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ABSTRACT

What follows is a comparative look at G-ideals in a ring R and in a ring
T where T is considered first as an integral extension of R and second as a

polynomial extension of R.
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0.1
Preliminary

There are several properties that may or may not hold for the pair of
rings R ¢ T. We will continually be looking at two situations: T as an
integral extension of R and T as a polynomial extension, R[x]. The ring R will
always be a commutative ring with unity and x will be an indeterminate. We
are concerned in Chapter 1 with finding relations between prime ideals in R
and those in T, in Chapter 2 with defining G-ideals, and in Chapter 3 with
finding relations between G-ideals in R and those in T. Throughout, the
symbol < will denote strict inclusion and the term quotient field will be
abbreviated q.f. For convenience, we now state the properties of most interest

to us in their general form. The definitions are from [1].

For the following, Py and P are ideals in R, and Qp and Q are ideals in T.

In Chapter 1 we consider them as prime ideals and in Chapter 3 as G-ideals.

Lying Over Property: Given R c T, P < R there exists Q c T such that

QN R =P. We also say in this case that Q contracts to P.

Going Up Property: GivenRc T,Pyc P cR, and Qy c T with Q;nR= P,
there exists Q D Qg such that Q "R =P.

Going Down Property: GivenR c T, PycPcR,andQcTwithQNnR=P
there exists Qp < Q such that QMR =P,

Incomparable Property: Given R c T there do not exist Qy < Q « T such that
QNPR=QnNR.



1.1

Prime Ideals

The study of prime ideals is very extensive. In fact, most of what is in
this chapter can be found in [6]. The main reason for restating much of this
on prime ideals (besides the fact that some of the proofs are so lovely) is that
many of the theorems from this chapter will be used in the proofs of
theorems in Chapter 3. We start by looking at relations between prime ideals
in a ring R and those in a ring T where T is an integral extension of R. We

then move on to prime ideals in a polynomial extension ring, R[x].



1.2

Prime Ideals and Integral Extensions

In this section we will be taking a closer look at the properties that were
mentioned in 0.1, where we will let T be an integral extension of the ring R,
and Py, P, Qy and Q will be prime ideals. This will help us examine the
relations between prime ideals in a ring R and those in an integral extension
of R.

Before we begin, let us note that if T is a ring containing R then a prime
ideal in T will always contract to a prime ideal in R. We are now ready to

look at the Lying Over Property for prime ideals.

Theorem 1.2.1 Given rings R ¢ T, T integral over R and P a prime ideal
in R, there exists a prime ideal Q < T with Q N R = P.
Proof: Let S be the complement of P in R and Q an ideal in T maximal
with respect to the exclusion of S. Notice, Q is necessarily prime. Also, it is
clear that Q "R c P. Suppose there exists an element p € P, pe QN R This
would mean that p ¢ Q. Consider the ideal (Qp) < T properly containing Q.
Notice that (Q,p) N S is not the empty set. Lets=g +ape (Qp) NS where
g€ Qandae T. Tisintegral over R so

a4+ a4 4 cp =0 forsomecy,...,c, e R and some positive
integer n. Multiply by pT,

(ap)™ + cyplapy™ 1 + . .. + cp™ = 0.
Replace ap with s - g,

-pt +cyp(s- )1+, . +cppt =0.



Notice, g € Q, therefore,

s+ ops™ 4.+ pte Q
The left side of the equation is also in R so it is in Q N R which is in P. Recall,
p € P which implies, from the equation, that s™ is in P. But this would mean

s is in P, a contradiction. Thus, Q is a prime ideal in T which contracts to P.

Theorem 1.2.1 states that if T is an integral extension of a ring R then
there exists a prime ideal in T which lies over a given prime ideal in R. To
see that if T is not integral over R this theorem may not be true, consider the

following example where T is not an integral extension of R.

Example 1: Consider the ring of integers, Z, contained in the field of rational
numbers, Q, and the prime ideal 3Z c Z. Q is a field so the only prime ideal

in Q is the zero ideal, which surely does not contract to 3Z.

Let us look now at the Going Up Property for prime ideals when T is an

integral extension of R.

Theorem 1.2.2 Given rings R < T, T integral over R, prime ideals
Py ¢ P c R and prime ideal Qy c T with Qo N R = Py, there exists in T a prime

ideal Q D Qg with Q "R = P,

Proof: Consider S, the complement of P in R. Notice, Qp is disjoint
from S. Expand Q to a prime ideal, Q, maximal with respect to the exclusion
of S. The proof of Theorem 1.2.1 proved that Q " R = P. So, we have the
Going Up Property for prime ideals.



Does the Going Up Property hold when T is not integral over R? It
turns out that we can use an example similar to the previous one to

demonstrate that the answer to this question is no.

Example 2: Consider Z c Q, the prime ideals <0> < 3Z ¢ Z, and <0> c Q.
Notice <0> N Z = <0> but since Q is a field, the only prime ideal in Q is the
zero ideal so there cannot exist a prime ideal in Q containing <0> lying over

the prime ideal 3Z in Z.

We will define the length of a chain of prime ideals to be the number
of inclusions in the chain, where the phrase 'a chain of prime ideals' will
denote 'a chain of distinct prime ideals.’

