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ABSTRACT 
MAGNETIC STUDY OF MAGNETITE (Fe304) NANOPARTICLES 

by Maninder Kaur Tarsem Singh 

Magnetite Fe3C>4 nanoparticles with the size in the range 3 -5 nm have been 

synthesized using self-assembly method of Sun and Zeng. X-ray diffraction profile of 

nanoparticles shows all major peaks associated with crystalline Fe304, and yields the 

average particle size of 3.56 nm from width of the peaks. Dark field transmission 

electron microscope images indicate that the particles have a tight size distribution and 

are almost spherical. Electron dispersive spectroscopy spectrum identifies the elements 

iron and oxygen in the nanoparticles with their atomic percentages consistent with Fe3C>4. 

Magnetization measurements have been carried out utilizing a vibrating sample 

magnetometer over the temperature range 4.2 - 300 K. Zero-field-cooled and field-

cooled magnetization versus temperature gives a blocking temperature of TB = 20 K . 

The M-H curves above TB fit well to the Langevin function and reveal the super-

paramagnetism nature of nanoparticles. M-H curves below TB indicate the ferromagnetic 

behavior with coercive field Hc = 37-190 Oe for temperature range 6.5-18.5 K. 
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CHAPTER 1 

INTRODUCTION 

Magnetic nanoparticles have generated considerable interest since 1940s when 

investigation of their properties turned out to be exciting from scientific and 

technological point of view. Neel (1949) observed that the characteristic magnetic 

properties of particles are quite different from bulk materials. He found that iron in 

grains smaller than 32 nm are single domain and have a high coercive field at room 

temperature. Jacob and Bean (1963) measured the magnetization of 4.4-nm iron 

particles. They measured magnetization versus field curves with zero coercive field at 

200 K and 77 K and non-zero coercive field at 5 K indicating the significant role of 

temperature in the properties of nanoparticles. Kneller and Luborsky (1963) studied the 

dependence of coercive field and remanence on particle size in 40% atomic iron and 60% 

atomic cobalt particles. The plot of coercive field versus particle size at temperature 4 K 

showed a maximum coercive field for single domain particles of diameter Ds equal to 

26.1 nm and smaller coercive field for particles with diameter D > Ds and zero coercive 

field for D «: D s . The above three size characteristic regions are referred to as single 

domain (D = D s) , multidomain (D > Ds), and superparamagnet (D «: Ds). This 
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investigation indicates that the size of particles can be adjusted to obtain the required 

magnetic property at specific temperature. 

In 1985 the carbon arc method was developed for synthesis of carbon-coated 

nanoparticles (Ruoff, Lorents, Chan, Malhotra, and Subramoney, 1993). In this method 

the powder of metal or metal oxide were placed in a hole drilled in the anode of an arc 

chamber made of graphite. The generation of arc produced carbon-coated nanoparticles 

that were collected from the walls of the chamber. In the graphite-encapsulated 

nanoparticles the carbon layer prevents the oxidation of nanoparticles. Moreover, the 

graphite coating decreases the magnetic interaction of neighboring particles by increasing 

their distance, which is an important issue from application point of view. 

Several groups have reported the synthesis and characterization of magnetic carbon-

coated nanoparticles in the past two decades. To mention a few, Subramoney, Ruoff, 

Lorents, Chan, Malhotra, Dayer, and Parvin (1994) studied the encapsulated gadolinium 

nanoparticles; Mchenry, Majetich, Artman, DeGraef, and Staley (1994) synthesized 

cobalt nanoparticles encapsulated in carbon polyhedra; and Hihara, Onodera, Sumiyama, 

Suzuki, Kasuya, Nishina, et al. (1994) studied graphite coated iron nanoparticles. The 

major problem with this method was the production of large amount of undesirable 

carboneous materials that made the magnetic measurements difficult to analyze. This 

method was replaced by tungsten arc method developed by Dravid, Host, Teng, Elliot, 

Hwang, Johnson, et al. (1995) in which very small amount of carbonaceous material was 

produced during synthesis. Gong, Li, Zhao, and Chen (1993) and Gangopadhyay, 
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Hadjipanayis, Dale, Sorensen, and K. J. (1992) studied the magnetic properties of 

unencapsulated cobalt nanoparticles and observed that high coercive field was associated 

with cobalt oxide layer that was coating the cobalt nanoparticles. 

Sun and Murray (1999) synthesized cobalt nanoparticles with average size 8-10 nm 

using a chemical self-assembly method. In this method cobalt chloride is heated with 

oleic acid, dioctyl ether, and trialkylphosphine to temperature of 200° C. The injection of 

superhydride at this temperature reduced cobalt ions into cobalt nanoparticles. Later they 

demonstrated that with this synthesis method one may produce nanoparticles with a 

narrow size distribution (Woods, Kirtley, Sun, and Koch, 2001). Similar method was 

also used for synthesis of 4-nm face-centered cubic (fee) iron platinum ( FePt) 

nanoparticles (Sun, Murray, Weller, Folks, and A. M., 2000, Sun, Anders, Thomson, 

Baglin, Toney, Hamann, et al. 2003). This method consists of thermal decomposition of 

iron pentacarbonyl Fe(CO)5 and reduction of platinum acetylacetonate Pt(acac)2 at 200° 

C. The solution was also refluxed at 300° C, which resulted in the formation of fee FePt 

nanoparticles. They also showed that heating at temperature 560° C causes the 

transformation of fee FePt nanoparticles to face-centered tetragonal (fct) structure. In 

contrast to cobalt nanoparticles that transform from ferromagnet to superparamagnet 

below 8 nm at room temperature, fct iron platinum with a high magnetocrystalline 

anisotropy stays ferromagnet down to 4 nm. 

