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ABSTRACT

MOLECULAR DYNAMIC SIMULATION OF COUETTE FLOW
A COMPARISON TO SEMI-ANALYTIC MODELING

by Gregory L. Kolte

A molecular dynamics (MD) simulation computer program was written to model
general planar Couette flow. A comparison of MD simulation results to results produced
by Denery’s semi-analytical model was performed for Couette flow scenarios in the
Knudsen number range 0.1 to 1.0. Because Denery’s theory is for inverse-power law type
potentials, MD simulation provides the most general means for testing it numerically.
Comparison of predicted fluid properties including density, velocity, and temperature
showed relatively close agreement between the Denery and MD models in the 0.1
Knudsen number regime. In the 1.0 Knudsen number regime, more significant differences
between the two respective models were observed (particularly at the thermal boundaries).
In a comparison between his model and Bird’s Direct Simulation Monte Carlo (DSMC)

model for hard spheres, Denery reported similar qualitative differences to those discovered

in this study.
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Introduction

The principal motivation for this effort was inspired by the recent work of
Dr. Terry Denery at Stanford University.! In Denery’s work he developed a semi-
analytical solution to the general Couette flow problem. By extending the previous work
of Lees and Liu® to allow a general inverse power law form for the inter-particle
potential, Denery developed an improved model for steady state Couette flows involving
noble gases like argon. Although Denery made several approximations in developing his
model, his results were shown to be quite good in Knudsen number regimes below 0.1.
Denery’s model is an attractive alternative to molecular dynamic (MD) type simulations
because of the significant savings in the calculation time afforded by the method. A
typical Denery numerical model of the type used in this effort required several minutes of

computer CPU time to run in contrast to the many hours required by the MD simulations.

An MD simulation program was developed and used to test the Denery theory for
Knudsen numbers of 0.1 and 1.0. For this situation, MD simulation provides the most
general means by which to check Denery’s theory because his model assumes an inverse
power law type potential which cannot be solved analy;tically. Although MD simulation

remains a premiere technique for calculating general fluid flows, a drawback to the MD

! Denery, T., Ph.D. Thesis, Stanford University, Oct. (1994).

2Liu, C., and Lees, L., “Kinetic Theory Description of Plane Compressible Couette Flow”, Advances in Applied
Mechanics, Supplement 1, Rarefied Gas Dynamics, Academic, (1961).
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approach is the lengthy computation time required for systems of a few thousand particles
to reach steady state flow. As an example, some of the MD simulations for this work
required over ten of hours of CPU time on a SPARC10 workstation to complete the

100,000 time steps necessary for systems of 4096 particles to reach steady state

configurations.

Given the computation time required by the respective models, analytical or semi-
analytical models, such as Denery’s, represent a significant computational improvement
over MD simulations if valid results are produced. This research effort investigates the

accuracy of the Denery model for Knudsen numbers beyond the principal range for which

it was developed.

The presentation of our study is organized into three chapters. Chapter One is
devoted to a general discussion of MD where we define and discuss the fundamental
concepts and principles of MD. This provides the necessary framework for a detailed
discussion of the development and validation of the MD Channel (MDC) computer
simulation program which is presented in Chapter Two.® Chapter Three presents an
overview of Denery’s research and his semi-analytical model. A comparison of Denery
and MDC model predictions in the 0.1 to 1.0 Knudsen number regime is provided as the

last section of Chapter Three and is followed by a summary and general discussion of the

results.

* Some of the sub-sections of section 2.2, which discuss the MDC algorithm implementation and design in rather
close detail, can be skimmed or skipped by the reader who is not particularly interested in the algorithm details.
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Four appendices, A-D, provide supplemental information. Appendix A coatains
information regarding the initialization of the MDC simulation program. Appendices B
and C provide archives of all the comparison plots between the MDC model and the

Morris and Denery models respectively. A complete computer listing of the MDC

simulation code is provided in Appendix D.



1 Molecular Dynamics

1.1 Introduction

Molecular dynamics (MD) is the term given to the process of solving the classical
or Newtonian equations of motion for a collection of molecules, Advances in computer
technology made these types of calculations numerically feasible by the late 1950s.
Computer simulations have made it possible to compute essentially exact results in MD
problems in regimes where analytical methods provide only approximate solutions or
perhaps no solution at all. Computer simulations provide a bridge between the
microscopic description of the physical interaction between individual molecules and the
macroscopic properties of substances (or materials) which can be measured
experimentally. Additionally, computer simulations provide a practical means by which
critical environments, where experimental measurement is impossible due to the severe

environmental conditions such as high temperatures, extreme pressures, etc., can be

studied.

1.2 Equations of Motion

Given a system of N atoms, the potential energy of the system can be represented as

the sum of individual terms:



N N N . N N N
’V(f)=ZV1@)+ZZV2@,E)+ZZ sz(fi,-fj,_fk)"‘----
i=1

i=1 (j>i) i=1 (j>i) (k>j>i)

Equation 1-1

The first term represents the potential energy due to an external field, which might
include the bounding walls. The details of this term are defined by the flow model of the
system. The two different scenarios that were used for this study will be presented later
in this chapter in the Flow Models section. The second term is the most important term

and represents the pair potential between particles. In general this potential depends only

on the separation r; = I'fi - i-’jl between particles. The third term represents the potential

energy due to the interaction of triplets and is responsible for up to 10% of the lattice
energy in argon at liquid densities.®> Contributions from fourth and higher order terms are
negligible compared to the first three terms and therefore they are rarely computed in the
MD model. Direct calculation of the third term, which would involve triple sums over all
N particles, is computationally impractical in terms of the number of operations required.
Unfortunately, the contribution from the third term is too significant to neglect. A
practical solution to this circumstance is to define an effective pair potential which
incorporates the second and all higher order effects into one second order term. In this
way the effective pair potential, while involving only one sum over all particle pairs,

approximates the combined contributions from all second and higher order terms. The

3 Allen, M. P., and Tildesley, D. J., Computer Simulation of Liquids, Claredon Press, Oxford, (1987), Chap. 3.
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effective pair potentials used for this effort will be presented later in this chapter in the

section, Effective Pair Potentials.

Once we obtain a suitable expression for the effective pair potential of the form
V(r), where r is the radial distance between any two individual particles, we can calculate

the force due to one particle acting on another from the expression:

F=mr=-V.v(@).
Equation 1-2
One can simulate fluid dynamics by integrating the equations of motion from this force
expression. This is performed numerically by employing a finite difference scheme. The
Verlet finite difference algorithm is often employed for this purpose.* Several features
that make the Verlet a popular choice include a compact, easy to program form, complete

time reversibility, and excellent energy conserving properties. The method can be derived

from the forward and backward Taylor expansions about F(t):

T(t+ At) = T(t) + At- F(t) + %ﬂz SE()+...

Equation 1-3

and,

4 Verlet, L., “Computer ‘experiments’ on classical fluids, I Thermodynamical propetties of Lennard-Jones
molecules”, Phys. Rev, 165, 201-14, (1967).
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- 2 an
T(t— At) = T(t) — At - 7(t) + (ATO Fo)-..
Equation 1-4

respectively. Adding Equation I-3 and Equation 1-4 together and rearranging the terms

produces the Verlet scheme for calculating new particle positions given by:

T(t+ At) = 2 T(t) — T(t - At) + (At)>- E(t) + O[(A)*].

Equation 1-5
The Verlet method for advancing particles, as given by Equation 1-5, has several

interesting features. The truncation error for this method is on the order of (A4, Ttis
also observed that explicit calculation of the velocity is not necessary to advance the
particles for a given time step. Another feature of this scheme is time symmetry due to
the presence of the T(t + At) term and the T(t— At) term. This time symmetry ensures

that the method is completely reversible in time to within round-off error.

Although an explicit calculation of the particle velocities is not needed to calculate
the trajectories of the particles on each time step, the particle velocities are necessary in
the calculation of the total kinetic energy and therefore are required to calculate the total
energy of the system. Calculation of the total system™energy and the constraint that it
remain constant during a computer simulation provides a way of making sure the numeric

scheme is stable. A centered differences velocity scheme is derived by subtracting
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Equation 1-4 from Equation 1-3, dividing by the result by two, and rearranging terms to

get:

T(t + At) — F(t - At)
2. At

V() = T(t) = + O[(A)7].

Equation 1-6
The truncation error for the centered differences velocity scheme is seen in Equation 1-6

to be on the order of (At)>. Other more accurate techniques for calculating the particle
g the p

velocities are available but are not necessary since the intention is to use the velocity

calculations solely for the purpose of monitoring the total energy of the system.

1.3 Effective Pair Potentials

As mentioned in the previous section, the second and higher order terms from
Equation 1-1 are usually represented in MD simulations by a single two-body term that
attempts to reasonably approximate all of the many-body contributions to the total

potential energy of the system. Equation 1-7 shows the typical form of the potential in an

MD simulation:

N N N
Y@= LVE) + 2 YV (5.1).

i=1 (j>i)

Equation 1-7

In Equation 1-7 the expression Vi (3, ,'f,-) is the effective pair potential. 1t is typically

defined as some scalar potential function W(r) that depends only on the radial separation
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between any two particles. The actual function V{¥) that is used in the MD simulation is
determined by the physical properties of the system that is being modeled. For this
research effort, two different scalar effective pair potential models were employed. Both

of these models were inverse power models and each is described below.

1.3.1 Lennard-Jones Potential

One of the most common effective pair potentials used for computer simulations is

the Lennard-Jones 6-12 scalar potential:

Vu (@)= 48((0'/1‘)12—(0'/1')6) ,
Egquation 1-8

where 7 represents the scalar radial distance between any pairs r; = |'r'i - fj| .

Energy (g)

0.8 10 1.2 1.4 16 1.8 2.0 2.2 24 26 2.8 3.0
Radial Distance (o)

Figure 1-1: The Lennard-Jones Potential function.
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A plot of this potential is shown in Figure 1-1. The Lennard-Jones potential
function features a weak attractive tail that goes as -(1/ r®) at larger radii and a strong
repulsive force at radii less than o. The weak attractive force present at radii greater than
o is indicative of an induced dipole force that is often encountered in neutral fluids while
the short range repulsive force is a consequence of Pauli exclusion and the overlap
between neighboring electron clouds. The parameter & is observed to represent the depth
of the potential well in Figure I-1. It is found that the Lennard-Jones potential function
adequately depicts the experimental properties of liquid argon when values of
0 =3405x10"8cm and £= (119.8 k) are used in the expression. In the above notation
the energy ¢ is expressed as a temperature and k =138066 x 10"Sergs/K is the
Boltzmann constant. The Lennard-Jones potential function was used in this research

effort to validate and benchmark our simulation code against a similar code developed in

a previous research effort by D. Morris.

1.3.2 Effective Potential For Denery Comparison

The expression for the effective pair potential employed for this work’s comparison

to the Denery model was chosen to have the following inverse power form:

ve=L,
iy

Equation 1-9
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where f =176 x 10 erg- cm’. Our choice of the ninth inverse power in the above
potential function represents a special case of the general inverse power law potential
function used by Denery. The derivation of this effective pair potential from parameters
used by Denery will be presented in Chapter Three. It is observed that this potential

function contains a single repulsive term and does not contain any attractive terms.

1.3.3 Cutoff Radius

As can be seen from the second term in Equation 1-1, N calculations are required
to calculate the net force acting on each particle in a system of N particles. This number
of calculations is practical only if the number of particles in the system is small. As the
number of particles increases, alternative methods to the brute Jforce approach must be
devised in order to reduce the number of calculations required for determining the net
forces. One approach to addressing this problem is to define a cutoff radius for the
potential function. The cutoff radius 7, is defined as the r~dius at which the inter-particle
force acting between any particle pair is effectively zero. Examination of the plot of the
Lennard-Jones potential function, which is presented in Figure 1-1, shows that as the
separation between particles r increases, the slope of the potential function, and hence the

inter-particle force, approaches zero. An appropriate value of 7, for the Lennard-Jones

potential function is 3c.

The number of calculations required to compute the net force contribution from

particle pairs is greatly reduced by using a cutoff radius. Only those particle pairs within
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the range defined by the cutoff radius are considered in the net force calculations. All
calculations involving particle pairs outside of this range can be ignored. For example,
the net force acting on a particle located at position 4 in Figure 1-2 is calculated by
considering only those particles located inside of the cutoff radius 7, at positions /, 2, and
3 respectively. The MDC simulation program presented in the next chapter uses a cutoff .
radius to reduce computation time. The details of how the MDC model makes use of a

cutoff radius will be presented in the next chapter.

[}
o
p——— )
[ o
- "
/e l '
o on)
{ A 2 /
o 5 3 7
o “~..Q\_M__,.,.-"rc
[]
[}
o [-]

Figure 1-2: Particles located at 1, 2 and 3 are within cutoff radius of a particle located at A.

1.4 Flow Models

The previous section considered the coupling of individual particles with one
another. This section considers external forces that influence the individual particle
trajectories. The flow model defines all of the external forces and boundary conditions
present in a MD simulation. Two different flow models were used in this research effort.
The primary model used was the planar Couette flow model. The Couette flow model

was used in the effort to validate the MDC simulation code as well as in the comparison



13

of the MDC model to the Denery model. The other flow model used was the planar
Poiseuville flow model. The planar Poiseuille flow model was used exclusively in the

validation phase of this research effort.

1.4.1 Planar Couette Flow

In planar Couette flow, a fluid is confined between two parallel walls that move in
opposite parallel directions relative to one another. The walls are a fixed distance apart

and may have different temperatures. Figure I-3 is a schematic representation of planer

Couette flow.

Thermal Wall1 . Thermal Wall 2
Temperature = T1,, Temperature = T2,

A
<
i

Figure 1-3: Planar Couette flow.

In this figure two thermal walls with temperatures T1,, and T2, respectively are separated
by a distance D. The left wall moves downward with constant velocity Uy/2 and the right
wall moves upward with constant velocity Uy2. The absolute difference in the relative
wall speeds, Uj, is often expressed as a dimensionless quantity, called Mach number,

which is defined as the ratio of U, to the sound speed in the region between the thermal
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walls. The dashed line inside the wall represents a typical steady state average particle
velocity profile for cases where the thermal walls are at the same temperature and the
relative wall speeds are given by low Mach numbers. Under these conditions, the steady
state velocity profile is linear. Near the walls the average particle velocity approaches the
respective wall velocity. The magnitude of the average particle velocity decreases with _
increasing distance from the respective wall until an equilibrium position is reached where
the average particle velocity is zero. The location between the walls where the average

particle velocity is zero is dependent on the relative temperatures of the thermal walls.

1.4.2 Planar Poiseuille Flow

In planar Poiseuille flow, a fluid is confined between two stationary paratlel walls
with temperatures 71, and 72, respectively. The fluid is subjected to an external
potential that results in a force acting on the particles in the direction parallel to the walls.

The planar Poiseuille model is illustrated in Figure I-4.

Thermal Wall 1 Thermal Wall 2
Temperature =TI, Temperature ="T2,,

Pt teeett 1)

Figure 1-4: Planar Poiseuille flow.
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The dashed arc between the walls in Figure 1-4 is representative of the steady state
average particle velocity in the fluid. Whereas the steady state velocity profile for planar
Couette flow is linear, the steady state velocity profile for planar Poiseuille flow is
quadratic. Near the walls the average particle velocity approaches the respective wall
velocity, which in this case is zero. The average particle velocity increases with _
increasing distance from the respective wall until 2 maximum is reached somewhere
between the two walls. The location of this maximum depends on the relative

temperatures of the two stationary thermal walls.

1.4.3 Knudsen Number

The Knudsen number is a dimensionless quantity defined by:

Kn= 2'/ D,
Equation 1-10
where 1 is the mean free path and D is some characteristic length of the system

boundaries. In the case of the planar Couette and the planar Poiseuille flow models, this

characteristic length is the distance D between the thermal walls,

1.5 Boundary Conditions

Two different types of boundary conditions are required to model planar Couette
and planar Poiseuille flow. In one direction, a thermal boundary model is required. In the

other two directions, a periodic boundary model is needed. A general description of each
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of these models is a prerequisite to the detailed discussions of model implementation

provided in the next chapter.

1.5.1 Periodic Boundaries

Three dimensional planar flow models require that the motion of the particles be

uninfluenced by boundaries in two directions. For the planar flow models defined in this

study, these two directions are chosen to be along the y and z axes. Although the

physical system described by planar flow is effectively infinite in the y and z directions,

practicality demands that the particles in a simulation be confined to a finite region of

space in all directions. Periodic boundaries are the mechanism by which the properties of

infinite boundaries can be simulated within a finite region. When a particle crosses a

periodic boundary, like particle 4 crossing the zjuer boundary in Figure 1-5, it is treated

as if it originated from the position of virtual particle 4’ which is a translation from the

position of particle 4 in the z coordinate by an amount equal to the distance separating

A

Yupper

I

Yy Yower

é

Ziower

z

Figure 1-5: lllustration of periodic boundary conditions in two dimensions.

