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ABSTRACT

A NEURAL NETWORK BASED CLASSIFIER FOR THE

IDENTIFICATION OF SIMPLE FINGER MOTION

by Michael Heinz
The question of whether electromyographic data from a single region of the forearm can
be used to distinguish between various simple classes of finger motion is examined.
Extensive clustering of data is performed to identify useful features for pattern
 classification. Sets of neural networks are trained to classify movements from each
possible pairing of fingers. A multi-layered neural-fuzzy network is constructed to address

the five-finger classification problem.
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1. Introduction
1.1 Description of Problem

Over the past several decades, investigators have increasingly exploited the
detection and analysis of various biological signals for use in applications such as the
medical diagnosis of disorders, control of artificial prosthesis, and the enhancement of
human-computer interfaces. One of the areas of investigation has been the use of
electromyographic (EMG) signals. Surface EMG signals are the result of the gross
electrical activity from a large ensemble of individual muscle fibers, and thus depend upon
the properties and activities of both individual nerves as well as entire muscle groups.
These signals can be detected using current surface electrode technology, and the speed of
modermn computer systems makes the real-time analysis and discrimination of the various
classes of signals an increasingly viable option. This makes possible, for instance, the real-
time control of prosthetics by handicapped individuals, or the enhanced manipulation of
virtual reality type environments by computer users. In addition, recent theoretical work
in the adaptive processing of signals has greatly increased the arsenal of tools that
researchers can apply to such problems. Current efforts include the use of artificial neural
networks (ANN), fuzzy logic, and genetic algorithms, in addition to more traditional
signal processing tools [1,2,3,4].

This paper outlines the design and testing of a system that attempts to use EMG
data from only a single region on the forearm to distinguish which of the hand's five digits
is being lifted from a rest position (palm down, arm resting on table). The task of

distinguishing between any given pair of fingers is first considered. The more difficult



question of being able to distinguish between any one of the five fingers being raised (one
at a time) is then considered. It is hoped that these efforts will eventually lead to robust
finger motion classification systems that are largely independent of precise positioning of
the sensory apparatus.

1.2 History of EMG Research

The study of the electrical nature of the human body has a long history. The
German physiologist Emil Heinrich Du Bois-Reymond first reported the measurement of
tiny electrical signals caused by the contraction of the muscles in his arm in the year 1849.
Working without the benefit of modem electronic amplification equipment, Du Bois-
Reymond had to induce a blister on each of his arms, remove the skin, and place his saline-
soaked paper electrodes within the resulting wounds in order to bypass the electrical
resistance of the skin [S].

Modern researchers (and test subjects) are more fortunate. Current electronic
amplifiers, together with modern silver chloride electrodes, make it comparatively easy to
measure EMG signals from the surface of the skin. Such signals were first utilized in the
1970°s when researchers began to create prostheses that could operate by sensing the
contractions in muscle groups. The application of these techniques to unimpaired muscles
began to make it possible for even profoundly handicapped individuals to manipulate
electronic equipment. One recent example of this occurred in 1993 when researchers at
Loma Linda University Medical Center were able to provide a child who was completely
paralyzed below the neck with the ability to move objects on a computer screen, keying

upon signals detected from the boy’s face [3].



1.3 Prior Related Work

ANN’s have recently been applied to signal processing tasks in which the pattern
classification to be performed is ill-defined or complex. Neural network structures su;:h as
the adaptive linear combiner have been used in conjunction with the least-mean-square
(LMS) and other adaptive signal processing algorithms to create efficient, adaptive pattern
classifiers [6]. Backpropagation and other techniques have greatly improved the
supervised learning efficiency of muiti-layered ANN’s. In many instances, ANN’s have
proven more robust than rule-based expert systems ‘in- dealing with noisy environments,
and have been easier to train since they do not require intricate and potentially unreliable
heuristics. The intrinsically parallel nature of many neural network architectures means
that correspondingly parallel special purpose hardware could be constructed if greater
processing speed is required. Finally, ANN’s lend themselves to the application of fuzzy
logic, which take advantage of the system architect’s a priori knowledge of the ss'stem
[3.4].

It should be noted that ANN’s also have disadvantages when used in signal
processing. Among them is the “black-box™ nature of the ANN [7], which makes it
difficult to use the final algorithm to gain any intuitive insight into the system that is being
analyzed. Without citing examples, there seem to be instances in the literature in which
ANN’s are “thrown at” various problems without regard to the rigorous modeling of the
system under study, and with no appreciative increase in understanding of the system once

the results have been obtained. Additional difficulties with ANN’s include the task of



finding adequate databases for both training and validation of the network, and the
potentially lengthy training time that some networks require [7].

It should be noted that there are other analysis techniques that sometimes produce
end products that offer no intuitive insight into the system. In one recent example, a team
of researchers at Rice University used genetic algorithms to evolve a program to help
control a prosthetic hand. Part of their software analyzes the nerve impulses picked up by
three electrodes taped around the wrist and can tell, “with perfect accuracy,” which way
the subject’s thumb is moving. The program reportedly contains-a single line so long that
it fills an entire page and contains hundreds of nested parenthetical expressions. No one
knows why the expression works [8].

