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ABSTRACT 

CRYPTANALYSIS OF THE SIGABA CIPHER 

By Heather Ellie Kwong 

SIGABA is a rotor-based cipher machine that is famous for its service during 

World War II by the United States. Compared to other ciphers used in World War II, 

such as the German Enigma or the Japanese Purple, SIGABA's security was 

undefeatable, as it was the only cipher to withstand all cryptanalytic attacks in the course 

of its usage. 

This thesis covers the history of SIGABA's development, how SIGABA works, 

and a cryptanalytic attack on SIGABA. The attack covered in this thesis has never been 

implemented before and is divided into a primary phase and secondary phase. The attack 

recovers SIGABA's keyspace by targeting SIGABA's rotor banks separately, while 

demonstrating SIGABA's strength in design that separates it from other ciphers. 
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1. Introduction 

1.1. Introduction to Computer Security 

As technology continues to thrive and grow, so does computer hacking. Hackers 

are drawn to expose security gaps for a variety of reasons: greed, ill intent, a hobby, or 

gaining the bragging rights to have defeated a system. Though this can be seen as 

unfortunate, there is a silver lining. In order to avoid computer security breaches, 

stronger code is developed with the following security goals and protocol in mind: 

confidentiality, integrity, and authentication. 

An important security goal is confidentiality, which prevents any unauthorized 

reading of information so that only those who are authorized can access the data. 

Integrity, the second security goal, prevents any unauthorized writing of information to 

protect the data's validity. Authentication protocols are used to confirm a person's 

identity to protect a computer system or resource [8]. Technology would not be where it 

is today without these three cornerstones, and these three cornerstones would not be 

possible without cryptography. 

1.2. Introduction to Cryptography Terminology 

Cryptography is the study and practice of encryption, the hiding of information. 

The root of the word is derived from the Greek words bypto and grafo, which mean 

"hidden" and "to write," respectively. Today, the word cryptography holds a double 

meaning that pertains to the study of mathematics and computer science [12]. 
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Encryption involves converting original data, called plaintext, to something 

incomprehensible, called ciphertext. The reverse process of encryption is decryption, the 

conversion of ciphertext back to its original plaintext. 

A cipher is a machine that performs both encryption and decryption. Each cipher 

contains a specific algorithm for both encryption and decryption based on a secret key. 

Without the same key that was used to encrypt the plaintext in symmetric ciphers, the 

ciphertext cannot decrypt to its original state [9]. 

The analysis and breaking of ciphers is called cryptanalysis. The term cryptology 

refers to both cryptography and cryptanalysis [9]. 

1.3. Project Overview 

Cipher systems can be divided into two groups: classic and modern. This thesis 

will focus on the classic cipher SIGABA, which is a symmetric cipher. We will discuss 

SIGABA's history, its internal hardware design, and a modern cryptanalytic attack on 

SIGABA that is developed in SIGABA: Cryptanalysis of the Full Keyspace [10], which I 

implement for the first time. We will refer to this paper as Cryptologia from this point 

on. 
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2. Rotor Machines 

2.1. Simple Substitutions 

2.1.1. Simple Substitution Definition 

A simple substitution is a fixed one-to-one mapping of a plaintext letter to one 

ciphertext letter. Consider Table 1, which contains a key for a simple substitution cipher. 

Table 1. An example key for a simple substitution. 

Plaintext 

Ciphertext 

A 

i 

B 

r 

C 

d 

D 

e 

E 

J 

F 

u 

G 

a 

H 

n 

U 

f 

J 

c 

K 

q 

L 

t 

M 

0 

Plaintext 

Ciphertext 

N 

h 

0 

m 

P 

w 

Q 

V 

R 

g 

S 

k 

T 

b 

U 

X 

V 

s 

W 

y 

X 

l 

Y 

z 

Z 

P 

Using this key, the plaintext letter a maps to /, t to b, and so on. Therefore, the 

plaintext message 

AttackAtDawn 

will always encrypt to 

ibbidqibeiyh. 

2.1.2. The Cryptanalysis of Simple Substitutions 

Simple substitutions are inherently weak ciphers, because their keys can easily be 

deduced by studying the frequency of letters for any intercepted ciphertext. This study of 
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frequencies is known as frequency analysis. Figure 1, reprinted from Wikipedia, 

illustrates a frequency analysis for the English language. Notice that the letter e is most 

common and z is the least common, which explains why contestants must pay extra for an 

e in Wheel of Fortune. 

0.14 

0.12 

|.H 

p 
I 0.08 

P 
4r 
| 0-06 

a: 
0.04 

0.02 

a b c d e f g h i j k i m n o p q r s t u v w x y z 

Letter 

Figure 1. A typical distribution of English letters. 

Frequency analysis can also be applied to groups of letters, known as digrams 

(groups of two letters) and trigraphs (groups of three letters). Table 2 lists the most 

common digrams in the English language and the expected number of occurrences for 

each given 2,000 letters [13]. The most common trigrams of the English language are 

listed in Table 3 [8]. 
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Table 2. Digrams for the English language per 2,000 letters. 

ST 

10 

LE 

IS 

OU 

AR 

AS 

DE 

RT 

VE 

20 

18 

18 

17 

17 

16 

16 

16 

16 

16 

TH 

ER 

ON 

AN 

RE 

HE 

IN 

ED 

ND 

HA 

50 

40 

39 

38 

36 

33 

31 

30 

30 

26 

AT 

EN 

ES 

OF 

OR 

NT 

EA 

TI 

TO 

IT 

25 

25 

25 

25 

25 

24 

22 

22 

22 

20 

Table 3. Common trigams for the English language. 

the 

and 

tha 

hat 

ent 

ion 

for 

tio 

has 

edt 

tis 

ers 

res 

ter 

con 

ing 

men 

tho 

Consequently, recovering the key to a simple substitution is not an impossible or 

even a difficult task. 
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2.2. Poly-Alphabetic Substitutions 

A poly-alphabetic substitution is similar to a simple substitution only multiple 

substitution alphabets are used. The first cipher to use a poly-alphabetic substitution was 

invented by Leon Battista Alberti (1404 - 1472). Alberti's cipher consisted of two cipher 

wheels, each with the alphabet printed along the perimeter. The two wheels were 

positioned so that one was inside the other [4]. Figure 2 illustrates an Alberti cipher 

reprinted from Wikipedia [12]. 

Figure 2. An Alberti cipher. 

The inner wheel was allowed to rotate per input so that multiple alignments were 

created between the two wheels, and with each new alignment, a new simple substitution 

was generated [4]. 

A more famous poly-alphabetic cipher is the aVigenere cipher. The aVigenere 

cipher is a classic poly-alphabetic substitution cipher, whereas the World War II ciphers 
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are more recent poly-alphabetic substitution ciphers. In the aVigenere cipher, the key 

used to encrypt and decrypt messages is of the form K = (fa, fa,-.., K-i), where each k e 

{0,1,.. .,25} and represents a particular shift in the alphabet. Equation (1) encrypts and 

Equation (2) decrypts a letter using the aVigenere cipher [4]. 

Ci - pi + fa (mod n) (mod 26) (1) 

Pi - d - fa (mod n) (mod 26) (2) 

where 

ct is the i ciphertext letter 

Pi is the / plaintext letter 

Another example of a poly-alphabetic substitution is a cipher with multiple 

wheels that have an odometer effect. The most famous cipher known to follow an 

odometer stepping pattern is the Enigma cipher that was used by the Germans in World 

War II [4]. By using an odometer stepping pattern, the rightmost wheel, which we will 

call F (for fast), advances one step for every input. The wheel directly to the left, M (for 

medium), will advance one step for every complete rotation F makes. Likewise, the 

leftmost wheel, S (for slow), will advance one step once M makes a complete rotation. 

