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ABSTRACT 

A FRAMEWORK FOR ACTIVE LEARNING 

by Sean Sharma 

Understanding of most algorithms in Computer Science is usually aided with 

iterative, graphical representations. Traditionally, these representations are conveyed to 

students via a textbook, and only one problem instance is illustrated. Newer methods of 

learning involve animations of algorithm execution. 

We propose a framework that can be used to demonstrate multiple problem types 

via a combination of animation and student interaction. The framework should support 

existing algorithm code with minimal modifications. 

A prototype of such a framework is developed with an additional construct known 

as Show Me Mode that enables students to view animations of the execution of an 

algorithm. 
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1 Introduction 

1.1 Overview 

The prevalent model of learning in computer science relies heavily upon the 

established learning models of mathematics in which interactive, instructor guided, in-

class sessions are augmented with independent, student guided sessions. The 

effectiveness of the in-class sessions is a result of the interactive nature of an instructor 

presenting material to students. The independent, student guided sessions are not 

interactive by nature and are often not as effective given that textbook material tends to 

be dry. 

While in-class explanation and demonstration of an algorithm is very helpful for a 

student, outside of class, a student's recourse is often limited to the class textbook. 

Although a textbook can provide detailed analysis of an algorithm, illustrations of 

intermediate steps are often limited to trivial or edge cases. A student wishing to apply 

an algorithm to a more difficult or involved problem instance has to do so without any 

mechanism for validation of their thinking. The optimal solution is for students to have 

access to a tool that provides illustrations of the intermediate stages of execution of an 

algorithm. A student's learning could be enhanced further if they could choose what they 

felt was the next step in the execution of the algorithm and their choices were 

immediately validated. A student's interaction with the tool could result in animation or 

some other visually interesting behavior. These types of interactions will promote active 
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learning as the student would be applying the algorithm and working toward a solution 

instead of being presented with a solution, or at best, the intermediate steps required to 

reach a solution. Such a mode of learning has shown to be effective for students 

(Sangwan, Korsh, and LaFollette 272). Creating such a tool is frequently not possible 

within an instructor's time constraints. Furthermore, tools available today promote 

passive learning that approximates learning from a textbook. Ideally, instructors could 

use a framework that deals with the issues of animation and user input and interaction to 

produce such a tool for their students. 

A logical inclination might be to increase the instructor guided, in class sessions and 

reduce the independent, student guided sessions. This may not be financially feasible for 

the instructional facility or the student. Furthermore, some students are successful in the 

current model. For other students, a shortcoming of the current model is the 

ineffectiveness of the independent, student guided session when compared to the in-class, 

instructor guided session. 

A potential enhancement to the current model can be achieved by altering the 

independent, student guided sessions. If these sessions were able to more closely 

approximate the interactivity of the instructor guided, in-class sessions, their 

effectiveness would be improved. The means of increasing interactivity are illustrative 

and animated examples and immediate feedback. Illustrative and animated examples 

would more clearly demonstrate the progression through a problem than static images in 
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a textbook. Immediate feedback will allow students to validate their thinking against 

every step in the progression of a problem. 

The key to realizing this enhancement is to provide a mechanism for instructors to 

deliver illustrated and animated problems with immediate feedback to their students. The 

optimal vehicle is a highly extensible framework. Instructors must find the framework to 

be easy to extend as instructor adoption is correlated to ease of use (Lahtinen, Javinen, 

and Melakoski-Vistbacka 259; Naps et al. 126). The framework would provide the 

expected functionality of problem and solution creation, and student tracking. Its 

potential would lie in its extensibility as new problems and problem types could be added 

by instructors. The new problems and problem types could utilize any of the expected 

functionality of the framework as well as any of its graphical capabilities. 

Building a framework which promotes illustrated problems and immediate feedback 

while allowing instructors to easily augment the problem space will replace the 

independent sessions that prove to be ineffective for some students with a more effective 

active learning environment. A similar effort at Ithaca College in New York that evolved 

from slide based representations to in-class visualizations led the inventors to a similar 

conclusion (Erkan, Scaffidi, and VanSlyke 305). 

1.2 The Project 

The project entails creating an extensible framework that promotes an interactive 

learning experience. The learning experience is further enhanced by exposure to multiple 
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problem instances. User interaction and feedback are animated to provide emphasis and 

encourage adoption by students. Although instructor adoption is not always based on the 

quality of the tool, we attempt to promote instructor adoption by ensuring that existing 

algorithm code can be easily combined with the framework to create problem instances 

(Ben-Ari and Levy 247). Additionally, instructors may choose to adopt the framework 

since it will track user action and report information that can assist grading (Helmick, 

Integrated 148; Helmick, Interface-based 66). 

A bevy of applications provide an interactive student experience, an animated 

demonstration, or random problem generation. The uniqueness of our framework is that 

it combines the aforementioned features and incorporates a high degree of extensibility. 

Moreover, our framework includes the construct of Show Me Mode which allows for an 

entire problem or a single step to be animated without any user action. See section 2.3 

for an overview of a similar implementation in the Interactive Data Structure 

Visualizations system. 

The result is a reusable framework for which instructor adoption would be fueled 

by the ease of problem type integration, and student adoption would be fueled by 

interactive, more enjoyable nature of problem solving. 

1.3 Goals 

The goals of this project are to create a framework that enables active learning by: 

allowing for instructors to enable instances of a problem type by making a minimal 
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amount of modifications to existing algorithm code, allowing students to iterate through 

visual representations of the intermediate steps of algorithm executions, and allowing 

random generation of problem instances. 

In the course of addressing these goals, an additional goal was added. The 

framework should support modes in which the entire execution of an algorithm or the 

execution of a step is shown without user interaction 

1.4 Report Overview 

The state of our art is presented in Chapter 2, and it includes an overview of two 

applications which accomplish goals similar to our own. Chapter 3 provides information 

regarding our accomplishments. The framework and initial use feedback are reviewed. 