Several other groups studied the synthesis and characterization of magnetic 

nanoparticles using the same self-assembly method. Elkins, Li, Poudyal, Nandwana, Jin, 
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Chen, and Liu (2005) reported monodisperse face centered tetragonal FePt nanoparticles 

with giant coercivity. In order to transform fee to fct, they annealed the mixture of as 

prepared FePt particles mixed with salt powder. They observed that the particles did not 

agglomerate in the annealing process and a high coercive field of 30 kOe at room 

temperature for fct particles was measured. Kang, Harrell, and Nikles (2002) studied 

FePt nanoparticles with added silver. They found that the addition of silver results in 

transformation of fcc-FePt to fct-FePt nanoparticles at lower temperature. 

Sun and Zeng (2002) reported the synthesis of monodisperse magnetite Fe3C>4 

nanoparticles of size 4 nm. The synthesis method consists of reaction of iron 

acetylacetonate with phenyl ether, alcohol, oleic acid, and oleylamine at 265° C. Their 

magnetic measurements indicated that these particles are superparamagnetic at room 

temperature. 

In this work Fe304 nanoparticles were synthesized using the same method and 

magnetic properties were studied in more detail. Nanoparticles were synthesized at the 

University of Alabama MINT center by Dr. X.C. Sun. He also performed x-ray 

diffraction and transmission electron microscopy. We at San Jose State also performed 

x-ray diffraction and studied magnetic properties. 

In Chapter 2 we present an introduction to magnetic materials, and in Chapter 3 we 

discuss the classical theory of paramagnetism. Chapter 4 is a discussion of the concept of 

superparamagnetism, which is the application of classical theory of paramagnetism to 

nanoparticles. Synthesis, experimental systems, and actual experiments performed on 
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Fe304 particles are discussed in Chapters 5, 6, and 7 respectively. We discuss results and 

analysis in Chapter 8. 



CHAPTER 2 

INTRODUCTION TO MAGNETIC MATERIALS 

Magnetic materials are identified by their strength of magnetic dipole moments, 

which are due to electrons of the atom. An electron has orbital and spin magnetic dipole 

moment associated with orbital electron motion around the nucleus and spin of the 

electron respectively. Magnetization M of a material is the total dipole magnetic moment 

per unit volume or mass. The strength of magnetization depends on external magnetic 

field H. 

Susceptibility ^ is a physical quantity indicating how responsive a material is to an 

applied magnetic field H. It is defined as 

dM 
z'HiT (21) 

Below we describe three major types of magnetic materials based on dependence of 

M on H or dependence of x o n H. 

2.1 DIAMAGNETISM 

The dependence of M on H is linear with small negative magnetic susceptibility 

resulting in the opposite directions of magnetization and applied field (Figure 1). 
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Figure 1. A diamagnetic material. 

2.2 PARAMAGNETISM 

The dependence of M on H is linear with small positive magnetic susceptibility 

resulting in the same direction for M and H (Figure 2). We will discuss this issue in more 

detail later. 
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Figure 2. A paramagnetic material. 
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2.3 FERROMAGNETISM 

The dependence of M on H is nonlinear with large positive magnetic susceptibility. 

The characteristic M versus H curve is known as hysteresis curve as shown in Figure 3. 

B 
H c T ^ 1 

/ 

* Mr 

/ . 

1 H 
M, sat M 

• > H 

Figure 3. M vs H hysteresis curve. 

Msat is the saturation magnetization where all moments align along the direction of 

applied field. Mr is the remnant magnetization, which is remained in the material after 

applied field is removed. Hc is coercive field which is the field required to bring the 

magnetization to zero or demagnetize the sample. 

2.4 FINE PARTICLES 

A ferromagnetic material consists of small regions called domains inside which the 

magnetization has a single magnitude and direction (Figure 4). 



Figure 4. A ferromagnetic material. 

When the material formed into a powder with the particle size equal to or smaller 

than the domain size, the material is referred to as single domain fine particle. 
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CHAPTER 3 

CLASSICAL THEORY OF PARAMAGNETISM 

Usually a paramagnetic material consists of non-interacting atoms (molecules) each 

with the net atomic (molecular) magnetic moment u. In the absence of external applied 

field, the magnetic moments orient randomly to give zero net magnetic moment. In the 

presence of applied field, the magnitude of the total moment depends on the temperature 

T and applied field H. At low temperature, more dipole moments align in the direction of 

applied field, which result in the large net magnetic moment. On the other hand at high 

temperature magnetic moments are randomly oriented due to temperature effect and give 

small magnetic moment. Such an atomic (molecular) system is analyzed by quantum 

mechanics (Cullity, 1972). 

