San Jose State University SJSU ScholarWorks

Master's Theses

Master's Theses and Graduate Research

1991

Neutron energy determination utilizing a highpurity germanium detector

E. A. (Eugen A.) Beck San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation

Beck, E. A. (Eugen A.), "Neutron energy determination utilizing a high-purity germanium detector" (1991). *Master's Theses*. 182. DOI: https://doi.org/10.31979/etd.jg68-7nh6 https://scholarworks.sjsu.edu/etd_theses/182

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

U·M·I

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor. MI 48106-1346 USA 313/761-4700 800/521-0600

Order Number 1345789

Neutron energy determination utilizing a high-purity germanium detector

Beck, Eugene Arnold, M.S. San Jose State University, 1991

NEUTRON ENERGY DETERMINATION UTILIZING A HIGH-PURITY GERMANIUM DETECTOR

A Thesis Presented to The Faculty of the Nuclear Science Program Radiation Health Physics San Jose State University

In Partial Fulfillment of the Requirements for the Degree Master of Science

Ву

Eugene A. Beck August, 1991

_ ___

APPROVED FOR THE DEPARTMENT OF RADIATION HEALTH PHYSICS NUCLEAR SCIENCE PROGRAM

.

Dr. Peter Englert

Dr. Allen Tucker

øs Castaneda Dr. C

APPROVED FOR THE UNIVERSITY

Serena It. Stanfor

ABSTRACT

NEUTRON ENERGY DETERMINATION UTILIZING À HIGH-PURITY GERMANIUM DETECTOR

by Eugene A. Beck

This thesis evaluates the use of germanium gamma-ray detectors to determine the energy of incident neutrons in the range of 10-70 MeV. Methods were developed to separate the nuclear recoil spectra the gamma ray spectra produced in neutron inelastic scattering. The germanium 596, 690 and 835 kev $(n,n'\tau)$ peaks were evaluated for full width maximum values, and the slopes were determined for the leading edge and for the primary downslope.

Findings indicate that the full width maximum values were not useful indicators of neutron energies. This may be due to the "bleeding" of activity ie. background, from one recoil peak into the next recoil peak. Evaluation of the upslope and downslope measurements showed a relationship between the neutron energy and the values of these slopes for all three recoil peaks. A series of equations were developed to describe these relationships empirically. The germanium detector can now be used by Health Physicists to measure gamma ray spectra as well as to evaluate neutron sources for energy and exposure.

ACKNOWLEDGEMENT

I would like to thank Dr. Peter Englert for the guidance and inspiration for this thesis. My thanks also go to Drs. Allen Tucker and Carlos Castaneda for taking the time to review this thesis for the faculty. I would also like to acknowledge the staff at the Crocker Nuclear Laboratory for there efforts in my data acquisition and to Steve Shimose for the computer program he wrote for this thesis. Finally I would like to thank Barbara, the one person who has pushed and pulled and generally made this all possible for me. This has taken a long time and I appreciate every minute you have given to this effort.

TABLE OF CONTENTS

Abs	tract	••	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.i	ii
Ack	nowle	dgmer	nt.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		iv
Lis	t of	Table	es.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
Lis	t of	Figu	res.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		ii
Cha	pter																							
1.	Intro	oduct:	ion.	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	Revie	ew of	Lit	er	ati	ure	э.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
3.	Expei	rimen	tal	Se	tuj	p a	ano	1 1	Dat	ta	Α	cđi	ıi	si	tio	on	•	•	•	•	•	•	•	10
4.	Data	Anal	ysis	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
5.	Disc	ussio	n.	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
6.	Conc	lusio	n.	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	63
Rei	feren	ces .	•		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	65
App	pendi	ces																						
Α.	Gany: and		rin a R	tou ay/	its 'Co	o nv	f er	Ra si	w on	Da E	ta le	, ct	Re ro	co n	il Fi	B tt	ac ed	kg D	ro at	un a.	d.	Da	ta •	69
в.	Lotu	s 123	Ma	cro	υ	se	d	to	E	va	lu	at	е	Wi	dt	h	Me	as	ur	em	en	ts	•	97
c.	Comp Ener	uter gy fr	Pro com	gra Lał	am oor	to at	e E .or	va Y	lu Sy	at st	e em	sc •	at •	te •	re •	đ.	Ne •	ut •	ro •	n	•	•	•	102

.....

List of Tables

.

Та	b	1	e
----	---	---	---

1.	Stable Germaniun Isotope Abundance and Excitation States
2.	Full Width Measurements for the Recoil Germanium Curves
3.	Upslope Fittings and Regression Coefficient Values. 29
4.	Absolute Value of Downslope Fittings and Regression Coefficients Values
5.	Line Function Parameters for the 3 keV Upslope Fit. 54
6.	Line Function Parameters for the 5 keV Upslope Fit. 54
7.	Evaluation of Measured Slopes Utilizing 3 and 5 keV Upslope Formulas
8.	Line Function Parameters for the 3 keV Down- slope Fit
9.	Line Function Parameters for the 11 kev Down- slope Fit
10.	Evaluation of Measured Slopes Utilizing 3 and 11 keV Downslope Formulas
11.	Final Equations for Neutron Energy Determination 63

List of Figures

Figur	e
1.	Acquired in Beam Gamma ray Spectrum for 18.8 MeV Neutrons
2.	Acquired in Beam Gamma ray Spectrum for 38.4 MeV Neutrons
3.	Acquired in Beam Gamma ray Spectrum for 65.5 MeV Neutrons
4-6.	Ganymed Fitting of 596, 690 and 835 keV Recoil Peaks for 18.8 MeV Neutrons
7-9.	Ganymed Fitting of 596, 690 and 835 keV Recoil Peaks for 38.4 MeV Neutrons
10-12	.Ganymed Fitting of 596, 690 and 835 keV Recoil Peaks for 65.5 MeV Neutrons
13-15	.Slope Fittings of 596, 690 and 835 keV Recoil Data from 18.8 MeV Neutrons
16-18	.Slope Fittings of 596, 690 and 835 keV Recoil Data from 38.4 MeV Neutrons
19-21	.Slope Fittings of 596, 690 and 835 keV Recoil Data from 65.5 MeV Neutrons
22.	Curve Width Comparisons for 596 keV Data 41
23.	Curve Width Comparisons for 690 keV Data 42
24.	Curve Width Comparisons for 835 keV Data 43
25.	Normalized Overlay of 596 keV Recoil Data 44
26.	Normalized Overlay of 690 keV Recoil Data 45
27.	Normalized Overlay of 835 keV Recoil Data 46
28.	Laboratory System for the Kinematics of Neutron Scattering

vii

List of Figures Cont.

29.	Relationship between Recoil Energy and Energy Transferred to Electron-hole Pairs for 596 keV Recoil Data	0
30.	Relationship between Recoil Energy and Energy Transferred to Electron-hole Pairs for 690 keV Recoil Data	1
31.	Schematic Representation of the Bleeding of Recoil Energy from One Excitation to the Next Higher Excitation State	2
32.	Linear Slope Fittings for the Upslope Leg Determined from 5 keV Segments 5	6
33.	Logarithmic Fitting of the Linear Upslope Values. 5	7
34.	Linear Slope Fittings for the Downslope Leg Determined from 11 keV Segments 6	1
35.	Power Fitting of the Linear Downslope Values 6	2

viii

•

Chapter 1: Introduction

Neutron interactions with germanium detectors were first described by Chasman, Jones, Ristinen and Sample, (1965a) at the Brookhaven National Laboratory. They studied the effect of 1.2, 2.2, 4.7, and 16.3 MeV neutrons incident on a planar lithium-drifted germanium detector. The detector had a surface area of 6 cm² and a sensitive depth of 5 mm. At each of the neutron energies utilized they observed the five primary recoil broadened (n, n' τ) peaks identified in Table 1. They also observed that as the energy of the neutrons increased the width of the peaks increased. The work reported in this thesis is an analysis of the relation between neutron energy and the shape of the (n, n' τ) photopeaks.

Neutron dosimetry, particularly when applied to fast neutrons, depends strongly on the energy of the neutrons (NCRP, 1971; Attix, 1986). The current methods used for measuring exposure from neutrons are valid up to approximately 15 MeV. Present methods include the use of Hurst counters, rem meters, and albedo neutron dosimeters (Cember, 1983). The principal problem that these instruments have at higher energy levels is their non-linear response to the neutron energy. There are many instances where the exposure from neutrons having higher energies must be determined. Some of these applications include working near spontaneous

fission neutron sources, linear accelerators or cyclotrons, and in space flight.

The purpose of this thesis is to explore the possibilities of using high-purity germanium detectors as instruments for measuring the maximum neutron energy incident on the detectors. This work will demonstrate that coaxial or planar high-purity germanium detectors have the potential for being used in neutron dosimetry. An additional application of the technique developed in this study would include calibration of neutron energies from high-energy neutron sources.

Germanium has five stable isotopes with an atomic number (Z) of 32 and isotopic mass numbers (A) of 70, 72, 73, 74, 76. The relative abundances of these isotopes are 20.5, 27.4, 7.8, 36.5, and 7.8%, respectively (Lederer and Shirley, 1978). Table 1 shows the first and second excitation states of the germanium isotopes. The states denoted by * are of importance in the spectra from neutron inelastic scattering. The other states listed are likely present but not easily detected due to low abundance of the isotope or low cross section values for the interaction.

Table T	Ta	bl	е	1
---------	----	----	---	---

Isotopic Mass <u>A</u>	Abundance १	Energy of Excitation State(MeV)	Spin/ Parity
70	20.5	First 1.041 * Second 1.215	2+ 0+
72	27.4	First 0.690 * Second 0.835 *	0+ 2+
73	7.8	First 0.013 Second 0.067	9/2+ 5/2+
74	36.5	First 0.596 * Second 1.205 *	2+ 2+
76	7.8	First 0.563 * Second 1.130	2+ 2+

Stable Germanium Isotope Abundance and Excitation States

Additional gamma rays in the energy range listed above have been reported for germanium. These gamma rays result from the transition of higher level excitation states to lower levels. These include: 1) 609 keV in the transition of the ⁷⁴ Ge from 1205 to 596 keV, 2) 630 keV in the transition of ⁷²Ge from 1565 to 835 keV, 3) 669 keV in the transition of ⁷⁰Ge from 1790 to 1041 keV, 4) 868 keV in the transition of ⁷⁴Ge from 1464 to 596 keV, 5) 888 keV in the transition of ⁷⁴Ge from 1484 to 596 keV and 6) 895 keV in the transition of ⁷²Ge from 1730 to 835 keV (K. Chung, Mittler, Brandenberger and McEllistrem, 1970).

Germanium is a Group IV tetravalent element and forms a crystal by covalent bonding of its four valence electrons. These electrons can be maintained in two different states within the crystal. The first state is called the valence band and involves the bonding between atoms of the matrix. The second state called the conduction band represents the electrons that are free to migrate throughout the crystal. The difference in energy needed to move an electron between these two states is referred to as the band gap. For a germanium crystal the band gap is 2.96 eV. Any process that is capable of exciting an electron with this amount of energy will cause it to move from the valence band to the conduction band. This will also result in the formation of a hole in the valence band at the site formerly occupied by the electron. The electrons and holes are collected with the application of an electrical field across the detector. The size of the collected electrical signal produced by the electrons and holes is proportional to the amount of energy deposited in the detector. The energy needed to elevate the electrons may come from ionizing events or thermal excitation.

High-purity germanium semi-conductor detectors are characterized by having excellent energy resolution and a tolerance of high counting rates. The energy resolution is

often 1-2 keV at 1.33 MeV gamma ray energy. This results from requiring only 2.96 eV to produce an electron-hole pair. The high speed counting is the result of a very low resolving time of the detector in collecting the electrons and holes produced in the detector.

The incident of a neutron beam upon a germanium detector produces atypical pulse height peaks whose shape changes with changes in the neutron energy. These peaks are asymmetrically broadened, with a sharp leading edge and a long high-energy tail. This broadening effect can be explained in the following manner. In inelastic scattering, a portion of the incident neutron's energy is lost to excitation of the nucleus. This energy is released by the nucleus in the form of either a gamma ray or a conversion electron. The scattered neutron n' is scattered from the nucleus isotropically. The angle of scatter will determine the amount of energy that is transferred to the germanium nucleus in the form of recoil energy. The recoil nucleus will generally receive sufficient energy to overcome the binding energy. The recoil nucleus will disassociate from the crystal and move through the surrounding matrix of the detector causing electron-hole pair formations. The recoil nucleus' electron-hole pair formation occurs simultaneously with the absorption of the gamma ray or conversion electron and the two events will appear as a single pulse in the spectra. The re-

coil energy transferred to the nucleus is dependent on the angle of the scattered neutron. The amount of energy transferred to the electron-hole pair formations is variable based on the recoil energy of the germanium atom. The combination of these effects produces the broadening of the peak with the narrow gamma ray or conversion electron peak superimposed on the wide recoil germanium energy distribution forming a single compound peak.

Chapter 2: Review of Literature

The amount of nuclear recoil energy transferred to the electron-hole pairs has been investigated by a number of different groups. Lindhard, Nielsen, Scharff, and Thomsen (1963) generated a group of equations that accounted for the amount of energy needed for a heavy ion to create a single electron-hole pair in a germanium detector. They proposed that heavy ions required more energy than photoelectrons, compton electrons or pair production electrons from primary gamma ray interactions, to raise the electrons from the valence band to the conduction band to form an electron-hole This prediction was verified by Chasman, Jones and pair. Ristinen (1965b, 1967) for germanium recoil energies up to 100 keV and extended by Bockisch, Braun and Neuwirth (1982) to recoil energies of 800 keV. As the maximum recoil energy increased it would appear from their data that the fractional amount of energy transferred to electron-hole pairs also increased.

Since these earlier works, very little reference has been made of these peaks except to note their presence (Bunting and Krushaar; 1974, and Brüchner, Wänke and Reedy, 1987) and/or interference (Youngblood, Bearse, Williams and Blaugrund, 1966; Lieb, Kent and Moore, 1968) during collection of data from in-beam counting systems. Lack of interest in these $(n, n'\tau)$ peaks has left a void in the

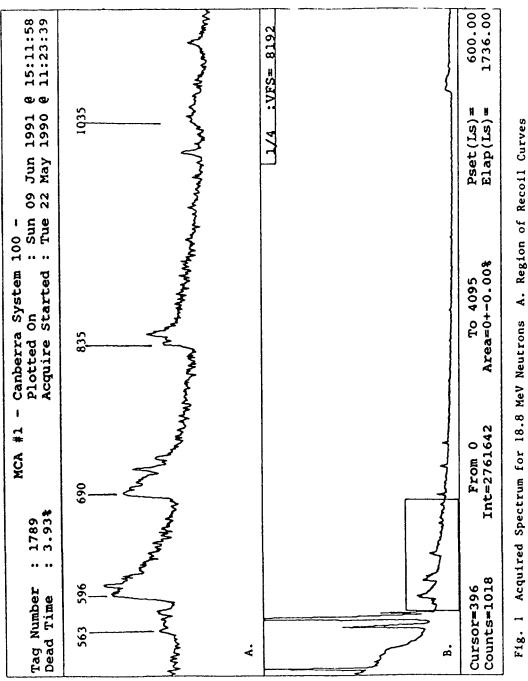
literature as to whether there is information that can be obtained from them.

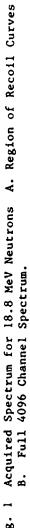
Recently C. Chung and Chen (1991) evaluated the gamma ray and the conversion electron portions of these curves. They converted the count rate determinations into a measure of the dose rate equivalent in μ Sv. Their work showed that the 596 keV peak could be used to estimate the dose rate from thermal and epithermal neutrons ($E_n > 0.02$ MeV) with an accuracy of 17.4% in the dose range of 0.08-120 μ Sv/h. The 690 keV conversion electron peak was used to estimate the dose rate from fast and relativistic neutrons ($E_n < 0.7$ MeV) with an accuracy of 32.3% in the dose range of 0.8-75 μ Sv/h. Their approach was to evaluate the gamma ray and electron conversion data portion of the spectra. One difficulty that appears to be present in their method was the handling of the recoil portion of the curve. Examination of their data indicates that the gamma rays were not separated from the recoil energies. The count rate determination was based on a combination of both the gamma rays and the recoil energies. Lindhard's analysis showed that the germanium recoil nucleus contributed a larger percentage of its energy to the detector as the recoil energy increased. The maximum recoil energy also increased as the neutron energy increased. Kinematics shows that at a neutron energy of 4.8 MeV the 596 keV peak recoil energy will extend into the 690 keV peak and some of the data from the 596 keV peak will be lost. The same results will also occur with the 690 keV peak data crossing into the 835 keV peak at a neutron energy of 6.6 MeV. The amount of data lost increased as the neutron energy increased above these levels. A determination of the neutron energy would allow for a closer estimation of the dose received through the use of different quality factors for varying neutron energies.

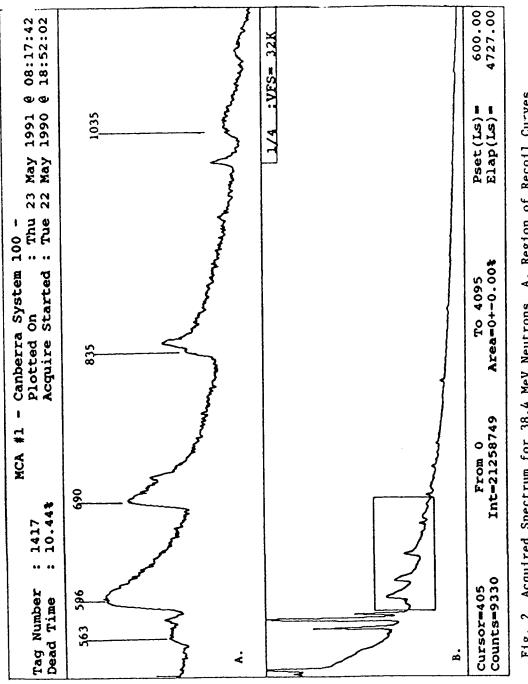
. .

Chapter 3: Experimental Setup and Data Acquisition

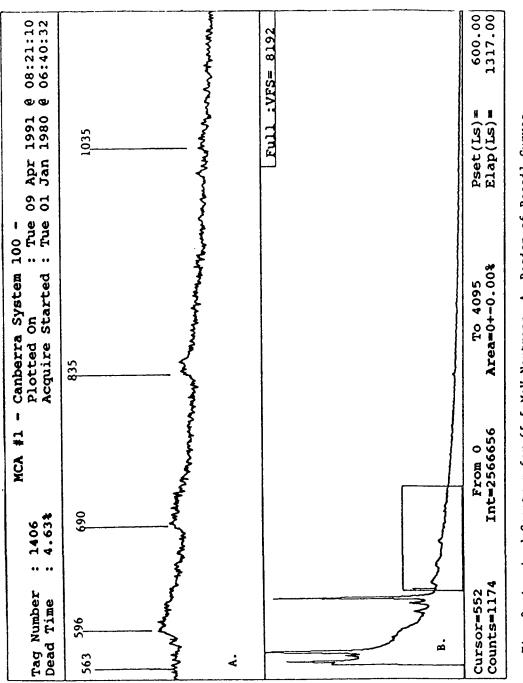
The 79 inch cyclotron at the Crocker Nuclear Laboratory on the campus of the University of California, Davis, was utilized to generate beams of energetic neutrons. Protons accelerated to energies of 20.5, 40.0 and 67.5 MeV were directed onto a 93 mil thick ⁷Li target, with the ⁷Li(p,n)⁸Be reaction producing neutron beams with maximum energies of 18.8, 38.4 and 65.5 MeV. An Ortec GMX Series, Gamma-X HPGE, 5.0 cm diameter by 6.0 cm long, closed-end high purity germanium detector was placed in the neutron beam for the 18.8 and 38.4 MeV runs. An Ortec GEM series HPGe, 5.1 cm diameter by 5.4 cm long coaxial high purity germanium detector was used for the 65.5 MeV run. Energy calibrations were performed with the 662 keV gamma rays of 137 Cs and the 1.17 and 1.32 MeV gamma rays of 60 Co. The 1.32 MeV gamma ray line was also utilized to check the energy resolution of the detector during the data acquisition. Germanium detectors are subject to damage from neutrons (Stelson, Dickens, Raman and Trammell 1972); however, minimal changes in the energy resolution, measured before and after data acquisition, were observed in either detector.

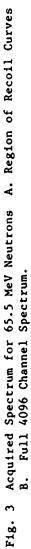

Neutron doses to the detectors were estimated by the method described by Stelson et al. (1972) to be 4.15 x 10^5 neutrons/cm² at 18.8 MeV, 1.38 x 10^6 neutrons/cm² at 38.4 MeV and 6.68 x 10^5 neutrons/cm² at 65.5 MeV.


10


.....


Off-beam spectra were acquired during the 65.5 MeV neutron run to estimate the scattered neutron contribution to the spectra. This contribution to the spectra was estimated to be less than 5% of the total data.


The spectra were acquired onto a personal computer utilizing the Nuclear Data Accuspeck acquisition and processing program. The data was stored to disc in the spectral and ASCII format. Figures 1-3 are the obtained spectra displayed with the Canberra System 100 spectral display system. The lower curve was the entire 4096 channel spectrum with the upper curve showing the areas of the spectrum with the recoil-broadened peaks. The 563, 596, 690, 835 keV lines were present at all three neutron energies. The 1035 keV line was seen in the spectra from the 18.8 and 38.4 MeV The difficulty in defining the 1035 line from the neutrons. 65.5 MeV neutrons was attributed to the low count rate obtained during this run. The 563 and 1035 keV lines were not considered for processing due to the low counting statistics.