An overview of the framework is discussed in Chapter 4. The overview focuses on the 

architecture and is intended to aid anyone considering future work on the framework. An 

instructor guide is presented in Chapter 5, and it depicts mechanisms for extending the 

framework by adding problems, tools, layouts or effects. Chapter 6 outlines our 

conclusions and some suggestions for future work on the framework. 

5 



2 State of the Art 

2.1 Interactive Learning Environments 

The proliferation of the Internet in the last decade has resulted in the availability 

of information regarding virtually any topic. The format of information has progressed 

from simple text to text with illustrations to text with animations. As pertaining to our 

domain, a large variety of tools are available today. 

Erroneously, many of these tools are labeled interactive even though they provide 

no mechanism for user interaction. User interactivity is the key component of an active 

learning environment (Carlson et al. 292). Furthermore, many of these tools are only 

capable of showing a specific problem type and often, can only show the same instance. 

As relevant to our goals, the state of the art can be examined from the following 

perspectives: extensibility and interactivity. The extensibility of a framework pertains to 

the relative ease of adding support for problem types and new types of user action. The 

interactivity of a framework pertains to its level of animation and user interaction. 

We reviewed many systems during the initial investigation period. Among the 

systems, were TRAKLA2 and Interactive Data Structure Visualizations. An analysis of 

the two systems follows. 

The comparison in Table 1 reveals that TRAKLA2 is the superior software when 

evaluated against our criteria. Figures 1 and 2 illustrate both user interfaces. 

6 



Table 1: Key metric comparison 

Animated/Interactivity 
Extensible 
Graphical Representation 

TRAKLA2 
Yes 
No 
Good 

Interactive Data Structure Visualizations 
No 
No 
Poor 

2.2 TRAKLA2 

The TRAKLA2 project is an on-going effort at the Helsinki University of 

Technology. Many of the project's goals align with our goals. The key divergence 

occurs with the notion of an exercise. In our notion, a user is provided with a 

visualization of a problem and the tools to apply an algorithm to the visualization. In 

TRAKLA2's notion of an exercise, a user is provided with a visualization, some ancillary 

information and the algorithm itself. Our framework assumes previous exposure to the 

algorithm, while TRAKLA2 does not. 

Measured against our definition or interactivity, TRAKLA2 is exceptional. As 

shown in Figure 1, it provides effective visualizations and animations and it can even 

support simultaneous display of a static capture of the progression of an algorithm and an 

animation of the execution of the algorithm. Additionally, TRAKLA2 provides feedback 

regarding user action (Korhonen, Laakso, and Myller 252). 

Although TRAKLA2 satisfies one of our design goals, it falls short of our goal of 

extensibility as it appears that any enhancements or modifications to the system are 

strictly the domain of the effort at Helsinki University of Technology. Our framework 

bests TRAKLA2 with respect to our definition of extensibility. 
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Figure 1: Prim's algorithm in TRAKLA2 

2.3 Interactive Data Structure Visualizations 

Interactive Data Structure Visualizations originated as a graduate project at The 

George Washington University. Its primary goal was to be a vehicle for measuring 

student performance with and without the use of a tool. It includes a novel Show Me 

capability that displays the final result of each step in an algorithm's execution. 

Gauged against our definition of interactivity, Interactive Data Structure 

Visualizations measures poorly. While the interface may more closely approximate the 

internal representation of data, it may not be intuitive to some students. In fact, contrary 

to many other studies about other tools, students who used this tool performed worse than 

8 



students who did not use the tool (Jarc, Feldman, and Heller 380). Figure 2 contains the 

representation of a graph. 

Additionally, Interactive Data Structure Visualizations does not provide any 

means of making modifications or enhancements. Extensibility was not a design goal. 

Our framework bests Interactive Data Structure Visualizations with respect to our 

definitions of interactivity and extensibility. 

Figure 2: Graph representation in Interactive Data Structure Visualizations 

2.4 Additional Art 

An extensive overview of additional art has been assembled by members of the 

Department of Computer Science at Virginia Tech, and is provided at the following 

website: http://web-cat.cs.vt.edu/AlgovizWiki (Shaffer, Cooper, and Edwards 151). 
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3 Accomplishments 

3.1 The Framework 

To address our goals of extensibility and interactivity, we determined that the 

framework should support multiple problem types, multiple problem instances and be 

easily extended. Over two semesters, we developed a framework that supports multiple 

problem types, multiple problem instances, and has an extensible tool architecture. The 

resulting framework provides an interactive experience to users and is easily extended by 

instructors. 

Much of the visualization in the framework is powered by the JUNG framework 

("Overview") and effects are enabled via the Timing framework (Hasse). JUNG 

provides layout management of items in the visualization, and the Timing framework 

manages threading and timing issues as they pertain to animation effects. An in-depth 

overview of the architecture of the framework is given in Chapter 4, and an instructor 

guide targeted at users who want to extend the framework is given in Chapter 5. The 

framework supports the following problem types: Prim's algorithm, Heap sort and 

Insertion sort. An overview of each problem type is provided. 

3.1.1 Prim's Algorithm 

The framework supports an implementation of Prim's algorithm. A randomly 

generated instance is pictured in Figure 3. The Animator displays problem and tool 
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sensitive directions, and each user action is validated. At each Set n value step, after the 

user selects a vertex, a dialog box appears and allows for the entering of a 71 value. The 

value is validated against the expected the n value and the algorithm does not progress 

until the correct value is entered. This algorithm features an effect that animates a vertex 

selection by pulsating its border. 

3.1.2 Heap Sort 
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remove vertices from 
this; m io i i p Ymi a m 

Figure 3: Prim's algorithm in the framework 

The framework supports an implementation of the Heap sort algorithm. As 

shown in Figure 4, a user is presented with a randomly generated instance of a heap and 

must perform swap and percolation operations until the resulting heap is a min heap. 
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Each user action is validated against the action expected by the algorithm and 

execution does not progress until the user has taken the correct action. 