While the emphasis of the current work will be to build on recent investigations of
the EMG (see for instance [9,10]), it is interesting to note that these techniques are
currently being applied to the analysis of other types of biologically generated signals such
as the electroencephalogram (EEG) and the electrocardiogram (EKG). In one such
example, fuzzy logic was used to classify EEG data from a human subject into the
categories of wakefulness and of five different states of sleep [3]. The algorithms
succeeded in sorting 1101 epochs of data with a 77% success rate. In another study [11],
a neural network classifier (a Kohonen learning vector quantizer) was used to analyze an
EEG with the intention of predicting which hand the subject would use to press a switch.
A testing set of size 250 was used with a 78% success rate. These and many other

examples show the broad appeal of the analysis techniques being considered.



2. Data Acquisition

This section first discusses the hardware used to acquire the EMG data used in the
study. The specific data acquisition (sampling rate, arm positions, etc.) are then
considered. The filtering and preprocessing of the data are then discussed.

2.1 The BioMuse™

Data acquisition and signal preprocessing were performed using the Biomuse™
system which is manufactured by Biocontrol Systems Inc. The system detects changes in
the EMG potential on the surface of the skin through a set of surface electrodes that
provide differential signals covering the relevant sensitivity range of 0.5-10,000 pvolts.
Although only one pair of differential signals was used in this study, the system is capable
of supporting up to four such pairs of signals.

The signal path gain was on the order of 10,000, with initial Nyquist filtering being
provided by a fourth-order Butterworth low-pass filter. After the filtering, twelve bit
analog to digital conversion was applied to render the data accessible to the BioMuse’s™
digital signal processor, a TMS-320C25. The DSP communicates with a PC host via an
RS-232 serial connection. Real-time transmission of data to the PC host is limited to
500Hz due to the speed limitations of the RS-232 connection.

2.2 Specific Data Acquisition Used in This Study

The EMG signal was sampled at 500Hz and recorded in epochs of up to 30
seconds. The test subject's arm was resting on a table, and the thumb and each finger
were sequentially lifted off of the table to create five different categories of test signal.

Four such sets of data were collected from four different positions on the arm: the medial,



central, and lateral areas on the bottom of the forearm, and the central part of the top of
the forearm (see Figure 1). Subsequent analysis of the data from these four distinct arm
positions was carried out independently of each other, as the goal was to identify a single

measurement region that would provide enough signal information to determine which

digit was being lifted.
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Figure 1: Data Sampling on Right Arm
2.3 Filtering and Preparation of the Data

Spectral information, as provided by application of the Fourier Transform to raw
EMG data, was chosen as the basis of the feature set to be used for signal classification.

This choice of feature sets is in no way unique, and was partly biased by the author’s



background in physics. The scientific literature is filled with analyses concerning the
complicated way in which the attenuation of electromagnetic radiation through various
media depends strongly on the frequency of the radiation (see for instance [12]). It was
hoped that the attenuation of the various frequencies of electrical signals, the
superposition of which provided the detected EMG data, would cause a sufficiently rich
variation in the different classes of signals. Mathematically, the choice is reasonable
insofar as any periodic signal can be completely characterized by its Fourier
characteristics. Of course, the degree to which a short interval of EMG data (0.2 seconds,
in this case), can be considered periodic, much less stationary, is variable.

Data associated with each digit and each measurement position was preprocessed
by being separated into 100-point (0.2 second), non-overlapping segments that were then
Fourier transformed and low-pass filtered to obtain estimates of their spectral content.
The choice of 100 points was made empirically based on early results that suggested that
this would be a large enough frame size to obtain a frequency resolution that provides a
sufficiently diverse set of features for accurate classification. This choice of frame size was
also small enough to reduce the non-stationary effects of the signal. The resulting
transformed data sets contained data points for each of the 20 possible
finger/measurement combinations. Each data point contained 51 features, corresponding
to the frequencies from 0Hz (DC) through 250Hz (the sampling Nyquist frequency) in
5Hz intervals. Separate portions of this data were used for training and for testing of the

finished networks. In the case of the five-finger classifier system, a separate validation



data set was used to measure the final system performance, since the test sets were used to
determine the point at which system training should be terminated.

Additional processing of the data took the form of smoothing in the frequency
domain using a three-tap moving average filter (with “wrap around” at either end of the 51 -
feature “data point”). This also was an empirical choice based on the observation that the
resulting 51-tuples provided pairs of features that gave generally better clustering resuits
as measured by the metric discussed in the next chapter. Quantitatively, circular
convolution by a moving average filter in the frequency domain is equivalent to
multiplication in the time domain by a portion of a sinc function. One could argue that
similar improvements in clustering might be obtained by attenuating in some way the
magnitudes of the data points in the 100-point raw data, as would happen if those points
were scaled by the lobes of the discrete sinc function. The author offers no statement to
the effect that this approach was uniquely appropriate, but rather that it was. useful in
improving the overall separation of the various classes of data in this system.
Qualitatively, the filter had the effect of rounding the sharp edges (high frequency
changes) of the features in the frequency domain. Examples of the same thumb data in its
raw, Fourier transformed, and final smoothed forms are shown in Figures 2-4.