For an example of a ring with a chain of prime ideals of any finite
length, say n, consider the ring Flx,,...,x,], where F is a field and XiseeesXp
are indeterminates. <0> c <X> C <X Xp>C...C <Xy, ...,Xn> is a chain of
prime ideals of length n.

For T integral over R, note that by using the Lying Over Property and
the Going Up Property we can create a chain of prime ideals in T equal in
length to any finite chain of prime ideals given in R. To see this, consider a

finite chain of prime ideals in R,

P0>P1>...>Pn.
Using Theorem 1.2.1, construct a prime ideal Qy, in T such that Q, "R =Py

and build up a chain
Qn<Qpg<-..< Qo



with Q; contracting to Py, i =0, ..., n-1, by iterated use of Theorem 1.2.2.

Therefore, there does exist a chain of prime ideals in T equal in length to a
given finite chain in R.

Is it also true that given a finite chain of prime ideals in T we can create
one of equal length in R? It turns out that by checking the Incomparable
Property of prime ideals we see that this is true. We begin by looking at the

following lemma.

Lemma 1.2.3 Given rings R < T, the Incomparable Property of prime
ideals holds if the following statement holds: If P is a prime ideal in R and Q
is a prime ideal in T contracting to P then Q is maximal in T with respect to

the exclusion of S, the complement of P in R.

Proof: Consider prime ideals Q; < Q in T. We must show that
QyNR#QNR Suppose Q"R =P. Q, by hypothesis, is maximal in T with
respect to the exclusion of S. Clearly Qy is not maximal with respect to the

exclusion of 5, for it is strictly contained in Q. Hence, by hypothesis,

Qp N R # P and the Incomparable Property holds.

It is interesting to note that the converse of this lemma is also true.

The proof can be found in [6].

Theorem 1.2.4 Given rings R c T, T integral over R, there cannot exist
two. prime ideals Qy < Q in T with Qy N R =Q N R.

Proof: Let Q "R =P. By Lemma 1.2.3 we see that to show the
Incomparable Property holds it is sufficient to show that Q is maximal with

respect to the exclusion of S, the complement of P in R. Suppose it is not.



Consider J, an ideal in T, with Jn S=@ and ] > Q. Letue J,u ¢ Q. Since T is
integral over R, u is a root of a monic polynomial over R, say,
un+an_1un'1+...‘+a0=0 ag...,an-1€ R
This implies that the set of all monic polynomials, f, with coefficients in R,
such that f(u) € Q, is non-empty. Consider one of least degree, say,
P+ by u™ 14+ +bpeQc]  by...,by R
Recall u € J,s0 by € J, hence by e JnRc P c Q. Finally we see,
u@™ 1+ by w24+ b)e Q
but neither factor is in Q. Q is a prime ideal so this cannot be. So, Q must be
maximal with respect to the exclusion of S, which in turn means that the

Incomparable Property holds for prime ideals.

Before we answer the question regarding the length of chains of ideals
in R and T, note that if T is not integral over R, the Incomparable Property
for prime ideals does not necessarily hold, as is clear from the following

example.

Example 3: Consider the ring of integers Z, and its polynornial extension
Z[x]. Also consider prime ideals 3Z[x] < 3Z[x] + <x> < Z[x] where 3Z[x] is the
ideal of polynomials in Z[x] with coefficients in 3Z. Notice,

3Z[x] " Z = (BZ[x] + <x>) " Z =3Z.

Using Theorem 1.2.4 and a point we mentioned earlier about how a
prime ideal in T necessarily contracts to a prime ideal in R, we can show that
for every finite chain of prime ideals in T we can create a chain of equal

length in R. Consider a finite chain of prime ideals in T,



Q>Q1>...>Q,.
Since, by Theorem 1.2.4, the contractions QiNR=P;i=0,...,m areall
distinct prime ideals, the chain

Py>Py>...>Pp
is a finite chain of prime ideals in R equal in length to that given in T.

At this point it would be appropriate to define the dimension of a ring
R, dim(R), as the supremum of the lengths of all chains of prime ideals in R.
The following theorem can be easily proved as a result of our previous

observations.

Theorem 1.2.5 Given rings R c T, T integral over R, dim(T) = dim(R).
Proof: If the two dimensions are finite, we can see that dim(R) > dim(T)
by noting that we can construct a chain of prime ideals in R equal in length to
any finite chain of prime ideals in T. Also, as was stated above, given any
finite chain of prime ideals in R we can construct a chain of equal length in T
so dim(T) 2 dim(R). Thus, for finite dimensions, dim(T) = dim(R).

If dim(T) = oo, there exist arbitrarily long finite chains of prime ideals in T.
Each of these contracts to a finite chain of prime ideals in R of equal length.
Therefore, there exists arbitrarily long finite chains of prime ideals in R.
Similarly, if dim(R) = oo, we get that there exist arbitrarily long finite chains of

prime ideals in T.

If T is not integral over R this conclusion is not always true as we will

see in Section 1.3.



1.3

Prime Ideals and Polynomial Extensions

We have found that there are many correspondences between prime
ideals in a ring R and those in T where T is an integral extension of R. Now
we will look at relations between prime‘ ideals in R and those in a polynomial
extension, R[x]. Do similar relations exist?

Let us again begin by looking at the Lying Over Property for prime
ideals. Does there exist a prime ideal in R[x] which contracts to a given prime

ideal in R?

