
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

A framework for active learning
Sean Sharma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Sharma, Sean, "A framework for active learning" (2008). Master's Theses. 3529.
DOI: https://doi.org/10.31979/etd.7ap2-ayxe
https://scholarworks.sjsu.edu/etd_theses/3529

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70405408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3529?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3529&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A FRAMEWORK FOR ACTIVE LEARNING

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sean Shamia

May 2008

UMI Number: 1458144

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1458144

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

©2008

Sean Sharma

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

(V,
Jl^V^/V^

Dr. Cay l^orstmann

Dr. David-Taylor , r f

I/I/A
Mark Star Dr. Mark Stamp

APPROVED FOR THE UNIVERSITY

ABSTRACT

A FRAMEWORK FOR ACTIVE LEARNING

by Sean Sharma

Understanding of most algorithms in Computer Science is usually aided with

iterative, graphical representations. Traditionally, these representations are conveyed to

students via a textbook, and only one problem instance is illustrated. Newer methods of

learning involve animations of algorithm execution.

We propose a framework that can be used to demonstrate multiple problem types

via a combination of animation and student interaction. The framework should support

existing algorithm code with minimal modifications.

A prototype of such a framework is developed with an additional construct known

as Show Me Mode that enables students to view animations of the execution of an

algorithm.

Table of Contents

List of Figures vii

List of Tables viii

List of Listings ix

1 Introduction 1

1.1 Overview 1

1.2 The Project 3

1.3 Goals 4

1.4 Report Overview 5

2 State of the Art 6

2.1 Interactive Learning Environments 6

2.2TRAKLA2 7

2.3 Interactive Data Structure Visualizations 8

2.4 Additional Art 9

3 Accomplishments 10

3.1 The Framework 10

3.1.1 Prim's Algorithm 10

3.1.2 Heap Sort 11

3.1.3 Insertion Sort 12

3.2 Show Me Mode 13

3.3 Initial Usage 14

3.4 Contributors 15

3.5 Summary 16

4 Framework Overview 18

4.1 Architecture 19

4.1.1 Algorithms Package 19

4.1.2 Effects Package 21

4.1.3 Engine Package 23

4.1.4 Exceptions Package 28

4.1.5 Graph Package 29

v

4.1.6 Moodle Package 33

4.1.7 Threading Package 34

4.1.8 Tools Package 35

5 Instructor Guide 41

5.1 Adding a Problem 41

5.2 Adding a Tool 48

5.3 Adding a Layout 55

5.4 Adding an Effect 59

6 Conclusion and Future Work 61

6.1 Conclusion 61

6.2 Future Work 62

Works Cited 64

VI

List of Figures

Figure 1: Prim's algorithm in TRAKLA2 8
Figure 2: Graph representation in Interactive Data Structure Visualizations 9
Figure 3: Prim's algorithm in the framework 11
Figure 4: Heap sort in the framework 12
Figure 5: Insertion sort in the current algorithm 13
Figure 6: The algorithms package 19
Figure 7: The effects package 21
Figure 8: The engine package 23
Figure 9: The exceptions package 28
Figure 10: The graph package 29
Figure 11: The moodle package 33
Figure 12: The threading package 34
Figure 13: The tools package 36

vii

List of Tables

Table 1: Key metric comparison 7

vm

List of Listings

Listing 1: Pseudo random Edge and Edge Weight generation 20

Listing 2: Pulsation effect implementation 22

Listing 3: Glow effect implementation 22

Listing 4: Random array generation 24

Listing 5: Random tree generation 25

Listing 6: Random position generation 25

Listing 7: Array position generation 26

Listing 8: Tool synchronization 27

Listing 9: Vertex pick state management 27

Listing 10: Put method on LPPVertex 30

Listing 11: Graph initialization 30

Listing 12: Node swapping 31

Listing 13: Adding an edge to a LPPTree 32

Listing 14: Set method in LPPList 32

Listing 15: Members of LPPTree Vertex 33

Listing 16: Execute method in SerialExecutor 35

Listing 17: ExpectSelection method in Tool 37

Listing 18: Condition for Show Next Step Mode 38

Listing 19: Vertex based edge selection 38

Listing 20: Validation of user input 39

Listing 21: Transform tool support 40

Listing 22: A sample run method 43

Listing 23: Problem generation method signatures 44

Listing 24: Adding and initializing a tool to a problem 45

Listing 25: Our implementation of Prim's algorithm 48

Listing 26: The expectSelection method 50

Listing 27: The expectPut method 52

Listing 28: A sample method for a new Tool 53

Listing 29: Show Me Mode Support in the expectSelection method 54

IX

Listing 30: The implementation of PickEdgeTool 55

Listing 31: A extension of AbstractLayout 56

Listing 32: initializeLayout from LPPGraph 57

Listing 33: The implementation of ArrayLayout 59

Listing 34: The implementation of the straight line effect 60

Listing 35: Pulsating an item after selection 60

x

1 Introduction

1.1 Overview

The prevalent model of learning in computer science relies heavily upon the

established learning models of mathematics in which interactive, instructor guided, in-

class sessions are augmented with independent, student guided sessions. The

effectiveness of the in-class sessions is a result of the interactive nature of an instructor

presenting material to students. The independent, student guided sessions are not

interactive by nature and are often not as effective given that textbook material tends to

be dry.

While in-class explanation and demonstration of an algorithm is very helpful for a

student, outside of class, a student's recourse is often limited to the class textbook.

Although a textbook can provide detailed analysis of an algorithm, illustrations of

intermediate steps are often limited to trivial or edge cases. A student wishing to apply

an algorithm to a more difficult or involved problem instance has to do so without any

mechanism for validation of their thinking. The optimal solution is for students to have

access to a tool that provides illustrations of the intermediate stages of execution of an

algorithm. A student's learning could be enhanced further if they could choose what they

felt was the next step in the execution of the algorithm and their choices were

immediately validated. A student's interaction with the tool could result in animation or

some other visually interesting behavior. These types of interactions will promote active

1

learning as the student would be applying the algorithm and working toward a solution

instead of being presented with a solution, or at best, the intermediate steps required to

reach a solution. Such a mode of learning has shown to be effective for students

(Sangwan, Korsh, and LaFollette 272). Creating such a tool is frequently not possible

within an instructor's time constraints. Furthermore, tools available today promote

passive learning that approximates learning from a textbook. Ideally, instructors could

use a framework that deals with the issues of animation and user input and interaction to

produce such a tool for their students.

A logical inclination might be to increase the instructor guided, in class sessions and

reduce the independent, student guided sessions. This may not be financially feasible for

the instructional facility or the student. Furthermore, some students are successful in the

current model. For other students, a shortcoming of the current model is the

ineffectiveness of the independent, student guided session when compared to the in-class,

instructor guided session.

A potential enhancement to the current model can be achieved by altering the

independent, student guided sessions. If these sessions were able to more closely

approximate the interactivity of the instructor guided, in-class sessions, their

effectiveness would be improved. The means of increasing interactivity are illustrative

and animated examples and immediate feedback. Illustrative and animated examples

would more clearly demonstrate the progression through a problem than static images in

2

a textbook. Immediate feedback will allow students to validate their thinking against

every step in the progression of a problem.

The key to realizing this enhancement is to provide a mechanism for instructors to

deliver illustrated and animated problems with immediate feedback to their students. The

optimal vehicle is a highly extensible framework. Instructors must find the framework to

be easy to extend as instructor adoption is correlated to ease of use (Lahtinen, Javinen,

and Melakoski-Vistbacka 259; Naps et al. 126). The framework would provide the

expected functionality of problem and solution creation, and student tracking. Its

potential would lie in its extensibility as new problems and problem types could be added

by instructors. The new problems and problem types could utilize any of the expected

functionality of the framework as well as any of its graphical capabilities.

Building a framework which promotes illustrated problems and immediate feedback

while allowing instructors to easily augment the problem space will replace the

independent sessions that prove to be ineffective for some students with a more effective

active learning environment. A similar effort at Ithaca College in New York that evolved

from slide based representations to in-class visualizations led the inventors to a similar

conclusion (Erkan, Scaffidi, and VanSlyke 305).

1.2 The Project

The project entails creating an extensible framework that promotes an interactive

learning experience. The learning experience is further enhanced by exposure to multiple

3

problem instances. User interaction and feedback are animated to provide emphasis and

encourage adoption by students. Although instructor adoption is not always based on the

quality of the tool, we attempt to promote instructor adoption by ensuring that existing

algorithm code can be easily combined with the framework to create problem instances

(Ben-Ari and Levy 247). Additionally, instructors may choose to adopt the framework

since it will track user action and report information that can assist grading (Helmick,

Integrated 148; Helmick, Interface-based 66).

A bevy of applications provide an interactive student experience, an animated

demonstration, or random problem generation. The uniqueness of our framework is that

it combines the aforementioned features and incorporates a high degree of extensibility.

Moreover, our framework includes the construct of Show Me Mode which allows for an

entire problem or a single step to be animated without any user action. See section 2.3

for an overview of a similar implementation in the Interactive Data Structure

Visualizations system.

The result is a reusable framework for which instructor adoption would be fueled

by the ease of problem type integration, and student adoption would be fueled by

interactive, more enjoyable nature of problem solving.

1.3 Goals

The goals of this project are to create a framework that enables active learning by:

allowing for instructors to enable instances of a problem type by making a minimal

4

amount of modifications to existing algorithm code, allowing students to iterate through

visual representations of the intermediate steps of algorithm executions, and allowing

random generation of problem instances.

In the course of addressing these goals, an additional goal was added. The

framework should support modes in which the entire execution of an algorithm or the

execution of a step is shown without user interaction

1.4 Report Overview

The state of our art is presented in Chapter 2, and it includes an overview of two

applications which accomplish goals similar to our own. Chapter 3 provides information

regarding our accomplishments. The framework and initial use feedback are reviewed.