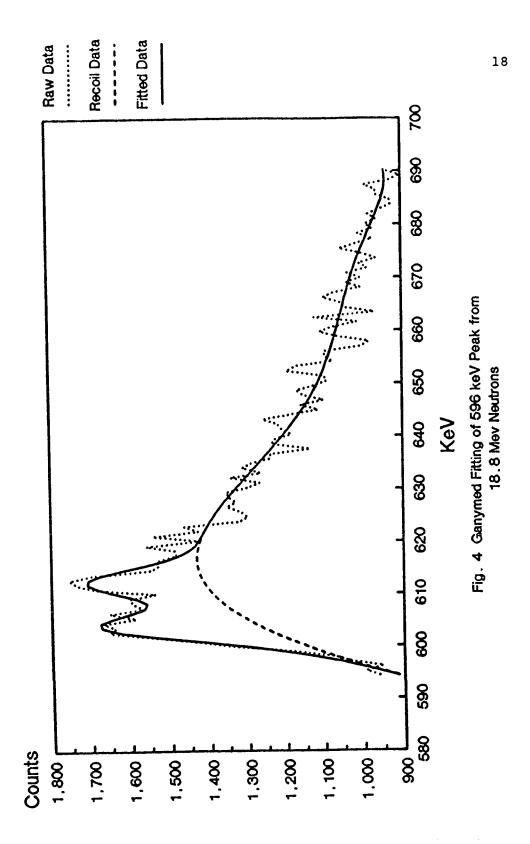
14

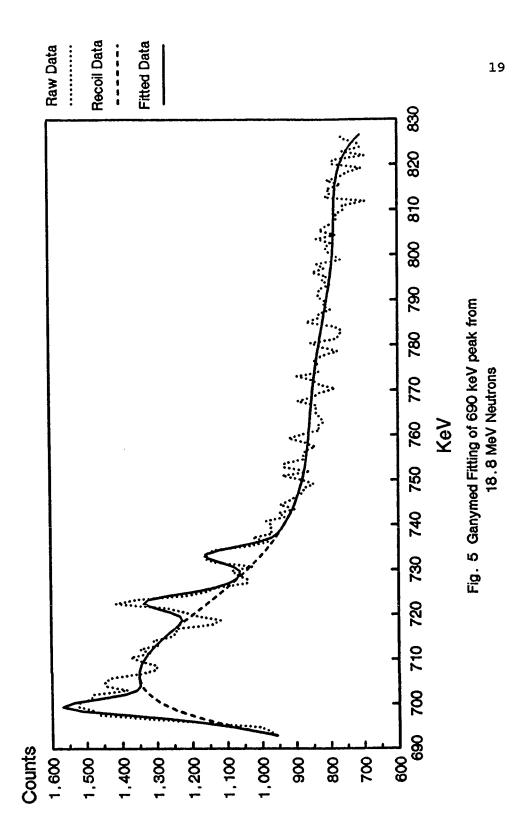
Chapter 4: Data Analysis

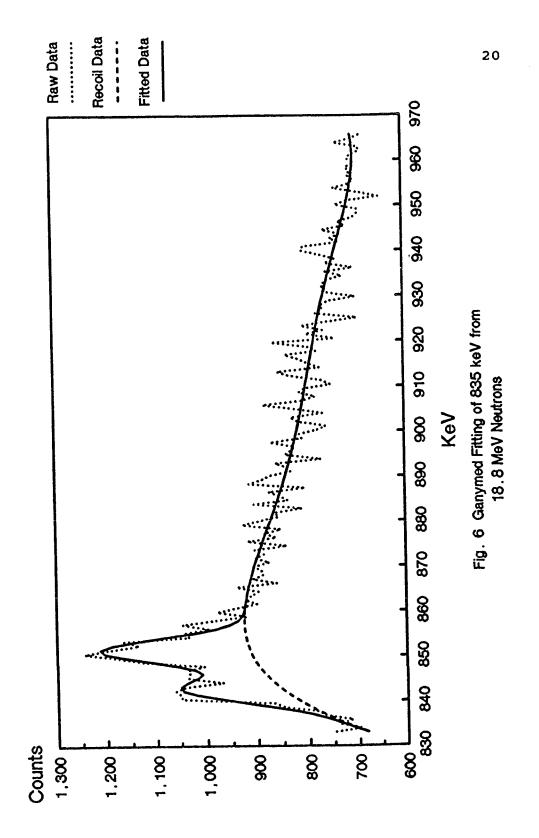
The ASCII coded data for all three neutron energies were transferred to the spectra analyzing program Ganymed (Kruse 1979). This program uses a modified Gauss-Newton algorithm to fit the peaks with a polynomial background of order 1-6. A region of interest was selected with a maximum of 150 channels. For the processing of the spectra used in this study, the area of interest was set to two channels prior to the upslope of the peak and extended to the first point of the upslope for the next peak. This end point was valid for the 596 and 690 keV peaks. For the 835 keV peak the full 150 channel limit was used to define the region of interest with the starting point the same as described above.

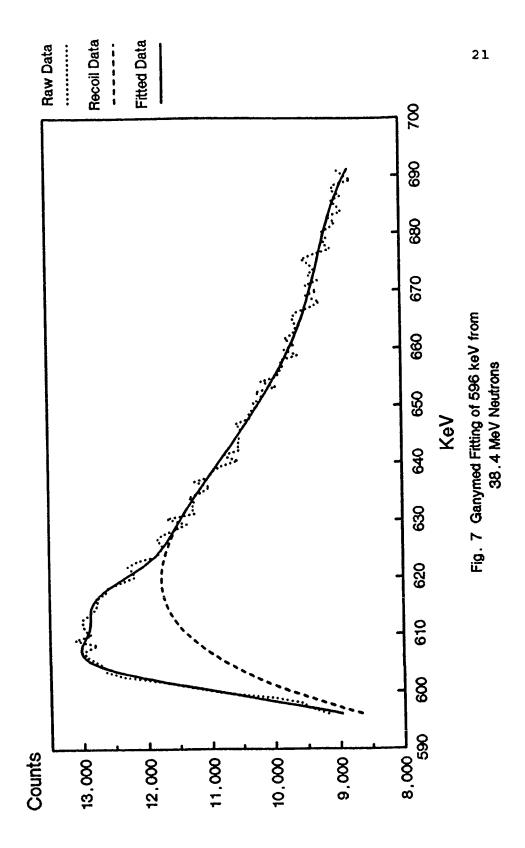
Three variables were entered affecting the fitting of the gamma ray peak and the shape of the background curve. The first value P sets the degree of polynomial for the background curve fit. Values between one and six were allowable for this parameter. A higher value for the background polynomial allowed for a better fit to backgrounds of the type of curve expected from the recoil germanium atoms. A value of 5 or 6 was used for P throughout all data processing. The second variable sets the value of a residuum. The residuum was defined as the difference between each data point in the region of interest and the fitted value

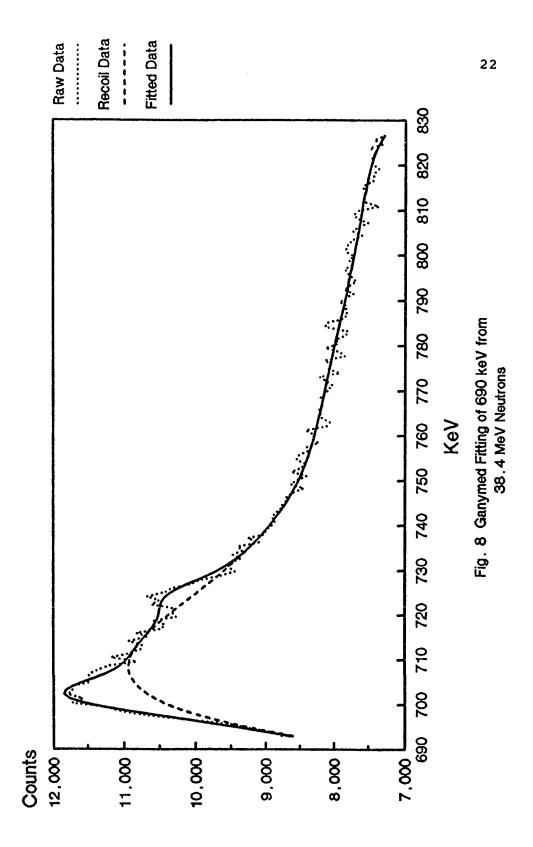
for that data point, divided by the standard deviation of the data point. The residuum acts as a sensitivity threshold for determining peaks; higher values reject more spurious peaks. For this work the highest residuum was used that allowed for the fitting of the primary gamma ray or electron conversion peaks for each selected peak. The third variable was the percent error rejection or confidence limit of the peak area. This value allows for the removal of peaks from the selection process if the confidence limit for the peak area exceeds this value. The higher this value was set the more likely a peak would be kept whether it was a spurious peak or a real peak. The default value of 30% was used for the processing of most peak selections. A 50% value was used for the 690 keV peak from the 65.5 MeV neutron run. This peak was difficult to fit due to low counting statistics and the 50% error provided for the selection and fitting of the 690 keV gamma ray peak.

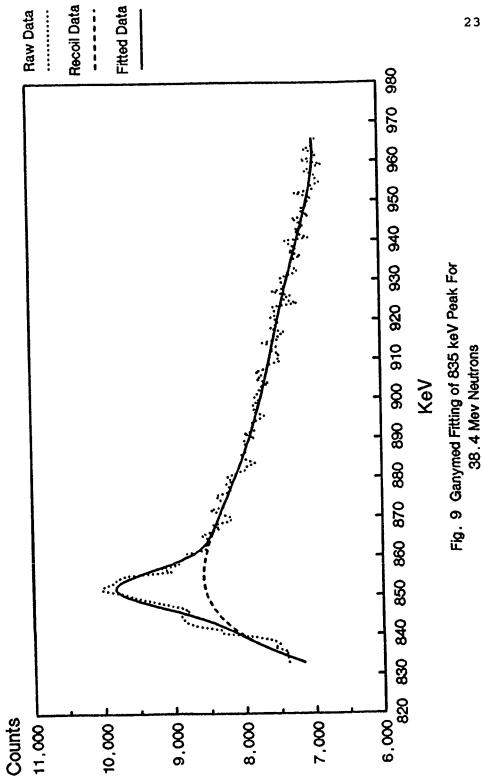

After processing, the program presented a display of the raw data curve, the fitted curve and the background curve for the entered parameters. Figures 4-6 represent the fittings for the 596, 690, and 835 keV peak from the 18.8 MeV neutrons, respectively. Figures 7-9 represent the 38.4 MeV neutrons and Figures 10-12 represent the 65.5 MeV neutrons. The numerical values for all nine curves were plotted to a file for later evaluation. The printouts for these

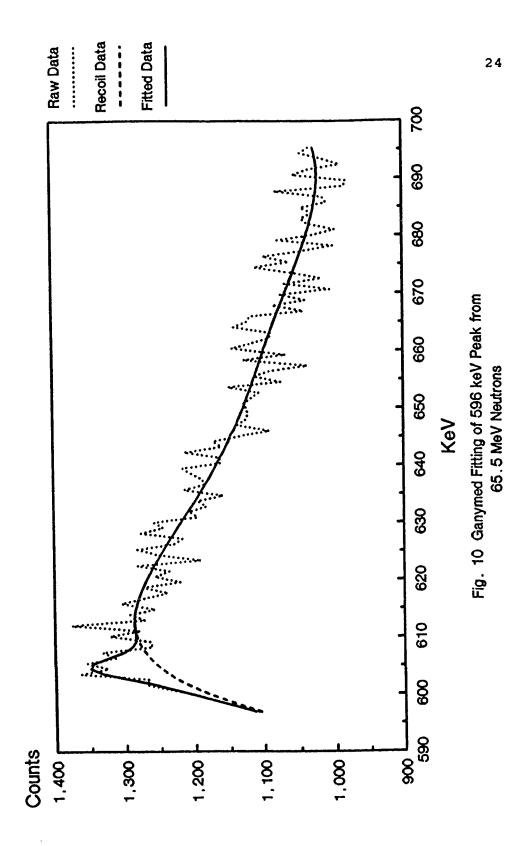

files are found in Appendix A.

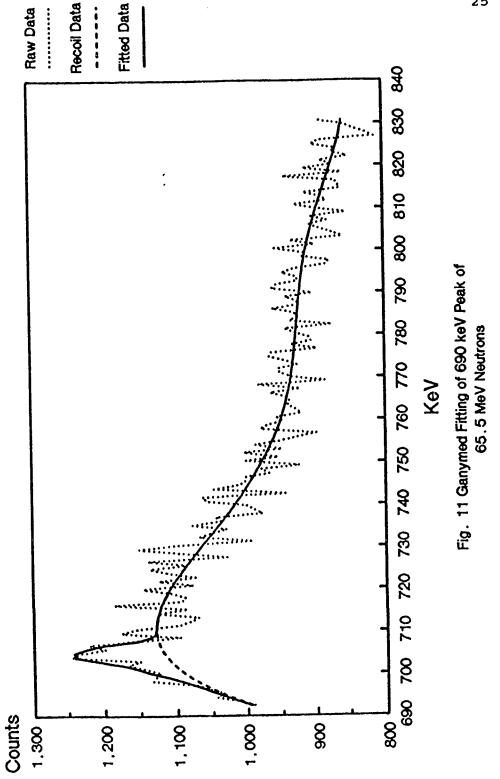

.....

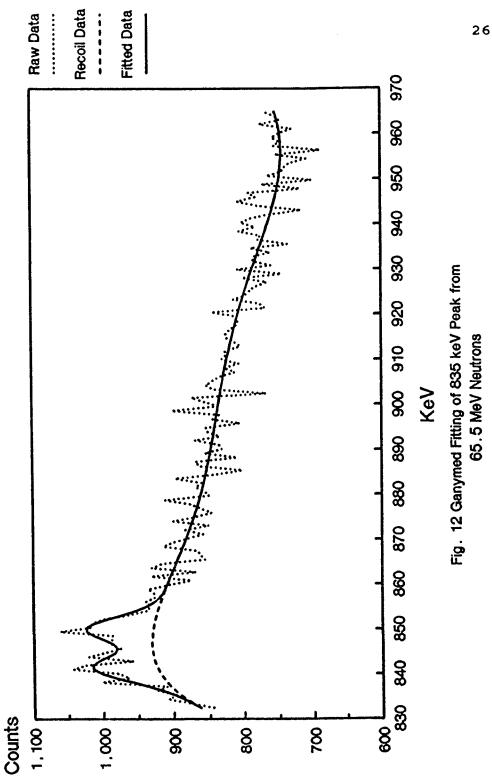

Additional gamma ray photopeaks were present within the regions of interest used for the recoil peaks. These included the 609 keV peak which results from the transition of the 1205 keV excitation state of 74 Ge to 596 keV, and is also a gamma ray produced in the neutron capture and decay of 73 Ge. Also identified was the 846 keV peak resulting from the 27 Al(n,p) 27 Mg reaction.


.









38.4 Mev Neutrons

:

Three characteristics of the germanium recoil background curve were evaluated: 1) the full width at half, third, fourth, fifth, tenth and twentieth maximums; 2) the slope of different segments of the low energy upslope leg of the curve; and 3) the slope of the first leg of the high energy downslope segment of the curve.

The background germanium recoil portion of the printout was imported into the Lotus 123 program for evaluation of the full width measurements. Utilizing a macro previously written for the Lotus program with modifications made to incorporate a larger number of data points, full widths at half, third, fourth, fifth, tenth and twentieth maximum were calculated for each of the nine recoil curves. (See Appendix B for Lotus 123 macro.) The results from this analysis are presented in Table 2.

The next step was to evaluate the slopes of the recoil germanium spectra. The data was entered into another Lotus program called Graphwriter. This program has the capabilities of performing a group of regression fitting calculations for the entered data. The results are presented with a slope and intercept for the fit and a regression coefficient (\mathbb{R}^2). An \mathbb{R}^2 value of 1 indicates a perfect fit to the data. The slope measurements for these curves are the change in counts divided by the change in keV. The neutron energy curves all had approximately the same change in keV

channel; however, the relative change in counts was vastly different. To overcome this relative difference in counts, all curves were normalized to a maximum count of 10000 for evaluation.

The upslope was evaluated with a linear fit over the first three, five and ten keVs of the curve. The slopes and the regression coefficients were recorded (see Table 3).

The first leg of the downslope was also evaluated with a linear fit. Four methods were used for selecting the area to be fitted. The first method was to select visually the most linear segments of the downslope leg. The other methods were based on determining the point on the downslope leg of the curve where the second derivative was equal to zero This point was used as the center point for (zero point). the area to be fitted. The second and third method utilized the zero point and one and five points on either side of it, respectively. The fourth method utilized the maximum equal number of points on either side of the zero point that maintained a regression coefficient greater than 0.999. The absolute value of the slope was used to facilitate the use of the computer programs. Values are recorded in Table 4.

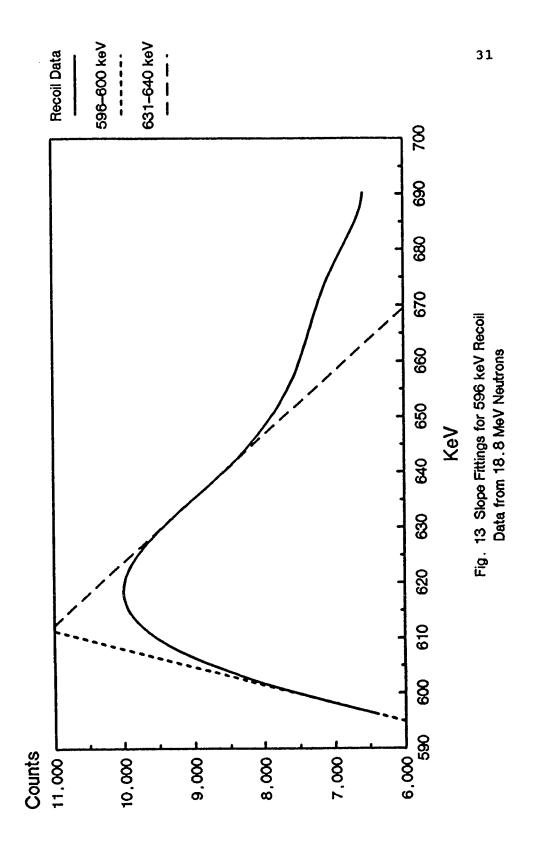
Table 2

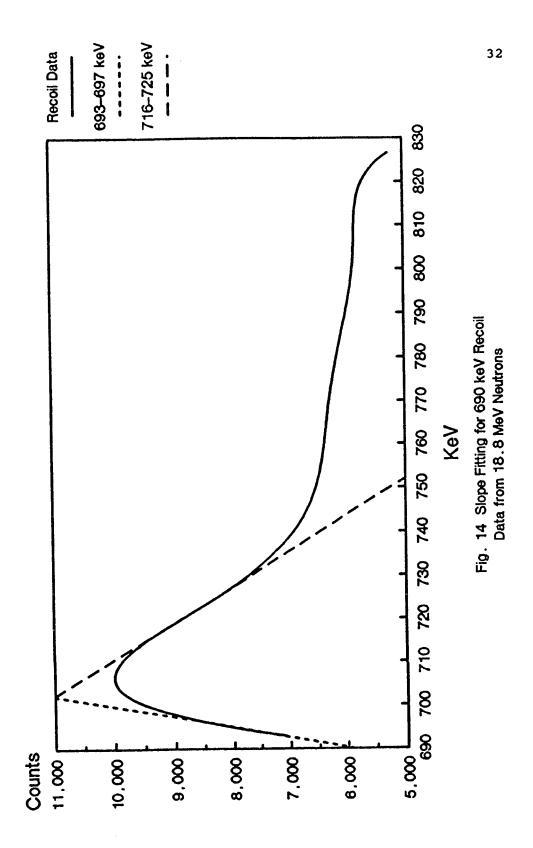
Width Measurements (keV) for the Recoil Germanium Curves

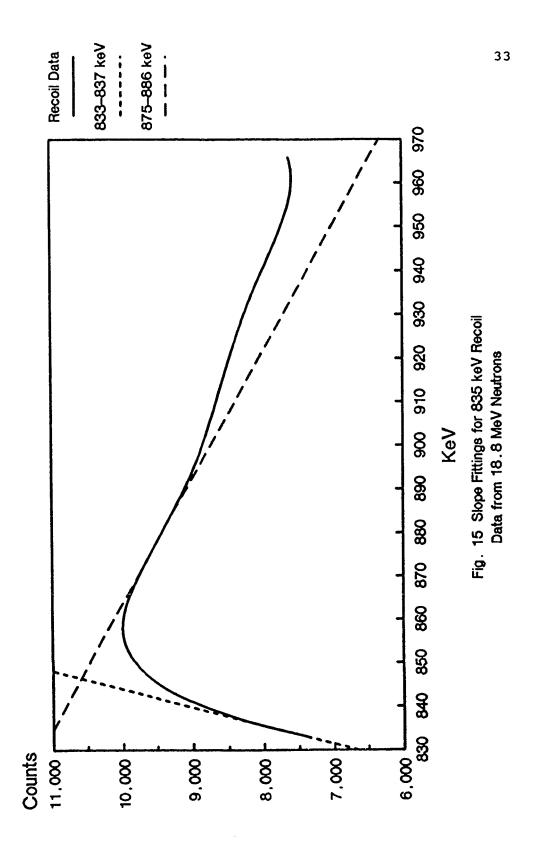
<u> </u>	Curves (keV)								
		596			690			835	<u> </u>
		Neutron Energy (MeV)							
Peak <u>Width</u>	18.8	38.4	65.5	18.8	38.4	65.5	18.8	38.4	65.5
Half	42.5	48.0	33.4	26.3	30.9	33.9	69.1	53.1	29.2
Third Fourth	56.3	60.8 69.8	41.1 45.5	31.7 34.5	37.6 41.4	39.4 42.9	93.3 102.7	37.6 81.3	34.9 36.9
Fifth Tenth	75.3	76.9 89.9	48.2	36.3 40.3	43.4 51.3	44.0 48.6	108.0	87.4 98.4	38.7 42.5
20th	93.3	94.1	57.3	42.1	53.3	50.8		-	44.5

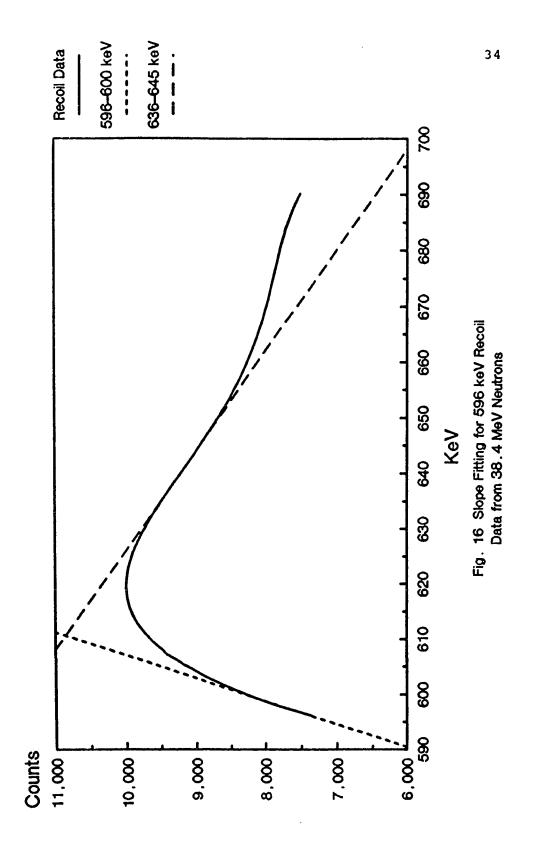
Table 3

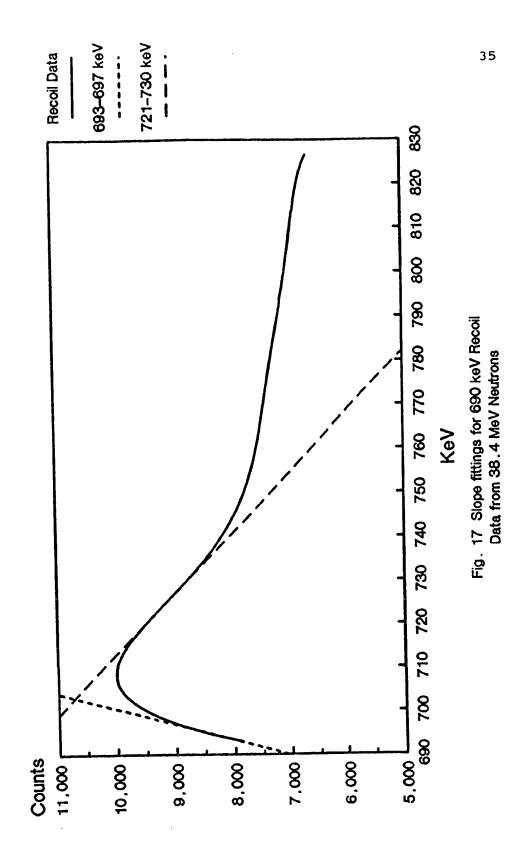
Upslope Fittings and Regression Coefficient Values