89 

/ \ 

/ 

46 

\ 
\ 

W 

" 

M, 

1 
/ 

"'-

59 1 
\ 

/ \ 
73 

1l« lf!3[l 

S.-„:|i IKI-rt 

!-"-.:|..'ll.ilr' :••. rt-|i 

M u d NJV! .•,;•••• 

!!.!> jn i ih. lh; - ! 

i Start by selecting the Fix 
Heap tool. Then, click on 
too nodes to swap 
them. The goal is to 
build a max heap. 

i Once the heap satisfies 
the max heap property, 
select the Swap Nodes 
tool. Then, click on any 
two nodes to swap them. 

i Finally, choose the 
Percolate Down tool to 
nprrniatp the rnnt nnrtp 

Figure 4: Heap sort in the framework 

3.1.3 Insertion Sort 

The framework supports an implementation of the Insertion sort algorithm. As 

shown in Figure 5, a user is presented with an array of randomly generated values. At 

each iteration, the user must select the value that the algorithm needs to be inserted, the 

item's location as it moves through the array, and the item's final insertion location. 

Each user action is validated, and the algorithm does not progress until the user 

takes the expected action. This algorithm features an effect that swaps the values of 

elements after an insertion. 
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correct position. (Swap Values) 

Figure 5: Insertion sort in the current algorithm 

3.2 Show Me Mode 

The framework supports Show Me Mode and Show Next Step Mode. In Show 

Me Mode, the Animator progresses through the entire algorithm without any user action. 

Each step is illustrated with an image of a cursor icon. Show Next Step Mode is initiated 

by the user and when invoked, only illustrates the next step in the progression of the 

algorithm. Similar to Show Me Mode, the image of a cursor icon is used to illustrate the 

step. 

Show Me Mode is achieved by adding a guard clause to each user actionable 

method in a tool. Specifically, if algorithm code calls a specific method in a tool, that 

method must have a branch of execution that is taken when the system is in Show Me 
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Mode. This branch often includes calls to two methods in the Animator. The first moves 

the cursor icon image to a specific location and the second causes the cursor icon image 

to fire a click event at its current location. 

The mechanism for Show Next Step Mode heavily utilizes the implementation of 

Show Me Mode. When a user invokes Show Next Step Mode, a flag in the Animator is 

set to Show Next Step Mode. Once the user actionable method in the tool is called, 

execution branches to the Show Me Mode logic. At the end of execution, the Show Next 

Step Mode flag is toggled. The effect is that the Animator is in Show Me Mode for only 

one step. 

3.3 Initial Usage 

The program was used in November of 2007, by Dr. David Taylor of San Jose 

State University and the students his CS 46B class. The initial usage consisted of 

students completing an instance of Insertion sort and then providing feedback regarding 

the tool. The deployment mechanism for the initial usage was the moodle system. 

In the course of preparing the problems and tools for the initial usage, our efforts 

to meet our design goals of interactivity and extensibility were validated by Dr. Taylor. 

Dr. Taylor was able to extend the framework and implement Bubble sort. Additionally, 

Dr. Taylor was able to augment the interactivity of the framework by adding some color 

transitions to his implementations of Bubble sort. 
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Immediately after using the framework, participants were asked for feedback. The 

feedback indicated that overall experience was positive. Although most of respondents 

had not used a tool similar to our framework, many found our framework to be easy or 

very easy to use. Additionally, all respondents felt that the framework improved their 

understanding of the algorithm. 

We feel that it is a significant accomplishment to have had participants recognize 

the benefit of our tool even though most had never used something similar. This claim is 

justified by the response of the respondents, most of whom would use our framework to 

augment their studying for a class. The initial usage validated our efforts to achieve our 

design goals. Dr. Taylor proved the extensibility of the framework, and the respondents 

proved its interactivity. 

3.4 Contributors 

The design and development of the framework involved students working under 

the guidance of Dr. Cay Horstmann and Dr. David Taylor of San Jose State University. 

Working under Dr. Horstmann's supervision were Sean Sharma, Kristen Mori, 

Shiro Sakurai, Alexander Ljungberg. Dr. Taylor supervised Edward Yin and Andrei 

Lurie. 

Dr. Horstmann was responsible for the problem model in the framework, a 

refactoring that included a new tool model, and integration with the timing framework 
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that is used to power effects in the framework. He also reviewed the design of the 

framework through its several iterations. Dr. Taylor created the problems for the initial 

usage and reviewed the interaction model of the framework throughout the project. 

Sean developed the initial framework, and was responsible for a refactoring that 

included new threading and problem models which allowed multiple problem instances 

to be run in a single run of the Animator. Kristen developed an implementation of Heap 

sort and the new tools required. Kristen was instrumental in identifying several 

shortcomings in our initial design. Shiro added several animation effects to the 

framework and made improvements to the APIs used by the Animator to invoke 

animations and effects. Alexander facilitated the initial setup of the source repository and 

wiki, aided in the initial design of the framework and provided support for the wiki and 

source repository throughout the project. Edward aided in the design of the framework 

and implemented several versions of Prim's algorithm with different interaction models. 

Ed aided in the initial investigation of the JUNG framework and the examination of 

existing art. Andrei configured moodle to utilize the framework and added APIs that 

allow external systems to gather problem information. Additionally, Andrei performed 

much of the setup work for the initial usage. 

3.5 Summary 

Our efforts resulted in a framework that supports multiple problem types, multiple 

problem instances, and includes a tool architecture that enables tools to perform action 
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validation independent of the framework. Additionally, we developed the construct of 

Show Me Mode and Show Next Step Mode which allow a user to view an animation of 

an algorithm's execution. 

