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Abstract

Trace Element Fluxes From Continental Margin Sediments:
A Comparison of Three Techniques for Measuring Flux

by Eric S. Kingsley

Trace metal concentrations are elevated near the continental margins. Dissolved
metal fluxes across the sediment-water interface are believed to be a major source that
contributes to the elevated concentration in the water column. Deriving an accurate
measurement of trace metal flux across the sediment-water interface in these areas is
critical if we are to assess the importance of this source. Two cruises to the basins in the
Southern California Borderlands in 1994 and 1995 and three cruises in Monterey Bay in
1993, 1994 and 1995 were conducted to compare different methods of estimaiing meial
flux from sediments. The borderland basins provide chemically unique environments in
which strong horizontal advection is minimized. This allows metal fluxes to be
determined by measuring the vertical gradients of dissolved metal concentrations in the
water column of the basins and then applying a vertical eddy diffusivity coefficient to this
gradient to calculate diffusive metal transport. The fluxes determined by this method are
compared with direct measurements from free vehicle benthic flux chambers and indirect
measurements made by modeling the metal gradients in sediment porewaters. The results
obtained by all three methods are compared to assess the accuracy of each method.
Where methods differ hypotheses are presented to explain these differences.

Good agreement exists between these three methods of estimating flux in both

high and low oxygenated basins for the metals studied. In most cases where



discrepancies between methods exist, the processes that create the differences can be

explained through biogeochemical reactions.
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Introduction

Trace metals are important micronutrients (Brand and others, 1983) that may
regulate ocean primary production (Coale and others, 1996). The horizontal distributions
of most trace metals are not uniform, with concentrations near the coasts being generally
higher than the open ocean (Chester, 1990). This is true for Cd, Cu, Ni, Zn (Bruland,
1980), Mn (Landing and Bruland, 1980; Landing and Bruland, 1987), and Fe (Martin and
Gordon, 1988). Some exceptions to this trend include Al (Orians and Bruland, 1986), Ga
(Orians and Bruland, 1988), and Pb (Flegal and Patterson, 1983). Concentrations of these

metals are highest in the central gyres due to atmospheric deposition and decrease near

th. araing due t
€ maraing due o

intence particle scavenging. One consequence of the generally higher
metal concentrations in coastal waters is that oceanic and coastal species of
phytoplankton have different trace metal requirements (Brand and others, 1983; Sunda
and Huntsman, 1983; Sunda and others, 1991). As an example, many species of coastal
phytoplankton require much larger amounts of Zn and Fe (Brand and others, 1983) than
do oceanic species. Therefore, horizontal variations in metal concentration can have a
strong impact on phytoplankton community structure.

Three significant sources for dissolved metals in the coastal zone are: 1)
atmospheric deposition, 2) river input, and 3) flux from continental margin sediments.
Chester (1990) summarizes various estimates of the global significance of diffusive
sedimentary fluxes of Mn and Cu from the central Pacific and the fluvial and atmospheric

fluxes of Mn, Fe, and Cu from the North Pacific. An estimate of the diffusive



sedimentary flux of Fe in the central Pacific can be found in Sawlan and Murray (1983).
The diffusive flux of Mn, Fe, and Cu from the sediments is between ~3-220 times greater
than the fluvial flux and between ~45-270 times greater then the atmospheric flux for
these metals. Fluxes of dissolved metal from margin sediments are a potentially
important source that may regulate their horizontal distribution in the oceans (Martin and
others 1985).

Many studies of inorganic carbon, radon, and nutrient flux across the sediment-
water interface have been conducted in the nearshore environment (Archer and Devol,
1992: Bender and others. 1989: Berelson and Hammond. 1986: Berelson and others.
1987a; Berelson and others, 1987b; Berelson and others, 1989; Christensen and others,
1987; Devol, 1991:; Devol and Christensen, 1993; Emerson and others, 1984; Hales and
others, 1994; Ingall and Jahnke, 1994; Jahnke and others, 1990; McManus and others,
1994; Reimers and others, 1992; Rutgers van der Loeff, and others 1984; Smith and
others, 1987; Sundby and others, 1986; Thamdrup and Canfield, 1996). Numerous
studies of metal flux from coastal sediments have also been conducted (Alongi and
others, 1996; Elderfiled and others, 1981; Emerson and others, 1984; Heggie and others,
1987; Hunt, 1983; Johnson and others, 1992; Lapp and Balzer, 1993; Sundby and others,
1986; Sawlan and Murray, 1983; Thamdrup and Canfield, 1996; Thamdrup and others,
1994; Westerlund and others, 1986; Widerlund, 1996; Uematsu and Tsunogai, 1983).
Intercomparison of various methods used to generate estimates of dissolved metal flux

are however very rare (Johnson and others, 1992; Murray, 1987; Thamdrup and others,



1994; Westerlund and others, 1986). Most estimates of metal flux have been derived
from the gradient of dissolved metal concentrations in pore waters (Alongi and others,
1996; Elderfiled and others, 1981; Emerson and others, 1984; Heggie and others, 1987;
Johnson and others, 1992; Lapp and Balzer, 1993; Sawlan and Murray, 1983; Thamdrup
and Canfield, 1996; Widerlund, 1996). Metal concentrations may however, undergo
large changes in the pore waters over small depth intervals, which make the gradients
difficult to measure. These changes are particularly true for metals that undergo redox

transformations such as Mn and Fe (Froehlich and others, 1979). To date there have been

This thesis attempts to address this issue by examining metal fluxes derived from
free vehicle benthic flux chambers, dissolved metal gradients in pore waters, and flux
estimates derived from the accumulation of metals in the water column overlying
submarine basins. This work focuses on the flux of Mn, Fe, Co. and Cu from the
continental margin. A brief summary of the flux estimates that exist in the literature and
how sediment geochemical processes effect metal flux estimates is given below. The
next section summarizes the trace metal sampling including study area, collection and
analysis methods, and discussion. Finally the last section describes how the fluxes were
calculated, the results obtained, and gives recommendations for the best method of

estimating the trace metal flux on continental margins.



Methods of Estimating Dissolved Metal Flux

Dissolved metal fluxes across the sediment-water interface can be estimated in
three ways. First, direct measurements of the flux can be made with benthic flux
chambers. These devices isolate water over the sediments and then collect samples of the
overlying waters contained in the chambers. The rate of change in dissolved metal
concentration per unit area of sediment gives a direct measurement of flux. Chambers
may bias flux measurements if they alter the hydrodynamic characteristics of the benthic
boundary layer (Santschi and others, 1991), alter the redox conditions of the overlying

ater (Sundby and others1986). or disturb the sediment during deployment (Berelson and
others, 1989). Second metal gradients measured in sediment pore waters can be used to
estimate metal flux. However, large changes in concentration due to variable redox
conditions may make gradients difficult to measure near the interface. Bioirrigation of
sediments may also add a component to the flux that cannot be measured by this method.
Finally, in areas where horizontal advection is restricted, such as a submarine basin, the
metal flux can be estimated from the accumulation of dissolved metal in the near-bottormn

portion of the water column.

Flux Comparison Studies

Methods of determining the benthic fluxes of oxygen, inorganic carbon, alkalinity,

or nutrients have often been compared in several studies (Archer and Devol, 1992;
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Berelson and Hammond, 1986; Berelson and others, 1987a; Berelson and others, 1987b;
Berelson and others, 1989; Berelson and others, 1990; Devol and Christensen, 1993;
Reimers and others, 1996; Sundby and others, 1986). In the Southern California
Borderlands nutrient fluxes were estimated using a free vehicle benthic flux chamber or
lander, gradients in the water column, and gradients in the sediment pore waters
(Berelson and others, 1987b). It was found that in San Pedro Basin, a low bottom water
oxygen; high sedimentation rate environment, flux estimates agreed for all three
procedures (Berelson and others, 1987b). However in San Nicholas Basin, which has a
higher bottom water oxygen and a lower sedimentation rate than San Pedro Basin, the
TCO, and radon estimates from the pore water gradients did not match those obtained
from the lander. This difference was attributed to the bioirrigation of the sediments
(Berelson and others, 1987b). Also, to address concerns about sediment disturbance
during lander deployment Berelson and others (1989) deployed both free vehicle benthic
flux chambers and flux chambers placed using the submersible ALVIN. In this study no
difference in flux estimate from either type of chamber was observed. Lastly if oxygen
content in the chambers is maintained at ambient bottom water values the redox
conditions of the overlying water will not effect the flux measured (Sundby and others
1986).