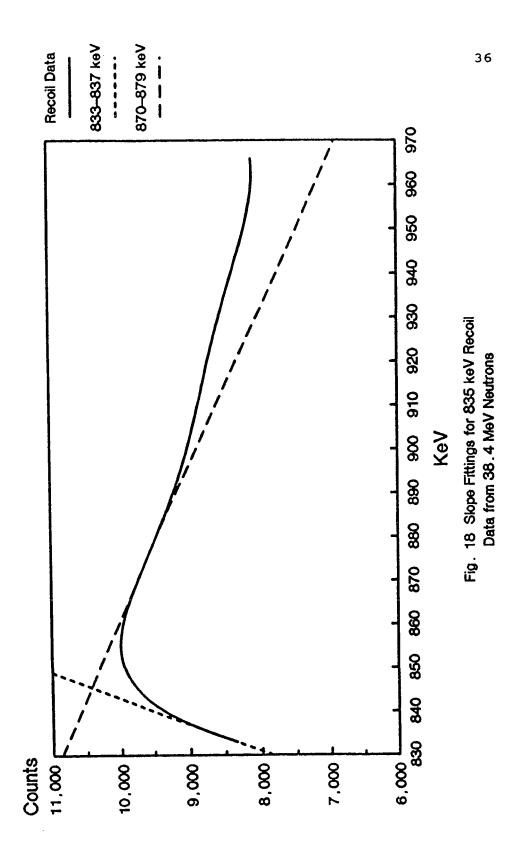

Curve Peak	Neutron Energy		D ²	5 l	D 2	10 koV	R²
<u>keV</u>	MeV	<u>3 keV</u>	R ²	<u>5 keV</u>	<u>R</u> ²	<u>10 keV</u>	<u> </u>
596							
	18.8	313.2	0.9999	302.9	0.9993	270.6	0.9962
	38.4	255.0	0.9998	240.2	0.9987	203.7	0.9922
	65.5	203.1	0.9988	183.0	0.9953	138.6	0.9759
690							
	18.8	474.2	0.9991	423.1	0.9950	310.3	0.9691
	38.4	310.1	0.9993	280.7	0.9962	213.9	0.9734
	65.5	145.0	0.9995	133.1	0.9973	106.9	0.9853
835							
	18.8	256.3	0.9997	239.5	0.9983	200.8	0.9911
	38.4	178.3	0.9995	165.4	0.9988	135.9	0.9889
	65.5	109.8	0.9991	98.3	0.9954	73.0	0.9723

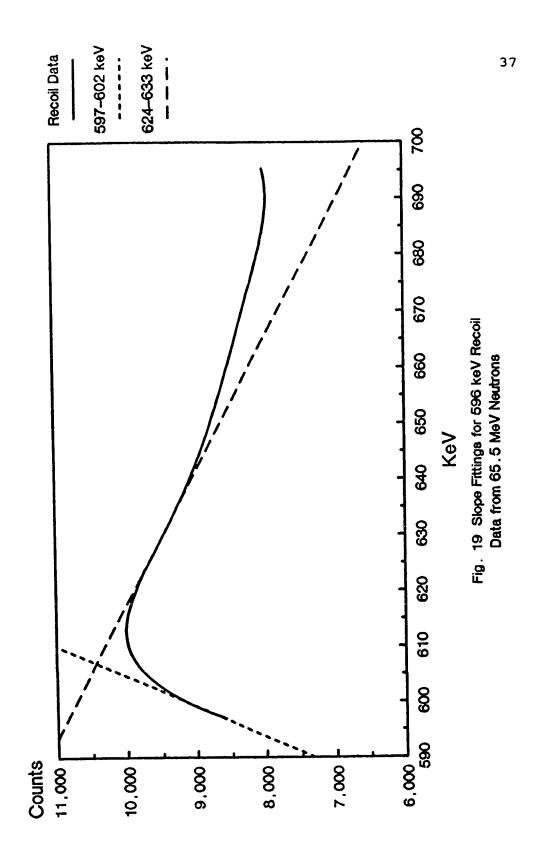

Table 4

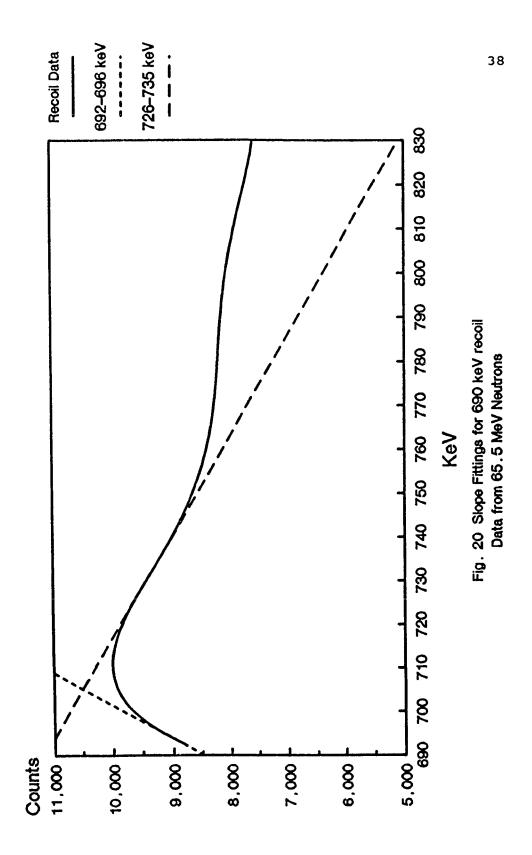

Curv Peak	-							
(kev	leutron							
E	Inergy MeV)	Visua	al R ²	3 Point*	11 Point	R²	Maximu Points	
596								
	18.8	85.8	0.9998	88.9	87.5	0.99995	83.4	0.9992
	38.4	53.6	0.9996	56.0	55.5	0.99998	52.6	0.9992
	65.5	40.0	0.9991	42.3	41.8	0.99997	39.9	0.9991
690				1				
	18.8	117.9	0.9994	123.1	120.8	0.99993	117.0	0.9992
	38.4	69.8	0.9993	72.8	72.3	0.99996	68.8	0.9992
	65.5	41.8	0.9994	43.6	43.4	0.99993	41.8	0.9991
835								
	18.8	33.2	0.9992	35.3	34.6	0.99993	32.6	0.9990
	38.4	27.3	0.9995	28.6	28.3	0.99999	26.9	0.9991
	65.5	26.9	0.9992	28.4	28.1	0.99996	27.1	0.9993

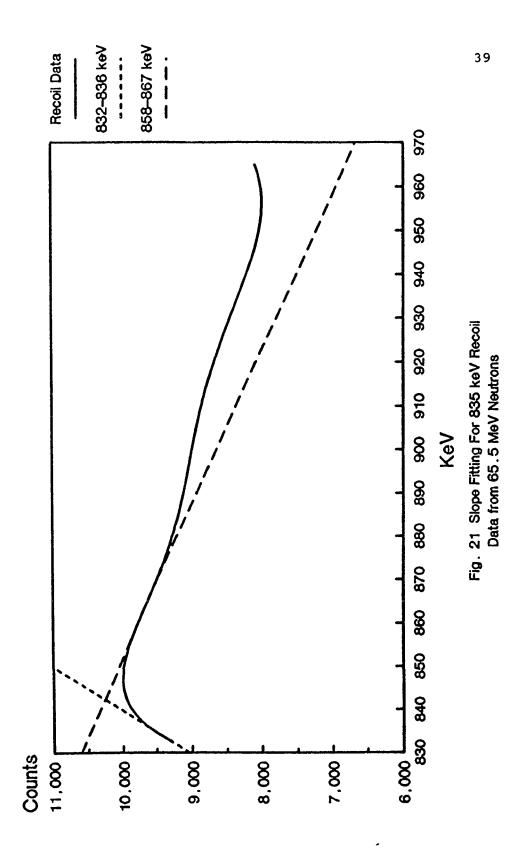

Absolute Value of Downslope Fittings and Regression Coefficient Values

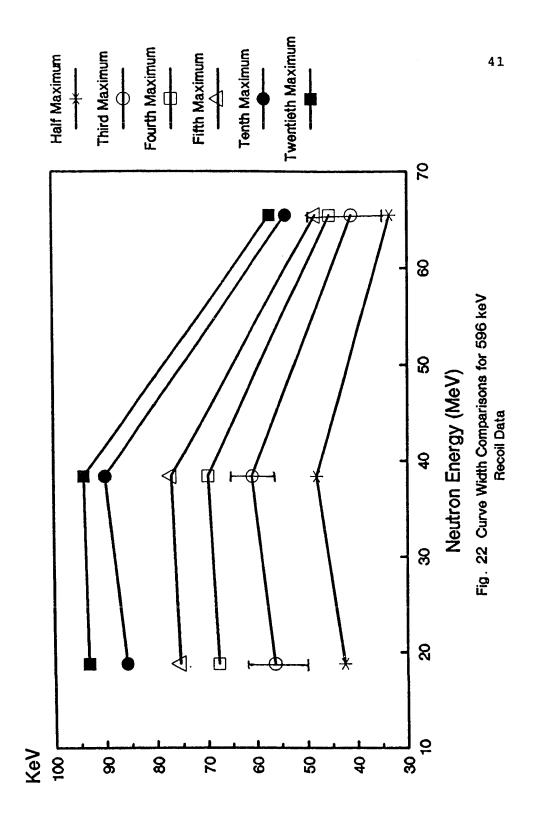

Figures 13-21 are graphic representations of the upslope fitting utilizing the first five keV and the downslope fitting utilizing the second derivative zero point and \pm 5 keV technique for point selection.

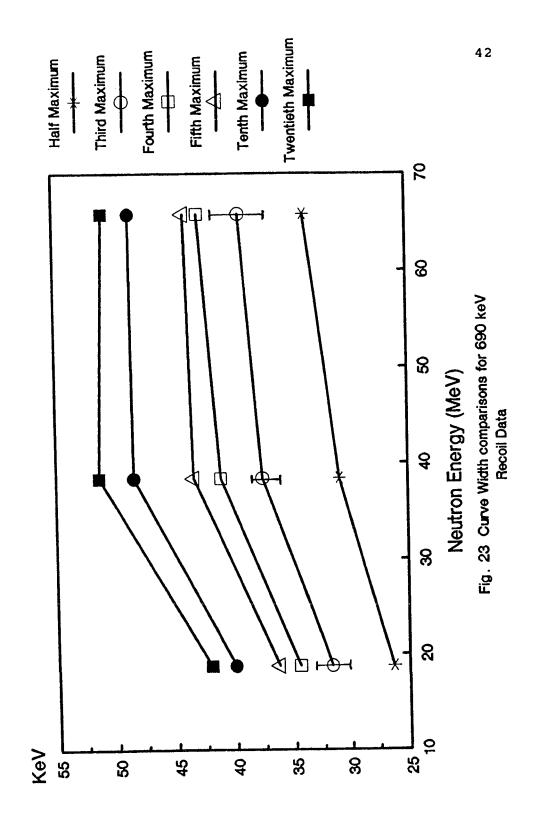




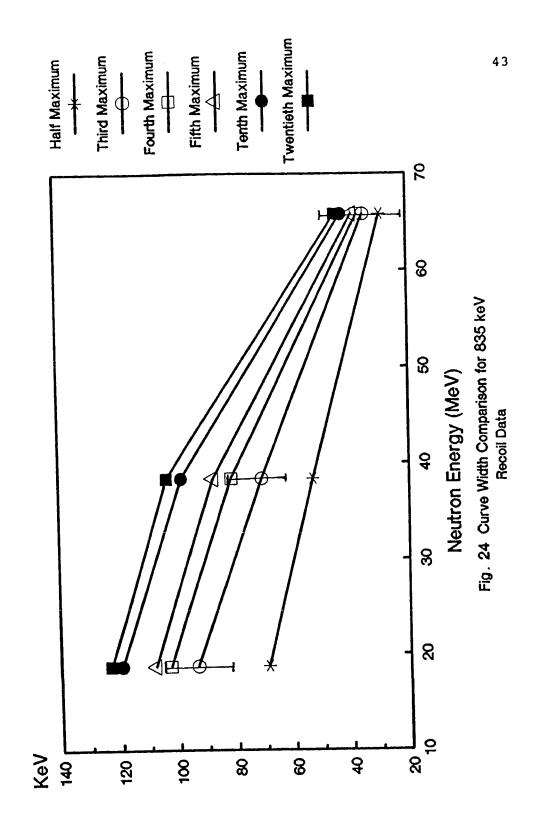


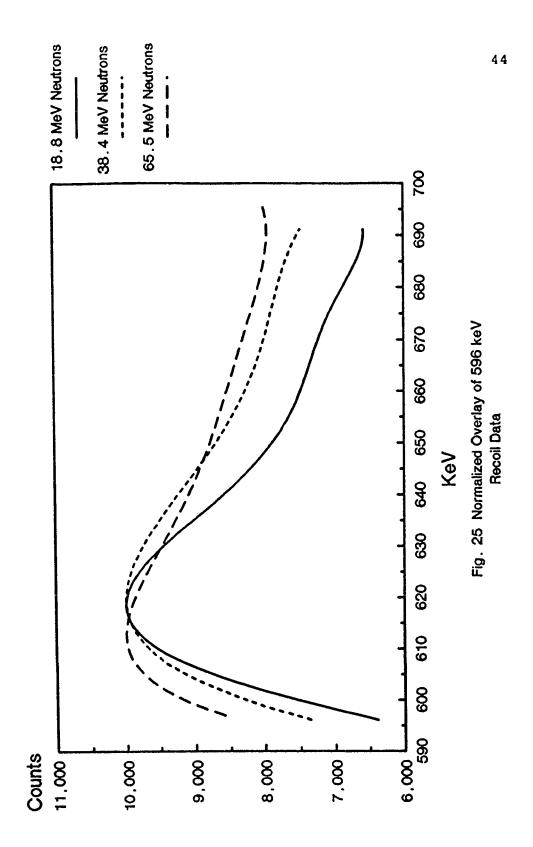


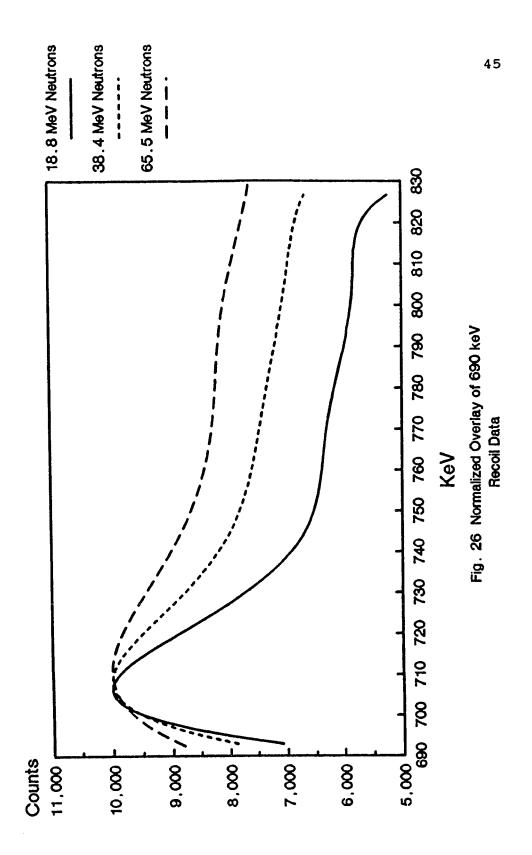

Chapter 5: Discussion

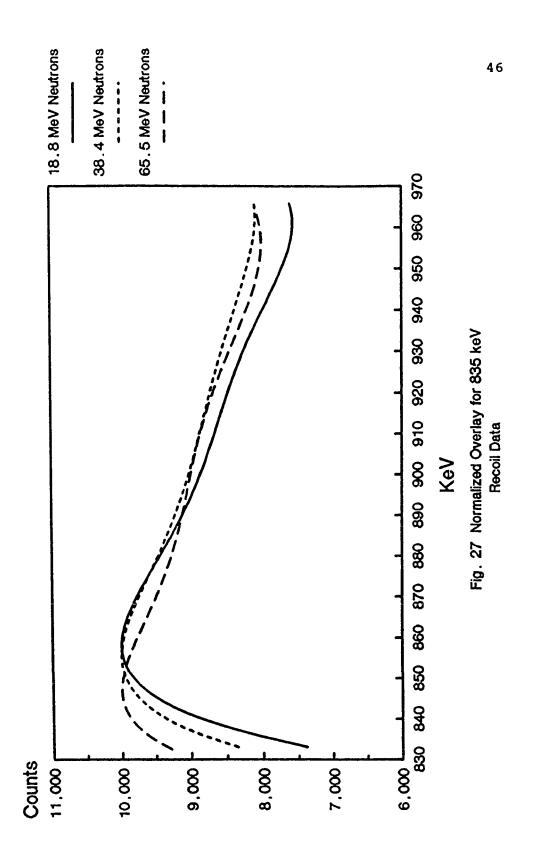

The three different peaks (595, 690, 835 keV) that were evaluated were created in the same manner, i.e. the combination of gamma ray or electron conversion energy and the recoil germanium nucleus energy. The primary difference between the peaks should be the amount of energy the germanium nucleus transferred to the electron-hole pairs. It would therefore be reasonable to conclude that the three parameters evaluated would respond in a similar manner for all three recoil curves. However, when the full width measurements in Table 2 were graphed (Figures 22-24), the curves demonstrated that each of the peaks responded in a different manner as the energy of the neutrons increased.

It was shown by Chasman et al. (1965a) and Smith (1972) that the curves were visually wider with increasing neutron energy. However, the calculations for the 596 keV peak decreased between neutron energies of 38.4 and 65.5 MeV and the 835 keV peak decreased over all three neutron energies. The 690 keV peak increased between each of the neutron energies, however, the amount it increased between 38.4 and 65.5 MeV was minimal. Overlaying the normalized data that was used for slope measurements (Figures 25-27), demonstrated that the amount of activity for the leading minimum point of each curve is greater at higher neutron energies.


40







The increase in the leading minimum point was caused by a "bleeding" of activity from the lower energy recoil curve into the curve of interest. The increase in the leading point value resulted in a higher calculated value of the width line and thus a smaller width measurement. Using the kinematics of neutron scattering one can explain the "bleeding" of activity from one curve into another.

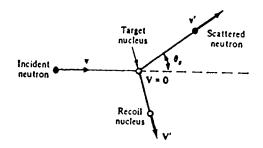


Figure 28 Laboratory system for the kinematics of neutron scattering (Chilton, Shultis and Faw, 1984).

In the laboratory system (see Figure 28) conservation of energy and momentum require:

$$\frac{1}{3}mV^2 = \frac{1}{3}mV^{12} + \frac{1}{3}MV^{12} - Q$$
 5.1

$$m\mathbf{v} = m\mathbf{v}^* + M\mathbf{v}^* \qquad 5.2$$

where \mathbf{v} , $\mathbf{v}^{\mathbf{v}}$ and $\mathbf{v}^{\mathbf{v}}$ are the velocities of the neutron before and after the scattering event and the velocity of the recoil nucleus respectively. The magnitude of Q is the excitation energy that the recoil nucleus radiates.

The law of cosines can be written with $\Omega = \cos \theta$:

$$|\mathbf{v}^{\dagger} - \mathbf{v}|^2 = \mathbf{v}^2 + \mathbf{v}^{\dagger 2} - 2\mathbf{v}\mathbf{v}^{\dagger}\mathbf{\Omega}$$
 5.3

After squaring equation 5.2 and rearranging the terms

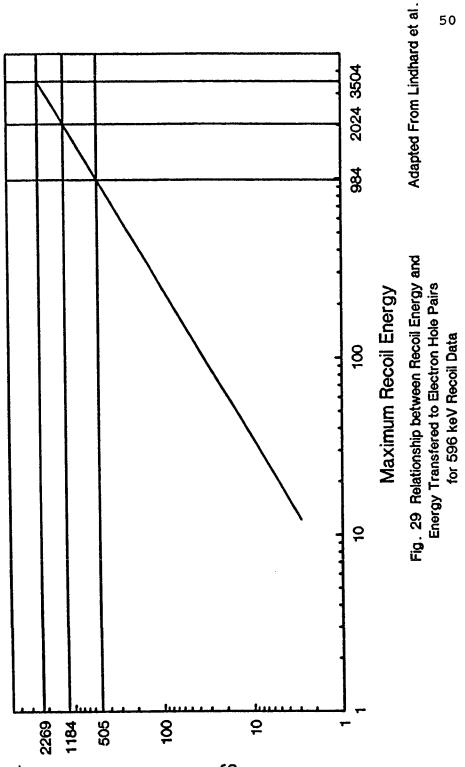
the equation becomes:

 $V^{12} = (m/M)^2 (v^2 + v^{12} - 2vv^{1}\Omega) \qquad 5.4$

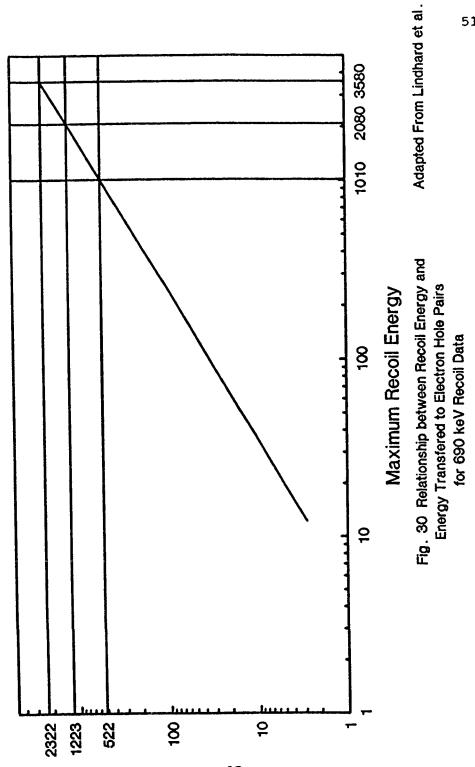
Substitution of V'' of equation 5.4 into equation 5.2 yields:

 $mv^{2}(m - M) + mv^{2}(m + M) - 2m^{2}vv^{2}\Omega = 2MQ$ 5.5

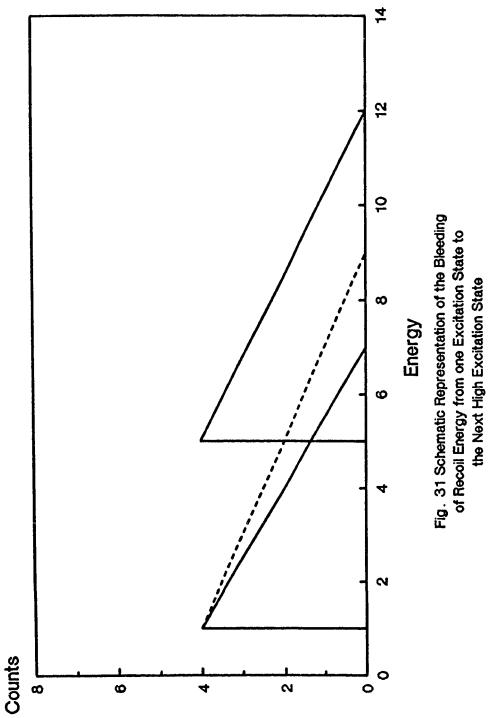
Expressing the speeds v and v' in terms of the initial and final neutron energies E and E' and rearranging the equation yields:


 $\Omega(E,E') = \frac{1}{2}[(A + 1) \sqrt{(E'/E)} - (A-1)\sqrt{(E'/E)} - QA/\sqrt{(EE')}] 5.6$ where A = M/m. This equation presents the relationship between the neutron energies before and after scattering and the cosine of the scattering angle in the laboratory system. Equation 5.6 is a quadratic equation in $\sqrt{E'}$ whose solution is:

 $E'(\Omega, E) =$


 $[1/(A + 1)^{2}][\Omega/\overline{E} \pm \sqrt{\{E(\Omega^{2} + A^{2} - 1) + A(A + 1)Q\}}]^{2}$ 5.7 (Chilton, Shultis and Faw, 1984).