Theorem 1.3.1 Given rings R < Rlx] and P a prime ideal in R, there exists
a prime ideal Q in R[x] such that Q N R = P.

Proof: Consider P[x] < Rlx], where P[x] is the set of all polynomials in
R[x] with coefficients in P. It is easy to see that P[x] "R = P and also that P[x] is
an ideal. Now, it is only necessary to show that P[x] is prime. Consider
f=apx™+...+agand g =by x™ + ... +bye Rlx] such that fg e Plx]. We
must show fe P[x] or g € Plx]. Suppose neither is in P[x]. There exists at least
one term in each polynomial which has a coefficient not in P. In each
polynomial, consider the term with the lowest degree among those that have
coefficients not in P. Say for f it is the ith term and for g it is the jth term.
Now look at the (i + j)th coefficient of fg,

aOb(j+i)+a1b(j+i-l)+‘"+aibj+"'+a(i+j)b0'



Notice all the terms are in P except for aibj so this sum cannot be in P, which

means that fg is not in P[x], a contradiction. So, P[x] is in fact prime and we

have found our Q.

We see that the Lying Over Property for prime ideals holds for rings
R c R[x] as well as for R c T, T integral over R. Also note that if Q is a prime
ideal in R[x] then Q N R is a prime ideal in R. At this point it looks as though
the same properties are true for R c R[x] as were true for R c T, T integral
over R. However, the following example will demonstrate that for the Going

Up Property, this similarity fails.

Exarhple 4: Consider integral domains R < R[x] and a non-zero prime ideal
PcR. LetP, =<0><PcRandQp=<1+px>cRIx],0=xpe P. Q is prime
and Qy N R = Py. Furthermore, Q, if it exists, must contain the element px.
Also, Q> Qg =<1+ px>, thus 1 + px € Q. From this, we see that
1=1+px-pxe Q. Hence, Q = R[x] which is not prime. So, for this example,
there is no Q > Q) such that Q N R = P which means the Going Up Property

for prime ideals does not hold for R < R[x].
Let us now look at the Going Down Property for prime ideals.

Theorem 1.3.2 Given rings R c Rlx], prime ideals Py c P in R and prime
ideal Q in R[x] such that Q N R = P, there exists in R[x] a prime ideal Qy < Q
such that Qy N R = Py,

Proof: First, let us show that P[x] is the smallest ideal in R[x] containing

P. Suppose M is an ideal in Rlx] containing P. M must contain px I for all

10



p € Pand ne Z* where Z* is the set of all non-negative integers. Therefore,
M must contain the set of all finite sums, {Epa" | pe P,n e Z*} = P[x]. Thus,
Px] Q. Since Pylx] cPlx] = Q, Pylx] "R = P and Py[x] is prime as was shown

in the proof of Theorem 1.3.1, Pylx] may be chosen as our Qp-

It is an interesting observation that by using Theorem 1.3.1 and
iterated use of Theorem 1.3.2, we can create a chain of prime ideals in R[x]
equal in length to that of any finite chain of prime ideals in R. The question
which immediately follows is: For every finite chain of prime ideals in R[x],
can we necessarily find one of equal length in R? Recall, in Section 1.2 we
went about answering this question by showing that the Incomparable
Property for prime ideals holds for R c T, T integral over R. Notice,
Example 3 showed that the Incomparable Property for prime ideals does not
necessarily hold for R < R[x].

So, the question still remains whether it is possible to create a chain of
prime ideals in R equal in length to any given chain of prime ideals in R[x].

Example 5 will show us that at least in some instances the answer is no.

Exampie 5: Consider any field F and its polynomial extension ring F[x].

dim(F[x]) 2 1 and dim(F) = 0 therefore, dim(F[x]) # dim(F).

In fact, if dim(R) = n, then n + 1 < dim(R[x]) < 21 + 1, where it is
possible for R[x] to have any of these dimensions. Dim(R[x]) = + 1 if R is
Noetherian, 0-dimensional, or if R is a Prufer domain. This fact can be found

in [5].

11



2.1
G-Domains and G-Ideals

Chapter 2 is an accumulation of definitions, examples and
equivalences that will prepare us for Chapter 3. We begin with the following

definition.

G-domain: Let R be an integral domain with quotient field K. Ris a

G-domain if K can be generated as a ring over R by one element.

Theorem 2.1.1 Suppose R is an integral domain. The following are

equivalent:

a) R is a G-domain.

b) There exists a non-zero element contained in each non-zero prime
ideal in R.

c) If ngP o = <0> where P, is prime for all o, then P, = <0> for some a.

Proof: 4) - b) If R is a G-domain then certainly q.f.(R) = R[u"!] for

some non-zero # in R. Suppose P is a non-zero prime ideal in R and consider

0 pe P. Since q£(R) = R[u~1], p! =14™ for some r € R and some positive

integer n. Therefore u' =pre Pandsou e P.
g p

b) —¢) Consider {Py, | Py is prime, Py > <0>}. By hypothesis, there
exists 0 # u € NPy so if mBPB = <0> then PB = <0> for some P.
¢) —»a) Consider {Py), the set of all non-zero prime ideals in R. By

hypothesis, Ng P, # <0> so there exists some 0 # u € NoPo: Also, any non-

zero ideal contains some u™ for some n > 1, for if one did not it could be

expanded to an ideal, maximal with respect to the exclusion of {u™ | n> 1},

12



which would necessarily be prime. This contradicts that every non-zero
prime ideal contains u. Now, consider 0 #a e R. Since u € <a>, ' =ra for
some r € R. Therefore, a1 = ry " and we have a1 Rlu-1). Thus,

qf£(R) = R[u~1] and R is a G-domain.