The order in which the wheels F, S, and M are placed is illustrated in Figure 3. 
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s 

M F 

Figure 3. Wheels for an odometer setup. 

In this example, there are only three wheels. However, this stepping pattern is not 

limited to three wheels and may be repeated for as many additional wheels that follow to 

the left. Although ciphers stepping to the pattern of an odometer are significantly 

stronger compared to a simple substitution cipher, it is still weak because the steps are 

predictable. This ultimately led to Enigma's downfall [4]. If Enigma's designers had 

designated either the leftmost or middle wheel to be the fast wheel, replicating an almost 

odometer-like pattern, Enigma's steps would have been irregular. Consequently, it would 

have been much more difficult to break Enigma [4]. This almost odometer pattern is 

used in SIGABA [4]. 

2.3. Introduction to Rotor-Based Machines 

SIGABA is a rotor-based cipher, a type of electro-mechanical machine [4]. 

Before World War II, developing rotor-based machines received little attention within the 

United States. However, interest in cipher machines increased drastically during World 

War II when the need to develop secure methods of communication involving relatively 

large amounts of data became a priority. While building secure ciphers was considered 

important, scientists devoted far more time and research to breaking ciphers belonging to 

the Axis Powers, many of which were rotor cipher machines. The popularity of rotor-

based ciphers lasted into the 1950s. 
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As indicated by its name, the main components of a rotor-based cipher are its 

rotors. A rotor is essentially a wired wheel. Each rotor is typically the shape and size of 

a hockey puck. Along the perimeter of each rotor are a variable amount of evenly spaced 

electrical contacts. This small array of electrical contacts lies on either side of the rotor 

and functions in a simple substitution of letters. Figure 4, reprinted from Wikipedia [16], 

illustrates what a typical rotor looks like. 

Figure 4. A rotor. 

Rotors can represent letters or numbers. If the rotor represents the English 

alphabet, the rotor will have 26 contacts — one contact for each letter of the alphabet. 

When there are 26 contacts, there are 26 different electrical signals, where each signal is 

mapped to a specific contact on the rotor. When a signal is passed from one face to the 

opposite face of the rotor, it is permuted into a different character. In Figure 5, reprinted 

from Hellman [3], an input letter of R is permuted to output letter B. A bank of rotors is 

a set of rotors that are connected via the electrical contacts that are shown in Figure 6, 

reprinted from Hellman [3]. 
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Output 
Ciphertest 
"B" 

Figure 5. A rotor for the English Alphabet. 

Contacts 

Output 

Figure 6. A bank of rotors. 

When rotors are connected in such a manner, an electrical input entering one rotor 

continues to be permuted by all subsequent rotors. However, without applying any 

stepping motion to any of the rotors, a bank of four non-stepping rotors is equivalent to a 

simple substitution cipher, making it just as weak. In order to build a strong and secure 

cipher, it is essential to change the permutation for at least one of the rotors per electrical 

input. If rotors are given the ability to step, the number of possible permutations and 

level of security generated from the bank increases dramatically. Recall that it is best for 

a bank of rotors to have an unpredictable stepping pattern. 

Input 
P l a i n t e x t 
"R" 

Input 
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3. SIGABA the Cipher 

3.1. A Historical Background of SIGABA 

SIGABA, shown in Figure 7, reprinted from the National Security Agency [7], is 

a type of rotor-based cipher machine that was used by the United States during World 

War II. The development of this cipher is credited to the director of the US Army's 

Signals Intelligence Service, William Friedman, and his associate, Frank Rowlett. What 

separated SIGABA from all other ciphers used in World War II was its unique design 

that made it able to withstand all crypt-analytical attacks in the course of its usage. 

Figure 7. SIGABA the cipher. 
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3.2. SIGABA's Developmental Phases 

3.2.1. Pre-development phase 

Friedman's first version of SIGABA was designed with the intent to fix the 

inherit weakness of single stepping rotor machines. A single stepping machine consisted 

of only one rotor so that with every input, the rotor advanced one step only to change the 

permutation slightly. Friedman's solution incorporated randomized stepping motions for 

the rotors that were controlled by a paper tape. This paper tape is similar to the one 

found in a teleprinter, which is now an obsolete electro-mechanical typewriter used to 

communicate typed messages via simple electrical connections. Electric signals were 

established when electricity was able to pass through the pattern of holes punched 

throughout the tape that determined the stepping motion for the rotors. For every rotor 

that advances, the tape will follow by advancing a step as well [17]. 

3.2.2. M-134 

The M-134 is the first of Friedman's design that went into a limited production. 

M-134's key size depended on the pattern of the holes punched throughout the paper tape 

and the plugboard's setting that determined which holes were connected to which rotors. 

One significant disadvantage to the M-134 was the fragility of the paper tapes that often 

broke under harsh field conditions [17]. 

3.2.3. M-134-C 

In response to M-134's weakness caused by the paper tape, Friedman and Rowlett 

replaced the tape with another set of rotors. However, because there was a lack of funds 

to develop an entirely new cipher, Friedman and Rowlett created an additional external 
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device to work concurrently with M-134. Friedman and Rowlett gave this new external 

device the name SIGGOO or M-229, which was a box that contained three rotors. 

The SIGGOO or M-229 took five active inputs for every letter typed into the 

cipher and had a maximum of five active outputs that determined stepping motion of the 

rotors in M-134. The combination of M-134 and SIGGOO or M-229 is known as M-134-

C [17]. 

3.2.4. ECM Mark II 

In 1937, Navy Commander Laurance Safford, Friedman's counterpart in the 

Navy's Office of Naval Intelligence, saw great potential in the M-134-C. He and 

Commander Seiler made further improvements to the M-134-C that resulted in an easier 

method to build and transport the cipher. Their new generation of the machine was given 

a new name as well - the Electric Code Machine (ECM) Mark II, also known as CSP-888 

or 889 [17]. 

A separate version of ECM Mark II, known as POTUS-PRIME, was developed 

specifically to provide communication between the President of the United States and the 

Prime Minister of the United Kingdom. All rotors were set by hand, in which the settings 

were specified in a codebook known as Message Indicators [1]. 

3.2.5. SIGABA 

In the early 1940s, the Army learned of the Navy's usage of ECM Mark II. In 

1941, the Army and the Navy formed a joint cryptographic system based on ECM Mark 

II, which became famously known as SIGABA within the Army. 
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Figure 8, reprinted from the USPTO Databases [11], is a diagram of SIGABA 

found from the original secret U.S. patent that was issued in 1944. It was not until 2001 

that the patent was made available for the public [11]. 

Figure 8. SIGABA. 

3.3. A Technical Description of SIGABA 

3.3.1. Overview 

SIGABA consists a total of a total of fifteen rotors - three times the amount of the 

German Enigma. Out of SIGABA's 15 rotors, five are cipher rotors, five are control 

rotors, and five are index rotors. The cipher rotors are used to permute SIGABA's inputs 

while the control and index rotors are used to control the cipher's stepping pattern. 
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Figure 9, reprinted with permission from Chan [2], outlines the general layout of 

all 15 rotors. Notice that the order in which the electrical input reaches the rotors is 

control, index, and lastly cipher. 

cipher rotors 

control rotors 

GO OB t i l LSJ CD CD OD DDES 
EHUQQEQDGQQ]® 

ca m m m m ca ca cam 

fflramcacBczraiiis 
Ed] ca en Caracas 

ra ra ca EJ ca ca DD cs CD 
input keyboard output device 

Figure 9. SIGABA's 15-rotor layout. 