Very few comparisons of flux estimation methods for trace metals exist in the
literature (Johnson and others, 1992; Murray, 1987; Thamdrup and others, 1994; and

Westerlund and others, 1986). Manganese fluxes have been determined from flux
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chambers and pore water gradients on the continental margin (Johnson and others, 1992;
Thamdrup and others, 1994) and in lakes (Murray, 1987). In a shallow 6 m station in a
coastal bay Cd, Cu, Ni, and Zn fluxes were also determined using both flux chambers and
pore water gradients (Westerlund and others, 1986). On the continental margin Johnson
and others (1992) found that the Mn flux derived from gradients in pore waters
underestimated lander derived fluxes by factors of 5 to 25 on the shelf but were |
comparable in deeper water. This suggests irrigation of the sediments by benthic macro
fauna was the cause of the bias (Johnson and others, 1992). In the coastal bay no
correlation between pore water and chamber measured fluxes was observed, but the
chambers did show significant seasonal differences (Westerlund and others, 1986).

Although no synthesis of the three methods of estimating flux has been attempted
for metals, general reviews of pore water sampling techniques can be found in Hong and
others (1995), Krivkov and Manheim (1982), and Murdroch and Azcue (1995), but trace
metal studies of the extraction techniques for pore water do exist (Carignan and others,
1985; Jahnke, 1988; Schults and others, 1992; Teasdale and others, 1995). Porewater
sampling using centrifugation has been compared with dialysis or sediment peepers
(Carignan and others, 1985; Schults and others, 1992; Teasdale and others, 1995).
Centrifuging at 11,000 rpm gave trace metal concentrations equivalent to dialysis
(Carignan and others, 1985) but concentrations were variable at lower centrifuge speeds
(Carignan and others, 1985; Schults and others, 1992). Whole core pressurization gave

results similar to centrifuged core pore water for both nutrients and metals (Jahnke,



1988). In this thesis the advantages and limitations of each method are examined for

trace metal fluxes from continental margin sediments.

Sediment Geochemistry

Manganese and iron are both redox sensitive elements. As electron acceptors in
respiration, they are important in the breakdown of organic carbon (Froelich and others,
1979). Manganese is present as oxides of Mn* in oxic seawater (Bruland, 1983) and in
oxygenated porewater (Sawlan and Murray, 1983). It can also be found as Mn** in oxic
water due to its slow oxidation kinetics (Johnson and others 1996). Iron exists as Fe(1II)
oxy-hydroxides in oxic environments (Balzer, 1982 and Millero and others, 1987). In
anoxic pore waters Mn(IV) and Fe(IIl) hydroxides can be reduced during the oxidation of
organic carbon to Mn? and Fe**. The depth at which they are first used to breakdown
organic carbon and are hence reduced, has a large influence on the Mn or Fe flux from the
sediments. The oxidation of organic carbon and the release of the more soluble Mn** and
Fe** to the pore waters occurs in distinct regions of the sediment (Froelich and others,
1979). The distinct zones of the Froelich and others (1979) model have been found to be
compressed or even overlapped due to differing bottom water O, concentrations and
organic carbon flux (Shaw and others, 1990). If reduction of the Mn(IV) and Fe(III)
occurs near the sediment-water interface, then fluxes may be large. If reduction occurs

deep in the sediments, then fluxes are typically small.



In oxygenated seawater and pore water, cobalt is present in the Co* oxygenation
state (Bruland, 1983). In sediments, Co* has a strong affinity for MnO, particles (Heggie
and Lewis, 1984; Shaw and others, 1990; Sundby and others, 1986). Upon absorption
onto the MnO, particles Co™ is oxidized to Co*, which is insoluble (Heggie and Lewis,
1984; Murray and Dillard, 1979). Shaw and others (1990) found that the retention of Co
in sediments by Mn oxides decreased in the low bottom water oxygen environments of
the nearshore Borderland basins. This was attributed to a compression of the redox
boundaries allowing Co to be released to bottom waters (Shaw and others, 1990).

Copper is present as Cu** in oxygenated seawater and porewater (Bruland, 1983).
Copper is often associated with organic carbon (Johnson and others, 1988; Klinkhammer,
1980; Klinkhammer and others, 1982; Coale and Bruland, 1990; Shaw and others, 1990;
Zamzow, 1997). Organically bound Cu accounts for up to 99.88% of surface seawater
Cu and for up to 91.50% of mid-depth seawater Cu present (Coale and Bruland, 1990;
Zamzow, 1997). This large fraction of organically bound Cu should be released during
sediment diagensis. The calculated ratios of Cu/C flux measured in the Guatemala Basin
and Baja California (Hong and others, 1995; Sawlan and Murray, 1983) support this
trend. In the California Borderlands, Shaw and others (1990) found that the release of
copper to the bottom water was lower in the shallower basins possibly due to a greater
preservation of biogenic material (Johnson and others, 1988) and organically bound

copper associated with this material.



Trace Metal Sampling

Study Area

Samples were collected from the basins in the Southern California Borderland
(Figure 1) and in Monterey Bay (Figure 2) as part of our trace element flux on continental
margins (Teflon) study. The Southern California Borderlands consist of a series of
basins. The environment of the basins ranges from low bottom water O, in San Pedro
and Santa Monica (Berelson, 1985) to deep, oxygenated basins such as Tanner Basin and
the open ocean site, Patton Escarpment. Besides being unique redox environments
(Berelson, 1985) the restricted horizontal flow in the basins allows chemical flux to be
estimated from the change in water column concentration. The Borderland basins have
been used for studies of nutrient, inorganic carbon, and radon fluxes from sediments
(Bender and others, 1989; Berelson and Hammond, 1986; Berelson and others, 1987b;
Berelson and others, 1989; Berelson and others, 1996; Hammond and others, 1990; Ingall
and Jahnke, 1994; Jahnke, 1988; Jahnke, 1990; and Smith and others, 1987). Trace
metal flux studies are less extensive in the Borderlands with flux estimates from the water
column data for Co (Johnson and others, 1988) being the only one conducted in this
environment. Although metal flux studies are lacking, the pore waters in several basins
have been examined for Mn (Shaw and others, 1990), Co (Heggie and Lewis, 1984), and

Fe (Jahnke, 1988; Leslie and others, 1990; Reimers and others, 1996; and Shaw and

others, 1990).
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Monterey Bay (Figure 2) is an area known to have high bio-irrigation (Berelson,

1996 personal communication). Due to insufficient oxygen to support macro faunal
communities, bioirrigation does not occur in all of the basins. However, rapid exchange
of water in the Monterey Bay precludes estimates of flux from vertical water column
gradients. Monterey Bay has been studied for fluxes of both nutrients (Berelson and
others, 1996) and Mn (Johnson and others, 1992) as derived from benthic flux chamber
and pore water measurements. Monterey Bay was sampled in 1993, 1994, and 1995,

whereas the Southern California Borderland was sampled only in 1994 and 1995 (Table

).
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Figure 2. A standard bathymetry map of the Monterey Bay showing station location. The
contour interval is 100 meters. Modified from a map on the Monterey Bay Aquarium
Research Institute’s world wide web page (MBARI, 1997) which was created using
SeaBeam data from the USGS.



Table 1. Sample collection by date, station depth, and sill depth. Sill depths for
Borderland stations are from Emery (1960). Also included are station locations from an
earlier study in Monterey Bay in 1991 and 1992, station T1-11 and T2-7 respectively
(Johnson and others 1992).