We were able to validate our efforts against our goals via the initial usage. The 

development of the problems and tools for the initial usage and subsequent feedback 

indicated that our framework was both extensible and interactive. 

Assessed against our goal of extensibility, the framework performs satisfactorily. 

New problems can be added without modification to the framework, and can leverage 

existing tools. If new tools are needed, they can be added without modification to the 

framework. 

The framework also performs satisfactorily when measured against our goal of 

interactivity. The separation of the visualization element and the animator resulted in a 

more robust effects model that allows for the addition of new animation effects. Each 

user action is still validated against the algorithm, and the algorithm still does not 

progress unless the correct action is taken. 

17 



4 Framework Overview 

The architecture of the framework is best reviewed by examining its major 

components. The major components are the problem model, the tool model, the 

threading model and the effects model. 

All problems are derived from the Problem base class. The Problem class 

provides methods that can manipulate the animator and reduce the redundant code in 

different problem implementations. 

The tool model moves the processing of user actions to the tool classes. The 

framework allows tools to define their own methods for processing and user actions are 

dispatched to tools for processing. 

The threading model provides support for the tool model, and the ability to run 

more than one problem in an instance of the Animator. The algorithm and user action 

events occur on separate threads and tools serve as the mechanism for processing user 

actions and advancing the algorithm thread. 

The effects model enables problems and tools to trigger effects and animations on 

items in the visualization. Several effects are packaged with the framework and are 

meant to be templates for any new effects. The effects in the framework are powered by 

the Timing framework. 
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These components were designed so instructors could easily add problems and 

tools and students would find the resulting experience to be interactive and visually 

interesting. 

4.1 Architecture 

4.1.1 Algorithms Package 

The algorithms package houses definitions of problems and their accompanying 

drivers. It contains the following classes: HeapsortB, InsertionSorter, Prim4, 

AnimatorApplet, InsertionSorterAnimator and Prim4Harness. 
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Figure 6: The algorithms package 

The class Heapsort3 provides an implementation of a Heap sort algorithm. It is 

derived from the Problem class. This problem utilizes the FixHeap, SwapNodes and 

PercolateDown tools 
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The class InsertionSorter provides an implementation of the Insertion sort 

algorithm. It is a subclass of Problem. Generation of the item values is random. This 

problem utilizes the Select and ShowNextStep tools. 

The class Prim4 provides an implemention of Prim's algorithm. It is derived from 

the Problem class. Generation of the vertices, edges and edge weights is pseudo random, 

occurs in the Problem class and a portion of the algorithm is outlined in Listing 1. This 

problem utilizes the TransformTool, SelectTool, PutTool and ShowNextStep tools. 

These tools are reviewed in section 4.1.8. 

int rand = (int) (Math.random() * g.numVertices()); 
LPPVertex v_rand = (LPPVertex) i.getVertex(rand); 
LPPEdge dse = new LPPEdge(vl, v_rand); 
if (vl != v_rand) 
{ 

if (!vl.isPredecessorOf(v_rand) 

&& !vl.isSuccessorOf(v_rand)) 
{ 

g.addEdge(dse) ; 
vl.addlncidentEdge(dse); 
v_rand.addlncidentEdge(dse); 
vl.addAdj acentNode(v_rand); 
v_rand.addAdj acentNode(vl); 
ewl.setWeight(dse, labelNumber); 
dse.put("w", labelNumber); 

} 
} 

Listing 1: Pseudo random Edge and Edge Weight generation 

The class AnimatorApplet enables an instance of Prim4 to be run as an Applet. 

The class InsertionSorterAnimator enables an instance of InsertionSorter to be run as an 

Applet. The class Prim4Harness enables an instance of Prim4 to be run as an 

Application. 
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4.1.2 Effects Package 

The effects package houses resources that power some of the visual effects in the 

framework. It contains the following classes: VertexDecorator, TextDecorator and 

Effects. It also contains the following interfaces: Drawable and Locatable. 
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Figure 7: The effects package 

The interface Drawable is implemented by the TextDecorator and 

VertexDecorator classes. It outlines the draw method and mechanisms for attaching and 

detaching a property change listener. 

The interface Locatable is implemented by the TextDecorator class. It outlines 

getter and setter methods for x and y coordinates. 
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The class Effects defines several animations that can be invoked on items in the 

current visualization. It leverages the timing framework to perform positional change or 

other animations. The method for item pulsation is outlined in Listing 2. 

p u b l i c s t a t i c <T> Animator p u l s e ( O b j e c t o b j e c t , S t r i n g 
p r o p e r t y N a m e , T . . . v a l u e s ) 

{ 

r e t u r n new Animator(DEFAULT_DURATION I 
(DEFAULT_ITERATIONS / 2 ) , 

DEFAULT_ITERATIONS, 
RepeatBehavior .REVERSE, 
new P r o p e r t y S e t t e r ( o b j e c t , 

p r o p e r t y N a m e , v a l u e s ) ) ; 
} 

Listing 2: Pulsation effect implementation 

The class VertexDecorator facilitates animation effects on vertices in the 

visualization. As demonstrated in Listing 3, VertexDecorator implements the Drawable 

interface to provide a glow effect to vertices. 

g2.setPaint(Color.RED); 
final double MAXGLOW = 5; 
final double thickness = glow * MAXGLOW; 
g2.setStroke(new BasicStroke((float) thickness)); 
Dimension size = vertex.getPreferredSize(); 
if (glow > 0) 

g2.draw(new Rectangle2D.Double(vertex.getX() - size.width / 2 
- thickness / 2, vertex.getY() - size.height / 2 -
thickness / 2, size.width + thickness, 
size.height + thickness)); 

Listing 3: Glow effect implementation 
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The class TextDecorator provides a means for text based effects in the 

visualization. TextDecorator implements the Drawable and Locatable interfaces. It is 

primarily used in the Effects class for positional change animation of text. 