3.3.2. Cipher and Control Rotors 

Both the cipher and control rotors are identical in appearance and function, 

making them interchangeable. Therefore, there are a total of 10 rotors available to form 

two banks of five rotors, one for each the cipher and control rotor banks. Each of the 

rotors is a 26-contact rotor with the alphabet letters A through Z printed on the outer edge 

as shown in Figure 4 and Figure 5. 
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With the exception of the appearance of the letters along the outer edge on both 

the cipher and control rotors, the left face is identical to the right face. Because of this 

property, all cipher and control rotors can be inserted backwards to operate in the reverse 

orientation. 

If a rotor is operating in forward orientation, the stepping of the rotor is in an 

upward direction. Figure 10, reprinted with permission from Chan [2], illustrates either a 

control or cipher rotor advancing two steps in forward orientation. Note that the initial 

setting O changes to JVwith the first step, and changes to M on the second step. 

« 

Q 

0 
N 
M 
• 
* 

SI6P 

* 

p 
0 
N 
M 
t 
* 

step 

m 

0 
N 
M 
L 
K 
* 
* 

Figure 10. Stepping in forward orientation. 

If the same rotor is operating in reverse orientation, the rotors will physically 

appear upside down on the machine and step in a downward direction. Notice how in 

Figure 11, reprinted with permission from Chan [2], the initial position of O steps to P, 

which steps to Q. 
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* 

m 
u 
0 
d 
o 
* 

step 
_ _ _ j _ ^ 

* 

U 
0 
d. 6 
* 

stop 
_ _ _ _ * 

* 
* 

Q 
Q 

0 
y-
s 
* 

Figure 11. Stepping in reverse orientation. 

3.3.3. Index Rotors 

Index rotors are similar in design to the cipher and control rotors, except index 

rotors are 10-contact rotors instead of 26. Each of SIGABA's index rotors permutes 

integers ranging from zero to nine. Index rotors also do not step like the cipher and 

control rotors do. Although they may be placed backwards on the machine, setting index 

rotors in reverse orientation does not affect the cryptanalysis of SIGAB A so this feature 

will be ignored. The following picture in Figure 12, reprinted from Maritime Park 

Association [5], is of an actual cipher or control rotor and an index rotor. The smaller of 

the two is the index rotor. 

Figure 12. SIGABA's rotors. 
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3.4. Stepping SIGABA 

The stepping of the rotors in encryption mode start with the control rotors, which 

we will denote as Co, Ci, C2, C3, and C4 from left to right. These rotors are illustrated in 

Figure 13. 

Control Rotors 

CO CI C2 C3 C4 

Figure 13. Control rotors CO through C4. 

Rotors Ci, C2, and C3 step in an almost odometer-like fashion: C2 steps for every 

input, C3 steps once for every complete rotation of C2 (26 steps), and C\ steps once for 

every complete rotation of C3 (26 steps). Essentially, C2 is the fast rotor, C3 is the 

medium rotor, and Ci is the slow rotor. Rotors Co and C4, however, do not step and 

remain in their initial setting positions. 

For every input into SIGABA, C4 receives four concurrent active inputs we 

assume to be F, G, H, and /. Based on the control rotors' permutations, four new letters 

are outputted from control rotor Co. Before the output signals are sent to the index rotors, 

they are combined by the following logical operations listed under Equation (3). 

I i = B I4 = F V G V H I7 = P v Q v R v S v T 

12 = C I5 = I v J v K I8 = U v V v W v X v Y v Z (3) 

13 = D v E I6 = L v M v N v O I9 = A 
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where 

Ii is the i input into the index rotors, and i e {0,1,...,9}. 

For example, I4 will be active if any of the four outputs from the control rotors 

include F, G, or H. Although there is an input Io, it is never an active signal. For this 

reason, Io is disregarded in Equation (3). 

At least one and at most four of the index inputs and outputs will be active. This 

means that at least one and at most four of the cipher rotors will step. The cipher rotors 

step according to the logical equations listed in Equation (4). Recall that the index rotors 

do not step themselves. For example, cipher rotor C4 will step if either Oi or O2 is an 

active output from the index rotors. 

C4 = Oi v 0 2 (4) 

C3 = 0 3 v 0 4 

C2 = 0 5 v 0 6 

Ci = 0 7 v Og 

Co = Oo v 0 9 

where 

Oi is the i contact or output of the index rotor, and i e {0,1,... ,9} 

Q is the j t h cipher rotor, and j e {0,1,2,3,4} 

When SIGABA is set to decryption mode, all but the cipher rotors are set and 
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function exactly the same as in encryption mode. When SIGABA is in encryption mode, 

the electric signals pass through the cipher rotors in the direction from left to right. When 

decrypting, the signals are sent in the direction from right to left, which is the equivalent 

to using the inverse cipher permutations. 

3.5. SIGABA's Keyspace 

The number of possible settings for the cipher, control and index rotors 

determines SIGABA's keyspace. Each choice of setting includes the choice of rotors, the 

initial settings, and the orientation of rotors for those that apply. Equation (5) calculates 

the maximum possible keyspace for SIGABA. 

(26!)10«(10!)5*2884.2110*2994 (5) 

where 

(26!)10 is the total number of permutations for the cipher and control rotors 

(10!)5 is the total number of permutations for the index rotors 

However, due to the index rotors' inability to step, only 10! out of the (10!)5 

permutations are distinct. This reduces SIGABA's keyspace to 2906 (see Equation (6)). 

This is still a considerably large number, but thankfully the actual keyspace for SIGABA 

is much less due to several restrictions applied to the rotors. 

(26!)10 • 10! ~ 2884 *222~ 2906 (6) 

Historically, there were only 10 rotors available to form both the control and 

cipher rotor banks and 5 rotors available to form index rotor bank. Recall that the cipher 
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and control rotors can also be inserted in either forward or reverse orientation. Although 

each of the cipher and control rotors can be set to any of the 26 possible positions and the 

index rotors can be set to any of the 10 positions, they are usually set to known default 

settings specified in a Message Indicator. 

Two examples of message indicators are in the Table 4, reprinted from the 

USPTO Databases [11], and Table 5, reprinted from the USPTO Databases, for secret, 

confidential, and restricted messages. For each of these three types of messages, the 

message indicator contains the following information: 

- The order of cipher, control and index rotors for each day of the month. 

- The orientation of cipher and control rotors, where R indicates reverse. 

- 26 to 30 check groups to ensure all rotors are placed and positioned correctly. 

Table 4. Message indicator example for secret messages. 

Day | mmOS. IBRUreEMEIST 
of I f fer e l l <slassi£i©itfei*3»s) 
Moa-fch. J Stepping Ca&txel J Alphabet 

J (Middle} f (Rear) 

SEGWtST 
| 26-30 

Index(FrQnt) J Check 
Alignment; \ CSrowp 

1 | 01 4 6 2R 7 | 1 8 5 9 3K | 10 23 31 49 5 | 8 I B V C 
2 | I 3K m I S I ( 4S 8 7 0 j 14 25 33 46 59 | 8 B X H 0 

Table 5. Message indicator for confidential and restricted messages. 