Equation 5.7 was used to calculate the energy of the expelled neutron n' based on the angle of scattering and the initial energy of the neutron. Substituting these values back into equation 5.1 the energy of the recoil germanium nucleus was calculated. A computer program was written that evaluated this equation with variable inputs for neutron energy, A and Q over scattering angles of 0 to 180°. The program along with the results for the neutron energies used and Q values observed in the scattering of neutron with germanium nuclei are found in Appendix C. The maximum recoil energies were 984, 2024 and 3504 keV for the 18.8, 38.4 and 65.5 MeV neutrons respectively at a Q value of -0.596 MeV. For a Q value of -0.690 MeV the maximum recoil energies were 1010, 2080 and 3580 keV.


The energy transferred to the electron-hole pairs from the recoil germanium nuclei, as calculated with Lindhard's equations (1963) is shown in Figures 29 and 30. There is a 33 keV difference between the 563 and 596 keV recoil energy levels. The difference between 596 and 690 keV is 94 keV and between 690 and 835 keV is 140 keV. The results shown in Figures 29 and 30 indicate that much of the recoil energy from the lower excitation state was recorded in the higher As the neutron energy increased, excitation levels. the maximum amount of energy that was transferred to the electron-hole pairs also increased and more of this activity appeared in the next higher excitation state. Figure 31 schematically demonstrates this relationship between the two excitation states. The solid line is the shape from a lower neutron energy and the broken line from a higher neutron energy. The difficulty in removing the "bleeding" of activity from a lower state into a higher state resulted from the uncertainty as to the level of the background continuum in this area of the curve as seen in Figures 1-3.

Estimated Energy to Electron Hole Pairs (keV)

Estimated Energy to Electron Hole Pairs (keV)

It was seen from the data shown in Table 3 the upslopes measured at 3, 5 or 10 keV all followed a similar pattern. When this data was graphed, with the neutron energy on the x-axis and the slope plotted on a logarithmic scale, all three recoil peaks plotted a straight line. The graphs for the 5 keV slope fittings are shown in Figure 32.

A logarithmic fit was performed on each of these lines to determine an equation to describe the lines in the form:

$$Y = a(e^{(bX)})$$
 5.8

where a is the intercept and b is the slope of the line. All three recoil peaks presented the same pattern (Figure 33). In following the argument that an increase in neutron energy will result in a larger "bleeding" from a lower to a higher peak, it was noted that the curves from the 65.5 Mev neutrons demonstrated a spread of only 13 keV from the initial point of the curve to the maximum point. Consequently, if this determination were to extend beyond the neutron energies studied, the 10 keV slope determination would begin to involve portions of the peak and downslope and no longer be a true measure of the upslope. Tables 5 and 6 present values for a, b and the R² regression coefficient for the 3 and 5 keV fits respectively.

Peak <u>Curve</u>	b	a	R ²	
596	-0.009220	369.10142	0.9960160	
690	-0.025537	788.05459	0.9951706	
835	-0.018135	359.44913	0.9999077	

Table 5 Line Function Parameters for the 3 keV Upslope Fit

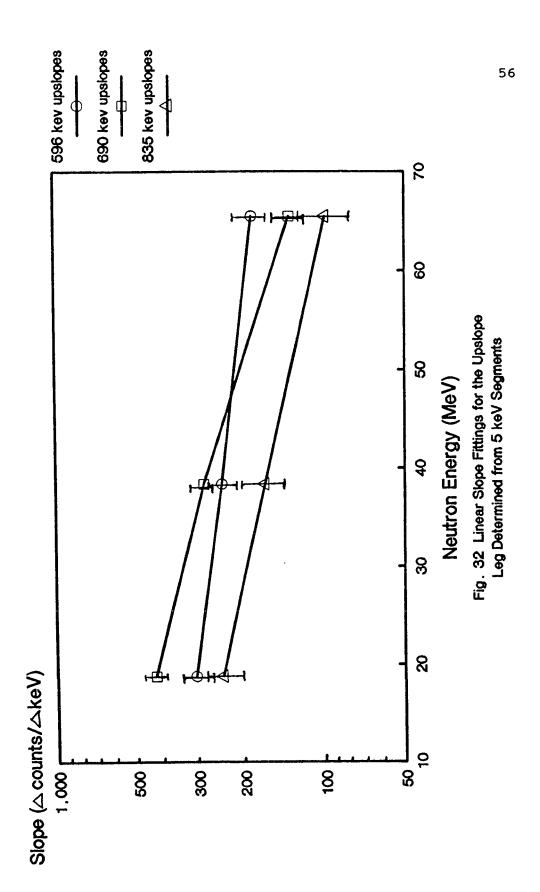
Table 6 Line Function Parameters for the 5 keV Upslope Fit

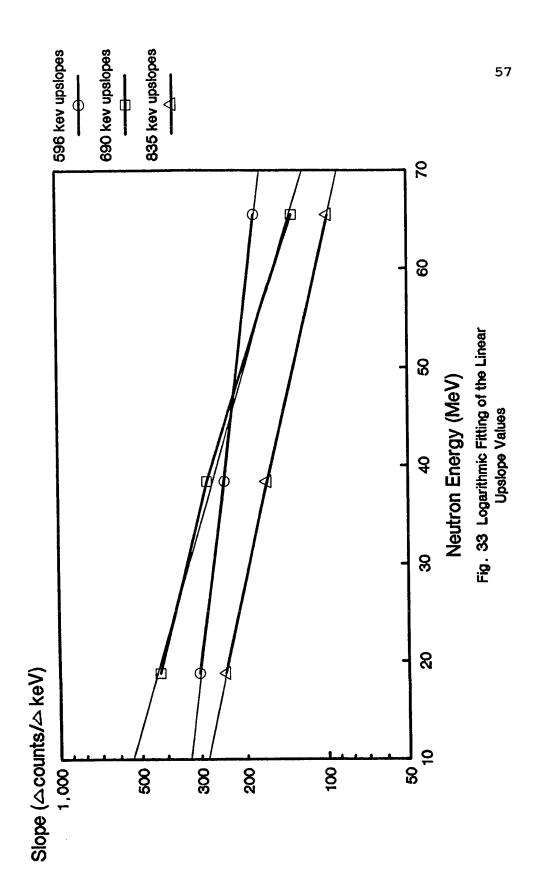
Peak <u>Curve</u>	b	a	<u>R</u> ²
596	-0.010744	367.80462	0.9978301
690	-0.024935	695.88448	0.9945830
835	-0.019077	343.28974	0.9999789

Solving equation 5.8 for X, the neutron energy and using a factor to account for the normalization of the recoil curves to a maximum count of 10000 we have:

$$X = (\ln (S * (10000/M))/a)/b$$
 5.9

where X = Neutron energy S = Slope of first 3 or 5 keV of upslope for the recoil curve M = Maximum count in recoil curve a and b are values for the respective curves found in Tables 5 and 6.


••


A check of these values was performed by evaluating the original slope calculations with the above formulas. All recalculations showed a reasonable estimation of the original neutron energy as seen in Table 7.

Original Neutron <u>Energy(MeV)</u>	3 keV Calcu	lation		5 keV Calcu	lation	
	Recoi	l Curv	es	Recoi	l Curv	es
	596	690	835	596	690	835
18.8	17.8	19.9	18.6	18.0	19.9	18.9
38.4	40.1	36.5	38.7	39.7	36.4	38.3
65.5	64.8	66.3	65.4	65.0	66.3	65.6

Table 7 Evaluation of Measured Slopes Utilizing3 and 5 keV Upslope Formulas

Both equations provided acceptable estimations of the neutron energy with all three recoil curves. The best results were obtained with the 835 keV recoil curve. If the values obtained from the 596 and 690 keV recoil curves were averaged, the estimation of the neutron energy was equal to that of the 835 keV curve. The results for the 10 keV slope determination were similar to the results shown above.

The downslope values from Table 4 were plotted on a log-log scale (see Figure 34 for the 11 keV values). These values when plotted demonstrated a straight line. However, a mild variation was observed for the 835 keV recoil curve. There was excellent agreement amoung the four methods used for determining the slope of the curves.

The 835 keV curve probably had reached a point where a large change in neutron energy was needed to show a small change in the downslope of the recoil curve. An evaluation of this curve should be performed at energies between 18.8 and 38.4 MeV to determine where this transition occurred.

The 596 and 690 keV recoil curves were fitted with a power function:

$$Y = aX^b 5.10$$

a and b again represent the intercept and slope of these fitted lines, respectively (Figure 35). Both the visual and maximum ($\mathbb{R}^2 > 0.999$) determinations required multiple guesses as to the end points of the fitted areas. This would result in an excessive amount of time for the users of this type of evaluation. Although the results from the visual and maximum types of selections were very similar to the results obtained for the 3 and 11 keV lines the latter two will be discussed here. Tables 8 and 9 present the values for a, b and \mathbb{R}^2 for these fittings.

Recoil <u>Curve</u>	b	a	R²	
596	-0.597885	508.3128	0.9967462	
690	-0.826296	1417.5361	0.9942136	

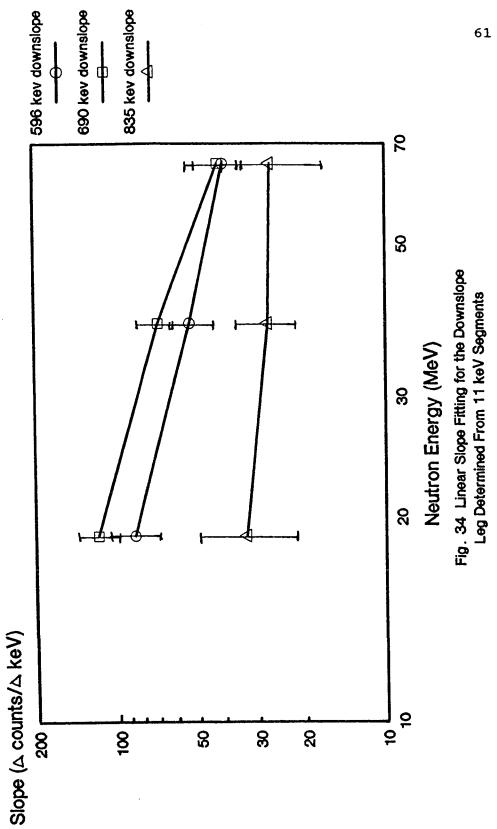
Table 8 Line Function Parameters for the3 keV Downslope Fit

Table 9 Line Function Parameters for the 11 keV Downslope Fit

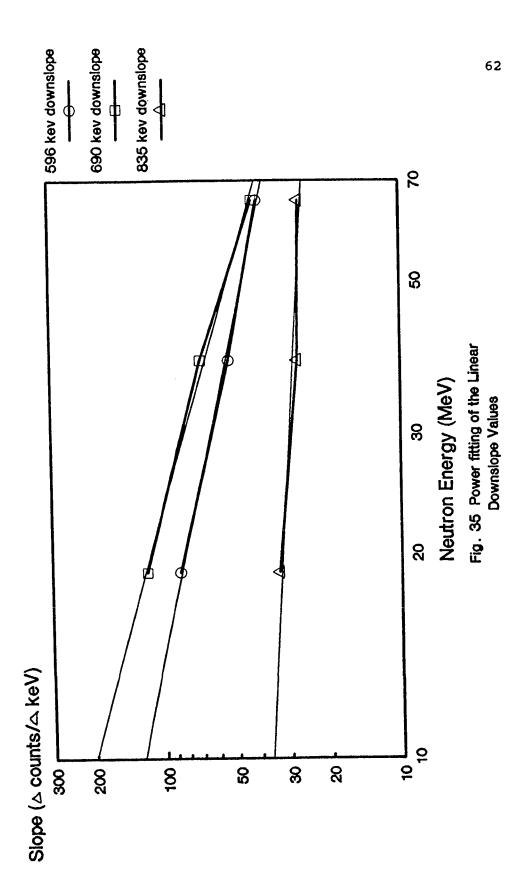
Recoil <u>Curve</u>	b	a	R²	
596	-0.594343	495.7806	0.9974738	
690	-0.814584	1345.4889	0.9933723	

Using the same symbol designation used for the upslope equation and solving equation 5.10 for the neutron energy yields:

$$X = (-S * (10000/M)/a)^{(1/b)}$$
 5.11


The negative sign appears before the slope value S to account for the negative downslope. The downslopes were plotted as an absolute value in order to perform the power fitting on the computer. This equation was also checked against the values measured for the three neutron energies utilized for this experiment. The results of this check are seen in Table 10.

Original Neutron <u>Energy(MeV)</u>	3 keV Calculation	11 keV Calculation
	Recoil Curves	Recoil Curves
	596 690	596 690
18.8	18.5 19.2	18.5 19.2
38.4	40.0 36.3	39.8 36.2
65.5	64.0 67.6	64.2 67.7


Table 10 Evaluation of Measured Slopes Utilizing 3 and 11 keV Downslope Formulas

Both line lengths provided a reasonable estimation of the maximum neutron energy used to produce the slopes. There appeared to be very little difference between the 3 and 11 keV line lengths used for the slope measurements. The maximum spread and visual selections had similar results.

. .

- -

Chapter 6: Conclusion

The recoil germanium portion of a spectrum produced by the $(n, n'\tau)$ inelastic scattering of the neutron and the germanium nucleus was used to evaluate the maximum energy of the neutron beam. It was shown that the full width measurements of the curve do not provide an accurate measurement of the neutron energy. The upslope and the first leg of the downslope of these curves provided a group of equations that provided a reasonable estimate of the maximum energy of the neutron beam. The following group of equations were derived:

Table 11 Final Equations for Neutron Energy Determination 596 KEV CURVE

Upslope Equations:

3 keV Fit X = (ln ((S x (10000/M))/369.10142))/-0.009220 5 keV Fit X = (ln ((S x (10000/M))/367.80462))/-0.010744 Downslope Equations:

3 keV Fit $X = ((-S \times (10000/M))/508.31277)^{-1.67256}$ 11 keV Fit $X = ((-S \times (10000/M))/495.78060)^{-1.68253}$

690 KEV CURVE

Upslope Equations:

3 keV Fit X = (ln ((S x (10000/M))/788.05459))/-0.025537 5 keV Fit X = (ln ((S x (10000/M))/695.88448))/-0.024935

Table 11 continued

690 KEV CURVE

Downslope Equations:

3 keV Fit $X = ((-S \times (10000/M))/1417.5361)^{-1.21022}$

11 keV Fit X = $((-S \times (10000/M))/1345.4889)^{-1.22762}$

835 KEV CURVE

Upslope Equation:

3 keV Fit X = (ln ((S x (10000/M))/359.44913))/-0.018135 5 keV Fit X = (ln ((S x (10000/M))/343.28974))/-0.019077

It should be noted that these equations are only valid under low neutron flux conditions. Care should be taken to ensure that the dead time of the detector is low.

For quasi-monoenergetic neutron beams the high-purity coaxial and planar germanium detectors were found to be useful instruments in determining the maximum neutron energy. It is reasonable to conclude that these results will also apply to accelerator produced (structured) white-neutron sources; however, the application to spectra produced by continuous energy neutron(non-structured) sources would not be valid. The germanium detector can be used to not only measure gamma ray spectra by the Health Physicist but also as a useful tool in estimating the dose rate from a neutron source. To continue this evaluation, these equations should be verified with other neutron sources and their validity evaluated at higher neutron energies.

REFERENCES

Attix, F. H. (1986). <u>Introduction to Radiological Physics</u> <u>and Radiation Dosimetry</u>. New York: John Wiley and Sons.

- Bockisch, A., Braum, G., Neuwirth, W. (1982). Stopping power for Ge ions produced by inelastic scattering of (d,t) fusion neutrons. <u>Zeitschrift für Physik A: Atoms</u> <u>and Nuclei</u>, <u>304</u>, 369-370.
- Brüchner, J., Wänke, H., Reedy, R. C., Neutron-induced gamma ray spectroscopy: Simulations for chemical mapping of planetary surfaces. <u>Proceedings of the Seventeenth Lunar</u> and Planetary Science Conference, Part 2 Journal of <u>Geophysical Research</u>, <u>92</u>, E603-E616.
- Bunting, R. L., Kraushaar, J. J. (1974) Short-lived radioactivity in Ge(Li) gamma-ray detectors by neutrons. <u>Nuclear</u> <u>Instruments and Methods</u>, <u>118</u>, 565-572.

Cember, H., (1985) <u>Introduction to Health Pysics</u> (2nd ed.). New York:Pergamon.

- Chasman, C., Jones, K. W., Ristinen, R. A. (1965a). Fast neutron bombardment of a lithium-drifted germanium gamma-ray detector. <u>Nuclear Instruments and Methods</u>, <u>37</u>, 1-8.
- Chasman, C., Jones, K. W., Ristinen, R. A. (1965b) Measurement of the energy loss of germanium atoms to electrons in germanium at energies below 100 keV. <u>Physical Review</u> <u>Letters</u>, <u>15</u>, 245-248.
- Chasman, C., Jones, K. W., Ristinen, R. A., Sample, J. T. (1967). Measurements of the energy loss of germanium atoms to electrons in germanium at energies below 100 keV. II. <u>Physics Review</u>, <u>154</u>, 239-244.
- Chilton, B. C., Shultis, J. K., Faw, R. E. (1984). <u>Princi-</u> <u>ples of Radiation Shielding</u>.Englewood Cliffs NJ:Prentice-Hall.
- Chung, C., Chen, R. C., (1991), Application of a germanium detector as a low flux neutron monitor. <u>Nuclear Instru-</u> <u>ments and Methods in Physics Research</u>, <u>A301</u>, 328-336.

- Chung, K. C., Mittler, A., Brandenberger, J. D., McEllistrem, M. (1970). Ge(n, n'τ) reactions and low-lying state of Ge Isotopes. <u>Physics Review C</u>, 2, 139-148.
- Kruse, H., Spectra processing with computer-graphics, In Carpenter, B. S., D'Agostino, M. D., and Yule, H. P. (Eds) <u>Computers in Activation Analysis and Gamma-Ray</u> <u>Spectroscopy</u>, Department of Energy: Proceedings of American Nuclear Society Topical Conference. Mayaguez, Puerto Rico.
- Lieb, K. P., Kent, J. J., Moore, C. F. (1968). Isobaricanalog study of ⁹⁰Zr. <u>Physical Review</u>, <u>175</u>, 1482-1490.
- Lindhard, J., Nielsen, V., Scharff, M., Thomsen, P. V., (1963). <u>Fys. Medd. Dan. Vid. Selsk</u>, <u>33</u>.
- Lederer, C. M., Shirley, V. S. eds. (1978). <u>Table of Iso-</u> <u>topes</u>. New York: John Wiley and Sons.
- Protection Against Neutron Radiation (1971) Report #38. Washington D.C.:National Council on Radiation Protection and Measurements.

- Smith, D. L. (1972). Fast-neutron flux measurement with a Lithium-drifted germanium detector. <u>Nuclear Instruments</u> and <u>Methods</u>, <u>102</u>, 193-199.
- Stelson, P. H., Dickens, J. K., Raman, S., Trammell, R. C. (1972). Deterioration of large Ge(Li) diodes caused by fast neutrons. <u>Nuclear Instruments and Methods</u>, <u>98</u>, 481-484.
- Youngblood, D. H., Bearse, R. C., Williams, N., Blaugrund, A. E. (1966). Speed of the ▲J = 1, ▲T = 1, M1 Transition in ²⁶Al. <u>Physics Review</u>, <u>164</u>, 1370-1382.

APPENDIX A: Ganymed Printouts of Raw Data, Recoil Background Data and Gamma Ray/Conversion Electron Fitted Data.