Classical theory of paramagnetism can be applied to single domain particles where 

the carriers of magnetic moments are individual particles; and they have zero interaction 

with each other. Below we describe such classical theory for completeness although this 

theory is described in magnetic material texts (Spaldin, 2003). 
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3.1 LANGEVIN FUNCTION 

- > 
Consider a unit volume of material containing n particles, each with moment u . All 

fi vectors are drawn through the center of sphere of radius r. The number of moments dn 

aligned between azimuthal angle 0 and 0+d0 can be calculated as follow. 

rs'md r sin 9 dO 

Figure 5. Effect of a field on orbital moments. 

In the absence of external field due to randomized direction of moments the number 

of moments dn passing through area dA is proportional to dA = 27i sin0 d0 . 

dn = K(2TI sin0 d6) (3.1) 
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In presence of external field H, \i vectors direct along the direction of H. Each atomic 

moment has a potential energy Ep given by 

Ep=-uHcos9 (3.2) 

The probability of a particle having energy Ep at temperature T is proportional to 

V 
Boltzman factor e /kT where k is Boltzmann constant. 

dn = K(2TI sinO d9) e /kT (3.3) 

Integrating dn gives 

n - Jdn = J2TTK e /kT sine d8 = 2JTK Jeacos9sin9 d9 (3.4) 
0 

where 

a= -— (3.5) 
kT 

The component of magnetic moment JJ. along H (also z axis) is ueos9 . Total 

magnetization M along H is equal to product of number of moments and component of 

each moment along z-axis (Spaldin, 2003). 

un feacosesin9cos9de 
r ( O 

M = Jueos9 dn = — ^ = \m cotha — 
0 Jeacos9sinede ^ a^ 

0 

(3.6) 

Where un is the maximum possible magnetic moment of sample of n particles each 

with magnetic moment |j, along the direction of external field. 
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The function L(a) given by 

L(a) = — = cotha — 
un a 

(3.7) 

is called Langevin function. 

Let M0 = un and a = 
uH 
kBT 

M = ML 
( f TJ \ 

coth ^—~ 
V k B T y 

kgT 

pH 
(3.8) 

uH 
L(a) versus —— is plotted in Figure 6. 

kBT 

10 -8 -6 

I(or)-»-l 

-4 

£( 

1.2 n 
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0.4 

n 
-2 / ( 

A.4 

-0.8 

-1.2 -

a) 

) 

/ 

2 

Z(a) = a/3 

4 6 

Z(a) -> 1 

8 10 a 

Figure 6. Langevin function. 
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At low temperature and high magnetic field, a » 1 (L(a) —> 1) and the limiting 

expression for M becomes 

M = M0 

which indicates complete alignment of all moments along the external field. 

Q 

On the other hand at high temperature and low magnetic field a «. 1 (L(a) —> —) and 

the limiting expression for M becomes 

M = M ^ n u ^ H , (3.9) 
3kBT 3kBT 

the thermal effect randomizes the magnetic moments which is shown in Figure 6. 

We used the fact that M is proportional to H to write M = %H and obtained the expression 

C 
for magnetic susceptibility % as % - — which is usually referred to as Curie law. 

Quantum theory of paramagnetism is based on the fact that magnetic moments under 

consideration do not lie along any direction but are restricted to certain quantized 

directions. This situation does not apply to particles since particle magnetic moment 

direction is continuous and no quantization is required. Therefore we do not discuss this 

quantum theory here. 
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CHAPTER 4 

FINE PARTICLES SUPERPARAMAGNETISM 

4.1 MAGNETOCRYSTALLINE ANISOTROPY 

Bulk materials exist may be in polycrystalline, amorphous or in single crystal form 

depending on their method of formation. Many materials are polycrystalline, that is, they 

are composed of many small crystals or grains oriented in different directions. This 

disorientation of grains gives no preferred direction to the material. Therefore magnetic 

properties of bulk material are independent of the direction of an applied magnetic field. 

A single crystal has its own specific crystalline axes. These axes show different magnetic 

response in the presence of an applied magnetic field. The dependence of magnetic 

property on a particular direction is known as magnetocrystalline anisotropy. The axis 

along which magnetization reaches saturation at lowest field is called easy axis. The 

term hard axis is used for the axis along which the largest field causes saturation 

magnetization. 

Magnetocrystalline energy is the amount of energy required to turn the direction of 

magnetic moment away from an easy direction. For cubic crystal structure, it is given by 

Ea=K! (cos2eicos2e2+cos202cos2e3+cos2e3cos201) 
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where 9,,02,63 are angles, which the magnetization makes relative to the three crystal 

axes. 

4.2 SUPERPARAMAGNETISM 

Consider an assembly of fine particles, each with an anisotropy energy density E 

given by E = Ksin20 , where K is the uniaxial anisotropy constant and 8 is the angle 

between saturation magnetization Ms and the easy axis. In order to reverse the 

magnetization, a particle must overcome the energy barrier AE = KV where V is the 

particle volume. When the size of a single domain particle is small enough, spontaneous 

reversal of magnetization occurs due to the thermal energy ICBT even in the absence of an 

applied field. 

In a typical paramagnet the applied field will help moments to align in the direction 

of field, and thermal energy will tend to misalign them. This is the characteristic 

behavior of a normal paramagnetic material in which the magnetic moment under 

consideration is due to an ion or an atom and is usually a few Bohr magnetons. If a 

single domain particle is small enough such that the energy barrier KV is comparable to 

thermal energy kBT, then this particle behaves like a paramagnet except it has a large 

moment. As an example a 10 A0 spherical particle of iron contains 45 atoms, which gives 

the moment of 100 fxB (moment of 2.2 |j,B per atom). Compared to an atom, the magnetic 

moment of such a fine particle is huge. Although the behavior of this particle system is 
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similar to a paramagnetic material, it is called superparamagnet due to its large individual 

particle moment. 