Clearly, any field F is a G-domain, for its quotient field is just F which
can be written as F[1]. To see other examples of G-domains let us first look at

an equivalent definition of them.

Theorem 2.1.2 Let R be an integral domain with quotient field K. R is a
G-domain if and only if K is finitely generated as a ring over R.
Proof: If K is a G-domain then K is, by definition, generated over R by

one element so is in fact finitely generated as a ring over R. On the other
hand if K is finitely generated as a ring over R then K = R[a1 /oy - - - A0/ for

some aj, bje R,b;#0,i=1,...,n. Withc=Db;- - b, we have K =R[1/C].
Using this equivalence, we immediately get the following theorem.

Theorem 2.1.3 A principal ideal domain R is a G-domain if and only if it
has only a finite number of prime ideals.

Proof: Let R be a G-domain. LetK = qf.(R) = R[u‘ll for some non-zero

u in R. From Theorem 2.1.1 we see that u € NPy Where P, are the non-zero
prime ideals in R. Suppose u =r, - - - r, is a unique factorization of u into
irreducibles. Let P be a non-zero prime ideal. u € P = <r> so, Iy+--Tn € <r>,
Thus, rj € P for at least one i. Therefore r; =1s for some s € R. Note, s must

be a unit and so <rj>=<r>and <ry>, ..., <r> are the only prime ideals.

13



Therefore, if R is a G-domain it must only have a finite number of prime

ideals. Conversely, suppose R has only a finite number of prime ideals,

<a;>,...,<ap>. Since Ris a P.ID. every element of R can be written as the

product of a unit and powers of aj's. Clearly then, K = R[1/ CYRRE RY ap] is the

quotient field of R and by Theorem 2.1.2, R is a G-domain.

From this theorem we can see instantly that the ring of integers, Z,
with q.£.(Z) = Q, the ring of rational numbers, is clearly not a G-domain. The

following theorem gives another example of a ring which is not a G-domain.

Theorem 2.1.4 If R is an integral domain and x is an indeterminate over
R, then Rlx] is never a G-domain.

Proof: Let K be the quotient field of R. If R[x] is a G-domain then so is
Klx]. But K[x] is a principal ideal domain, so according to Theorem 2.1.3 we

need only show that K{x] has an infinite number of prime ideals. Suppose

that py, ..., py are all the irreducible monic polynomials. Form the
polynomial 1 + p; - - - p,, = q. Clearly, q is not divisible by any of the p;'s, a
contradiction. So K[x] has an infinite number of prime ideals and is therefore

not a G-domain and hence neither is R[x].

We have seen several cases where an integral domain is not a
G-domain; let us look at a situation where we have a G-domain. It is very
difficult to determine which rings are and which are not G-domains. The
following theorem takes a look at a case when an integral domain is a

G-domain.

14



Theorem 2.1.5 A noetherian domain R is a G-domain if and only if

dim(R) <1 and R has only a finite number of maximal ideals.

The proof of this can be found in [6].
Recall in Chapter 1 we looked at relations between prime ideals in R
and T where R ¢ T. In Chapter 3 we will be looking at relations between a

different type of ideals in R and T. We now define that type of ideals.
G-ideal: A prime ideal P in a ring R is a G-ideal if R/ p is a G-domain.

Clearly, any maximal ideal M is a G-ideal, for R/ M is a field and a field

is a G-domain.

Theorem 2.1.6 Suppose R is a ring and P is a prime ideal in R. The
following are equivalent:

a) P is a G-ideal.
b) If ngP o = P where Py is prime for all o, then Py, = P for some c.

Proof: Apply Theorem 2.1.1 to R/ P

Valuation rings, defined below, provide other examples of G-ideals.

Valuation ring:  An integral domain R is a valuation ring if for any 4, b in

R, a divides b or b divides a.
Theorem 2.1.7 gives an equivalent definition of valuation rings.

Theorem 2.1.7 An integral domain R is a valuation ring if and only if for

any u #0 in q.f(R), either u or u™! lies in R.

15



Proof: Suppose R is a valuation ring and 0 ¢ u € q.f.(R). If ue R we are

done. If u¢ Rthenu = (rl)(rz‘l), r;, 1€ R, 1y # 0. Note that r, does not
divide r; or u would be in R. Thus r; must divide ry, so r, = (r{)(r') for some
0#r'e R. It follows that u = (r))(r;r)! = (r))(r; V(1) = r~1 and so

u~l =r'e R. Conversely, suppose for any u € q.f.(R) that either u € R or
ule R.I Consider 4, b € R and show that a divides b or b divides a. Suppose
a,b # 0, otherwise the result follows trivially. Let u =ab! € q.f.(R). Suppose
u e R Since a = bu, we have that b divides 2 in R. Suppose, on the other

hand, that u=1 e R. Since b = au~1, we have that a divides b in R.
And now Theorem 2.1.8 provides us with many examples of G-ideals.