An overview of the framework is discussed in Chapter 4. The overview focuses on the

architecture and is intended to aid anyone considering future work on the framework. An

instructor guide is presented in Chapter 5, and it depicts mechanisms for extending the

framework by adding problems, tools, layouts or effects. Chapter 6 outlines our

conclusions and some suggestions for future work on the framework.

5

2 State of the Art

2.1 Interactive Learning Environments

The proliferation of the Internet in the last decade has resulted in the availability

of information regarding virtually any topic. The format of information has progressed

from simple text to text with illustrations to text with animations. As pertaining to our

domain, a large variety of tools are available today.

Erroneously, many of these tools are labeled interactive even though they provide

no mechanism for user interaction. User interactivity is the key component of an active

learning environment (Carlson et al. 292). Furthermore, many of these tools are only

capable of showing a specific problem type and often, can only show the same instance.

As relevant to our goals, the state of the art can be examined from the following

perspectives: extensibility and interactivity. The extensibility of a framework pertains to

the relative ease of adding support for problem types and new types of user action. The

interactivity of a framework pertains to its level of animation and user interaction.

We reviewed many systems during the initial investigation period. Among the

systems, were TRAKLA2 and Interactive Data Structure Visualizations. An analysis of

the two systems follows.

The comparison in Table 1 reveals that TRAKLA2 is the superior software when

evaluated against our criteria. Figures 1 and 2 illustrate both user interfaces.

6

Table 1: Key metric comparison

Animated/Interactivity
Extensible
Graphical Representation

TRAKLA2
Yes
No
Good

Interactive Data Structure Visualizations
No
No
Poor

2.2 TRAKLA2

The TRAKLA2 project is an on-going effort at the Helsinki University of

Technology. Many of the project's goals align with our goals. The key divergence

occurs with the notion of an exercise. In our notion, a user is provided with a

visualization of a problem and the tools to apply an algorithm to the visualization. In

TRAKLA2's notion of an exercise, a user is provided with a visualization, some ancillary

information and the algorithm itself. Our framework assumes previous exposure to the

algorithm, while TRAKLA2 does not.

Measured against our definition or interactivity, TRAKLA2 is exceptional. As

shown in Figure 1, it provides effective visualizations and animations and it can even

support simultaneous display of a static capture of the progression of an algorithm and an

animation of the execution of the algorithm. Additionally, TRAKLA2 provides feedback

regarding user action (Korhonen, Laakso, and Myller 252).

Although TRAKLA2 satisfies one of our design goals, it falls short of our goal of

extensibility as it appears that any enhancements or modifications to the system are

strictly the domain of the effort at Helsinki University of Technology. Our framework

bests TRAKLA2 with respect to our definition of extensibility.

7

Test course > Round 6-Graph algorithms > 3 Pr ints algorithm

E±!VKSJ ^JS^S^I »°K^

Oe d - H 01 ?Qiq 03 00 JO

^.cpi, hi-atgirth-ntutipfjIOAinfj j nh1edgapHf=>f8 (

e te» f aftilhusdjes at contain ih° edrjK (« (atti-r ^

Soi l - add "lotial t lief •)

UST PiWl __ _____ _

M r P i TiGfoat j ' j - f \ £ ft)
1 for each u in V
2 do u.prsofity = MAK_VALUE
3 u umisit^d = TRUE
4 Li falh-r - NULL

5 root priority = 0 l'i foot in V

6 Q insurant); i'< Priority Queue Q
7 while Q not era ply
& <loij=Delst«l*rifQ)
S u.uTOsilsd = FALSE
0 add edge (u.faUisf, v) into the spanning Ires

1 fos each (u,vj in E
2 do i! v urwssite^ and W(u,v) < v.prtorsty
3 then v father = u

14 v parity = Wtu.v)
Q insertOrUpcatsiv)

it*d aswu i i srenev list bos -ie the grspiiic^ repre: M spanning tree of the grapH The spariii

WJE"~JTt.TF-Sr:l

(P W B ' sxaft-isfli' Na*t e*»rejs

any initialized with the root

•7 ssrastfVKfc assf-oS

2 userts) onfoa - s e ^ r KaHa « M t fi • sercaf time- 23.05 20C7 03 3632

Figure 1: Prim's algorithm in TRAKLA2

2.3 Interactive Data Structure Visualizations

Interactive Data Structure Visualizations originated as a graduate project at The

George Washington University. Its primary goal was to be a vehicle for measuring

student performance with and without the use of a tool. It includes a novel Show Me

capability that displays the final result of each step in an algorithm's execution.

Gauged against our definition of interactivity, Interactive Data Structure

Visualizations measures poorly. While the interface may more closely approximate the

internal representation of data, it may not be intuitive to some students. In fact, contrary

to many other studies about other tools, students who used this tool performed worse than

8

students who did not use the tool (Jarc, Feldman, and Heller 380). Figure 2 contains the

representation of a graph.

Additionally, Interactive Data Structure Visualizations does not provide any

means of making modifications or enhancements. Extensibility was not a design goal.

Our framework bests Interactive Data Structure Visualizations with respect to our

definitions of interactivity and extensibility.

Figure 2: Graph representation in Interactive Data Structure Visualizations

2.4 Additional Art

An extensive overview of additional art has been assembled by members of the

Department of Computer Science at Virginia Tech, and is provided at the following

website: http://web-cat.cs.vt.edu/AlgovizWiki (Shaffer, Cooper, and Edwards 151).

9

http://web-cat.cs.vt.edu/AlgovizWiki

3 Accomplishments

3.1 The Framework

To address our goals of extensibility and interactivity, we determined that the

framework should support multiple problem types, multiple problem instances and be

easily extended. Over two semesters, we developed a framework that supports multiple

problem types, multiple problem instances, and has an extensible tool architecture. The

resulting framework provides an interactive experience to users and is easily extended by

instructors.

Much of the visualization in the framework is powered by the JUNG framework

("Overview") and effects are enabled via the Timing framework (Hasse). JUNG

provides layout management of items in the visualization, and the Timing framework

manages threading and timing issues as they pertain to animation effects. An in-depth

overview of the architecture of the framework is given in Chapter 4, and an instructor

guide targeted at users who want to extend the framework is given in Chapter 5. The

framework supports the following problem types: Prim's algorithm, Heap sort and

Insertion sort. An overview of each problem type is provided.

3.1.1 Prim's Algorithm

The framework supports an implementation of Prim's algorithm. A randomly

generated instance is pictured in Figure 3. The Animator displays problem and tool

10

sensitive directions, and each user action is validated. At each Set n value step, after the

user selects a vertex, a dialog box appears and allows for the entering of a 71 value. The

value is validated against the expected the n value and the algorithm does not progress

until the correct value is entered. This algorithm features an effect that animates a vertex

selection by pulsating its border.

3.1.2 Heap Sort

.-Si's "
iri.ii;

——

v.£

~~v5T~

A
sev:0

Tnnull

' " l ."cl l | l ||)IU.||)H

"•••let .1 nivic

S -Is-i I ••' i.-'-:)ii. set Ki-v «-iiu •

"s> 1 lrvJiliu

na

Directions

• If necessary, click on
Cleanup Graph, then
drag nodes so that that
all nodes and edges are
clearly visible. When you
are done, click on Select
a node

1 Prim's algorithm keeps
unprocessed vertices
(colored in pink) in a
priority queue. You
remove vertices from
this; m io i i p Ymi a m

Figure 3: Prim's algorithm in the framework

The framework supports an implementation of the Heap sort algorithm. As

shown in Figure 4, a user is presented with a randomly generated instance of a heap and

must perform swap and percolation operations until the resulting heap is a min heap.

11

http://iri.ii

Each user action is validated against the action expected by the algorithm and

execution does not progress until the user has taken the correct action.

89

/ \

/

46

\
\

W

"

M,

1
/

"'-

59 1
\

/ \
73

1l« lf!3[l

S.-„:|i IKI-rt

!-"-.:|..'ll.ilr' :••. rt-|i

M u d NJV! .•,;••••

!!.!> jn i ih. lh; - !

i Start by selecting the Fix
Heap tool. Then, click on
too nodes to swap
them. The goal is to
build a max heap.

i Once the heap satisfies
the max heap property,
select the Swap Nodes
tool. Then, click on any
two nodes to swap them.

i Finally, choose the
Percolate Down tool to
nprrniatp the rnnt nnrtp

Figure 4: Heap sort in the framework

3.1.3 Insertion Sort

The framework supports an implementation of the Insertion sort algorithm. As

shown in Figure 5, a user is presented with an array of randomly generated values. At

each iteration, the user must select the value that the algorithm needs to be inserted, the

item's location as it moves through the array, and the item's final insertion location.

Each user action is validated, and the algorithm does not progress until the user

takes the expected action. This algorithm features an effect that swaps the values of

elements after an insertion.

12

In each step, you sdect the nest
dement that is to he inserted.
You are supposed to know how
that dement is determined.
(Sdect Value to he Inserted)

Then you click on the location
at which the dement should be
inserted. The remaining
dements will be moved
automatically. Continue doing
this until the dement is in the
correct position. (Swap Values)

Figure 5: Insertion sort in the current algorithm

3.2 Show Me Mode

The framework supports Show Me Mode and Show Next Step Mode. In Show

Me Mode, the Animator progresses through the entire algorithm without any user action.

Each step is illustrated with an image of a cursor icon. Show Next Step Mode is initiated

by the user and when invoked, only illustrates the next step in the progression of the

algorithm. Similar to Show Me Mode, the image of a cursor icon is used to illustrate the

step.

Show Me Mode is achieved by adding a guard clause to each user actionable

method in a tool. Specifically, if algorithm code calls a specific method in a tool, that

method must have a branch of execution that is taken when the system is in Show Me

13

Mode. This branch often includes calls to two methods in the Animator. The first moves

the cursor icon image to a specific location and the second causes the cursor icon image

to fire a click event at its current location.

