possible for degree 4 (and, we speculate, for any fixed
degree) . It would be interesting to see if some function of
n that is more restrictive than a log-based function would
prevent such a family from being constructed.

In Section 6.4, we noted a trend (over most values of n
examined) that at least one of the generating sets of size 4
produced a Cayley graph with simultaneously the highest A,
and the smallest diameter possible. This is worth further
study, since establishing such a correlation for graphs of
higher degree and larger n would be quite useful in finding
generating sets (and, thus, the specific Cayley graphs)
which optimize network diameters.

Short of establishing this correlation, or some other

equivalently useful relationship, computer programs may be
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written to, for specific n, exhaustively examine all
candidate Z,-based Cayley graphs for minimum algorithmic
diameter. This method would be crude and tedious, but would
eventually supply a list of desirable candidates.

Though Kazhdan constants proved to yield only very
loose bounds in A,, h(G), and c,., some of the patterns
observed while solving for Kazhdan numbers were of help. In
particular, computer search results for best generating sets
to maximize K.(S) helped establish the set S={+1,+x} (where
x is the truncated square root of n) as a top candidate for
producing graphs with good (algorithmic) diameter. A proof
(or disproval) of the Chapter 3 speculation that {+1, +x}
produces as good or better a value for K. (S) than any other
generating set of size 4 may provide further useful
insights.

In conclusion, though Chapters 2 through 4 demonstrate
that A, is directly related to both the diameter and the
expansion characteristics of the graph, the theoretical
bounds found in the surveyed literature proved to be quite

loose for Z,-based Cayley graphs. These bounds may, in fact,
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be rather poor for most (all?) kinds of graphs, though
exploring that topic is beyond the scope of this thesis.

On the more concrete side, this chapter's study of
Cayley graphs based on underlying groups from the family of
Z, showed that they cannot compete with the true full and
average diameters achieved by Cayley graphs based on more
exotic underlying groups. However, the flexibility,
simplicity, and efficient routing of Z,-based Cayley graphs
provide practical results superior to those of the
hypercube, and hence may deserve a closer look from computer
researchers as candidate models for parallel processor

supercomputer architectures.
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APPENDIX A

RAYLEIGH QUOTIENT THEOREM

In Chapter 2, the proof of Theorem 2.2.1 requires a
step that is justified here.

First, let B be an nxn self-adjoint matrix. (For real
matrices, this requires that it be symmetric.) The Rayleigh

quotient for xeC" (or R") and x+#0 is defined as the scalar

R(x) = (Bx,x)/|x|>.

Then we present a standard theorem which links this

scalar to the eigenvalues of B.
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THEOREM A.l1 ([FIS], Theorem 6.36): For such a B we have

maxR (x) = 1largest eigenvalue of B

minR(x) = smallest eigenvalue of B.
Proof: By several well-known theorems, it is possible to
select an orthonormal basis B={x,,x%,,...,X,.} of

eigenvectors of B such that Bx; = Nx;, where A, > A, »
> A, 2 A, are real eigenvalues. Then, we may write x as

a linear combination of the x;'s, as

n-1
X = E a;X;,
10

where a;eC (or R) for every i. Hence,

R (x) Ix|*

(Bx, x)

n-1 n-1

(Y a;hx;, y ajxj)
0 7

n-1

3 lasPAlx, 02,
=0
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since each term x;x; = 0 whenever i*j because the x,'s form
an orthonormal basis. Also due to orthonormality, |[x;|*=1

for each value of i, so

n-1
R(x)IxI? = Y las|?A;.
-0

But

n-1

n-1 n-1
Y lail®A, < Y lag]?A; < Y lailPAa,
-0 -0 10

since Ay < ... < A; £ ... <€ Ay,;. Then, by moving A, and A,
outside of the summation signs in the previous inequality
n-1

and noting that [x|* = ¥ |a;|?, we have
0

n-1 n-1
Ao Y [aif? = Aolxl? < R(X)IXI? < Ap,lxi® = A X |as)?.
0 -0

Hence

A, < R(X) < A,,. a

Clearly, if we choose a vector (n-tuple) x which is in

a subspace of R" that is orthogonal to the eigenvector x,,
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then it may be written as a sum of eigenvectors x, through

X,,. That is

»
]

0X, + &y%X; + @,X; +...+ @,.,X,,

a;,X; + @X, +...+ 8,,X,.;.

In the proof of Theorem 2.2.1, just such a vector f is
created, where it may be written as a linear combination of
the eigenvectors associated with the eigenvalues A, through
A,.,. That is, a,=0 in this case. Then

n-1 n-1
R(D)IE = (Qf,£) = ¥ |asl*As = X lailAy,
10 -1
and so

AEI?2 < R(E)IERR < A L, 0E)2.
But R(f)If|1* = (Qf,£f), so
MIER < (QF,£) < A LIE)?

as desired in the proof of Theorem 2.2.1.
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APPENDIX B

MAPLE PROGRAMS FOR LOVASZ AND KAZHDAN CONSTANTS

PLUS SELECTED RESULTS

B.1 Kazhdan Constant Program

The following program KAZ1.MS, written in MapleV,
evaluates Kazhdan constants for groups of the form Z,. The
range of groups Z, is specified by placing the desired lower
and upper values of the range (inclusive) in place of A and
B in line 2 ("for n from A to B do"). It is constructed to
find the best (highest) Kazhdan constant for each Z, for the
case of generating sets consisting of:

a. all elements of Z,

b. any set of size 2 up through size "ztop"

(inclusive) of any elements of Z,.
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Note that the search method is by exhaustion of all possible
candidates for each size range (excluding inverses in the
"second half" of Z.'s elements). Note also that any
candidate set examined which is not actually a generating
set for Z, will be eliminated from consideration since it

will produce a Kazhdan constant of zero.