3. Data Clustering and Feature Selection

This section considers the application of data clustering algorithms to the problem
of selecting useful features for solving the finger classification problem. The application of
clustering to pattern recognition is first discussed. The specific clustering algorithms, K-

means and nearest neighbors, are examined, and the results for the 2- and S-finger
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Figure 2: Raw Thumb Data - Bottom Center of Forearm, Dr. Benjamin Knapp
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Figure 4: Thumb Data After Moving Average Filter



classification problems are given. A reasonably general metric used to measure the
success of the clustering is presented, and its shortcomings are discussed.
3.1 Use of Clustering in Pattern Recognition

Cluster analysis is the process of classifying objects into sets that are relevant in the
context of a particular problem. Ideally, an astute application of clustering techniques to a
set of training data leads to the objects being organized into an efficient representation that
accurately characterizes the complete population being considered. Clustering algorithms
are an example of unsupervised learning, since no correct classifications need be supplied
in order to train the clustering algorithm. This fact was key to the application of clustering
to the problem at hand. The high dimensionality of the processed data (51 features) made
the direct visualization of the data impossible. Since the number of combinations in which
small numbers of features could be selected was large, clustering was used extensively to
assess the success with which a given set of features separated the relevant classes of data.
3.2 Clustering Algorithms

The K-means and nearest neighbors algorithms are thoroughly discussed in the
literature, and will only be briefly summarized here. Data sets that favor each algorithm
will be considered.
3.2.1 K-means Clustering Algorithm

The K-means algorithm [13] requires that the user supply the number of clusters
the algorithm is to deliver. This implies that the analyst has a priori knowledge of the
number of clusters into which the data should naturally be separated, or that some test of

the clusters’ validity will be brought to bear. The algorithm first assigns one data point to
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each cluster arbitrarily, with that point trivially becoming the cluster center, and then
assigns each of the remaining data points to the cluster with the closest cluster center.
The new cluster centers are then computed based on the new cluster memberships, and
reassignment of each point’s cluster memberships is once again performed based on which
cluster center is closest to that point. The process continues until no further changes
occur, and is guaranteed to terminate. A cluster center is taken to be the center of mass of
the points in the cluster, with all points equally weighted, and all distances are taken (in
our case) to be Euclidean. K-means runs fairly quickly, with termination in data sets of
200 points typically occurring in six to eight passes through the data set. (It is interesting
to note, however, that optimal K-means clustering, relative to some user specified
performance metric, is an NP-complete problem [14]. The author also found, to his
surprise, that the algorithm can, in rare cases, return fewer clusters then were requested.)
Because K-means cluster centers migrate to the center of mass of c.iense sets of
points, the algorithm tends to perform well on sets of data in which each class of data is
well separated in space. Examples include classes that can be easily separated by a line,
plane, or hyperplane (Figure 5). In contrast, the algorithm typically performs poorly when

classes of data are radially symmetric, and thus share common centers of mass (Figure 6).
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3.2.2 Nearest Neighbors Clustering Algorithm

The nearest neighbors algorithm requires that the user supply a parameter (t) that
constitutes the maximum distance between two points for which they will still be
considered to be members of the same cluster. The algorithm then begins with a single
point, collects all points that belong to the same cluster as that point, and then starts a new
cluster and continues the process until no points are left.

To obtain some user specified number of clusters using this algorithm, it may be
necessary to try a number of different t’s, with larger values producing fewer clusters and
vice versa. This search can render the algorithm computationally expensive. In general,
the t that provides some given number of clusters is not unique. Also, two different t’s
may deliver the same number of clusters, but with somewhat different cluster
memberships. Some pathological data sets may not be able to be clustered using this
algorithm, all though this ﬁrely occurs in practice. An example would be the vertices of a
cube, which this algorithm could separate into one or eight (trivial) clusters, but no
number of clusters in between.

If the data to be clustered does not lend itself well to this algorithm, then the
number of clusters produced may be extremely sensitive to small changes in t, as would be
the case with the data in Figure 5. However, the algorithm can perform extremely well on
classes of data that have some spatial separation between them, regardless of the relative
proximity of the data sets (as in Figure 6). The algorithm also performs well when dealing
with data sets that have a smaller intrinsic dimensionality then the space in which they are

embedded (Figure 7).
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3.3 The Clustering Metric Used in This Study

Just as there is no all purpose clustering algorithm that fills every need, there is no
general metric that can be used to judge the success of clustering in all situations. The
degree to which clustering succeeds has to be evaluated in terms of the context of the
problem that is to be solved. Nevertheless, in this study many thousands of sets of data
were clustered and an automated way of accessing the clustering was required. Since in
all cases the data came from two classes with each point’s correct membership already
known, the question of how well the clustering has succeeded in separating the data can
be considered from two points of view: the simple labeling of the points (correctly or
incorrectly classified), and the location of the incorrectly classified points. The

classification of the points can be addressed in a straight-forward manner by choosing the

14



most favorable of the two possible mappings between the two classes of input data and the
two sets returned by the clustering algorithm. Specifically, if set A contains M data points
and set B contains N data points, and if clustering results in m points in set A being
correctly classified and n points in set B being correctly classified, then the metric retumns
max{(m+n)/(M+N), 1-(m+n)/(M+N)]. Thus, if Figure 8 contains the correct classification
of two sets of data that are to be clustered as one set of points, then Figures 9 and 10
contain equivalent classifications of this data. The metric that was used in this study
would return 0.9 for both of these classifications, on a scale that ranges from 0.5 (because
the two classes contain equal numbers of points) to 1.0 for a perfect classification of the
data.