Consider an assembly of non-interacting particles each with magnetic moment [i 

without any directional preference. The magnetization in the presence of an applied field 

H is explained by the classical theory of paramagnetism since there is no quantization 

requirement on individual particle moment. Using the classical statistical physics 

calculation one can show that the magnetization M of this assembly of particles at 

temperature T with magnetic field H is give by M = M0L(a), where M0= n î is the 

saturation magnetization, \x is the magnetic moment of each particle, n is the number of 

particles per unit volume, and L(a) is the Langevin function of a = uH/kBT. 

It is important to point out that magnetization curves at different temperatures 

superimpose when M/M0 is plotted as a function of uH/kBT . Also if we sweep the 

field back and forth the same curve of M vs. H is obtained indicating lack of hysteresis. 

One can apply the above theory to small particles when the particle size is so small 

that thermal energy kBT is much larger thanKV. However if KV is larger or 

comparable to kBT, it needs to be taken into account. 

4.3 RELAXATION TIME 

Consider an assembly of single domain particles. In the presence of an applied field, 

the particles approach an initial magnetization. Let the field is turned off at time t = 0. 
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The particles with thermal energy greater than anisotropy energy KV reverse their 

magnetization and net magnetization begins to decrease. The time rate of magnetization 

change will be directly proportional to the existing magnetization M at that time and to 

the Boltzmann factor e"KV/kT . The Boltzmann factor is the probability of a particle that 

has enough energy to surmount the energy barrier AE = KV in order to reverse its 

magnetization. 

dM 
= f 0 M e ™ (4.1) 

dt 

Negative sign shows that the magnetization decreases with the time. The 

proportionality constant f0 is known as frequency factor and is about 109sec"'. Equation 

4.1 may be written as, 

dt x 

where r is constant and is known as relaxation time. 

i=f0e-K W k T (4.3) 
x 

Integrate Equation 4.2 to get remanence M r . 

nM: V 

Mr=M;e"x (4.5) 
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Equation 4.5 shows that remanence magnetization M r decreases to 1/e or 37% of its 

initial value during the relaxation time x. Relaxation time x is dependent on the volume 

of the particle and temperature from Equation 4.3. 

4.4 BLOCKING TEMPERATURE (TB) 

Consider an example of spherical cobalt particles of diameter 68 A0. The relaxation 

time at room temperature is calculated by substituting, K = 45xl05 ergs/cm3, 

V = 4TT/3 R3 - 16.45xl0"20cm3, f0= l O W , and T = 300 K in Equation 4.3, we get 

x = 10'sec. Since the relaxation time is very small, the particles approach thermal 

equilibrium or zero magnetization in a very short time. Such behavior is the case for 

superparamagnetism that was discussed above in which KV is much smaller than kBT. If 

the particle size increases to 90 A0, the relaxation time jumps to 3.2 xlO9 sec. Since x is 

very large, the particles will remain stable for a longer time with fixed initial value of M r . 

The above calculations show that a small change in particle size makes a large change in 

relaxation time. 

To calculate the upper limit of volume Vpfor superparamagnetic behavior, let the 

relaxation time of stable behavior be 100 sec. From Equation 4.3 

10'2 = 109 e kT 

KVp = 25kT (4.6) 
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For a particle such as cobalt the upper limit for superparamagnetism can be calculated 

from Equation 5, which will be 76 A0 at room temperature. 

Uniform size particles are characterized by a temperature TB, called blocking 

temperature, below which particles are stable and ferromagnetic and above which are 

unstable and superparamagnetic. We consider r= 100 sec that yields 

KV 
25k 

(4.7) 

From the knowledge of upper limit particle size for superparamagnetism TB can be 

calculated. Stable Unstable 

o 
< 

100 200 300 400 

Temperature (°K) 

500 600 

Figure 7. Temperature variation of the relaxation time and of critical diameter for 
spherical cobalt particles. 
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Figure 7 shows the critical diameter Dp of spherical cobalt particle versus temperature 

T and is explained by Equation 5 which state that cube of Dp is proportional to 

temperature. Similarly Figure 7 represents the relaxation time x of cobalt particles 

versus temperature where x varies exponentially with temperature and is given by 

Equation (4.3). The variation of critical diameter with temperature shows that 20° C is 

the blocking temperature for 7.6 nm particle diameter. At 20° C, the relaxation time is 

100 sec. Below TB and above 100 sec, the particles are stable. Above TB and below 100 

sec, the particles become unstable. 

5.1 EFFECT OF AN APPLIED FIELD DURING EQUILIBRIUM 

When the applied field compensates the thermal energy, particles reaches the 

saturation magnetization. Further increase in an applied field doesn't change the 

magnitude of magnetization. Consider an assembly of single domain particles initially 

saturated to easy axis along the +z direction. Let the reverse magnetization is carried 

along -z direction by an applied field. The magnetization vector of particles makes an 

angle 0 with +z. 

The total energy E of each particle is sum of anisotropy energy and potential energy. 