KAZ1 .MS

with (numtheory) :

for n from A to B do
lprint (n);

ztop:=3:

a:=n mod 2:

if a=0 then t:=n/2:
else t:=(n-1)/2:

fi:
g:=factorset (n) ;
g:=nops(g) :

if g=1 and a=0
then fall:=n/2;
elif isprime(n)
then fall:=(n-1)/2;
elif g>1 and a=0
then fall:=(g[2]-1)*n/(2*g[2]);
else
fall:=(g[1]1-1)*n/(2*gl[1])
£fi;
lprint (*f for S=n is~, fall);
lprint ("The Kazhdan constant for the whole group is”,
evalf (2*sin(Pi*fall/n), 4));
Z:=2:
x:=trunc(sqrt(n)) :

V VV V V V V VYV VVVVVVYVVVVVVYVVY
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Hh
1
ol

while z<=ztop do
listl:=[seq(i, i=1..(z-1))]:
listf:=[£f]:
lists:=[op(listl), op(listf)]:
bestlist:=1lists:
m:=0:

while m<z do
if f=fall
then m:=z:
elif lists[z-m]<t-m
then
if m=0
then lists:=subsop(z-m=lists[z-m]+1,1lists):
else
lists:=subsop(z-m=1lists[z-m]+1,1lists) :
for j from 1 to m do
lists:=subsop(z-m+j=1lists[z-m] +j,lists):

od:
fi:
m:=0:
fofs:=t;
i:=1:
while i<=t do
fhold:=f:

for j from 1 to z do
fhold:=max (fhold, abs (mods (i*lists{j]l,n))):

od:

if fhold=f then
i:=t+1;

else

fofs:=min(fofs, fhold) ;

if i=t then
bestlist:=lists;
f:=fofs;
i:=t+1;

else i:=i+1;

fi:
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fi:
od:
else
m:=m+1:
£i:
od:

lprint ("The best £ for S of size =",z, is~, f);
lprint ("The best set for S is~,bestlist);
lprint ("the Kazhdan constant is~,
evalf (2*sin(Pi*f/n),4));

if f=fall

then z:=ztop+1;
else

Z:;=2z+1:
fi:

od:

V V.V V V V V VYV VYV VYV VYV VVY

Selected results of running KAZ1.MS for n from 10 to

200 are presented below in Table B.1.1.
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TABLE B.1.1: SELECTED RESULTS OF KAZ1.MS FOR n=10 THROUGH 200

|S|=4 |S|=6 |S|=8 |S|=n
n s | & S % |f S % |f &
10] 3 13]162] 4 1,24 | 1.90 o 4] 1.90
1] 3| 13| 151 4 1241182 | 4 1234182 | 5] 198
12 3| 1,L3]141) 4 1,24 | 1.73 ok 41| 173
131 3| 1,3 133 4 1,241 165] 5 1,235 1.87| 61 199
4] 3] 131125 5 1,351 180 | 6 1237|195} 6] 195
15] 3] 13| 118} 5 1,25 | 1.73 o 51173
16} 41 14| 142 5 1,25 166 | 8 1,248 2] 8 2
17) 4| 14| 135)] 5 1,251 1601 7 1,248 | 1921 81199
18] 4| 141291 6 1,26 | 1.73 o 6| 173
19 4| 14]1123)] 6 126 | 1.67 | 7 1,247 | 1.83 | 9{ 1.99
207 4| 14]118] 6 126 | 1.62| 8 1,248 | 1.90| 8| 1.90
21 4| 14} 113] 6 1,26 | 156 | 7 1,237 .73 | 7} 173
22 4| 14§ 108] 6 1,26} 151 | 8 1,248 { 1.82 | 10 ) 1.98
23| 4| 14]104] 6 1,261 146 | 8 1,248 | 1.78 | 11 | 1.99
241 4| 14 1l 6 1,26 | 141 | 8 1,238 | 1.73| 8} 173
25 5| 15118 7 1,37 154 | 10 1,2,510 | 1.90 | 10 | 1.90
26| 51 15| 114 8 1,391 165 10 12,510 | 1,87 | 12 | 1.99
274 5| 1L,5)110] 9 1,39 | 1.73 o 91173
28| 51 151106 8 13,10 156 | 10 12510 1.80 | 12| 1.95
29| 5| 1,5} 103| 8 1,38 153 | 10 1,25,10 | 1.77 | 14 | 2.00
301 5| 15 11 9 1,39 162 | 10 124,10 f 1.73 | 10 | 1.73
31 51 1,5].971 ] 9 1,39 | 1.58 | 10 1,24,10 | 1.70 | 15 | 2.00
32 51 1,5} .943] 9 1,3,10 | 1.55 ] 10 1,24,10 | 1.66 | 16 2
33| 5| 15916 9 1,391 151} 11 1,24,11 | 1.73 | 11 | 1.73
** |8|=8 column not required when f for |S|=6 is the same as f for all generators.