4.1.3 Engine Package 

The engine package provides the primary interface between the Animator and 

JUNG. It contains the following classes: Problem, LPPArrayToTreeLayout, 

LPPGraphLayout, ArrayLayout, VisualizationPanel and AnimatorPickedState. It also 

contains the ProblemType and AnimatorMode enumerations. 
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Figure 8: The engine package 
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The class Problem serves as the base class for all problems in the framework. In 

addition to tracking all user actions, it provides several methods to its subclasses that 

abstract interaction with the Animator. The goal was to eliminate the need for subclasses 

to directly interact with the framework. Additionally, the Problem class can generate 

random instances of visualizations for each of the enumerations in ProblemType. An 

excerpt of the generateRandomArray method is shown in Listing 4. This method is not 

guaranteed to generate a connected graph. 

LPPGraph g = new LPPNetwork(); 
LayoutMutable layout = new ArrayLayout(g); 
StringLabeller _labler = StringLabeller.getLabeller(g); 
LPPVertexf] vertices = new LPPVertex[numltems]; 
ArrayList<Integer> values = new ArrayList<Integer>(numltems); 
Random generator = new Random (); 
// get an array of unique random integers 
for (int i = 0; i < numltems; i++) 

{ 
int randomNum = generator.nextlnt(100); 
while (values.contains(randomNum)) 
randomNum = generator.nextlnt(100); 
values.add(Integer.valueOf(randomNum)) ; 

} 

Listing 4: Random array generation 

The class LPPArrayToTreeLayout provides a mechanism for converting an array 

of elements to a tree representation. The representation is encapsulated in JUNG graph 

objects so the layout can be applied directly to a JUNG graph. This layout is applicable 

for representations of heaps, binary trees, etc. The means of tree generation are shown in 

Listing 5. 

private void bu i ldTree( ) 
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d i s t X = DEFAULT_DISTX; 
d i s t Y = DEFAULT_DISTY; 
m_rootVertex = m_tree.getRoot(); 
Point temp = new Point(this.getCurrentSize().width / 2, 50); 
m_currentPoint = temp; 
initializeLocations(); 

m_nodes = (ArrayList<LPPVertex>) m_tree.nodes(); 

if (m_rootVertex != null && getGraph() != null) 

{ 
m_depth = getDepth(); 
calculateDist{); 
buildTree(m_rootVertex, 0, m_currentPoint.x, 

m_currentPoint.y, m_depth); 
} 

} 

Listing 5: Random tree generation 

The class LPPGraphLayout supplies a method for creating a graph whose nodes 

are positioned randomly. The representation is encapsulated in JUNG graph objects so 

the layout can be applied directly to a JUNG graph. This layout is applicable graph 

representations and is used in Prim's algorithm. Random position generation is outlined 

in Listing 6. 

protected void initializeLocation(Vertex v, Coordinates coord, 

Dimension d) 

{ 
double x = 20 + Math.random() * (d.getWidth() - 40); 
double y = 20 + Math.random() * (d.getHeight() - 40); 

coord.setX(x); 
coord.setY(y); 
((LPPVertex) v).setLayout(this); 

Listing 6: Random position generation 
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The class ArrayLayout enables a layout suitable for array-like representations of 

data. As shown in Listing 7, as requests are made to add data, the position of each 

element is calculated. 

for (LPPVertex node : ((LPPGraph) getGraph()).nodes()) 

{ 
int dl = maxx / 2; 
x += dl; 
g e t C o o r d i n a t e s ( n o d e ) . s e t L o c a t i o n ( x , maxy / 2 ) ; 
x += maxx - maxx / 2 + DISTANCE; 
n o d e . s e t L a y o u t ( t h i s ) ; 
node . se tMin imumSize (new Dimension(maxx, m a x y ) ) ; 

} 
Listing 7: Array position generation 

The class VisualizationPanel encapsulates the underlying visualization 

components of JUNG and exposes them as a JPanel to the framework. Additionally, 

VisualizationPanel contains a key component for the framework and tool interface 

strategy. The method waitForVertexSelection is invoked from virtually every tool. It 

enforces selection of the correct tool and it returns the selection made by the user. 

Synchronization with tools is achieved via the toolLock object. A portion of the 

implementation is shown in Listing 8. 

s y n c h r o n i z e d ( t oo lLock) 
{ 

w h i l e ( true) 
{ 

toolLock.wait(); 

// "Show Next Step" was clicked 
if(_showStep) 

{ 
return null; 

} 

if (parent.getSelectedTool() == tool) 
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{ 

return _lastSelectedVertex; 
} 
else 

{ 
j avax.swing.JOptionPane.showMessageDialog(null, 

"Incorrect Tool Selected, expected: " + 
tool.getName()); 

tool.addWrongMove(); 
} 

} 
} 

Listing 8: Tool synchronization 

The class AnimatorPickedState extends the standard pick state mechanism 

provided by JUNG to allow for multiple items to be in a picked state. By default, the 

mechanism provided by JUNG removes the currently picked item when another item is 

selected. The extended implementation of the pick method is featured in Listing 9. 

public boolean pick(ArchetypeVertex v, boolean picked) 

{ 
Set<Vertex> sv = getPickedVertices(); 
Object[] o = sv.toArray(); 

boolean result = super.pick(v, picked); 

for (int i = 0; i < o.length; i++) 
{ 

super.pickedVertices.add((ArchetypeVertex)o[i]); 
} 

return result; 

} 

Listing 9: Vertex pick state management 

The enumeration ProblemType contains the three types of layouts supported by 

the framework. Each Problem has a ProblemType, and this at problem generation time, 

the problem type can be used to determine which type of layout to use for random 

instance generation. 
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The enumeration AnimatorMode includes the two types of modes supported in 

the framework. The mode Student progresses through a Problem only when the user has 

taken an action. In Student mode, each action is validated. In ShowMe mode, the 

algorithm progresses autonomously without and user action. The correct action is always 

taken. 