596	keV Peak	From	18.8 MeV	' Neutr	ons							70
L=	6edru	n										
C/f=	1.685	E1=	594.30	E2=	690.3	17	P= 6	R=	4.0	% =	30.	
Chan.	k	eV	Count	s	Back.		Fi	t	R	les.		
470		.30	96		913.9		915			. 5		
471		.22		95	956.		959			.1		
472		.14		53	996.		1006		-1	7		
473		.07	10:		1036.		1060		-	•.8		
474		.99	10		1073.		1124		-1	5		
475		.91	118		1109.		1205		-	•.7		
476		.83	13:		1143.		1305			.9		
477		.75	14:		1175.		1419			.5		
478		.68	154		1206.		1531			.3		
479		.60	16		1234.		1621			.8		
480		.52	16		1260.	9	1671	.4	-	8		
481		.44	16		1285.		1675	.5	-	2		
482		5.36	15		1307.		1643	.6	-1	L .4		
483		5.28	16		1328.		1598	.3	1	L.3		
484		.21	15		1346.	5	1564	.2		.0		
485		3.13	15	95	1362.	9	1558	.4		.9		
486		.05	16	02	1377.	5	1584	.1		.4		
487		9.97	15	36	1390.	2	1630	.6	-2	2.4		
488		.89	16	86	1401.	0	1678	.3		.2		
489		L.82	17	35	1410.	1	1707			.7		
490	612	2.74	17		1417.		1705]	1.2		
491	613	3.66	16		1423.		1672			• 5		
492		1.58		46	1427.		1620			L.9		
493		5.50		26	1429.		1562		-	9		
494		5.42		33	1430.		1512			.5		
495		7.35		83	1430.		1475			.2		
496		3.27		86	1429.		1450			.9		
497		9.19		58	1426.		1435			3.2		
498		0.11	14		1422.		1425			1		
499		1.03		41	1417.		1418		-	3.2		
500		1.95		27	1411.		1411			.4		
501		2.88		62	1404.		1404			1.5 2.1		
502		3.80		19	1396.		1396 1388			2.5		
503		4.72		98 16	1388. 1379.		1379			1.7		
504		5.64		51	1369.		1369			5		
505		6.56		29	1359.		1359			8		
506				45	1348.		1348			1		
507		8.41 9.33		53	1348.		1337			.4		
508		0.25		96	1326.		1326			8		
509 510		1.17		66	1314.		1314			1.4		
510		2.09		41	1303.		1303			1.0		
512		3.02		63	1291.		1293			8		
512		3.94		11	1279.		1279			.9		
514		4.86		88	1268.		1268			.6		
51-						_		-		-		

515	635.78	1238	1256.6	1256.6	5
516	636.70	1236	1245.2	1245.2	3
517	637.63	1135	1233.9	1233.9	-2.9
518	638.55	1233	1222.8	1222.8	.3
519	639.47	1224	1211.9	1211.9	.3
520	640.39	1181	1201.4	1201.4	6
521	641.31	1205	1191.2	1191.2	.4
522	642.23	1216	1181.3	1181.3	1.0
523	643.16	1254	1171.8	1171.8	2.4
524	644.08	1184	1162.6	1162.6	.6
525	645.00	1112	1153.9	1153.9	-1.2
526	645.92	1158	1145.5	1145.5	. 4
527	646.84	1098	1137.6	1137.6	-1.2
528	647.77	1151	1130.1	1130.1	.6
529	648.69	1167	1123.0	1123.0	1.3
530	649.61	1123	1116.2	1116.2	.2
531	650.53	1088	1109.9	1109.9	7
532	651.45	1095	1104.0	1104.0	3
533	652.37	1192	1098.4	1098.4	2.8
534	653.30	1168	1093.2	1093.2	2.2
535	654.22	1072	1088.3	1088.3	5
536	655.14	1093	1083.7	1083.7	.3
537	656.06	1095	1079.3	1079.3	.5
538	656.98	1000	1075.3	1075.3	-2.3
539	657.90	981	1071.4	1071.4	-2.8
540	658.83	1058	1067.7	1067.7	3
541	659.75	1106	1064.2	1064.2	1.3
542	660.67	1074	1060.8	1060.8	.4
543	661.59	1010	1057.5	1057.5	-1.5
544	662.51	1121	1054.3	1054.3	2.1
545	663.44	968	1051.0	1051.0	-2.6
546	664.36	1046	1047.8	1047.8	1
547	665.28	1055	1044.5	1044.5	.3
548	666.20	1097	1041.2	1041.2	1.7
549	667.12	1071	1037.8	1037.8	1.0
550	668.04	1001	1034.2	1034.2	-1.0
551	668.97	1036	1030.5	1030.5	.2
552	669.89	1002	1026.6	1026.6	8
553	670.81	1035	1022.6	1022.6	.4
554	671.73	984	1018.3	1018.3	-1.1
555	672.65	1005	1013.9	1013.9	3
556	673.58	962	1009.2	1009.2	-1.5
557	674.50	998	1004.4	1004.4	2
558	675.42	1053	999.4	999.4	1.7
559	676.34	1013	994.2	994.2	.6
560	677.26	971	988.9	988.9	6
561	678.18	1007	983.5	983.5	.7
562	679.11	972	978.1	978.1	2
563	680.03	988	972.7	972.7	.5
202	~~~~~	200			

_

564	680.95	962	967.3	967.3	2
565	681.87	982	962.1	962.1	.6
566	682.79	952	957.2	957.2	2
567	683.72	925	952.6	952.6	9
568	684.64	927	948.5	948.5	7
569	685.56	962	945.0	945.0	.6
570	686.48	962	942.3	942.3	.6
571	687.40	990	940.4	940.4	1.6
572	688.32	928	939.7	939.7	4
573	689.25	902	940.2	940.2	-1.3
574	690.17	943	942.3	942.3	.0

690 L=	keV Peak From 6edrun	18.8 MeV Neutr	rons			-
C/f=		692.93 E2=	826.59	P= 6 R=	6.0 %=	30.
Chan.	keV	Counts	Back.	Fit	Res.	
577		961	956.8	957.2	.1	
578		976	1019.5	1021.6	-1.4	
579		1006	1075.3	1085.3	-2.4	
580		1154	1124.6	1160.4	2	
581	696.62	1319	1167.9	1262.9	1.6	
582	697.54	1462	1205.6	1393.4	1.8	
583		1475	1238.1	1514.6	-1.0	
584		1523	1265.8	1569.2	-1.2	
585		1520	1288.9	1537.1	4	
586		1485	1307.9	1459.1	.7	
587		1479	1323.0	1391.7	2.3	
588		1385	1334.5	1357.8	.7	
589		1444	1342.9	1348.7	2.5 2.6	
590 591		1448 1430	1348.2 1350.8	1349.3 1350.9	2.8	
591		1348	1350.8	1350.9	1	
593		1301	1348.8	1348.8	-1.3	
593		1298	1344.7	1344.7	-1.3	
595		1344	1338.8	1338.8	.1	
596		1374	1331.2	1331.2	1.2	
597		1317	1322.3	1322.3	1	
598		1348	1312.1	1312.1	1.0	
599		1291	1300.8	1300.8	3	
600		1310	1288.5	1288.5	.6	
603	L 715.06	1259	1275.5	1275.5	5	
602	2 715.98	1242	1261.8	1261.9	6	
603		1243	1247.6	1248.0	1	
604		1140	1233.0	1235.0	-2.8	
605		1118	1218.1	1227.0	-3.2	
60			1203.0	1232.3	-1.5	
60.		1220	1187.7	1259.6	-1.1	
60		1274	1172.4	1303.9	8	
609		1415	1157.2 1142.1	1336.3	2.2	
61		1358 1217	1142.1	1323.8 1264.6	.9 -1.3	
61 61		1159	1112.4	1189.9	-1.5 9	
61		1127	1098.0	1130.5	1	
61		1041	1083.8	1094.2	-1.6	
61		1039	1070.1	1073.5	-1.1	
61		1068	1056.7	1062.3	.2	
61		1084	1043.8	1062.3	.7	
61		1025	1031.3	1080.7	-1.7	
61		1135	1019.3	1117.9	.5	
62		1163	1007.8	1154.5	.3	
62		1159	996.8	1159.4	.0	

	TA A A	2126	006 0	1120 6	-
622	734.41	1136	986.2	1120.6	.5
623	735.34	1032	976.2	1059.0	8
624	736.26	980	966.7	1004.7	8
625	737.18	1023	957.8	970.7	1.7
626	738.10	967	949.3	952.6	• 5
627	739.02	972	941.3	941.9	1.0
628	739.95	969	933.8	933.9	1.1
629	740.87	984	926.8	926.8	1.8
630	741.79	930	920.3	920.3	.3
631	742.71	946	914.2	914.2	1.0
632	743.63	899	908.6	908.6	3
633	744.55	944	903.4	903.4	1.3
634	745.48	916	898.6	898.6	.6
635	746.40	898	894.2	894.2	.1
636	747.32	876	890.1	890.1	5
637	748.24	875	886.4	886.4	4
638	749.16	846	883.0	883.0	-1.3
	750.09	880	879.9	879.9	.0
639					
640	751.01	936	877.1	877.1	2.0
641	751.93	856	874.6	874.6	6
642	752.85	932	872.3	872.3	2.0
643	753.77	929	870.2	870.2	2.0
644	754.69	874	868.3	868.3	.2
645	755.62	877	866.6	866.6	. 4
646	756.54	870	865.0	865.0	. 2
647	757.46	841	863.5	863.5	8
648	758.38	871	862.2	862.2	.3
649	759.30	918	861.0	861.0	1.9
650	760.22	880	859.8	859.8	.7
651	761.15	828	858.7	858.7	-1.1
652	762.07	835	857.6	857.6	8
653	762.99	816	856.5	856.5	-1.4
654	763.91	825	855.5	855.5	-1.1
655	764.83	838	854.4	854.4	6
656	765.76	839	853.4	853.4	5
657	766.68	836	852.3	852.3	6
658	767.60	892	851.1	851.1	1.4
659	768.52	846	850.0	850.0	1
660	769.44	828	848.7	848.7	7
		783	847.5	847.5	-2.3
661	770.36			847.5	
662	771.29	828	846.1		6
663	772.21	845	844.7	844.7	.0
664	773.13	893	843.2	843.2	1.7
665	774.05	829	841.6	841.6	4
666	774.97	839	840.0	840.0	.0
667	775.90	834	838.3	838.3	1
668	776.82	845	836.5	836.5	.3
669	777.74	816	834.6	834.6	7
670	778.66	775	832.7	832.7	-2.0
671	779.58	822	830.7	830.7	3
672	780.50	853	828.7	828.7	.9

•

673	781.43	778	826.6	826.6	-1.7
674	782.35	769	824.5	824.5	-2.0
675	783.27	763	822.4	822.4	-2.1
676	784.19	786	820.2	820.2	-1.2
677	785.11	865	818.1	818.1	1.6
678	786.04	829	815.9	815.9	.5
679	786.96	829	813.7	813.7	.5
	787.88	795	811.6	811.6	6
680	788.80	816	809.4	809.4	.2
681		810	807.4	807.4	.1
682	789.72	831	805.3	805.3	.9
683	790.64			803.4	
684	791.57	829	803.4		.9
685	792.49	827	801.5	801.5	.9
686	793.41	797	799.7	799.7	1
687	794.33	819	798.0	798.0	.7
688	795.25	805	796.3	796.3	.3
689	796.17	847	794.8	794.8	1.8
690	797.10	813	793.4	793.4	.7
691	798.02	834	792.1	792.1	1.5
692	798.94	767	791.0	791.0	9
693	799.86	784	789.9	789 .9	2
694	800.78	805	789.0	789.0	.6
695	801.71	810	788.2	788.2	.8
696	802.63	794	787.5	787.5	.2
697	803.55	835	786.9	786.9	1.7
698	804.47	781	786.4	786.4	2
699	805.39	826	786.0	786.0	1.4
700	806.31	809	785.7	785.7	.8
701	807.24	781	785.4	785.4	2
702	808.16	776	785.1	785.1	3
703	809.08	779	784.9	784.9	2
704	810.00	756	784.6	784.6	-1.0
705	810.92	759	784.2	784.2	9
706	811.85	692	783.8	783.8	-3.3
707	812.77	810	783.2	783.2	1.0
708	813.69	794	782.3	782.3	.4
709	814.61	805	781.3	781.3	.8
710	815.53	764	779.9	779.9	6
711	816.45	805	778.2	778.2	1.0
712	817.38	766	776.0	776.0	4
713	818.30	746	773.2	773.2	-1.0
714	819.22	703	769.9	769.9	-2.4
	820.14	790	765.8	765.8	.9
715		787	761.0	761.0	.9
716	821.06	693	755.2	755.2	-2.3
717	821.99				
718	822.91	760	748.3	748.3	.4
719	823.83	708	740.3	740.3	-1.2
720	824.75	716	731.0	731.0	6
721	825.67	757	720.3	720.3	1.3
722	826.59	769	708.0	708.0	2.2

. . .

835 L=	keV Peak From 6edrun							
C/f=	1.372 E1=	833.05 E	2= 965.79	P= 6	R=	6.0	%=	30.
Chan.	keV	Counts	Back.	F	it		Res.	
729		748	682.3	68	2.7		2.4	
730		695	704.8	70	6.2		4	
731		740	725.9	72	9.7		.4	
732		714	745.5	75	5.0	-	1.5	
733		768	763.8	78	4.7		6	
734		784	780.8		1.6	-	-1.3	
735		848	796.5		57.3		7	
736		869	811.0		0.1	-	-1.7	
737		1048	824.4		3.8		2.4	
738		1051	836.8		.8.6		1.0	
739		1060	848.0		5.1		• 5	
740		1039	858.3		9.6		3	
741		968	867.7		36.6	-	-2.2	
742	845.03	1034	876.2		18.1		.5	
743	845.95	1032	883.8		08.6		.7	
744		1035	890.7		19.6		.5	
74		1004	896.7		54.9	•	-1.6	
74		1126	902.1)7.9		.5	
74		1179			53.4		.5	
74		1244			03.0		1.2	
74		1195			12.4		5 -1.5	
75		1136			38.2		-1.5	
75		1166			38.6		-1.4	
75		1032			23.1		.6	
75		1044			80.6		.4	
75		994			52.9		2.9	
75		1045 985			37.2		1.5	
75		919			29.4		3	
75		978			25.6		1.7	
75	-	940			23.5		.5	
75 76	-	899			22.1		8	
76		922			20.6		.0	
76		909			19.0		3	
76		896			17.3		7	
76		939		9	15.3		.8	
76		860			13.2		-1.8	
76					10.9		2	
76		886	5 908.5	9	08.5		8	
76			906.0		06.0		6	
76			903.4		03.4		.0	
77			4 900.7		00.7		9	
	71 871.76	899			97.9		.0	
	72 872.68				95.0		4	
	73 873.61	. 90:	2 892.1	. 8	92.1		.3	

•

774	874.53	840	889.2	889.2	-1.7	•
775	875.45	916	886.2	886.2	1.0	
776	876.37	860	883.2	883.2	8	
777	877.29	883	880.3	880.3	.1	
778	878.22	851	877.3	877.3	9	
779	879.14	926	874.3	874.3	1.7	
780	880.06	893	871.3	871.3	.7	
781	880.98	855	868.4	868.4	5	
782	881.90	862	865.5	865.5	1	
783	882.82	809	862.6	862.6	-1.8	
784	883.75	902	859.8	859.8	1.4	
785	884.67	837	857.0	857.0	7	
786	885.59	851	854.2	854.2	1	
787	886.51	874	851.5	851.5	.8	
788	887.43	803	848.8	848.8	-1.6	
789	888.35	912	846.2	846.2	2.2	
790	889.28	885	843.7	843.7	1.4	
791	890.20	870	841.2	841.2	1.0	
792	891.12	831	838.8	838.8	3	
793	892.04	839	836.4	836.4	.1	
794	892.96	860	834.1	834.1	.9	
795	893.89	770	831.8	831.8	-2.2	
796	894.81	841	829.6	829.6	.4	
797	895.73	830	827.5	827.5	.1	
798	896.65	822	825.4	825.4	1	
799	897.57	869	823.4	823.4	1.6	
800	898.49	808	821.4	821.4	5	
801	899.42	813	819.5	819.5	2	
802	900.34	777	817.6	817.6	-1.4	
803	901.26	760	815.7	815.7	-2.0	
804	902.18	815	813.9	813.9	.0	
805	903.10	829	812.2	812.2	.6	
806	904.03	766	810.4	810.4	-1.6	
807	904.95	821	808.8	808.8	. 4	
808	905.87	882	807.1	807.1	2.6	
809	906.79	808	805.5	805.5	.1	
810	907.71	780	803.8	803.8	8	
811	908.63	813	802.3	802.3	. 4	
812	909.56	802	800.7	800.7	.0	
813	910.48	749	799.1	799.1	-1.8	
814	911.40	768	797.6	797.6	-1.1	
815	912.32	831	796.0	796.0	1.2	
816	913.24	854	794.5	794.5	2.1	
817	914.17	771	792.9	792.9	8	
818	915.09	794	791.3	791.3	.1	
819	916.01	812	789.8	789.8	.8	
820	916.93	839	788.2	788.2	1.8	
821	917.85	777	786.6	786.6	3	
822	918.77	795	785.0	785.0	.4	
823	919.70	864	783.3	783.3	2.8	
824	920.62	740	781.7	781.7	-1.5	

825	921.54	797	780.0	780.0	.6
825	922.46	764	778.3	778.3	5
827	923.38	806	776.5	776.5	1.1
828	924.31	756	774.7	774.7	7
	925.23	695	772.9	772.9	-2.9
829	926.15	777	771.1	771.1	.2
830		764	769.2	769.2	2
831	927.07	767	767.2	767.2	.0
832	927.99	751	765.3	765.3	5
833	928.91	698	763.3	763.3	-2.4
834	929.84			761.2	
835	930.76	758	761.2		1
836	931.68	763	759.1	759.1	.1 .3
837	932.60	764	757.0	757.0	
838	933.52	754	754.8	754.8	.0
839	934.45	724	752.6	752.6	-1.1
840	935.37	757	750.4	750.4	.2
841	936.29	702	748.1	748.1	-1.7
842	937.21	757	745.8	745.8	.4
843	938.13	737	743.5	743.5	2
844	939.05	766	741.2	741.2	.9
845	939.98	804	738.8	738.8	2.3
846	940.90	801	736.5	736.5	2.3
847	941.82	729	734.1	734.1	2
848	942.74	747	731.7	731.7	.6
849	943.66	728	729.4	729.4	1
850	944.58	762	727.0	727.0	1.3
851	945.51	716	724.7	724.7	3
852	946.43	731	722.4	722.4	.3
853	947.35	701	720.2	720.2	7
854	948.27	692	718.0	718.0	-1.0
855	949.19	692	715.8	715.8	9
856	950.12	735	713.8	713.8	.8
857	951.04	712	711.8	711.8	.0
858	951.96	647	709.9	709.9	-2.4
859	952.88	689	708.1	708.1	7
860	953.80	739	706.4	706.4	1.2
861	954.72	708	704.9	704.9	.1
862	955.65	698	703.5	703.5	2
863	956.57	710	702.3	702.3	.3
864	957.49	706	701.3	701.3	.2
865	958.41	713	700.5	700.5	.5
866	959.33	697	699.9	699.9	1
867	960.26	710	699.6	699.6	. 4
868	961.18	705	699.5	699.5	.2
869	962.10	686	699.7	699.7	5
870	963.02	689	700.2	700.2	4
871	963.94	736	701.0	701.0	1.3
872	964.86	703	702.2	702.2	.0
873	965.79	682	703.7	703.7	8

596 L=	keV Peak From 9edrun	38.4 MeV Neu	trons		
C/f=		596.14 E2	= 691.09	P = 6 R = 4.0	0 %= 30.
Chan.	keV	Counts	Back.	Fit	Res.
472	596.14	9193	8661.5	8974.3	2.3
473		9452	8947.9	9403.8	.5
474		9577	9216.8	9853.9	-2.8
475		10004	9468.7	10322.3	-3.2
476		10866	9704.3	10800.7	.6
477		11333	9924.1	11274.6	.5
478		11755	10128.6	11724.6	.3
479		12354	10318.3	12128.9	2.0
480		12635	10493.8	12467.6	1.5
481		12673	10655.7	12726.3	5
482		12801	10804.3	12899.5	9
483		12955	10940.3	12992.6	3
484	607.21	12957	11064.0	13020.0	6
485	608.13	12776	11176.1	13002.9	-2.0
486	609.05	13115	11276.9	12964.0	1.3
487	609.97	12865	11366.9	12923 .1	5
488	610.89	12961	11446.6	12893 .2	.6
489		12991	11516.5	12878.5	1.0
490		12985	11576.9	12875.1	1.0
491		12873	11628.3	12873.5	.0
492		12789	11671.1	12861.7	6
493		12766	11705.8	12829.3	6
494		12749	11732.7	12770.2	2 5
495		12631	11752.3	12683.4	5
496		12598	11764.8 11770.8	12573.1 12447.2	6
497		12386	11770.8	12315.2	-1.2
498		12178 12208	11764.5	12185.7	.2
499		12208	11752.9	12065.6	2.0
500 501		12136	11736.2	11958.8	1.6
501		11841	11714.6	11866.7	8
502		11776	11688.5	11788.1	1
503		11754	11658.3	11720.8	.3
505		11837	11624.2	11661.8	1.6
506		11749	11586.5		1.3
507		11538	11545.5	11557.5	2
508		11366	11501.6	11508.0	-1.3
509		11668	11355.0	11458.2	2.0
510		11241	11405.9	11407.5	-1.6
51		11282	11354.6	11355.4	7
512		11241	11301.4	11301.8	6
513		11328	11246.6	11246.7	.8
51	4 634.86	11130	11190.2	11190.3	6
51		10997	11132.7	11132.7	-1.3
51	6 636.70	11235	11074.1	11074.1	1.5
51		10990	11014.7	11014.7	2
51	8 638.55	10960	10954.7	10954.7	.1

519	639.47	10813	10894.3	10894.3	8
520	640.39	10544	10833.6	10833.6	-2.8
521	641.31	10800	10772.9	10772.9	.3
522	642.23	10516	10712.3	10712.3	-1.9
		10544	10651.9	10651.9	-1.1
523	643.16				
524	644.08	10516	10592.0	10592.0	7
525	645.00	1053 6	10532.6	10532.6	.0
526	645.92	10498	10473.8	10473.8	.2
527	646.84	10575	10415.9	10415.9	1.6
528	647.77	10347	10358.8	10358.8	1
529	648.69	10356	10302.8	10302.8	.5
530	649.61	10260	10247.9	10247.9	.1
531	650.53	10279	10194.2	10194.2	.8
532	651.45	10129	10141.7	10141.7	1
533	652.37	10242	10090.6	10090.6	1.5
534	653.30	9929	10040.9	10040.9	-1.1
535	654.22	10154	9992.6	9992.6	1.6
536	655.14	9914	9945.9	9945.9	3
537	656.06	9869	9900.7	9900.7	3
538	656.98	9823	9857.0	9857.0	3
539	657.90	9859	9814.9	9814.9	.4
540	658.83	9601	9774.4	9774.4	-1.8
541	659.75	9796	9735.5	9735.5	.6
542	660.67	9642	9698.2	9698.2	6
543	661.59	9790	9662.5	9662.5	1.3
544	662.51	9668	9628.3	9628.3	.4
545	663.44	9629	9595.6	9595.6	.3
546	664.36	9636	9564.4	9564.4	.7
			9534.6	9534.6	1.5
547	665.28	9680			
548	666.20	9612	9506.1	9506.1	1.1
549	667.12	9376	9478.9	9478.9	-1.1
550	668.04	9248	9453.0	9453.0	-2.1
551	668.97	9481	9428.2	9428.2	.5
552	669.89	9293	9404.4	9404.4	-1.2
553	670.81	9467	9381.5	9381.5	.9
554	671.73	9277	9359.5	9359.5	9
555	672.65	9425	9338.1	9338.1	.9
			9317.4	9317.4	.2
556	673.58	9338			
557	674.50	9403	9297.1	9297.1	1.1
558	675.42	9524	9277.0	9277.0	2.5
559	676.34	9325	9257.1	9257.1	.7
560	677.26	9080	9237.2	9237.2	-1.6
561	678.18	9182	9217.1	9217.1	4
562	679.11	9141	9196.6	9196.6	6
563	680.03	9219	9175.5	9175.5	.5
564	680.95	9079	9153.7	9153.7	8
		8997	9130.9	9130.9	-1.4
565	681.87				
566	682.79	9126	9106.9	9106.9	.2
567	683.72	8902	9081.6	9081.6	-1.9
568	684.64	8963	9054.6	9054.6	-1.0
569	685.56	905 2	0235.7	9025.7	.3

570	686.48	8904	8994.7	8994.7	-1.0	
571	687.40	9046	8961.3	8961.3	.9	
572	688.32	9021	8925.3	8925.3	1.0	
573	689.25	8748	8886.3	8886.3	-1.5	
574	690.17	8871	8844.2	8844.2	.3	
575	691.09	8993	8798.5	8798.5	2.1	

• • •

....