E = V(Ksin2e + HMscos0) (4.8) 
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To reverse the magnetization, particle has to surmount the energy barrier AE. The 

energy barrier is the difference between the maximum and minimum values of the total 

energy E. 

A E - E ^ - E ^ (4.9) 

Differentiating Equation 4.8 with respect to 0, 

1 dE 
— — = 2Ksin0cos9 - HM,sin8 = 0 
V dt 

sine (2Kcos6 - HMS) = 0 

sin0 = 0 or cos0 = 2K 

The potential energy is minimum, when the particle is aligned parallel to easy axis. 

And 0 = 0. From Equation 4.8, 

E ^ V H M , (4.10) 

cos0 = L is the condition for maximum energy where particles align antiparallel to 
2K 

easy axis. Substituting the value of cosG in Equation 4.8, 

E_ =V 
^ K + (HMS)^ 

V 4K 

Substituting Equation 4.10 and 4.11 in Equation 4.9 

AE-Kvfl-™*"' 
I 2K 

(4.11) 

(4.12) 
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The energy barrier increases with the volume of particle and decreases with the 

applied field. Particle size greater than Dp does not reverse the magnetization but energy 

barrier can be reduced to 25kT with the applied field. This field will be the coercive 

field Hc given by 

AE = KV 
j HCMS 

H„ = 
2K 

M. 
1-

2K 

25kT 

KV 

= 25kT 

(4.13) 

When 

KV 
T = — ; H c = 0 

25k c 

As the particle size becomes very large or temperature approaches zero, coercive field 

becomes independent of an applied field and is reduced to 2K/MS. This coercive field is 

denoted by Hc 0. 

H c,0 

2K 
M7 

Reduced coercive field h„ is 

h . = H -
H„ 

25kT 

KV 

1- = 1 ID J 
3/2 

(4.14) 
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The coercive field increases as the particle diameter D increases beyond Dp . 

Equation 4.14 gives the coercive field as a function of temperature and volume of the 

particles. Particle having critical sizeDp or Vphave zero coercive field at their blocking 

temperature TB and above. 

In terms of temperature, the reduced coercive field is, 

H„ 

H 
1-

c,0 

25kT 

V K V y 

Using Equation 4.7, the above equation becomes 

1-
f T \m 

, T , 
V B J 

(4.15) 

The temperature dependence of the coercive field of single domain particles is shown in 

Figure 8. 
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Figure 8. Temperature dependence of coercive field. 
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CHAPTER 5 

NANOPARTICLES SYNTHESIS 

5.1 SYNTHESIS OF MAGNETITE NANOP ARTICLES (Fe304) 

Dr. X.C. Sun from University of Alabama synthesized Fe304 nanoparticles that we 

used in present work. He also performed transmission electron microscopy and x-ray 

diffraction analysis. Below we describe briefly the synthesis method. 

The synthesis procedure was based on the method developed by S. Sun and H. Zeng 

(2002). The main advantage of Sun and Zeng method is that the particles are nearly 

spherical in shape, equally distributed in size, and the desired size is easily controllable. 

The high temperature solution phase reaction takes place between 2 millimole of iron 

(III) acetylacetonate (Fe(acac)3) and 20 mL of phenyl ether in presence of 10 mmol of 

1,2-hexadecanediol, 6 mmol of oleic acid, and 6 mmol oleylamine. To avoid oxidation, 

the mixture is kept under the nitrogen environment. The refiuxing is important to save 

the mixture from evaporating at high temperature; so at 260° C the mixture was refluxed 

for 30 minutes. A dark brown substance was produced when the solution was cooled 

down to room temperature, and treated with ethanol under air. The product was then 

dissolved in hexane, oleic acid, and oleylamine to remove unnecessary organic 

compounds. The subsequent introduction of ethanol to the product and its drying gave 

highly pure phase of 4 nm Fe304 nanocrystals in powder form. 
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CHAPTER 6 

EXPERIMENTAL SYSTEMS 

6.1 EQUIPMENTS 

Our measurement system consists of a Lakeshore 4500 vibrating sample 

magnetometer, a Janice 153 cryogenic sample chamber, a lakeshore 340 temperature 

controller, BSL electromagnet, a tidewater magnet power supply, vacuum system, and a 

computer (Figure 11). 

In VSM, the sample material is magnetized by a uniform horizontal magnetic field 

and the sample is made to undergo a periodic vertical motion with frequency of 60 Hz 

creating a time dependent magnetic field. The resulting time dependent magnetic flux 

induces a voltage in the nearby pick up coils, which is proportional to the magnetic 

moment of the sample. The voltage is processed by the VSM controller and sent to 

computer. A Hall probe is used to measure magnetic field, which operates based on Hall 

Effect. 
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Figure 9. Hall effect. 

When a current carrying conductor is placed in a magnetic field, the field will exert a 

magnetic force on moving electrons and pushes them to one side of the conductor by 

leaving the positive charge carriers on the other side. The separation of positive and 

negative charges gives rise to a voltage known as Hall voltage, which is proportional to 

applied field. The calculated voltage can be used for measuring magnetic field. 

The electromagnet is connected to the bipolar power supply and water-cooling 

system. A current of 0 ± 49 Amp from power supply causes the magnetic field in the 

range 0 ± 10 kOe. A continuous water flow through the electromagnet keeps the magnet 

cool and protects the magnets from excessive heat. 