N

-
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Zupper

LA’
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Particle C, in Figure 1-5, crosses the y,,,.- periodic boundary and is reentered into
the system at the yj,., boundary in the proximity of particle B. When calculating the
forces on particles near periodic boundaries, such as particles B and C in Figure 1-5, the
position of particle C is considered to be at the position of virtual particle C’ relative to
particle B. In this example, the position of virtual particle C’ is a translation from the
position of particle C in the y coordinate by an amount equal to the distance separating
the Yiower and the Y. boundaries. This treatment prevents the possibility that particle C
reenters the system at a position that is physically closer to particle B than would be

normally encountered by the pair.

1.5.2 Thermal Boundaries

The situation at a thermal boundary is treated somewhat differently than that at a
periodic boundary. When a particle crosses a thermal boundary during a given time step,
it is returned to the system at its point of exit at the boundary, as shown in Figure I-6,

and given a new random velocity based on the biased Maxwell-Boltzmann distribution.’

New Trajectory

Original Trajectory

Figure 1-6: Particle crossing a thermal boundary.

5 Garcia, A., Numerical Methods Jor Physics, Prentice Hall, Englewood Cliffs, (1994), Chap. 10.
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If the thermal boundary has a temperature T, the biased Maxwell-Boltzmann particle

velocities for a particle of mass m leaving the thermal wall are given by:

e = [ PET TR
X — m 2

Equation 1-11

vy = /w -sin(Ry),

Equation 1-12

and,

Ve = /il%mz)_ . cos(Rs) s

Equation 1-13

where Ry, R,, and R; are uniform random deviates in the range (0, 1] and % is the
Boltzmann constant. The sign on the velocity component that is perpendicular to the

thermal wall, which for this study is the x component, is set such that the velocity vector

points into the fluid channel.



2 The MD Channel Computer Model

2.1 Introduction

A 3-D molecular dynamics simulation computer program was developed during the
course of this research effort. This simulation program is henceforth referred to as the
MD Channel model or MDC model. The MDC model calculates and outputs the steady
state fluid properties including average particle density, velocity, and kinetic energy for
spatial zones that collectively make up a channel region separating two thermal walls.
Several objectives helped to shape the design of this program. The first was that the
program design should meet the primary goal of the research effort, to model planar
Couette flow for a dilute gas in the Knudsen number range 0.1 to 1.0. Second, the
program should be flexible enough to model planar Poiseuille flow. The latter capability
was needed to benchmark and validate the MDC code against MD results prodﬁced by
Morris in a study where he examined velocity slip in dilute gases.® The code should be
flexible enough to allow either thermal or periodic boundaries. Modeling thermodynamic
equilibrium using periodic boundaries in all directions provides an additional means by
which the MDC model can be validated. The model should have the capability to
terminate the simulation at any specified time step and save all of the information

necessary to restart the simulation where it left off. This feature provides the capability to

$ Moris, D., San Jose State University Physics TR92-2 (1992).

19
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check interim results and produce a series of contiguous runs. Finally, the algorithms
should be designed to execute as quickly as possible. With hundreds of thousands of time
steps required for systems to reach steady state configurations, algorithm efficiency and
speed are important considerations. The following section, Algorithm Design and
Implementation, provides the details of how the above considerations were addressed in

the design and development of the MDC simulation program.

The second half of this chapter, Model Validation Using L-J Potential, outlines the
effort to validate the MDC model using the Lennard-Jones effective pair potential. In
that section, steady state profiles of particle velocity, temperature, and density that were
calculated using both periodic and planar flow models are presented. These profiles are

compared to expected theoretical results as well as results obtained by Morris in his

research effort.

2.2 Algorithm Design and Implementation

This section describes in detail the MDC simulation model. After presenting an
overview of the code’s basic structure and approach in performing MD simulation, each
individual section of the model will be discussed with attention paid to algorithm

philosophy and design.
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2.2.1 Overview

The basic functionality of the MDC program is shown schematically in Figure 2-1

and summarized in 9 steps:

1)

2)

3)

4)

5)

6)

7

8)

9)

Define the flow model parameters and other important model parameters including

the number of particles in the system N and the total number of time steps in the

calculation N,,,.

Initialize the program, including the positions of N' particles and their velocities.

Calculate the net force acting on each individual particle.

Use the net force to calculate new particle positions and their respective velocities

over a time interval Az,

Check new particle positions with respect to the boundaries and reset individual

particle positions and velocities if required by the boundary conditions of the flow

model.

Calculate and tabulate the diagnostic information including the total linear momenta in

each direction, the total potential energy, and the total kinetic energy.

Save quantities of interest including number densities, linear momenta, and kinetic

energies to an output file.

Check the total number of time steps, Ny, that have been completed in the

simulation.

Stop the simulation, output the final configuration of the channel information, and exit

the code if N, (see step 8) is equal to or larger than N,... (see step I), otherwise,
increment Ny, and go back to step 3.
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Steps 1 - 7 collectively are the main functions of the MDC model and each of these

warrants a separate and complete description.

Figure 2-1: Flow chart of the MDC model.
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2.2.2 Model Parameters

The model parameters within the MDC program define the flow model and the
basic functionality of the computer program. Default values for all of the model
parameters are set within the actual program. Several of these model parameters, such as
those that define the number of cells in each direction and their respective dimensions, the
number of bins for collecting statistical averages etc., are set intemally using #define
statements. If the user wishes to modify these parameters for a new model, the computer
program must be recompiled in order to incorporate the changes. Recompilation is not
very convenient for the user and therefore only those parameters that are not changed
very often (e.g., the value of Boltzmann’s constant) are defined in this manner. Most of
the model parameters can be modified without recompilation via command line option
switches. These switches and their associated parameter values are typed by the user on
the command line when starting the simulation. Table 2-1 lists the MDC model’s sixteen
available command line switch options. Most of the command line options require that
additional parameters be entered immediately following the switch on the command line.

The expected format of these parameters is listed next to the associated switch in

Table 2-1.

The first task performed by the program following its initiation is to examine the
command line and extract or parse the model parameter information from it. All model
parameters set via command line options take precedence over default values. In other

words, default values are used unless they are explicitly reset by command line options.
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The default values for each of the command line options are listed in the last column of

Table 2-1. The units in Table 2-1 as well as those used by the MDC model and

throughout this text are in CGS.

ime steps to use in simulation.

-nlter

integer #

umber of iterations to run the simulation N,

A -readConfig

filename

ead initial particle configuration (posmons &

velocities) from file: filename.

Calculate initial
configuration.

emperature of thermal wall 2.

elocity of thermal wal

0 cm/sec.

cceleration due to external force acting in the

direction parallel to the thermal walls.

0 cm/sec’.

Sfilename

utput diagnostic run-time messages to file: filename.

Output to file:
max3Diag.out

me

utput  statisitcal averages for density, particle

velocity and kinetic energy to file: filename.

Output to file
max3Stat.out

Table 2-1: Command line switches, associated parameters, definitions, and default values.
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2.2.3 Initialization

After the input parameters have been specified, the computer program needs to
initialize several things prior to calculating the forces acting on particles and updating
particle trajectories. The initialization process carries out two primary functions. The
first is to calculate numerous quantities which are functions of the model parameters but
otherwise remain constant during the calculation. The second is to initialize all of the

particle positions and velocities prior to the start of the calculation.

There is a fundamental philosophy in performing numeric calculations which
mandates that all invariant quantities used in a calculation within a loop should be defined
or calculated outside of the loop. The obvious motivation for this is to eliminate
unnecessary calculations and thereby minimize the amount of computer time needed to
perform the calculation. The MDC model requires several layers of loops to perform its
calculations. All quantities that are invariant within these nested loops are calculated
prior to entering the loops during the initialization phase of the simulation. The largest
group of variables in the MDC model that fall into the above category are several arrays
of indices that are used in the determination of forward neighbor cells and inter-particle
distances. A description of the forward neighbor index arrays and their initialization is
provided in Appendix A. The details of how these arrays are used and a description of

the forward neighbor cells in general will be provided in the next section on calculating

the net forces acting on particles.



26

Following the initialization of static quantities, all of the initial particle positions and
velocities must be determined. The MDC model provides two ways that this can be
accomplished. The default method is to calculate these quantities based on model
parameters. The other method for initializing the particle configuration is to read the

initial particle positions and velocities into the program from a file.

In the default method, the initial particle positions are determined by setting up a
uniformly spaced grid within the boundaries of the calculation such that there are af least
as many grid points as particles. The grid points then define the initial particle positions.
It is important that the particles be spaced as uniformly as possible at the start of the
simulation. The numerical scheme for moving the particles during the simulation can
become unstable if particles are placed too close to one another prior to reaching steady
state conditions. This situation corresponds to inter-molecular distances that are
physically too small (and thus energies too large) to be realistic in a steady state
environment. Although spacing the particles uniformly provides the most stable initial
configuration, it does not assure stability in the calculation. A time step that is too coarse

for a given system configuration will result in model instability regardless of the initial

particle configuration.

Given the number of cells in each direction N, N, and N, and the total number of
particles in the system N, the number of uniformly spaced grid points in each dimension

ny, n,, and n; are defined as follows:



27

2
ny=3 N( N, ) +1,
Ny'N

Equation 2-1

-
y x N, ’

Equation 2-2
and,

N

n,= .
(n.n,)

Equation 2-3

Given the length of the system boundaries in each direction L, I, and [, the particle grid

spacing in each dimension Ax = L/n,, Ay = L/n,, and Az = I/, can be determined.

The particle velocities are determined using the initial gas temperature model

parameter ;. From the equipartition relationship:

Egquation 2-4

where k is the Boltzmann constant, the magnitude of the initial particle velocities is

determined by:
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=2
m

Equation 2-5

Calculation of the particle velocity directions requires the use of a uniform deviate
generating function. The uniform deviate function employed by the MDC model is the
function RANI obtained from the book Numerical Recipes in C.” Given a function that |
generates uniform deviates in the range (0,1] symbolized by R, a unit vector # pointing in
an arbitrary direction can be calculated. To calculate u, weights for each direction w, w,,

and w; and a corresponding normalization factor I need to be calculated by:

WX=0.5'R,
Wy=0.5'%,
w,;=0.5-R,

and,
W= wi+wi+wl.
Equations 2-6

The unit vector u is then determined by:

= Wx o Wy 2 Wz 4
U= R+ L. g4V 5
wooow Yy
Equation 2-7

7 Press, W, Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes in C,
The Art of Scientific Computing, Cambridge University Press, Cambridge, (1990), 210-211.
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The particle velocities are then calculated by multiplying each unit vector u by the

velocity magnitude determined from Equation 2-5:

<i

=|v|- 1.
Equation 2-8

The above prescription is really just a simple way to initialize the particle velocities

such that the initial temperature of the system corresponds to T, while at the same time

locating the particles in a manner that will minimize the possibility that the inter-particle

spacing is too close. These initial positions and velocities randomize rapidly as a result of

inter-particle collisions once the simulation begins.

The initial particle configuration can also be read in from a file. Table 2-1 from the
previous section on model parameters indicates a command line option readConfig that is
used for this purpose. Placing this option on the command line followed by the name of
the file that contains the initial particle positions and velocities will flag the program to
read the initial particle configuration from the file. The configuration file contains the
number of particles in the system, each particle’s x, Y, and z positions as well as each
particle’s velocity components vy, v, and v,, When reading in the initial particle
configuration from a file, the value for the number of particles N defined in the

configuration file overrides any the default value or command line value set for this model

parameter.
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Recall from Equation 1-5 that the Verlet method does not use the particle velocities
directly for advancing the particle positions. Rather than use the velocities, the method
uses the previous two particle positions to calculate the new particle positions. Therefore,
the final step in setting up the initial particle configuration prior to advancing the particles
is to use the initial particle position and velocity vectors to calculate the previous particle

position vectors x,;. This is easily performed using the time step model parameter A and

the relationship:

—

k’old=x—At-V.

Equation 2-9

2.2.4 Main Loop and Calculation of Net Force on all Particles

This section of the code is where the majority of the work in the simulation is
performed and, although the procedure for calculating the net forces acting on individual
particles is straightforward, the details of accomplishing this objective efficiently are
somewhat more complicated. Equation I-2 and Equation 1-7 suggest that the net force
acting on a given particle at position r; is given by:

— N
F(f:) = Fou () - D, V - V(ry),

j=1
i

Egquation 2-10: Net force acting on a particle at position r,.

where N represents the total number of particles in the system, F..(r;) is any external

force acting on the particle at position 7, and P(ry) is the effective pair potential between
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particles at positions r;, and r; respectively. As was previously discussed, it is
computationally impractical to consider all particles when calculating the second term in
Equation 2-10. The MDC program employs a cutoff radius 7, and effectively sets V(r)

equal to zero when 7y is larger than 7, by ignoring the contribution of all particles outside

of this range.

The basic approach taken by the MDC code to efficiently keep track of each
particle and locate the particles within the cutoff radius 7, can be described as a cell list
method.? In this method the total volume occupied by the particles and defined by the
lengths L., L,, and L, is subdivided into cubic volume elements or cells with edges equal
to the cutoff radius 7.. This results in N, N;, and N, cells in each dimension respectively
with the total number of cells N,,; defined by the product (N XNy XN;). Individual cells
are referenced by the notation CELL; gewhere (=1, 2, ., N), (=12, ..., N,), and
(k= 1, 2, ..., N,) represent the cell indices in the x, ¥, and z directions respectively. With
the space occupied by the system divided up in this manner, the cell spacing ensures that a
particle in some CELL, ;. can only interact with particles in the same cell or neighboring
cells. All particles in non-adjacent cells are assured to be outside of the cutoff radius.
This approach provides a mechanism by which atom pairs farther apart than r, can be
skipped without actually computing their separations. A cell CELL,;; is shown in
Figure 2-2 along with neighboring cells. Each cell has 26 neighbor cells in 3-D space.

For example, in order to calculate the force acting on a particle P in the cell CELL;;x, the

* These cells should not be confused with the grid used in initializing particle positions (see previous section).
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program must consider all of the possible particle pairs within CELL,; that include P, as
well as all of the possible particle pairs within the 26 neighboring cells that include P.
Thus, the task of determining the force acting on a given particle is limited to searching
for particle pairs within 27 cells rather than all N XN, XN, cells in the whole system. The
forces acting on all particles in the entire system can be determined by using the above

nearest neighbor approach and systematically applying it to every particle in the system.

I
k-1 Jj
-1

-1 i i+l

Figure 2-2: CELL,;; colored black and 26 neighboring cells. Forward neighbor cells to CELL, .k are gray and

backward neighbor cells to CELL,;; are white. Note also that cell CELL, sk is a “forward neighbor”
1o each of the white cells.

A refinement of the above approach that will reduce computation is suggested by
Newton’s 3rd law. After calculating the force acting on particle P in a given cell due to

particle ), it is inefficient and unnecessary to repeat this calculation again when
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calculating the force acting on particle Q due to particle P since these forces are equal
and opposite. The key to avoiding this additional calculation is to calculate the inter-

particle force acting between each particle pair only once and tally the result for both

particles.

This approach suggests that the trick to developing an efficient algorithmisto finda -
way to reference all particle pairs from within the same or adjacent cells once. For
particle pairs within the same cell this is accomplished with a single »ested iteration
scheme where the outer loop iterates over all particles in the cell and the inner loop
iterates over all other particles in the cell not yet considered by the outer loop. This type
of iteration scheme can be considered a forward scheme because the inner loop considers
only those particles akhead of the current particle in the outer loop. This concept of
Jorward iteration is extended to the case where the particle pairs are formed from
adjacent cells. In this situation there are three nested loops. The outer loop iterates over
all of the particles in a given cell CELL; ik The middle loop iterates over all of the
Jorward neighbor cells relative to the cell CELL, s With the inner-most loop iterating over
all of the particles within the current forward neighbor cell referenced in the middle loop.
The 13 forward neighbor cells relative to a cell CELL,;; are shaded gray in Figure 2-2.
Also illustrated in Figure 2-2 are the 13 backward neighbor cells relative to CELL, ik
which are shaded white. Although it might appear that this scheme neglects the particle

pairs formed between CELL,;; and the backward neighbor cells, in actuality these pairs

are accounted for when CELL is considered as a forward neighbor to other cells. One
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way to verify that this scheme is sufficient to calculate all particle pair interactions,
including those from backward neighbor cells, is to examine the spatial relationship
between CELL,;;. and each of its forward neighbors in Figure 2-2 and then verify that

CELL,; is a forward neighbor to each of the white backward neighbor cells.