4.1.4 Exceptions Package 

The exceptions package maintains definitions of the custom exceptions thrown by 

the framework. It contains the following classes: InvalidProblemClassException, 

ProblemCreationException and InvalidOperationException. 

: InvalidProblemCiassExcep'.ion ' ProblemCreationException . - InvalidOperationException 

Figure 9: The exceptions package 

The class InvalidProblemClassException is used to convey a condition in which 

the framework failed to find the problem class passed to it. The class 

ProblemCreationException relays information when the framework has attempted to 

create a problem class, and the instantiation has failed. The class 

InvalidOperationException indicates that an attempted operation is invalid. Most likely 

occurrences pertain to mutations of the visualization. 
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4.1.5 Graph Package 

The graph package maintains definitions of the visualizations represented by the 

framework. It contains the following classes: LPPVertex, LPPEdge, LPPGraph, 

LPPArray, LPPNetwork, LPPTree, LPPList, LPPTreeVertex. It also contains the 

LPPGraphElement interface. 
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The class LPPVertex extends the JUNG Vertex object to provide a mechanism for 

subclasses of Problem to interact with graph elements without having knowledge of 

JUNG. Additionally, as shown in Listing 10, LPPVertex maintains a key, value pair that 

can be used to store arbitrary data as required by problems and algorithms. 

public void put(String key, Object value) 
{ 

props.put(key, value); 
} 

Listing 10: Put method on LPPVertex 

The class LPPEdge extends the JUNG Edge object to provide a mechanism for 

subclasses of Problem to interact with graph elements without having knowledge of 

JUNG. Similar to the LPPVertex class, LPPEdge maintains an arbitrary key, value pairs. 

The class LPPGraph encapsulates an underlying JUNG graph and LPPVertex and 

LPPEdge classes. It provides an abstraction of the graph to any subclasses of problem 

and any algorithms. Listing 11 contains an excerpt from the initialization code of 

LPPGraph in which existing vertices and edges are used to seed a new graph. 

super(); 

_nodes = vertices; 
_edges = edges; 
for (LPPVertex v : vertices) super.addVertex(v); 
for (LPPEdge e : edges) super.addEdge(e); 

Listing 11: Graph initialization 

The class LPP Array encapsulates JUNG graph elements that are intended to be 

used in a tree representation. LPP Array bridges the gap between the visualization and the 
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array representation that may be used by a subclass of Problem or an algorithm. A key 

component of LPPArray is the swapNodes method. A portion appears in Listing 12. 

for(int i = 0; i <= (_nodes.size() - 2) / 2; i++) 

{ 
LPPEdge left = new LPPEdge(_nodes.get(i), _nodes.get(2 * i + 

D) ; 
this.addEdge(left); 
if((2 * i + 2) < _nodes.size()) 
{ 

LPPEdge right = new LPPEdge(_nodes.get(i), _nodes.get(2 * i 
+ 2)); 

this.addEdge(right); 
} 

} 

Listing 12: Node swapping 

The class LPPNetwork extends LPPGraph and is meant to be a more generic 

representation of an instance visualization. By default, it initializes with an empty set of 

vertices and edges. 

The class LPPTree provides a mechanism for representation of tree structures in 

the framework. The method addNodeEdge provides a means for node insertion and is 

outlined in Listing 13. 

public void addNodeEdge(LPPTreeVertex v, LPPTreeVertex newNode) 
{ 

if(v.getData() > newNode.getData()) 

{ 

if (v.getLeftChildO == null) 

{ 
v. setLeftChild(newNode) ; 
LPPEdge e = new LPPEdge(v, newNode); 
this.addEdge(e); 

} 
else addNodeEdge(v.getLeftChild() , newNode); 

} 
else 
{ 
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if (v.getRightChildO == null) 
{ 

v. setRightChild(newNode); 
LPPEdge e = new LPPEdge(v, newNode); 
this.addEdge(e); 

} 
else addNodeEdge(v.getRightChildO, newNode); 

} 
} 

Listing 13: Adding an edge to a LPPTree 

The class LPPList exposes an underlying LPPGraph as a List object that provides 

convenient methods for iteration and comparison. Additionally, as illustrated in Listing 

14, LPPList provides a set method that uses a LPPVertex's put method to save arbitrary 

data. 

public E s e t ( i n t index, E element) 
{ 

ArrayList<LPPVertex> nodes = (ArrayList<LPPVertex>) 
super.nodes(); 
LPPVertex vertex = nodes.get(index); 
E r = (E) vertex.get("value"); 
vertex.put("value", element); 
vertex.setName("" + element); 
return r; 

} 

Listing 14: Set method in LPPList 

The class LPPTree Vertex extends LPPVertex to provide the functionality 

required of elements in a tree representation. LPPTree Vertex is used in the Heap sort 

algorithm. The member variables of LPPTreeVertex are shown in Listing 15. 

private int _data; 
private int _index; 
private LPPTreeVertex _left; 
private LPPTreeVertex _right; 
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Listing 15: Members of LPPTreeVertex 

The interface LPPGraphElement is implemented by both LPPVertex and 

LPPEdge. It defines the signature of the put method. The put method is used by tools, 

visualizations and the Animator. 

4.1.6 Moodle Package 

The moodle package provides a mechanism for interfacing with Moodle. It 

contains the following classes: LPPResult and LPPMoodleError. It also contains the 

LPPAppletCallback interface. 
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Figure 11: The moodle package 
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The class LPPResult serves as a container for all reporting and result data for a 

series of problems run in the framework. The class LPPAppletCallback enables initiation 

and shutdown of the framework from an external source. The class LPPMoodleError 

signals that an error condition has occurred in the communication between the framework 

and Moodle. 

4.1.7 Threading Package 

The threading package supports threading management in the framework. It 

contains the following classes: SerialExecutor and ThreadPerTaskExecutor. 