The mechanism for Show Next Step Mode heavily utilizes the implementation of

Show Me Mode. When a user invokes Show Next Step Mode, a flag in the Animator is

set to Show Next Step Mode. Once the user actionable method in the tool is called,

execution branches to the Show Me Mode logic. At the end of execution, the Show Next

Step Mode flag is toggled. The effect is that the Animator is in Show Me Mode for only

one step.

3.3 Initial Usage

The program was used in November of 2007, by Dr. David Taylor of San Jose

State University and the students his CS 46B class. The initial usage consisted of

students completing an instance of Insertion sort and then providing feedback regarding

the tool. The deployment mechanism for the initial usage was the moodle system.

In the course of preparing the problems and tools for the initial usage, our efforts

to meet our design goals of interactivity and extensibility were validated by Dr. Taylor.

Dr. Taylor was able to extend the framework and implement Bubble sort. Additionally,

Dr. Taylor was able to augment the interactivity of the framework by adding some color

transitions to his implementations of Bubble sort.

14

Immediately after using the framework, participants were asked for feedback. The

feedback indicated that overall experience was positive. Although most of respondents

had not used a tool similar to our framework, many found our framework to be easy or

very easy to use. Additionally, all respondents felt that the framework improved their

understanding of the algorithm.

We feel that it is a significant accomplishment to have had participants recognize

the benefit of our tool even though most had never used something similar. This claim is

justified by the response of the respondents, most of whom would use our framework to

augment their studying for a class. The initial usage validated our efforts to achieve our

design goals. Dr. Taylor proved the extensibility of the framework, and the respondents

proved its interactivity.

3.4 Contributors

The design and development of the framework involved students working under

the guidance of Dr. Cay Horstmann and Dr. David Taylor of San Jose State University.

Working under Dr. Horstmann's supervision were Sean Sharma, Kristen Mori,

Shiro Sakurai, Alexander Ljungberg. Dr. Taylor supervised Edward Yin and Andrei

Lurie.

Dr. Horstmann was responsible for the problem model in the framework, a

refactoring that included a new tool model, and integration with the timing framework

15

that is used to power effects in the framework. He also reviewed the design of the

framework through its several iterations. Dr. Taylor created the problems for the initial

usage and reviewed the interaction model of the framework throughout the project.

Sean developed the initial framework, and was responsible for a refactoring that

included new threading and problem models which allowed multiple problem instances

to be run in a single run of the Animator. Kristen developed an implementation of Heap

sort and the new tools required. Kristen was instrumental in identifying several

shortcomings in our initial design. Shiro added several animation effects to the

framework and made improvements to the APIs used by the Animator to invoke

animations and effects. Alexander facilitated the initial setup of the source repository and

wiki, aided in the initial design of the framework and provided support for the wiki and

source repository throughout the project. Edward aided in the design of the framework

and implemented several versions of Prim's algorithm with different interaction models.

Ed aided in the initial investigation of the JUNG framework and the examination of

existing art. Andrei configured moodle to utilize the framework and added APIs that

allow external systems to gather problem information. Additionally, Andrei performed

much of the setup work for the initial usage.

3.5 Summary

Our efforts resulted in a framework that supports multiple problem types, multiple

problem instances, and includes a tool architecture that enables tools to perform action

16

validation independent of the framework. Additionally, we developed the construct of

Show Me Mode and Show Next Step Mode which allow a user to view an animation of

an algorithm's execution.

We were able to validate our efforts against our goals via the initial usage. The

development of the problems and tools for the initial usage and subsequent feedback

indicated that our framework was both extensible and interactive.

Assessed against our goal of extensibility, the framework performs satisfactorily.

New problems can be added without modification to the framework, and can leverage

existing tools. If new tools are needed, they can be added without modification to the

framework.

The framework also performs satisfactorily when measured against our goal of

interactivity. The separation of the visualization element and the animator resulted in a

more robust effects model that allows for the addition of new animation effects. Each

user action is still validated against the algorithm, and the algorithm still does not

progress unless the correct action is taken.

17

4 Framework Overview

The architecture of the framework is best reviewed by examining its major

components. The major components are the problem model, the tool model, the

threading model and the effects model.

All problems are derived from the Problem base class. The Problem class

provides methods that can manipulate the animator and reduce the redundant code in

different problem implementations.

The tool model moves the processing of user actions to the tool classes. The

framework allows tools to define their own methods for processing and user actions are

dispatched to tools for processing.

The threading model provides support for the tool model, and the ability to run

more than one problem in an instance of the Animator. The algorithm and user action

events occur on separate threads and tools serve as the mechanism for processing user

actions and advancing the algorithm thread.

The effects model enables problems and tools to trigger effects and animations on

items in the visualization. Several effects are packaged with the framework and are

meant to be templates for any new effects. The effects in the framework are powered by

the Timing framework.

18

These components were designed so instructors could easily add problems and

tools and students would find the resulting experience to be interactive and visually

interesting.

4.1 Architecture

4.1.1 Algorithms Package

The algorithms package houses definitions of problems and their accompanying

drivers. It contains the following classes: HeapsortB, InsertionSorter, Prim4,

AnimatorApplet, InsertionSorterAnimator and Prim4Harness.

Q Heapsort3

'jt _sgiectetToat

HeapswttO

| 0 ftcHeap(>

; 0 generateProfcteroCl

0 getRigMCfrMi^exO

0 scrtC)

swapE)

L-i Insert ionSorter

- * Ht

L_# select I

i S^, setect2

| H^ shswStep

i |§f InsertionSsfterQ

j 0 generateProbiemQ

I 0 runO

™ InsettionSortAnim

<§> ntamf*

r -• Pr lm4

r^ , sttowSte-p

^ SeneratePrsbSemi

^ rxini)

ator f LJ Prim4Hamess

gAiuiugitorApplel

Figure 6: The algorithms package

The class Heapsort3 provides an implementation of a Heap sort algorithm. It is

derived from the Problem class. This problem utilizes the FixHeap, SwapNodes and

PercolateDown tools

19

The class InsertionSorter provides an implementation of the Insertion sort

algorithm. It is a subclass of Problem. Generation of the item values is random. This

problem utilizes the Select and ShowNextStep tools.

The class Prim4 provides an implemention of Prim's algorithm. It is derived from

the Problem class. Generation of the vertices, edges and edge weights is pseudo random,

occurs in the Problem class and a portion of the algorithm is outlined in Listing 1. This

problem utilizes the TransformTool, SelectTool, PutTool and ShowNextStep tools.

These tools are reviewed in section 4.1.8.

int rand = (int) (Math.random() * g.numVertices());
LPPVertex v_rand = (LPPVertex) i.getVertex(rand);
LPPEdge dse = new LPPEdge(vl, v_rand);
if (vl != v_rand)
{

if (!vl.isPredecessorOf(v_rand)

&& !vl.isSuccessorOf(v_rand))
{

g.addEdge(dse) ;
vl.addlncidentEdge(dse);
v_rand.addlncidentEdge(dse);
vl.addAdj acentNode(v_rand);
v_rand.addAdj acentNode(vl);
ewl.setWeight(dse, labelNumber);
dse.put("w", labelNumber);

}
}

Listing 1: Pseudo random Edge and Edge Weight generation

The class AnimatorApplet enables an instance of Prim4 to be run as an Applet.

The class InsertionSorterAnimator enables an instance of InsertionSorter to be run as an

Applet. The class Prim4Harness enables an instance of Prim4 to be run as an

Application.

20

4.1.2 Effects Package

The effects package houses resources that power some of the visual effects in the

framework. It contains the following classes: VertexDecorator, TextDecorator and

Effects. It also contains the following interfaces: Drawable and Locatable.

©interface *
W, Drawable

^interface »
; j»jj Locatable 1

•$• addPropgrtyChang€Listeneri., " @ getXO

0 drawO 0 jjetVfi
^ renso^ePrepertyCliange-LJsfeii&rO I ^ s-etXO

* ' ' f" "' — ' 0 *eft 0 \

T'

f

'. J VertexDecorator f - i TextDecorator

k , changeS-upport " TJ chsngeSupport

[^ glow | | i f labei

w^, vertex

' & Vertex Dec pralorO

{gH atfdPropeit/ChMtgelJstenerO

0 draivr*

|§? remc.ePicpertyChaflgeListenerO
Q sefGtowO

M text

I S 5f

^ TaxtDecofatDf()
0 s^kJPr&pertyChaogeUstenerQ

H draw()

0 getlexiQ

0 getXO
ft SetY{)
0 remcvePrcpertjChaogeListeiierO

f§| seOsxiO

0 seiX()

ft sefYQ

bj Effects

rjDEFAULT_DURA710N ;
L) C EFAU LT_r£R6TD»S \

ft change ;

$£ tfotaOrierft j
0 ic""ogether() |

^ puise 1

^ ousrterDrcleC) 1

ft siraightUneO
j

Figure 7: The effects package

The interface Drawable is implemented by the TextDecorator and

VertexDecorator classes. It outlines the draw method and mechanisms for attaching and

detaching a property change listener.

The interface Locatable is implemented by the TextDecorator class. It outlines

getter and setter methods for x and y coordinates.

21

The class Effects defines several animations that can be invoked on items in the

current visualization. It leverages the timing framework to perform positional change or

other animations. The method for item pulsation is outlined in Listing 2.

p u b l i c s t a t i c <T> Animator p u l s e (O b j e c t o b j e c t , S t r i n g
p r o p e r t y N a m e , T . . . v a l u e s)

{

r e t u r n new Animator(DEFAULT_DURATION I
(DEFAULT_ITERATIONS / 2) ,

DEFAULT_ITERATIONS,
RepeatBehavior .REVERSE,
new P r o p e r t y S e t t e r (o b j e c t ,

p r o p e r t y N a m e , v a l u e s)) ;
}

Listing 2: Pulsation effect implementation

The class VertexDecorator facilitates animation effects on vertices in the

visualization. As demonstrated in Listing 3, VertexDecorator implements the Drawable

interface to provide a glow effect to vertices.

g2.setPaint(Color.RED);
final double MAXGLOW = 5;
final double thickness = glow * MAXGLOW;
g2.setStroke(new BasicStroke((float) thickness));
Dimension size = vertex.getPreferredSize();
if (glow > 0)

g2.draw(new Rectangle2D.Double(vertex.getX() - size.width / 2
- thickness / 2, vertex.getY() - size.height / 2 -
thickness / 2, size.width + thickness,
size.height + thickness));

Listing 3: Glow effect implementation

22

The class TextDecorator provides a means for text based effects in the

visualization. TextDecorator implements the Drawable and Locatable interfaces. It is

primarily used in the Effects class for positional change animation of text.