It is important to note that this metric ignores the geometrical aspects of
incorrectly classified data. The metric would, for instance, return 0.9 as the score for the
classification illustrated in Figure 11, just as it would for Figures 9 and 10. Most
observers would judge the manner in which the data is classified in Figure 11 to be
qualitatively inferior to that of Figures 9 and 10, and the degree to which this difference
matters again depends on what is important in the system under study. Given the large
number of data sets to be analyzed and essentially no prior information on the distribution
of the data, it seemed difficult to tailor a metric to take into account these subtleties.
However, as will be discuss;ed in detail in later sections, it was found that the clustering
was fairly successful in generating useful data classifications (many results above 0.9 for 2-
finger classification and above 0.8 for 5-finger classification) and that the data sets

separated reasonably well in space (favorable to K-means).
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Feature 1 Feature 1
Figure 8: Correct Classtfication Figure 9: Sample Clustering -
of Data . Metric Returns Score of 0.9
Feature 1 ' Feature 1
Figure 10: Sample Clustering - Figure 11: Sample Clustering -
Metric Returns Score of 0.9 Metric Returns Score of 0.9

3.4 Results of the Clustering Runs
3.4.1 Two-Finger Clustering

In order to select effective sets of features to provide input to the neural network
classifiers, extensive éfforts were made to cluster the data using both the smoothed and
un-smoothed data sets (see section 2.3), and using both the K-means and nearest neighbor
algorithms. In the case of classification between pairs of fingers, the training data from all
four arm positions was grouped into ten sets corresponding to all combinations of data
from five fingers taken two sets at a time. These ten sets of data were then clustered using
all combinations of both one feature and two feature pairings (51 cases for one feature,
1275 for two features). A total of 2*2*4*10*(51+1275) = 106,080 clustering runs were
performed. In this way, a search was made for what would hopefully be near optimal sets

of features that could be used to discriminate between any given pair of digits.
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In all cases, the K-means classification results proved to be superior to the nearest
neighbor classification results, and the smoothed data classified as well or better than the
un-smoothed data. Clustering by pairs of features provided results superior to the clusters
generated from individual features, as would reasonably be expected. Because of the large
dimensionality of the feature space, exhaustive searches of feature sets containing more
than two features would not be practical, although selective searches by genetic or other
means might prove effective.

General results of the clustering runs indicated that the central location on top of
the forearm provided the most favorable separation of the five classes of signals when
considered in pairs. Favorable sets of features, selected from among the best clustering
data, and recorded from this location, are summarized in Table 1. These features were
selected as the inputs to the neural network classifier described in section 4.1.

3.4.2 Five-Finger Clustering

In the case of classification between all five fingers, the training data was grouped
into five sets corresponding to all combinations of data from one finger versus the other
four. Because of the results discussed in section 3.4.1, clustering was performed using
only the K-means algorithm, and only using smoothed data. Once again, all combinations
of one feature and two feature pairs were considered, and data from all four arm positions
was analyzed. A total of 5%4*(51+1275) = 26,520 clustering runs were performed.
General results of the runs indicated that the central area on the bottom of the forearm
was marginally superior to the other sites, and all further work was performed with data

from only that location.
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4. Supervised Learning - Neural and Fuzzy Classification of Data

This study was primarily intended to address the application of neural and neural-
fuzzy networks to the EMG classification problem. The literature is filled with many
variations of neural network architectures (see, for instance, {7]), and this study was once
again not intended as a survey of all alternatives, but rather as an investigation of one set
of choices. The neural network structure used in the 2-finger classification problem is
discussed in section 4.1, and—th-e n;!ural-ﬁxzzy system constructed for 5-finger classification
is discussed in section 4.2.
4.1 Two-Finger Classification Efforts - Radial Basis Function Neural Networks

The radial basis function network (Figure 12) is a two-layer neural network. The

hidden layer contains neurons that produce a significant non-zero response only when the

Radial Basis Layer Linear Layer
Data Radial _
i is |Sixl i
Ty ot Vs ot 3 o o [ o [ B o
2 Features Bias Bias
Selected Sixl 1

Figure 12: Two-Finger Radial Basis Network Classifier

input falls within a small region of the input space. In this study, the transfer function for

each hidden neuron was a Gaussian transfer function of the form [15]:

radbas(n,b) = e -(b*n)"2
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as implemented in the MATLAB Neural Network Toolbox. The output layer of the
network consists of a linear combination of the outputs of the hidden layer neurons.