Day | CSQHPIIHDnUL 
of I I .26-3© 
Month | Index {F£on1:]f j Check 

j Alignment | ©roup 

RESTRICTED 

Index (Fronts | j Check 
Alignment | Group 

1 | 12 28 31 44 53 | P W V M T ( 17 25 36 43 58 | M C 6 D T 
2 j IS 20 3.2 46 IS | B B B W B | 10 27 M 42 Si | B 8 T B B 
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If the Message Indicator is known, SIGABA's keyspace is reduced to 248'4 (see 

Equation (7)). For the attack implemented in this thesis, we assume the Message 

Indicator is unknown. 

10!«210»105~248-4. (7) 
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4. The Cryptanalysis of SIGABA 

4.1. Overview 

This attack is divided into two parts: the primary phase and the secondary phase. 

For both these phases, we require a certain amount of known plaintext and the 

corresponding ciphertext. The primary phase exhausts all possible cipher settings. 

Recall that each setting includes the choice of rotors, initial settings, and orientation for 

each rotor. Any cipher setting that is consistent to the known plaintext, we deem the 

setting causal. All other inconsistent settings are deemed random. For each causal 

setting we require a secondary phase. 

The secondary phase exhausts all possible control and index settings. Recall that 

the option for rotors to operate in reverse orientation does not apply to index rotors. For 

each combination of causal, control, and index setting that is consistent with the known 

plaintext, we recover the key. 

Dividing the attack into two phases reduces the work to recover the key by first 

eliminating random cipher settings and for causal cases only do we exhaust all possible 

control and index rotor settings. For both primary and secondary phases, we make the 

following assumptions: 

- All three rotor banks are set independently. 

- There are only five rotors available to form the set of index rotors. 

- There are a total of 10 rotors to form both the cipher and control rotors. 

- Only the cipher and control rotors can operate in reverse orientation. 

- The inner workings of SIGABA are known. 
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Taking all the assumptions into consideration, SIGABA's keyspace is 

10!»21 0«261 0»5!«105 = 2102-3. (8) 

where 

10! is the number of permutations for choosing the order of cipher and control rotors 

since 
K$J 

• 5! • 5 ! = 10! 

210 is the number of possible orientations for both cipher and control rotors 

2610 is the number of possible initial settings for cipher and control rotors 

5! is the number of permutations for setting the index rotors 

105 is the number of possible initial settings for the index rotors 

However, recall that only 10! out of the total 5! • 105 index settings are distinct 

since index rotors do not step. This reduces Equation (8) to 

10!«21 0«261 0« 10! =2100-6. (9) 

Further deductions to the keyspace can be made due to the fact that the outputs of 

the index rotors are ORed together. Recall from Equation (4) that the index outputs are 

combined by the following logical equations. 

C4 = Oi v 0 2 

C3 = 0 3 v 0 4 

C2 = 0 5 v 0 6 
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Ci = 0 7 v 0 8 

C0 = Oo v 0 9 

Based on these five equations, each permutation has 32 equivalent permutations. 

Take for example the following permutation of (5, 4, 7, 9, 3,8, 1, 0, 2, 6). This means an 

input of 0 is be mapped to an output of 5, an input of 2 is mapped to 4, and so on. Now, 

let us generate the 32 equivalent permutations. From Equation (4), cipher rotor C4 will 

step if either output Oi or O2 is active. If C4 steps using the above index permutation 

example, C4 will also step if the index permutation is (5, 4, 7, 9, 3, 8, 2, 0,1, 6). Table 6 

consists of all 32 equivalent permutations for the above example. 

Table 6. 32 equivalent permutations. 

5,4,7,9,3,8,1,0,2,6 

5,3,7,9,4,8,1,0,2,6 

5,4,7,9,3,8,2,0,1,6 

5,3,7,9,4,8,2,0,1,6 

6,4,7,9,3,8,2,0,1,5 

6,4,7,9,3,8,1,0,2,5 

6,3,7,9,4,8,1,0,2,5 

6,3,7,9,4,8,2,0,1,5 

5,4,8,9,3,7,1,0,2,6 

5,4,8,9,3,7,2,0,1,6 

5,3,8,9,4,7,1,0,2,6 

5,3,8,9,4,7,2,0,1,6 

6,4,8,9,3,7,1,0,2,5 

6,4,8,9,3,7,2,0,1,5 

6,3,8,9,4,7,1,0,2,5 

6,3,8,9,4,7,2,0,1,5 

5,4,7,0,3,8,1,9,2,6 

5,4,7,0,3,8,2,9,1,6 

5,3,7,0,4,8,1,9,2,6 

5,3,7,0,4,8,2,9,1,6 

6,4,7,0,3,8,1,9,2,5 

6,4,7,0,3,8,2,9,1,5 

6,3,7,0,4,8,1,9,2,5 

6,3,7,0,4,8,2,9,1,5 

5,4,8,0,3,7,1,9,2,6 

5,4,8,0,3,7,2,9,1,6 

5,3,8,0,4,7,1,9,2,6 

5,3,8,0,4,7,2,9,1,6 

6,4,8,0,3,7,1,9,2,5 

6,4,8,0,3,7,2,9,1,5 

6,3,8,0,4,7,1,9,2,5 

6,3,8,0,4,7,2,9,1,5 

Therefore, the number of actual distinguishable index permutations is 2 (see 

Equation (10)). SIGABA's resulting total keyspace is reduced to 295'6 (See Equation 

(11))-

101/32 =113,400-216 '8 (10) 
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10! • 210 • 2610 • 2 1 6 8 = 2 9 5 6 (11) 

4.2. Primary Phase 

4.2.1. Review 

The purpose of the primary phase is to eliminate all random settings and to keep 

only the causal settings. Recall that the primary phase exhausts all possible cipher 

settings, which includes the choice of the rotors, orientations, and initial settings. Only 

the settings that are consistent to the known plaintext are causal. 

4.2.2. Keyspace for Primary Phase 

The number of possible cipher settings determines the keyspace for the primary 

phase. Each setting includes the following factors: 

- The choice of five rotors from 10 available rotors. 

- The option for each cipher rotors to operate in forward or reverse orientation. 

- A total of 26 possible initial positions for each cipher rotor. 

Taking all these factors into account, there are 243'4 possible cipher settings for the 

primary phase (see Equation (12)). 

f10> 

, 5 y 
• 5!»25«265 = 2434 (12) 
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4.2.3. Stepping Through the Primary Phase 

Recall that for each letter typed into the cipher, a range of one to four cipher 

rotors can step. Suppose we have chosen our choice of cipher rotors, and the orientation 

and initial setting for each rotor has been set so that the first known plaintext letter 

encrypts to the first ciphertext letter. Before we determine if the second known plaintext 

letter encrypts to the second ciphertext letter, we simulate all possible steps the cipher 

rotors can take from the initial setting. The total number of possible steps is 30 since 

'5N 

+ (5) + 
'5N 

+ f5" 

Each of these 30 new steps will give us a new cipher setting or permutation that 

we will use to encrypt the second known plaintext. Any of the new 30 settings that are 

consistent with the second pair of plaintext and ciphertext letters are kept, while the rest 

that are inconsistent are discarded. We will make each consistent setting the current 

cipher setting and generate an additional 30 steps each setting can take. Again, we keep 

each of the new 30 settings that are consistent with the third pair of plaintext and 

ciphertext letters and discard the rest. This process is repeated until all pairs of plaintext 

and ciphertext letters are tested. 

Once all pairs of plaintext and ciphertext letters have been tested, we keep all 

initial cipher settings that have generated the cipher setting that is consistent with the last 

pair of plaintext and ciphertext letters. Recall that these cipher settings are what we call 

causal. If it is the case that the last pair of plaintext and ciphertext has not been reached 

and none of the new 30 cipher settings are consistent with the current pair of plaintext 

and ciphertext, we know the initial setting is random and discard it. 