4.1.3 Engine Package

The engine package provides the primary interface between the Animator and

JUNG. It contains the following classes: Problem, LPPArrayToTreeLayout,

LPPGraphLayout, ArrayLayout, VisualizationPanel and AnimatorPickedState. It also

contains the ProblemType and AnimatorMode enumerations.

* enures r a t o x

IS.1 P r o b l e m T y p e ,

\^ Ar rs \

H i Sre^A |

i § T r e e

U LPPArrayToTreeLayout

J ' D E F A U L r . r C ' Y

-,> SitStX

1 I m_CUI 8PtP3(flt

a rr_depth

j „ m_no3es

„ „ inJree

•yy LPPA»i3}-"*f eeLay»ui(}

{«$ bu!d7reei,&

$ bukrrreei;

§ 3 s f f i e r f K (

t £ ceiUftChsUi

^ 5PtRchtCiiidf>

•jjlj HlcrtmsnteAreDoneC}

£§£• inrtetee i

0 wittf i - eLo .a tc rsQ

< j j tnti?iizej'>cai_ &ftfix{)

(I? S-nzrem-n^iQ

^ seCiitrsn^PosittCRForO

ffi i j.aate!

M LPPGrsphLayoul

3$ LFPSrap1U\fHi t i t

5§£ mrtslzeLccattofifJ

® upciaieu

4entimerak>ft »

_m«"f& E Animatoryode

1 i- Ej student

Q ArrayLayout

0 4 r r a y l 3 i C L t i ;

0 sd'.aficePcsiticnsi!

• & if1 et entsAreDoiieO

^ Filial d - o c a t o m ,

^ rnf aLeLocatb f isO

•$& r ' " l e focal_ve-rtexO

^ air r t i tp- i ta lQ

^ j f d a t c

J / f V i s u a l i z a t i o n P a n e l

- i s _lastSeiededVertex

^ ,, t3ec»ra"ors

i „ n p s

_ ^ parent

,™d toalccl

^ Visuali:ationPane!()

0 addCscoratorQ

%• ss'bhCtvStepf)

0 Tc ' iV ' ocO ia f i geQ

^ fefrcieBeceraiGrO

& v> arForVertfixSel&ctkmO

r ~ A n i m a t d r P i c k e d S t a t e

^ ren*ue(}

0 femcvef) _J

Figure 8: The engine package

23

The class Problem serves as the base class for all problems in the framework. In

addition to tracking all user actions, it provides several methods to its subclasses that

abstract interaction with the Animator. The goal was to eliminate the need for subclasses

to directly interact with the framework. Additionally, the Problem class can generate

random instances of visualizations for each of the enumerations in ProblemType. An

excerpt of the generateRandomArray method is shown in Listing 4. This method is not

guaranteed to generate a connected graph.

LPPGraph g = new LPPNetwork();
LayoutMutable layout = new ArrayLayout(g);
StringLabeller _labler = StringLabeller.getLabeller(g);
LPPVertexf] vertices = new LPPVertex[numltems];
ArrayList<Integer> values = new ArrayList<Integer>(numltems);
Random generator = new Random ();
// get an array of unique random integers
for (int i = 0; i < numltems; i++)

{
int randomNum = generator.nextlnt(100);
while (values.contains(randomNum))
randomNum = generator.nextlnt(100);
values.add(Integer.valueOf(randomNum)) ;

}

Listing 4: Random array generation

The class LPPArrayToTreeLayout provides a mechanism for converting an array

of elements to a tree representation. The representation is encapsulated in JUNG graph

objects so the layout can be applied directly to a JUNG graph. This layout is applicable

for representations of heaps, binary trees, etc. The means of tree generation are shown in

Listing 5.

private void bu i ldTree()

24

d i s t X = DEFAULT_DISTX;
d i s t Y = DEFAULT_DISTY;
m_rootVertex = m_tree.getRoot();
Point temp = new Point(this.getCurrentSize().width / 2, 50);
m_currentPoint = temp;
initializeLocations();

m_nodes = (ArrayList<LPPVertex>) m_tree.nodes();

if (m_rootVertex != null && getGraph() != null)

{
m_depth = getDepth();
calculateDist{);
buildTree(m_rootVertex, 0, m_currentPoint.x,

m_currentPoint.y, m_depth);
}

}

Listing 5: Random tree generation

The class LPPGraphLayout supplies a method for creating a graph whose nodes

are positioned randomly. The representation is encapsulated in JUNG graph objects so

the layout can be applied directly to a JUNG graph. This layout is applicable graph

representations and is used in Prim's algorithm. Random position generation is outlined

in Listing 6.

protected void initializeLocation(Vertex v, Coordinates coord,

Dimension d)

{
double x = 20 + Math.random() * (d.getWidth() - 40);
double y = 20 + Math.random() * (d.getHeight() - 40);

coord.setX(x);
coord.setY(y);
((LPPVertex) v).setLayout(this);

Listing 6: Random position generation

25

The class ArrayLayout enables a layout suitable for array-like representations of

data. As shown in Listing 7, as requests are made to add data, the position of each

element is calculated.

for (LPPVertex node : ((LPPGraph) getGraph()).nodes())

{
int dl = maxx / 2;
x += dl;
g e t C o o r d i n a t e s (n o d e) . s e t L o c a t i o n (x , maxy / 2) ;
x += maxx - maxx / 2 + DISTANCE;
n o d e . s e t L a y o u t (t h i s) ;
node . se tMin imumSize (new Dimension(maxx, m a x y)) ;

}
Listing 7: Array position generation

The class VisualizationPanel encapsulates the underlying visualization

components of JUNG and exposes them as a JPanel to the framework. Additionally,

VisualizationPanel contains a key component for the framework and tool interface

strategy. The method waitForVertexSelection is invoked from virtually every tool. It

enforces selection of the correct tool and it returns the selection made by the user.

Synchronization with tools is achieved via the toolLock object. A portion of the

implementation is shown in Listing 8.

s y n c h r o n i z e d (t oo lLock)
{

w h i l e (true)
{

toolLock.wait();

// "Show Next Step" was clicked
if(_showStep)

{
return null;

}

if (parent.getSelectedTool() == tool)

26

{

return _lastSelectedVertex;
}
else

{
j avax.swing.JOptionPane.showMessageDialog(null,

"Incorrect Tool Selected, expected: " +
tool.getName());

tool.addWrongMove();
}

}
}

Listing 8: Tool synchronization

The class AnimatorPickedState extends the standard pick state mechanism

provided by JUNG to allow for multiple items to be in a picked state. By default, the

mechanism provided by JUNG removes the currently picked item when another item is

selected. The extended implementation of the pick method is featured in Listing 9.

public boolean pick(ArchetypeVertex v, boolean picked)

{
Set<Vertex> sv = getPickedVertices();
Object[] o = sv.toArray();

boolean result = super.pick(v, picked);

for (int i = 0; i < o.length; i++)
{

super.pickedVertices.add((ArchetypeVertex)o[i]);
}

return result;

}

Listing 9: Vertex pick state management

The enumeration ProblemType contains the three types of layouts supported by

the framework. Each Problem has a ProblemType, and this at problem generation time,

the problem type can be used to determine which type of layout to use for random

instance generation.

27

The enumeration AnimatorMode includes the two types of modes supported in

the framework. The mode Student progresses through a Problem only when the user has

taken an action. In Student mode, each action is validated. In ShowMe mode, the

algorithm progresses autonomously without and user action. The correct action is always

taken.

4.1.4 Exceptions Package

The exceptions package maintains definitions of the custom exceptions thrown by

the framework. It contains the following classes: InvalidProblemClassException,

ProblemCreationException and InvalidOperationException.

: InvalidProblemCiassExcep'.ion ' ProblemCreationException . - InvalidOperationException

Figure 9: The exceptions package

The class InvalidProblemClassException is used to convey a condition in which

the framework failed to find the problem class passed to it. The class

ProblemCreationException relays information when the framework has attempted to

create a problem class, and the instantiation has failed. The class

InvalidOperationException indicates that an attempted operation is invalid. Most likely

occurrences pertain to mutations of the visualization.

28

4.1.5 Graph Package

The graph package maintains definitions of the visualizations represented by the

framework. It contains the following classes: LPPVertex, LPPEdge, LPPGraph,

LPPArray, LPPNetwork, LPPTree, LPPList, LPPTreeVertex. It also contains the

LPPGraphElement interface.

Si v _J

I- LPPV&rtex

f J * - - »"*

0 3C-*

£ ? * "

S ** " - - 5 ^
0 £-*-,2,,l-i

U LPFEdge

"J. _r2.s

i« _ * * « *

£ i -=®E<-̂ e

| « 3K)
0 ^T»

£ -*=»'
iSS C~var

S ~i

y LPP3raph

£ i LPPLrst

Q LPPArrsy

$ -wy-a.
3 3»«?fltf 5

% Stf»-\jO<= J

1 -_>£* - j t©* 1

1 y LPPTf*e¥ertex

2

LPPNeferark

^?-SS-» '«

U. LPPTres

w * _"M*

& u ^ r s e ;

St 3*s<xr

j ig p—"" *# s-^si

4 as- -P -—

a * -
a ^ -*-

a *
a -A
*& - a

3 "0 3 »

S ** "*T-A ay

^ 3S* w ^

III J - = 0

s - ^ -.