|S|=4 |S|=6 |S|=8 IS |=n
n f [s % f S % f S % f |%
34| 5| 15].892| 9 139 ]| 148 | 11| 124,11 | 1.70 | 16 | 1.99
35| s 1,5} 88| 9 1,39 | 145 | 11| 124,11} 1.67 | 14| 1.90
0] 6| 1,6].9081{ 10 1310 | 141 | 12| 124,12} 1.62 | 16 | 1.90
45| 6| 16| .813| 1 13,11 [ 139 15| 1,2515| 1.73 | 15| 1.73
sol 7] 1,7 .852] 12 1312 | 137 15| 1,2515| 1.62] 20 | 1.90
ss| 7| 1,7]1.779| 12 13,12 | 127 17| 1,2,12,18 | 1.65 | 22 | 1.90
60| 71 1,7|.728] 13 14,13 | 1.28 | 18 | 1,220,226 | 1.64 | 29 | 1.73
65| 8| 18] .766 | 16 1,4,16 | 1.41 * 26 | 1.90
70| 8] 18].703] 16 14,17 | 1.32 * 28 | 1.90
75| 8| 18} .658 | 16 1,417 | 1.24 * 25 | 1.73
80| 8| 18] .618]| 16 14,16 | 1.18 * 32 | 1.90
8| 9| 19].653] 17 14,17 | 1.18 * 34 | 1.90
9| 9| 19| .618] 18 14,18 | 1.18 * 30 | 1.73
95| 9| 19].587} 19 14,19 | 1.17 * 38 | 1.90
100 | 10 | 1,10 | .618 | 20 1,420 | 1.18 * 40 | 1.90
107{ 10| 1,00 | .579 | 20 1,420 | 111 * 53 | 2.00
121 | 11} 1,11 ) 563 | 22 1,522 | 1.08 * 55| 1.98
133 11| 1,11 | 514 | 25 1,526 | 1.11 * 57 | 1.95
144 { 12| 1,12 | 518 | 26 1,39,50 | 1.08 * 48 | 1.73
152 | 12} 1,12 | .491 | 26 1,6,29 | 1.02 * 72 ] 1.9
160 | 12 | 1,12 | .467 | 27 1,6,29 { 1.01 * 64 | 1.90
169 | 13 | 1,13 | 479 | 28 1,528 | .995 * 78 | 1.99
178 | 13 | 1,13 | .455 | 29 1,529 | .979 * 88 | 2.00
184 | 13 | 1,13 | .440 | 30 1,5,30 | .980 * 88 | 2.00
196 | 14| 1,14 | .445 | 31 1,6,31 | .954 * 84 | 1.95

* Note that calculations for |S|=8 were not made for larger n due to high time required.
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B.2 Lovasz Eigenvalue Program

Below is a MapleV program called LOVSUM.MS which is
designed to yield the best value of A, and the lowest
spectral radius pu for a given n during a search through all
generating sets of the form S={%1,+y}. The range of n is
specified by giving values to A and B in the first line.
Clearly, some modification in this program similar to
KAZ1.MS in B.1 above would enable the search to exhaust all
generating set possibilities, and therefore to find the best
A, and p for generating sets of size 4. The results of such
a modified program might yield higher A, and lower u in some
cases, though, as speculated in Chapter 6.4, it seems likely
that no improvement would be found for the generating sets
of size 4. However, no such program was written because we
need +1 in the generating set to use the greedy algorithm,
because the run time for KAZ1.MS was extensive, and because
such a program would require checking each candidate set to
see whether it would indeed generate 2,. This would add
significant complication to the program, and time to work

this out was judged low priority.
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LOVSUM.MS

for n from A to B do
X:=trunc(sqrt(n));
m:=0: s:=0:

a:=n mod 2:

if a=0
then t:=n/2;
else
t:=(n-1)/2:
fi:

mm:=4: Ss:=4:
for j from 2 to t do
for k from 1 to t do
z:=evalf (2* (cos (2*Pi*k*1/n) +cos (2*Pi*k*j/n))) :
if abs(z)<4 then m:=max(m, z) ;
else m:=m;
fi:
if abs(z)<4 then s:=max(s,abs(z));
else s:=8;
fi:
od:
mm: =min (mm, m) ;
ss:=min(ss, s) ;
m:=0: s:=0:
od:
lprint ("n=",n);
lprint (“best lambda 1 for gen set S={1,_ } is",
evalf (4-mm) ) ;
lprint (Tlowest mu is"~, ss);
od:

V V VVVVVVVVVVVVVVVVVVVVYVVYVVVVYV

Selected results of running LOVSUM.MS for n from 10

through 200 are presented below in Table B.2.1.