Theorem 2.1.8 Every valuation ring with finite dimension has the
property that every prime ideal is a G-ideal.

Proof: A valuation ring has the property that all prime ideals are
comparable. Therefore, if R is a valuation ring with finite dimension say
dim(R) = 7, then there exist only n + 1 prime ideals. It follows that if

NgFPq = P where Py and P are primes then P, = P for some o.. Thus, by

Theorem 2.1.6, P must be a G-ideal.

Example 6 is an example of a valuation ring with dimension 1. It is
followed by Example 7 which demonstrates that we can have a valuation ring

R, such that dim(R) = n for any finite number n.

Example 6: Let <p> be a prime ideal in Z and consider the set

16



Z<p> ={a/ b | a,be Zand p does not divide b}. Z<p> is certainly a valuation
ring and since <p>Z<p,> = (p(8/y) | a,b e Z and p does not divide b} is the
only non-zero prime ideal in Z<p>, by the above theorem, Z<p> must be a

G-domain. Clearly this is true since Z<p>[1/ p] is a field.

Before looking at Example 7, note that there exists an equivalent

definition of valuation domains using valuations and value groups. [5]

Example 7: In [3] it is shown that there exists a valuation domain with any
arbitrarily prescribed value group. Consider the lexicographically ordered
group Z™. The only convex subgroups of Z™ are {(0, 0, . . ., 0)} and
Hi={(0'0'°"'O'ai""'an) | a,..,a, € Z},i=1,...,n Using the
correspondence between convex subgroups and prime ideals, we see that the
valuation domain with Z™ as its value group has n + 1 prime ideals.

Therefore, its dimension is n.

From this example, it is clear how we can construct a valuation
domain R such that dim(R) = n for any positive integer n. The following

definitions are similar to definitions from Chapter 1.

Length: The length of a chain of G-ideals is the number of inclusions in
the chain, where the phrase 'a chain of G-ideals' means 'a chain of distinct

G-ideals'.

G-dimension: The G-dimension of a ring R, G-dim(R), is the supremum

of the lengths of all chains of G-ideals in R.

An interesting fact about the G-dimension of a noetherian ring follows.
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Theorem 2.1.7 A noetherian ring R has G-dim < 1.
Proof: Suppose G-dim(R) = n. LetP, >...> P;be a maximal chain of

G-ideals inR. R/ Py is a noetherian G-domain where Pn/ Py -2 Poy pyisa

chain of prime ideals of length n. By Theorem 2.1.5, dim(R/ py sl

Therefore, n < 1 and we have G-dim(R) = n < 1.

In fact, it follows from Theorem 2.1.5 that for a noetherian ring R,
G-dim(R) =1 if and only if there exists a prime ideal P such that P is properly
contained in only a finite number of maximal ideals and there are no prime

ideals strictly between P and M where M is any maximal ideal.
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3.1

G-ideals and Integral Extensions

This chapter follows much of the same pattern as Chapter 1 and we
will refer to Chapter 1 quite often. This first section takes another look at the
properties given in 0.1 where we will let T be an integral extension of R, and
Py, P, Qp and Q will be G-ideals instead of prime ideals. As in Chapter 1, we
will begin by looking at the Lying Over Property but first we must work our

way through a few lemmas.

Lemma 3.1.1 Suppose R < T are rings with T integral over R, P c Risa
prime ideal and Q < T is a prime ideal with Q N R = P. T/Q is integral over
R/p, where R/p is naturally imbedded in T/Q .

Proof: Lett+Qe T/g,and M4y 1M1 +. . +15=0,1p...,1, ;€ R,
be an equation showing that ¢ is an integral element over R. Clearly then we
would have (t + QM + (ry_1 + QU + QP! +... +(rp +Q =0in T/

Lemma 3.1.2 Let R c T c Sberingsand u € S. If T is integral over R

then the ring Tlu] is integral over the ring Rlu].
Proof: Let f(u) = tqu™ + tp_qu™ 1 +... +tye Tul, ty, ..., tye T. Since

tj is integral over Rfor alli =0, ... ,n, it is certainly integral over R[u]. Since
u € R[ul, any power of u is integral over R[u]. Finite products and finite sums
of integral elements are integral, so in fact f(u) is integral over R[u]. Since f(u)

was arbitrary in T[u], T[u] is integral over R[u].
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Lemma 3.1.3 Let R © T be integral domains and suppose that T is
integral over R. R is a field if and only if T is a field.
Proof: First suppose R is a field. Letae T,a# 0. We must show that a
has an inverse in T.
Let
atrn @™l 4 4ry=0e T Ig---,Tn1€R, 1g#0
be an equation showing that a is integral over R. It follows that,
al@ 1+, a"2 &, + 1)1y =1
S0,
a7l =@ ry 1a™2 4 4r)rg)]
where (@1 +r, a2 4+, 4+ r)(-rp)"1 is clearly in T. Therefore, there
exists a~! e T, for anyae T,a#0, thus T is in fact a field. Next, suppose T is a
field. Consider be R,b#0. RcTsobe T. Tis a field so there exists b~ e T.
T is integral over R so b~1 is a root of a monic polynomial over R say
GO+ O 4D 41y =01y, ..., 1 g € R.
Multiply both sides by b0~ to get
bl e+ tnob + .+ 12 b1 g,
Then,
b7l = (g + tngb +.. 412 4 g0l
Note that
Tnei+Tnob+ ...+ b2 +rp-1e R

Therefore, b1 € Rforall 0= b e R, so R is in fact a field.