3 e x ^

s •

S3 es^esifedlJteielOoijjfS

| j Listttr

Figure 10: The graph package

29

The class LPPVertex extends the JUNG Vertex object to provide a mechanism for

subclasses of Problem to interact with graph elements without having knowledge of

JUNG. Additionally, as shown in Listing 10, LPPVertex maintains a key, value pair that

can be used to store arbitrary data as required by problems and algorithms.

public void put(String key, Object value)
{

props.put(key, value);
}

Listing 10: Put method on LPPVertex

The class LPPEdge extends the JUNG Edge object to provide a mechanism for

subclasses of Problem to interact with graph elements without having knowledge of

JUNG. Similar to the LPPVertex class, LPPEdge maintains an arbitrary key, value pairs.

The class LPPGraph encapsulates an underlying JUNG graph and LPPVertex and

LPPEdge classes. It provides an abstraction of the graph to any subclasses of problem

and any algorithms. Listing 11 contains an excerpt from the initialization code of

LPPGraph in which existing vertices and edges are used to seed a new graph.

super();

_nodes = vertices;
_edges = edges;
for (LPPVertex v : vertices) super.addVertex(v);
for (LPPEdge e : edges) super.addEdge(e);

Listing 11: Graph initialization

The class LPP Array encapsulates JUNG graph elements that are intended to be

used in a tree representation. LPP Array bridges the gap between the visualization and the

30

array representation that may be used by a subclass of Problem or an algorithm. A key

component of LPPArray is the swapNodes method. A portion appears in Listing 12.

for(int i = 0; i <= (_nodes.size() - 2) / 2; i++)

{
LPPEdge left = new LPPEdge(_nodes.get(i), _nodes.get(2 * i +

D) ;
this.addEdge(left);
if((2 * i + 2) < _nodes.size())
{

LPPEdge right = new LPPEdge(_nodes.get(i), _nodes.get(2 * i
+ 2));

this.addEdge(right);
}

}

Listing 12: Node swapping

The class LPPNetwork extends LPPGraph and is meant to be a more generic

representation of an instance visualization. By default, it initializes with an empty set of

vertices and edges.

The class LPPTree provides a mechanism for representation of tree structures in

the framework. The method addNodeEdge provides a means for node insertion and is

outlined in Listing 13.

public void addNodeEdge(LPPTreeVertex v, LPPTreeVertex newNode)
{

if(v.getData() > newNode.getData())

{

if (v.getLeftChildO == null)

{
v. setLeftChild(newNode) ;
LPPEdge e = new LPPEdge(v, newNode);
this.addEdge(e);

}
else addNodeEdge(v.getLeftChild() , newNode);

}
else
{

31

if (v.getRightChildO == null)
{

v. setRightChild(newNode);
LPPEdge e = new LPPEdge(v, newNode);
this.addEdge(e);

}
else addNodeEdge(v.getRightChildO, newNode);

}
}

Listing 13: Adding an edge to a LPPTree

The class LPPList exposes an underlying LPPGraph as a List object that provides

convenient methods for iteration and comparison. Additionally, as illustrated in Listing

14, LPPList provides a set method that uses a LPPVertex's put method to save arbitrary

data.

public E s e t (i n t index, E element)
{

ArrayList<LPPVertex> nodes = (ArrayList<LPPVertex>)
super.nodes();
LPPVertex vertex = nodes.get(index);
E r = (E) vertex.get("value");
vertex.put("value", element);
vertex.setName("" + element);
return r;

}

Listing 14: Set method in LPPList

The class LPPTree Vertex extends LPPVertex to provide the functionality

required of elements in a tree representation. LPPTree Vertex is used in the Heap sort

algorithm. The member variables of LPPTreeVertex are shown in Listing 15.

private int _data;
private int _index;
private LPPTreeVertex _left;
private LPPTreeVertex _right;

32

Listing 15: Members of LPPTreeVertex

The interface LPPGraphElement is implemented by both LPPVertex and

LPPEdge. It defines the signature of the put method. The put method is used by tools,

visualizations and the Animator.

4.1.6 Moodle Package

The moodle package provides a mechanism for interfacing with Moodle. It

contains the following classes: LPPResult and LPPMoodleError. It also contains the

LPPAppletCallback interface.

U LPPResult

l i f MAX_FBL£H

tkl KAXJSRALE

l t i MIM_GRAOE

i l l NAN_GRADE

ia l feedback

13 maxGracfe

ES minGrade

19 mi (Grade

<jj LPFPesultf,

& LPPResuft

Ql LPFPesutti i

$1 LPFResjItf

$ SetFeedhacki}

g) geiGradei >

{*} C)StMa«3radei;

y-j jetls'BiGrsJei)

i~f jetHu ISradeu

• 3 setFeeibac'O

{*) setGradeRange^

j'.-:e-face .-
X LPPAppletCallback

* Ex«0
I j i ReporiftesutO

y LPPMoodleError ;

$» LPPMcodleErrori) ,

%$ LPPMoodteErrurC; '.

Figure 11: The moodle package

33

The class LPPResult serves as a container for all reporting and result data for a

series of problems run in the framework. The class LPPAppletCallback enables initiation

and shutdown of the framework from an external source. The class LPPMoodleError

signals that an error condition has occurred in the communication between the framework

and Moodle.

4.1.7 Threading Package

The threading package supports threading management in the framework. It

contains the following classes: SerialExecutor and ThreadPerTaskExecutor.

, SeriaiExccjtor __ "ThreatlPerTaskExecutor

^ :» _animatar ; • ^
"" © execute';

(ok active
Sgf executor
itf tasks \

0 ' SerialExecutor() .

i HJ, executeG -
i 0> scheduleNextQ

Figure 12: The threading package

The class SerialExecutor enqueues a series of execution requests from the

Animator and uses a ThreadPerTaskExecutor to ensure that each is executed on its own

thread. A portion of the execute method appears in Listing 16.

tasks . of fer (new RunnableO

{
public void run()

34

{
try

r.run ();
((Problem)r).complete();

animator.stopCurrentProblem(

}
finally

scheduleNext();

}) ;

if (active == null)
{

scheduleNext();

}

Listing 16: Execute method in SerialExecutor

The class ThreadPerTaskExecutor consumes a Runnable object and starts it on its

own thread. It is utilized by SerialExecutor to ensure that each problem is run on its own

thread.

4.1.8 Tools Package

The tools package provides the infrastructure for tool support in the framework.

It contains the following classes: Tool, ShowNextStepTool, SwapNodes, SelectTool,

PickEdgeTool, PercolateDown, PutTool, FixHeap and Transform Tool. The Tool class

serves as the base class for all tools. It abstracts much of the interaction with problems

that most tools require.

35

LSTool

ShovvNexESfeoTool

_•=,„ an am
TT —

(_; _name

~.~P .v isual

^J , tooITip

CgS" sctdCorrectMcwei.)

j addA'rcpgf.lcvei.)

{§< expsct5eieci7wDinOr-cter0

§ expeciSeiectKsm j

| H expectSele-ciienil

£$s? ^eitjamef;

% g e T ' c a n p ;

| $£< setAnlmaur(i

0 setflamef?

H i se t l car ipO

' © «vsrtO

S w a p H o d e s _ S e l e c t T o o l

expectSelectTwoi'i ^ expectSetectf

PickEdgeTool

0 ex^eciEdge-;

^_ PercolateDown

j 0 expsctSetectTwDO i

,^ PutTool

% expectPytj}

0 supeciSelectAmlPutO

L_ FixHeap

^ exj3ectSelectTwo() 1

L=; Transform Too!

Figure 13: The tools package

One of the principal methods of the framework, expectSelection, is detailed in

Listing 17. The method is invoked by algorithm code and it causes the algorithm thread

to block until the UI thread fires a notification event on a common lock object.

protected void expectSelect ion(LPPVertex v, boolean compoundStep)
{

if(_animator.getMode() == AnimatorMode.ShowMe ||

_animator.getShowStep())
{

_animator.moveCursorTo(v);
_animator.clickAtCurrentLocation();

wait (1500);

// toggle show step

36

if(_animator.getShowStep() && !compoundStep)
_animator.setShowStep(false);

}
else

{
while (true)
{

LPPVertex selected =
_visual.waitForVertexSelection(this);

// "Show Next Step" was clicked
if(_animator.getShowStep())
{

expectSelection(v, compoundStep);

break;

}

if (v == selected)
{

addCorrectMove();
return;

}
else if(selected != null)
{

addWrongMove();

j avax.swing.JOptionPane.showMessageDialog(null,
"Incorrect Item Selected\n\nExpected: " +
v.name()
+ "\nSelected: " + selected.name());

}
}

}
}

Listing 17: ExpectSelection method in Tool

The ShowNextStepTool class toggles the framework's showStep flag to true and

then attempts to re-call the current method. The result is that path of execution follows

the path of execution for Show Me Mode for the current step. After the current step has

completed, the showStep flag is toggled to false. The processing of the

ShowNextStepTool is unique in that it does not occur in the tool definition itself. Rather,

37

file:///nSelected

as illustrated in Listing 18, the animator has a special case to handle mouse events on the

ShowNextStepTool.

if(t.getClass().equals(ShowNextStepTool.class))
{

_visualizationPanel.setShowStep(true);
_currentProblem.nextStepShown();

}

Listing 18: Condition for Show Next Step Mode

The SwapNodes class provides a tool that allows for the selection of two items.

The actual swapping of the items in the visualization is not performed by the tool.

The SelectTool class can be used whenever an arbitrary LPPVertex selection is

required. SelectTool's only method, expectSelect primarily wraps the expectSelection

method in the Tool base class.

The PickEdgeTool class supplies a method for selection of an edge based on the

selection to LPPVertex objects. The order in which the LPPVertex objects are selected is

not enforced. The mechanism for this is outlined in Listing 19.