Referencing an arbitrary cell’s forward neighbors is greatly simplified by using the
IFN, JFN, and KFN matrices that are set up during initialization (see Appendix A).
Examination of the indices of the forward neighbor cells in Figure 2-2 relative to CELL,;,
will verify that the following indexing scheme is sufficient for referencing the 13 forward

neighbor cells of an arbitrary cell CELL,;x. Taking (n= 1, 13):

CELL i) gy efiny

references all 13 forward neighbor cells for CELL;;;. It should also be observed that this
scheme provides the correct forward neighbor cell list even if CELL,j is located on one
or any of the system boundaries. This construct provides a powerful capability because

computationally expensive conditional if statements are not necessary to properly handle

special conditions near a boundary.

The CELL that each particle occupies is c_letennined from each particle’s
coordinates and the total number of particles contained in each cell is tabulated and put
into the list NPCELL, sk This information is used to create two ordered lists that
collectively identify the particles that are contained within each cell The first list

IDPART contains particle ID numbers for each of N particles in the system. IDPART is
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assembled by stepping through each cell in the order of increasing cell rank and tabulating

the particle IDs encountered. The cell rank of a given cell is determined by:

CELL RANK,ji =i+ (-1)*N: + (k-1)*N*N, ,

Equation 2-11

where 7, j, and k are the indices of the cell, and N,, and N, are the number of cells in the x
and y directions respectively. The CELL RANK determines a unique integer index for
each cell ranging value from 1 for CELL,,; to N, for CELLN;N,,,N,. The offset into the
IDPART list, that locates the beginning of the list of particles contained within a given cell
CELL;y, is calculated and maintained in the IDOFFj; list. Collectively, the NPCELL, ks
IDPART, and IDOFF; 4k lists identify the particles contained within each cell.

The following 2-D example will illustrate the construction of the particle lists
described above and how they are used to identify the individual particles within each cell.
A system of 10 particles with particle IDs = 1, 2, ..., 10 are distributed in a 4X3 grid of

cells in Figure 2-3.

—>
J= 4. 6.9.
. 8e
J=2 ]. Se .10
- 7e
=1 3 24

Figure 2-3: 2-D group of cells containing 10 particles.
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The matrix NPCELL, ; is calculated by summing the particles in each cell. In this case:

NPCELL(1, 4,7-1,5=(0,2,0,1;0,3,1,03 1,0, 2, 0)
Equation 2-12

Using Equation 2-11 with (i=1, 2, 3, 4 ; Jj=1, 2, 3 ; k=I), the cell rank
CELL_RANK;, for each cell can be calculated. This results in a sequential ordering of
cells that starts with CELL_RANK;; = I for CELL, , in the lower left corner (see Figure
2-3) and moves from left to right, bottom to top, and ends with CELL_RANK,; = 12 for
CELL,;s in the upper right corner. The list IDPART = 372158 10, 4,6,9) is
obtained by moving through the cells sequentially by cell rank and collecting particle IDs.
Finally, IDOFF y-10,;~15=(, 1,3, 334,47, 8 38, 9, 9, 10) lists the offset within the
IDPART list that corresponds to the first particle ID within the CELL;;. Suppose that the
particles within CELL; , need to be identified. The list item NPCELL;; = 3 indicates that
there are three particles within this cell. The list item IDOFF); = 4 indicates that the
desired three particle IDs will be the fourth, fifth, and sixth items in the IDPART list
which are particle IDs /, 5, and 8 respectively. Note that if NPCELL,; is equal to zero

(i.e., no particles in that cell) then there is no need to reference the other two lists.

Having set up the mechanisms from which to efficiently identify neighboring cells
and the particles they contain, the calculation of the net force acting on each particle is
straightforward. The main loop over time steps is entered first. Then, each of the

particles is binned according to its current position and the appropriate lists for
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referencing each particle within each cell are set up. The program is now prepared to
calculate the net force acting on each particle. This process is initiated by looping over all
cells. The net force on each particle in the current cell, due to other particles in the
current cell, is calculated by looping over all particle pairs within the current cell. The net
forces acting on all particles in the current cell, due to particles in forward neighbor cells,
are calculated by looping over all particles in the current cell and then looping over all
particles contained within each of the forward neighbor cells. The program then moves
on to the next cell and repeats the loops over appropriate particle pairs. When each of
the cells has been considered, the calculation of the net forces acting on each particle due
to the existence of other particles is complete. If external forces are present this

contribution is added to each particle at this time.

In order to calculate the force between a pair of particles, the separation of the
particles must be calculated. This is usually quite straightforward. In all cases when the
particles are within the same cell and in most cases when the particles are in adjacent
cells, this calculation amounts to calculating the magnitude of the difference between the
position vectors of each particle. The one exception to this is when one member of the
particle pair is in a cell at a periodic boundary and the other member of the considered
particle pair is in a neighboring cell at the periodic boundary on the other end of the
system. In this situation, taking the difference between their respective position vectors
gives the wrong result. Recall from the section on boundary conditions in the previous

chapter that the particle position in the neighboring periodic boundary cell should be



38

translated by an amount equal to the dimension of the system in the appropriate direction
prior to making the calculation. Because this radial distance calculation takes place inside
of the MDC program’s inner-most loop, conditionally checking for this situation is
computationally expensive an therefore undesirable. The MDC program uses the DXFN,
DYFN, and DZFN arrays that were set up during the initialization phase of the program
to avoid this conditional check (see Appendix A). Inside of the loop over particles in

forward neighbor cells, the components of the inter-particle distances are calculated by:

AX = x; - x; + dxfh,;,

Ay =y, - y1 + dyfn,;,
and,

Az=2,-z, + dzfng,

where x;, y,, z; are the position coordinates of a particle in CELL,;;, and x;, y,, z, are the
position coordinates of a particle in the forward neighbor cell identified by the index ».
Usually the additional DXFN, DYFN, or DZFN matrix term is zero; however, if the two
particles are on opposite ends of the system near a periodic boundary, the matrix term

will be equal to =+ L where L is the dimension of the system in the direction normal to the

periodic boundary.

Before going on to the next section it should be mentioned that immediately
following the calculation of the inter-particle separation, the separation distance 7 is
compared to the cutoff radius to see if the force between the particle pair will be

calculated. The Cartesian cell boundaries used in this model ensure that all particle pairs
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within r. of each other will be found within neighboring cells only but there is no
assurance that any of the particle pairs from neighboring cells or even the same cell will

be within . of each other. Therefore, this condition must be tested.

-
o e . o
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Figure 2-4: Particles B & C within cutoff radius of particle A.

This situation is depicted in Figure 2-4 where particles at locations B and C are within the
cutoff radius of a particle at location 4. Other unlabeled particles within the same cell as

A or in cells adjacent to the cell containing 4 are not within the cutoff radius.

2.2.5 Update Particle Positions and Velocities

Once the net force acting on each particle is determined, the corresponding
acceleration for each particle is obtained from Equaiion 1-2, and the Verlet scheme,
Equation 1-5, can be applied to obtain the new position of each particle. The new
positions are then used in conjunction with the positions calculated two time steps back

to produce the new particle velocities according to Equation 1-6. The final task
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performed during this part of the calculation is to transfer the particle positions,
calculated in the previous time step, to the memory locations used to hold the particle
positions from two time steps back and, to transfer the new particle positions, just
calculated, to the memory locations used to hold the positions from the previous time
step. This operation saves the particle positions from the two most recent time steps and

purges the values no longer needed for the trajectory calculations.

2.2.6 Impose Boundary Conditions

After the particle trajectories and velocities have been updated, the new particle
positions must be checked to determine if they have crossed over any system boundaries.
If a particle is determined to be outside of the system, its position (and possibly velocity)
are reset according to the type of boundary crossed (see section on Boundary Conditions
in Chapter One). Particles passing through periodic boundaries maintain their velocities
but have their positions translated by the length of the system in the direction normal to
the boundary. If a thermal boundary is crossed, then the particle’s position is set to the
location where it crossed the boundary and is given a new random velocity with a

component that is normal to the boundary and directed into the channel.

The order in which the components of a particle’s position are compared to the
respective boundaries is important when both thermal and periodic boundaries are present
in the flow model. The general rule is that the boundary conditions should be applied in

the same chronological order in which the particle passed through the respective
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boundaries. As an example consider the situation when a particle’s new position is
beyond a thermal boundary and beyond an adjacent periodic boundary having crossed the
thermal boundary first. Figure 2-5 illustrates the final particle position and direction of

the particle after applying the thermal and periodic boundary conditions in opposite

orders.

Periodic Boundary

\

Periodic Boundary
N " Periodic Boundary
Thermal
Boundary
Periodic Boundary
Periodic Boun
dary Thermal
\ Boundary
d%‘riodic Boundary

Figure 2-5: Sequential order of the application of boundary conditions.

It is clear from the example that in this case, the physically correct result is obtained
by applying the thermal boundary conditions first. Because planar flow models do not
have any adjacent thermal boundaries, the proper physical result is achieved by the model
as long as the thermal boundary conditions are imposed before the periodic boundary

conditions regardless of order in which the boundaries were crossed. This is a nice
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circumstance because it simplifies the conditional checking required to impose the

boundary conditions and thereby increases the run-time efficiency of the computer model.

2.2.7 Calculate Conserved Quantities

Throughout the simulation various conserved quantities are calculated for the
purpose of providing diagnostic information regarding the integrity of the run. For
instance, with periodic boundary conditions in all directions, it is required that the total
energy and linear momenta of the system remain constant to within the truncation error of
the Verlet scheme during the simulation. The total system energy is calculated by taking
the sum of the total system potential energy and the total system kinetic energy:

N N 1 N
E= 22V (ry) + 'z"mElIVil s

i=1j=1
j=i

FEquation 2-13

where V(ry) is the effective pair potential, ry is the separation between particle pairs, m is
the particle mass, and v; is the particle velocity. Since the first term in Equation 2-13
depends on all particle pairs that are within the cutoff radius of one another, this sum is
calculated in the same inner-loop as the net force calcwation The second term in
Equation 2-13, which calculates the total system kinetic energy, is calculated immediately
following the calculation of the particle velocities. The total linear momentum of the
system is also calculated at this time. These quantities are not necessarily printed out on
every time step. Usually, time averaged values of these quantities are output to the

terminal screen and a diagnostic output file at user specified intervals. The command line
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switch printMod defined in Table 2-1 controls the number of time steps between each

diagnostic printout while the command line switch diagFile directs the output to a user

specified file.

2.2.8 Output Steady State Channel Averages

Throughout the calculation running averages of the particle number density,
momenta, and kinetic energy are computed and output to a disk file for later post-
processing. The running averages are over both space and time. The spatial resolution of
these averages is determined by the user via a #define parameter in the program. For this
study, fifty spatial zones were used. Collectively these zones, which are parallel planar
sub-volumes of equal width, span the entire channel volume between the thermal walls,
The running averages are not updated on every time step because the particle
configurations within each zone do not change that quickly. A more efficient strategy is
to determine the average time that a particle spends within a spatial zone i.e., the time it
takes a particle to travel the width of one spatial zone, and update the running averages at
regular intervals equal to this time. The number of time steps between consecutive

updates of the running averages, AN, uu , is determined during initialization by using the

relationship:

_ d
Aonses = 30y

Equation 2-14
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where d is the width of one spatial zone, 4t is the time step, and (v) is the magnitude of

the average particle velocity. The running averages are written out to the disk file defined
by the command line switch statFile at time intervals defined by the command line switch

printMod.

2.3 Model Validation Using L-J Potential

The effort to validate the MDC model was separated into two phases. The first part
of this effort was to check the basic physics at equilibrium in the MDC simulation and
verify that the model conserved energy and linear momentum. The second phase of the

validation was to check the simulation predictions for several non-equilibrium flow

scenarios.

The MDC model was derived from an MD simulation code published by Morris in
a research effort that studied slip lengths in dilute gases.® Although the bookkeeping
techniques, user options, and potential function were modified in the present work, the
fundamental physics model employed by our MDC code is very similar to that employed
by Morris in his research. Because of this similarity, it was possible to validate the
implementation of these changes in the MDC code by using it to reproduce results
reported by Morris. This verification phase required that the Lennard-Jones potential

function be put into the MDC model since this was the potential function employed by

Morris.
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A list of the model parameters that were used for all models throughout the

validation and verification phase of this effort are summarized below:

1. Cell widths the same in all directions and equal to 36 (¢ = 3.405 x 10" cm ).
Ten cells in each direction (1000 total cells).

Mass equal to the argon atom mass (6.633 x 102 gm ).

1000 particles in the system.

Time step equal to 3123 x 10~!* seconds.

A G i

50 spatial zones for output of running averages.

The MDC program was compiled using the GNU GCC compiler and executed on

SPARC 10 workstations for all of the runs presented for this effort.

2.3.1 Code Stabilization and Conservation

Prior to doing a direct comparison to the Morris results, a qualitative check of the
basic physics model employed by the MDC code was performed. With periodic boundary
conditions in all directions it was expected that a physically correct model would produce
constant values for the total system energy and linear momenta throughout the
calculation as well as produce spatially independent running averages of the particle
number density, linear momenta, and kinetic energy. . This verification was performed

running the MDC model for 240,000 time steps and an initial gas temperature equal to

685 K.

Diagnostic outputs were requested every 1000 time steps in order to test the

model’s stability and verify the expected invariance in the total system energy and linear
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momenta. Examination of the diagnostic output from the above run revealed a total
system energy that was consistent with a lattice of 1000 particles and a temperature of
685 K. It was also observed that the total system energy, as well as each component of

the total system linear momentum, remained statistically constant throughout the entire

nun.

Examination of the velocity components of the final particle configuration also
indicated results consistent with expected steady state conditions for a periodic system.
The average particle velocity components in each direction approached zero compared to
the average magnitude of the particle velocity components in each zone. Spatial
independence of the running average quantities was also observed. The steady state
average number density in each zone was approximately equal to 20 which is consistent
with a random distribution of 1000 particles in 50 uniform zones and, the steady state

average temperature was also statistically identical in all zones and equal to the initial

temperature of the system.

The integrity of the thermal model was also checked by replacing the periodic
boundaries in the x direction with stationary thermal wall boundaries held constant at
457 K. Using the final particle configuration from the above model as the initial particle

configuration for the new model, the MDC model was run for 240,000 time steps.

The steady state particle densities and temperature profiles from this run, which are

shown in Figure 2-6 and Figure 2-7 respectively, are indicative of a valid model. The
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number densities for each zone show a small statistical fluctuation about the expected
average steady state value of 20. The expected statistical variation in this data s can be

quantified with the following relationship:

Egquation 2-15
where (n,) is the expected number density in each zone and N, is the number of

statistical samples taken. For this run with (nz) = 20, and N; = 390, the variation in the

measured number density is: s = 0.23. Values of 3s away from the expected average
number density are indicated by dashed lines in Figure 2-6; we expect 97% of the data to

fall within the dashed lines.
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Figure 2-6: Steady State average number density for each zone. Expected and 3s values indicated by dashed lines.
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Figure 2-7: Steady state average zone temperatures calculated using equipartition relationship. Expected and 3s
values indicated with dashed lines.

The average zone temperatures T are calculated using the equipartition relationship:

=B (v v 42)-(w) - () - (),
Equation 2-16
where £ is the Boltzmann constant, m is the particle mass, and v,, v,, and v, are the
average particle velocities in each direction respectively. Examination shows an expected

small statistical fluctuation about the 457 K wall temperature. In this case the expected

statistical variation, s, in the expected temperature T'is given by:

Equation 2-17
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where (nz> is the average number density in each zone and N, is the number of statistical

samples taken.® For T = 457 K, (n.)= 20, and N, = 390 the variation in the measured

temperature is: s = 4.4 . Once again, 97% of the data is expected fall within the 3s limits,

2.3.2 Comparison to the Morris Results

Having verified that the MDC model produces expected steady state results for
both periodic and static thermal boundaries, the second phase of the validation effort was
to reproduce some of the results produced by Morris. Two cases run by Morris were
selected for this purpose. These cases correspond to Couette and Poiseuille
configurations for his run 6. Morris’ description for setting up these runs was followed.
The systems consisted of 1000 particles with a distance of 30c between thermal walls of
cross-sectional area of 9006”. The initial particle configuration used for these models
was the final configuration of the run outlined in the previous section with static thermal
walls at 457 K. The thermal wall temperature for these runs was 457 K and therefore the

initial particle configuration was representative of a system in thermal equilibrium with

the wall boundaries.