Note that the primary phase creates a treelike structure where the initial setting is 

27 



the root of the tree and each child node of the tree is every subsequent consistent cipher 

setting. 

Assuming that the cipher permutations are uniformly random, the number of 

matches of plaintext to ciphertext follow a binomial distribution ofp = 1/26 and n = 30, 

meaning the number of expected matches per step is 30/26 =1.154. Therefore, the 

number of paths is expected to increase at any given step. This branching effect may 

seem daunting, but keep in mind that we do not track the intermediate steps and the 

primary phase also merges settings of equal value. Consider the following example. 

Suppose we have chosen our cipher settings so that the first plaintext encrypts to 

the first ciphertext and the initial position of the cipher rotors is set to AAAAA. Recall 

that because the initial setting yields a match between the first plaintext and ciphertext, 

the next step involves generating all 30 possible subsequent settings that can occur where 

the expected number of matches is 1.154. Taking this factor into account, suppose that 

out of the 30 new cipher settings, only two yield consistent results with the second pair of 

plaintext and ciphertext. Assume these cipher settings to be BBABA and ABABA as 

indicated in Figure 14, reprinted with permission from Chan [2]. 

AAAAA 1st plaintext letter 

BBABA ABABA 2nd plaintext letter* 

Figure 14. First round of primary phase. 

Settings BBABA and ABABA now become the current cipher settings and 30 

possible cipher steps are generated for each. As indicated in Figure 15, reprinted with 

permission from Chan [2], only one setting from BBABA is consistent and two from 

ABABA are consistent with the third pair of plaintext and ciphertext. These three 
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settings are BBBBA, BBBBA, and ACBBA. 

AAAAA 1st plaintext letter 

BBABA ABABA 2nd plaintext letter 

BBBBA BBBBA ACBBA 3rd plaintext letter 
i I ' i i i 

v <r ¥ 

Figure 15. Second round of primary phase. 

Notice that in the third round, two settings, BBBBA, are identical. In such 

situations, we can merge these two settings together. By merging these settings, rather 

than generating two sets of 30 new settings for each setting of BBBBA, we generate it 

only for one. 

Applying the merging method does not cause us to lose accuracy to the primary 

phase since the primary phase is only concerned with the initial cipher setting and not the 

subsequent settings. The merging method is illustrated in Figure 16, reprinted with 

permission from Chan [2]. 
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AAAAA 1st plaintext letter 

BBABA ABABA 2nd plaintext letter 

BBBBA ACBBA 3rd plaintext letter 

Figure 16. Third round of primary phase. 

This process of generating 30 possible steps for each causal cipher setting while 

merging identical settings is repeated until all known plaintexts are tested or if none of 

the 30 subsequent permutations yield any consistent results. 

If for this particular example there are only three known plaintexts available, then 

the primary phase will be complete and we apply the secondary phase to this particular 

causal setting. 

4.2.4. Primary Phase Analysis 

Let us consider the statistics from the primary phase for both causal and random 

settings. Given a set of known plaintexts that is indicated in the column labeled "Steps" 

in Table 7 and Table 8, a variable amount of "Tests" were conducted for each. Each 

"Test" consisted of generating either a random or causal cipher setting for the respective 

tables. 

For each causal or random setting, the first known plaintext letter is encrypted and 

compared with the first ciphertext letter. If the first plaintext letter encrypts to the first 

ciphertext, then all subsequent 30 possible cipher steps are generated, where any of the 30 

new settings that is consistent to second plaintext and ciphertext letters are saved. In the 

case for all random settings, the probability for it to survive or be consistent with the 
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plaintext is 1/26. This process is repeated until all plaintext letters have been tested, if 

none of the 30 generated settings are consistent with the known plaintext, or if the 

maximum number of steps has been reached. 

For each set of tests listed in Table 7, reprinted with permission from Chan [2], 

and Table 8, reprinted with permission from Chan [2], we count the number of settings to 

survive the primary phase along with the number of merged paths. For Table 7, we 

conduct 105 tests for each different case, where the number of random settings expected 

to survive out of the total 105 settings is denoted as "non-zero settings," and the number 

of merged paths to have been generated for each of the surviving settings is denoted as 

"Avg. per non-zero." 

For example, we see in Table 7 that in the case of using 50 consecutive known 

plaintext letters, 290 out of 100,000 random settings are expected to survive with an 

average of 28.4 merged paths to have occurred with a maximum value of 194. 

Looking at the same case in Table 8 for the causal case, we see that using 50 

known plaintexts, each causal setting is expected to generate 54.1 consistent branches. 

Out of the 100,000 tests generated, the numbers of consistent paths range from one to 

404. 

Table 7. Random case. 

Steps 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Tests 

10s 

10s 

10s 

I05 

10s 

MJ5 

10s 

105 

105 

105 

Mon«»ro setting* 

763 
516 
427 
324 
290 
275 
269 
212 
216 
203 

Avg, per non-zero 

6.5 
11,8 
16.5 
20J 
28.4 
38.8 
47.1 
71,3 
77,6 

100,5 

Maximum 

27 
56 
84 

105 
194 
163 
415 
524 
486 

1005 
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Table 8. Causal case. 

Steps 

10 
20 
30 
40 
SO 
60 
70 
80 
m 

100 

Average 

10,2 
19.6 
29.6 
40.1 
541 
mi 
85,0 

105,0 
1304 
161.1 

Maximum 

51 
94 

151 
23? 
*^ry*^ 

566 
689 
829 

1152 
1926 

Miniifflim 

1 
1 
1 
1 
1 
1 
1 
2 
1 
1 

Testa 

mm 
10,000 
10,000 
10,000 
10,000 
10,000 
5,000 
*J,\ftM/ 

3,000 
3s(XMj 

The results of Table 7 are favorable, as we can see that most of the random 

settings are eliminated. For this attack, this is all we need to concern ourselves with. 

However, for the secondary phase refinement (see 6.1), the results of Table 7 can be a 

negative aspect of the primary phase. The secondary phase refinement deals with using 

all surviving merged paths, and we can see that as more plaintext letters are used, the 

number of total merged paths increases as well, thereby increasing the work. 

We can further reduce the number of random settings by only keeping random 

settings that lie above the mean found in Table 8 for each respective causal case. 

However, this comes with the risk of eliminating causal settings and thereby decreasing 

the success rate of this attack. For this reason, we will not apply this checkpoint for the 

cipher settings. 

4.3. Secondary Phase 

4.3.1. Description 

The secondary phase exhaustively permutes through all possible control and index 

settings for every causal cipher setting from the primary phase. If the combination of all 
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three-rotor settings encrypts all plaintext letters to its respective ciphertext, we have 

recovered the key. If none of the exhausted control and index settings gives consistent 

results with the causal cipher setting, then the cipher setting has survived the primary 

phase by chance and is discarded. This is the simpler method of two possible secondary 

phases. 

The alternative option is called the refined the secondary phase (see 6.1). 

Although the refinement has not been fully implemented, analysis has been done for 

selected issues mentioned in the refinement that prove its correctness [10]. The work I 

implement in the secondary phase also adds to the analysis already done in Cryptologia. 

4.3.2. Keyspace for Secondary Phase 

Although there are 10 rotors that can be used to construct the set of control rotors, 

five have already been designated for the set of cipher rotors. This leaves a total of 5! 