LPPVertex selectedl = _visual.waitForVertexSelection(this);
LPPVertex selected2 = _visual.waitForVertexSelection(this);

if (selectedl == vl && selected2 == v2 II selectedl == v2
&& selected2 == vl)

{
addCorrectMove();

return;
}

Listing 19: Vertex based edge selection

38

The PercolateDown class is identical to the SwapNodes class. It allows for order

insensitive selection of two LPPVertex objects, and does not perform any changes to the

visualization of the items.

The PutTool class serves a key role in mapping user's action with action expected

by the algorithm. A portion of the principal method of PutTool, expectPut is shown in

Listing 20. This portion of expectPut pertains to situations in which the algorithm

expects a user to input a string or numeric value for an item. Every response is validated,

and the algorithm does not continue until the correct value is received. Once the correct

value is received, it is stored in the LPPVertex via a call to its put method.

The FixHeap class is identical to the SwapNodes and PercolateDown classes. It

allows for order insensitive selection of two LPPVertex objects, and does not perform

any changes to the visualization of the items.

S t r i n g response = n u l l ;

do
{

response = JOptionPane.showInputDialog(null,
"Enter the new " + key + " value:", this.getName(),
JOptionPane.QUESTION_MESSAGE);

}
while (null != response && 0 == response.length());

if (response.equalsIgnoreCase("" + value))

{
v.put(key, value);
addCorrectMove();

return;

}

Listing 20: Validation of user input

39

The TransformTool class provides a means for a user to manipulate the

visualization. Selection of the TransformTool causes all mouse activity in the

visualization to be suppressed before any selection activity is detected. Listing 21 reveals

a guard clause in VisualizationPanel's mouse event processing logic that permits the

desired behavior.

if (parent.getSelectedTool() instanceof TransformTool)
return;

Listing 21: Transform tool support

40

5 Instructor Guide

The following chapter provides instructions for extending the framework and is

targeted to instructors who need to add to any of the four major components. For the

purposes of this guide, the four major components of the framework are problems, tools,

layouts, and effects.

A convenient abstraction is to consider problems to be main component of

extension since each problem has a layout and one or more tools, and most effects are

triggered by problems. The suggested pattern for extending the framework follows this

abstraction. An instructor should add a problem, associate a layout to the problem,

associate any tools to the problem, and invoke any effects from the problem. Depending

on the instructor's requirements, it may be necessary to add a new layout, tool, or effect.

The addition of each component is covered in the following sections.

5.1 Adding a Problem

The most common type of framework extension will involve adding support for a

new problem type. If existing tools, layouts, and effects are used, the only requirement

will be to create a subclass of the Problem class. Adding tools, layouts, and effects is

covered in subsequent sections.

The Problem class serves as base for all problems in the framework. Upon

initialization, the framework queues and executes a series of problems. Each problem is

41

derived from the Problem class and it maintains its own collection of tools and is

responsible for its own initialization and layout.

The Problem class provides several methods that can be overridden by subclasses,

however it is only required that two methods be implemented.

The first method to be overridden, run, is intended to house the algorithm code

and is called by the Animator once the problem has been initialized. The Animator

interprets a return from the run method as completion of the problem instance. Listing 22

outlines the run method of our implementation of Prim's algorithm.

public void run()

{

// =========== Initialization of vertices ===========
for (LPPVertex u : getNodesO)
{

u.put("key", Integer.MAX_VALUE);

u.put("pi", null);

}

final Comparator<LPPVertex> vertexComparator = new

Comparator<LPPVertex>()
{

public int compare(LPPVertex a, LPPVertex b)
{

int d=(Integer)(a.get("key"))- Integer) (b.get("key"));
return d != 0 ? d : a.name().compareTo(b.name());

}
};

// =========== Processing of vertices ===========
PriorityQueue<LPPVertex> q = new
PriorityQueue<LPPVertex>(getNodes() .size (), vertexComparator);
q.addAll(getNodes()) ;
LPPVertex r = q.peek();
r.put("key", 0);
while (q.sizef) > 0)

{
final LPPVertex u = q.remove();
selectTool(stl);
stl.expectSelect(u);

42

u.put ("color", Color.YELLOW);
glow(u);
ArrayList<LPPEdge> incidentEdges = new ArrayList<LPPEdge>(u

.incidentEdges ()) ;
Collections.sort(incidentEdges, new Comparator<LPPEdge> ()
{

public int compare(LPPEdge a, LPPEdge b)

{
return a.other(u).name().compareTo(b.other(u).name());
}

});
for (LPPEdge e : incidentEdges)
{

LPPVertex v = e.other (u);
int w = (Integer) e.get("w");
if (q.contains(v) && w < (Integer) v.get("key"))
{

selectTool (ptl);
ptl.expectSelectAndPut(v, "key", w);
v.put("color", Color.ORANGE);
glow(v);
selectTool (pt2);
pt2.expectPut(v, "pi", u);
v.put("color", Color.PINK);
q.remove(v);
q.add(v);

}
}

}
}

Listing 22: A sample run method

The method can be reviewed in two phases. In the first phase, the key and pi

values of each vertex in the graph are initialized by calling the put (String keyName,

Object value) method. Since our implementation of Prim's algorithm will break ties of

key values alphabetically, a Comparator is defined. The second phase involves the

progression of the algorithm through the vertices. Of special interest are the statements

contained in the for loop. These statements set the expected tool selection, the expected

vertex selection, the subsequent input, and invoke some effects. The expected tool

43

selection can be set via a call to the selectTool method. This method expects a Tool as an

argument. The expected vertex selection can be set via a call method call on the Tool. In

this instance, a call is made to expects elect AndPut which takes the vertex to be selected,

the name of the key value to be entered, and the expected value as arguments. Finally, an

effect is invoked via a call to the glow method. The glow method expects a vertex as an

argument.

The second method to be overridden, generateProblem, is intended to assist the

Animator in initialization of the visualization of a problem instance. The primary

purpose of this method is to initialize and return an object of type LayoutMutable.

Presently, the framework supports three types of layouts and each type is represented by

a different subclass of LayoutMutable. Listing 23 illustrates the signatures of the

currently available generation methods:

public static LayoutMutable generateRandomGraph(int numVertices)

public static LayoutMutable generateRandomHeap(int numVertices)

public LayoutMutable generateRandomArray(int numltems)

Listing 23: Problem generation method signatures

Each of these methods is defined in the Problem base class, and should be

invoked from the generateProblem method of any Problem subclasses.

After implementing these methods, it is suggested that an instructor add any tools

to the problem. The recommended pattern is to add tools as member variables and

44

perform initialization in the constructor. Listing 24 illustrates how this pattern was

applies to our implementation of Prim's algorithm.

private TransformTool ttl = null;

public Prim4()
{

ttl = new TransformTool();
ttl.setName("Clean up graph");
ttl.setToolTip ("Use this Tool to reposition vertices.";

Listing 24: Adding and initializing a tool to a problem

The final step in addition of a new problem is the integration of tools in the run

method. Without tool integration, the run method will run to completion without any

user action. In the course of execution of the run method, whenever user action is

expected, a call to a tool's method should be added. As an example, if the user was

expected to select an item, a call to the SelectTool's expectSelection method would be

added. As a reference, the implementation of Prim's algorithm is provided in Listing 25.

import java.awt.Color;
import java.net.URL;
import java.util.ArrayList;
import Java.util.Collections;
import Java.util.Comparator;
import java.util.PriorityQueue;
import Java.util.Scanner;

import edu.sj su.cs.1pp.engine.*;
import edu.sjsu.cs.lpp.tools.*;
import edu.sjsu.cs.lpp.graph.*;
import edu.uci.ics.jung.visualization.LayoutMutable;

public class Prim4 extends Problem
{

private TransformTool ttl = null;
private SelectTool stl = null;
private PutTool ptl = null;

45

private PutTool pt2 = null;
private PickEdgeTool petl = null;
private PlayAnimationTool play = null;
private ShowNextStepTool showNext = null;

public Prim4()

{
setName("Prim's Algorithm");
ttl = new TransformTool ();
ttl.setName("Clean up graph");
ttl.setToolTip ("Use this Tool to reposition vertices.");
stl = new SelectTool ();
stl.setName("Select a node");
stl.setToolTip("Select the next vertex to be removed

from the queue.");

ptl = new PutTool ();
ptl.ValueType = Integer.class;
ptl.setName("Select neighbor, set key value");
ptl.setToolTip("Click on the next neighbor (in alphabetical

order), then enter its new key value.");

pt2 = new PutTool();
pt2.ValueType = LPPVertex.class;
pt2.setName("Set \u03C0 value");
pt2.setToolTip("Click on another node to set it as the

\u03C0 value of the orange node.");

play = new PlayAnimationTool();
play.setName("Play Animation");
play.setToolTip("Select this Tool to play and pause an

animation of the algorithm.");

showNext = new ShowNextStepTool ();
showNext.setName("Show Next Step");
showNext.setToolTip("Select this Tool to see the next step

in the animation of the algorithm.");

addTool (ttl);
addTool(stl);
addTool(ptl);
addTool(pt2);
addTool(showNext);
addTool(play);

}

public LayoutMutable generateProblem()
{

return Problem.generateRandomGraph(7) ;

}

46

file:///u03C0
file:///u03C0

public void run()

{

for (LPPVertex u : getNodesO)

{
u.put("key", Integer.MAX_VALUE);
u.put("pi", null);

}
final Comparator<LPPVertex> vertexComparator = new

Comparator<LPPVertex>()

{
public int compare(LPPVertex a, LPPVertex b)
{

int d = (Integer) (a.get("key")) - (Integer)
(b.get("key"));

return d != 0 ? d : a.name().compareTo(b.name());
}

};
PriorityQueue<LPPVertex> q = new

PriorityQueue<LPPVertex>(getNodes()
.sized , vertexComparator);

q.addAll(getNodes()) ;
LPPVertex r = q.peek();
r.put("key", 0);
while (q.sizeO > 0)
{

final LPPVertex u = q.remove();
selectTool(stl);
stl.expectSelect(u);
u.put("color", Color.YELLOW);
glow(u);
ArrayList<LPPEdge> incidentEdges = new

ArrayList<LPPEdge>(u
.incidentEdges()) ;

Collections.sort(incidentEdges, new
Comparator<LPPEdge>()

{
public int compare(LPPEdge a, LPPEdge b)
{

return
a.other(u).name().compareTo(b.other(u).name());

}
});
for (LPPEdge e : incidentEdges)
{

LPPVertex v = e.other (u);
int w = (Integer) e.get("w");
if (q.contains(v) && w < (Integer) v.get("key"))
{

selectTool (ptl);
ptl.expectSelectAndPut(v, "key", w);
v.put("color", Color.ORANGE);

47

}

}

}

}

}

Listing 25: Our implementation of Prim's algorithm

5.2 Adding a Tool

Tools enable user interaction and they are an essential part of any problem. The

framework provides tools for common user actions like: item selection, value entry and

paired item selection.