Steady state statistics for the number density, linear momenta, and kinetic energy
running averages were produced for both models by running each of the models for five
consecutive runs of 100,000 time steps each. The final steady state particle configuration

for any one run provided the initial particle configuration for the next consecutive run. In

8 Landau, L.D., and Lifshitz, EM., Fluid Mechanics, Pergamon Press, Oxford, (1959).
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this manner five output files containing steady state running averages were produced for
each model. The five sets of data, each containing representative steady state predictions
of the running averages across 50 zones, collectively provided information on the
statistical errors associated with the MDC model predictions in each zone. These errors

were determined through statistical analysis of the five data sets collectively.

The statistical analysis employed was based on the following three statistical

relationships given 7 measurements of a quantity g

(g)= IZ")qi,

hig

Equation 2-18

cl=

L3 (ai- (q))z,

n-143
Equation 2-19
and,

A=—.

Egquation 2-20

Equation 2-18 is recognized as the mean value of a quantity g while Equation 2-19
represents the variance of q about its mean value. Equation 2-20 represents the

statistical error associated with the value of (q). This statistical error is observed to

approach zero as the number of samples » increases since the variance approaches a
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constant as the number of observations increases. The magnitude of the statistical errors
associated with the running averages in each zone is represented on all plots with error
bars. A separate program was used as a post processor to evaluate the mean values and
the statiétical errors for each of the running averages in each zone by processing the data
from all five runs for each model. The post-processing code uses the linear momenta to
produce velocity profiles and the kinetic energy and velocity profiles to produce
temperature profiles using Equation 2-16. A copy of this program is listed in Appendix D

along with the listing of the MDC program.

For the Poiseuille runs, an external acceleration field of magnitude 227 x 10** cm/s?
was applied and the thermal wall velocities were set to zero. The five Poiseuille runs
were calculated, post-processed, and plots were produced. The steady state z velocity
profile for the Poiseuille model is shown in Figure 2-8. Examination of the general shape
of this velocity profile matches the quadratic description of Poiseuille z velocity flow
discussed previously and illustrated in Figure I-4. There are two velocity axes in
Figure 2-8 and they represent CGS units on the left and the scaled units used by Morris
on the right respectively. The scaled units are produced by dividing the CGS units by
1.09 x 10°cm/s. Comparison of these values to those published by Morris indicated that
to within statistical uncertainty the MDC and the Morris models produced the same
results. The MDC number density and temperature profiles, which are provided in

Appendix B, also compared favdrably with the results published by Morris.
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Figure 2-8: Poiseuille fluid velocity v, vs. position. Scaled units are CGS units divided by 1.09 x 10° em/s.

For the Couette runs the external acceleration field in the z direction was turned off
and the left and right thermal walls were given velocities vy equal to F4.36 x 10* cm/s
respectively.® The five Couette runs were calculated, post-processed, and plots were
produced. The steady state y velocity profile for the Couette model is shown in
Figure 2-9. Examination of the general shape of this profile matches the linear
description of the Couette velocity flow discussed previously and illustrated Figure 1-3.
Once again, the data are plotted using both a CGS scale and a dimensionless scale.

Comparison of these values to results published by Morris indicated that to within

* For argon at 273 K, these speeds correspond to=Mach 1.42 (see section 3.3).
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statistical uncertainty the MDC model produced values consistent with his results. A
comparison of the MDC number density and temperature profiles, which are provided in

Appendix B, to the Morris results indicated favorable agreement between MDC and his

model.
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Figure 2-9: Couette fluid velocity v, vs. position. Scaled units are CGS units divided by 1.09 x 10° cnv/s.

The favorable comparisons of the MDC predictions to the results published by
Morris provided strong evidence that the MDC model was producing valid results for
argon in both the Poiseuille and Couette regimes. These results coupled with the
thermodynamic equilibrium results presented in the previous section provide the

necessary verification and validation of the MDC simulation model.



3 Denery Research

3.1 Introduction

This chapter presents the main results of this research effort which was to compare
MD simulation of general Couette flow in the 0.1 to 1.0 Knudsen number regime to
results produced by Denery’s semi-analytical solution to this problem. The first section
presents a brief description of the research and theory that provides the basis for Denery’s
model. That section is followed by a description of the model parameters used to define
the run configurations for the MDC and Denery models. Finally, a comparison and

discussion of the results produced by the two respective models is presented.

3.2 The Denery Model

The Denery model is an extension of the work performed by Lees and Liu in 1961
where they developed a general solution to Couette flow. Fundamental to the approach
of Lees, Liu and Denery, was an assumption that the velocity distribution throughout the
entire flow field was accurately described by a two sided Maxwellian velocity distribution.
This distribution is formed by the superposition of two half Maxwellian distributions with

independent temperatures and mean velocities as shown in Figure 3-1.

54
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Mode 1 defined by
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Figure 3-1: Two sided Maxwellian velocity distribution.

A discontinuity in the resulting function exists at the plane v, = 0. The downward

moving particles are characterized by a Maxwellian distribution defined by a temperature

T;, mean downward velocity c; and number density n;.

3
5 __m PR I S 3
m )2e 21&1‘,[(v’ °l) +v,+v‘]

(V)= nl(m

1

vy <0

b

Equation 3-1

and the upward moving particles are characterized by a Maxwellian defined by a

temperature 7, mean upward velocity ¢, and number density »,.
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3
2 = (vx—éz)2+v3+vf
fz(.‘..,) - nz(z m ) e 21!kT2[ ] vy >0.

2

Equation 3-2
Using the Heavyside step function A(x):

h(x)=0 forx <0,
and,

h(x)=1 forx > 0,

the entire two sided Maxwellian can be represented by:

£(%) = h(=v, ), @) + h(v,)E,(@)..
Equation 3-3

The parameters ny, ny, c;, ¢;, T), and T, used by Lees and Liu to define their
velocity distribution function, are determined by constraining them to satisfy six moments
of the Boltzmann equation. Although this constitutes a closed form approach, a
fundamental assumption is made when only six moment equations are used to constrain
the velocity distribution function rather than the infinite number of constraints required
for a full solution of the Boltzmann equation. The error introduced by this assumption is
minimized by carefully selecting the six most important moments. This approximation
coupled with the original assumption that the two-sided Maxwellian distribution is an
appropriate representation of the flow field velocities constitute the fundamental factors

governing the validity of the Lees and Liu solution.
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The Boltzmann equation defines the evolution of the velocity distribution as a
function of position, and in general, time. The moments of the Boltzmann equation, often
called the Maxwell-Boltzmann moment equations, provide the important macroscopic
properties that describe a flow including the density, fluid velocity, internal energy, stress,
and heat conduction. The general Maxwell-Boltzmann moment equation for steady, one-

dimensional flow is defined by:

% [~ Qi@ = Arql,
Equation 3-4

where O(V) is any function of particle velocity and A[Q] is the moment of the Boltzmann

collision integral corresponding to O(v). The moment A[Q] defines the change in the

function Q(V) produced by intermolecular collisions.

Lees and Liu sought the six most important moments of the Maxwell-Boltzmann
equation to determine the six parameters of their assumed velocity distribution. The first
four equations that they used consist of those expressions for the function Q(¥) which

are conserved quantities in a collision between two molecules:

Q=m (molecular mass),

Q: =mv, (x momentum),

Q:=mvy,  (y momentum), and,
v2

Q= m— (energy).

Eguations 3-5
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Because of the collisional invariance for each of the quantities, the moment of the

collision integral 4/Q] corresponding to each is zero. The final two equations employed

by Lees and Liu are the functions:

QS = mVxVy,

Equation 3-6
and,

2
\%

Qs =mvy—.
2

Equation 3-7

With the mean velocity component normal to the thermal wall boundaries equal to zero,

the moment of Os, represented by <Qs>, has the following relationship with shear stress

T
(QS) == .Txy >
Equation 3-8

and the moment of Qs represented by <Q¢> has the following relationship with shear

stress 7, and heat conduction g,

(Qq) = %(q, ~T40),

Equation 3-9
where,

o= MG T 1,0,
n, +n,

b
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is the magnitude of the center-of-mass velocity. Because this flow is dominated by both
shear stress and heat conduction, Lees and Liu ensure that these two viscous phenomena

are modeled correctly by including these last two constraints in their model,

Unlike the first four equations, the moments of the collision integral /Q5] and [Q6]
are not zero and it is in the evaluation of these terms that the work of Denery diverges
from that of Lees and Liu. In the completion of the Lees and Liu approach they assume a

Maxwell-molecule intermolecular force potential of the form :

B
V() =,

T
Equation 3-10

which allows them to find a closed form solution for 4[Qs] and A[Qs]. In contrast to this
approach, Denery assumed a general inverse power form:
V=1,
r
Equation 3-11

where fis a constant and « is any power. In this case, a closed form solution for 4/Q;/

and A/Qs] cannot be found.

The general definition for the moment of the collision integral is given by:

AQ1= [ [7 [fQ@) Q)@ @)codavdi .

Equation 3-12
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This integral is over all possible bimolecular collisions. The pre-collision velocities of the
two respective particles is given by ¥ and i. The post-collision velocity of the particle
with previous velocity ¥ is given by ¥'. Function f defines the velocity distributions of
the two colliding particles. The collision cross section given by o is, in general, a
function of the relative speed ¢ and the orientation of the respective particles. The vector
parameter (2, which is composed of two angles, describes the inter-particle orientation
prior to the collision. The two velocities along with £ produce an eight dimensional

integral which is difficult and often impossible to solve in closed form.

By choosing the special case of the inverse fourth power, Lees and Liu were able to
solve Equation 3-12 in closed form for 4/Qs] and A[Qs]. Although the more general
inverse power relationship chosen by Denery does not permit a complete closed form
solution, he was able to reduce both equations for A[Qs] and A[Qs] from their original

eight-dimensional form given by Equation 3-12 down to a 2-dimensional form.

The dimensional reduction was performed by following Baganoff's approach.
Baganoff performed integration over the orientation parameter &2 and switched the
\;elocity representation from the individual molecular velocities to the center of mass and
the relative velocity of the molecular pair’ Denery performed analytic integration over
the center of mass velocity and reduced the order of the integrals for A4/Qs] and AfQs]

down to 3-dimensions each respectively. He then removed one of the angular

° Baganoff, D., “Maxwell’s second- and third-order equations of transfer for non-Maxwellian gases”, Phys. Fluids,
A 4(1), Jan. (1992), 141-147.
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dependencies from each equation by representing the relative velocity in spherical
coordinates and integrating over one of the angles. Finally, with the two equations

reduced as far as analytic means would allow, the remaining integrations were performed

numerically.

Having defined the six functions Q(¥) and calculated each of their respective
moments of the collision integral A/Q], the remainder of the solution to the general
inverse Couette problem is to finish solving the six equations suggested by Equation 3-4
for the six unknowns n,, ¢;, T}, n,, ¢, and Ty, This procedure was performed numerically
by Denery using an iterative Newton-Raphson technique. A comparison by Denery using
a value of @ = 4 in his model produced almost identical results to those predicted by the
Lees Liu closed form solution. In the third section of this chapter, results of the Denery

model using a value of a = 9 will be compared with simulation results from the MDC

model.

3.3 Denery Potential and Parameters for the MDC Model

In order to prepare the MDC simulation program for comparison to the Denery
model, several relationships between model parameters used by Denery need to be

defined. Denery’s work provides solutions to general Couette flow problems where the

intermolecular force potential is of the form:
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B
V(l’) = l'_a .
Equation 3-13

For the MDC comparison to the Denery model « is chosen to be 9 because it is generally
accepted that this value most accurately approximates the inter-particle potential for
noble gases.® Equation 3-13 is of the right form for use in the MDC model, however, it
is necessary to evaluate the constant 3 before this equation can be used. The general

Couette configuration to be modeled is illustrated in Figure 3-2.

Thermal Wall (T=T¢)

Thermal Wall (T=Tgy)

Figure 3-2: Illustration of general Couette configuration.

The value of # was selected to match as closely as possible the viscosity of argon.

From Hirschfelder, Curtis and Bird", the viscosity of argon 7 is given by:

3 (k)"
=3 n \Po/ T(@4-2/a)A® ()’

Equation 3-14

* An even more accurate potential is obtained if an attractive term is included (e.g., Lennard-Jones).

** Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids, John Wiley & Sons
Inc., New York, (1954).
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where, & is the Boltzmann constant, m is the mass, I"is the gamma function, and A% (q) is
a special function. The value for B in Equation 3-14 can be calculated by using the
following values: for argon at T = 273 K, n= 2099 x10™* gm/cm"s; for a = 9,

I'(4 - 2/9) = 4.5712, and A®(9) = 0.327, m = 6.63 x 10 P gm, k = 13806 x 10~ erg/lK.

Using these values gives:
B=1759 x10® erg - cm’.
Equation 3-15

The mean free path for this system must be defined in order to calculate the

Knudsen number according to Equation 1-10. The mean free path A is defined as:

1 1(21(’1‘)%
A= =
3V27A, (@) (2 - 2/0) n\ Bo

2
Equation 3-16

where 7 is the number density, I"is the gamma function, and A,(e) is a special function
defined by Chapman and Cowling."! For =09, I'(2 - 2/9) =0.9275, A(9) = 0.382, and

T'=273 K the expression for 1 in Equation 3-16 reduces to

=L (1.39% 10" cm?).
n
Equation 3-17

Assuming a cubic system, the number density 7 is given by the relationship:

"' Chapman, S., and Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, Cambridge University Press,
Cambridge, (1939),
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n=N/D?

Equation 3-18
where N is the number of particles in the system and D is the distance between the
thermal boundaries. Using Equation 1-10, Equation 3-17, and Equation 3-18 an
expression for the Knudsen number X, in terms of the number of particles in the system N

and the system dimension D is determined:

D2
K, = (139 x10"em™) =

Equation 3-19

Mach numbers are often used when defining the velocities of the thermal walls. The
Mach number for a given velocity is a dimensionless quantity that is obtained by dividing

a given velocity v by the sound speed. The sound speed in a dilute gas is given by:

Equation 3-20

where the constant v is 5/3 for a monatomic gas. For argon at 273 K the sound speed ¢

is: ¢ =3.08 x 10* cmys.

3.4 Comparison of MDC to Denery Model

The overall objective in comparing the MDC model results to the Denery model

results is to examine the respective behaviors of each model in the larger Knudsen number
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regimes between 0.1 and 1.0 under a variety of system configurations that feature
different thermal wall temperatures and velocities. After consulting with Dr. Denery,
eight cases were selected for the comparison of the MDC and Denery models. The model

parameters for each of these cases are outlined in Table 3-1.

1.72x10°

1.72x10°

5 | 2730 10 0.1 | 1.72x10° |1.075x107 | 16x16x16 7700 5

7 12730 10 0.1 . 1.075x107 | 16x16x16 30800 20

Table 3-1: Model parameters for comparison runs. 4096 particles were used for all runs.

Half of the cases are in the 0.1 Knudsen number regime and the other half are in the 1.0
Knudsen number regime. The number of particles was 4096 for all runs. Given the
desired Knudsen number, K, , and the total number of particles, N, Equation 3-19
determines the distance, D, between the thermal walls. All of the runs contained one cold
and one hot wall. The cold wall temperature T = 273 K was the same for all of the runs,
and the hot wall temperature T;; was either 409.5 K.or 2730 K. These temperatures
produce wall temperature ratios, Tw/Tc equal to 1.5 and 10 respectively. The relative

wall velocities U, were set according to two different Mach number regimes M, equal to
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0.5 and 2.0 which using ¢ = 3.08X10* cm/s corresponds to values of U, equal to 15,400

cn/s and 616,000 cm/s respectively.

The cell dimensions were determined for each case based on the system dimension
D and choosing a reasonable value for the cutoff radius 7,. Recall that for the Lennard-
Jones potential model, which is reasonable model for argon, the cutoff radius was 3¢
which equals 1.02x107 cm. In an effort to maintain model features that reproduce
reasonable results for argon, this cutoff radius was used as a general guideline for
choosing the number of cells spanning the system dimension D. Selecting 16 and 50 cells
across for the systems with D equal to 1.72x10° ¢cm and 5.43x10° cm produces cell
widths equal to 1.075x107 ¢cm and 1.086x107 ¢cm respectively. These cell dimensions

correspond to reasonable values for the respective cutoff radii.