Now we are ready to look at the Lying Over Property for G-ideals where

T is an integral extension of R.
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Theorem 3.1.4 Suppose R c T, T is integral over R and P is a G-ideal in R.

Let Q be a prime ideal in T such that Q N R = P. Q is a G-ideal in T.
Proof: From Lemma 3.1.1 we see that T/ Q is integral over R/p, where

R/p is naturally imbedded in T/ Q- Letu be an element in the quotient field
of R/p such that (R/p)[u] is the quotient field of R/p. Lemma 3.1.2 tells us
that (T/ Q)[ul is integral over (R/p)[u] and finally from Lemma 3.1.3 we see
that (T/ Q)[u] must also be a field. Recall, R/ P is naturally imbedded in T, Q
so any field containing T/ Q must contain q.f.(R/p) = R/p)[u], and therefore
must contain (T/ Q)[u]. Hence, T/ Q is a G-domain and Q is a G-ideal.

Corollary 3.1.5 Suppose a ring T is integral over a ring R and P is a
G-ideal in R. There exists a G-ideal Q < T such that Q A R = P.
Proof: Theorem 1.2.1 states that there exists a prime ideal Q < T such

that Q " R = P. This corollary follows immediately.

Corollary 3.1.6 Suppose a ring T is integral over a ring R, PpcPcRare
G-ideals and Qy < T is a G ideal with Qp N R = Py. There exists a G-ideal,
Q c T such that Q>5Qpand QNR=P.

Proof: Theorem 1.2.2 states that there exists a prime ideal Q T such
that Q 5 Qp and Q N R = P and Theorem 3.1.4 states that Q is in fact a G-ideal.

So, for T integral over R, both the Lying Over Property and the Going
Up Property hold for G-ideals as well as for prime ideals. We can use a
similar argument used in Chapter 1 to show that for any finite chain of

G-ideals in R we can create a chain of G-ideals in T with equal length.
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If T is not integral over R we can use Example 1 to show that the Lying
Over Property for G-ideals does not necessarily hold. Section 3.2 will give us
an example of when the Going Up Property for G-ideals fails if T is not
integral over R.

Suppose again that T is integral over R. In Chapter 1 it was stated that a
prime ideal in T necessarily contracts to a prime ideal in R. The next question
follows immediately. Does a G-ideal in T necessarily contract to a G-ideal in

R? The following lemma and theorem will answer that question.

Lemma 3.1.7 If Rlu] is a field then u is algebraic over R. Also, there
exists an element, 0 #r e R, such that u is integral over RIr1].
Proof: If u = 0, then u is in fact integral over R so choose r to be 1.
For u # 0, recall R[u] is a field so there exists 41 € R[u], such that
wl=rqu +rp w1 44y Ig....In€ R, =0
It follows that,
™l br w4 -1=0
and this equation shows that u is algebraic over R.
For the second part, multiply the equation by r,~1 to get,
w4 ey ey u® 4+ o Drgu - D = 0
we can see that u is a root of a monic polynomial over Rlr,~1], so is in fact

integral over Rlr,~1]. Finally, letr = ry.

Theorem 3.1.8 Let R T be rings with T integral over R. A G-ideal in T

contracts to a G-ideal in R.
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Proof: LetQbeaG-idealin T, P=Q n R PisaprimeidealinR. Letu
be an element in the quotient field of T/ Q such that T/ Q)[u] is the quotient
field of T/q. (T/Q)ul is integral over (R/p)[ul, so by Lemma 3.1.3, R/p)[ul is a
field. By Lemma 3.1.7, we see that there exists a non-zero element of R/p, say
r, such that u is integral over (R/p)[r~11. So, (R/p)[u] is integral over

R/p)r 1. (R/p)lu) is a field so, by Lemma 3.1.3, (R/p)[r~1] must also be a field,
necessarily the quotient field of R/p because any field containing R/p would
have to contain (R/p)[r~1]. Therefore, P is a G-ideal of R.

We would like to know, whether it is true that if we start with a finite
chain of G-ideals in T we can create one of equal length in R. Theorem 3.1.8
states that a G-ideal in T contracts to a G-ideal in R. If we can show the
Incomparable Property is true for G-ideals, we can use an argument from
Chapter 1 to show that we can create a chain of G-ideals in R equal in length
to that of any given finite chain of G-ideals in T. Let us look then at the

Incomparable Property for G-ideals.

Theorem 3.1.9 Suppose a ring T is integral over a ring R and Q and Qy are
G-ideals in T such that Q N R = Qo N R. Qand Q cannot be comparable.
Proof: Since a G-ideal is necessarily a prime ideal, Q and Q, are prime
ideals. Theorem 1.2.4 states that the Incomparable Property holds for prime

ideals and therefore Q and Qp cannot be comparable.

So, the Incomparable Property for G-ideals does hold and by using this
theorem and Theorem 3.1.8, we can create a chain of G-ideals in R equal in

length to that of any given finite chain of G-ideals in T.
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Theorem 3.1.10 follows immediately.

Theorem 3.1.10  Suppose R c T with T integral over R. Then
G-dim(R) = G-dim(T).