We used a Janice 153 cryostat to cool the sample chamber from 4.2 - 300 K. The 

cryostat contains three concentric cylinders. The outer cylinder is used for generating a 

vacuum environment to insulate the interior from outside high temperature. The middle 
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cylinder holds the liquid helium, and the innermost cylinder is used for the sample. 

Model 340 Lakeshore temperature controller is used to control the temperature of 

sample chamber from 4.2-300 K. The temperature controller supplies the power to the 

heater in the sample chamber. The temperature sensor (A Lakeshore TG-120-SD 

gallium-aluminum-arsenide (GaAlAs) diode) in the sample chamber located next to 

sample detects the temperature. 

The vacuum and gas handling system consists of mechanical pumps, valves and 

vacuum lines. Such system is used to provide vacuum or transfer gas with appropriate 

pressure in the cryostat system chambers for specific reasons. 

The VSM controller including the Hall probe and temperature controller are 

connected to computer using a National Instrument IEEE GPIB card. The combination 

of IEEE-GPIB software and a Lakeshore IDEAS VSM software two-way 

communication between the computer and various experimental systems is established. 

The following diagram shows the connection between the computer and VSM controller. 
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Figure 10. Block diagram of data acquisition. 
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VSM CONTROLLER 

Figure 11. Low temperature VSM schematic 

6.2 EXPERIMENTS 

We used a VSM to measure the magnetic moment or magnetization of Fe304 

nanoparticles. The measurements include the magnetization as a function of magnetic 

field in the range 0 - ±10 kOe at temperature in the range 4.2-160 K and magnetization 
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as a function of temperature also in the same temperature range at constant field of 100 

Oe in zero-field-cooled and field-cooled conditions. 

In a zero-field-cooled experiment (ZFC), first the sample is cooled to liquid helium 

temperature under zero external field. A small external field of 100 Oe is applied and net 

magnetization is measured as a function of temperature as the sample is heated from 4 K 

to 160 K. In the field-cooled (FC) experiment the sample is cooled in the presence of 100 

Oe external field and magnetization versus temperature is measured as the temperature is 

cooled from 160 K to 4.2 K. 
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CHAPTER 7 

EXPERIMENTS 

7.1 X-RAY DIFFRACTION 

Dr. X. C. Sun from University of Alabama performed x-ray diffraction (XRD) of 

Fe304 nanoparticles. The study was done on a Rigaku D/MAX-2BX horizontal XRD 

thin film diffractometer using Cu Ka as a target. 

7.2 HIGH-ANGLE ANNULAR DARK-FIELD IMAGE 

Dr. X. C. Sun from University of Alabama reports the high-angle annular dark-field 

(HAADF) images. The images were recorded using a JEOL 2010 STEM/TEM analytical 

electron microscope at 200 KV. 

HAADF image is a type of image obtained from scanning transmission electron 

microscopy (STEM). It is a powerful technique for the investigation and identification of 

nanoscale materials. In STEM, a tiny, convergent electron beam is scanned over a 

defined area of the sample. HAADF detector detects electrons that are incoherently 

scattered to higher angles and contributes to image. 
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7.3 ENERGY DISPERSIVE SPECTROSCOPY 

We performed the energy dispersive spectroscopy (EDS) using a FEI Quanta 200 

scanning electron microscope to identify the elements and their percentage in a given 

sample (Postek, 1980). In this experiment the sample is exposed to a beam of electrons 

with the energy of about 20 keV, which knocks an electron with energy less than 20 keV 

from the inner shell of each atom. The hole created in the orbital is replaced by another 

electron from the high energy orbital. The energy difference between the high and low 

energy orbital emits in the form of electromagnetic radiation known as x-ray. The 

number of x-rays photons emitted from individual atoms are counted and plotted against 

the energy with peaks corresponding to each element present in the sample. 

7.4 MAGNETIC MEASUREMENTS 

First diluted low-temperature lakeshore varnish (VGE-7031) was gently poured into a 

200 mil circular groove of a Kel-F sample holder. The powdered sample of magnetite 

nanoparticles synthesized by X.C. Sun was then poured into and mixed with the epoxy. 

As the epoxy dried out the particles were immobilized. The magnetization M as a 

function of temperature T was measured by varying the temperature from 4.2 K to 160 K 

in zero-field-cooled and from 160 K to 4.2 K in field cooled experiments at fixed field of 

100 Oe. In another set of experiments the magnetization M as a function of field H was 

measured by varying the field from 0 to ±10 KOe at fixed temperatures in the range from 

6.5K-100K. 
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CHAPTER 8 

RESULTS AND DISCUSSIONS 

X-ray diffraction profile showed peaks compatible with those of FesC^ (Jade library 

from Materials Data, Inc. that gives Fe304 peaks) as shown in Figure 12. Using Scherrer 

formula (Klug and Alexander, 1962) we calculated the average particle size of 3.56 nm 

from width of the peaks. Scherrer equation gives the particle size of small crystals from 

the measured width of their diffraction curves. It is written as 

t = - ^ - , (8-1) 
BcosOB 

where t is the average dimension of particles, K is the Scherrer constant (1 > K > 0.89) 

and for calculation we consider K = 1, A, is the wavelength of x ray (X, = 0.154 nm), B is 

an angular width at an intensity equal to half the maximum intensity and 9B is the Bragg 

angle (Cullity, 1978). Angular width and Bragg angle was measured for peak (220), 