TABLE B.2.1: SELECTED RESULTS OF LOVSUM FOR n=10 TO 200 WITH

BEST RESULTS FOR GENERATING SETS OF THE FORM S={+1ty}
n A, 1} n Ay n n A n

10 3 1| 31 1.10 3.43 | 107 .366 3.81
11 2.60 251 32 1.17 2.83 | 118 336 3.66
12 2.27 1.73 | 33 1.16 341 121 317 3.84
13 2.62 265) 34 1.14 291 | 125 310 3.84
14 2.31 2251 35 1.08 3.47 | 133 319 3.84
15 2.38 296 | 40 922 3.08 | 142 281 3.72
16 2 262 | 45 936 3.57 | 144 .298 3.70
17 1.95 291 | 50 .788 324 152 .268 3.73
18 2 21 55 .658 3.66 | 160 .269 3.73
19 1.62 3.11| 60 .673 339 | 169 232 3.88
20 1.76 262 | 65 .588 3.70 | 178 228 3.78
21 1.51 3251 170 .526 347 | 184 235 3.80
22 1.49 251 75 .570 3.71 | 191 .209 3.89
23 1.67 3.13| 80 .485 3.51] 196 212 3.79
24 1.55 245 | 85 475 3.76 | 199 .200 3.90
25 1.47 324 90 426 3.57 | 200 .203 3.80
26 1.37 265} 95 426 3.78

27 1.27 3.32 | 100 .398 3.60

28 1.33 2.82

29 1.25 3.35

30 1.04 2.96
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Using an adapted version of LOVSUM.MS to evaluate A,
for various generating sets of size 8 for the Cayley graph

based on Z,,,,, we show the following results:

TABLE B.2.2: VALUES OF 1, FOR SELECTED GENERATING SETS OF SIZE
8 ON Zy,;,

S A S A
{1, 6, 36, 216} 1.201 | | {1,7, 32,224} 1.172
{1, 6,32, 196} 0.996 | | {1, 7, 40, 280} 1.172
{1, 6, 35, 210} 1.107 | | {1,7, 42,294} 1.016
{1, 6, 36, 256} 0.754 | |{1,7,42,273} 0.981
{1, 6, 43, 256} 0.755 | | {1,7, 42, 256} 0.967
{1, 6,42, 273} 1.167 | | {1, 7,42, 252} 0.948
{1, 6,42, 252} 1.004 | | {1,7, 38, 266} 0.899
{1, 6,42, 256} 0.763 | | {1, 7,35, 230} 0.797
{1, 6,37, 222} 0.986 | | {1,7,49,343) 0.778
{1, 5,25, 125} 0.584
{1, 4, 16, 64} 0.163
{1, 8, 64, 256} 0.586




330

The thrust of these results is that there does not seem
to be a predictable pattern in producing the best value of
A,. It seems clear that there is a local maximum at or near
the generating set which consists of powers of 6, but it is
also true that powers of 7 and some cross-pollination of 6's
and 7's show good results. Also, small perturbations in
values of the generating elements can have a significant
effect on A;,. Hence, it would seem that examination by
exhaustion of candidate generating sets would be the only

way to maximize AN, for generating sets of any fixed size.
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APPENDIX C

COUNTING WALKS IN THE k-REGULAR TREE
FOR

PROOF OF THEOREM 4.4.1

In the proof of Theorem 4.4.1, the claim is made that

p'(2t) = (1/t)C(2t-2,t-1)k(k-1)%?

where p'(2t) is the number of walks of length 2t in the
infinite k-regular tree T¢ beginning at a vertex v and
returning to the same vertex for the first time. Such a walk
of length 2t must make t steps away (or "up" a level) from v
and t steps back (or "down" a level) toward v.

Consider v to be at zero (or "ground") level. Then we
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may view a vertex 1 step up (away) from v to be at level 1,
a vertex 2 steps up from v to be at level 2, and so on. To
move up a level, there are k choices when moving from v at
level zero to a vertex at level 1, and k-1 choices for every
jump up between higher levels. Moving down a level allows no
choice: there is only one path heading back toward v.

Hence, a walk of length 2t which begins at v and
returns to v for the first time only at the 2t* step will
have had k choices for its first step, and k-1 choices for
each of the t-1 up steps taken. That is, there are k(k-1)t!
distinct walks possible for each allowed distinct string

containing t ups and t downs. Then

p"(2t) = ak(k-1)*1?

where a. is the number of distinct allowed strings of length
2t containing t ups and t down steps. Thus, our task reduces
to finding a,..

Claim: Qny1 = 8,83 + An,8, +...+ A,a,, + a3,

where a,=1 and a,=1.
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Clearly, every allowed string must begin with an up and
end with a down in order to satisfy the constraints of
beginning and ending at vertex v on level zero. Thus, a,=1,
since there is only one possible string of length 2
beginning with an up and ending with a down. Similarly,
after the initial up, the next entry in the string must also
be an up for any allowed string of length greater than or
equal to 4, since the walk may not return to vertex v before
the last step. Hence, a,=1, with the only allowed such
string being up-up-down-down.

To demonstrate the recursion relation claimed, we must
find a convenient way to count distinct subsets of allowed
strings. As discussed above, the first entry in any such
string must be up, while the last must be down. Then any

allowed string counted by a,,, will be of the form

up-- (string of length 2n)--down.

Observe that the interior string of length 2n begins and

ends at level 1, and is restricted to remaining at or above



334

level 1 during its entire run. This allows us to partition
our set of allowed strings of length 2(n+l) into subsets
defined by the location of the first return to level 1
within the interior string of length 2n. For example, the
subset whose interior strings begin with up-down will
certainly be distinct from the subset whose interior strings
begin with up-up-down-down.