The only design constants in a radial basis network are the number of neurons used
and ﬂ;e-sprea_d_ (®) Ac;>f the Gaussian transfer functions. A variety of spreads were tested on
the training data il an effort to optimize the performance of the network on each 2-finger
classification problem. The number of hidden neurons used and the placement of these
neurons in the input space was controlled using an orthogonal least squares learning
algorithm available in the MATLAB toolbox [15] and first discussed in [16]. The
algorithm chooses each radial basis function center one by one in such a way that each
new center maximizes the increment to the energy of the desired output and does not
suffer numerical ill-conditioning problems. In this way, the algorithm requires only one
pass of the training data and the choice of centers is directly linked to the reduction of
error signals.

4.2 Neural-Fuzzy Based Five-Finger Classifier

The five-finger classification network used in this study is shown in Figure 13.
Each of the five neural network blocks (NN1, etc.) is a radial basis network with an
architecture of the type described in section 4.1. However, instead of each neural network
being trained on a two-finger classification problem, each network was trained to
distinguish one digit versus all others. For instance, NN1 was trained to distinguish the
thumb versus any of the other four fingers. Thumb-like responses were trained to produce
the value 1, while other responses were trained to produce the value -1. Each of the five

networks was provided with input information from two features determined through
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clustering to be favofable to that particular classification problem. In initial efforts, the
output of the five neural networks was evaluated directly, with the maximum value being
taken as an indicator of which digit the network was choosing. Thus, if NN2 produced an
output of 0.8 and the other outputs were -0.3_, -1.1, 0.3, and -0.7, the classifier would
condgdq that rthe index finger was being raised.

Experim‘enis with the network described above led to the discovery that many of
the output ranges on the neural networks (NN1 - NN5) were skewed relative to the ideal
mapping range of [-1 1]. While many of the networks were doing a reasonable job of
mapping their respective digit to values that were positive with respect to the other four
digits, they were producing mapping ranges with end points that varied widely from
network to network.

In an effort to correct the mapping problem while taking advantage of the
knowledge that relative output values represent relative confidence as to which digit is
being detected, a second layer of fuzzy networks was implemented as shown in Figure 13.
The fuzzification of each of the five inputs to each network occurred using a sigmoid
function reflecting the (ideally) monotonic change in confidence as one moves through the
range of input values. As with the neural-network layers, the fuzzy layers were each
trained to give an output response reflecting whether that network’s corresponding digit
had been raised or whether one of the other digits had been raised. For instance, FN1 was
trained to produce an output of 1 for thumb data, and an output of 0 for all other digits.
The outputs of all five networks were then examined, and the network with the largest

value was taken as the winning network.
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Figure 13: Five-Finger Neural-Fuzzy Classifier

Each of the neural-fuzzy networks (FN1 - FN5) was implemented as a Sugeno
network and trained using an adaptive-network-based fuzzy inference system (ANFIS)
[17], as implemented in the MATLAB Fuzzy Logic Toolbox. ANFIS allows the user to
use the language-based rules and user-provided input functions that make fuzzy logic so
powerful in situations where the user has some knowledge of the system under study (the

outputs of NN1 - NN5). At the same time, it allows the network to be trained using
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learning algorithms such as backpropagation in the same way that neural networks can be
trained.

If Gaussian functions are used as the basis functions in an ANFIS system, then it is
interesting to note that the resulting ANFIS system can be shown to be functionally
equivalent to a radial basis function neural network (RBFN). Thus, all of the learning and
optimization techniques that have been developed for RBFN’s can potentially be applied
to ANFIS.

5. Implementation and Results
5.1 Two-Finger Classification Efforts

Ten radial basis networks were designed using the features tabulated in Table 1.
Each network contained a hidden layer of radial basis functions and a linear layer of output
neurons. Each network was trained on an appropriate set of 20 vectors containing data
taken from the two fingers that that network was supposed to classify. The radial basis
layers were created one neuron at a time, with each new neuron based on the input vector
that would result in lowering the network error the most [16]. The ten networks were
then tested using independent data files, each containing 20 test vectors. The results are
summarized in Table 1.

5.2 Five-Finger Classification Efforts

The five-finger classifier v;/as implemented as shown in Figure 13, and consisted of
five radial basis function neural networks and five fuzzy networks. The fuzzy network
layer was introduced in an effort to eliminate problems stemming from the skewed output

ranges of the neural networks, as discussed in section 4.2. Each of the neural networks
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Classifier Features (frequencies in Hz) | Percent Correctly Classified
Thumb | Finger 1 10 15 90%
Thumb | Finger 2 115 150 85%
Thumb | Finger 3 5 205 90%
Thumb | Finger 4 70 75 60%

Finger 1 | Finger 2 10 195 100%
Finger 1 | Finger 3 235 240 100%
Finger 1 | Finger 4 185 210 100%
Finger 2 | Finger 3 105 165 85%
Finger 2 | Finger 4 105 135 90%
Finger 3 | Finger 4 205 230 80%

Table 1: Neural Network Features and Performance - Two Finger Case
was trainéd using features appropriate for their individual classification task, with training
and test sets consisting of S0 vectors from each digit (250 total training and test vectors).
The input feature choices for all five neural networks are summarized in Table 2. The
neural networks and fuzzy networks were trained separately, with the fuzzy networks
using the processed neural network output as their inputs. A separate set of validation
data was usea to measure the performance of the final network, as the test data was used
to determine the point at which the training of the networks should end. (Note that this
validation set was not necessary with the two-finger classifier. The variable parameters
consisted of the width of the basis functions and the desired error on the training set, and
each was adjusted to minimize the error of the training set. The test set remained
independent and was in no way used to build the networks.)