(311), (400) and (422) as given by Figure 12. The size of the particle was calculated 

using Equation 8.1 and tabulated in Table 1. The calculated average size of the particle is 

3.56 nm. 
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Table 1. Measured particle size using Scherrer formula 

Peak 

220 

311 

400 

422 

20 

30.5 

35.0 

43.5 

57.5 

COS0 

0.965 

0.954 

0.929 

0.877 

B° 

2.75 

2.50 

2.00 

2.25 

t (tun) 

2.99 

3.33 

4.28 

3.66 

3 
•S 

10 
c 

s 

Figure 12. XRD pattern for as-prepared Fe3C>4 particles (X.C. Sun). 
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Figure 13. HAADF image of Fe304 particles (X.C. Sun). 

The HAADF image (Figure 13) shows that the particles are of the same shape and 

size. The bar of 20 nm contains about eight particles, which gives 2.5 nm as the average 

size of each particle. 

EDS spectrum of Fe304 (Figure 14) shows major peak of iron (Fe) and oxygen (O) 

that are due to K and L orbital. An addional peak is due to the Si substrate that we used 

for the sample. An atom of iron with Z = 26 has 2, 8, and 16 electrons in K, L, and M 

shells respectively. An x-ray, which is created by the filling of a vacancy in a K shell, is 
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termed as a K x-ray; the filling of an L shell creates an L x-ray. A K alpha (Ka) x-ray is 

produced from a transition of an electron from the L to the K shell and a K beta (Kp) x-

ray is produced from a transition of an electron from the M to a K shell, etc (Goldstein, 

2003). Therefore the gamma energies are larger than beta and alpha energies and it is 

written as EKy>EKp>EKa. 

OKa 

eLI 

FeLa 

SiKa 

FeKa 

0.90 1.80 2.70 3.60 4.50 5.40 6.30 7.20 8.10 9.0' 

Figure 14. EDS spectrum of Fe304. 
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The experimental value of weight and atomic percentage of iron and oxygen is 

measured and compare with the expected result as in Table 2. 

Table 2. Calculated and experimental weight & atomic percentage of Fe and O 

Calculated Experimental 
Elements 
FeK 
OK 

Wt% 
72.37 
27.62 

At% 
42.85 
57.14 

Wt% 
71.53 
28.47 

At% 
41.85 
58.85 

The curves of M vs T in zero-field-cooled and field-cooled curve separate at 20 K 

indicating the blocking temperature of TB = 20 K as shown in Figure 15. 
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Figure 15. M vs T for field cooled (FC) and zero-field-cooled (ZFC) experiments. 
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The magnetization as a function of field was measured for temperatures 6.5-18.5 K 

below TB in the steps of 4 K and for temperatures 25-100 K above TB in the steps of 15 

K. The open hysteresis loop below blocking temperature TB shows that the particles are 

ferromagnetic with coercive field up to 400 Oe at 6.5 K (Figure 16). The coercive field 

drops to zero as temperature approaches blocking temperature TB . The closed hysteresis 

loops above blocking temperature TB reveal the superparamagnetism of particles. The 

overlapping M versus H/T curves for all M-H curves measured in the range 30-150 K 

above blocking temperature TB are shown in Figure 17. The Langevin function 

y = a(coth(abx) - abx) with fitting parameter M = y, M0 = a, m/kB = b is used for 

fitting gives the particle size of 4 nm and magnetization of 36.2 emu/g. 
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Figure 16. M vs H for temperature below blocking temperature showing the 
ferromagnetic behavior of the nanoparticles. 
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Figure 17. M vs H/T for temperature 25-100 K with the fitted Langevin function. 

In order to observe the transition from ferromagnetism to superparamagnetism, zero-

field- cooled (ZFC) and field-cooled (FC) experiments were performed on Fe304 nano-

particles. Figure 15 shows that the sample is ferromagnetic below the blocking 

temperature TB = 20 K and becomes superparamagnetic above TB. The dependence of M 

versus T in ZFC experiment can be explained considering magnetocrystalline energy, 

Zeeman energy, and thermal energy where in various temperature ranges one is 
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significant. 

When the sample is cooled to the lowest temperature in the absence of external field 

(ZFC), the moments align along the easy axis of crystal in the lattice. Since the grains or 

crystallites in the sample are oriented in random direction, the overall magnetic moment 

will be zero. If a small external field is applied at the lowest temperature, the 

magnetization is still remains at zero. As the temperature is increased, small fluctuation 

of moments due to thermal energy releases the moments from easy axis direction and 

moments start aligning along the external field. So at the lowest temperature 

magnetocrystalline energy (KV) is dominant. Further increase in temperature provides 

more thermal energy to moments and helps moments to overcome the magnetocrystalline 

energy. More and more moments orient along the direction of field. At specific 

temperature known as blocking temperature the largest number of moments are aligned 

with the external field and give maximum magnetization. Above this temperature the 

thermal energy kBT becomes stronger than the Zeeman energy and thermal vibration 

randomize the moments. As a result the net moment decreases with the increase in 

temperature beyond blocking temperature. In this temperature regime the particles are 

called superparamagnetic. 