13

{—

— e ——

Station Name Station ID | Latitude | Longitude | Station Siil
or Date °N) °W) depth, Depth,
z (m) (m)
Teflon ‘94 San Pedro Basin SP 335 118.4 896 737
Santa Monica Basin SM 33.7 118.8 905 737
Santa Catalina Basin CAT 333 118.6 1300 982 "
|[ Tanner Basin TB 33.0 119.7 1514 1165 “
" San Clemente Basin SCl 32.6 118.1 2062 1816 ||
Patton Escarpment PE 324 120.6 B 3709 - i"
Tefion ‘55 j| Samta Monica Basin SM‘ 327 11R8 T 905 737
“ Tanner Basin TB 33.0 119.7 1514 1165
I San Clemente Basin SCl1 32.6 118.1 2062 1816
JI Patton Escarpment PE 324 120.6 3709 -
Monterey Bay 6/13/91 T1-11 36.7 1219 99 -
5/19/92 T2-7 36.7 121.9 99 - I
6/15/93 TS1 36.7 121.9 99 -
9/8/93 TS2 36.7 121.9 99 -
12/14/93 TS3 36.7 1219 99 -
I 34194 | TS4 36.7 121.9 99 -
J 11/1/95 TSS 36.7 121.9 99 —J
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Sample Collection

Water samples were collected at each basin station (Table 1) from the water
column, the water overlying the sediment, and the pore water. The Monterey Bay station
(Table 1) was sampled only for the water overlying the sediment in the chambers and the
pore water. The water column was sampled with a 12-bottle CTD rosette. The CTD
rosette was equipped with 10 L Niskin sampling bottles triggered remotely from onboard
the ship. At each station either 12 or 24 bottles were collected, from depths chosen to

cover the entire water column.

verlving the sediment, within the first few centimeters of the

The water
sediment-water interface, was sampled by deploying benthic flux chambers (Berelson and
Hammond, 1986) at each site. Each benthic chamber was deployed with three separate
chambers to isolate sediment and overlying water. Each chamber had a stir bar attached
to the lid to provide mixing at a rate near ambient conditions. The lander was
programmed to draw water samples from the chambers at predetermined intervals
through a series of sampling tubes. At the end of each deployment weights were released
and the lander returned to the surface. To determine the flux, the volume of water
isolated by the chambers was determined from the dilution of a CsCl spike injected into
the chambers (Berelson, 1985; Berelson and others, 1987b).

A multi-corer (Barnet and others, 1984) was deployed at each station to collect

sediment. Immediately upon recovery the cores were placed in a cold van to minimize
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temperature effects (Fanning and Pilson, 1971) with the lids of the core tubes still
attached to reduce the exchange of oxygen with the water overlying the sediments. Once
recovered, the cores were sectioned into known depth intervals (0.5 - 2.5 cm) under a N,
atmosphere to eliminate any oxidation artifacts (Lyons and others, 1979). Sediment from
the center of each section was transferred under the N, atmosphere into centrifuge tubes,
capped, and centrifuged at 6,000 rpm for 15 min in the cold room to separate sediments
from the pore water. The pore water was then filtered under a N, atmosphere prior to

analysis.

Sample Analysis

Before trace metal analysis, all water from landers and cores was filtered through
acid washed 0.5 pm Millex-LCR filters (Millipore Corporation). Water from hydrocasts
was filtered for the 1995 cruise only. Samples were analyzed for the trace metals Mn,
Co, Cu, and Fe using flow injection analysis with chemiluminescence detection. The Mn
analysis is based on the oxidation of 7,7,8,8-tetracyanoquinodimethane in an alkaline
solution (Chapin and others, 1991). Cobalt analysis was based on the Co-enhanced
chemiluminescent oxidation of gallic acid in alkaline hydrogen peroxide (Sakamoto-
Arnold and Johnson, 1987). The Cu analysis is based on the oxidation by hydrogen
peroxide of a complex formed between Cu and 1,10-phenanthroline (Coale and others,
1992). Iron analysis is based on the reaction of luminol with hydrogen peroxide and

Fe(IIl) in a basic environment (Obata and others, 1993; Obata and others, 1997) as
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adapted for flow injection analysis. A cation exchange column of immobilized 8-
hydroxyquinoline was used to help separate interferences and to preconcentrate the
samples for all trace metal analysis (Sakamoto-Armnold and Johnson, 1987). Lander and
pore water samples typically required dilutions of ~1:20 to ~1:3400 to bring the
concentrations into the working range of the methods. Water column samples were also
analyzed for dissolved oxygen using the Winkler method with an automated oxygen

titrator (Friederich and others, 1991).

Results

Bottom water dissolved oxygen has been shown to affect many trace metals
during early diagenesis (Shaw and others, 1990). In the Southern California Borderlands
bottom water oxygen (Table 2) was low (~<10 uM) in San Pedro and Santa Monica
Basins and increases with depth reaching a maximum at the offshore station, Patton
Escarpment (~135 pM). This data is similar to that found by others (Berelson, 1991;
Johnson and others, 1988; Shaw and others, 1990) for these same stations. The bottom
water oxygen in Monterey Bay shows some variation over the years (~101-185 pM) but
its range brackets the 126 uM bottom water oxygen reported by Chapin (1990) at a
nearby location in Monterey Bay.

The metal concentrations and supplementary data from hydrocasts, centrifuged
core pore waters, and dilution corrected landers are presented in Appendix 1. Vertical

profiles of the water column for the Teflon ‘94 and Teflon ‘95 cruises are reported. In
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addition, a Mn hydrocast from a 1990 cruise to Santa Monica Basin (Coale and others,
1990) is included. Pore water metal data are reported for the Teflon ‘94, Teflon ‘95, and
Monterey Bay cruises. The lander metal data for the Teflon ‘94, Teflon ‘95, and the
Monterey Bay cruises are also shown. Lander data from cruises in the Monterey Bay in

1991 and 1992 (Johnson and others, 1992) are also included.



Table 2. Bottom water dissolved oxygen values from this study. Also included are
bottom water oxygen values taken in earlier studies in Monterey Bay in 1991 and 1992,

stations T1-11 and T2-7 respectively (Johnson and others, 1992).

Trace Metal Hydrocast Data

Cruise Station Name or Date Bottom \;ater O, (uM)
Teflon ‘94 San Pedro Basin 85
Santa Monica Basin 10.4 "
Santa Catalina Basin 19.2
Tanner Basin 26.6
San Clemente Basin 58.6 "
Patton Escarpment_ 131.3
Teflon ‘95 Santa Monica Basin 89
Tanner Basin 26.3 ii
San Clemente Basin 65.3 "
Patton Escar&ment 137.2
Monterey Bay T1-11 132.0
T2-7 142.0
TSt 101.2
TS2 136.1 "
TS3 184.9 "
TS4 132.8 "
TS5 152.6 ll
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The hydrocast profiles for Mn in the borderland basins (Figure 3) are between 1 -

8 nM in the surface waters and decrease with depth. They generally follow the offshore

station (Patton Escarpment) profile with the exception of the shallow, low oxygenated
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basins of San Pedro and Santa Monica. In both of these basins Mn concentrations
increase near the sediment interface, with Santa Monica exhibiting some temporal
variability. Manganese concentrations near the bottom reached ~8 nM in 1990, ~15 nM
in 1994, and ~12 nM in 1995 (Figure 3). This variation in bottom water may be due to
flushing of sub-sill waters in the basin with water from outside the basin (Berelson,
1991), resuspension of sediments during hydrocast sampling, or analytical methodology
(unfiltered hydrocast samples in 1994).

The hydrocast profiles of Fe show much variability between stations and years
(Figure 4). Surface concentrations range between 1 - 10 oM and generally increase with
depth for the basin stations. The offshore station (Patton Escarpment, Figure 4) is fairly
uniform with depth with a slight increase in the surface waters. The sediment-water
interface values increase to between ~26 - 30 nM in the nearshore basins of San Pedro
and Santa Monica (Figure 4). These elevated deep concentrations are most likely
resulting from resuspension of sediments at the sill depth and greater dust input in the
nearshore stations. Variability between years is apparent in the Patton Escarpment station
with the profiles centering around 4 nM in 1994 (Figure 4) and 1.8 nM in 1995 (Figure
4). Using a similar analytical method, Obata and others (1997) found that unfiltered
samples gave elevated iron concentrations. The difference in concentrations can be
explained since the 1994 profiles were unfiltered and the 1995 profiles were filtered.

Dissolved cobalt concentrations in the borderland basins hydrocasts (Figure 5)

range between 100 - 250 pM in the surface waters and generally decrease with depth. An



20
exception to this decrease in Co concentration with depth, again is found in San Pedro
and Santa Monica basins where dissolved Co increases near the sediment interface to
~250 pM. In a previous study of Santa Monica Basin, Johnson and others (1988)
reported surface concentrations of Co to be between ~40 - 100 pM near the surface and
reached ~120 pM near the sediment interface. While the absolute concentrations are
different, the overall trends in the data are similar indicating strong temporal vaﬁabihty
can occur in Santa Monica Basin.

Copper was only measured for hydrocasts in 1994 and ranges between 1 - 4 nM in
surface waters (Figure 6). Copper profiles are fairly uniform or slightly increasing with
depth, with the exception again being Santa Monica Basin (Figure 6) which reaches ~5
nM near the sediment-water interface. Although the elevated deep water Cu
concentration is different, the surface value of ~3 nM (Figure 6) agrees with what has

been reported previously (Johnson and others, 1988) lending credence to this data.
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are Teflon ‘94, and grey symbols are Teflon ‘95 data.
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Table 1. Black symbols are Teflon ‘94 and grey symbols are Teflon ‘95 data.
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at each station (Table 1). Station abbreviations are as in Table 1.