Possible rotor choices, each with 26 possible initial positions, and each with the ability to 

operate in reverse orientation. With only five index rotors, there are also 5! Possible 

index rotor choices, with 10 initial possible initial positions each. Recall that the index 

rotors do not operate in reverse orientation. This gives the secondary phase a total of 

5 !«2 5 »26 5 »5!»10 5 ~2 5 8 9 (13) 

possible settings. 

This workload is considerable since it is applied to each causal cipher setting that 

survives the primary phase. However, recall from Equation (10) that there are only 2 ' 

distinguishable index permutations. This reduces the secondary phase keyspace to 

2168 • 5! «25 • 26 5~2 5 2 2 (14) 
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that is applied to each causal setting. 
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5. Implementation 

5.1. Overview 

The cryptanalysis, which includes both the primary phase and the simpler 

secondary phase, is developed using Microsoft Visual C++ .Net version 7.1. The 

cryptanalysis project is named SigabaCryptanalysis. The keyspace for the primary and 

secondary phase under the worst-case scenario is 

2 43.4 # 2 53.2 s ; 2 96.6_ ( 1 5 ) 

That is, if every cipher setting survives the primary phase, the attack will further 

permute 2 ' settings to recover control and index settings in the secondary phase. 

Because applying the attack to SIGABA's full keyspace still takes a considerable amount 

of time to compute, (see 5.4), I ease the process by allowing the user to specify a range of 

cipher and control rotors to target. 

I initially created two side projects in Microsoft Visual C++ version 6.0 to create 

data files for SigabaCryptanalysis to use. These two projects are named 

distinguishablePermutations and distinguishableSettings. 

The project distinguishablePermutations generates all 101/32 (113,400) 

distinguishable index permutations and writes them into a text file, 

distinguishablePermutations.txt (see pocket). 

The project distinguishableSettings determines which index setting (choice of 

index rotors and initial settings) generates each of the distinguishable index permutations. 

The results are written into distinguishableSettings.txt (see pocket). There are four 
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columns in distinguishableSettings.txt: the row number the permutation is located in 

distinguishablePerrnutations.txt, the index permutation, the index order, and initial setting 

in order from left to right. 

What I have found is that not all index permutations can be generated from the 

index rotors. I created a third project called distinctPermutations to exhaust all index 

settings and find all distinct permutations. However, the end results showed only 

1,811,873 permutations out of the expected 10! are able to be generated from the index 

rotors. These permutations are in distinctPermutations.txt (see pocket). This is a factor I 

had to take into account while generating all 101/34 index permutations for 

distinguishablePermutations (see 5.2.2). Without taking this fact into consideration, only 

56,567 out of the 113,400 distinguishable permutations ended up having an equivalent 

index setting. 

5.2. Pseudocode 

5.2.1. SigabaCryptanalysis 

Main() 

{ 

FOR each possible cipher setting 

Apply the primary phase 

IF primary phase returns value > 0 

Keep current causal cipher setting 

Determine which rotors are available to make the control rotors 

FOR each possible control setting 

FOR each distinguishable index setting 

Apply secondary phase 

IF secondary phase returns value of 1 
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Keep the current setting for all ciphers 

ELSE 

Discard current setting and keep permuting 

ELSE cipher setting is random 

} 

int Primary Phase() 

{ 

Place cipher rotors in correct order 

Set initial positions for all cipher rotors 

Set orientation of cipher rotors 

Save current cipher rotor offsets before any rotor steps 

IF first plaintext encrypts to first ciphertext 

WHILE there are plaintexts to test 

IF there are no saved cipher rotor offset 

Break 

FOR each saved cipher rotor offset 

Set the cipher rotors configuration to saved offsets 

FOR each of 30 possible cipher rotor step 

IF next plaintext encrypts to next ciphertext 

IF offset is not the same as any offset 

generated by one of the 30 steps 

Save the offset 

Delete all previous offsets 

Keep only the new offsets generated from the 30 new steps 

that are consistent to known plaintext and ciphertext 

ELSE 

Do nothing 

RETURN number of saved offsets 
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} 

int secondaryPhase() 

{ 

Place cipher rotors from primary phase in correct order 

Set initial positions for all cipher rotors 

Set orientation of cipher rotors 

Place control rotors in correct order 

Set initial positions for all control rotors 

Set orientation of control rotors 

Place cipher rotors in correct order 

Set initial positions for all cipher rotors 

Set orientation of cipher rotors 

Place cipher rotors in correct order 

Set initial positions for all cipher rotors 

Set orientation of cipher rotors 

Set Boolean variable match to true to indicate whether encrypted plaintext 

encrypts to ciphertext 

WHILE there are plaintexts to test 

Send plaintext through control rotors 

Use control outputs as index rotor inputs 

Step cipher rotors based on index rotor outputs 

Output encrypted plaintext 

IF encrypted plaintext is not equal to ciphertext 

Set match to false 

RETURN match 

} 
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5.2.2. distinguishablePermutations 

main() 

{ 

Create an array to hold all distinct permutations 

Generate all 3,628,800 permutations for "0123456789" 

Create a map structure so that each permutation is a key paired with the value 

FALSE 

FOR each of the 3,628,800 permutations 

IF permutation can be generated by index rotors 

IF map[permutation] is FALSE 

Generate32Equivalents(array, permutation, map) 

Write all contents of array to distinguishablePermutations.txt. 

} 

void Generate32Equivalents(array, permutation, map) 

{ 

FOR 32 rounds 

Swap the all indices that are mapped together via Equation (4) 

FOR each of the 32 equivalent permutations 

Flag each permutation in the map to TRUE 

} 

5.2.3. distinguishableSettings 

main() 

{ 

Create a map structure so that each key is a distinct index permutation in 

indexPermutation.txt paired with the row index number (mapl) 
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Create a map structure so that each key is an index ranging from 0 to 113,400 

paired with the value FALSE (map2) 

FOR each possible index setting 

Place index rotors in correct order 

Set initial positions for all index rotors 

Generate the permutation from the index rotors 

IF the permutation is one of the distinct permutations 

(map 1 [permutation]) 

Get the index of the permutation in indexPermutations.txt 

IF an equivalent permutation has not already been written 

(!map2[index]) 

Write the index setting to distinguishableSettings.txt 

} 

5.3. Executable 

5.3.1. Description 

Figure 17 is the GUI developed for SIGABA's cryptanalytic attack. There are 

inputs to specify both cipher and control settings, each of which include the choice and 

order of rotors, initial settings, and orientation for each rotor. The left input for each of 

these settings indicates the start of the target range and the input on the right indicates the 

end of the target range. If the start of the range is specified without an ending value, this 

will indicate to target the starting range value only. If neither start nor ending range is 

specified for any setting input, this will indicate to the program to exhaust all possible 

settings. 
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Additional inputs include the filenames containing the known plaintext and 

ciphertext, and the maximum number of letters of the known plaintext to test. 

SigabaCryptonalysis 

cipher Ssicngs 

Opier Order Pang* 

! i 

In'jiSe^irqsPa'ige 

Orientation Range 

Pia-ntext Fils Nerre 

Cip'ifisitE fi«: Name 

CoTro15etfc.ngs 
Lontrcl Ode' Range 

L-itial Setting* Pangg 

Or lertf a1, en Range 

Cancel 

Figure 17. GUI for SIGABA's cryptanalysis. 