These subsets may be labeled by the length of the
fragment of the interior string from its starting point at
level 1 to where it first returns to level 1. Since it will
require an even number of entries in the interior string to
return to level 1, the labels will be the values 2n, 2n-2,
2n-4, and so on down to the value 2. The value 2n
corresponds to never returning to level 1 during the entire
internal length of the interior string. That is, this subset
contains the number of strings containing n ups and n downs
which never returns to its starting level until the last
step. Such a set is, by definition, counted by a,. Since
a,=1, we have that the size of the subset corresponding to

the value 2n is a, = a,’'1 = a,a,.
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For the subset corresponding to the value 2n-2, we
count strings of length 2n-2 which never return to their
original level until the last step (there are a,, such
strings, by definition) and multiply by the number of ways
to finish the last 2 steps without going below level 1. But
this last quantity is the same as counting the number of
ways to do 4 steps without returning to the original level
(consider start and finish to be at level zero) until the
end, which, by definition, is simply a, = p'(2:2) = p'(4).

Then the subset labeled with the value 2n-4 corresponds
to the product of a,., and a,, and so on, until we reach the
subset labeled 2, which will correspond to the product of a,

and a,. Hence, we have that

Qny = a,a; + ap,a, +...+ aa,; + a;a,

as claimed. This recursion relation is apparently a common
one for problems in combinatorics, and the sequence of
numbers produced by its evaluation are called the Catalan

numbers. The closed formula for the value of the Catalan
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numbers is

a, = (1/n)Cc(2n-2,n-1)

for integer n:1, where C(0,0)=1 by definition. The
development of this closed form may be found in most
combinatorics texts. In particular, Jackson and Thoro [JT]
demonstrate its validity through a combinatorial problem
(Example 7, Chapter 8.1), while Roberts [Rob] evaluates it
explicitly through techniques of expansion.

With a. evaluated, then, we have finally

p'(2t) = ak(k-1)¢?

(1/t)C(2t-2,t-1)k(k-1)*?

as desired for Theorem 4.4.1.
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APPENDIX D

THE LOVASZ ALGORITHM

A common need for mathematical study of certain
problems is to find the eigenvalues of related matrices.
Alon and Milman refer to Lovasz [Lov] for a straightforward
formula for finding the spectrum of the Cayley graph's
adjacency matrix when the underlying group is abelian, and
hence all representations are 1-dimensional into the complex
numbers.

We present here the essence of Lovasz' argument for
evaluation of the spectrum of the adjacency matrix of a

Cayley graph, and show its reduction in the abelian case.
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Spectrum Evaluation ([Lov]): Let G=(V,E) be the k-regular
Cayley graph on I'={x,,...x,} with generating set S=S-
(IS|=k), and let A(G) be its standard adjacency matrix.

Let T={0,,...,0,} be the transitive automorphism group on G

of order n (described in Theorem 1.2.3) defined by

O; (X) = x«x; for every xerl.

Let m be the regular representation of T over the field of
complex numbers. That is, n(o) is an nxn permutation matrix
which corresponds to the way © permutes the elements of T.
(See Chapter 3.3 and ([Dial] for more discussion on the
regular representation and representations in general.)
Hence, n(c) preserves the adjacency of vertices in G, as
does its inverse n(c)"*. Then n(c) may be viewed as a change

of basis matrix which preserves that adjacency, and so

n(c) *A(G)m(c) = A(G)
or, equivalently,

A(G)n(oc) = n(c)A(G).
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Suppose v were an eigenvector of A(G), with eigenvalue

€. Then

A(G) {n(o)v} = {A(G)n(o)}v = {n(c)A(G)}v

n(c) {A(G) v}

n (o) {Ev}

E{n(o)v},

which says that n(c)v is also an eigenvector of A(G) with
eigenvalue .

Let M; be the eigensubspace of A(G) belonging to .
Then, by the above argument, M; is invariant under n. That
is, mg is a subrepresentation of m on the subspace VM.

Let X;,...,X: be the irreducible characters of T.
Refine each subspace M; into its irreducible n-invariant
subspaces, which we shall denote N;;, where i runs from 1 to
t, j runs from 1 to n; (the number of isomorphic copies of
N; in the decomposition), and X; is the character belonging
to the irreducible subrepresentation on N;;. Note that each
element of the subspace N;; is an eigenvector of A(G) with

the same eigenvalue &;.
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Let bij;,...,bij5n be an orthogonal basis for the
subspace N;;. (The b's are indexed by n;, which is both the
dimension of each N;; and the number of isomorphic copies of
N; in the decomposition.) Then, since the character of any
subrepresentation is the trace of the block submatrix of the
representation, and since the trace is independent of a

change of basis (for diagonalization), we have that

Xi (G) = tr(nij (O‘) ) = E' bij\,n (G) bijv-

v-1

Then we may substitute for x;(c) in the following

[ [ L] ny
Y Y gul(o) = X Y £:59) by, (0) by,
1 51 1 1 vl

t ooy

= E E E biJ\,H(O') (E;quxjv)

=1 fel el

t oo

= X % X by (0) (%)

-1l

since §;;? is an eigenvalue of A? for any element in any of

the N;;'s, as noted above. But this is just the sum of the
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diagonals (after diagonalization) of all the block
submatrices of m(o)A? corresponding to the eigenspaces of A.
Noting that the traces of similar matrices are equal (proved
during Theorem 4.4.1), we see that the right-hand side is
thus equivalent to the trace of m(oc)Ad.