Trace Metal Pore Water Data

The Mn pore water profiles in the basins are similar for both years studied (Figure
7) except for elevated levels near the surface of the Santa Monica Basin core in 1994
(Figure 7). Examination of the Santa Monica Basin 1994 and 1995 data, along with
literature values (Shaw and others, 1990) suggest that the surface values > ~25 uM that
were measured are in error. These values are not used in the analysis of the profile for
Santa Monica Basin (Figure 7). Most stations’ profiles are relatively smooth, increase
with depth, and show a maximum value near 10 cm depth in the core. This is similar to
profiles reported in the literature for this area (Shaw and others, 1990). The Mn
concentration in pore waters of sediments in the basins with low bottom water O,, Santa
Monica and San Pedro Basins (Table 2), are relatively low. This may indicate that Mn
oxides are reduced before they are buried in the sediment. The Mn profiles in Monterey
Bay (Figure 11) exhibit uniform surface concentrations of ~0 - 1 pM similar to that found
by Fairey (1992) at a nearby location.

Iron pore water profiles exhibit elevated concentrations in the low oxygenated
basins of San Pedro and Santa Monica (Figure 8) in contrast to Mn (Figure 7). The high
Fe concentrations must reflect its tendency to be reduced at a higher redox potential than
Mn (Froelich and others, 1979). San Pedro surface pore water iron concentrations reach

~150 pM similar to that reported elsewhere for San Pedro Basin (Leslie and others,



26
1990). In San Pedro Basin Fe reaches ~200 uM by 2 cm down into the sediments as was
found by Shaw and others (1990). Iron concentrations reach smaller maximum values
(Figure 8) at greater depths in the sediments in the other basins, reflecting their more oxic
conditions. In Monterey Bay surface pore water concentrations of Fe are < 1 uM (Figure
11) and of similar magnitude as reported for nearby stations (Fairey, 1992).

Cobalt pore water profiles generally show a maximum value in the upper 10 cm
(Figure 9). Similar Co pore water profiles have been reported in San Clemente Basin
(Johnson and others, 1988) and at Patton Escarpment (Shaw and others, 1990). Monterey
Bay, Co surface pore water concentrations are uniform (Figure 11) ranging up to ~10 nM
as also reported by Fairey (1992) for nearby stations.

Copper pore water values in the borderland basins are only reported for Patton
Escarpment (Figure 10) because the high Fe values (Figure 8) in the other basins appear
to interfere with the chemiluminescent Cu measurements. The Patton Escarpment profile
shows similar trends to that found in the literature (Shaw and others, 1990). In Monterey
Bay only two years of pore water data are available (Figure 11). The surface pore water
concentrations of Cu are uniform (Figure 11) and similar to those reported for nearby

stations (Fairey, 1992).
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Figure 7. Teflon ‘94 and ‘95 pore water Mn data. Black symbols are Teflon ‘94 data and
grey symbols are Teflon ‘95 data. White symbols are three points believed to be in error.
Station abbreviations in the legend are as in Table 1.
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Trace Metal Lander Data

While the magnitude of the metal concentrations in the samples, collected from
the benthic flux chambers, shows some temporal variation (Figures 12-17), the individual
chambers on a lander have generally consistent trends for the rates of change of Mn, Cu,
or Fe over time. As will be discussed later, these rates of change in metal concentration
are proportional to the flux determined by the lander. An example of this variability can
be found in the Santa Monica Basin lander Mn data (Figure 12). In 1994 initial Mn
concentrations were ~30 nM while in 1995 they were ~70nM. In spite of this apparent
temporal variability, the individual chambers show consistent trends in the flux of Mn
over the time of deployment. Cobalt data is not shown due to apparent contamination of
the chamber water from the blue paint on the stainless steel housing on the thermistors in
each of the lander chambers.

In the basins, the rate of change of the Mn concentration in chamber waters with
time is smallest at Patton Escarpment and generally increases toward shore (Figure 12).
This increase in the rate of change, or flux, is similar to that reported by Johnson and
others (1992) for the open continental margin. The Monterey Bay values observed in this
study (Figure 15) were also consistent with those of Johnson and others (1992) at a
similar station in Monterey Bay (Figure 15).

While the magnitude of the Cu lander sample concentrations shows some
temporal variability in the basins (Figure 13), the rate of change generally increases

nearshore as organic carbon inputs increase (Berelson and others, 1996). This lends
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support to the argument for Cu remobilization during organic carbon oxidation (Hong and
others, 1995; Sawlan and Murray, 1983). The Monterey Bay, Cu values observed in this
study (Figure 16) are generally similar, reaching no more than ~50 nM. This is consistent
with those measured earlier in Monterey Bay (Figure 15) and with the organic carbon
production found in Monterey Bay (Pilskaln and others, 1996).

In the basins, the highest Fe values in the chambers are found in the low
oxygenated basins San Pedro and Santa Monica (Figure 14). While in Monterey Bay the
concentrations observed in this study are fairly uniform (Figure 17) and of similar
magnitude to those observed by Johnson and others (1992) at a similar station in
Monterrey Bay (Figure 17). This trend of high chamber Fe concentrations in low
oxygenated waters, holds with the geochemistry of iron, since Fe* is not stable in
oxygenated seawater (Balzer, 1982; Millero and others, 1987; von Langen and others,

1997).
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Figure 12. Lander overlying water Mn data for the Teflon ‘94 and ‘95 cruises. Black
and white symbols are data from two different landers deployed during the Teflon ‘94
cruise at some stations. Grey symbols are data from the Teflon 95 cruise. Each lander
contains three chambers which are represented by the circles, squares, and triangles
respectively. Station abbreviations are as in Table 1.
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Figure 13. Lander overlying water Cu data for the Teflon ‘94 and ‘95 cruises. Black and
white symbols are data from two different landers deployed during the Teflon ‘94 cruise
at some stations. Grey symbols are data from the Teflon ‘95 cruise. Each lander contains
three chambers which are represented by the circles, squares, and triangles respectively.
Station abbreviations are as in Table 1.
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Figure 14. Lander overlying water Fe data for the Teflon ‘94 and ‘95 cruises. Black and
white symbols are data from two different landers deployed during the Teflon ‘94 cruise
at some stations. Grey symbols are data from the Teflon ‘95 cruise. Each lander contains

three chambers which are represented by the circles, squares, and triangles respectively.

Station abbreviations are as in Table 1.
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Figure 15. Lander overlying water Mn data for the Monterey Bay cruises. Black and
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triangles respectively. Station abbreviations are as in Table 1, except T1 and T2 are the
data from the 1991 and 1992 samples respectively taken from Johnson and others (1992).
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Figure 16. Lander overlying water Cu data for the Monterey Bay cruises. Since no Cu
was measured for the TS5 cruise it is not shown. Black and white symbols are data from
two different landers deployed during some cruises. Each lander contains three chambers
which are represented by the circles, squares, and triangles respectively. Station
abbreviations are as in Table 1, except T1 and T2 are the data from 1991 and 1992 .



39

1
1

Fe (nM)
lllllllllllll
lllllllllllll

I[II];IIIII’TII'IIII LB LSRR N M RLELEN BLELILEL
200 T1 T2
o
100 . . .
0 lllllllllll.l!lJlll ol .Ol |O|11L|1|

L L) | TV 1 ] LI I LS} l: LI ]TI T l L LR I T F T
% 200 TS1 ‘é TS?2 T:.
® {100 2 A -
L - .
.8= ; ABRBO -
o Ql l y 11 I J | l f l- 1 IMALI ] 1 I l | N B l Lt L l-
300 l LB l T b l LS I T 1T} l: :l L LS l LI R L] [ L LRI l LR AL lj
S 200 TS3 41 F TS4 4
£ 100 1 F © E
N 4 .
O le.l Pl I 1 1 l B | J q ¢t t L‘ g%i é l 1 11 I IEI J ) l L1 L L-
0 30 40 O 10 20 30 40
Draw Time (hr) Draw Time (hr)
300 L B I | LR L l LR SN l LI Iq
’2; 200 TS5 -
$ 100 2 :
0 ’n l! 1 l‘l l [T | l : 1.1 J:

0 10 20 30 40

Draw Time (hr)