The proof of this is similar to the proof given for Theorem 1.2.5.
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3.2
G-Ideals and Polynomial Extensions

The order of this section will follow a slightly different pattern than
that of previous sections. One of the reasons is that some of the proofs are
not as straightforward as those we have seen. Still we are concerned with the
properties given in 0.1. The first theorem in this section looks as though it
has little to do with those properties but, as you will see, it does deal with the
relationship between G-ideals in R and those in R[x], where x will be
considered as an indeterminate, and will lead directly to situations we are

familiar with.

Lemma 3.2.1 Let h: R — S be a surjective ring homomorphism. There
exists an order preserving, one-to-one correspondence between the ideals in R
containing ker(h) and the ideals in S.

Proof: It is shown in [2] that A~ 1(h(7)) = r + ker(h) where r € R. That
there exists an order preserving, one-to-one correspondence between the

ideals in R containing ker(#) and the ideals in S follows.

Lemma 3.2.2 Let h: R[x] — R[x]/P[x] be the homomorphism defined by

h(r(x)) = r(x) + Px] where r(x) € R(x]. The inverse image of a maximal ideal in
R[x]/p[x] is a maximal ideal in R[x].
Proof: It follows from Lemma 3.2.1 that there is an order-preserving,

one-to-one correspondence between the ideals in R[x] containing P[x] and the

ideals in RIx]/ P[x]- So certainly the inverse image of a maximal ideal in

Rx]/ P[x] is maximal in R[x].
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Theorem 3.2.3 Consider R < R[x], with P a G-ideal in R. There exists a

maximal ideal Q in R[x] such that Q N R = P.
Proof: Let u be an element of the quotient field of R/ p such that

R/ p)lul is the quotient field of R/ p- Consider the homomorphism

g ®/p)lx] - ®/p)ul, defined by g(x) = u and g = the identity on R/p. (R/p)u]
is a field so {0} is maximal in R/ p)lul. Since g is onto, ker(g) is maximal in
Ry p)lx]. Next, consider the isomorphism f: (R/ p)lx] — Rixl, P[x]- defined by
flrg +P) + (rg + P)(x) + ... + (ry, + P)x)) = (rg + ryx +. .. + rp¥™) + P[x] where
Iy, - I'n € R. Recall, ker(g) is maximal in Ry p)lx] so, f(ker(g)) = Q'is
maximal in R[x]/ plx}- Now, consider the homomorphism k: R[x] — RI[*]/ Plx}
defined by h(r(x)) = r(x) + P[x] where r(x) € R[x]. Recall Q'is a maximal ideal
in RIxl, P[x]- and by Lemma 3.2.2, h~1(Q) = Q is a maximal ideal in R[x]. To
see P = Q N R, consider containment in both directions.

PcQnR:

Q =h"1(Q") contains ker(h) = P[x]. Clearly then, it contains P and it is given
that R contains P,soPc QR

QNRcP:
Consider r€ QN R. Sincere Q, g(f"1(h(r)) = {0} in R/p)[u]. Also,

8 1)) =r + P. Thisis only {0} in R/p)ulifre P,soQNRcP.

Therefore, Q is a maximal ideal in R[x] with QNnR=P
From this theorem we get the following corollaries.

Corollary 3.2.4 Consider R c R[x] and P a G-ideal in R. " There exists a
G-ideal, Q, in R[x] such that Q "R = P.
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Proof: Consider the maximal ideal Q given in Theorem 3.2.3

Corollary 3.2.5 Consider R < Rlx], G-ideals Py < P in R, and G-ideal Qpin
Rlx] with Qy N R = Py. There does not necessarily exist a G-ideal, Q, with

Qp ©€Q cRIx], such that Q R =P.

Proof: Theorem 3.2.3 states that Jy may be a maximal ideal in which

case there is no G-ideal in R[x] strictly containing Qp much less one that

contracts to P.

Corollary 3.2.4 is a statement that the Lying Over Property for G-ideals
holds for R c Rlx]. Corollary 3.2.5 states that, in general, the Going Up
Property does not hold. Previously we used the fact that both properties held
to show that for every finite chain of G-ideals in R one of equal length could
be created in R[x]. Since we cannot use that method in this situation, we
proceed to prove a theorem that will enable us to show this property

regardless of the fact that the Going Up Property does not hold.

Theorem 3.2.6 Consider R c R[x] and P a G-ideal in R. P[x] + <x> isa
G-ideal in R[x].

Proof: We will prove this theorem by showing that there is an
isomorphism between R[x]/(P[x] + <x>) and the G-domain R, p- Consider the
surjective ring homomorphism f: R[x] — R, where f(x) = 0, flty=rforre R,
and the canonical homomorphism g: R —» R, p defined by g(r) =r + P. Notice,
the function gf: R[x} —» R/ p defined by gfirg+rix +... +rpxM) =15+ Pisa

surjective ring homomorphism with ker(gf) = P[x] + x. Therefore,

Rix], (P[x] + <x>) is isomorphic to R, P
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This shows that for every finite chain of G-ideals in R we can create
one of equal length in R[x]. Is it also true that for every finite chain of
G-ideals in Rlx] we can create a chain of equal length in R? First let us begin

by checking whether or not any G-ideal in R[x] contracts to a G-ideal in R.