The addition of a new problem type could require the addition of a new tool. The

method for adding a new tool is to extend the Tool base class. All tools in the framework

are derived from the Tool class.

The Tool class provides several methods for use by any subclasses. The most

commonly methods used by all tools are the expectSelection and expectPut methods

which are shown in Listing 26 and Listing 27. expectSelection is available in the

SelectTool, and expectPut is available in the PutTool. These methods are called

whenever a user action is expected. In the case of expectSelection, a problem waits until

the user has selected the expected item. If an incorrect item is selected, the expected and

glow(v);
selectTool(pt2);
pt2.expectPut(v, "pi", u);
v.put("color", Color.PINK);
q.remove(v);
q.add(v);

48

selected items are displayed to the user and the tool waits for the correct item to be

selected.

p r o t e c t e d void expectSelect ion(LPPVertex v, boolean compoundStep)
{

i f (_animator .getMode() == AnimatorMode.ShowMe II
_animator .getShowStep())

{

j a v a . a w t . P o i n t p = _ a n i m a t o r . g e t T o o l L o c a t i o n (t h i s) ;
_animator .ge tProblem() .moveCursor(p .x , p .y - 75,

(in t) v .getXO - 15, (in t) v . getY ()) ;

wa i t (1500) ;

// toggle show step
if(_animator.getShowStep() && !compoundStep)

_animator.setShowStep(false);
}
else
{

while (true)
{

LPPVertex selected =
_visual.waitForVertexSelection(this);

// "Show Next Step" was clicked
if(_animator.getShowStep() || _animator.getMode() ==

AnimatorMode.ShowMe)

{
_animator.getProblem().selectTool(this);
expectSelection(v, compoundStep);

break;
}

if (v == selected)
{

addCorrectMove();
return;

}
else if(selected != null)
{

addWrongMove();
javax.swing.JOptionPane.showMessageDialog(null,

"Incorrect Item Selected\n\nExpected: " +
v.name()

+ "\nSelected: " +
selected.name());

}

49

file:///nSelected

}

}

}

Listing 26: The expectSelection method

In the case of expectPut, behavior varies depending on the type of the value

parameter. If it is a String or an Integer, the user is presented with a dialog prompt and

must enter the expected value. Otherwise, the tool assumes that the expected value is a

vertex selection and the user must selected the expected vertex.

public void expectPut(LPPVertex v, String key, Object value)

{
if(_animator.getMode() == AnimatorMode.ShowMe ||

^animator.getShowStep())
{

if (ValueType == Integer.class || ValueType ==

String.class)

{
_animator.getProblem().showlnformation("In the dialog
that appears, enter " + value);

}
else
{

// assume vertex
LPPVertex v2 = (LPPVertex)value;

Java.awt.Point p = _animator.getToolLocation(this);
_animator.getProblem().moveCursor(p.x, p.y - 75,

(int)v2.getX() - 15, (int)v2.getY());
}

v.put(key, value);

// toggle show step
if(_animator.getShowStep())

_animator.setShowStep(false);
}
else
{

while (true)
{

// "Show Next Step" was clicked
if(_animator.getShowStep() || _animator.getMode() ==

50

AnimatorMode.ShowMe)

__animator . get Problem () .selectTool(this) ;
expectPut(v, key, value);
break;

int or string?
(ValueType == Integer.class || ValueType ==

String.class)

String response = null;
do

{
response = JOptionPane.showInputDialog(null,

"Enter the new " + key + " value:",
this.getName(),

JOptionPane.QUESTION_MESSAGE);
}
while (null != response && 0 ==

response.length()) ;
if (response.equalsIgnoreCase("" + value))
{

v.put(key, value);
addCorrectMove();
return;

}
else

{
addWrongMove() ;

javax.swing.JOptionPane.showMessageDialog(null,
"Incorrect Value Entered\n\nExpected:
" + value.toString() + "\nEntered:
" + response);

// TODO: assume vertex
LPPVertex lastSelected =
_visual.waitForVertexSelection(this);

// "Show Next Step" was clicked
if(_animator.getShowStep())

{
expectPut(v, key, value);

break;

}

LPPVertex vrtx = (LPPVertex) value;

51

file:///nEntered

if(lastSelected.toString().compareToIgnoreCase(
vrtx.name()) == 0)

{
v.put(key, value);
addCorrectMove() ;
return;

}
else

{
addWrongMove();

javax.swing.JOptionPane.showMessageDialog(null,
"Incorrect Item Selected\n\nExpected:
" + vrtx.name() + "\nSelected:
" + lastSelected.name());

}
}

}
}

}

Listing 27: The expectPut method

The suggested pattern of development is to define methods with appropriate

signatures in the new tool class while leveraging the methods provided by the Tool base

class. As an example, suppose a problem requires a tool that allows a user to select three

items in a specific order. First, a new subclass of Tool should be created. Second, a new

method with three parameters should be defined. The new method should pass each of

the parameters to the expectSelection method of the base class. An example is provided

in Listing 28.

protected void expectSelectThreelnOrder(LPPVertex vl, LPPVertex v2,
LPPVertex v3)

{
expectSelection(vl);
expectSelection(v2);

expectSelection(v3);
}

52

file:///nSelected

Listing 28: A sample method for a new Tool

Any new tool should support Show Me Mode. Support for Show Me Mode

usually entails the addition of a block of code at the beginning of any public methods.

An abstraction for Show Me Mode is two consider two components. The first is the

visualization, and it involves showing the user the expected action, and the second is the

data seeding which involves setting values that allow algorithm code to proceed. Support

for Show Me Mode in existing tools follows this abstraction. First, the correct action is

shown to the user and second, and variables are set to the expected values. An example

is outlined in Listing 29.

protected void expectSelection(LPPVertex v, boolean compoundStep)
{
if(_animator.getMode() == AnimatorMode.ShowMe ||

_animator.getShowStep())
{

Java.awt.Point p = _animator.getToolLocation(this);
_animator.getProblem().moveCursor(p.x, p.y - 75,

(int)v.getXO - 15, (int) v.getY ()) ;

wait (1500);

// toggle show step
if(_animator.getShowStep() && !compoundStep)

_animator.setShowStep(false);
}
else
{

while (true)
{

LPPVertex selected =
_visual.waitForVertexSelection(this);

// "Show Next Step" was clicked
if(_animator.getShowStep() || _animator.getMode() ==

AnimatorMode.ShowMe)
{

_animator.getProblem().selectTool(this);

53

expectSelection(v, compoundStep);
break;

}

Listing 29: Show Me Mode Support in the expectSelection method

The first if block checks if the system is in Show Me Mode or Show Next Step

Mode. If this is the case, the cursor is moved to the location of the expected selection.

Additionally, the Show Next Step Mode flag is toggled is this is not part of a compound

step. A compound step is anything that involves more than one user action. An example

would be if the user was expected to select an item, and enter a new value for it. At this

point, the selection would be complete. The else block (which is the execution path if the

first if block is not entered) also checks for the Show Next Step Mode and calls itself if

the system is in Show Me Mode or Show Next Step Mode. This code may seem

duplicitous, but it is needed since the system could enter Show Me Mode or Show Next

Step Mode in two ways. First, the system could enter either mode before the call to

expectSelection. In this case, the code in the if block will be executed and the method

will return. Second, if the user is in the middle of an algorithm and the system is

currently waiting for a selection, the system would continually execute the while loop in

the else block. The seemingly duplicitous check for Show Me Mode or Show Next Step

Mode will allow the method to exit the loop and return.

As a reference, the implementation of the PickEdgeTool is provided in Listing 30.

The PickEdgeTool is intended for use when a user selected two vertices to indicate

selection of this adjoining edge.

54

package edu.sjsu.cs.1pp.tools;

import edu.sj su.cs.lpp.graph.LPPVertex;

public class PickEdgeTool extends Tool
{

public void expectEdge(LPPVertex vl, LPPVertex v2)
{

while (true)

{
LPPVertex selectedl =

_visual.waitForVertexSelection(this);
LPPVertex selected2 =

_visual.waitForVertexSelection(this);
if (selectedl == vl && selected2 == v2 || selectedl ==

v2 && selected2 == vl)
{

addCorrectMove();
return;

}
else
{

addWrongMove();
javax.swing.JOptionPane.showMessageDialog(null,

"Incorrect Edge Selected\n\nExpected: " +
vl.name() + "-" + v2.name());

}
}

}
}

Listing 30: The implementation of PickEdgeTool

5.3 Adding a Layout

A problem's visualization is driven by its layout. Each problem is required to

associate itself with a layout. New problem types may require the addition of a layout

not supported by the framework. As required, support for new layouts can be added to

the framework.

55

This framework utilizes the JUNG framework for its visualizations. Accordingly,

adding support for a new layout requires an extension of JUNG's AbstractLayout class.

All layouts in the framework are derived from this class. Listing 31 depicts an extension

of the AbstractLayout class.

package edu.sjsu.cs.lpp.engine;

import edu.uci.ics.jung.graph.Vertex;
import edu.uci.ics.jung.visualization.*

public class ArrayLayout extends AbstractLayout implements
LayoutMutable

Listing 31: A extension of AbstractLayout

The addition of a new layout will most probably stem from a need to control the

positional placement of items in the visualization. Varying problem types can require

linear, random, or other placement of items in the visualization. To add a new layout,

first, create a subclass of AbstractLayout and second, override the initializeLocations

method.