Figure 17. Lander overlying water Fe data for the Monterey Bay cruises. Black and
white symbols are data from two different landers deployed during some cruises. Each
lander contains three chambers which are represented by the circles, squares, and
triangles respectively. Station abbreviations are as in Table 1, except T1 and T2 are the
data from 1991 and 1992 samples.
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Trace Metal Fluxes
Flux Calculations

Benthic Flux Chamber Estimate

After a lander is recovered, the samples are analyzed for trace metal
concentrations. These concentrations are then corrected for dilution of the chamber water
with bottom water that flows in to replace each sample that is removed (Berelson and
Hammond, 1986). The dilution corrected concentrations of a typical lander chamber
were plotted against the chamber incubation time (Figure 18). A linear regression of the
data (Figure 18) gives the rate of change, dc/dt, with units of nmol/L/hr. The flux, in
units of pmol/cm?day, can then be calculated from the rate of change in the concentration
and the chamber height, h, which has units of cm:

Flux = Zh )

By convention, flux out of the sediments is taken as positive. During deployment each
cylinder shaped chamber on the lander sinks into the sediments to a different height. To
determine the chamber height, a precisely known concentration and volume of CsCl was
injected into each chamber. The CsCl in the water contained in the chamber was
determined by measuring the concentration in the subsequent sample drawn. Chamber
volume and height can be calculated from the dilution of the CsCl. The standard error of

an individual chamber flux value is obtained by combining the standard error of the
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height with the standard error of the gradient. Flux is reported as the mean + standard
error for each individual lander (Appendix 1) or for each station (Appendix 2). The mean
is obtained from the average of the fluxes of all functional chambers either on an
individual lander (Appendix 1) or for all landers deployed at that station (Appendix 2).
The variability in the flux obtained from the replicate values determined with each
functional chamber, either on an individual lander (Appendix 1) or for all landeré

deployed at that station (Appendix 2), was used to calculate the standard error in the flux.
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Figure 18. Typical lander chamber data for Mn and Fe from the Teflon ‘95 cruise in
Tanner Basin (Figure 1 and Table 1). Top panel: change in concentration of Mn over
time. Bottom panel: change in concentration of Fe over time. The regression of the data
to obtain the slope of concentration vs. time that is used with the chamber height to
calculate flux (Equation 1) is shown.
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Pore Water Gradient Flux Estimate

The benthic flux of dissolved metal can also be estimated from the depth
dependent gradient in concentrations measured within the pore waters (Figure 19). This
gradient should merge smoothly with the dissolved metal concentrations at the bottom of
the water column. The overlying watér concentration was obtained from the bottom
hydrocast bottle (Appendix 1, Figures 3-6). The gradient of each metal within the
sediment may change rapidly due to reduction of oxides, remineralization of organic
carbon, and sorption onto solid phases. Developing a simple model of metal diagenesis
that can be curve fitted to all the data to estimate the gradient, as is done for Si (Berelson
and others, 1987b), is therefore not possible. Selection of the proper depth interval to use
for the gradient estimate is subjective. A straight line was fitted to the upper portion of
each profile over the range that appeared linear as in Figure 19. This generally produces a
minimum estimate of the gradient.

The depth intervals used for each of the gradient estimates of each metal are given
in Table 3 and were estimated independently for different cores. The depth intervals
estimated from cores taken at different times at the same site, were generally in good
agreement (Table 3) for the same metal. However, the linear ranges for metals with
dissimilar geochemical properties were often quite different. Using the depth gradient in

concentration, dc/dz, the porosity,®, and the sediment diffusion coefficient, D,, Bemner’s

(1980) diffusion model gives the flux:



= - 9@
Flux = -¢D, — 2)

The porosity is the percent water in the sediment in each sample interval. This is
obtained by weighing a sample of sediment wet, drying the sediment, and weighing it dry.
Since the porosity never varies more than 10% (Appendix 1) over the depth intervals used
for the gradient estimates (Table 3), the average porosity was used for all flux
calculations. This should result in errors of 4% or less in flux calculations (Klump and
Martens, 1989). Free solution diffusion coefficients, D,, are available (Li and Gregory,

1974) which can be related to the sediment diffusion coefficient, D;, using the

tortuosity,®:

D=— (3a)

Tortuosity is the actual distance around all the sediment grains that an ion travels per
length of sediment (Berner, 1980, Ullman and Aller, 1981). In practice measuring the
tortuosity is impossible, but it can be related to the electrical resistance of the sediment

(Berner, 1980, Ullman and Aller, 1981), or the formation factor, F and the porosity,®:

@’ = OF (3b)
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An empirical relationship (Equation 3c) has been developed (Berner, 1980, Ullman and

Aller, 1981) relating the formation factor, F, to the porosity,®, where m is a constant

depending on the type of sediment:

F = (3¢)

1
"
When m = 2, Equation 3c is known as Archie’s Law (Berner, 1980). The Archie

relationship has been used in past studies in the Borderland basins ( Berelson and others,
1987b) and in the Monterey Bay (Fairey, 1992). Using the Archie relationship Equations
2

an 1 be substituted into Equation 3a to give the final form relating the sediment

~ A 2L
C ana > <an u

diffusion coefficient, D, to the free solution diffusion coefficient, D,:

D=D,% (3d)

Free solution diffusion coefficients were corrected for temperature (Table 4) only. This
results in at most an 8% error in the sediment diffusion coefficient due to the effects of
pressure that are not taken into account (Li and Gregory, 1974). Changing the coordinate
system to agree with the lander estimated fluxes (multiplying Equation 2 by -1) and
substituting Equation 3d into Equation 2 gives the final equation used for estimating flux:

- $2D €
Flux = ¢?D, % @
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The standard error of the gradient calculated from the linear regression was used in place

of the gradient, dc/dz, in Equation 4 to give the standard error of the flux estimate.
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Figure 19. Typical pore water profile for Mn and Fe from the Teflon ‘94 cruise in the
Santa Catalina Basin (Figure 1 and Table 1). Top panel: Mn pore water profile. Bottom
panel: Fe pore water profile. On both plots a regression of the surface data has been
preformed to obtain the gradient used in flux calculations (Equation 4). The maximum
standard error, SE, of the data is shown on both plots as an index of analytical precision.
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Table 3. Depth intervals in centrifuged cores over which the gradient was estimated for

pore water flux calculations (Equation 4). Dashes indicate no data was available.

Depth interval (cm)

Cruise Station Name or Date Mn Co Fe Cu
Teflon ‘94 San Pedro Basin 2.50 6.00 250 2.50
Santa Monica Basin 3.50 2.50 3.50 350
Santa Catalina Basin 0.75 2.50 250 2.50
Tanner Basin 1.50 1.50 2.50 3.50
San Clemente Basin 0.75 0.75 5.00 1.50
Patton Esca:pmﬂt_ 3.00 3.00 li.i(_)_ 5.00

Teflon ‘95 _] Santa Monica Basin_ ——2.50 1.50 1_.5;— -

b Tanncr BDasin 078 150 250 -

J San Clemente Basin 0.75 0.25 5.00 -

Patton Escarpment 2.50 2.50 12.50 -

Monterey Bay TSI 3.50 0.75 2.50 -
TS2 3.00 0.75 - 3.00
TS3 1.50 0.75 - 3.00
TS4 0.75 0.75 8.50 8.50

TSS - 0.50 - -
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Table 4. Temperature corrected free solution diffusion coefficients, D, (Li and Gregory,
1974) used for pore water flux calculations (Equation 4).