The model parameters in Table 3-1 were used as inputs for MDC and Denery
simulation runs. For each of the MDC simulation cases five contiguous runs of 100,000
time steps each were performed. The first of the five runs served to allow the particles to
reach equilibrium with the respective system conditions. The subsequent four runs were
used to generate statistics for the equilibrium values of the running average quantities
across fifty equally spaced zones. For this comparison the running average quantities
examined were the number of particles, the particle velocity parallel to the thermal walls,

and the local temperature. Error bars indicating the statistical variation are plotted with

the MDC predictions.
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Comparison plots of the three running average quantities for all eight cases were
produced. All twenty four plots can be found in Appendix C. Examination of the
comparison plots indicates several interesting trends between the MDC and Denery
model. The two models are in close agreement for the low temperature gradient cases
with Knudsen number K, = 0.1 (runs 1 and 3). The largest observed differences between
the profiles in this regime are less than 5%. Figure 3-3, Figure 3-4, and Figure 3-5 show
comparison plots of the running average quantities for run 3. The Denery predictions are
shown with a dashed line while the MDC predictions are indicated with diamond markers

and error bars.
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Figure 3-3: Average number of particles per zone as a function of position for run 3 where Ty/Tc = 1.5, K, = 0. 1,
and M, = 2.0.
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Figure 3-4: Average particle velocity (component parallel to thermal walls) as a function of | position for run 3
where Ty/Tc = 1.5, K, = 0.1, and M, = 2.0.
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The respective number density and temperature predictions of the MDC and
Denery models are also in close agreement in the low temperature gradient cases where
K, =1.0 (runs 2 and 4). The velocity profiles, however, which are presented in Figure 3-
6 and Figure 3-7, do not exhibit the same close agreement observed in the number
density and temperature profiles. Here differences of up to 20% are observed near the
thermal boundaries. In both of these cases the Denery velocity profiles indicate more slip

near the boundaries than the MDC predictions.
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Figure 3-6: Average particle velacity (component parallel to thermal walls) as a function of ‘position for run 2
where Tu/Tc = 1.5, K, = 1.0, and M, = 0.5.
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Figure 3-7: Average particle velocity (component parallel to thermal walls) as a Junction of position for run 4
where Tu/Tc = 1.5, K, = 1.0, and M, = 2.0.

Most of the differences between the two models are observed in the high
temperature gradient cases (runs 5, 6, 7, and 8). Density differences (typically at the
thermal boundaries) of up to 12% are observed for the high temperature gradient regime
cases. The differences observed in the density proﬁ.les for runs 5 and 6, which are

presented in Figure 3-8 and Figure 3-9 respectively, are representative of this trend.
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The velocity profiles for X, = 1.0 in the high temperature regime (runs 6 and 8)
show the same trend as observed for the K, = 1.0 cases in the low temperature gradient
regime (runs 2 and 4 shown in Figure 3-6 and Figure 3-7). In the high temperature
gradient cases the Denery model predicts a lower velocity than MDC by up to 20% at the
cold (left) thermal boundary and a lower velocity by up to 50% at the kot (right)
boundary. This suggests that in the K, = 1.0 regime, in general, there is a stronger
coupling of momentum transfer between the thermal walls and the particles in the MDC
model than in the Denery model (i.e., Denery’s model consistently predicts a larger

velocity slip at the walls). Figure 3-10, which shows the velocity profiles for run 8,

provides further evidence of this trend.
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Figure 3-10: Average particle velocity (component parallel to thermal walls) as a function of position for run 8
where Ty/Tc = 10.0, K, = 1.0, and M, = 2.0.
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It is interesting to observe the fluid velocity profiles near the hot (right) thermal

wall in Figure 3-10. The average fluid velocity is actually downward in the zone closest
to this wall despite the significant upward motion of the wall (+30,800 cm/s). This effect
is explained by noting that, in this environment, the steady state number density is almost
a factor of two higher near the cold wall than it is near the hot wall due to the steep
temperature gradient created by the respective temperature differences between the two
walls. The higher particle density near the cold wall allows a higher momentum transfer
(i-e., a stronger coupling) between the cold wall and the fluid than is occurring between
the hot wall and the fluid. As a result a net downward momentum is transferred to the

fluid and creates the velocity effect observed in Figure 3-10.

The temperature profiles for the K, = 1.0 (runs 2, 4, 6, and 8) regime show a trend
consistent with the trend in the corresponding velocity profiles just mentioned. The
Denery model predicts a lower temperature than MDC by up to 20% at the cold (left)
thermal boundary and a lower temperature by up to 12% at the Aot (right) boundary. The
largest disagreements of this type are observed in the high temperature gradient regime

(runs 6 and 8) and are shown in Figure 3-11 and Figure 3-12 respectively.
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Figure 3-11: Average temperature as a function of position Jor run 6 where Te/Tc = 10.0, K, = 1.0, and M, = 0.5.
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Figure 3-12: Average temperature as a function of position for run 8 where Tw/Tc = 10.0, K, = 1.0, and M, = 2.0.
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The temperature profiles from run 5 given in Figure 3-13 show a different behavior
than what is observed for runs 6 and 8. In this case, the compared results are in close

agreement near the thermal walls but differ by up to 10% in the interior regions of the

channel.
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Figure 3-13: Average temperature as a function of position for run 5 where T/Tc = 10.0, K, = 0.1, and M, = 0.5.

All of the results obtained by the MDC simulations are in general agreement with

numerical results obtained by Denery using a Monte Carlo simulation of hard sphere

particles.



Summary

The MDC simulation computer program was written to model general planar
Couette flow. After rigorous validation of the MDC model, a comparison of MDC
results to results produced by Denery’s semi-analytical model was performed for Couette
flow scenarios in the Knudsen number range 0.1 to 1.0. Comparison of predicted fluid
properties including number density, velocity, and temperature showed relatively close
agreement between the Denery and MDC models in the 0.1 Knudsen number regime
when the temperature gradient across the channel was small. Increasing the temperature
gradient across the channel in this Knudsen number regime produced observable
differences in the temperature and particle velocity profiles between the two respective
models.

More significant differences between the two models were observed in simulations
of the 1.0 Knudsen number regime. In this Knudsen number range, differences between
the Denery theory and MD simulation were observed in both the small and large
temperature gradient cases. A common trend in these cases was that the Denery theory
consistently showed more slip in the fluid velocity profiles near the thermal boundaries
than was observed in the MD predictions. Density -and temperature profiles in this
Knudsen number regime also showed consistent differences near the boundaries between
the two respective models. These observations suggest that the two-sided Maxwellian
velocity distribution function assumed by the Denery theory may not be an appropriate

representation of channel fluid flow in Knudsen number ranges near 1.0.
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Future work in this area might include the study of slip velocity and the dependency
of slip velocity on temperature gradient. Another useful extension to this work is the

study of Couette flow in concentric cylinders where curvature effects have been predicted

to give anomalous results.



Appendix A

Forward Neighbor Arrays
Given N cells in the x direction the array IP (it+) is initialized as follows:

ipo=n+1, forn=1,2,.. N-I

and,

ip,=1, Jorn=N,  (periodic boundaries),
or,

ips=N,+1, forn=N, (thermal boundaries).

Equations A-1
Similarly the array IM (i-) is defined by:

im,= N, forn=1, (periodic boundaries),
or,

im,=N,+1 forn=1, (thermal boundaries),
and

im,=n-1 forn=2,3,..,N,.
Equations A-2
Analogous arrays JP, JM, and KP are defined for N, cells in the y and N, cells in the
z directions respectively. There are only periodic boundaries in these directions because
the MDC model provides for thermal boundaries in one direction only. Also note that a

KM type array is not needed in the definition of forward neighbor cells. After creating



(ifnsn = ipn
(ifnz,=im,
(ifnsn=n
(ifnn = ip,
(ifins,=im,
(ifngu=n
(ifnzn =ip,
(ifng, =im,
(ifngn=n
(Y10 = ipa
(ifny e =im,
(fnzn=n

(¥fnisn =ip,

forn=1,2,..
forn=1,2,..
forn=1,2,...
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,...
forn=1,2,..
forn=1,2,..

forn=1, 2,

the JP and IM arrays they are combined into a (13 X N;) matrix JFN. The matrix IFN is

used to define forward neighbor cells in the x direction and is given by:

» Ny ),
o Ni),
s Nx),
- Ny),
» Nx),
- Ny),
o Ny),
- Ni),
o Ni),
» Ne),
o Ni),
s Ne ),
s Ni) .

Equations A-3: Forward neighbor index matrix IFNy, .

(Jfnin=n
(ifnzn = jpn
(ifnsn =jpn
(ifnen = jpn
(ifnsn = jm,
(ifngn = jmy
(dfnnn = jm,

forn=1, 2, ...
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,..
forn=1,2,.

Analogously, the JP and JM arrays are combined into a (13 X N,) matrix JFN. The

matrix JFN is used to define forward neighbor cells in the y direction and is given by:

s Ny),
- Ny ),
- Ny ),
-+ Ny),
s Ny ),
5 Ny,
- Ny),



(iftsn=n forn=1, 2, ..., N,),
(ifngn=n forn=1,2,..,N,),
(ifnn=n forn=1,2,..,N,),
(Jifmien =jpa forn=1,2,..,N,),
(ifrizn = jpa forn=1,2,..,N,),

(Jfnisn=jpa forn=1,2,..,N,).

Equations A-4: Forward neighbor index matrix JFNy,,.
Note that the JFN matrix is composed somewhat differently than the JFN matrix. The KP

array is used to build a (/3 X N;) matrix KFN. The matrix KFN is used to define forward

neighbor cells in the z direction and is given by:

(kfnyn=n forn=1,2,.., N,),
(kfnzn=n forn=1,2,..,N,),
(kfnsn=n forn=1, 2, .., N,),
(hkfnyn=n forn=1,2,..,N,),
(kfns, = kp, forn=1, 2, ..., N,),
(kfne, = kp, forn=1,2,..,N,),
(kfny, = kp, forn=1,2, .., N,),
(kfns, = kp, forn=1,2,..,N,),
( kfny, = kp, forn=1, 2, ..., N,),
(kfnion = kp, forn=1,2,..,N;),
(kfnyn = kp, forn=1, 2,.., N;),
(kfniz, = kp, forn=1,2,..,N,),

(kfnnys, = kp, forn=1,2,..,N;).

Equations A-5: Forward neighbor index matrix KFNp,,.



In addition to the index arrays used to define forward neighbor cells, arrays to aid
in the determination of inter-particle distances at a periodic boundaries are also initialized
before starting the main calculation. Given a length in the x direction /. subdivided into N,

cells the array DXP (dx+) is initialized as follows:

dxp,= 0, Sforn=1,2,.., N1

and,
dxp,=1,, Jorn=N,  (periodic boundaries),
or,
dxp,= 0, Jorn=N,  (thermal boundaries).
Equation A-6
Similarly the array DXM (dx-) is defined by:
dxm,,=-I, forn=1, (periodic boundaries),
or,
dxm,=0 forn=1, (thermal boundaries),
and,

dxm,=0 forn=2,3,..,N,.
Equations A-7
Analogous arrays DYP, DYM, and DZP are defined for a length J, in the y direction
divided into N, cells and a length / in the z direction divided into N, cells respectively.
Although these arrays are basically all zeros with the exception of the first or last entry,

they will prove to be useful in calculating inter-particle distances at the boundaries of the
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system. Just as the IP, IM, JP, JM, and KP arrays were combined into two dimensional
forward neighbor cell arrays the DXP, DXM, DYP, DYM, and DZP arrays are also

combined into forward neighbor cell arrays. The matrix (13 x Nx) matrix DXFN is defined

by:

(dxfn,, =dxp, forn=1,2,..,N,),
(dxfn;, = dxm, forn=1,2,..,N,),
(dxfns, =0 forn=1,2,..,N,),
(dxfny, = dxp, forn=1, 2,..., N,),
(dxfns, =dxm, forn=1,2,..,N,),
(dxfns, =0 forn=1,2,..., N,),
(dxfn;, = dxp, forn=1,2,.., N,),
(dxfns, = dxm, forn=1,2,..,N,),
(dxfny, =0 forn=1,2,...,N,),
(dxfng, = dxp, forn=1,2,..., N,),
(dxfn;;,, = dcm, forn=1,2,..,N,),
(dxfn;,=0 forn=1,2,..., N,),
(dxfn,;, = dxp, forn=1,2,..,N,).

Equations A-8: Forward neighbor cell delta X matrix DXFN,,,, .

Note the similarity between the construction of Equations A-3 and the construction of

Equations A-8. The matrix (13 X N,) matrix DYFN is defined by:

(dyfn;,=0 forn=1,2,...,N,),
(dyfn,, = dyp, forn=1,2,..,N,),
(dyfns, = dyp, forn=1,2,..,N,),
(dyfn,, = dyp, forn=1,2,..,N,),



( dyfns,, = dym, forn=1,2,.., N,),
(dyfng = dym, forn=1, 2,...,N,),
(dyfn;, =dym, forn=1,2,..,N,),

(dyfng, =0 forn=1,2,..,N,),
(dyfng, =0 forn=1,2,..,N,),
(dyfnggn=0 forn=1,2,..,N,),

(dyfny,, = dyp, forn=1,2,..,N,),
(dyfnizn = dyp, forn=1,2,..,N,),
(dyfngs . =dyp, forn=1,2,..,N,).

Equations A-9: Forward neighbor cell delta ¥ matrix DYFN,, ,.

Again, note the similarity between the construction of Equations A-4 and the construction

of Equations A-9. Finally, the matrix (13 X N,) matrix DZFN is defined by:

(difn;, =0 forn=1,2,..,N,),
(dzfn;, =0 forn=1,2,..,N,),
(dzfn; =0 forn=1, 2, ..., N;),
(dzfn, =0 forn=1,2,...,N;),

(defns, = dzp, forn=1,2,..,N;),
(dzfng, = dzp, forn=1,2,..,N;),
(dzfny, = dzp, forn=1,2,..,N,),
(dzfng,, = dzp, forn=1,2,..,N,),
(dzfny,, = dzp, forn=1,2,..,N,),
(dzfnig, = dzp, forn=1,2,..,N,),
(dzfniin = dzp, forn=1,2,..,N,),
(dzfnion = dzp, forn=1,2,..,N,),
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(dzfngs, = dzp, forn=1,2,..,N,).

Equations A-10: Forward neighbor delta Z matrix DZFNy».

Comparison of these equations to Equations A-5 will show a strong resemblance.



Appendix B
Lennard-Jones Plots
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Figure B-1: Number density vs. position Jor Poiseuille comparison to Morris’ run 6.
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Figure B-2: Temperature vs. position for Poiseuille comparison to Morris’ run 6. Scaled units are CGS divided by
3808K.
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Figure B-3: Number density vs. position for Couette comparison to Morris’ run 6.
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Appendix C

Denery vs. MDC Simulation Plots

Profiles for Run 1:
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Figure C-1: Average number of particles per zone as a function of position for run 1 where Tu/Tc = 1.5, K,, = 0.1,
and M, = 0.5.
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Figure C-2: Average particle velocity (component parallel to thermal walls) as a function of position for run 1
where Tu/Tc = 1.5, K, = 0.1, and M, = 0.5.
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Figure C-3: Average temperature as a function of position for run 1 where Ty/Tc = 1.5, K, = 0. 1, and M, = 0.5.
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Profiles for Run 2:

92
I [ MDC p—
- _{T TI MDC Denery
§ -”HH{I I{
§84 ! lILII!h{HI -----
gso - h‘T”.IHT.IT;I"I:-I-.E{ _
: Ny il
R N

25 -20 15 10 -5 0 5 10 15 20 25
X Position (Rc)

Figure C-4: Average number of particles per zone as a Jfunction of position for run 2 where TulTc = 1.5, K, = 1.0,
and M, = 0.5.
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Figure C-5: Average particle velocity (component parallel to thermal walls) as a function of position for run 2
where Tw/Tc = 1.5, K, = 1.0, and M, = 0.5.
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Figure C-6: Average temperature as a Junction of position for run 2 where TulTc = 1 .5, K =10, and M, = 0.5.



Profiles for Run 3:
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Figure C-7: Average number of particles per zone as a function of position for run 3 where Ty/Tc = 1.5,
Ka=0.1,and M, = 2.0.
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Figure C-8: Average particle velocity (component parallel to thermal walls) as a function of position for run 3
where Tu/Tc = 1.5, K, = 0.1, and M, = 2.0.
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Figure C-9: Average temperature as a Junction of position for run 3 where Tu/Tc = 1 S, Kn=01, and M, = 2.0.



Profiles for Run 4:
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Figure C-10: Average number of particles per zone as a function of position for run 4 where TylTc = 1.5, K, = 1.0,
and M, = 2.0.
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Figure C-11: Average particle velocity (component parallel to thermal walls) as a Junction of position for run 4
where Tu/Tc = 1.5, K,, = 1.0, and M, = 2.0.
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Figure C-12: Average temperature as a function of position for run 4 where Ta/Tc = 1.5, K, = 1 .0, and M, = 2.0.