Table 2 summarizes the results for the training, checking, and validation data. Asa

cross check of the results, the networks were retrained using the validation data as training



and checking data, and using the training and checking data as validation data. The results

of those runs are summarized in Table 3.

Percent Correctly Classified
Classifier Features Training Checking Validation
(Finger vs. | (Frequencies in Hz) Data Data Data
All Others)
Thumb 25 45 98% 86% 34%
Finger 1 105 145 52% 28% 23%
Finger 2 15 - 195 82% 66% 10%
Finger 3 S 230 52% 22% 1%
Finger 4 80 100 92% 92% 87%

Table 2: Neural-Fuzzy Network Features and Performance - Case 1 -

Percent Correctly Classified
Classifier Features Training Checking Validation
(Finger vs. | (Frequencies in Hz) Data Data Data
All Others)
Thumb 25 45 94% 96% 1%
Finger 1 105 145 76% 42% 27%
Finger 2 15 195 50% 46% 82%
Finger 3 5 230 70% 52% 18%
Finger 4 80 100 66% 74% 47%

Table 3: Neural-Fuzzy Network Features and Performance - Case 2

As can be seen in tables 2 and 3, the results of the five-finger classifier appear very
marginal. While in some cases the validation data performed fairly well (80+ percent),
most of the network’s performance was poor. In particular, finger three in case one and
the thumb in case two were almost completely misclassified. Finger three in case one was
largely misclassified as the thumb (69%), and the thumb in case two was largely

misclassified as finger 1 (63%). Given that the training, test, and validation data were all
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collected during the same session, this large disparity in network performance suggests
that a single channel of data may not have enough information to support a robust five-
finger classification system.

Another possibility is that the signal may have some non-stationary properties, and
that the location of the cluster centers may be drifting with time. This may be a reasonable
hypothesis, since the biological system in question will be subject to fatigue and other
effects. One piece of evidence that potentially supports this hypothesis is the fact that
several of the fuzzy networks showed immediate, in some cases monotonic, increases in
the errors associated with the checking data. Since the only difference between the
training and checking data was the interval of time under consideration, this suggests that
the system had somehow changed during the ten seconds that the training (first five
seéonds) and checking data (next five seconds) were recorded.

6. Conclusions
6.1 Performance of Two-Finger Classifier

As can be seen in Table 1, many of the classifiers operated at a reasonably high
level of performance. Only the thumb/finger 4 classifier performed poorly, with test data
| delivering a 60% performance level. Clustering results indicate that many of the
performances would be greatly improved with analysis of EMG signals from one of the
other arm locations. For instance, the thumb/finger 4 classifier would likely work better
on data taken from the lateral part of the lower forearm, and the finger 2/finger 3 classifier

would respond best to data taken from either the medial or central part of the lower
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forearm. It may be necessary to abandon the use of only a single EMG signal if one
expects to get simultaneously high performance from all ten of these classifiers.

General results of the clustering runs indicated that the central location on top of
the forearm was the single most favorable data sampling location when considering all ten
two-finger classification problems. However, other locations might favor a particular
two-finger classifier.

6.2 Performance of Five-Finger Classifier

While the training and test data received mixed but favorable results, the validation
data results tended to be poor. The reason for this is not clear. It may be that a single
channel of EMG data is inadequate to build a robust five-finger classifier. Another
possibility is that the biological system may produce non-stationary signals, so that the
cluster centers are drifting in the feature space. If so, it may be possible to build an
adaptive network that tracks these changes and compensates for them. Further work will
be necessary to determine if a reliable five-finger classifier can be constructed.

General results of the runs indicated that the central area on the bottom of the
forearm was marginally superior to the other sites.

7. Areas For Future Work

The analysis and use of EMG data is still in its infancy. This and other studies
have necessarily limited themselves to very specific lines of investigation, and many other
approaches remain unexplored. A few of the ways in which this study might be extended

and improved are briefly discussed in the following sections.

26



7.1 Examination of the Robustness of the Results From This Study

This study was based on data from only two test subjects, and with data taken
from only a small number of test sessions. A more thorough study might make use of
cross validation of the existing dat& Als;, it would be worth while to examine how well
the systems discussed above operate on a larger number of test subjects, and with small
variations ._in placement of the electrodes on the subjects’ arms.

7.2 Use of Adaptive Signal Processing to Track Non-Stationary Signals

If the poor performance-of the five-finger classifier can be attributed to non-
stationary effects in the EMG signals, then it may be possible to build an adaptive classifier
that tracks these changes and compensates for them.

7.3 Multi-Signal Analysis (Several Areas of Arm Sampled Simultaneously)

A logical extension to this work would be the use of data sampled simultaneously
from several points on the arm. As was previously noied, a single source of data appears
to be inadequate to solve the S-finger classification problem, and multi-channel data might
provide a sufficiently rich information source.