Let p,;,4 be the number of walks of length g from any
vertex in G to its image under the automorphism o. That is,
it is the sum over all i of the walks of length q from
vertex x; to vertex o(x;).

Suppose ©;(0;) =0,. By the definition of the regular
representation, this means that row k of the permutation
matrix o©; has a 1 in column j. Also, by the definition of

the automorphism group T, we have

Cx(x) = [o; (Uj) 1 (x) (oF] (x"xj)

(XQXJ- ) X

Ko (X54X;)

and hence x;, = X;;. That is to say, 0;(x;) = x.

By the nature of matrix algebra, left-multiplication by
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n(o;) exchanges the rows of A¥(G). If row k of n(o;) has a 1
in column j, then the j** row of A%(G) becomes row k of
n(o;)A%(G) . Then [n(0;)A%(G)l = [A4(G)] k. Recalling that a
property of adjacency matrices is that the g*® power of such
a matrix has as its jk*™ entry the number of walks of length
q between the vertices x; and x,, we see that [A(G)],, is
simply the number of walks of length q from x; to x,. But x,
is the image of x; via o;. That is, [A¥(G)];. is the number
of walks of length q from x; to x=0;(x;) . Then
tr(n(c;)A%(G)), found by summing over the entire diagonal of
n(c;)A?(G), is the sum of all such [A%(G)];'s, which is just
Po,q» by definition. Thus, we have that

=1

t
> 21 €i39X: (0) = tr(m(0;)A(G)) = p,q-
I

Since &;; and p;, are real numbers, we know also that

ron

3. Y &i3%;(0) = Po,q
@A

where x;(s) is the complex conjugate of x; (o).
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Then, for a fixed i, we have from substitution and a

change of indices that

=

>

0T pel

. €4572,(0) X1 (O)

E po,qu (0')
oeT

S

t Ny
Y Y £,;°Y x(0)x:(0).
pal  f1 oeT

Recalling (from [Dial], Chapter 2, Theorem 3) that the
characters of irreducible representation are orthonormal (and
that complex numbers are defined to be orthogonal when the
product of their conjugates are zero), we have that

1(0X:(0) = 0 for any u#i, while x;(6)X;(0) = 1. Hence, the
only nonzero terms in the right-hand side occur when u=i,

and we have

t n ]
% ¥ EeY 5@ (0) = ¥ E5IF 5@ (0)
oeT J-1 o€eT

p-l g1

ny
= nz gijq .
Jl1

Thus,

y Po,gXi (C) = nY &;;9.
oeT Jl
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In general, solving such equations is a procedure
involving finding determinants of possibly large matrices.
(They will have dimension less than n, but still may be
difficult to evaluate.) However, we can make two reductions
that make the solution much simpler to find. First, if we
are concerned only with finding the eigenvalues of A (and
not the higher powers) then we may set the path length g to

1, yielding

Y pPaXxi(oc) = nYy €i5-
oeT 71

A path of length one implies adjacency between a vertex
and its image under m(c), which occurs in the Cayley graph
of G only when o corresponds to an element of I that is in
the generating set S, which we shall denote with the
somewhat loose notation of oeS. Hence, when "ceS", we have
that p,, = p; = n, since there are n such adjacencies, and

when "ogS", p,=0. The left-hand side thus simplifies as

EETPGIXi(G) = ny Xx;(o).

oeS
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Second, if we consider only the abelian case for I,

then T is abelian and n;=1 for every i. Thus

ny, €i5 = n&;,
Fx
and so
ny x;(c) = ng;,
oes

or

Y xi(o) = §&;. (*)
oes
Since n;=1, the dimension of each irreducible

representations is one, and so the trace (character) of each
representation and the representation itself are the same.
For a cyclic group Z,, we showed in Chapter 3.5 that the
irreducible unitary representations n; are the n distinct nth
roots of unity. Then, for I' = 2, = {0,1,2,...,n-1}, we have
the cyclic group of automorphisms T={0c,,...,0,.} where o; is

the permutation on I' defined by

0;(1) = i+j(mod n) for every iel'.
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Hence, C;°0x = Oj, = Oky, and the relations in T tracked by
the subscripts of its elements are identical to the
relations of those subscript values as elements of I'. That
is, T and I' are isomorphic by the mapping of subscript to
corresponding element, and so we may consider the
representation on T and a representation on I' to be the

same. Thus, we may define the representations by

n.(0;) = m.(j) = cos(2ntj/n) + lsin(2ntj/n)

for every t from 0 through n-1.