Profiles for Run 5;
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Figure C-13: Average number of particles per zone as a function of position for run 5 where Tu/Tc = 10.0,
K, =01, and M, = 0.5.
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Figure C-15: Average temperature as a Junction of position for run 5 where TulTc = 10.0, K, = 0. 1, and M, = 0.5.
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Profiles for Run 6:
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Figure C-16: Average number of particles per zone as a function of position for run 6 where Ty/Tc = 10. 0,
K, =10, and M, = 0.5.
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Figure C-17: Average particle velocity (component parallel to thermal walls) as a function of position for run 6
where Ty/Tc = 10.0, K, = 1.0, and M, = 0.5.
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Figure C-18: Average temperature as a function of position for run 6 where Ty/Tc = 10.0, K, = 1.0, and M, = 0.5.
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Profiles for Run 7:
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Figure C-19: Average number of particles Per zone as a function of position for run 7 where Tu/Tc = 10.0,
K,=0.1, and M, = 2.0.
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Figure C-20: Average particle velocity (component parallel to thermal walls) as a Junction of position for run 7
where Tu/Tc = 10.0, K,, = 0.1, and M, = 2.0.
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Figure C-21: Average temperature as a function of position for run 7 where Tu/Tc = 10. 0,K,=0.1, and M, = 2.0.
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Profiles for Run 8:
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Figure C-22: Average number of particles Dper zone as a function of position for run 8 where Tu/Tc = 10.0,
K,=10 and M, = 2.0.
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Figure C-23: Average particle velocity (component parallel to thermal walls) as a function of position for run 8
where Tu/Tc = 10.0, K,, = 1.0, and M, = 2.0.
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Figure C-24: Average temperature as a function of position for run 8 where Ty/Tc = 10.0, K,, = 1.0, and M, = 2.0.
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Appendix D

MDC Computer Source Code Listing

/* Include file for mdc.c program */

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#idefine

#define
#define
f#idefine
#idefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#idefine
#define

#ifndef PI
#define
#endif

#define
#define

typedef struct
int binx;
int biny;
int binZz;
} Bin3d;

extern int

extern void
extern void
extern float
extern void
extern void
extern void

SIGMA 3.405e-08 /*
MASS 6.633e-23 /*
BOLTZ 1.381e-16 /*
EPSILON 1.654e-14 /*
CUTOFF 1.075e-07 /*
DXCELL CUTOFF

DYCELL CUTOFF

DZCELL CUTOFF

MXPART 4096

MXBIN 50

NCELLX 16

NCELLY 16

NCELLZ 16

NCELLS (NCELLX*NCELLY*NCELLZ)
SW_TIME STEP 1

SW_NUM PARTS 2

SW_NUM_ITER 3

SW_PERIODIC 4

SW_READ CONF 5

SW_OUT_CONF 6

SW_OUT_DIAG 7

SW_OUT_STAT 8

SW_TEMP_W1 9

SW_TEMP W2 10

SW_TEMP GAS 11

SW_VEL W1 12

SW_VEL W2 13

SW_AcCC_2 14

SW_PRINT MOD 15

SW_HELP 16

PI 3.141592654

TRUE 1

FALSE 0

main ( int arge, char *argvi] );
setIndicies ( float 1X, float 1Y, float 12 ):
outputRunParams ( FILE *filePtr )

ranl ( long *idum );
bzero ( char *ptr, int len ):
parseCommand ( int arge, char *argv([] ):
tallystats ( void );

cm */

argon atom mass (gm) */
Boltzman constant (erg/K) */
erg */

cm %/



/* Molecular Dynamics Channel Program mdc.c */

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "max3d.ht
#include "getswtch.h"

/* Define Globals */

switch t switches[] = ¢
{SW_TIME_STEP, "-dTime", 2, 1, "€, winy,
{SW_NUM PARTS, "~-nParts", 2, 1, "iv, vy,
{SW_NUM ITER, "-nIter", 2, 1, niv, wigvy,
{SW_PERIODIC, "-periodic", 2,

0, (char *)NULL,

(char *)NULL},

{SW_READ_CONF, "-readConfig", 2, 1, "n", "<filename>"},

{SW_TEMP W1, "—tWlv, 3, 1, "En, ngn},
{SW_TEMP_WZ ’ "—-tW2", 3, 1, "Eu, ngny},
{SW_TEMP GAS, "-tGas", 2, 1, "£", v} ,
{SW_VEL W1, "eyWlv, 3,1, "gu, g},
{SW_VEL W2, "—vw2", 3, 1, "En, wgny,
{SW_acc z, "-acez", 2, 1, "£", "n},

{SW_PRINT MOD, "-printMod", 2, 1, nin, njv},

{SW_OUT_DIAG, "-diagFile", 2, 1, "n», “<filename>"},

{SW_OUT_CONF, "-configFile", 2, 1, "n", "<filename>"},
{SW_OUT_ STAT, "-statFile", 2, 1, "n", "<filename>"},
{SW_HELP, "=help", 2, 0, (char *)NULL, (char *) NULL} ,

}:

int nswitches = sizeof (switches) /sizeof (switch t);

double posX[MXPART], posY [MXPART] ,

PosZ [MXPART] ;

double oldPosX[MXPART] ; ©ldPosY[MXPART], oldPosZ [MXPART] ;

double velX[MXPART], velY [MXPART],

velZ [MXPART] ;

double avgMVelX[MXBIN], avgMVelY [MXBIN], avgMVelZ[MXBIN] ;

double avgKE[MXBIN],
double binWidth;

avgNum[MXBIN] ;

float dxm[NCELIX), dxp[NCELLX], dym[NCELLY], dyp{NCELLY];

float dzp[NCELLZ]:

float dxfn(13] [NCELLX], dyfn([13] [NCELLY], dzfn[13][NCELLZ];

£float £NPEPM, £NPEPM2, £PM;

int im[NCELLX], ip[NCELLX], 3jm[NCELLY] , JPINCELLY];
int kp [NCELLZ], cellCounts[NCELLX+1] [NCELLY] {NCELLZ];;
int ifn{13] [NCELLX], 3j£n{13][NCELLY], kfn[13] [NCELLZ] ;
int statCount;

FILE *fpConfigln, *fpConfigout, *£fpstatout, *fpDiagout;

/* Default input parameters */

float dt = 3.123e-15; /* sec */

float velwxl = 0.; /* (cm) /(sec) */
float velwx2 = 0.; /* (cm)/(sec) */

float extAcez = 0.; /* (cm)/(sec2) */
£float radCut = 3*SIGMA; /* em %/

int numParts = NCELLS;

int numlter = 1000;

int printMod = 20;

int periodic = FALSE:;

float tempGas= 295.; /* K */

float tempWxl = 295.; /* R */

float tempwx2 = 295.; /* K */

char *inConfigFileName = (char *)NULL:;

char *outDiagFileName = "max3Diag.out";

char *outConfigFileName = "max3Conf.out";

char *outstatFileName = "max3stat.out";

int main ( arge, argv )



int
char

argc;

*argv(];

static double accX[MXPART] ¢ AccY [MXPART], accZ[MXPART]:;

static int PartIdoffset [NCELLX] [NCELLY] {NCELLZ]  PartId[MXPART] ;
static int tstep, iX, i¥, iz, sumParts, velGas;

static float 1x, 1Y, 12;

static double wX, wY, w2, wNorm;

static double dx, dy, dz, r2, r2i, r4i, réi, re8i, rili, aor, pE, kE:
static double pX, pY, pZ, axTmp, ayTmp, azTmp;

static double newPosX, newPosY, newPosZ, magV;

static double sumKE=0., sumPE=0. , SumPX=0., sumPY=0., sumPZ=0.;
static double clV, c2V, sigma6, clA, c2A;

static double dt2, twoDt, radCut2, avgTemp, statVel, statTime;

static double mpvXl, mpvX2, phi, vParll, xRatio:

int ie, je, ke, np, npoff, npc, npcOff, ncl, ne2, nl, n2, nCellClr;
int npn, npnOff, nf, nn, statMod:;

static long iseed = 1;

Bin3d partBinLoc[MXPART]:

/* Parse command line looking for overrides to input parameters */
parseCommand ( arge, argv );

/* Open diagnostic output file */
i1f ((fpbiagout = fopen(outDiagFileName, "w")) =— (FILE *)NULL) |
fprintf(stderr,

"Error opening diagnostic output file: max3d.out\n");
exit(l);

}

/* Caleculate

dimensions of volume */

1X = (float) NCELLX*DXCELL;
1Y = (float) NCELLY*DYCELL;
12 = (float) NCELLZ*DZCELL;

/* Calculate

Statistics Constants */

binWidth = 1X/( ( double ) MXBIN ):

statCount = 0;

/* Initialize indicies */
setIndicies(lx, 1Y, 12);

/* Calculate time constants */

twoDt = 2.*dt;

dt2 = dt*dt;

/* Calculate square of the cutoff radius */
radCut2 = radCut*radCut;

/* Calculate most probable velocities at thermal boundaries */
if ( periodic = FALSE ) {

= sqrt( 2*BOLTZ* tempWX1/MASS) ;

= sgqrt( 2*BOLTZ* tempWX2/MASS) ;

mpuX1
mpvX2
}

/* Calculate potential energy coefficients */
sigmaé = pow((double) SIGMA, (double)6.):

clV = 1.76e-81;

/*e2v = 4*EPSILON*sigma6;*/

/* Calculate acceleration coefficients */
clA = 9.*%clV/MASS;
/*c2A = 6. *Cc2V/MASS; %/



/* Initialize particle positions */
1f ( inConfigFileName == (char *) NULL ) {
/* Create initial particle configuration using gas temperature
to calculate magnitude random velocity */
velGas = sqrt(3.*BOLTZ*tempGas/MASS) ;
for (ic=0; ic<NCELLX: ic++)
for (jc=0; JCNCELLY: jc++)
for (ke=0; kc<NCELLZ; kc++) {
np = ic + JC*NCELLX + kc*NCELLX*NCELLY;
posX[np] = (ic+0.5)*DXCELL;
posY[npl] = (jc+0.5) *DYCELL;
PoszZ[np] = (kc+0.5) *DZCELL;
/* Pick arbitrary direction */

wX = 0.5 ~ ranl(&iseed):
wY = 0.5 - ranl(&iseed):;
wZ = 0.5 - ranl(&iseed):;

/* Calculate Norm */

wNorm = sqrt(wX*wX + wY*wY + w2*wZz);
/* Calulate velocity weight */

wX /= wNorm:

wY /= wNorm;

wZ /= wNorm;

oldPosX([np] = posX[np] + wX*velGas*dt;
oldPosY[np] = posY[np] + wY*velGas*dt;
oldPosZ[npl] = poszZ[np] + wZ*velGas*dt;
}

}
else {
/* Read in initial particle configuration */
if ((fpConfigIn = fopen(inConfigFileName, "x")) = (FILE *)NULL)
fprintf (stderr,
"Error opening initial configuration file: %s\n" B
inConfigFileName) ;
exit(2) .
}
£scanf (fpConfigiIn, "$d\n\n", &numParts) ;
for (np=0; np<numParts; np++) {
fscanf ( fpConfigln, "%lg %lg %lg %lg $lg %lg\n",
&posX[np], &pos¥{np], &posZinp],
&velX[np], &velY([np]l, &velZ[np] ):

/* Generate previous positions from velocities */
oldPosX([np] = posX[np] - velX[np]*dt:;
oldPosY[np] = pos¥[np] - velY[npl*dt:
oldPosZ([np] = poszZ[np] - wvelZ[np]*dt;
}
fclose ( fpConfigin ):
}

/* Caleculate averaging constants */
£PM = (float) printMod;

£NPEPM = (float) numParts * £pM;
ENPEPM2 = E£NPEPM*ENPEPM;

/* Calculate statistical modulation */
statvel = o0.;
for ( np=0; np<numParts; np++ ) {
statVel += sqrt( velX[np] *velX([np] + velY([np]*velY[np} +
velzZ[np]*velZ[np] ):
}
statVel /= (double)np:
statTime = binWidth/statvVel;
statMod (int) ( statTime/dt );

/* Zero out Statistical arrays */
bzerc( (char *)avgMVelX, (int)( MXBIN*sizeof (double) ) ):
bzero( (char *)avgMVelY, (int)( MXBIN*sizeof (double) ) ):

{



bzero( (char *)avgMvelz, (int) ( MXBIN*sizeof (double) ) )
bzero( (char *)avgKe, (int) ( MXBIN*sizeof (double) ) ):
bzero( (char *)avgNum, (int) ( MXBIN*sizeof(double) ) );

/* Print out run parameters */
outputRunParams ( stderr );
outputRunParams ( fpDiagout )

/*** Calculate size of Cell Count array *%%/
nCellClr = ( NCELILX + 1 )*( NCELLY )*( NCELLZ ):

/%*** Main Loop over Time *w%/
for (tStep=1:; tStep<=numIter: tStep++) {

/* Initialize potential energy */
PE = 0.;

/* Initialize cellCounts to zero */
bzero ( (char *) cellCounts, (int) ( nCellClr*sizeof (int) ) );

/* Bin particles into cells %/
for ( np=0; np<numParts; np++ ) {
iX = (int) ( posX[np})/DXCELL ):
/* Perform check for particle on right thermal boundary */
if ( iX >= NCELIX )
iX = NRCELIX-1;
i¥ = (int) ( posY[np]/DYCELL ):
iZ = (int) ( posZ{np]/DZCELL ):
cellCounts[iX] [i¥Y] [12] ++;

/* Save cell locations for each particle */

partBinLoc[np].binX = ix;
partBinLoc{np] .binY = 1iY;
partBinLoc([np] .binz = 12;

1

/* Tabulate offset for each cell into
particle id array -> partidoffsets */

sumParts = 0;
for (kc=0; Xc<NCELLZ; kc++)
for (je=0; Jo<NCELLY; jc++)
for (ic=0; 1c<NCELLX; ic++) {
partidoffset[ic) [jc] [ke] = sumParts;
sumParts += cellCountsf{ic][jc][ke};
}

/* Reset cellCounts to zero */
bzero ( (char *) cellCounts, (int) ( nCellClr*sizeof(int) ) ):

/* Calculate particle Ids within each cell and place
Ids in sequencial oxder in partical Id array */
for (np=0; np<numParts; np++) { -
iX = partBinLoc[np].binX;
1Y = partBinLoc{np].bin¥;
iz = partBinLoc[np].binZ;
cellCounts[iX) [1Y]} [12] ++;

/* Calculate offset into particle Id array */
npOff = partIdoffset[iX] [1Y][1i2] + cellCounts[iX][iY](iZ] - 1:;

/* Assign particle Id */
partId{npOf£f} = np;

/* Ccalcuate force acting on each particle due
to neighboring particles */
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/* (Force) Loop over all cells (ic,jc,kc) */
for (ke=0; kc<NCELLZ; kc++)
for(jc=0; Jc<MCELLY; jc++)
for (ic=0; Lic<NCELLX; ic++) {

/*fprintf(stderr, "\nCurrent Cell: %d\n " R
(1+i.<=+jc*NCBLLX-&-kc*NCELIx*NCELLY) Yiv/

/* Offset into particle id array for current cell */
npcOff = partIdoffset[ie][jc][ke];

/* Number of particles in current cell biased by offset */
npe = npcOff + cellCounts([ic][jc]kec]:

/* Loop over all particles within current cell */
for (ncl=npcOff; ncl<npc; ncl++) {

/* Current particle Id-Index */
nl = partidlncl]:

/* Tabulate forces on current particle due to
the presence of other particles within this cell */

/* Loop over all other particles within current cell */
for(ne2=ncl+l; nc2<npc; nc2++) {

/* Id-Index of "other" particle */
n2 = partid{nc2];

/* Calculate (distance) **2 between both particles */
dx = posX[n2] - posX[nl];

dy = posY[n2] - posY([nl]:;
dz = posZ[n2] - posz[nl];
r2 = dx*dx + dy*dy + dz*dz:;

/* Process only those particles that are
within the cutoff radius of each other */

if (r2 < radcut2) {
/*r2i = 1./r2;

r4i = r2ikr2i;

réi = r2i*r4i;

r8i = rditr4i;%/

rlli = pow( r2, (double) (-5.5) );

aor = rlli*eclA;

/* Acceleration of nl due to presence of n2 */
axTmp = aor*dx; accX[nl] -= axTmp;
ayTmp = aor*dy; aceY[nl] -= ayTmp:

= aor*dz; acezfnl] -= azTmp:

/* Equal and opposite acceleration of n2 due
to presence of ni */

accX([n2] += axTmp;

aceY[n2] += ayTmp:;

acez[n2] += azTmp;

/* Tabulate potential energy */
PE += rlli*rp2*clv;

} /* Particle pairs within cut-off radius */

} /* Loop over other particles within current cell %/

/* Tabulate forces on current particle due to the presence
of other particles within neighboring cells */



/* Loop over current cell's 13 "forward-neighbor" cells */
for (nf=0; nf<l13; nf++) {