D, (x 10° cm®/sec)

Station Name Mn Co Fe Cu

San Pedro Basin | 3.81 4.06 4.09 4.10

Santa Monica Basin 3.81 4.06 4.09 4.10

Santa Catalina Basin | 3.66 3.93 3.95 3.96

Tanner Basin 3.63 3.90 3.93 3.94

San Clemente Basin 3.44 3.74 3.76 3.77

Patton Escarpment | 3.28 3.61 3.61 3.62

Monterey Bay 4.6 453 4.58 461

Water Column Flux Estimate

The flux across the sediment-water interface can be estimated in the basins when
a gradient in concentration develops relative to water at the sill depth in the basin (Figure
20) if we assume that each profile is in steady state. The bathymetry in the Southern
California Borderlands Basins restricts horizontal flow (Berelson and others, 1987b)
below the sill depth (Table 1). The flux is given by the product of the concentration

gradient, dCz/dz at the interface and the vertical eddy diffusitivity, K,:

dc.
Flux = -K —= )

where C, is the concentration at depth, z. Berelson (1985) measured the concentrations of

2R and 2Ra in the water column and the sediments to arrive at the vertical eddy
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diffusitivity in San Pedro, Tanner, and San Clemente basins (Table 5). Johnson and
others (1988) report a K, value for Santa Monica Basin (Table 5). The vertical eddy
diffusitivity for Santa Catalina Basin has not been reported. It has a similar bottom depth
~ and sill depth (Table 1) to that in Tanner Basin and its vertical eddy diffusivity was
assumed to be equal to that for Tanner Basin (Table 5). The concentration gradient at the
sediment-water interface can be estimated most accurately if data from the entire sub-sill
water column is used. However, dissolved metals may be removed in the water column
by scavenging and the gradient should be determined using a model that incorporates this
possibility. If a steady state is assumed then diffusion can be balanced by the chemical
reaction occurring in the water column. Here we assume k is the first order scavenging

rate constant:

d3C _
Kz—dz—z- -kC =0 (6)

Solving Equation 6 gives a relationship between the concentration at depth, C, and the

concentration at the sediment surface, C,:
V. °© ()

Taking the natural logarithm of Equation 7 results in:

lnCz = InC, - Xz )
K
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A linear fit of In C,, observed in each basin, vs. z should result (Figure 20). Equation 7 is

substituted into Equation 5 to give:

I
Flux = -cho(-d_-,("-) e /% ©)

Using a coordinate system with the depth set to O m at the sediment-water interface and
increasing upwards gives the final form of flux in the water column occurring at the

sediment-water interface:

Flux = -K.C.(~| %) (10)
o K:

The standard errors of the y-intercept and slope of the linear fit (Equation 8) are used in

Equation 10 to give the standard error of the estimated flux.
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Table 5. Vertical eddy diffusitivity values used in this study. San Pedro, Tanner, and San
Clemente Basins are from Berelson (1985). Santa Monica is from Johnson and others
(1988). No value exists for Santa Catalina Basin in the literature, but with its similar
bottom depth and sill depth (Table 1) its vertical eddy diffusivity was assumed to be equal
to that for Tanner Basin.

Station Name Station Kz + SE
ID (cm*/sec)
San Pedro Basin SP 46+1.2
Santa Monica Basin SM 3
Santa Catalina Basin CAT 9.8
Tanner Basin TB 9.8+3.9
San Clemente Basin SCl 2449

Flux Averages

Chemical fluxes from sediments are affectedbe temperature in shallow water
environments (Klump and Martens, 1989) or organic carbon input in constant
temperature environments (Sugai, 1987). Temperature changes in any of the basins are
small. The temperature range at the 100 m Monterey Bay station, where variability in
flux is the largest, was 8.7 - 11.3 °C. However, Monterey Bay is known to have large
episodic inputs of organic carbon (Pilskaln and others, 1996). Due to these variations, the
fluxes from the sediments in Monterey Bay may not be in a steady state. The basins are
also known to undergo periodic flushing (Berelson, 1991) and water column profiles may

not reflect the steady state assumed in Equation 6. All flux estimates from multiple years
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were averaged together (Table 6), therefore, before comparing the flux derived by each
method. The Mn flux derived from the 1990 Santa Monica Basin hydrocast data (Coale
and others, 1990) and the lander data from Johnson and others (1992) were also included
in the averaging (Table 6). The standard error (Table 6) was derived from the variability

in each independent calculated flux.
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Table 6. The flux estimates derived from landers, centrifuged core pore water, and
hydrocast values. The fluxes are reported as the mean + the standard error of multiple
year measurements. The standard error was derived from the variability in independent
observations. Units for Mn, Fe and Cu are pmol/m?*/day and for Co are nmol/m*/day.
Station abbreviations are as in Table 1, except MB is the Monterey Bay station. Flux
types are landers, core - centrifuged core pore waters, and hydros - hydrocasts. Fluxes
with a * are believed to be biased due to contamination from the lander. The number of
measurements, N, used for the mean and standard deviation calculations are shown.

Station Flux Mn —-' Co _J Fe "Cu
D Type |Mn SE IN| co [sE|N|| Fe | SE [N} Cu | SE |N|
MB Landers " os7] 1385l = | ¢ | *]| 564 o09apa]| 126] 034fa0]
Core || 063 0.29] 4 1841} 2.69] 5 | o.0ss| oosi| 3]l 0.075] 0.024] 2
| [Bydros oo e ol o e fl - | ] - 1 — |-
SP Landers || 262] 0533 = | = *I|=14.4o s18] 3] 071] 0.12]3 ]
Core || 1.74] 0.33] 1| 094] 0.64 1]l 14031] 1553 i — | - |-
Hydros || 041] 0.16] 1| -0.10[298[ 1] 430 112[ 1] -0.13] 008]1
SM Landers || 1.51| 0.44 5]} « | * *#15.77 2.53 sﬂL 0.64| 064]2
Core | 2.86] 1.27] 2| 3.35] 132 2| 27590| 1358 2l — [ — |—
| Hydros || 2.03] 0.95 3]| 3.26] 0.29] 2 “ ses]  1.07] 1] 136l 03s{1]
CAT Landers || 1.73] 021] 5| * | = | =] 106] o037|5] -003] 035 s |
Core || 8.09| 2.64] 1]| 11.39} 1.99 iff 3679 541 if - | - |-
Hydros || 1.61 | 403 osaf1] — [ — |-
| *,% 137 o071 9d{ 0.10] 0.08|6
2| 116] 070 o -] = |—
2| o75] oos|2] o013} oio0f1
*[* 0.19 006| 6] -0.10] 0.17]3
2| o4s] oasl2f — | — |-
[ 1] o080 osef1ff — [ — |-
«| 010 or2]9] o24] o.10]6]
2 0020 o0o002|2] — | — |—
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Discussion

An initial examination of the average fluxes determined by each of the three
methods in the Southern California Borderland Basins shows that the results for each
metal are generally comparable (Table 6). Even so, examination of the variability of the
average fluxes (Table 6) indicates some significant differences in some cases (e.g.
Monterey Bay data). Since the variances were not similar a non-parametric Mann-
Whitney U statistical test must be employed to test for significant differences between
methods. All three of the methods of estimating flux are not significantly different
(Mann-Whitney U, P<0.10) in 10 of the 13 cases where there is enough data to allow for
a statistical comparison (Table 7). In the cases where only a single flux measurement or
estimate is available for a particular method (e.g. San Pedro Basin), the values generally
agree to within the estimated error of the flux measurement. However, clear examples of
disagreement exist as well. In this discussion, examples where the fluxes agree are first
presented to establish that the methods can yield comparable estimates of metal flux from
continental margin sediments in certain environments. The cases where a significant
disagreement exists are then examined to show that most of these differences can be
explained by fundamental biogeochemical processes. Review of the data suggests that
these exceptions are driven by 4 factors: temporal variability in the flux, difficuity in
estimating pore water gradients, rapid changes in redox potential, and bioirrigation. Each

of these processes will be considered in turn.
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Table 7. Results of single factor Mann-Whitney U tests comparing different methods of
estimating flux. Station abbreviations are as in Table 1. The null hypothesis, H,, and the
calculated probability, P, for each Mann-Whitney U conducted is shown where L -
average lander estimated flux, CC - average centrifuged core estimated flux, and H -
average hydrocast estimated flux as described in the text. Bolded cells signify stations
where the methods are significantly different (Mann-Whitney U, P<0.10). Those cells
with dashes are stations where a calculation could not be made because the measurements
were not replicated or because of measurement error (Cu in pore waters or Co in the
benthic flux chambers).

Station " Mn “ Co “ Fe T Cu
ID(s) I H, 13 JLH" P JL H, E ] H, ig
L=H=CC 0.31 H=CC 1.00 L=CC 0.053 - -
[=CC 0.24 H=CC 0.121 L=H=CC 0.98 - -
L=H=CC 0.92 “ —_ -— L=CC 0.74 - -
L=CC 0.64 “ — - L=CC 048 —_ —
L=CC 0.002JL - - L=CC 0.003 L=CC 0.25
Flux Agreement

The fluxes of dissolved Mn, Fe, Co, and Cu from Santa Monica and San Clemente

Basins sediments for each method are compared in Figures 21 and 22. Santa Monica

Basin has low bottom water O, (~10 uM, Table 2) with no macro-fauna present

(Berelson, 1985; Christensen and others, 1994; Gorsline, 1992). These sediments are
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anoxic or reducing up to the bottom water interface (Jahnke, 1990). Consequently, this
basin should not be influenced by bio-irrigation. Conversely, San Clemente has a much
higher O, concentration (62.0 uM, Table 2) and it may be somewhat influenced by macro
fauna (Townsend and others, 1996). Using the distribution of Mn (Froelich and others,
1979) or NO, " (Heggie and Lewis, 1984) as a proxy for oxygen penetration depth, it is
apparent that the sediments in San Clemente Basin (Figure 7, Appendix 1) become
oxygen deficient at ~1.5 cm and Fe reduction to a form detectable by the analytical
method does not begin until a depth >5cm (Figure 8).