Then equation (*) above may be written as

E. = Y [cos(2nts/n) + Llsin(2nts/n)].

#e8

Since S is closed under inverses and the identity is
not in S (both by definition of Cayley graphs) we will

always have one of two cases for evaluating these sums:
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i) s; is its own inverse. Then s;=n/2, and
m.(s;) = cos(2nt/2) + isin(2nt/2) = +1 + 0l = +1,
depending on whether t is even or odd.

ii) s; is not its own inverse. Then by definition S

contains the inverse s;'=n-s; the sum of these pairs is

o (s;) + m.(s;') = cos(2ms;t/n) + lsin(2ms;t/n)
+ cos(2ms;7't/n) + lsin(2ms;*t/n)
= cos(2ms;t/n) + lsin(2ns;t/n)
+ cos(2u(n-s;)t/n) + lsin(2o(n-s;)t/n)
= cos(2ms;t/n) + isin(2mns;t/n)
+ cos(-2ms;t/n) + isin(-2mos;t/n)
= cos(2ms;t/n) + (sin(2ms;t/n)
+ cos(2us;t/n) - Ilsin(2ms;t/n)

= 2cos (2ms;t/n) .

Then in the first case, n is even, k is odd, and there is
exactly one element that is its own inverse (S, = n/2),

and we have
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€. = 2cos(2ms;t/n) +...+ 2cos(2nS.,,,,t/n) + cos(2mt/2)

while in the second case k is even and each element may be

paired with its inverse, yielding

€. = 2cos(2ms,t/n) + ... + 2cos(2ms,,t/n).

Note that, since cos(2ms;t/n) = cos(2ms;(n-t)/n) regardless
of which i is used, to find all possible eigenvalues we need
only run through the values of t from 0 through n/2 (if n is

even) or (n+l1)/2 (if n is odd).

For our purposes, there are two resulting values of

interest from these calculations. The first is the spectral

radius p which may be found from

po= max{|E.|: |E.|<k}.

The second is A;, the smallest nonzero eigenvalue of

Q=K-A(G), which will be found by
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A, = k - max{§.: E.<m}.

Note that max{f.: E.<k} < max{|E.|: |E.<k}, so that we
have A, > k-pu (or, equivalently, p > k-)\;) in every case. It
is a rather straightforward task, then, to evaluate ¢ and A,
for the case of a group of the form Z, and a specified
generating set S; simply running through all necessary
values of t and looking for the appropriate maximums yields
our desired constants. The Maple program in Appendix B is
designed to do this. The following theorem evaluates for a

specific case used quite often in this thesis.

THEOREM D.1: Let G=G(V,E) be the Cayley graph on Z, with
generating set S' = {1,x,1°!,x!}, where x is the truncated

square root of n. Then we have that

2-2cos (2 /n¥%) if n is a perfect square;

4-2[cos(2n/n) +cos (2n1x/n) ] otherwise.
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Consider all the possible values of t between 1

and n/2, ignoring the trivial 0 which gives £,=4:

For t=1:

For 1 < t < x: &,

For t=x:

i)

ii)

3

2cos(2n/n) + 2cos(2nx/n) .

2cos(2nt/n) + 2cos(2ntx/n) < &,

since cos(2n/n) > cos(2nt/n) and (t+l)x < x? < n
implying that 2mtx/n is at least 2nx/n away from
0 on the unit circle and hence cos (2ux/n) =

cos (21tx/n) .

£, = 2cos{(2nx/n) + 2cos(2nx?®/n).
If x*=n, then cos(2nx?/n)=cos(2nn/n)=cos (21) =1, so
Ex > &1
If x?<n, then cos(2nx?/n) < cos(2mn/n) since x?*/n is

at least 2n/n away from 0 on the unit circle.

Hence, we get that , < E,.

n/2 > t > x: E. = 2cos(2nt/n) + 2cos(2nxt/n).

Observe that the first term of this sum will range
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between 2cos(2n(x+1)/n) and 2cos(n)=-2. Hence,

its largest possible contribution to this sum is
when t=x+1. Note that the second term could
possibly contribute +2 to the sum if xt=n. This is
larger than the contribution of the first term for
the case of t=1. However, since the arc traced
between the angles 0 rads and 2m/n rads is nearly
vertical on the unit circle, not as much is
contributed to the sum by this change as is lost
by the difference in the cosines from the more
horizontal arc traced between 2nx/n rads and

2o (x+1) /n rads. That is

cos (2m) -cos (2n1/n) < cos(2mx/n) -cos (2m(x+1) /n) .

Hence, if n is not a perfect square, we have shown that

the largest §. possible occurs when t=1, and then

}\1=4‘£1



352

4 - 2cos(2n/n) - 2cos(2nx/n)

4 - 2[cos(2n/n) + cos(2mx/n)].

If n=x* is a perfect square, the largest £, possible occurs

when t=x, and then

)"1=4-§x
= 4 - 2cos(2n/n¥) - 2cos(2n)
= 2 - 2cos{2n/n¥%). g

Conceivably, similar reasoning can be carried out for
numerous other cases, but it seems much more efficient to

simply allow the computer program in Appendix B to generate

the results as desired.
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APPENDIX E

PATTERN CHARTS FOR ALGORITHMIC

DIAMETER AND AVERAGE DIAMETER OF Z -BASED CAYLEY GRAPHS

The following tables are designed to show the number of
steps required to reach a given vertex from the zero vertex
for the designated generating set. This aids in establishing
the algorithmic average and full diameters as explored in
Chapter 6. Clear patterns emerge, so formulas could be
established, but the visual comparisons are useful in
providing immediate feedback as to best choices for a
specific situation. Note that all entries are based on using
the greedy algorithm described in Chapter 6, unless

otherwise noted.