/* Offset into particle id array for
current neighbor cell */
npnOff = partIdoffset [ifn{nf][ic]]
[3£n[n£] [Jec)]
[k£En[nf] [ke]]:

/* Number of particles in current nelighbor cell
biased by offset */
npn = npnOff + cellCounts [ifn[nf]{ic]]
[Jfn[n£] (jel]
[kfn[nf] [kc]]):

/* Loop over all particles within current neighbor cell */
for (nn=npnOff; nn<npn; nn++) {

/* Neighbor cell particle Id-Index */
n2 = partIdinn]:;

/* Calculate (distance)**2 between both particles */

posX{n2] - posX[nl] + dxfn(nf][ic]:;
posY[n2] - posY[nl] + dyfn([nf] {3el:
posZ[n2] - posz[nl] + dzfn([nf]([kec]:
dx*dx + dy*dy + dz*dz;

BREE
R

/* Process only those particles that are

within the cutoff radius of each other */
if ( r2 < radcut2 ) {

/*r2i = 1./r2;

r4i = r2i*p2i;

r6i = r2iv*r4i;

r8i = rdivrdi;*/

rlli = pow( r2, (double) (-5.5) );

aor = rlli*clAi;

/* Acceleration of nl due to presence of n2+/
axTmp = aor*dx; accX[nl] -= axTmp;

ayTop = aor*dy; acc¥[nl] -= ayTmp;

azTmp = aor*dz; aceZinl] -= azTmp;

/* BEqual and opposite acceleration of n2 due

to presence of ni */

accX[n2] += axTmp;

accY[n2] += ayTmp;

acez[n2}] += azTmp;

/* Tabulate potential energy */
PE += rllikr2+clv;

} /* Particle within cutoff radius */
} /* Loop over all particles withir; neighbor cell */
} /* Loop over all "forward-neighbors" of current cell */
} /* Loop over all particles within current cell */
} /* Force Loop over all cells */

/* Initialize total kinetic energy and total momentum */
kE = pX = pY = p2 = 0;

/* Loop over all particles */
for (np=0; np<numParts; np++) {
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/* Calculate new positions using Verlet method */

newPosX = 2. *posX[np)] - oldPosX[np} + dt2*accX[np):

newPosY = 2, +pos¥[np] - oldPosY[np] + dt2*3ceYnp]

newrosZ = 2.%posz[np] - oldPosZ[np] + dt2*( accZ[np] + extAceZ );

/* Calculate new velocities for Total Momentum
and Kinetic Energy monitoring */

velX[np] = (newPosX - oldPosX[npl)/twoDt;

velY[np] = (newPosY ~ oldPosY[npl) /twoDt:

velzZ[np] = (newPosZ - oldPosz[np])/twobt;

/* Transfer updated positions */

oldPosX([np] = posX[np]: posXinp] = newPosX:
oldPosY[np] = posY[np]: posY[np] = newPosY;
oldrosz[np] = posZinpl; posZinpl] = newPosZ;

/* Check for crossing of cell boundaries */

/* Thermal Boundary Conditions*/
if ( posxinp] <0 ) {
. 1f ( periodic = TRUE ) ({
posX[np] += 1X;
oldPosX{np] += 1X;

}
else { /* Thermal Boundaries */
/* Set new velocities */
phi = ranl{ &iseed ) *2%pI;
vParll = mpvXl*sqrt( -log ( 1. - ranl( &iseed ) ) );
velX([np] = mpvXi*sqrt( -log ( 1. - ranl( siseed Y )
velY[np] = vParll*sin(phi) + velWXl;
velZ[np] = vParll*cos(phi);
/* Set position of particle back to the boundary */

):

¥Ratio = ( -oldPosX[np] )/( posX[np] - oldPosX[np] ):
posX(np] = 0.;
posY[np] = oldPosY[np] + ( posY[np] ~ oldPos¥([np] )*xRatio;

poszZinp] oldPoszinp] + ( poszZ[np] - oldPosZ([np] )*xRatio;
/* Set "old" loc. to be consistent with new loc. & vel. */
oldPosX[np] = posX[np] - velX[npl*dt:

oldPos¥([np] = posY[np] - velY{np] *dt;

oldPosZ[np] = posZzinp) - velZ([np] *dt;

}

}

if ( posXInp] > 1X ) {
if ( periodic == TRUE ) { /* Periodic Boundaries */
posX[np] -= 1X;
oldPosX[np] -= 1X:
}

else { /* Thermal Boundaries */
/* Set new velocities */

phi = ranl( &iseed ) *2*pI;
VParll = mpvX2*sqrt( -log ( 1. - ranl( &iseed ) ) );
velX[np] = -~ mpvX2*sqrt( -log ( 1. - rant( &iseed Y ) )

velY[np) = vParll*sin(phi) + velWX2;
velzZ{np] = VParll*cos(phi) ;
/* Set position of particle back to the boundary */

xRatio = ( 1X - oldPosX([np] )/( posX[np] - oldPosX(np] ):;
posXnp] = 1X;
posY[np] = oldPosY[np] + ( PosY[np] - oldPosY[np] )*xRatio;

Poszinp] = oldPoszZ[np] + ( posZinp] - oldPosZ[np] ) *xRatio;
/* Set "old" loc. to be consistent with new loc. & vel, %/
oldPosX{np] = posX[np] - velX[np]*dt;

oldPosY[np] = posY[np] - velY([np]*dt;

oldPosZ[np] = poszZ[np] -~ velZ[np]*dt;

}
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/* Periodic Boundaries */
if ( posY¥[np]l < 0 ) {
posY([np] += 1Y;
oldPosY[np] += 1Y¥:
}

if ( posY[np] >= 1Y ) {
posY[np] -= 1¥;
oldPosY({np] -= 1¥:
}

if ( poszZ[np] < 0 ) {
posZnp] += 1z;
oldroszinp] += 12;
}

if ( posZinp] >= 12 ) {
posz([np] -= 12;
oldPosz([np] -= 12;
}

/* Calculate square of magnitude of velocity */
magv = velX[np]l*velX[np] + velY[np]*velY[np] +
velZ[np]*velZ[npl:

/* Tally total kinetic energy */
kE += magVv;

/* Tally total momentum */
PX += velX[npl}:;
pY += velY[np]:
PZ += velZinp]:

/* Zero out particle accelerations */
accX[np] =
accY[np]
acez[np]

’

0.
0.
0.

~ w

} /* Loop over all particles & update positions */

SumKE += kE;
SumPE += pE;
sumPX += pX:;
sumPY += pY¥;
sumPZ += pZ;

/* Print out diagnostic quantities at specified intervals */
if ( ( tStep % printMod ) == 0 ) {

/* Calculate time averaged quantities */

avgTemp = ( MASS / ( 3.*BOLTZ ) ) *( SumKE/EfNP£PM -
SumPX* sumPX/fNPfPM2 ~ SumPY* sumPY/£NP£PM2 -~
sumPZ* sumPZ/£ENPEPM2 ) ;

SunmKE *= ( O0.S5*MASS/fPM );
sumPE /= £PM;

sumPX #*= MASS/fPM;

sumPY *= MASS/fPM;

sumPZ *= MASS/£PM;

fprintf ( stderr, "%d <KE>SHg <PE>= %g <BE>=%g <Temp>=%$g\n",
tsStep, sumkKE, sumPE, SUmKE+sSumPE, avgTemp )

fprintf ( fpbiagout,
"%d <KE>=%g <PE>= %g <E>=%g <Px>=%g <Py>=%g <Pz>=%g\n",
tstep, sumKE, sumPE, SunKE+sumPE, sumPX, sumPY, sumPZ );

/* Save particle configuration */
fpConfigout = fopen ( outConfigFileName, "w" );



fprintf ( £pConfigoOut, "#d\n\n", numParts );
for ( np=0:; np<numParts; np++ )
fprintf ( fpConfigout, "%g %g %g $g %g sg\n",
posX([np], pos¥[npl, poszinp],
velX([np], velY[np], velzZ[np] ):;
fclose ( fpConfigout );

/* Reinitialize time average sums */
SumKE = sumPE = sumPX = sumPY = sumPZ = O.;

/* Save statistical information */
if ( statCount > 0 ) ¢
fpstatout = fopen ( outstatFileName, "w" );
fprintf ( £psStatout, " %d\n\n", MXBIN ) ;
for ( ic=0; ic<MXBIN; ic++ )
fprintf ( fpstatout, "%g %g %g %g %g\n",
( avgNum{ ic ]/statCount ),
( MASS*avgMVelX[ ic ]/statCount ),
( MASS*avgMVelY[ ic ]/statCount ),
( MASS*avgMVelZ([ ic ]/statCount ),
( 0.5*MASS*avgKE[ ic ]/statCount ) );

fclose ( fpstatout )
}

}

/* Tally[B Statistics */
1f((t8tep%statMod.)=0) {
tallystats( ) ;
}

} /* Time Increment Loop */

/* Last chance to save statistics information */
tallystats( );

if ( statCount > 0 ) ¢

fpstatout = fopen ( outstatFileName, "w" );

fprintf ( fpstatout, "ad\n\n", MXBIN );

for ( 1c=0; 1c<MXBIN; ic++ )

fprintf ( fpstatout, "%g %g %g %g sg\n",

( avgium[ ic )/statCount ),
( MASS*avgMVelX[ ic ]/statCount ),
( MASS*avgMVelY[ ic ]/statCount ),
( MASS*avgMVelZ{ ic ]/statCount ),
( 0.5*MASS*avgKE[ ic ]/statCount ) );

felose ( fpsStatout ) ;

}
/* Close diagnostic output file */
fclose ( fpDiagout ):

return 0;

}

void tallystats ()
{

double vXBin[ MXBIN ], vYBin[ MXBIN ], vZBin[ MXBIN 1, nBin[ MXBIN );
double KEBin[ MXBIN ];
int i, binI;

/* Increment counter */
statCount ++;

/* Initialize local sums */
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for ( 1=0; i<MXBIN; i++ )
vXBin[ 41 } = VvYBinf 4 } = vZBin[ 1 } = KkEBin[ i ] = nBin[ 1 1 =0;

/* Loop over particles */
for ( i=0; i<numParts; i++ ) |

/* Calculate bin index */
binI = posX[ i ]/binwWidth;
if ( binI = MXBIN )

binl = MXBIN -~ 1;

/* Calculate local sums */

nBin[ binI ] ++;

VXBin{ binI ] += velX[ i

VYBin[ binI ] += velY[ i

vZBin[ binI ] += velZ[ i

kEBin[ binl ] += ( velX({ I*welX[ 4 ] + velY[ 4 J*velY[ 1 ] +
velZ[ i l*velZl 1 ] ):

N N

1
]
]
i
}

/* Calculate averages for each bin */
for ( 1=0; 1<MBIN; i++ ) {
avgNum[ 4 ] += nBin[ 1 ];
avgMVelX[ i ] += ( vKBin[ i 1/nBin[ i
avgMVelY[ i ] += ( v¥Bin[ i 1/nBin{ 1
avgMvel2[ i ]} 4= ( vZBin[ i 1/nBin{ i
avgKE[ i } += ( kEBin{ 1 ]/nBin[ i
}

return;

}

void parseCommand ( argc, argv )
int arge:
char *argvi(]:

{
int gsw, cursSwitch;

/* Set program name */
program name = argv|[ 0 J]:

while ((gsw = get switch(arge, argv, switches, nswitches, &curswitch)) =
GET_SWITCH DONE)

switch (gsw) {
case SW_TIME_STEP:
dt = atof (argvicurswitch+1]) ;
break;
case SW_NUM PARTS:

numParts = atoi (argv(curswitch+1]) ;
break;

case SW_NUM ITER:

numIter = atoi(argvicurSwitch+1]);
break;

case SW_PERIODIC:
periedic = TRUE;
break;

case SW_READ CONF:

:I.nCOnf_:l.gF:Ll_eName = argv[ curSwitch+l J;
break;

case SW_OUT__DIAG:

outbiagFileName = argv| curswitch+l ];
break:

case SW_OUT CONF:

outConfigFileName = argv[ curSwitch+i 1:
break;

case SW_OUT_STAT:

outstatFileName = argv[ curSwitch+l 1;
break;
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case SW_TEMP » Wl:

tempwxl = atof ( ‘argv[ cursSwitch+l ] );

break;

case SW_TEMP > Wa2:

tempwxz = atof ( axgv[ curswitch+l ] ):

break;

case SW_TEMP > _GAS:
tempGas = atof ( argv{ curSwitch+l ] );

break;

case SW_VEL Wi:
velwxl = atof
break;

case SW_VEL W2:
velWX2 = atof
break;

case SW_ACC 2:

( argv{ curSwitch+l ] );

{ argv[ curSwitch+l ] ):;

extAccZ = atof ( argv[ curSwitch+l ] );

break;

case SW_PRINT MOD:
printMod = atoi ( argv[ curSwitch+i ] );

break;
case SW_HELP:

usage(switches, nswitches);

break ;

case NOT A SWITCH:
usage (switches nswitches) ;

break;
default:

fprintf (stderr,"Internal error =-- did not catch switch %d\n"

exit(1);

} /* End of switch on gsw */

}

voild outputRunParams ( filePtr )

{

FILE *filePtr;

fprintf ( filePtr,
fprintf ( filePtr,
fprintf ( filePtr,
fprintf ( fileptr,
fprintf ( filePtr,
fprintf ( filePtr,

"Parmeters for current Max3D run:\n\n" );

Number of particles

Time step

Number of iterations
Maximum interaction radius
External Z Acceleration

i€ ( inConfigFileName )

fprintf ( filePtr, *

inConfigFileName ) ;

else

fprintf ( filePtr, "

tempGas ) ;

1f ( outConfigFileName )

fprintf ( £filePtr

LU

r

outConfigFileName );

else

fprintf( filePtr, "

1f ( outStatFileName )

fprintf ( filePtr

" Write particle statistics to file: $s\n",

!

outstatFileName ) ;

else

fprintf( fileptr, "

fprintf ( filePtr,
fprintf ( filebtr,
fprintf ( filePtr,
fprintf ( filePtr,
fprintf ( filePtr,

$d\n" ,numParts ):
%g (sec)\n",
sd\n", numIter )

, gsw):

dt ) ;

$g (cm)\n", radcut ):;
%g (cm/sec2)\n",

"\nCell cavity dimensions:\n\n" );
Number of cells in X direction: %d\n", NCELLX )

"

Cell width in X direction

Read input configuration from file: ss\n",

Write final particle configruation to file: $s\n",

Supress output of particle statistics.\n" )

%g (cm)\n",

extAcecz );

Create initial configuration using T gas: %g (K)\n",

Supress output of final particle configuration.\n" );

DXCELL ) ;

Nunmber of cells in Y direction: %d\n", NCELLY ) ;

Cell width in Y direction

D-12

%g (cm)\n",

DYCELL ) ;



fprintf ( filePtr, " Number of cells in Z direction: $d\n", NCELLZ );
fprintf ( fileptr, * Cell width in 2 direction : %g (cm)\n", DZCELL );
fprintf ( filePtr, "\nAverage particle density: %g (Parts/cm3)\n",

(float) numParts/ (NCELI.X*DXCBLL*NCELLY*DYCELL*NCBLLZ*DZCELL) )
fprintf ( filePtr, "\nBoundary Conditions:\n\n" ):;
1f ( periodic = TRUE )

fprintf ( filePtr, " Periedic X boundaries selected.\n" );

else {
fprintf ( filePtr, " Thermal walls at X boundaries selected:\n" );
fprintf ( filePtr, " Velocity of wWall 1 i %g (cm/sec)\n", velWXl );
fprintf ( filePtr, " Temperature of Wall 1: %g (K) \n", tempWX1i );
fprintf ( filePtr, " Velocity of wall 2 : %g (cm/sec)\n", velWxX2 ):
fprintf ( filePtr, " Temperature of Wall 2: %g (K)\n\n", tempwx2 );

}
}
void setIndicies(1X, 1Y, 12)
float 1X;
float 1Y;
float 12;
int ic, je, ke;