, SeriaiExccjtor __ "ThreatlPerTaskExecutor 

^ :» _animatar ; • ^ 
"" © execute'; 

(ok active 
Sgf executor 
itf tasks \ 

0 ' SerialExecutor() . 

i HJ, executeG -
i 0> scheduleNextQ 

Figure 12: The threading package 

The class SerialExecutor enqueues a series of execution requests from the 

Animator and uses a ThreadPerTaskExecutor to ensure that each is executed on its own 

thread. A portion of the execute method appears in Listing 16. 

tasks . of fer (new RunnableO 

{ 
public void run() 
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{ 
try 

r.run (); 
((Problem)r).complete(); 

animator.stopCurrentProblem( 

} 
finally 

scheduleNext(); 

}) ; 

if (active == null) 
{ 

scheduleNext(); 

} 

Listing 16: Execute method in SerialExecutor 

The class ThreadPerTaskExecutor consumes a Runnable object and starts it on its 

own thread. It is utilized by SerialExecutor to ensure that each problem is run on its own 

thread. 

4.1.8 Tools Package 

The tools package provides the infrastructure for tool support in the framework. 

It contains the following classes: Tool, ShowNextStepTool, SwapNodes, SelectTool, 

PickEdgeTool, PercolateDown, PutTool, FixHeap and Transform Tool. The Tool class 

serves as the base class for all tools. It abstracts much of the interaction with problems 

that most tools require. 
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Figure 13: The tools package 

One of the principal methods of the framework, expectSelection, is detailed in 

Listing 17. The method is invoked by algorithm code and it causes the algorithm thread 

to block until the UI thread fires a notification event on a common lock object. 

protected void expectSelect ion(LPPVertex v, boolean compoundStep) 
{ 

if(_animator.getMode() == AnimatorMode.ShowMe || 

_animator.getShowStep()) 
{ 

_animator.moveCursorTo(v); 
_animator.clickAtCurrentLocation(); 

wait (1500); 

// toggle show step 
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if(_animator.getShowStep() && !compoundStep) 
_animator.setShowStep(false); 

} 
else 

{ 
while (true) 
{ 

LPPVertex selected = 
_visual.waitForVertexSelection(this); 

// "Show Next Step" was clicked 
if(_animator.getShowStep()) 
{ 

expectSelection(v, compoundStep); 

break; 

} 

if (v == selected) 
{ 

addCorrectMove(); 
return; 

} 
else if(selected != null) 
{ 

addWrongMove(); 

j avax.swing.JOptionPane.showMessageDialog(null, 
"Incorrect Item Selected\n\nExpected: " + 
v.name() 
+ "\nSelected: " + selected.name()); 

} 
} 

} 
} 

Listing 17: ExpectSelection method in Tool 

The ShowNextStepTool class toggles the framework's showStep flag to true and 

then attempts to re-call the current method. The result is that path of execution follows 

the path of execution for Show Me Mode for the current step. After the current step has 

completed, the showStep flag is toggled to false. The processing of the 

ShowNextStepTool is unique in that it does not occur in the tool definition itself. Rather, 
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as illustrated in Listing 18, the animator has a special case to handle mouse events on the 

ShowNextStepTool. 

if(t.getClass().equals(ShowNextStepTool.class)) 
{ 

_visualizationPanel.setShowStep(true); 
_currentProblem.nextStepShown(); 

} 

Listing 18: Condition for Show Next Step Mode 

The SwapNodes class provides a tool that allows for the selection of two items. 

The actual swapping of the items in the visualization is not performed by the tool. 

The SelectTool class can be used whenever an arbitrary LPPVertex selection is 

required. SelectTool's only method, expectSelect primarily wraps the expectSelection 

method in the Tool base class. 

The PickEdgeTool class supplies a method for selection of an edge based on the 

selection to LPPVertex objects. The order in which the LPPVertex objects are selected is 

not enforced. The mechanism for this is outlined in Listing 19. 

LPPVertex selectedl = _visual.waitForVertexSelection(this); 
LPPVertex selected2 = _visual.waitForVertexSelection(this); 

if (selectedl == vl && selected2 == v2 II selectedl == v2 
&& selected2 == vl) 

{ 
addCorrectMove(); 

return; 
} 

Listing 19: Vertex based edge selection 
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The PercolateDown class is identical to the SwapNodes class. It allows for order 

insensitive selection of two LPPVertex objects, and does not perform any changes to the 

visualization of the items. 

The PutTool class serves a key role in mapping user's action with action expected 

by the algorithm. A portion of the principal method of PutTool, expectPut is shown in 

Listing 20. This portion of expectPut pertains to situations in which the algorithm 

expects a user to input a string or numeric value for an item. Every response is validated, 

and the algorithm does not continue until the correct value is received. Once the correct 

value is received, it is stored in the LPPVertex via a call to its put method. 

The FixHeap class is identical to the SwapNodes and PercolateDown classes. It 

allows for order insensitive selection of two LPPVertex objects, and does not perform 

any changes to the visualization of the items. 

S t r i n g response = n u l l ; 

do 
{ 

response = JOptionPane.showInputDialog(null, 
"Enter the new " + key + " value:", this.getName(), 
JOptionPane.QUESTION_MESSAGE); 

} 
while (null != response && 0 == response.length()); 

if (response.equalsIgnoreCase("" + value)) 

{ 
v.put(key, value); 
addCorrectMove(); 

return; 

} 

Listing 20: Validation of user input 
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The TransformTool class provides a means for a user to manipulate the 

visualization. Selection of the TransformTool causes all mouse activity in the 

visualization to be suppressed before any selection activity is detected. Listing 21 reveals 

a guard clause in VisualizationPanel's mouse event processing logic that permits the 

desired behavior. 

if (parent.getSelectedTool() instanceof TransformTool) 
return; 

Listing 21: Transform tool support 
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5 Instructor Guide 

The following chapter provides instructions for extending the framework and is 

targeted to instructors who need to add to any of the four major components. For the 

purposes of this guide, the four major components of the framework are problems, tools, 

layouts, and effects. 