The Mn fluxes that were estimated from the landers, the pore water gradients, and
the water column gradients were not significantly different (Table 7, Mann-Whitney 8]
P<0.10) in either Santa Monica or San Clemente Basins. It appears that all three methods
of estimating flux can give comparable results in each of these basins. Further, it is
interesting that the Mn flux is relatively similar for all three methods in both low and high
oxygen conditions (Mann-Whitney U, P<0.10). The Mn flux in Santa Monica Basin is
only moderately higher (~1 - 2.5 times greater) than in San Clemente Basin. This
confirms the results of Johnson and others (1992) that the Mn flux is not dramatically
elevated under low oxygen conditions as was previously proposed by others (Martin and
others 1985).

The three methods of estimating Fe flux also appear to agree in the oxygenated
waters of San Clemente Basin. The lander and the centrifuged core derived estimates of

the Fe flux are not significantly different (Table 7, Mann-Whitney U P<0.10). There is
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only one replicate for the flux derived from the gradients in the water column, but the
mean + standard error of this estimate lies within the mean + standard error interval of the
other two methods (Figure 21, Table 6). However, the lander and centrifuged core
methods for estimating Fe flux in Santa Monica Basin are significantly different from
each other (Table 7, Mann-Whitney U P<0.10). Again there is only one replicate of the
flux derived from the water column, which precludes statistical comparison. It is much
lower than the other values, however. The pore water metal gradient gives the highest
flux, the benthic lander gives a value 17.5 times lower and the water column gradient
yields a value 37 times lower. Further, the Fe fluxes observed by all three methods in the
low oxygenated water of Santa Monica Basin are at least 9 times greater than any of the
Fe fluxes estimated in San Clemente Basin (Figure 21, Table 6). The cause of these
differences is probably related to the strongly reducing conditions in this basin. Iron is
stable as Fe(II) in the porewater (Millero and others, 1987) which is oxidized and
scavenged as Fe(TIl) as it leaves the sediments. This removal of Fe is discussed further
below.

Cobalt lander flux estimates (Figure 22, Table 6) were not presented because the
samples appear to be contaminated. There is no regular pattern in the lander fluxes when
stations are plotted versus depth and the fluxes are not repeatable. The contamination
may be related to the blue paint coating the stainless steel housing for the temperature
sensors on the O, electrode in the flux chambers. Only fluxes based on water column and

pore water gradients are compared. The Co fluxes in Santa Monica Basin are averages of
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multi-year data. The two methods are not significantly different (Table 7, Mann-Whitney
U P<0.10). In San Clemente Basin only one year of hydrocast data is available (Figure
22, Table 6). The statistical comparison of the two methods is not justified, therefore.

Copper fluxes are only available for one year of data (Figure 22, Table 6). The
estimates of flux determined by the lander and the hydrocast in Santa Monica Basin are
not significantly different although the measurements are not replicated. Pore water
values are not reported for Cu because high Fe values appear to interfere with the

chemiluminescent Cu measurements.
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Figure 21. A comparison of flux estimates of Mn (A, B) and Fe (C, D) in Santa Monica
(SM) and San Clemente (SCI) Basins. In the plots, L is the lander calculated flux, CC is
the centrifuged core estimated flux, and H is the hydrocast estimated flux. The standard
error of multiple year averages or the standard error of the analytical estimate for a single
year is shown. The fluxes shown are the average of multiple year data where available, or
of a single year data where not (Table 6).
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Figure 22. A comparison of flux estimates of Co (A, B) and Cu (C, D) in Santa Monica
(SM) and San Clemente (SCI) Basins. Flux types are as in Figure 21. The standard error
of multiple year averages or the standard error of the analytical estimate for a single year
is shown. Co lander flux is not shown due to sample contamination (Table 6). Copper
values are not available from the hydrocasts in the SCI basin or the centrifuged cores in
either basin. Only one year of lander data was available for the Cu fluxes. Co fluxes are
averages of mult-year data for CC and H estimates in the SM basin, while only one year
was available for the H estimate in the SCI basin.
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Biogeochemical Processes Effecting Flux

Temporal Variability

Temporal variability in metal flux can account for some of the differences
observed. This can be seen in basins where there are several years of data. In this
respect, Santa Monica Basin is the best studied (Figure 23). This basin has low bottom
water oxygen (Table 2) with no macro-fauna present (Berelson, 1985) and temporal
variations due to bio-irrigation can be ignored. Even so, all three estimates of flux show

that there is significant temporal variation between vears. Lander and centrifuged core

flux estimates in 1995 are ~2.5 times the 1994 estimates. Hydrocast flux estimates differ
in that the 1994 values, are ~2.9 times the 1995 values and ~4.6 times those measured in
1990. The elevated hydrocast flux estimate could be due to a flushing period occurring
during 1994 and 1995 as described by Berelson (1991), to resuspension of sediments
during hydrocast sampling, or that the 1994 hydrocast samples were not filtered before
analysis. Since the 1995 hydrocast estimate is only moderately higher (~1.6 times) then
the 1990 estimate, resuspension of sediments or particles in the unfiltered samples are the
most likely causes of the elevated 1994 estimate.

The temporal variability in Mn flux in Santa Monica Basin demonstrates that
these systems are not at a steady state. Multiple measurements of flux over time are

required to accurately estimate metal fluxes. Differences between years can range from
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two (lander) to five times (hydrocast). Care must be taken when interpreting the results if

relying only on a limited data set.
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Choice of Pore Water Gradient

The choice of the correct pore water gradient for flux calculations can present
difficulties with trace metals because of the sharp changes in their profiles (Froelich and
others, 1979; Shaw and others, 1990). As an example, consider the pore water Mn profile
in the San Clemente Basin, Teflon ‘94 data (Figure 7). Examination of the surface
sediments reveals a sharp change in Mn concentrations that occurs after the first two
sediment samples (Figure 24). Either the first 3 points at 0, 0.25, and 0.75 cm, or the first
5 points can be chosen to estimate the gradient. The 3-point gradient agrees best with the
independent lander and hydrocast estimated fluxes. Apparently there is a sharp increase in
the Mn gradient beyond the first 1 cm of sediment. Oxygen must penetrate into the
sediment and oxidize Mn?* in the upper 1 cm, which reduces the concentration gradient at
the sediment-water interface. However, few investigators would rely on three points
without corroborating evidence. As a result, metal flux estimates based on pore water

gradients can have a large bias.
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Figure 24. Pore water flux estimate resulting from the choice of two different gradients
to use in the calculations. Looking at the surface sediments (A, B) of the Mn pore water
profile from San Clemente Basin (Figure 7), during the Teflon ‘94 cruise (Figure 1, Table
1), two gradients’ one of two points (A) and one of five points (B) are possible. The flux
estimates from the lander (Land), the hydrocast (Hydro), the 3-point gradient (Grad 1),
and the 5-point gradient (Grad 2) at the same station (C).
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Changes in Redox Potential

The depths in the sediment column that trace metals are remobilized are governed
in part by the penetration depth of oxygen into the redox reactive sediments. Under low
bottom water oxygen conditions oxygen is depleted at the sediment-water interface. This
leads to large redox gradients in a few millimeters distance. The compression of redox
zones in low bottom water oxygen environments (Shaw and others, 1990) creates a very
large gradient and leads to a high metal flux at the sediment-water interface. However, if
the metal undergoes rapid changes in oxidation state, then little of it may actually escape
the sediments. For example, Fe (IIf) is poorly soluble in the presence of O, (Millero and
others, 1987), while Fe(Il) is much more soluble under reducing conditions. Fe(Il) can
oxidize to Fe(Ill) quite rapidly (Millero and others1987) which will trap the Fe within the
sediments.

The low O, environment of Santa Monica Basin is an area where Fe oxidation
states may change rapidly at the sediment-water interface. The Fe concentrations in water
above the sediment-water interface (23.1 nM) are much lower than in the pore waters (88-
142 uM), therefore the gradients in the pore waters are large (Figure 25). The Fe flux
predicted from this gradient is much larger than observed with the benthic flux chamber
(Figure 25). The expected flux based on the pore water gradient is not realized because
iron is trapped upon oxidation within the upper few millimeters of the sediments. The
sampling interval fails to resolve the small gradients over which redox transitions occur.