When the particles are cooled in the presence of small external field (FC), the 

decrease in thermal energy diminishes the thermal fluctuation of the moments. The 

moments start orienting along the direction of field and give rise to increase in 

magnetization. The field-cooled curve follows the zero-field curve as the temperature 
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decreases. At a specific temperature, the Zeeman energy overcomes the thermal energy 

and causes the moments to orient partially along the applied field. Due to this effect, 

instead of following zero-field cooled curve, field-cooled curve separate from it. The 

temperature where two curves separate is known as blocking temperature. Below TB the 

thermal energy reduces as the temperature decreases and Zeeman energy become more 

effective. At the lowest temperature the Zeeman energy causes the maximum orientation 

of moments in the field direction. 

We substitute TB = 20 K and particle diameter of 3.56 nm from XRD result in 

Equation 4.7. 

We obtain the anisotropy constant of K = 29.2x 105 erg/cm3. The anisotropy 

constant of bulk Fe3C>4 is l.lxlO5 erg/cm3 which is smaller than the calculated anisotropy 

constant of the nanoparticles. The difference is due to the surface anisotropy (Lin, 

Chiang, Wang, and Sung, 2006) of nanoparticles having a large surface to volume ratio. 

M vs H measurements were done at temperature below the blocking temperature TB. 

Figure 16 shows that the coercive field Hc decreases from maximum value of 190 Oe to 

zero at TB- The coercive field is measured and plotted as a function of temperature 

(Figure 18). 
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From Equation 4.15 

Hc - Hc 0 1-
V T B 7 

(8.3) 

temperature dependence of coercivity function 

T(K) 

Figure 18. Hc vs T with fitted temperature dependence of coercivity function. 

The data of coercive field versus temperature below TB were fitted to the Equation 

8.3 with TB and Hc0 as fitting parameters, and TB = 21 Kand Hc0 = 344 Oe were 

obtained. 
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M vs H measurements were done at constant temperatures above blocking 

temperature in the superparamagnetic regime. The magnetization is plotted as a function 

of H/T for all temperatures. Figure 17 shows that the all magnetization curves plotted 

against H/T superimpose on each other, which is the characteristic behavior of 

superparamagnetic particles. The corresponding data were fitted to Langevin function 

(Equation 3.8) with two fitting parameters a = M0 and b = — . 

We obtain a = 33.352 emu/g, b - 0.00165 g K/ergs. From value of b we 

calculated the mass of each particle m = 2.277><10~19g . From the density of Fe3C>4 

sample p = 5.046 g/cm3 the diameter of single particle is calculated as 4.41 nm. This 

result is consistent with the particle diameter 3.56 nm that was calculated from x-ray 

diffraction using Scherrer formula. The saturation magnetization of bulk Fe304 is 

92 emu/g . The nanoparticle saturation magnetization obtained is 33.352 emu/g and is 

less than the bulk sample. As the particle size decreases, the surface to volume ratio 

increases and therefore surface effects dominants the magnetic properties of the smallest 

particles (Koseoly, Kavas, and Akta, 2006). In a particle of radius of 4 nm, 50% of 

atoms lie on the surface and therefore the surface effect become important. The 

magnetization near the surface is generally lower than in the interior (Berkowitz, 

Kodoma, Makhlouf, Parker, Spada, et al., 1999). In the core of the particle, the 

magnetization vector points along the easy axis of bulk material and gradually turns into 
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a different direction when it approaches the surface (Fiorani, 2005, Kachkachi, Ezzir, 

Nogues, and Tronc, 2000). 



CHAPTER 9 

SUMMARY 

The structure and magnetic properties of Fe304 nanoparticles with average particle 

size of 3 nm synthesized by self-assembly method of Sun and Zeng were studied. The 

elemental analysis was done by energy dispersive spectroscopy (EDS) and the atomic 

percentiles of elements were consistent with the expected values. X-ray diffraction was 

done to verify the crystal structure and the peaks were compatible with those of Fe304. 

The width of the peaks gave the average size of nanoparticles as 3.56 nm using Scherrer 

formula. The transmission electron microscopy images showed that particles were 

almost spherical and the particle size distribution generated from the images gave the 

values close to that of XRD. 

A vibrating sample magnetometer was used for measurement of magnetization versus 

field and temperature. Zero field cooled and field cooled measurements in the 

temperature range 4-160 K showed that the particles are superparamagnetic down to the 

blocking temperature of TB = 20 K. At temperatures below TB, nanoparticles are 

ferromagnetic as is evidenced by measured M-H hysteresis loops made in several 

temperatures in the range 6.5-18.5 K. 
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The coercive field of 400-160 Oe was also measured in this temperature range. For 

temperatures larger than blocking temperature M versus H/T curves at several 

temperatures were fitted to Langevin function for superparamagnetic nanoparticles. The 

fitting parameters gave the average size of particles as 4.41 nm and saturation 

magnetization of 33.352 emu/g, which is lower than that of bulk FesCV The high surface 

to volume ratio of nanoparticles causes the saturation magnetization to be lower than that 

of bulk material. Also the anisotropy constant of magnetite was calculated from the size 

of particle obtained from x-ray diffraction result and blocking temperature TB measured 

from ZFC and FC experiment and we obtained the value of 29.2x 105 erg/cm3, which is 

less than that of the bulk value. This difference comes from the surface effect of 

nanoparticles. 
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