/* Calculate indicies for indirect addressing of cells */
if ( periodic = TRUE ) {

im[0] = NCELLX-1: im[NCELLX~1] = NCELLX-2;
ip[0] = 1; ip[NCELLX-1] = 0;
dxm[0] = -1X; dxm [NCELLX~1] = O0.;
dxp[0] = 0.; dxp [NCELLX-1] = 1X;
}
else {
im[0] = NCELLX; im[NCELLX~1] = NCELLX-2;
ip[0] = 1; ip [NCELLX~1] = NCELLX;
dxm[0]} = 0.; dxm[NCELLX-1] = 0.;
dxp[0] = 0.; dxp [NCELLX-1] = 0.
}
for (ic=1; 1ic<NCELLX-1:; let++) {
imfic) = de-1;
ipl[iec] = ic+1;
dxmlic] = 0.;
dxpfic] = 0.;
}
Im[0] = NCELLY-1; Jm[NCELLY-1] = NCELLY-2;
jplo] = 1; JpINCELLY~1] = 0;
dym{0] = -1Y; dym[NCELLY-1] = 0.;
dyplo] = o.; dypINCELLY-1] = 1Y;
for (jJe=l1; Jo<NCELLY-1; jc++) |
m[je]l = jec-1;
Jplicl = jet1:
dym[jc] = 0.;
aypliel = 0.;
}
kpINCELLZ-1] = O;
dzp[0] = 0.; dzp [NCELL2-1] = 12;

for (kc=0; Kc<NCELLZ-1; kc++) {
kplkel = kc+l:;
dzp[ke] = 0.;
}

/* Use the above arrays to construct "forward-neighbor"
cell-index-matricies and cell-delta-matricies */
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for (ic=0; 1c<NCELLX; ic++)

ifn (0] [dec] = iplic]:;
ifn [1] {[die] = imf[ic);
ifn (2] [ie] = iec:;
ifn [3] [ic] = iplic);
ifn [4] [ic] = im[iec):
ifn [5] [ic] = ic;
ifn [6] [ic] = iplic];
ifn [7] [ic] = im[ie];
ifn [8] [ic)] = ie;
ifn [9] [ic] = ip[ic]:;
ifn [10] [ic] = im{iec]:
ifn [11)[ic] = ic;
ifn [12][ic] = ipf[ic]:
dxfn[0] [ic] = dxpliec]:
dxfnl] [ic] = dxm([ic]:
daxfnl2] [ie] = 0;
dxfn[3] {ic] = dxp[ic]:
dxfn[4] [ic] = d&xmlic]:
dxfn[5] [ic] = 0O;
dxfn[6] [ic] = Axplic);
dxfn(7] (ic] = dxamfic];
dxfn[8] [ic)] = O;
axfn[9] [ic] = dxplie];
dx£fn{10] [ic] = daxm[ic]:;
dxfnfll] [ic) = O;
dxfn[12] [ic] = dxplie);
}
for (je=0; JcMCELLY; Jct++)
Jfn [0] [Jc] = je;
Jfn (1] [3c] = Ipljel;
Jtn [2] ([jc)] = Iplic);
J£n [3] [3e) = jpljc];
Jfn [4] [je) = Imljcl:
3fn [5] [jc] = 3m[jcl;
Jfn [6] [jc] = jm[jel:
Jfn [7] [3e] = je;
Jfn [8] [je] = je:
Jfn (9] [)cl = je:
Jfn [10}[jec] = jp[3cl;
Jfn [11][3c] = Ipliel;
Jfn [12]{jc] = Iplicl:
dy£n{0] [je] = 0;
dyfn[1l] ([je) = dypljecl:
dyfn[2] [jc] = dypljcl:
dvfn[3] [je] = dypliel:
dyfni4] [je] = dym[je];
dyfn{5] [je] = dym[jc);
dyfn[6] [jc] = dym[jcl:
aven(7] [je] = 0;
dyfn[8] [jc] = 0;
dyfn{9] [je) = 0;
dy£n[10] [je] = dypljcl;
dyfn{ll)ijc) = dyplicl;
= dypljecl;

avfn([12] [jc]
}

for (kc=0; kc<NCELLZ: kc++)

kEfn
kfn
kfn
kfn
kfn
kfn
kfn
kEn
kfn

[01]
1]
{2]
[3]
[4]
[5]
(6]
(7]
[8]

[kc] = ke;
[ke] = ke
[ke] = ke;
[ke] = ke;
fke] = kp[ke]:
[ke] = kp[kel:
[ke]l = kplkel:
[ke] = kplke];
[kel = kpl[ke]l:;

{

{

{
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kfn [S]) [ke] = kplke]:
kfn [10] [ke] = kplkecl;
kfn [11][ke] = xp[ke]:
kfn [12][ke] = kplke]:
dz£fn[0] [ke] = 0;
dzfn[l] [ke] = 0;
dzfn[2] [ke] = 0;
dzfn[3] [kec] = 0;
dzfn(4] [kc]l = dzp(ke):
dzfn([5] [kc] = dzp[kc}:;
Azfn[6] [ke]l = dzp[kc]:
dzfn[7] [ke] = dzp[kc]:;
dzfn{8) [ke] = dzplke]:
dzfn(9} [kec] = dzp(ke]:

dz£fn([10} [ke] = dzp([kel:
dzfn(11][kec] = dzp[ke]:

dz£n[12] [ke]

}
}

#define
#define
#define
fidefine
fidefine
fidefine
#idefine
#define
#idefine

float r

{

#undef
#undef
#undef
#undef
#undef
#lundef
#undef
#undef

dzpfke];

IA 16807

IM 2147483647

AM (1.0/IM)

IQ 127773

IR 2836

NTAB 32

NDIV (1+(IM-1) /NTAB)
EPS 1.2e-7

RNMX (1.0-EPS)

anl (idum)
long *idum;

int 5;

long k;

static long iy=0;
static long iv[NTAB] ;
float temp;

if (*idum <= 0 || iy) {
if (-(*idum) < 1) *idum=1;
else *idum = -(*idum);
for (J=NTAB+7;3>=0;3--) {
k=(*idum) /IQ;
*idum=IA* (*idum-k*IQ) ~IR*k;
if (*idum < 0) *idum += IM;
if (3 < NTAB) iv[j] = *idum;
}
iy=ivi[0];
}
k=(*idum) /1Q;
*idum=IA* (*idum-k*IQ) ~IR*k;
if (*idum < 0) *idum += IM;
J=1iy/ND1IV;
iy=iv(jl;
iv(j} = *idum;
if ((temp=AM*iy) > RNMX) return RNMX;
else return temp;

IA
IM
AM
IQ
IR
NTAB
NDIV
EPS
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#undef RNMX

/* (C) Copr. 1986-92 Numerical Recipes Software 22Z1.&$%VssV. */
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Statistics Program Listing

/* Include file for Statistics Program stats.c */

#define MASS 6.633e-23 /* argon atom mass (gm) */
#define BOLTZ 1.381e-16 /* Boltzman constant (erg/K) */
fidefine TRUE 1

fidefine FALSE O

extern int main( int arge, char *argv{] ):

extern double temperature( double KE, double pX, double pY, double pZ ):;
extern void **callocate( int row, int col, unsigned long itemSize )

/* statistics Program stats.c */

#include <stdioc.h>
#include <math.h>
#include <stdlib.h>
#include <malloc.h>
#include "stats.h"

int main( arge, argv )
int arge;
char *argvi]:
{
double **avgND, **avgKE, *ravgMVelX, *kavgMVelY, **avgMVelZ;
double *sumTemp, *sumTemp?2, *sumNum, *sumNum2, *sumVelX, *sumVelX2;
double *sumVelY, *sumVel¥Y2, *sumVelZz, *sumVelZ2;
double *meanND, *meanVelX, *meanVelY, *meanVelZ, *meanTemp;
double *errxND, *errVelX, *errVelY, *errVelZ, *errTemp;
double temp, U0, Tec, Re:
int statFileCount, numBins, i P
FILE *fpStatNames, *fpsStatFileln, *fpstatout;

/* Default input parameters */

char lineBuffer[128], *statNamesFile="statNames" H
char *statOutFile="8tats.out";

char **instatFile;

/* Open Stat Name File */

if ( ( fpsStatNames = fopen (statNamesFile, "r")) =— (FILE *)NULL) {
fprintf (stderr,
"Error opening Stat Names File: statNames\n") ;
exit(l); )

}

/* Read in number of Stat files */

if ( fgets( lineBuffer, 128, fpsStatNames ) = (char *)NULL ) {
printf( "Error reading # of bins from statNames.") ;
exit( 0 );
}

else

sscanf( lineBuffer, "&d $1f $%1£", &statFileCount, &UO, &Tc):

/* output parameters */

printf£( "\n Number of Stat Files: %d \n\n", statFileCount );
printf( " Wall Velocity Differential: S%f (cm/sec)\n", (float) U0 );
printf( " Cold Wall Temperature: $f (K)\n\n", (float) Tec )
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/* Allocate space for Stat File names */
instatFile = (char #**)callocate( statFileCount, 128, sizeof( char ) ):;

/* Loop through names of Stat Files */
for ( 1=0; i<statFilecCount; i++ ) {
if ( fgets( lineBuffer, 128, fpStatNames ) == (char *)NULL ) {
printf( "Error reading name of Stat File" );
exit( 0 );
}
else
sscanf ( lineBuffer, "%s", inStatFile[i] ):

/* Open Stat File */
if ( ( fpsStatFileIn = fopen( inStatFile[i], "r" ) ) ==
(FILE *)NULL ) {

printf( "Error opening Stat File: %s\n", (char *)inStatFile[i] )
exit( 0 );
}

/* Read in number of Bins */

if ( fgets( lineBuffer, 128, fpStatFileIn ) = (char *)NULL ) {
printf( "Error reading # of bins from %s.\n", inStatFile[i] );
exit( 0 );

}
sscanf( lineBuffer, "%d", &numBins );
/* output # of bins */

printf( " Processing %d bins from file %s ...\n" , numBins,
instatFile[i]) ) :

if ( fgets( lineBuffer, 128, fpStatFileIn ) = (char *)NULL )} {
printf( "Error skipping line in file %s.\n", inStatFile[i] ):
exit( 0 );

}

/* Allocate space on first pass */
if (i =0) (

avgD = (double *%*)
callocate( statFileCount, numBins, sizeof( double ) );
avgKe = (double *%*)

callocate( statFileCount, numBins, sizeof( double ) ):
avgMVelX = (double **)

callocate( statFileCount, numBins, sizeof( double ) );
avgMVelY = (double *¥)

callocate( statFileCount, numBins, sizeof( double ) ).
avgMVelZ = (double *%)

callocate( statFileCount, numBins , 8izeof( double ) );
}

/* Read in the goodies */
for ( 3=0; j<numBins; j++ ) ¢{
if ( fgets( lineBuffer, 128, fpStatFileIn ) == (char *)NULL ) {
printf( "Error reading record from file %s.\n" , instatrFilefi] ):
exit( 0 );
}

sscanf( lineBuffer, "%$lg %lg %lg %lg %lg", &GavgND[i] [31,

&avgMVelX[1i]1[)], savgMVelY[1][J1, savgMvelz[i][3l,
&avgKE[1][3] ):

}

fclose( fpsStatNames );
fclose( fpstatFileln );
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/* Initialize statisitcs arrays */
sumNum = (double *)calloc( numBins, sizeof( double

= ) )
sumNum2 = (double *)calloc( numBins, sizeof( double ) )
meanND = (double *)calloc( numBins, sizeof( double ) ):
errND = (double *)calloc( numBins, sizeof( double ) ):;
sumVelX = (double *)calloc{ numBins s Sizeof( double ) )
sumVelX2 = (double *)calloc( numBins, sizeof( double ) );
meanVelX = (double *)calloc( numBins ¢ Sizeof( double ) ):
errvVelX = (double *)calloc( numBins, sizeof( double ) );
sunVelY = (double *)calloc( numBins ; Sizeof( double ) )
sumVelY2 = (double *)calloc( numBins ; Sizeof( double ) );
meanVelY = (double *)calloc( numBins s Sizeof( double ) ):
errVelY = (double *)calloc( numBins 1 Sizeof( double ) )
sumVelZ = (double *)calloc( numBins s Sizeof( double ) );
sumVelZ2 = (double *)calloc( numBins ; Sizeof( double ) );
meanVelZ = (double *)calloc( numBins, sizeof( double ) );
errVelZz = (double *)calloc( numBins, sizeof( double ) );
sumTenp = (double *)calloc( numBins, sizeof( double ) ):
sumTemp2 = (double *)calloc( numBins, sizeof( double ) )
meanTemp = (double *)calloc( numBins, sizeof({ double ) );
errTemp = (double *)calloc( numBins s Sizeof( double ) );

/* Tally statistics %/
for ( i=0; i<statFileCount; i++ )
for ( j=0; j<numBins; j++ ) {
sumNum([j] += avgND[i]l[3];
sumNum2{j] += avgND[i] [31*avgND[1i][3];
sumVelX(j) += avgMVelX([i]{[j]/MASS;
sumVelX2([3] += ( avgMVelX[1i]([J]1/MASS )+ ( avgMVelX([i] [31/MASS ) ;
sumVelY[3] += avgMVel¥Y[i][j]/MAsSS;
sumvelY2([3] += ( avgMVelY[i][3j]1/MASS )*( avgMVelY[i][3]/MASS );
sumVelZ[j] += avgMVelZ[i][j]/MASS;
sumVelZ2[j] += ( avgMVelZ[1][3j]/MASS )*( avgMVelzZ[i] [J]1/MASS ) ;
temp = temperature( avgKE{i] (3], avgMVelX[11{)], avgMVel¥[1]{3],
avgMvelz[il (3] )
sumTemp(j] += temp:
sumTemp2(j] += temp*temp:
}

/* Calculate mean values and error bars */
for ( 1=0; i<numBins; i++ ) {
meanND (1] = sumNum[1]/statFileCount;
meanVelX[i] = sumVelX[i]/statFileCount;
meanVelY([i] = sumVelY[i]/statFileCount;
meanVelZ(i] = sumVelZz{i] /statFileCount;
meanTemp[i] = sumTemp[i]/statFileCount;
/* Statistical errors only if more than 1 run */
if ( statFileCount > 1) {
erIND[i] = sqrt( ( sumNum2{i])/statFileCount -
meanND [i]*meanND([i] )/ (statFileCount-1) );

errVelX[i] = sqrt( ( sumVelX2[41]/statFileCount -
meanVelX[i]*meanvelx([i] )/ (statFileCount-1) )
errVelY([1] = sqrt( ( sumVelY2[i]/statFileCount -
meanVelY([i]*meanVelY([1] )/ ( statFileCount-1) )
exrxVelZ{i] = sqrt( ( sumVel22 [i)/statFileCount -

meanVelz[i]+*meanvelz{i] )/ (statFileCount-1) );
errTemp[i] = sqrt( ( sumTemp2[i)/statFileCount -

meanTemp (1] *meanTemp(1] )/ (statFileCount-1) );
}

}

/* Save statistical information */
1f ( statFileCount > 0 ) {
/* Calculate nomalization for number density */
Re = 0.;
for ( 1=0; i<numBins; i++ ) {
Rc = Re + meanND (1] *meanTemp[i] ;
}
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Re /= (numBins*Tc) ;
Printf( "\n Cold Wall Particle Density: $£\n", (float) Rc );
fpstatout = fopen ( statoutFile, "w" );

/* output scaling information */
fprintf£( fpStatout, "#Sets: sd #Bins: %d Rc: %g UO: %g Tec: %g\n",
statFileCount, numBins, Rc, U0, Tec );

/* output scaled numbers */
for ( 1=0; i<numBins; i++ )
/* Output normalized cquantities */
fprintf ( fpstatout, "%g %g %g %9 %g %g %g %g &g sg\n",
meanND{il/Rc, errND[i]/Rc,
meanVelX[1] /U0, errVelX[i]/vU0,
meanVelY[1]) /U0, errvel¥Y([i]/uoO,
meanVelZ{1i} /U0, errvVelz[i]/U0O,
meanTemp (1] /Tc, errTemp[il/Tc ):

fclose ( fpStatout )
}
pPrintf( "\n Completed processing.\n" ):

return 0;
}
double
temperature( KE, pX, pY, p2 )
double H
double pX;:
double pY;
double PZ;
{
double temp;

temp = (2%KE)/(3*BOLTZ) - ( (PX*PX + pY*pY + pZ*pZ)/(3*BOLTZ*MASS) ) ;
return temp:;
}

void
**callocate( row, col, itemSize )
int row;
int col;
unsigned long itemsSize;
{
char **pointerHead, *dataHead;
unsigned long pointersize, dataSize:;
int 41;

/* Check for item of type double and make sure that if there are an odd
nunber of rows (pointers) to add an extra to ensure that the data starts
on an even 8 byte boundary. GCC demands this. */

1f ( itemSize == sizeof ( double ) )
row += row % 2;

pointersSize = (unsigned long) ( row*sizeof( long } );
datasSize = (unsigned long) ( row*col¥itemSize );

if ( ( pointerHead = (char *¥*)calloc( (pointerSize + datasize),
sizeof( char ) ) ) != (char **)NULL )
dataHead = (char *) (pointerHead + row);
for ( i=0; i<row; i++ )
pointerHead{i] = dataHead + i*col*itemSize;
}
else

Printf( "Error allocating space in calocate routine" ):

return ( (void #**)pointerHead ):
}
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