Lemma 3.2.7 Let R be a ring, R[x] a polynomial extension, Q a prime
ideal in R[x] and P = Q N R. R[x]/Q is equal to R'[u] where R’ = {a + Qla € R}

is isomorphic to R/p and u = x + Q is an element of R[x]/Q .

Proof: Consider the homomorphisms f: R — R[x] defined by f(r) = r and
g: Rlx] - Rlxly Q defined by g(r(x)) = r(x) + Q. Notice gf: R — Rlxl; Qisa
homomorphism with image R' and kernel Q N R = P. Thus, R/ pis

isomorphic to R'. Certainly R'[u] = R[] /q.

Lemma 3.2.8 Let R be a domain, u an element of a larger domain. If
R{u] is @ G-domain, then u is algebraic over R and R is a G-domain.
Proof: If u were not algebraic over R, Theorem 2.1.4 shows that R[u]
could not be a G-domain. So, u is algebraic over R which means that u is
algebraic over q.f(R). Since q.£.(R[u]) = R[u][v] for some v € q.f.(R[u]) and also,
q.£.(R[u]) is algebraic over q.£.(R), v is algebraic over q.f.(R). So, 4 and v satisfy
equations with coefficients in R, say,

amvm+...+alv+a0=0 ag .- am € R, ap; #0

bpul +... +bju+by=0 bg,....by € R, b, #0
Let R = Rlay, ™!, by~1 . Notice R cR' c q.£(R) € ¢.£(R[ul). Recall, q.£.(R[ul) is
generated as a ring over R by 4 and v so certainly q.f.(R[u]) is generated as a

ring over R' by u and v. The above equations imply that u and v are integral
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over R'; therefore, we have that q.f.(R[u]) is integral over R'. So, by Lemma

3.1.3, R' must be a field, necessarily the quotient field of R.

Theorem 3.2.9 Consider rings R c Rlx] and Q a G-ideal in RIx]. Q NRisa

G-ideal in R.
Proof: Suppose Q "R =P. From Lemma 3.2.7 we know Rlxl/ Q isequal

to R'[u], where R' and u are defined as in Lemma 3.2.7. Since R["‘]/ Q isa

G-domain, R'[u] is also a G-domain. So by Lemma 3.2.8, R’ is a G-domain.
Recall also from Lemma 3.2.7 that R' is isomorphic to R/ P SO R/ pisa

G-domain, hence, P is a G-ideal.

Now that we have shown that a G-ideal in R[x] contracts to a G-ideal in
R, we are interested in knowing whether or not the Incomparable Property
holds for G-ideals in R c R[x]. Recall, in Section 1.3, we were able to show

that this property did not hold for prime ideals in R < R{x].

Theorem 3.2.10  Consider rings R < R[x]. There do not exist G-ideals

Qp <Q < Rlx] such that QynR=Q NR.

Proof: Let Qy<Qand Qp N R =P. In the proof of Theorem 3.2.7, we saw
that R/ P is isomorphic to the subset R' = {r + Qy 17 € R} of R[x], Qp Note,
finding a non-zero element in R' A Q/ Qo Is equivalent to showing that

QN R=QNR Toseethis, let r € R, consider 0  r + QeR'Nn Q/ Qp Clearly
this would mean that re Qbutr ¢ Q- Since r € R, we would have

re QN Rbutre QyNRso,QyNnR#QNR. On the other hand, suppose that
re QN R, re Qyn Rthenr + Qq is non-zero in RI*1/ Qp Clearly

r+Qpe R'n Qy Qg Now let us show that we can find such an element.
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From Theorem 3.2.9, we know that P = QpN R isaG-ideal inR. In the
proof of Lemma 3.2.7 we see that Rlxl/ Qg s equal to R'[u] where u e Rlx], Qo
According to Lemma 3.2.8, u is algebraic over R'. Consider the ring
L = (q.£(R))[u]. Certainly any element in L is algebraic over q.£.(R).

LetO#ve Q/QO c R[x]/QO =R'[u] cL. Let

(An/p o+ .+ (A1 /p)v + (30 /) = 0, where ay, .. ., ap, by, ..., by € R,
ag, b, - . ., by# 0, be an equation showing that v is algebraic over q.£.(R). It
follows that

agby” by = ~bgv(apby * by w1+ ... +a1by - by).

The left side of the equation is a non-zero element of R'. The right side is an
element in Q/ Qq an ideal in R[x], Qo+ So we have found a non-zero element

inR' " Q/q,. Thus,QynR=QAR

The Incomparable Property for G-ideals does hold for R  R[x]. Using
this fact and Theorem 3.2.9, we can show that for every finite chain of
G-ideals in R[x], we can create a chain of equal length in R. Now we can state

our final theorem.
Theorem 3.2.11  Given rings R c R[x], G-dim(R) = G-dim(R[x]).

The proof of this is similar to the proof given for Theorem 1.2.5
An interesting fact about Hilbert rings follows. Note that a ring is a

Hilbert ring if every G-ideal in the ring is maximal.

Corollary 3.2.12 R is a Hilbert ring if and only if Rlx] is a Hilbert ring.
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Proof: R is a Hilbert ring if and only if G-dim(R) = 0. Thus, by
Theorem 3.2.11, G-dim(R[x]) = 0. So, every G-ideal in R[x] must be maximal

and hence, R[x] is a Hilbert ring. The other direction is similar.
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