5.3.2. Example Usage 

Consider the following example shown in Figure 18 in which we specify a 

targeted range for SIGABA's cipher rotors. 
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EH 3fftaa*iyaii;tiw'tMjHMOTafcj|Ji>.Ti * js- nh» 

upl mi beitir gs 

C D I I T C'tier P.ingi 

•012*4 01236 

Innd" Springs Rflnrjp 

AAAA* AAAAC 

Crie-'tf tion sange 

OUCld 

sldiri!,fj'beilerj3i™? 

pl i r *Fr f» -

Cjherte*l rE!i-Njrre 

"cDheih >r I ' t 

•• 4 i J 

* • * ! » ^BK*' 

C3rfT3!Sct:Jigs 

Csrrrcl Order Rarge 

* 

IfT-n1 Settings Range 

, 

•>iBn:aticri Range 

N'QA muni LCI ds 

"S " 

OK 

tz%&l|3^srfc*< 

Cancel 

Figure 18. Example GUI use. 

Based on these input values in Figure 18, the primary phase will be applied for all 

nine cipher settings specified in Table 9. 

Table 9. Example cipher settings to primary phase. 

Call to Primary 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Cipher Order 
01234 
01234 
01234 
01235 
01235 
01235 
01236 
01236 
01236 

Cipher Init 
AAAAA 
AAAAB 
AAAAC 
AAAAA 
AAAAB 
AAAAC 
AAAAA 
AAAAB 
AAAAC 

Cipher Orient 
00010 
00010 
00010 
00010 
00010 
00010 
00010 
00010 
00010 
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5.4. Time Analysis 

Table 10 and Table 11 lists specific tasks performed in this attack along with the 

amount of time it takes to compute. 

Table 10 shows the amount of time it takes to permute through all possible rotor 

settings in this attack, and does not include any function calls to the primary or secondary 

phase, which are separately indicated in Table 11. Recall that permuting through the 

cipher settings are nested within each other (see 5.2), similar to the following 

pseudocode: 

FOR all possible cipher order settings 

FOR all possible initial cipher settings 

FOR all possible cipher orientations 

Likewise, permuting through all control and index rotors for the secondary phase 

follows the structure of the following pseudocode: 

FOR all possible control order settings 

FOR all possible initial control settings 

FOR all possible control orientations 

FOR all possible distinct index permutations 
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Table 10. Time analysis to permute through all possible settings. 

Rotor Setting to Permute 

Cipher Order 

Initial Cipher Setting 

Cipher Orientations 

Control Order 

Initial Control Setting 

Control Orientations 

Index Permutations 

Total Iterations 

30,240 

265 

32 

5! 

26s 

32 

113,400 

Time (milliseconds) 

0.708 

6017.025 

0.0 

0.099 

6115.415 

0.0 

0.0 

The results of Table 10 indicate that the amount of time it takes to compute all 

possible cipher settings in the primary phase is about 

0.708 + 30,240 • (6,017.025 + 265 • 0.0) ~ 250,939,057.786 ms 

= 250,939.058 sec 

= 4182.318 min 

= 69.705 hours. 

The amount of time to compute all control and index settings in the secondary 

phase for each surviving cipher setting is about 

0.099 + 5! • ( 6115.415 + 265 • ( 0.0 + 32 • 0.0 ) ) 

-9220003.939 ms 

= 9220.004 sec 

= 153.667 min 
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= 2.561 hours. 

Table 11 shows the different times it takes to calculate the primary phase for the 

same set of plaintext given different numbers of plaintext letters to test ("Max Value" 

column). 

Table 11. Time analysis for primary phase. 

Max Value 

Time (ms) 

5 

1.623 

10 

2.925 

15 

3.801 

20 

5.418 

25 

6.586 

Max Value 

Time (ms) 

50 

28.356 

75 

59.805 

100 

103.571 

125 

142.282 

150 

171.788 
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6. Future Work 

6.1. Secondary Phase Improvements 

6.1.1. Description 

Further work can be done to the secondary phase to improve the workload by 

using all the merged paths that survived the primary phase versus just the initial cipher 

settings. However, recall from Table 7 and Table 8, this can be a disadvantage since the 

numbers of merged paths tend to increase as more plaintext letters are tested. 

6.1.2. Inner Workings of Control and Index Rotors 

Before discussing the details of the secondary phase refinement, let us first review 

how the control and index rotors operate. For every letter typed into SIGABA, the inputs 

F, G, H, and / are activated into the control rotors simultaneously. Based on these active 

signals and the control rotors' permutation, one to four of the control rotor outputs or 

index rotor inputs will be active. After these signals are permuted through the index 

rotors, one to four of the index outputs will be active. The index outputs are combined in 

pairs as indicated in Figure 19, reprinted with permission from Chan [2], and Equation 

(4). Depending on which index outputs are active, one to four of the cipher rotors will 

step. 
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Figure 19. Control to index rotor mapping. 

For example, if the outputs of the control rotors arev4, M, and N, index inputs 9 

and 6 will be active. Which of the cipher rotors will step depends on the index 

permutation. Consider the following example to illustrate this point. 

Suppose the index inputs (0,1,2, 3,4, 5, 6, 7, 8, 9) are mapped to outputs (5,4, 7, 

9, 3, 8,1, 0,2, 6) accordingly. Therefore, under this permutation, if index input 0 is 

active, output 5 will be active, which results in cipher rotor C2 taking a step. 

For each input into SIGABA, we assume all (26 outputs from the control rotors 
U ) 

are uniformly random. However, notice the control rotor outputs are not grouped 

uniformly. For example, the probability for index input 8 to be active is much higher 

than the probability for index inputs 1,2, and 9 to be active. Therefore, the probability 

for each cipher rotor to step is directly related to which group of control rotor outputs it is 

mapped to via the index permutation. Table 12, reprinted with permission from Chan [2], 

illustrates this point for the current index permutation of (5, 4, 7, 9, 3, 8, 1, 0, 2, 6). 
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Table 12. Index to cipher example. 

index rotor artpits 
mdm. rotor inputs 
control rotor count 

C«4 

(1,2) 
(6,8) 

10 

c3 

(3/) 
(4,1) 

4 

Cipher rotor 

-**** 
C2 

(5,:6) 

1 

Ci 

(7,8) 

4 

Co 

(WD 
(3,7) 

7 

From Table 12, cipher rotor C4 will step if index rotor output 1 or 2 is active. 

From the above permutation, index output 1 or 2 is active if input 6 or 8 is active. Index 

input 6 or 8 is active if the control rotor outputs belongs in the groups L, M, N, O or U, 

V, W, X, Y, Z respectively, which gives "control rotor count" in Table 12 a value of 10. 

In comparison, we see cipher rotor C4 steps far more than cipher rotor C2, which has a 

"control rotor count" value of 1. Therefore, the outputs from the index rotors are not 

evenly distributed, meaning the probability for each cipher rotor to step is not equally 

likely. 

6.1.3. Secondary Phase Algorithm 

The goal of this refinement is to reduce the number of index permutations by 

using the information gained in the primary phase. From the primary phase, we know the 

initial and ending positions for the cipher rotors that encrypt the plaintext to the 

ciphertext. By knowing these two positions, we can determine how much each cipher 

rotor steps. For example, if the five initial positions are set to AAAAA and ends at 

positions DCBAA, we can infer cipher rotor Co stepped three times, Q stepped twice, C2 

stepped once, and Ci and Co did not step at all. 

Table 13, reprinted with permission from Chan [2], lists all 45 possible input pairs 

into the index rotors. Associated with each input pair is the number of control rotor 

outputs that are directly connected ("Letters"). 
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Table 13. Index input 

Letters Count Pates 

1 
2 
3 
4 7 (0,6) (1,5) p,S) (5,9) (M) (2,4) 14,9) 
5 
6 
7 
S 
$ 

10 
. 11 

pairs. . . 