7.4 Use of Other Features

The features in this study were limited to spectral information obtained by way of
the Fourier Transform. Many other feature sets are possible, including features that
correlate signals from more than one data channel. |
7.5 More Complex Finger Motions and Analysis of Strength of Motion

The analysis of other finger and hand motions could be explored. In addition,

previous studies have used envelope detection to create a control signal proportional to
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the strength of the muscle contractions [10], and an analogous study could be made on
finger strength.
7.6 Fuzzy Clustering

Fuzzy clustering could be used instead of the “crisp” clustering algorithms used in
this study.
7.7 Statistical Pattern Recognition

The mathematical tools of statistical pattern recognition could be brought to bear
upon these classification problems, perhai:s offering more insight into the properties of the
system. In particular, one might build a classifier that makes use of the relative
Mahalanobis distances to each cluster center. A rigorous mathematical analysis of these
signals might be related to existing models in physiology and neuro-anatomy.
8. Some Personal Thoughts on Pattern Recognition

After working part-time for two years on issues related to pattern recognition, I
almost feel as if I know less than when I started. The remarkable array of tools that
researchers now have includes the many techniques of statistical pattern recognition,
neural networks, fuzzy systems, and evolutionary tools such as genetic algorithms. In
addition, special purpose pattern recognition hardware is finally beginning to see its day.
To cite one line of research, Carver Mead and his colleagues at the California Institute of
Technology have begun putting large scale analog neural networks on silicon using
modern VLSI tools (see, for instance, [18]). Their chips seek to use the natural, powerful

computational primitives available from semiconductor devices to circumvent current
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digital bottlenecks that prevent the real-time solution of some pattern recognition
probjgm;.

For my part, I have had the pleasure to watch the development of an
-extraordinan'ly powerfui ;dal;tive, system by way of my son, Sam, who was born about the
time that I began this work, and who is now two yéars old. In that span of time, I have
;wa_tche;i him develop from a new-born infant into an individual who harbors abilities that
defy analysis by all of the world’s researchers. One is tempted to take to heart a
recommendation by Hecht-Nielsen (p. 51, [7]): “Everyone in neurocomputing should
have a basic knowledge of neuroscience, if for no other reason than to be properly
humbled by the super-advanced alien technology used in the construction of brains.” It
seems likely to me that our approaches to understanding so-called intelligent computing
are still symptomatic, addressing the superficial classification problems that we have been
able to characterize, while some underlying theory that might.really explain cognition
remains yet to be discovered. If we are able to use evolutionary computational techniques
to build machines that seem intelligent, one wonders if we will be intelligent enough to

really understand our creations.
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Appendix 1 - Clustering Results

This appendix contains a partial llstmg of the results of the clustering performed to
support the five-finger classifier. The first page, 1 versus not 1, displays the results of
clusfering. of thumb data versus data from fingers 1 through 4. Results are shown for the
four areas -o;' the ann where data was taken, snd for clustering using 1 and 2 features. The
results show the features and metc sc;rér(section 3.3) for the 20 most favorable runs. The
.other pages show similar results for the other four digits.

Clustering in the first chart was performed using 50 data points from the thumb
and 50 data points taken from the collective data of the other four digits. As this left 150
data points from fingers 1 through 4 unused, the clustering was performed 4 separate
times. Each time a different subset of the available data was used. The feature choices for
the five-finger classifier were made by considering the collective results of these clustering

runs. Only one of these four runs is shown here for each digit. The other tables are

available from the author.
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2 versus not 2
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35/0.825[4449]0.925]35/0.775 15]29/0.850{22]|0.775/21|27]0.875|14]|0.875| 4 |4910.975

49)0.825/35]39]0.925450.775|23)34[0.850] 8 |0.775[21|38|0.875|37]0.925| 4 |51]0.975

40[0.825/35[46]0.950/21|0.800] 19]2810.850]15]0.775{21|39]0.875|38]|0.950| 6 {49/0.975

46/0.850{35[4710.975|34]0.800{20]22/0.850 6 {0.800] 8 {21]0.875/48/0.950| 6 {50]0.975

m@mh&&hhﬁﬁ‘ju&um&&uwh

47]0.900(35]48[0.975/29{0.825|22]30(0.875/21]0.825{ 4 |121|0.875] 4 |0.975| 6 |40{1.000
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3 versus not 3

Medial Central Lateral Top

1 feature| 2 features | 1feature| 2 features |1 feature| 2 features |1 feature| 2 features