690 L=	keV Peak From 9edrun	38.4 MeV Neut	rons			
C/f=		692.93 E2=	826.59	P= 6 R=	6.0 %=	30.
Chan.	keV	Counts	Back.	Fit	Res.	
577		8765	8605.1	8642.3	1.3	
578		8931	8935.0	9009.9	8	
579		9261	9232.5	9372.1	-1.2	
580		952 9	9499.6	9740.0	-2.1	
581		10131	9738.0	10120.6	.1	
582		10673	9949.6	10512.1	1.6	
583	_	11038	10136.0	10900.1	1.3	
584		11249	10298.8	11257.9	1	
585		11717	10439.5	11551.8	1.5	
586		11570	10559.7	11751.5	-1.7	
587		11782	10660.6	11840.7	- .5	
588		11724	10743.8	11823.3	9	
589		11706	10810.4	11722.8	2	
590		11471	10861.7	11574.3	-1.0	
591	705.84	11500	10898.9	11413.1	.8	
592	706.76	11470	10923 .1	11265.9		
593	707.68	11357	10935.3	11146.5		
594	708.60	11208	10936.6	11056.8		
595	5 709.53	10820	10927.9	10991.1	-1.6	
59 6	5 710.45	11172	10910.1	10940.8	2.2	
597		10914	10884.1	10898.0		
598		10767	10850.7	10856.7		
599		10745	10810.7	10813.8		
600		10931	10764.8	10767.8		
601		10673	10713.6	10719.2		
602		10823	10658.0	10669.6		
603		10466	10598.3	10621.7		
604		10425	10535.3	10578.7 10544.2		
609		10585	10469.4	10544.2		
600		10262	10401.2	10520.0		
60		10315	10331.0 10259.4	10496.4		
60		10278	10259.4	10490.4		
60		10610 10499	10113.4	10457.9		
61		10499	10113.4			
61			9965.9	10330.8		
61		10426 10313	9892.4	10225.9		
61			9819.4	10101.1		
61		10049 9923	9747.1	9966.9		
61		9636	9675.8	9834.3		
61		9440	9605.6	9711.2		
61		9529	9536.7	9601.7		
61 61		9511	9469.3	9506.3		
		9358	9403.5	9422.9		
62		9467	9339.4	9348.8		
62	1 /33.49	2207				

622	734.41	9327	9277.1	9281.3	.5
623	735.34	9392	9216.6	9218.4	1.8
624	736.26	9083	9158.2	9158.8	8
625	737.18	9249	9101.7	9101.9	1.5
626	738.10	9008	9047.2	9047.3	4
627	739.02	8980	8994.8	8994.8	2
628	739.95	8908	8944.5	8944.5	4
629	740.87	8857	8896.2	8896.2	4
630	741.79	8899	8850.0	8850.0	.5
631	742.71	8862	8805.8	8805.8	.6
632	743.63	8780	8763.6	8763.6	.2
633	744.55	8761	8723.4	8723.4	.4
634	745.48	8697	8685.2	8685.2	.1
635	746.40	8690	8648.8	8648.8	.4
636	747.32	8603	8614.3	8614.3	1
637	748.24	8444	8581.5	8581.5	-1.5
638	749.16	8632	8550.4	8550.4	.9
639	750.09	8548	8521.0	8521.0	.3
640	751.01	8402	8493.1	8493.1	-1.0
641	751.93	8621	8466.7	8466.7	1.7
642	752.85	8474	8441.8	8441.8	.3
643	753.77	8430	8418.2	8418.2	.1
644	754.69	8551	8395.8	8395.8	1.7
645	755.62	8515	8374.6	8374.6	1.5
646	756.54	8384	8354.5	8354.5	.3
647	757.46	8396	8335.4	8335.4	.7
648	758.38	8225	8317.2	8317.2	-1.0
649	759.30	8317	8299.9	8299.9	.2
650	760.22	8291	8283.4	8283.4	.1
651	761.15	8411	8267.6	8267.6	1.6
652	762.07	8110	8252.4	8252.4	-1.6
653	762.99	8064	8237.7	8237.7	-1.9
654	763.91	8177	8223.5	8223.5	5
655	764.83	8200	8209.8	8209.8	1
656	765.76	8219	8196.4	8196.4	.2
657	766.68	8173	8183.3	8183.3	1
658	767.60	8175	8170.4	8170.4	.1
659	768.52	8196	8157.7	8157.7	. 4
660	769.44	8117	8145.1	8145.1	3
661	770.36	8082	8132.6	8132.6	6
662	771.29	8026	8120.1	8120.1	-1.0
663	772.21	8115	8107.7	8107.7	.1
664	773.13	8211	8095.2	8095.2	1.3
665	774.05	7925	8082.6	8082.6	-1.8
666	774.97	8087	8070.0	8070.0	.2
667	775.90	8056	8057.2	8057.2	.0
668	776.82	8135	8044.3	8044.3	1.0
669	777.74	7852	8031.3	8031.3	-2.0
670	778.66	7923	8018.1	8018.1	-1.1
671	779.58	8124	8004.8	8004.8	1.3
672	780.50	7943	7991.3	7991.3	5

					_
673	781.43	7976	7977.7	7977.7	.0
674	782.35	7835	7963.9	7963.9	-1.5
675	783.27	7798	7950.0	7950.0	-1.7
676	784.19	8129	7936.0	7936.0	2.2
677	785.11	8102	7921.8	7921.8	2.0
678	786.04	7862	7907.6	7907.6	5
679	786.96	7810	7893.3	7893.3	9
680	787.88	7836	7878.9	7878.9	5
681	788.80	7820	7864.5	7864.5	5
682	789.72	7929	7850.2	7850.2	.9
683	790.64	783 3	7835.9	7835.9	.0
684	791.57	7715	7821.6	7821.6	-1.2
685	792.49	785 9	7807.4	7807.4	.6
686	793.41	7682	7793.4	7793.4	-1.3
687	794.33	7747	7779.5	7779.5	4
688	795.25	7814	7765.8	7765.8	.5
689	796.17	7852	7752.4	7752.4	1.1
690	797.10	7713	7739.1	7739.1	3
691	798.02	7788	7726.2	7726.2	.7
692	798.94	7720	7713.5	7713.5	.1
693	799.86	7825	7701.1	7701.1	1.4
694	800.78	7831	7689.1	7689.1	1.6
695	801.71	7789	7677.4	7677.4	1.3
696	802.63	7716	7666.0	7666.0	.6
697	803.55	7595	7654.9	7654.9	7
698	804.47	7729	7644.2	7644.2	1.0
699	805.39	7652	7633.8	7633.8	.2
700	806.31	7509	7623.7	7623.7	-1.3
701	807.24	7654	7613.9	7613.9	.5
702	808.16	7718	7604.2	7604.2	1.3
703	809.08	7642	7594.8	7594.8	.5
704	810.00	7361	7585.4	7585.4	-2.6
705	810.92	7546	7576.1	7576.1	3
706	811.85	7573	7566.8	7566.8	.1
707	812.77	7558	7557.3	7557.3	.0
708	813.69	7532	7547.6	7547.6	2
709	814.61	7572	7537.4	7537.4	.4
710	815.53	7572	7526.8	7526.8	.5
711	816.45	7436	7515.5	7515.5	9
712	817.38	7429	7503.3	7503.3	9
713	818.30	7418	7490.0	7490.0	8
714	819.22	7357	7475.5	7475.5	-1.4
715	820.14	7434	7459.5	7459.5	3
716	821.06	7452	7441.7	7441.7	.1
717	821.99	7450	7421.8	7421.8	.3
718	822.91	7386	7399.6	7399.6	2
719	823.83	7484	7374.7	7374.7	1.3
720	824.75	7292	7346.7	7346.7	6
721	825.67	7422	7315.3	7315.3	1.2
722	826.59	7277	7280.1	7280.1	.0

835 L=	keV Peak 9edru		38.4 MeV	Neutr	ons						85
C/f=	1.869	E1=	833.05	E2=	965.79	P= 6	R=	6.0	%=	30.	
Chan.	k	eV	Counts	5	Back.		Fit]	Res.		
729		.05	739		7168.1		68.3		2.6		
730	833		740		7314.3		14.7		1.0		
731		.89	742		7449.8		50.8		3		
732		.81	740		7575.2		77.3		2.0		
733		.73	759		7690.8		95.2		1.2		
734		.66	751		7797.3		05.9		3.3		
735		.58	760		7895.0		11.2		3.5		
736		.50	785		7984.4		13.6		1.8		
737		.42	831		8065.8		16.2		2.2		
738		.34	834		8139.8		23.1		1.3		
739		.27	869		8206.7		38.7		3.9		
740		.19	883		8266.8		67.3		3.9		
740		.11	887		8320.5		12.3		2.7		
742		.03	890		8368.3		75.1		1.3		
742		.95	878		8410.3		53.9		1.8		
745		5.87	887		8447.0		42.9		2.8		
745		.80	913		8478.7		32.4		2.1		
745		3.72	936		8505.7		09.1		1.5		
740		.64	957		8528.2		58.5		8		
748).56	971		8546.5		66.5		5		
740		L.48	1001		8561.0		22.8		2.0		
750		2.40	998		8571.9		22.3		1.7		
751		3.33	984		8579.3		66.9		.8		
752		1.25	981		8583.7		64.3		1.5		
753		5.17	967	3	8585.1	95	527.4		1.5		
754		5.09	903	5	8583.8	93	371.1		3.5		
755	5 85	7.01	917	5	8580.0	92	210.4		4		
756	5 85'	7.94	893	2	8574.0	90)57.6	-	1.3		
757	7 851	8.86	891	.6	8565.8	89	921.4		1		
758	8 859	9.78	882	:5	8555.8	88	306.2		.2		
759	86	0.70	881	.1	8544.0	87	713.0		1.0		
760) 86	1.62	856	53	8530.6		539.9		8		
761	L 863	2.54	853	34	8515.7		583.5		5		
762	2 86	3.47	854		8499.6		539.9		.1		
763	3 86-	4.39	850		8482.4		505.3		.0		
764		5.31	860		8464.1		476.6		1.4		
765		6.23	847		8445.0		451.5		.3		
760	-	7.15	834		8425.1		428.4		9		
763	7 86	8.08	844		8404.6		406.1		.4		
768		9.00	819		8383.5		384.2		-2.0		
769		9.92	81		8361.9		362.2		2.1		
77	0 87	0.84	833		8340.0		340.1		.0		
77		1.76	84		8317.8		317.8		1.7		
773		2.68	82		8295.4		295.4		1		
77	3 87	3.61	82	73	8272.9	98	272.9	Ð	.0		

				•	
774	874.53	8351	8250.3	8250.3	1.1
775	875.45	8395	8227.7	8227.7	1.8
776	876.37	8194	8205.2	8205.2	1
777	877.29	8184	8182.8	8182.8	.0
778	878.22	8255	8160.6	8160.6	1.0
779	879.14	8159	8138.6	8138.6	.2
780	880.06	8231	8116.8	8116.8	1.3
781	880.98	8115	8095.3	8095.3	.2
782	881.90	7971	8074.1	8074.1	-1.2
	882.82	7941	8053.2	8053.2	-1.3
783		7822	8032.7	8032.7	-2.4
784	883.75	7959	8012.6	8012.6	-2.4
785	884.67		7992.9	7992.9	
786	885.59	8044			• 6
787	886.51	7950	7973.6	7973.6	3
788	887.43	7956	7954.7	7954.7	.0
789	888.35	7959	7936.2	7936.2	.3
790	889.28	7987	7918.1	7918.1	. 8
791	890.20	7821	7900.5	7900.5	9
792	891.12	7975	7883.2	7883.2	1.0
793	892.04	7819	7866.4	7866.4	5
794	892.96	7861	7850.1	7850.1	.1
795	893.89	7851	7834.1	7834.1	.2
796	894.81	7753	7818.5	7818.5	7
797	895.73	7685	7803.3	7803.3	-1.3
798	896.65	7836	7788.5	7788.5	.5
799	897.57	7817	7774.1	7774.1	.5
800	898.49	7845	7760.0	7760.0	1.0
801	899.42	7754	7746.2	7746.2	.1
802	900.34	7812	7732.7	7732.7	.9
803	901.26	7773	7719.6	7719.6	.6
804	902.18	7751	7706.7	7706.7	.5
805	903.10	7717	7694.0	7694.0	.3
806	904.03	7617	7681.6	7681.6	7
807	904.95	7781	7669.4	7669.4	1.3
808	905.87	7706	7657.3	7657.3	.6
809	906.79	7798	7645.5	7645.5	1.7
810	907.71	7637	7633.8	7633.8	.0
811	908.63	7618	7622.2	7622.2	.0
812	909.56	7451	7610.7	7610.7	-1.8
813	910.48	7496	7599.3	7599.3	-1.2
814	911.40	7457	7587.9	7587.9	-1.5
815	912.32	7592	7576.6	7576.6	.2
816	913.24	7502	7565.3	7565.3	7
817	914.17	7691	7554.0	7554.0	1.6
818	915.09	7466	7542.7	7542.7	9
819	916.01	7478	7531.3	7531.3	6
820	916.93	7386	7519.9	7519.9	-1.5
821	917.85	7578	7508.4	7508.4	.8
822	918.77	7495	7496.8	7496.8	.0
823	919.70	7462	7485.2	7485.2	3
823	920.62	7570	7473.4	7473.4	1.1
044	260.02	, , , , , ,			- • • -

86

.

825	921.54	7458	7461.4	7461.4	.0
826	922.46	7531	7449.3	7449.3	.9
827	923.38	7539	7437.1	7437.1	1.2
828	924.31	7190	7424.7	7424.7	-2.7
829	925.23	7421	7412.2	7412.2	.1
830	926.15	7287	7399.5	7399.5	-1.3
831	927.07	7552	7386.6	7386.6	1.9
832	927.99	7370	7373.5	7373.5	.0
833	928.91	7397	7360.3	7360.3	.4
834	929.84	7429	7346.9	7346.9	1.0
835	930.76	7422	7333.3	7333.3	1.0
836	931.68	7252	7319.6	7319.6	8
837	932.60	7178	7305.7	7305.7	-1.5
838	933.52	7280	7291.7	7291.7	1
839	934.45	7279	7277.5	7277.5	.0
	935.37	7237	7263.2	7263.2	
840	936.29		7248.8	7248.8	3 -1.4
841		7126			
842	937.21	7306	7234.4	7234.4	.8
843	938.13	7201	7219.8	7219.8	2
844	939.05	7286	7205.3	7205.3	.9
845	939.98	7357	7190.7	7190.7	2.0
846	940.90	7013	7176.1	7176.1	-1.9
847	941.82	7175	7161.6	7161.6	.2
848	942.74	7207	7147.1	7147.1	.7
849	943.66	7083	7132.7	7132.7	6
850	944.58	7152	7118.5	7118.5	. 4
851	945.51	7245	7104.5	7104.5	1.7
852	946.43	7005	7090.7	7090.7	-1.0
853	947.35	7115	7077.1	7077.1	.5
854	948.27	7107	7063.9	7063.9	.5
855	949.19	7026	7051.0	7051.0	3
856	950.12	7018	7038.5	7038.5	2
857	951.04	6967	7026.5	7026.5	7
858	951.96	7202	7015.0	7015.0	2.2
859	952.88	6946	7004.0	7004.0	7
860	953.80	6974	6993.7	6993.7	2
861	954.72	6845	6984.1	6984.1	-1.7
862	955.65	6897	6975.3	6975.3	9
863	956.57	6914	6967.3	6967.3	6
864	957.49	7055	6960.1	6960.1	1.1
865	958.41	6973	6954.0	6954.0	.2
866	959.33	6810	6948.9	6948.9	-1.7
867	960.26	7105	6944.9	6944.9	1.9
868	961.18	6903	6942.0	6942.0	5
869	962.10	6893	6940.5	6940.5	6
870	963.02	7067	6940.3	6940.3	1.5
871	963.94	6951	6941.6	6941.6	.1
872	964.86	6951	6944.4	6944.4	.1
873	965.79	6900	6948.7	6948.7	6
075	202012	0,000	024017	074017	• •

.

596 keV Peak From 65.5 MeV Neutrons L= 65n

E1= 596.95

.846

C/f =

Fit Res. keV Counts Back. Chan. -.1 1109 1104.8 1113.0 596.95 582 1130.8 1142.5 -.1 597.89 1138 583 .0 1154.2 1171.0 584 598.84 1172 1175.2 1199.1 -.1 585 599.78 1196 .2 1235 1193.9 1228.0 600.73 586 1259.2 .3 1210.4 601.67 1271 587 1294.7 -.8 1224.9 602.62 1267 588 .9 1237.6 1332.2 589 603.57 1364 -.7 1248.5 1350.9 590 604.51 1326 .3 1257.8 1345.0 591 605.46 1355 1324.0 -.3 592 606.41 1314 1265.5 . 8 593 607.35 1333 1271.9 1302.8 1289.9 -.8 608.30 1262 1277.1 594 1281.0 1285.2 -.6 595 609.24 1265 1283.9 1284.9 1.0 596 610.19 1322 1285.7 1286.0 -.2 597 611.14 1279 2.5 1376 1286.7 1286.7 612.08 598 1286.9 -.4 1286.9 599 613.03 1273 1286.3 .2 600 613.97 1293 1286.3 1285.0 1285.0 -.8 614.92 1258 601 .6 1283.1 1283.1 615.86 1305 602 1280.7 -.2 603 616.81 1273 1280.7 1277.8 -1.1 604 617.76 1238 1277.8 1274.5 1274.5 .0 618.70 1275 605 1270.8 1270.8 -1.4 619.65 1220 606 -.3 620.59 1257 1266.8 1266.8 607 -.8 621.54 1236 1262.6 1262.6 608 1258.1 .7 622.49 1282 1258.1 609 -1.8 1190 1253.4 1253.4 610 623.43 611 624.38 1254 1248.6 1248.6 .2 625.33 1282 1243.6 1243.6 1.1 612 1238.6 626.27 1228 1238.6 -.3 613 -.5 627.22 1216 1233.5 1233.5 614 628.16 1277 1228.3 1228.3 1.4 615 .6 1245 1223.2 1223.2 616 629.11 1218.0 1.1 1258 1218.0 617 630.05 -.5 1212.9 631.00 1195 1212.9 618 -.1 619 631.95 1206 1207.9 1207.9 1202.9 -.6 632.89 1182 1202.9 620 1197.9 -.1 1194 1197.9 621 633.84 1158 1193.1 1193.1 -1.0 622 634.78 1213 1188.3 1188.3 .7 635.73 623 1185 1183.6 1183.6 .0 624 636.68 1179.0 1179.0 .2 637.62 1187 625

E2= 695.33

P = 6

R = 6.0

%=

30.

626	638.57	1203	1174.5	1174.5	.8
627	639.52	1215	1170.2	1170.2	1.3
628	640.46	1161	1165.9	1165.9	1
629	641.41	1162	1161.8	1161.8	.0
630	642.35	1212	1157.7	1157.7	1.6
631	643.30	1160	1153.8	1153.8	.2
632	644.24	1171	1150.0	1150.0	.6
633	645.19	1120	1146.3	1146.3	8
634	646.14	1089	1142.6	1142.6	-1.6
635	647.08	1137	1139.1	1139.1	1
636	648.03	1125	1135.7	1135.7	3
637	648.97	1121	1132.3	1132.3	3
638	649.92	1123	1129.0	1129.0	2
		1123	1125.8	1125.8	.0
639	650.87	1116	1122.7	1122.7	2
640	651.81				5
641	652.76	1104	1119.6	1119.6	
642	653.71	1149	1116.5	1116.5	1.0
643	654.65	1073	1113.6	1113.6	-1.2
644	655.60	1111	1110.6	1110.6	.0
645	656.54	1088	1107.7	1107.7	6
646	657.49	1037	1104.8	1104.8	-2.1
647	658.43	1127	1101.9	1101.9	.8
648	659.38	1066	1099.1	1099.1	-1.0
649	660.33	1144	1096.2	1096.2	1.4
650	661.27	1117	1093.4	1093.4	.7
651	662.22	1088	1090.6	1090.6	1
652	663.16	1086	1087.7	1087.7	1
653	664.11	1141	1084.9	1084.9	1.7
654	665.06	1122	1082.1	1082.1	1.2
655	666.00	1116	1079.2	1079.2	1.1
656	666.95	1042	1076.4	1076.4	-1.0
657	667.90	1083	1073.5	1073.5	.3
658	668.84	1040	1070.6	1070.6	9
65 9	669.79	1073	1067.8	1067.8	.2
660	670.73	1005	1064.9	1064.9	-1.9
661	671.68	1067	1062.0	1062.0	.2
662	672.63	1016	1059.1	1059.1	-1.3
663	673.57	1057	1056.3	1056.3	.0
664	674.52	1109	1053.5	1053.5	1.7
665	675.46	1061	1050.7	1050.7	.3
666	676.41	1096	1047.9	1047.9	1.5
667	677.35	1044	1045.2	1045.2	.0
668	678.30	1000	1042.6	1042.6	-1.3
669	679.25	1076	1040.0	1040.0	1.1
670	680.19	1027	1037.5	1037.5	3
671	681.14	997	1035.1	1035.1	-1.2
672	682.09	1036	1032.9	1032.9	.1
673	683.03	1044	1030.8	1030.8	.4
674	683.98	1044	1028.8	1028.8	.0
	684.92	1029	1028.8	1027.1	.5
675	685.87	1044	1027.1	1025.5	5
676	10.00	1003	1022.2	1020.0	

.3
.7
.2
.3
.0
.4
.0
.3
.6
.2

•

690 Ke	eV Peak From	65.5 MeV Neut	rons			91
L= C/f=	65m .910 El=	692.49 E2=	830.61	P= 5 R= 4	.0 %=	30.
-,	keV	Counts	Back.	Fit	Res.	
Chan.	692.49	990	993.4	995.6	2	
683		1015	1009.5	1012.7	.1	
684	693.44 694.38	1015	1024.3	1029.1	.5	
685		1045	1037.9	1044.8	3	
686	695.33	1054	1050.3	1060.5	2	
687	696.28	1073	1061.6	1076.5	1	
688	697.22	1133	1071.8	1093.6	1.2	
689	698.17	1129	1081.0	1112.8	.5	
690	699.11	1123	1089.2	1135.8	4	
691	700.06	1122	1096.5	1164.6	6	
692	701.01	1144	1102.9	1176.5	.0	
693	701.95	1150	1108.5	1209.8	3	
694	702.90	1245	1113.3	1240.5	.5	
695	703.84	1245	1117.3	1241.8	.0	
696	704.79	1199	1120.6	1225.4	6	
697	705.73	1221	1123.3	1201.5	.6	
698	706.68	1163	1125.3	1154.3	.3	
699	707.63	1094	1126.6	1134.3	-1.2	
700	708.57	1176	1127.5	1128.9	1.4	
701	709.52	1154	1127.8	1128.0	.8	
702	710.47	1096	1127.6	1127.6	9	
703	711.41	1098	1126.9	1126.9	-1.4	
704	712.36	1080	1125.8	1125.8	-1.7	
705	713.30	1126	1124.3	1124.3	.1	
706	714.25		1122.5	1122.5	-1.1	
707	715.20	_	1120.3	1120.3	1.9	
708	716.14		1117.7	1117.7	8	
709			1114.9	1114.9	8	
710			1111.8	1111.8	1	
711			1108.5	1108.5	1.1	
712			1103.9	1104.9	9	
713			1101.2	1101.2	.7	
714			1097.3	1097.3	7	
715			1093.2	1093.2	.5	
716			1089.0		1.4	
717			1084.6	1084.6	.0	
718			1080.2	1080.2	1.7	
719			1075.7	1075.7	-1.5	
720			1071.1	1071.1	.6	
721			1066.5	1066.5	2.5	
722		· · · · -	1061.9	1061.9	1.1	
723			1057.2	1057.2	-2.1	
724		-	1057.2	1052.5	.4	
725		-	1052.5	1047.8	.1	
720			1047.8	1047.0	5	
727	7 734.13	L 1027	1043.2	TA40.0		