3 
4 
5 
7 
6 
6 
6 
3 
3 
1 
! 

<P,1) 
(0,3) 
CM) 
mm 
(0,7) 
(0,8) 
P3) 
08) 
(4.8) 
(48) 
C?3) 

(0,2) 
(1,2) 
Cft5) 
(1,5) 
(1,6) 
(1,7) 
(23) 
(4,7) 
(53) 

(0,9) 
(1,9) 
(1,3) 
(2,5) 
(2,6) 
(2,7) 
(&0) 
(5,7) 
( 6 3 

(2,9) 
P3) 
(5,9) 
(6£) 
CW 
(3,7) 

(3,9) 
(1*4) 
P*4) . 
(3,6) 
(4,6) 

(2,4) 
V*^^/ 

(4,5) 
(5M 

By knowing the number of times each cipher rotor steps, we can gain information 

related to the "count" column of Table 13. From the "pairs" column, we can then infer 

index permutation restrictions. 

The data in Table 14, reprinted with permission from Chan [2], lists the "stepping 

ratio" for a cipher rotor when it is connected to any possible number of control rotor 

outputs, which range from one to 11. To compute these ratios, we generate all possible 

= 14,950 outputs from the control rotors. Recall that each of these outputs is 

assumed to be equally likely. For each set of generated control outputs, we count the 

number of times each pair of index inputs occur, which is indicated in the "step count" 

column. The ratios are then calculated by dividing each step count by 14,950. 
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Table 14. Stepping Ratios. 

letters 

1 
2 
3 
M 

5 
6 
7 
8 
9 

10 
11 

example pair 

mi) 
m) 
«M) 
(0,6) 
(0,7) 
(0,8) 
(1.8) 
(3*8) 
(48) m) 
i?M 

step count 

£}$\M) 

4,324 
6,095 
7,635 
8^65 

10,105 
11,074 
11,890 
12,570 
13,130 
13,585 

step ratio 

0.153B#6 
0.289231 
0,407692 
0.510702 
0.599666 
0.675920 
0.740736 
0.79531* 
0.840803 
0.878211 
Q,mm 

By combining the information gained in Table 13 and Table 14 with the putative 

cipher stepping counts, we can determine which control outputs are most likely mapped 

to which cipher rotor. Since the mapping between control outputs and cipher rotors are 

dependent on the index permutation, we obtain restrictions for the index permutations. 

Note for an index permutation to be valid, it is required to contain five pairs of 

index inputs listed in Table 13 in which the numbers zero through nine appear only once. 

Another requirement is that the associated number of control outputs sum to 26, since all 

26 letters must be connected. 

In the simpler secondary phase, 101/32 distinguishable index permutations are 

tested against the plaintext for each control setting. This refinement further reduces this 
o 

number to 2 , which is significantly smaller [10]. Equation (16) calculates the new work 

factor for the secondary phase. 

2 8 «5!»2 5 «26 5 = 2434 (16) 
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Compared to the work factor for the simpler secondary phase computed in 

Equation (14), this new work factor is significantly reduced. In addition to reducing the 

number of index permutations, further work can be done in the primary phase to reduce 

the number of merged paths. 

I created my project to have a modular design by creating a separate function for 

each task I needed to complete. In doing so, the simpler secondary phase is its own 

function that is independent of everything else, which includes the primary phase and 

rotor settings set up. This way, future students who develop the refined secondary phase 

can take the work I have already done and simply substitute the simpler secondary phase 

function with their own. 

6.2. CrypTool 

6.2.1. Introduction 

CrypTool is a free interactive learning tool built for Windows that is available 

worldwide for education or training purposes in universities and industries. CrypTool is 

available in three different languages including English, German and Polish, and focuses 

on cryptology. Users are allowed to run and analyze both classic and modern ciphers 

available in CrypTool. Some of these ciphers include the Enigma, Caesar, RSA and 

AES. CrypTool also includes cryptographic protocols such as the Diffie-Hellman key 

exchange, and number theories like the Chinese Remainder Theorem that are useful for 

other cryptosystems. 

In addition to cipher simulations, CrypTool also includes applications for 

cryptanalytic attacks for various ciphers. Since most of these attacks are not intuitive, 

CrypTool also provides documentation outlining and explaining the attacks in full detail. 
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CrypTool is also an open source project that allows users to enhance its features 

by adding new applications. Because CrypTool does not currently include any 

application to simulate SIGABA cipher or any cryptanalysis pertaining to the cipher, 

future work can be done to integrate my thesis into CrypTool. In doing so, users can be 

further educated on what makes a rotor-based cipher strong and secure. For users who 

are up to the challenge, they can either develop and add the secondary phase refinement 

into CrypTool or develop additional refinements to the attack that are not already 

mentioned in this thesis. 

6.2.2. Usage 

CrypTool targets users of all backgrounds: people with little or no knowledge on 

cryptology to people with a comprehensive background. CrypTool's intuitive design 

makes it easy for users to understand and use and also includes an extensive help feature 

that comes equipped with several step-by-step demonstrations and explanations to help 

users become familiar with the application as well as more knowledgeable on the 

cryptographic method. 

One of the positive attributes of CrypTool is the interactive feature. Figure 20 

and Figure 21 illustrate activating an interactive application of the Enigma cipher in 

CrypTool. 

52 



t ;- -i 

•- • BfiL'.Vfi 

- : • • • - . . . 

" ^ 4 £ 8 s i f c £ i M & - •••• 

llfjgjjW Pj^l-jjM...fcjg^Bjj* jjL6*5*1 

Figure 20. CrypTool application. 

pliilliifiiBB ! i m ^ ^ t ffifrrir^ ^frfr t*i i ' -•* a&i-W*"'*-'- < 

, ! * » ( . 

0«i tt 

• H 

* J » ( * 

1KI*MX>QRSMIWAV 

IH 

Figure 21. Enigma cipher application. 
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7. Conclusion 

This thesis covers SIGABA: what it is, how it was made, and the significance it 

has played in history. This thesis also covers a modern day attack on SIGABA, which 

was developed in Cryptologia, but I implemented for the first time. 

SIGABA's total keyspace of 2906 is infeasible to exhaustively search. Even under 

the assumptions that either the message indicator was intercepted or that the attacker 

knows all the available 15 rotors and the internal workings of the cipher, the respective 

keyspaces of 248'4 and 295 6 would still have been impossible to break in World War II 

(see 5.4), given the limited computing power available in the 1940s. 

To reduce the workload of recovering the key, the cryptanalytic attack on 

SIGABA is divided into two phases, the primary and secondary phase. Both of these 

phases target SIGABA's rotor banks separately, ultimately resulting in recovering the 

key. 

The primary phase exhausts all possible cipher settings and keeps every setting 

that is consistent with the known plaintext, known as causal settings. For each causal 

setting we require the secondary phase. The secondary phase exhausts all control and 

101/32 distinct index settings. If the combination of the causal setting from the primary 

phase, the index permutation, and control settings is consistent with the known plaintext, 

we have recovered the key. 

There is still a considerable amount of work that can be done to refine this attack. 

Possibilities lie in either reducing the number of merged paths in the primary phase or 

reducing the number of index permutations used in the secondary phase. Though 

SIGABA is now obsolete and considered broken, the fact that so much research can still 

be done to break this cipher proves Friedman and Rowlett's design remains amazing even 
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to this day. 
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