13]0.725| 4 {3110.875/37]|0.700} 2 141|0.850| 3 {0.600| 2 |35]0.675{35{0.725] 1 |{28]0.850
16(0.725|31(36{0.875|38{0.700} 2 |33]0.850{25]/0.600] 1 {33]|0.675]| 8 [0.725] 3 {28]0.875
2310.725131/37/0.875{34]0.700]|30141{0.850|2110.600] 2 |49]0.675] 9 {0.725|28]39]0.875
2110.725| 1 131/0.875/2710.725] 1 {38/0.850| 7 |0.600] 2 136|0.675]10/0.725}21{29]0.875
6 10.750| 5 |31]0.875|32{0.725[30|45(0.850|34/0.600] 3 |33]0.675{40]0.725{28{41]0.875
7 10.750|31{38/0.875{40(0.725| 1 |33]0.850]29/0.600} 3 {45]0.675/15]/0.725|24{28{0.875
2710.750|31]3910.875]3610.725{33|38/0.850{36/0.600] 4 |3310.675{45]|0.725] 2 {28{0.875
4810.750{31/41]0.875| 1 {0.750]|42|48{0.850]15/0.600] 4 |45]0.675[{47]0.725| 9 [28}0.875
2510.775|31143(0.875! 2 (0.750142151|0.850{39/0.600] 5 |33{0.675] 6 [0.750|28{480.875
30[0.775]2713110.875|33{0.750| 1 |45/0.850/22]0.625| 2 {45]0.675/38(0.750/28}32|0.875
3210.775/28131]0.875{39|0.750|43|47]0.850|30/0.625] 1 |45|0.675{32]0.750]28(49{0.875
9 10.775/31145/0.875]35|0.750] 2 |39]0.850{46{0.625| 2 |46]0.675|34/0.750}2834]0.875
4610.775|30131]0.875{30{0.750] 2 |31/0.850] 8 |0.650| 6 [32]0.675{48]0.75028}50{0.875
8 [0.800|31]46/0.875|47]0.775|45|51]0.850|35]0.650] 6 |40]0.675|29]0.775[28]35]0.875
14(0.800(31]47{0.875|41]0.775] 1 |41]0.875{28]0.650] 6 {45]0.700{33]0.775|21{26{0.875
15/0.800{31]35[0.875[4210.775| 1 [34{0.875|40]0.650| 3 |51]0.700{49{0.800{28{45]0.900
29]0.800|31[49(0.875|51]0.775/41]/51]0.875] 1 [0.675] 2 |48]0.700{31(0.800|28]46(0.900
3110.825] 2 |3110.900|31{0.775| 2 [42]0.900{33/0.675] 1 | 2 |0.725{27(0.825|28{47|0.900
4710.825| 6 130]0.925|45]0.800{ 2 |45]0.900|45]0.675] 2 |51}0.725{41]0.825]28]36(0.900
1 |0.900]| 6 |3110.925{4610.825| 2 {40/0.900] 2 {0.800} 1 | 3 {0.750}28]0.875|28]37]0.900
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4 versus not 4

Medial Central Top
1 feature| 2 features 2 features |1 feature 1 feature| 2 features
22 11 2 [4910.925|43 0.625| 7 0.725
33 35 3 |51]/0.925{39 0.625]31/43/0.725
20 38 418 10925{47 0.625| 2 0.725
3 28 2 |43]10.925|18 0.625|31147]0.725
45 29 519109252 0.625| 2 0.725
46 17 2 |4410.925|45 0.625| 1 0.725
9 11 1 146]0.925{24 0.650{36/38]0.750
31 39 2 |30/0.925|28 0.650|36(39]0.750
5 40 6191092521 0.650]2736]0.750
10 30 2 14810.950(35 0.650]36|41/0.750
16 31 2 [50{0.950}48 0.650]37]40/0.750
117 32 1 |47{0.950{41 0.650[31{35]0.750
44 11 2 132]0.950|19 0.675138(46/0.750
12 33 2 134]0.950|49 0.675{38|47]|0.750
14 13 2 |42]0.950{22 0.675|31{40]0.750
15 41 2| 410.950|38 0.700] 1 0.750
4 42 4 151]0.950{20 0.700}31{45]0.750
13 11 2 146|0.950|37 0.700]31{48]0.750
43 11 2 |47]0.950|23 0.725]36{4010.775
11 11 114]0.975|36 0.725|36]49]0.775




5 versus not 5
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Appendix 2 - Computer Codes

A number of computer codes were developed in the course of this research. These
codes run in the MATLAB environment and include the following:
KMEANS: This code runs the K-means algorithm on matrices with arbitrary numbers of
features and for arbitrary numbers of clusters.
NEIGHBOR: This code runs the nearest neighbor algorithm on matrices with arbitrary
numbers of features for a user specified t.
KNEIGH: This code runs the nearest neighbor algorithm on matrices with arbitrary
numbers of features for a user specified number of clusters. The code searches for a t that
will produce the given number of clusters.
METC and METSQER: These codes provide metrics for helping to judge the success of
clustering. METC computes the metric discussed in section 3.3. METSQER computes
the square error (sum of the squares of the distan-ces from each point to its cluster center)
for each cluster and the average square error (square error divided by number of points in
cluster) for each cluster. It also computes the average square error across all clusters.
SRCHITER: This code automates the use of kmeans and kneigh when the user wishes to
run the codes repeatedly on sets of features selected from high dimensional data. For
instance, the code could be used to run K-means on 10-dimensional data where the
features are being considered 2 at a time and the results are to be judged using the metc
algorithm.

Copies of these computer codes, including a MATLAB graphical user interface

(GUI) that provides access to some of these tools, may be obtained by contacting

38



Professor Benjamin Knapp at San Jose State University’s Department of Electrical

Engineering.
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