TABLE E.1: DISTANCE PATTERNS FOR VARIOUS GENERATING SETS

distance Number of Steps Required to Reach That Distance Using the Listed
from 0 Generating Set. (All values are using the greedy algorithm, except
where noted with *.)
1.4 1,5 1,6 1,7 1,8 14,16 1,7*
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 2 3 3 3 3 2 3
4 1 2 3 4 4 1 4
5 2 1 2 3 4 2 3
6 3 2 1 2 3 3 2
7 3 3 2 1 2 3 1
8 2 4 3 2 1 2 2
9 3 3 4 3 2 3 3
10 4 2 4 4 3 4 4
11 4 3 3 5 4 3 3%
12 3 4 2 4 5 2 4
13 4 5 3 3 5 3 3
14 5 4 4 2 4 3 2
15 5 3 5 3 3 2 3
16 4 4 5 4 2 1 4
17 5 5 4 5 3
18 6 6 3 6 4
19 6 5 4 5 5
20 5 4 5 4 6
Yy 70 66 63 66 66 37 44
Note that {1,7} using a backdoor route on Z,, reaches vertex 11 in 3 steps, instead of 5.

354
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TABLE E.1 CONTINUED

1,12

10

10

176

1,10

70

dist

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

1,12

102

1,10

110

1.8

62

dist

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1,12

82

1,10

70

1,8

66

dist

10

11

12

13

14

15

16

17

18

19

20




TABLE E.2: PATTERNS FOR MULTIPLES FOUND IN TABLE 6.6.1

This chart provides the number of steps to reach the "landing pad”
vertices for two cases in Table 6.6.1. The left-hand column of each pair of
colummns shows the distance from zero while the right-hand columm of
each pair gives the number of steps required by the greedy algorithm to
reach that "landing pad" vertex with the given generating elements.

Distance 32,224 Distance 36, 216
0 0 0 0
32 1 36 1
64 2 72 2
96 3 108 3
128 4 144 3
160 3 180 2
192 2 216 1
224 1 252 2
256 2 288 3
288 3 324 4
320 4 360 4
352 5 396 3
384 4 432 2
416 3 468 3
448 2 504 4
480 3
512 4
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APPENDIX F

NETWORK DESIGN CORRECTION
FOR

PROOF OF THEOREM 4.3.5

In the proof of Theorem 4.3.5, a network N(G) is
constructed on an underlying graph G=G(V,E), where G is an
(n,d,c)-magnifier, as follows: N(G) has the vertex set
{s,t}uXuY, where s is the source, t is the sink, and X=V*
and Y=V are disjoint sets of vertices. (The vertex set V‘cV
has been selected to contain no more than half of the
vertices in G.) Construct the arcs of N(G) as follows:

(a) For every ueX, the arc (s,u) is assigned capacity 1l+c.
(b) For every ueX and veY, the arc (u,v) is assigned

capacity 1 if (u,v)€E or u=v; capacity 0 otherwise.



358

(c) For every veY, the arc (v,t) is assigned capacity 1.

As noted in the text of Chapter 4, part (b) of these
parameters for construction differs from that laid out by
Alon [A], in that he omits explicitly assigning a capacity
of 1 to each arc joining a vertex u € X=V* with its
subscript partner veY. (Here, subscript partner is used in
the sense that ueX corresponds to the same vertex in the
underlying graph G as does veY. Thus, if each veX is
assigned the subscript of the vertex it corresponds to in G,
and the same format is followed for the subscripts of each
ueY, then subscript partners have the same subscript.)

Alon later claims that, for any subset UcX, the set of
vertices which are "neighbors" of the vertices in U (i.e.,
vertices in Y with at least one arc of capacity 1 from a
vertex in U), denoted by N(U), satisfies by the magnifying

properties of the underlying graph that

IN(U)| > (1+c)|U].
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However, the definition of an (n,d,c)-magnifier simply
provides that the mew neighbors of U, denoted by |N(U)-U|,

satisfies the statement

IN(U) -U| 2 cU].

But N(U) is simply the subset of Y corresponding to
vertices in the underlying graph G which are adjacent to at
least one vertex in G corresponding to a vertex in U. This
definition does not guarantee that every vertex in U is
included in N(U), since a vertex in U may not itself be
adjacent to any other vertex in U ("adjacent" with regard to
the corresponding set of vertices in G). It is possible that
the construction of the set V* as the no-more-than-half of
the vertices corresponding to the positive entries in a non-
constant eigenvector of Q can lead to this guarantee. Alon
makes no mention of this, nor does there appear to be any
basis for such a claim. However, it has not been disproved
as a possibility.

Assuming that the construction of V* is not responsible



360

for this claim, we may only conclude that Alon intended for
the capacity of arcs between subscript partners to be
assigned a value of 1. Without such an assignment of

capacities, we have by basic set theory only that

IN(U)-U}] + |U] = [N(U)|

which does not allow the conclusion that [N(U)| > |U| + c-|U],
as claimed by Alon. This may only be concluded if we know
that arcs between subscript partners have capacity 1, so

that |[N(U)| + [U] = |N(U)].
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