728	735.06	1076	1038.5	1038.5	1.2
729	736.01	1036	1033.9	1033.9	.1
730	736.95	1043	1029.4	1029.4	. 4
731	737.90	975	1024.9	1024.9	-1.6
732	738.84	986	1020.5	1020.5	-1.1
733	739.79	998	1016.1	1016.1	6
734	740.74	1055	1011.9	1011.9	1.3
735	741.68	1061	1007.7	1007.7	1.7
736	742.63	943	1003.6	1003.6	-1.9
737	743.58	1045	999.6	999.6	1.4
738	744.52	1008	995.7	995.7	.4
	745.47	999	991.9	991.9	.2
739	746.41	998	988.2	988.2	.3
740		965	984.7	984.7	6
741	747.36	976	981.2	981.2	2
742	748.30	922	977.9	977.9	-1.8
743	749.25	922	974.7	974.7	.7
744	750.20		971.6	971.6	6
745	751.14	953		968.6	
746	752.09	1001	968.6		1.0 6
747	753.03	947	965.8	965.8	
748	753.98	984	963.0	963.0	.7
749	754.93	952	960.4	960.4	3
750	755.87	926	957.9	957.9	-1.0
751	756.82	897	955.6	955.6	-1.9
752	757.77	976	953.3	953.3	.7
753	758.71	966	951.2	951.2	.5
754	759.66	945	949.1	949.1	1
755	760.60	954	947.2	947.2	.2
756	761.55	919	945.4	945.4	9
757	762.49	927	943.7	943.7	5
758	763.44	938	942.1	942.1	1
759	764.39	935	940.6	940.6	2
760	765.33	940	939.2	939.2	.0
761	766.28	962	937.9	937.9	.8
762	767.22	920	936.6	936.6	5
763	768.17	979	935.5	935.5	1.4
764	769.12	884	934.4	934.4	-1.7
765	770.06	931	933.4	933.4	1
766	771.01	949	932.5	932.5	.5
767	771.96	951	931.6	931.6	.6
768	772.90	924	930.8	930.8	2
769	773.85	940	930.0	930.0	.3
770	774.79	963	929.3	929.3	1.1
771	775.74	960	928.6	928.6	1.0
772	776.68	896	928.0	928.0	-1.1
773	777.63	932	927.4	927.4	.2
774	778.58	904	926.8	926.8	8
775	779.52	907	926.2	926.2	6
776	780.47	926	925.7	925.7	.0
777	781.41	941	925.2	925.2	.5
778	782.36	873	924.6	924.6	-1.7
, , 0	102130	0,0			

779	783.31	934	924.1	924.1	.3
780	784.25	923	923.6	923.6	.0
781	785.20	928	923.0	923.0	.2
782	786.15	958	922.5	922.5	1.2
783	787.09	921	921.9	921.9	.0
784	788.04	925	921.3	921.3	.1
785	788.98	940	920.7	920.7	.6
786	789.93	902	920.0	920.0	6
787	790.88	959	919.3	919.3	1.3
788	791.82	953	918.6	918.6	1.1
789	792.77	922	917.8	917.8	.1
790	793.71	924	917.0	917.0	.2
791	794.66	944	916.1	916.1	.9
792	795.60	928	915.2	915.2	.4
793	796.55	882	914.2	914.2	-1.1
794	797.50	876	913.2	913 .2	-1.2
795	798.44	915	912.1	912.1	.1
796	799.39	913	911.0	911.0	.1
797	800.34	954	909.8	909.8	1.5
798	801.28	898	908.5	908.5	3
799	802.23	932	907.1	907.1	.8
800	803.17	856	905.7	905.7	-1.7
801	804.12	871	904.3	904.3	-1.1
802	805.07	890	902.8	902.8	4
803	806.01	905	901.2	901 .2	.1
804	806.96	879	899.5	899.5	7
805	807.90	903	897.8	897.8	.2
806	808.85	851	896.1	896.1	-1.5
807	809.79	895	894.3	894.3	.0
808	810.74	926	892.4	892.4	1.1
809	811.69	880	890.5	890.5	4
810	812.63	887	888.6	888.6	1
811	813.58	912	886.7	886.7	.9
812	814.53	859	884.7	884.7	9
813	815.47	862	882.7	882.7	7
814	816.42	866	880.6	880.6	5
815	817.36	941	878.6	878.6	2.1
816	818.31	857	876.6	876.6	7
817	819.26	912	874.6	874.6	1.3
818	820.20	871	872.6	872.6	1
819	821.15	888	870.6	870.6	.6
820	822.09	848	868.7	868.7	7
821	823.04	870	866.9	866.9	.1
822	823.98	867	865.1	865.1	.1
823	824.93	900	863.4	863.4	1.2
824	825.88	890	861.7	861.7	1.0
825	826.82	811	860.2	860.2	-1.7
826	827.77	823	858.8	858.8	-1.2
827	828.72	840	857.6	857.6	6 1
828	829.66	854 892	856.5 855.6	856.5 855.6	$\frac{1}{1.2}$
829	830.61	036	0.0.0	0.0.0	

........

835 keV Peak From 65.5 MeV Neutrons

· · ·

L= C/f=	65n .728 E1=	832,50 E2=	964.94	P= 6 R= 2.0	% = 50.
•			Back.	Fit	Res.
Chan.	keV	Counts	863.0	863.5	6
831	832.50	845	873.2	874.7	.0
832	833.45	876	882.3	886.1	.7
833	834.39	907 896	890.4	899.1	1
834	835.34	922	897.6	915.0	.2
835	836.28	909	903.8	934.9	8
836	837.23	1002	909.3	958.3	1.4
837	838.17 839.12	964	914.0		6
838	840.07	978	918.0		8
839	841.01	1043	921.3		.9
840 841	841.96	1026	924.1		.3
841	842.91	958	926.2	1006.7	-1.5
842	843.85	1021	927.8	993.8	.9
845	844.80	998	929.0	983.3	.5
845	845.74	976	929.7		1
846	846.69	989	930.0		.1
847	847.64	988	929 .9		4
848	848.58	987	929.5		9
849	849.53	1061	928.8		1.2
850	850.47	1017	927.8		2
851	851.42	1016	926.5	1012.1	.1
852	852.36	998	925.1	993.1	.2
853	853.31	962	923.4		3
854	854.26	935	921.6		5
855	855.20		919.6		1
856	856.15	939	917.5		.4
857	857.09		915.3		.2
858	858.04		913.1	914.4	.4
859	858.99		910.7		.8
860			908.3		1 -1.0
861			905.8		
862			903.3		.9 -1.1
863			900.8		1.1
864			898.3		.6
865			895.8 893.4		-1.3
866			890.9	890.9	-1.0
867			888.5		8
868			886.1		.9
869			883.7		.5
870			881.4		1
871		_	879.2		7
872 873			877.0		.2
873			874.9		8
0/4	. 0/3.10				

875	874.12	899	872.8	872.8	.9
876	875.07	870	870.8	870.8	.0
877	876.02	846	868.9	868.9	8
878	876.96	861	867.0	867.0	2
879	877.91	875	865.2	865.2	.3
880	878.85	911	863.4	863.4	1.6
881	879.80	850	861.7	861.7	4
882	880.74	855	860.1	860.1	2
883	881.69	868	858.5	858.5	.3
884	882.64	860	857.0	857.0	.1
885	883.58	896	855.5	855.5	1.4
886	884.53	841	854.1	854.1	5
887	885.47	801	852.8	852.8	-1.8
888	886.42	863	851.5	851.5	.4
889	887.37	868	850.2	850.2	.6
890	888.31	809	849.0	849.0	-1.4
891	889.26	855	847.8	847.8	.2
892	890.21	831	846.6	846.6	5
893	891.15	835	845.5	845.5	4
894	892.10	869	844.4	844.4	.8
895	893.04	834	843.3	843.3	3
896	893.99	851	842.3	842.3	.3
897	894.93	853	841.2	841.2	.4
898	895.88	804	840.2	840.2	-1.3
899	896.83	844	839.1	839.1	.2
900	897.77	834	838.1	838.1	1
901	898.72	900	837.0	837.0	2.1
902	899.66	836	836.0	836.0	.0
903	900.61	855	834.9	834.9	.7
904	901.56	873	833.9	833.9	1.4
905	902.50	766	832.8	832.8	-2.3
906	903.45	843	831.7	831.7	.4
907	904.40	853	830.5	830.5	.8
908	905.34	843	829.4	829.4	.5
909	906.29	833	828.2	828.2	.2
910	907.23	811	827.0	827.0	6
911	908.18	827	825.7	825.7	.0
912	909.13	805	824.4	824.4	7
913	910.07	830	823.1	823.1	.2
914	911.02	824	821.7	821.7	.1
915	911.96	825	820.3	820.3	.2
916	912.91	803	818.9	818.9	6
917	913.85	811	817.4	817.4	2
918	914.80	823	815.8	815.8	.3
919	915.75	824	814.2	814.2	.3
920	916.69	818	812.6	812.6	.2
921	917.64	809	810.9	810.9	1
922	918.59	806	809.2	809.2	1
923	919.53	808	807.4	807.4	.0
924	920.48	844	805.6	805.6	1.4
925	921.42	767	803.8	803.8	-1.3

_--

.

		774	001 0	801.9	-1.0
926	922.37	774	801.9		
927	923.32	813	799.9	799.9	.5
928	924.26	795	798.0	798.0	1
929	925.21	788	796.0	796.0	3
930	926.15	782	793.9	793.9	4
931	927.10	764	791.9	791.9	-1.0
932	928.04	799	789.8	789.8	.3
933	928.99	744	787.7	787.7	-1.6
934	929.94	807	785.6	785.6	.8
935	930.88	759	783.5	783.5	9
936	931.83	784	781.4	781.4	.1
937	932.78	783	779.2	779.2	.1
938	933.72	760	777.1	777.1	6
	934.67	787	775.0	775.0	.4
939	935.61	735	772.9	772.9	-1.4
940		733	770.8	770.8	.2
941	936.56			768.7	.2
942	937.51	773	768.7		
943	938.45	804	766.7	766.7	1.3
944	939.40	781	764.7	764.7	.6
945	940.34	801	762.8	762.8	1.4
946	941.29	787	760.9	760.9	.9
947	942.23	760	759.0	759.0	.0
948	943.18	715	757.3	757.3	-1.5
949	944.13	777	755.6	755.6	.8
950	945.07	806	754.0	754.0	1.9
951	946.02	780	752.5	752.5	1.0
952	946.97	790	751.0	751.0	1.4
953	947.91	716	749.7	749.7	-1.2
954	948.86	771	748.5	748.5	.8
955	949.80	699	747.4	747.4	-1.8
956	950.75	763	746.5	746.5	.6
957	951.70	743	745.6	745.6	1
958	952.64	739	745.0	745.0	2
959	953.59	731	744.4	744.4	5
	954.53	707	744.1	744.1	-1.4
960	955.48	752	743.9	743.9	.3
961		687	743.8	743.8	-2.1
962	956.42	754	744.0	744.0	.4
963	957.37		744.0	744.0	.1
964	958.32	746			
965	959.26	756	744.9	744.9	.4
966	960.21	745	745.6	745.6	.0
967	961.16	728	746.5	746.5	7
968	962.10	773	747.7	747.7	.9
96 9	963.05	746	749.1	749.1	1
970	963.99	753	750.7	750.7	.1
971	964.94	768	752.6	752.6	.6

APPENDIX B: Lotus 123 Macro for Evaluation of Width Measurements.

.

		*** GRAPHING INFORMATION *	GRAPHING	TUPODMATION	ğ	ខ្ព		
8481-9 9681-4 9681-4 9681-4 10105-6 10556-1 10556-1 11254-5 11254-5 11265-3 12222-5 12222-5				Ŷ		XYH	ENERCY AT MAX	531
9689.9 9081.4 9622.6 10536.1 10536.1 11254.6 11254.6 11254.5 11865.3 11805.3 12025.5		* *****************	010	4.027	°	1664	0	8484
9081.4 9081.4 10105.6 10516.1 10516.1 11249.5 11805.3 12025.5 122025.5 122059.7			3.958	4.027	•	3732		1000
10105.6 10536.1 10536.1 11254.6 11244.3 11805.3 122125.5 122125.5	********* · / / / /		3.983	4.027	•	1415		
10516.1 10516.1 11254.6 11254.6 11805.3 12025.5 12212.7 12212.7	8		4.005	4.027	-	01/2		10536
10000 10918 11249.5 11549.3 11805.3 12025.5 12212.7 12369.7			4.023	4.027	.	2001		501
			4.038	4.027		1401		11255
	598		4.051	4.027	•	1001		11549
	541-12 541-75		4.063	4.027	-	0071		
			4.072	4.027	•	1010		
	00 019		4 080	4.027	•	190		
	FEAN: 01010		4 087	4.027	•	603		
				4.027	•	446		121
				120	•	316		124
605.36 12499		10.4	140.4	100	c	212		126
12		4.00	4.100			132		126
, .		3.99	4.103	170.4				121
• •		3.97	4.105	4.027	-			
1				4.027	•	10		10/77
609.05 12783.8		96.6		100	•	80		128
		96.0	4.101			C	61	
• •	-	1.93	4.108	4.021				
00001			4.108	4.027		•		
-			107	4.027	•	S		
612.74 12791.1			901. 4	4.027	•	•		
	-			750 4	•	¢		
5			COT • •			0		
• •			4.103	170.4			c	
			4.101	4.027				
Ę.			4.099	4.027	<u> </u>	0		
ŝ			797.4	4.027	•	•		
27				100 4	•	•		
				•		0		
1.12151 11.054			4.092					
			4.089	4.02/		, c		
- 771			4.086	4.027	•	، ر		
			A.083	4.027	•	0		
							-	
			1.962	4.027	•	٥	0	
				A.027	•	•		
7.11.0134.7				4 027	•	•		
				10.1	•	•		
			٠			C		
			•	170.4				
			3.956	4.027				
			3.955	4.027	>	> (
			3.954	4.027		2 (
			59.5	4.027	•	5		
686.48 8968.9			1.951	4.027	•	5		
8			1000	4.027	•	•		
				4.027	•	•		
a						C		
			3.947	170.4	-			
.1/		********************************					117	
الكروكية والمحاط فكموعد فالمرعان							110	

i
Í

--

CELL EQUA	ATIONS USED FOR THE LOTUS 123 MACRO TO CALCULATE
WIDTH MEAS	SUREMENTS. • = Cell row number $\#$ = Width value
<u>Cell(s)</u>	Equation
E7	@MAX(B5B109)
E8	@MIN(B5B109)
E9	((\$E\$7-\$E\$8)/#)+\$E\$8
E11	+V111-((V111-S111)*((W111-E9)/W111-T111)))
E12	+AD111+((AA111-AD111)*(AE111-E9)/AE111-AB111)))
E14	+\$0\$111
J5J109	@LOG(B5)
K5K109	@LOG(((\$E\$7-\$E\$8)/#)+\$E\$8)
M5	+\$E\$8-B5
M6M109	@IF(M(•-1)=0,0,+\$E\$8-B•
N5	+E7-B5
N6N109	@IF(N•=0,0,+\$MAX-B•)
050109	@IF(B·=\$E\$7,A5,0)
Q5Q109	$@IF(M \cdot = 0 #AND #N \cdot > 0, B \cdot, 0)$
R5R109	@IF(Q•>0,(IF(\$E\$9-Q•>0,\$E\$9-Q•,99999)),99999)
S5S109	<pre>@IF(R.=@MIN(\$R\$5\$R\$109),A.,0)</pre>
T5T109	@IF(S•>0,Q•,0)
U5U109	@IF(Q•>0,(IF(\$E\$9-Q•<=0,\$E\$9-Q•,-99999)),-99999)
V5V109	<pre>@IF(U·=@MAX(\$U\$5\$U\$109),A·,0)</pre>
W5W109	@IF(V•>0,Q•,0)
¥5¥109	@IF(N•=0,0,B•,0)
252109	@IF(Y•>0,(@IF(\$E\$9-Y•>0,\$E\$9-Y•,99999)),99999)

- AA5--AA109 @IF(Z·=@MIN(\$Z\$5..\$Z\$109),A·,0)
- AB5--AB109 @IF(AA.>0,Y.,0)
- AC5--AC109 @IF(Y.>0,@IF(\$E\$9-Y.<=0,\$E\$9-Y.,-99999))),-99999)
- AD5--AD109 @IF(AC•=MAX(\$AC\$5..\$AC\$109),A•,0)
- AE5--AE109 @IF(AD•>0,Y•,0)
- 0111 @SUM(05..0109)
- S111 @SUM(S5..S109)
- T111 @SUM(T5..T109)
- U111 @SUM(U5..U109)
- W111 @SUM(W5..W109)
- AA111 @SUM(AA5..AA109)
- AB111 @SUM(AB5..AB109)
- AD111 @SUM(AD5..AD109)
- AE111 @SUM(AE5..AE109)

APPENDIX C: Computer Program (ESCATTR) to Evaluate Scattered Neutron Energy from Laboratory System.

-

```
2 escattrc.c
3
           Calculate scatter energies.
4
           Developed for G. Beck by S. Shimose
5
6
7 02/04/91 STS Color support added.
8 01/30/91 STS create
10 #include <fcntl.h>
11 #include <sys\types.h>
12 #include <sys\stat.h>
13 #include <io.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <malloc.h>
17 #include <math.h>
18 #include <string.h>
19 #include <dos.h>
20 #include <ansimacr.h>
21
22 #define MK_FARPTR(seg,offs) (void far *)( ( (long)(seg)<<16 ) | offs )
23
24 #define MGA_ADDR
                       0хь0000000
25 #define MGA_CTRL_REG 0x3b8
                       0xb000
26 #define MGA_SEG
                       0xb8000000
27 #define CGA_ADDR
28 #define CGA_CTRL_REG 0x3d8
29 #define CGA_SEG
                      0xb800
30
31 #define TRUE
                       1
32 #define FALSE
                       0
33
34 #define NORMAL
                      0x17
35 #define HIGH_INTEN
                       0x0f
 36 #define REVERSE
                       0x70
 37 #define BLINK
                       0x80
 38
 39 #define BLACK
                       0
 40 #define BLUE
                       1
 41 #define GREEN
                       2
 42 #define CYAN
                       3
 43 #define RED
                       4
 44 #define MAGENTA
                       5
 45 #define BROWN
                       6
 46 #define WHITE
                       7
 47 #define DARK_GRAY
                        8
 48 #define LITE_BLUE
                        9
 49 #define LITE_GREEN
                        10
```

LITE_CYAN 50 #define 11 LITE_RED 12 51 #define 52 #define LITE_MAGENTA 13 53 #define YELLOW 14 54 #define BRIGHT_WHITE 15 55 OPEN_ERR 56 #define -10 57 #define SEEK_ERR -11 58 #define READ_ERR -14 WRITE_ERR -15 59 #define 60 #define CLOSE_ERR -16 61 59 62 #define F1 63 #define F2 60 64 #define F3 61 65 #define F4 62 66 #define F5 63 67 #define F6 64 68 #define F7 65 69 #define F8 66 67 F9 70 #define 68 71 #define F10 72 #define UPARROW 72 73 #define DNARROW 80 74 #define RTARROW 77 75 #define LFARROW 75 76 77 #define FF 0xc 78 #define 0xd CR 0x20 #define 79 SP 80 #define ESC 0x1b 81 0 82 #define LPT1 83 #define LPT2 1 #define LPT3 2 84 85 2001 86 #define SCRNBUFSIZE 87 #define MAXINFIELDS 3 88 #define MAXOUTFIELDS 42 89 90 typedef struct fieldspec 91 C int row; 92 int col; 93 int len; 94 95 > FIELDSPEC; 96 97 typedef struct eneries 98 £

```
double hival;
99
               double loval;
100
               int
101
                       complex;
              ) ENERGIES;
102
103
104 typedef struct string16
              €
105
               char bufr[16];
106
              > STRING16;
107
108
109 /*----*/
110
                  calculate_energy(ENERGIES *Eprime,double E,double Q,double A);
111 int
112 unsigned char check_lpt_status(int, unsigned char *);
                  edit_fields(STRING16 *fldbufr,FIELDSPEC *fldptr,int maxflds,
113
    int
114
                              double *E,double *Q,double *A,int new);
                   init_Eprime(ENERGIES *Eprime, int count);
115 void
116
    /*-----*/
117
118
               escreen[20] = {"escreen.txt"};
119 char
               txtbufr[SCRNBUFS1ZE];
120 char
121
122 STRING16 instring[MAXINFIELDS];
123
124 FIELDSPEC inputfld[MAXINFIELDS] = ( (4,6,15),(4,34,15),(4,62,15) );
125 FIELDSPEC outputfld(MAXOUTFIELDS) = ( (10, 6, 15), (10, 23, 15),
                                         (11, 6, 15), (11, 23, 15),
126
                                         (12, 6, 15), (12, 23, 15),
127
                                         (13, 6, 15), (13, 23, 15),
128
                                         {14, 6, 15}, {14, 23, 15},
129
                                          (15, 6, 15), (15, 23, 15),
130
                                          (16, 6, 15), (16, 23, 15),
131
                                          (17, 6, 15), (17, 23, 15),
 132
                                          (18, 6, 15), (18, 23, 15),
 133
                                          (19, 6, 15), (19, 23, 15),
 134
                                          (10,46,15),(10,63,15),
 135
 136
                                          (11,46,15),(11,63,15),
                                          (12,46,15),(12,63,15),
 137
                                          (13,46,15),(13,63,15),
 138
                                          (14,46,15),(14,63,15),
 139
                                          (15,46,15),(15,63,15),
 140
                                          (16,46,15),(16,63,15),
 141
                                          (17,46,15),(17,63,15),
 142
                                          (18,46,15),(18,63,15),
 143
                                          (19,46,15),(19,63,15),
 144
                                          (20,46,15),(20,63,15) );
 145
 146
                      mode_control_reg,display_seg;
 147 unsigned
```

148 unsigned long dsply_buf_addr; 149 150 main(argc,argv) 151 int argc; #argv[]; 152 char 153 (i,clear,fsize,quit,exit_key; 154 int Eprime[MAXOUTFIELDS/2]; 155 ENERGIES E,A,Q,WS; double 156 157 FILE *pstream; 158 char device[40],outtext[80]; char key; 159 unsigned char perr,pstatbyte; 160 161 162 /* if (!get_dsply_info (&dsply_buf_addr, &mode_control_reg, &display_seg)) 163 164 (165 cls(); printf ("EGA probably present. Change to MCGA or CGA.\n"); 166 167 exit(-1); 168) 169 */ 170 dsply_buf_addr = CGA_ADDR; 171 mode_control_reg = CGA_CTRL_REG; 172 display_seg = CGA_SEG; 173 174 cls(); (void)clrw(0,0,24,79,NORMAL); 175 176 (void)strcpy(device,"LPT1"); 177 if (argc == 2) 178 179 (180 (void)strcpy(device,argv[1]); 181 pstream = fopen(device,"r+"); if (pstream != NULL) 182 € 183 184 fclose(pstream); sprintf(outtext,"Output File \"%s\" already exists. OK to append? <y/n> ", 185 device); 186 writev(outtext,12,5,(int)strlen(outtext),NORMAL); 187 188 key = 0;while (!(key=='Y' || key=='Y' || key=='N' || key=='n')) 189 key = getch(); 190 if (key=='N' || key=='n') 191 192 € 193 cls(); exit(0); 194