Thus these pore water estimates of flux results are high. In turn, the benthic lander based
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flux estimate is larger than that based on accumulation of Fe in the water column (Figure
25). Evidently, Fe oxidation and scavenging are continuing in the water column above
the lander, but below the depths resolved by the hydrocasts. In this case the best flux

estimate may be that based on the water column accumulation rate of Fe.
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Figure 25. The effect of changes in redox potential due to low bottom water O,
concentrations in the Santa Monica Basin, Teflon ‘94 pore water profile of Fe (top panel).
The top panel shows the gradient of the surface pore water values. The fluxes measured
from the lander (L), calculated from the centrifuged core (CC), and the hydrocast (H) are
shown in the bottom panel.
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Bio-irrigation Effects

The solute transport model based on the gradient in pore water concentrations of
metals is premised on the assumption that molcular diffusion accounts for all the
transport of solutes (Berner, 1980). The model does not take into account the advection
of pore waters due to bio-irrigation of sediments nor does it account for chemical
reactions in the sediments. Advection will increase the flux and fluxes based on pore
water gradients will underestimate the correct value (Archer and Devol, 1992; Bemer,
1980). On the other hand, the lander integrates the flux due to both diffusion and bio-

3 s v amm wm Vot

irrigaiion and provides a more realistic cstimatc © in sediments of high biological
activity. Monterey Bay is known to be highly bio-irrigated (Berelson, 1996 personal
communication) and this effect should be apparent in a comparison of the lander and
centrifuged core derived fluxes (Figure 26). The lander calculated fluxes of Mn, Fe, and
Cu are 15 to 85 times greater than the centrifuged core fluxes. It is apparent that
bioirrigation plays a major role in controlling metal flux from shallow sediments where
there is a well developed infaunal population. Bioirrigation has even been found to have

a significant effect across the continental shelf to a depth of 200 - 600 m (Archer and

Devol, 1992; Devol and Christensen, 1993; Johnson and others, 1992).
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Figure 26. The effect of bio-irrigation on pore water estimated fluxes (CC) of Mn, Fe,
and Cu are compared with the lander measured fluxes (L) from the Monterey Bay station
(Figure 2, Table 1).
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Conclusions

Estimates of flux from landers and modeled hydrocast or pore water data
generally agree (Figures 21 and 22). Where they do not agree, differences can be
attributed to: temporal variability in the environment (Figure 23), inability to resolve the
correct pore water gradients (Figure 24), precipitation reactions occuring within the first
few millimeters of sediment (Figure 25), and increased flux due to bio-irrigation (Figure
26).

So what is the most useful method of estimating flux? Pore water derived fluxes,
underestimate the actual flux if there is high bioirrigation (Figure 26). They can also
overestimate the flux of redox reactive metals if the redox gradient is near the sediment-
water interface as occurs in low bottom water O, conditions (Figures 24 and 25). Flux
estimates based on water column profiles can only be calculated in basins where
horizontal advection is minimized. Therefore, benthic flux chambers (landers) provide
the most useful and direct measurement of flux over a variety of sediment environments

where the above-mentioned processes may occur.
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Appendix 1. A. Hydrocast data and flux estimates. B. Centrifuged core pore water data
and flux estimates. C. Lander data and flux estimates.
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Appendix la. Hydrocast data and flux estimates. Cruise names and station abbreviations
are as in Table 1, except for the previously unpublished data from a 1990 cruise to Santa
Monica Basin - PS90. Units for the data are given. Flux is expressed as pmol/m?*day for
Mn, Fe and Cu and as nmol/m?/day for Co. By convention a positive flux is taken as
coming out of sediments. Dashes indicate stations where a flux measurement could not
be arrived at either due to sample contamination or suspect data.
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Appendix 1b. Centrifuged core pore water data and flux estimates. Cruise and station
abbreviations are as in Table 1. Sample depth and porosity are determined as described
in text. Units for the data are given. Flux is expressed in units of umol/m?*/day for Mn,
Fe, and Cu and in nmol/m%day for Co. Dashes indicate stations where a flux
measurement could not be arrived at either due to either sample contamination or suspect

data.
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Appendix lc. Lander data and flux estimates. Cruise names are as in Table 1 except for
Monterey Bay data that was added from Johnson and others (1992). Station abbreviations
are as in Table 1 followed by a lander number. For exampie TB-7 would be Tanner
Basin, lander 7. The Monterey Bay data added have station designation’s T1-11 and T2-
7 Each lander has three chambers designated blue, red, and yellow with, 6 samples being
drawn from each designated 1 thru 6. Chamber height and draw times are as described in
the text. Data for Mn, Co, Fe, and Cu has been corrected for dilution and is expressed in
the units shown. Flux is expressed in the units of pmol/m?*day for Mn, Fe, and Cu.
Dashes are included for the Co flux since the samples are believed to be contaminated as
described in the text. Missing data is from an observable malfunctioning chamber or was

rejected for reasons such as given in Berelson, and others (1987b).
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Appendix 2. Flux estimates for each station by year. Multiple chambers from landers are
averaged together. Cruise and station abbreviations are as in Table 1 except hydrocast
data from Pt Sur ‘90 (Appendix la) and the first two years of Monterey Bay data
(Appendix lc). Flux is expressed in units of ymol/m?/day for Mn, Fe, and Cu and in
nmol/m?/day for Co. Dashes indicate stations where a flux measurement could not be
arrived at either due to either sample contamination or suspect data.

Cruise Flux From Station Mn Mn SE Co CoSE Fe FeSE Cu CuSE
Pt Sur 90 Hydrocast M 0.84 0.12
Teflon '94 Landers SP 262 053 — —_ 14.40 518 0.712 0.118
SM 079 005 -— — 12.47 491 0.643 0.638
CAT 1.73 021 — — 1.06 0.37 -0.027 0.346
TB 023 025 -— - 1.61 .09 0.105 0.077
SCl1 071 029 — —_— 0.29 0.06 -0.097 0.167
PE 034 0.18 — — -0.18 0.12 0.236 0.099
Centrifuged Core SP 1.74 0.33 0.94 0.64 14031 15.53
Pore Waters SM 1.59 029 042 0.15 26231 71.68
CAT 809 264 11.39 1.99 36.79 5.41
TB 1.50 0.25 1.11 0.56 1.86 0.29
SCi 0.574 0.002 3.83 3.52 0.92 0.71
PE 0.08 0.02 0.18 0.45 0.02 0.00 0.i33 0.040
Hydrocasts SP 041 0.16 -0.10 -298 4.30 1.12 -0.126 -0.078
SM 391 089 297 1.50 5.65 1.07 1.357 0354
CAT 1.6t 026 — — 4.03 0.54 - -—
TB — - 4.86 1.92 0.67 0.20 0.126 0.103
SCl 1.09 091 — — — - -— —
Teflon '95 Landers SM 199 060 —- — 17.97 2.71
TB 1.69 082 — — 0.90 0.12
sc1 .1.99 054 — - 0.08 0.04
PE 0.28 021 — —— 0.06 0.29
Centrifuged Core SM 4.13 240 4.67 5.97 289.48 110.53
Pore Waters TB 0.63 O0.11 1.79 0.74 0.46 0.07
SCi1 260 054 10.14 1781 0.05 0.01
PE 0.019 0.010 0.748 0.017 0.02152 0.00007
Hydrocasts SM 1.33  0.17 3.55 2.82
TB 0.55 0.18 2.27 1.57 0.82 0.20
SCl1 0.98 048 2046 9.99 0.80 0.56
Monterey Bay Landers Ti-11 9.06 095 - — 1.26 0.16 146 095
T2-7 602 153 — — 3.84 056 140 0.49
TS1 1771 7.12 - — 7.01 2.53 3.657 1.757
TS2 11.07 1.50 — — 497 1.93 1.150 0.649
TS3 3.00 114 — — 204 058 0.024 0.164
TS4 444 075 — — 6.34 1.62 0.650 0419
TSS 17.02 345 — - 10.79 3.91
Centrifuged Core TSI 0.22 0.17 15.06 6.97 -001 0.02
Pore Waters TS2 0.32 0.12 12.80 4.33 0.05 0.01
TS3 046 0.13 18.85 644 0.152 0075 0.10 0.04
TS4 1.50 0.18 16.99 5.25 0.07 0.02
TS5 18.82 1.21 0.05 0.03
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