The new implementation of initializeLocations will most likely enumerate the

items in the visualization and set location information for each. An enumeration of the

visualization elements can be obtained by calling the method getGraph, and positional

information can be persisted via a call to the setLocation method. Listing 32 illustrates

how LPPGraph enumerates the items and sets location information to generate random

placement of vertices.

dOverride
protected void initializeLocation(Vertex v, Coordinates coord,

56

Dimension d)
{

double x = 20 + Math.random() * (d.getWidth() - 40);
double y = 20 + Math.random() * (d.getHeight() - 40);

coord.setX(x);
coord.setY(y);
((LPPVertex) v).setLayout(this);

}

Listing 32: initialize!.ayout from LPPGraph

As a reference, the implementation of the ArrayLayout layout is provided in Listing 33.

package edu.sjsu.cs.lpp.engine;

import Java.awt.Dimension;
import java.util.Collection;

import edu.uci.ics.jung.graph.Vertex;
import edu.uci.ics.jung.visualization.*;
import edu.sj su.cs.lpp.graph.LPPGraph;
import edu.sj su.cs.lpp.graph.LPPVertex;

/* *

* Lays out the nodes in a linear fashion.
* @author cay

V
public class ArrayLayout extends AbstractLayout implements

LayoutMutable
{

public ArrayLayout(LPPGraph g)
{

super(g);
}

@Override
protected void initializeLocations()
{

super.initializeLocations ();
final int DISTANCE = 5;

int maxx = 0;
int maxy = 0;

for (LPPVertex node : ((LPPGraph) getGraph()).nodes ())
{

57

Dimension dim = node.getPreferredSize ();
if (dim.width > maxx) maxx = dim.width;
if (dim.height > maxy) maxy = dim.height;

}

int x = DISTANCE;

for (LPPVertex node : ((LPPGraph) getGraph()).nodes ())
{

int dl = maxx / 2;
x += dl;
getCoordinates(node).setLocation(x, maxy / 2);
x += maxx - maxx / 2 + DISTANCE;
node.setLayout(this);
node.setMinimumSize(new Dimension(maxx, maxy));

}
}

public void update()
{

initialize_local();

initializeLocations ();
}

protected void initializeLocation(Vertex v, Coordinates coord,
Dimension d)

{
double x = ((LPPVertex) v).getX();
double y = ((LPPVertex) v).getY();
coord.setX(x);
coord.setY(y);

}

dOverride
public void advancePositions()

{
}

@Override
protected void initialize_local_vertex(Vertex argO)

{
}

public boolean incrementsAreDone ()
{

return true;
}

public boolean islncremental()

{
return false;

58

}

}

Listing 33: The implementation of ArrayLayout

5.4 Adding an Effect

Effective visualizations of algorithm execution often require visual effects. The

addition of a new problem type may require the addition of a new effect. Adding an

effect requires two steps. First, the new effect must be added to the Effects class in the

effects package. Second, the new effect must be invoked by the problem.

The Effects class is part of the effects package which contains a series of classes

that power the visualization effects of the framework. The suggested manner of adding

an effect is to add a method to Effects class. Additionally, this method should be invoked

from a method in the Problem base class. Usually, a problem's run method invokes

methods in the Effects class.

This framework uses the Timing framework to enable effects that occur over a

time span. Pulsation and text movement are examples of such effects. Such effects

require the addition of a method that is called at every interval in the duration of the

effect. The straightLine effect provides an intuitive implementation. This effect moves

an item along a liner path. The movement is accomplished by setting the position of the

item at every interval in the duration. Listing 34 outlines how this is implemented in the

straightLine effect. It may be helpful to use this as a template for any new effects.

public static Animator straightLine(final Locatable object, final
double xl, final double yl, final double x2, final double y2)

59

return new Animator(DEFAULT_DURATION, new TimingTargetAdapter()

{
@Override
public void timingEvent(float t)
{

double dx = x2 - xl;
double dy = y2 - yl;
double x;
double y;
x = xl + t * dx;
y = yl + t * dy;
object.setX(x);
object.setY(y);

}
});

Listing 34: The implementation of the straight line effect

Once the new effect has been added to the Effects class, it is necessary to invoke

it from the problem. Effect invocations often occur after a user action. A common

scenario is to perform an effect after the user has selected an item. Listing 35 illustrates

how to pulsate an item's borders after user selection. The effect name is Glow and it is

invoked via calls to the glow method.

selectTool(putTool);
putTool.expectSelectAndPut(vertex, "key", value);
vertex.put("color", Color.ORANGE);
glow(vertex);

Listing 35: Pulsating an item after selection

As a reference, the implementation of Prim's run method is given in Listing 22 to

illustrate the invocation of effects in the Effects class.

60

6 Conclusion and Future Work

6.1 Conclusion

Our initial goals were to create a framework that enabled active learning by:

allowing for instructors to enable instances of a problem type by making a minimal

amount of modifications to existing algorithm code, allowing students to iterate through

visual representations of the intermediate steps of algorithm executions, and allowing

random generation of problem instances. Additionally, it was decided that the framework

should support modes in which the entire execution of an algorithm or the execution of a

step is shown without user interaction

As pertains to the goal of enabling new problem instances with minimal

modifications to existing algorithm code, the current framework performs satisfactorily.

The changes to existing code in the implementations of Prim's algorithm, Insertion sort

and Heap sort were minimal, and the majority of the required effort dealt with tool and

direction setup.

Gauged against the goal of allowing students to iterate through visual

representations of the intermediate step of algorithm execution, the current framework

performs satisfactorily. A user can iterate through each step of the execution of Prim's

algorithm, Insertion sort, and Heap sort.

61

With regard to the goal of allowing random generation of problem instances, the

current framework performs satisfactorily. Every instance of Prim's algorithm, Insertion

sort and Heap sort includes randomly or pseudo randomly generated data.

Finally, with respect to the goal of the framework supporting modes in which the

entire execution of an algorithm or the execution of a step is shown without user

interaction, the current framework performs satisfactorily.

6.2 Future Work

The uniqueness of the framework lies in how easily it can be extended or adapted

to new problem types and tools. In general, the framework should be augmented to

support a larger variety of animations and should interface with a larger variety of

systems.

Currently, the framework supplies the infrastructure for the following three

problem types: undirected graphs, trees and arrays. Support for directed graphs and hash

tables should be added since they are extensions or existing supported problem types.

Additionally, support for problem types involving representations like linked lists and B-

trees will likely fuel adoption.

Several responses from the initial usage included suggestions for the framework.

Most prevalent among the suggestions was an enhancement to the context sensitive

information display. At present, information is displayed for the current problem and the

62

currently selected tool. A potential enhancement would be to display action sensitive

information. Specifically, respondents requested a legend for any color coding, and a

reminder about their last action.

63

Works Cited

Ben-Ari, M., and Levy, R. "Why We Work So Hard and They Don't Use It: Acceptance

of Software Tools by Teachers." SIGCSE Annual Conference on Innovation and

Technology in Computer Science Education (2007): 246-250.

Carlson, D., Guzdial, M., Kehoe, C, Shah, V., and Stasko, J. "WWW interactive learning

environments for computer science education." SIGCSE Bull. 28, 1 (1996): 290-

294.

Erkan, A., Scaffidi, T., and VanSlyke, T.J. "Data Structure Visualization with LaTeX and

Prefuse." SIGCSE Annual Conference on Innovation and Technology in

Computer Science Education (2007): 301-305.

Hasse, Chet. "Timing is Everyting." timingframework: Timing is Everything March 1,

2008 <https://timingframework.dev.java.net/>

Helmick, M. "Integrated Online Courseware for Computer Science Courses." SIGCSE

Annual Conference on Innovation and Technology in Computer Science

Education (2007): 146-150.

Helmick, M. "Interface-based Programming Assignments and Automatic Grading of Java

Programs." SIGCSE Annual Conference on Innovation and Technology in

Computer Science Education (2007): 63-67.

Jarc, D. J., Feldman, M. B., and Heller, R. S. "Assessing the benefits of interactive

prediction using Web-based algorithm animation courseware." SIGCSE Bull. 32,

1 (2000): 377-381.

Korhonen, A., Laakso, M., and Myller, N. "Analyzing Engagement Taxonomy in

64

http://timingframework.dev.java.net/

Collaborative Algorithm Visualization." SIGCSE Annual Conference on

Innovation and Technology in Computer Science Education (2007): 251-255.

Lahtinen, E., Javinen, H., and Melakoski-Vistbacka, S. "Targeting Program

Visualizations." SIGCSE Annual Conference on Innovation and Technology in

Computer Science Education (2007): 256-260.

Naps, T., Cooper, S., Koldehofe, B., Leska, C , RoBling, G., Dann, W., Korhonen, A.,

Malmi, L., Rantakokko, J., Ross, R. J., Anderson, J., Fleischer, R., Kuittinen, M.,

and McNally, M. "Evaluating the educational impact of visualization." In

Working Group Reports From ITiCSE on innovation and Technology in

Computer Science Education (2003): 124-136.

"Overview." JUNG - Java Universal Network/Graph Framework March 1, 2008

<http://jung.sourceforge.net>

Sangwan, R. S., Korsh, J. F., and LaFollette, P. S. "A system for program visualization in

the classroom." SIGCSE Bull. 30, 1 (1998): 272-276.

Shaffer, C. A., Cooper, M., and Edwards, S. H. "Algorithm visualization: a report on the

state of the field." SIGCSE Bull. 39, 1 (2007): 150-154.

65

http://jung.sourceforge.net

	San Jose State University
	SJSU ScholarWorks
	2008

	A framework for active learning
	Sean Sharma
	Recommended Citation

	ProQuest Dissertations