)

}

195

197) 198 else 199 C perr = 1;200 while (perr) 201 • 202 perr = check_lpt_status(LPT1,&pstatbyte); 203 if (perr) /* bits 0, 3, and 5 are error bits */ 204 £ 205 if (read_bit(3,&pstatbyte)) 206 ۲ 207 pstatbyte = 1; 208 sprintf(outtext,"Printer is OFF. Press 'C' when ready."); 209 writev(outtext,24,20,(int)strlen(outtext),NORMAL); 210 key = 0;211 while (!((key == 'C') || (key == 'c'))) 212 213 key = getch(); putcur(24,20,0); 214 writec(' ',40,0); 215 continue; 216 } 217 if (read_bit(5,&pstatbyte)) 218 (219 putcur(24,20,0); 220 sprintf(outtext,"Add paper. Press any key when ready."); 221 writev(outtext,24,20,(int)strlen(outtext),NORMAL); 222 (void)getch(); 223 putcur(24,20,0); 224 writec(' ',40,0); 225 continue; 226 } 227 if (read_bit(0,&pstatbyte)) 228 (229 putcur(24,20,0); 230 sprintf(outtex),"Timed Out. Press a key to resume."); 231 writev(outtext,24,20,(int)strlen(outtext),NORMAL); 232 (void)getch(); 233 putcur(24,20,0); 234 writec(' ',40,0); 235 236 continue; 237 }) 238 239) 240 3 pstream = fopen(device,"a+"); 241 if (pstream == NULL) 242 243 ۲ 244 cls(); printf("Error OPENing Device/File \"%s\".\n\n",device); 245

ESCATTRC.C

•

246	exit(0);
247)
248	fclose(pstream);
249	
250	fsize = read_textfile(escreen,txtbufr,SCRNBUFSIZE);
251	<pre>txtbufr[fsize] = 0;</pre>
252	if (fsize <= 0 fsize > SCRNBUFSIZE)
253	(
254	cls();
255	if (fsize > SCRNBUFSIZE)
256	printf("Size of \"%s\" [%d] exceeds input buffer size [%d].\n\n",
257	escreen, fsize, SCRNBUFSIZE);
258	exit(0);
259)
260	
261	E=A=Q=O;
262	<pre>(void)init_Eprime(&Eprime[0],21);</pre>
263	
264	clear = TRUE;
265	quit = FALSE;
266	while (Iquit)
267	ζ
268	if (clear)
269	fill_text_screen(txtbufr,dsply_buf_addr,NORHAL);
270	exit_key = edit_fields(&instring[0],&inputfld[0],MAXINFIELDS,&E,&Q,&A,
271	clear);
272	if (exit_key > 1)
273	clear = FALSE;
274	switch(exit_key)
275	(
276	case F1:
277	putcur(22,7,0);
278	writea(REVERSE,2,0);
279	if (!calculate_energy(&Eprime[0],E,Q,A))
280	<pre>{</pre>
281	writev("A = -1 is not allowed.",24,28,20,REVERSE);
282	(void)clrw(10,6,20,21,NORMAL);
283	(void)clrw(10,23,20,39,NORMAL);
284	(void)clrw(10,46,20,61,NORMAL);
285	(void)clrw(10,63,20,78,NORMAL);
286	delay(30L);
287	putcur(24,28,0);
288	writecs(' ', NORMAL, 22, 0);
289)
290	else
291	{
292	for (i=0; i <maxoutfields; i+="2)</td"></maxoutfields;>
293	(
294	if (!Eprime[i/2].complex)

295	(
296	<pre>sprintf(outtext,"% E ",Eprime[i/2].hival);</pre>
297	writev(outtext,outputfld[i].row,outputfld[i].col,
298	(int)strlen(outtext),NORMAL);
299	<pre>sprintf(outtext,"% E ",Eprime[i/2].loval);</pre>
300	writev(outtext,outputfld[i+1].row,outputfld[i+1].col,
301	(int)strlen(outtext),NORHAL);
302)
303	else
304	(
305	putcur(0);
306	writev(" Complex Number ",outputfld[i].row,
307	outputfld[i].col,20,NORMAL);
308	writev(" Complex Number ",outputfld[i+1].row,
309	outputfld[i+1].col,20,NORMAL);
310)
311)
312)
313	putcur(22,7,0);
314	writea(NORMAL,2,0);
315	break;
316	case F3:
317	putcur(22,27,0);
318	writeB(REVERSE,2,0);
319	pstream = fopen(device,"a+");
320	<pre>fprintf(pstream,"\n\n");</pre>
321	<pre>fprintf(pstream,* Calculation of Scatter Energy\n");</pre>
322	<pre>fprintf(pstream,"</pre>
323	fprintf(pstream," $E = X E (n^{\mu}, E);$
324	fprintf(pstream, $q = \chi E(n^{\mu}, Q);$
325	fprintf(pstream," $A = X E(n(n',A);$
326	fprintf(pstream," ws E'\(ws,E\)+ E'\(ws,E\)-\n\n");
327	ws = -1.0;
328	for (i=0; i <maxoutfields; i+="2)</td"></maxoutfields;>
329	(
330	fprintf(pstream, " X .1f X E X E\n",
331	<pre>ws,Eprime[i/2].hival,Eprime[i/2].hival);</pre>
332	ws += 0.1;
333	>
334	<pre>fputc(FF,pstream);</pre>
335	fclose(pstream);
336	putcur(22,27,0);
337	writea(NORMAL,2,0);
338	break;
339	case F5:
340	putcur(22,48,0);
341	writea(REVERSE,2,0);
342	clear = TRUE;
343	putcur(22,48,0);

writea(NORMAL,2,0); 344 345 break; case F10: 346 quit = TRUE; 347 348 cls(); break; 349 default: 350 break; 351 352) 353 3 354 Э 355 357 check_lpt_status 358 Issue a BIOS printer port status request 359 360 361 01/27/90 STS pass in LPT#; actual status byte returned as formal argument 362 01/23/90 STS remove argument; status returned as return value 363 07/26/88 STS status passed back as arguement 365 unsigned char 366 check_lpt_status(lptnum,stat) /* 0: LPT1, 1: LPT2 , 2: LPT3 */ 367 int lptnum; 368 unsigned char *stat; 369 • union REGS 370 regs; 371 372 regs.h.ah = 2; 373 regs.x.dx = lptnum; 374 int86(0x17,®s, ®s); 375 *stat = regs.h.ah; return(*stat &= 0x29); /* Bits 0, 3, and 5 are the error bits */ 376 377) 378 380 calculate_energy 381 382 01/31/91 STS create 384 int 385 calculate_energy(Eprime,E,Q,A) ENERGIES 386 *Eprime; 387 double E; 388 double 9; 389 double A; 390 • 391 int i,valid; factor, root, rootarg[21], ws; 392 double

ESCATTRC.C

393 valid = TRUE; 394 factor = (A+1) * (A+1); 395 if (factor == 0) 396 valid = FALSE; 397 398 else 399 £ ws = -1.0;400 for (i=0; i<21; i++) 401 402 • rootarg[i] = E * (ws * ws + A * A - 1) + A * (A + 1) * Q; 403 if (rootarg[i] < 0) 404 • 405 (Eprime+i)->hival = 0; 406 (Eprime+i)->loval = 0; 407 (Eprime+i)->complex = TRUE; 408 409 3 else 410 411 C root = exp(0.5 * log(rootarg[i])); 412 (Eprime+i)->hival = ws * exp(0.5 * log(E)); 413 (Eprime+i)->loval = (Eprime+i)->hival; 414 (Eprime+i)->hival += root; 415 (Eprime+i)->loval -= root; 416 (Eprime+i)->hival *= (Eprime+i)->hival; 417 (Eprime+i)->loval *= (Eprime+i)->loval; 418 (Eprime+i)->hival /= factor; 419 (Eprime+i)->loval /= factor; 420 } 421 ws += 0.1; 422 423) 424 3 return(valid); 425 426) 427 429 init_Eprime 430 431 01/31/91 STS create 433 void init_Eprime(Eprime,count) 434 ENERGIES *Eprime; 435 436 int count; 437 (438 int i; 439 440 for (i=0; i<count; i++) 441 •

442 (Eprime+i)->hival = 0; 443 (Eprime+i)->loval = 0; 444 (Eprime+i)->complex = FALSE; 445 3 446) 447 449 edit_fields 450 451 01/31/91 STS create 453 int 454 edit_fields(fldbufr,fldptr,maxflds,E,Q,A,new) 455 STRING16 +fldbufr; 456 FIELDSPEC *fldptr; maxflds; 457 int 458 double *E; 459 double *0; 460 double *A; 461 int new; 462 • 463 int i, key, fldnum, done, valid; 464 if (new) 465 466 C for (i=0; i<maxflds; i++)</pre> 467 468 • (fldbufr+i)->bufr[0] = 0; 469 putcur((fldptr+i)->row,(fldptr+i)->col,0); 470 writec(' ',(fldptr+i)->len,0); 471 472 3 473 *A = *Q = *E = 0; 474 3 475 for (i=0; i<maxflds; i++)</pre> 476 writeva((fldptr+i)->row,(fldptr+i)->col,(fldptr+i)->len, NORMAL); 477 478 479 flohum = 0;480 done = FALSE; key = 0;481 482 while (!done) 483 C putcur((fldptr+fldnum)->row,(fldptr+fldnum)->col,0); 484 485 /* writeva((fldptr+fldnum)->row,(fldptr+fldnum)->col, 486 (fldptr+fldnum)->len,REVERSE); 487 488 */ 489

490 key = getch();

```
if (key 1= CR && key 1= 0 && key 1= SP)
491
492
                 continue;
493
             if (key == 0)
                key = getch();
494
495
             switch( key )
496
                 €
497
                  case CR: ;
                  case SP:
498
                     stredit((fldptr+fldnum)->row,(fldptr+fldnum)->col,REVERSE,
499
500
                             NORMAL, (fldptr+fldnum)->len, (fldbufr+fldnum)->bufr,
501
                             FALSE, TRUE, 24, 70, &done);
                  case RTARROW:
502
                     writeva((fldptr+fldnum)->row,(fldptr+fldnum)->col,
503
                             (fldptr+fldnum)->len,NORMAL);
504
                     fldnum++:
505
                     if (fldnum >= maxflds)
506
507
                        fidnum = 0;
                     break;
508
                  case LFARROW:
509
                     writeva((fldptr+fldnum)->row,(fldptr+fldnum)->col,
510
511
                             (fldptr+fldnum)->len,NORMAL);
512
                     fldnum--;
513
                     if (fldnum < 0)
                        fldnum = maxflds - 1;
514
515
                     break;
516
                  case F1: ;
517
                  case F3: ;
                  case F5:
518
519
                     valid = TRUE;
520
                     for (i=0; i<maxflds; i++)</pre>
                        if (strlen((fldbufr+i)->bufr)<=0)</pre>
521
                           valid = FALSE;
522
523
                     if (valid)
524
                        •
                         #E = atof((fldbufr+0)->bufr);
525
                         #Q = atof((fldbufr+1)->bufr);
526
527
                         *A = atof((fldbufr+2)->bufr);
528
                         valid = (int)key;
                        3
529
                      done = TRUE;
 530
 531
                      break;
 532
                   case F10:
 533
                      valid = (int)key;
 534
                      done = TRUE;
 535
                      break;
 536
                   default:
 537
                      break;
 538
                  )
 539
              }
```

ESCATTRC.C

- 540 writeva((fldptr+fldnum)->row,(fldptr+fldnum)->col,(fldptr+fldnum)->len,
- 541 NORMAL);
- 542 return(valid);
- 543 >

Calculation of Scatter Energy áááááááááááááááááááááááááááááááááaE = 1.880000E+001 Q = -5.960000E-001 A = 7.328616E+001

WS	E'(ws,E)+	E'(WS,E)-
$\begin{array}{c} -1.0\\ -0.9\\ -0.8\\ -0.7\\ -0.6\\ -0.5\\ -0.4\\ -0.3\\ -0.2\\ -0.1\\ -0.0\\ 0.1 \end{array}$	1.722144E+001 1.726928E+001 1.731725E+001 1.736535E+001 1.741359E+001 1.746197E+001 1.751048E+001 1.755912E+001 1.765682E+001 1.770587E+001 1.775506E+001	1.722144E+001 1.726928E+001 1.731725E+001 1.736535E+001 1.741359E+001 1.746197E+001 1.751048E+001 1.755912E+001 1.765682E+001 1.770587E+001 1.775506E+001
0.2	1.780439E+001	1.780439E+001
0.3	1.785385E+001	1.785385E+001 1.790345E+001
0.4 0.5	1.790345E+001 1.795318E+001	1.795318E+001
0.5	1.800306E+001	1.800306E+001
0.7	1.805307E+001	1.805307E+001
0.8	1.810322E+001	1.810322E+001
0.9	1.815351E+001	1.815351E+001
1.0	1.820393E+001	1.820393E+001

`

. -

115

.

WS	E'(ws,E)+	E'(ws,E)-
-1.0	1.710351E+001	1.710351E+001
-0.9	1.715247E+001	1.715247E+001
-0.8	1.720158E+001	1.720158E+001
-0.7	1.725082E+001	1.725082E+001
-0.6	1.730021E+001	1.730021E+001
-0.5	1.734974E+001	1.734974E+001
-0.4	1.739941E+001	1.739941E+001
-0.3	1.744922E+001	1.744922E+001
-0.2	1.749918E+001	1.749918E+001
-0.1	1.754928E+001	1.754928E+001
-0.0	1.759952E+001	1.759952E+001
0.1	1.764990E+001	1.764990E+001
0.2	1.770044E+001	1.770044E+001
0.3	1.775111E+001	1.775111E+001
0.4	1.780193E+001	1.780193E+001
0.5	1.785290E+001	1.785290E+001
0.6	1.790401E+001	1.790401E+001
0.7	1.795526E+001	1.795526E+001
0.8	1.800667E+001	1.800667E+001
0.9	1.805821E+001	1.805821E+001
1.0	1.810991E+001	1.810991E+001

WS	E'(ws,E)+	E'(ws,E)-
-1.0	1.696256E+001	1.696256E+001
-0.9	1.701132E+001	1.701132E+001
-0.8	1.706022E+001	1.706022E+001
-0.7	1.710926E+001	1.710926E+001
-0.6	1.715844E+001	1.715844E+001
-0.5	1.720777E+001	1.720777E+001
-0.4	1.725723E+001	1.725723E+001
-0.3	1.730684E+001	1.730684E+001
-0.2	1.735659E+001	1.735659E+001
-0.1	1.740649E+001	1.740649E+001
-0.0	1.745652E+001	1.745652E+001
0.1	1.750671E+001	1.750671E+001
0.2	1.755703E+001	1.755703E+001
0.3	1.760750E+001	1.760750E+001
0.4	1.765812E+001	1.765812E+001
0.5	1.770888E+001	1.770888E+001
0.6	1.775978E+001	1.775978E+001
0.7	1.781084E+001	1.781084E+001
0.8	1.786203E+001	1.786203E+001
0.9	1.791338E+001	1.791338E+001
1.0	1.796487E+001	1.796487E+001

.

.....

117

.

Calculation of Scatter Energy
ááááááááááááááááááááááááááááááá
E = 3.840000E+001
Q = -5.960000E - 001
A = 7.328616E+001

ws	E'(ws,E)+	E'(ws,E)-
$\begin{array}{c} -1.0 \\ -0.9 \\ -0.8 \\ -0.7 \\ -0.6 \\ -0.5 \\ -0.4 \\ -0.3 \\ -0.2 \\ -0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \end{array}$	3.578023E+001 3.587879E+001 3.597762E+001 3.607673E+001 3.617611E+001 3.627576E+001 3.637569E+001 3.647590E+001 3.657638E+001 3.667714E+001 3.667714E+001 3.687950E+001 3.708297E+001 3.718512E+001 3.728756E+001 3.739028E+001	3.578023E+001 3.587879E+001 3.597762E+001 3.607673E+001 3.617611E+001 3.627576E+001 3.637569E+001 3.657638E+001 3.657638E+001 3.667714E+001 3.6677818E+001 3.687950E+001 3.708297E+001 3.718512E+001 3.728756E+001 3.739028E+001
0.7 0.8 0.9 1.0	3.749328E+001 3.759656E+001 3.770012E+001 3.780397E+001	3.749328E+001 3.759656E+001 3.770012E+001 3.780397E+001

Calculation of Scatter Energy
ádádadadadadadadadadadadadadadadadadada
E = 3.840000E+001
Q = -6.900000E - 001
A = 7.130423E+001

WS	E'(ws,E)+	E'(ws,E)-
$\begin{array}{c} -1.0\\ -0.9\\ -0.8\\ -0.7\\ -0.6\\ -0.5\\ -0.4\\ -0.3\\ -0.2\\ -0.1\\ -0.0\\ 0.1\\ 0.2\\ 0.3\\ 0.4\\ 0.5\\ 0.6\end{array}$	3.563415E+001 3.573517E+001 3.583648E+001 3.593807E+001 3.603995E+001 3.614213E+001 3.624459E+001 3.634734E+001 3.645039E+001 3.655373E+001 3.665736E+001 3.676129E+001 3.686551E+001 3.697003E+001 3.707484E+001 3.717995E+001 3.728535E+001	3.563415E+001 3.573517E+001 3.583648E+001 3.593807E+001 3.603995E+001 3.614213E+001 3.624459E+001 3.634734E+001 3.645039E+001 3.665736E+001 3.665736E+001 3.686551E+001 3.697003E+001 3.707484E+001 3.717995E+001 3.728535E+001
	÷••======	3.739106E+001
0.7 0.8	3.739106E+001 3.749706E+001	3.749706E+001
0.9	3.760336E+001 3.770996E+001	3.760336E+001 3.770996E+001

Calculation of Scatter Energy
ááááááááááááááááááááááááááááá
E = 3.840000E+001
Q = -8.350000E - 001
$\tilde{A} = 7.130423E+001$

ws	E'(ws,E)+	E'(ws,E)-
ws -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	E' (ws,E)+ 3.549318E+001 3.559400E+001 3.569510E+001 3.579649E+001 3.589817E+001 3.600014E+001 3.610241E+001 3.620496E+001 3.630780E+001 3.651437E+001 3.661809E+001 3.662643E+001 3.693104E+001 3.703594E+001 3.714114E+001 3.724664E+001	E' (ws, E) - 3.549318E+001 3.559400E+001 3.569510E+001 3.579649E+001 3.589817E+001 3.600014E+001 3.610241E+001 3.620496E+001 3.630780E+001 3.651437E+001 3.661809E+001 3.662643E+001 3.693104E+001 3.703594E+001 3.714114E+001 3.724664E+001
0.7 0.8 0.9 1.0	3.735244E+001 3.745854E+001 3.756494E+001	3.735244E+001 3.745854E+001 3.756494E+001

-1.06.144064E+0016.144064E+001-0.96.160932E+0016.160932E+001-0.86.177848E+0016.177848E+001-0.76.194809E+0016.194809E+001-0.66.211818E+0016.211818E+001-0.56.228873E+0016.228873E+001-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001	ws	E'(ws,E)+	E'(ws,E)-
-0.86.177848E+0016.177848E+001-0.76.194809E+0016.194809E+001-0.66.211818E+0016.211818E+001-0.56.228873E+0016.228873E+001-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001	-1.0	6.144064E+001	
-0.86.177848E+0016.177848E+001-0.76.194809E+0016.194809E+001-0.66.211818E+0016.211818E+001-0.56.228873E+0016.228873E+001-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001	-0.9	6.160932E+001	
-0.76.194809E+0016.194809E+001-0.66.211818E+0016.211818E+001-0.56.228873E+0016.228873E+001-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001	-0.8	6.177848E+001	
-0.66.211818E+0016.211818E+001-0.56.228873E+0016.228873E+001-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001			6.194809E+001
-0.56.228873E+0016.228873E+001-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001			6.211818E+001
-0.46.245976E+0016.245976E+001-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001	•••	6.228873E+001	6.228873E+001
-0.36.263125E+0016.263125E+001-0.26.280322E+0016.280322E+001			6.245976E+001
-0.2 6.280322E+001 6.280322E+001			6.263125E+001
			6.280322E+001
-0.1 6.297566E+001 6.297566E+001	-0.1	6.297566E+001	6.297566E+001
-0.0 6.314857E+001 6.314857E+001		6.314857E+001	6.314857E+001
0.1 6.332196E+001 6.332196E+001			6.332196E+001
0.2 6.349582E+001 6.349582E+001			6.349582E+001
0.3 6.367017E+001 6.367017E+001		-	6.367017E+001
0.4 6.384498E+001 6.384498E+001			6.384498E+001
0.5 6.402028E+001 6.402028E+001	+		6.402028E+001
0.6 6.419606E+001 6.419606E+001			6.419606E+001
0.7 6.437232E+001 6.437232E+001		6.437232E+001	6.437232E+001
0.8 6.454905E+001 6.454905E+001			6.454905E+001
0.9 6.472628E+001 6.472628E+001	+	6.472628E+001	6.472628E+001
1.0 6.490398E+001 6.490398E+001	•••	6.490398E+001	6.490398E+001

- -

Calculation of Scatter Energy ádádádádádádádádádádádádádádádád E = 6.550000E+001Q = -6.900000E-001A = 7.130423E+001

WS	E'(ws,E)+	E'(ws,E)-
-1.0	6.125565E+001 6.142864E+001	6.125565E+001 6.142864E+001
-0.9	6.160211E+001	6.160211E+001
-0.8	6.177608E+001	6.177608E+001
-0.6	6.195055E+001	6.195055E+001
-0.5	6.212550E+001	6.212550E+001
-0.4	6.230096E+001	6.230096E+001
-0.3	6.247691E+001	6.247691E+001
-0.2	6.265336E+001	6.265336E+001
-0.1	6.283031E+001	6.283031E+001
-0.0	6.300775E+001	6.300775E+001
0.1	6.318570E+001	6.318570E+001
0.2	6.336416E+001	6.336416E+001
0.3	6.354311E+001	6.354311E+001
0.4	6.372257E+001	6.372257E+001
0.5	6.390253E+001	6.390253E+001
0.6	6.408300E+001	6.408300E+001
0.7	6.426398E+001	6.426398E+001
0.8	6.444547E+001	6.444547E+001
0.9	6.462747E+001	6.462747E+001
1.0	6.480997E+001	6.480997E+001

.....

WS	E'(ws,E)+	E'(ws,E)-
WS -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5 0.6	E'(ws,E)+ 6.111467E+001 6.128746E+001 6.146073E+001 6.163450E+001 6.180876E+001 6.198352E+001 6.215877E+001 6.251077E+001 6.268751E+001 6.304251E+001 6.322076E+001 6.357877E+001 6.375853E+001 6.393880E+001	E' (ws,E) - 6.111467E+001 6.128746E+001 6.146073E+001 6.163450E+001 6.180876E+001 6.198352E+001 6.215877E+001 6.233452E+001 6.251077E+001 6.268751E+001 6.322076E+001 6.339951E+001 6.357877E+001 6.375853E+001 6.393880E+001
0.7	6.411958E+001 6.430086E+001	6.411958E+001 6.430086E+001
0.9	6.448266E+001 6.466496E+001	6.448266E+001 6.466496E+001