A convenient abstraction is to consider problems to be main component of 

extension since each problem has a layout and one or more tools, and most effects are 

triggered by problems. The suggested pattern for extending the framework follows this 

abstraction. An instructor should add a problem, associate a layout to the problem, 

associate any tools to the problem, and invoke any effects from the problem. Depending 

on the instructor's requirements, it may be necessary to add a new layout, tool, or effect. 

The addition of each component is covered in the following sections. 

5.1 Adding a Problem 

The most common type of framework extension will involve adding support for a 

new problem type. If existing tools, layouts, and effects are used, the only requirement 

will be to create a subclass of the Problem class. Adding tools, layouts, and effects is 

covered in subsequent sections. 

The Problem class serves as base for all problems in the framework. Upon 

initialization, the framework queues and executes a series of problems. Each problem is 
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derived from the Problem class and it maintains its own collection of tools and is 

responsible for its own initialization and layout. 

The Problem class provides several methods that can be overridden by subclasses, 

however it is only required that two methods be implemented. 

The first method to be overridden, run, is intended to house the algorithm code 

and is called by the Animator once the problem has been initialized. The Animator 

interprets a return from the run method as completion of the problem instance. Listing 22 

outlines the run method of our implementation of Prim's algorithm. 

public void run() 

{ 

// =========== Initialization of vertices =========== 
for (LPPVertex u : getNodesO) 
{ 

u.put("key", Integer.MAX_VALUE); 

u.put("pi", null); 

} 

final Comparator<LPPVertex> vertexComparator = new 

Comparator<LPPVertex>() 
{ 

public int compare(LPPVertex a, LPPVertex b) 
{ 

int d=(Integer)(a.get("key"))- Integer) (b.get("key")); 
return d != 0 ? d : a.name().compareTo(b.name()); 

} 
}; 

// =========== Processing of vertices =========== 
PriorityQueue<LPPVertex> q = new 
PriorityQueue<LPPVertex>(getNodes() .size (), vertexComparator); 
q.addAll(getNodes()) ; 
LPPVertex r = q.peek(); 
r.put("key", 0); 
while (q.sizef) > 0) 

{ 
final LPPVertex u = q.remove(); 
selectTool(stl); 
stl.expectSelect(u); 
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u.put ("color", Color.YELLOW); 
glow(u); 
ArrayList<LPPEdge> incidentEdges = new ArrayList<LPPEdge>(u 

.incidentEdges ()) ; 
Collections.sort(incidentEdges, new Comparator<LPPEdge> () 
{ 

public int compare(LPPEdge a, LPPEdge b) 

{ 
return a.other(u).name().compareTo(b.other(u).name()); 
} 

}); 
for (LPPEdge e : incidentEdges) 
{ 

LPPVertex v = e.other (u); 
int w = (Integer) e.get("w"); 
if (q.contains(v) && w < (Integer) v.get("key")) 
{ 

selectTool (ptl); 
ptl.expectSelectAndPut(v, "key", w); 
v.put("color", Color.ORANGE); 
glow(v); 
selectTool (pt2); 
pt2.expectPut(v, "pi", u); 
v.put("color", Color.PINK); 
q.remove(v); 
q.add(v); 

} 
} 

} 
} 

Listing 22: A sample run method 

The method can be reviewed in two phases. In the first phase, the key and pi 

values of each vertex in the graph are initialized by calling the put (String keyName, 

Object value) method. Since our implementation of Prim's algorithm will break ties of 

key values alphabetically, a Comparator is defined. The second phase involves the 

progression of the algorithm through the vertices. Of special interest are the statements 

contained in the for loop. These statements set the expected tool selection, the expected 

vertex selection, the subsequent input, and invoke some effects. The expected tool 
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selection can be set via a call to the selectTool method. This method expects a Tool as an 

argument. The expected vertex selection can be set via a call method call on the Tool. In 

this instance, a call is made to expects elect AndPut which takes the vertex to be selected, 

the name of the key value to be entered, and the expected value as arguments. Finally, an 

effect is invoked via a call to the glow method. The glow method expects a vertex as an 

argument. 

The second method to be overridden, generateProblem, is intended to assist the 

Animator in initialization of the visualization of a problem instance. The primary 

purpose of this method is to initialize and return an object of type LayoutMutable. 

Presently, the framework supports three types of layouts and each type is represented by 

a different subclass of LayoutMutable. Listing 23 illustrates the signatures of the 

currently available generation methods: 

public static LayoutMutable generateRandomGraph(int numVertices) 

public static LayoutMutable generateRandomHeap(int numVertices) 

public LayoutMutable generateRandomArray(int numltems) 

Listing 23: Problem generation method signatures 

Each of these methods is defined in the Problem base class, and should be 

invoked from the generateProblem method of any Problem subclasses. 

After implementing these methods, it is suggested that an instructor add any tools 

to the problem. The recommended pattern is to add tools as member variables and 
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perform initialization in the constructor. Listing 24 illustrates how this pattern was 

applies to our implementation of Prim's algorithm. 

private TransformTool ttl = null; 

public Prim4() 
{ 

ttl = new TransformTool(); 
ttl.setName("Clean up graph"); 
ttl.setToolTip ("Use this Tool to reposition vertices."; 

Listing 24: Adding and initializing a tool to a problem 

The final step in addition of a new problem is the integration of tools in the run 

method. Without tool integration, the run method will run to completion without any 

user action. In the course of execution of the run method, whenever user action is 

expected, a call to a tool's method should be added. As an example, if the user was 

expected to select an item, a call to the SelectTool's expectSelection method would be 

added. As a reference, the implementation of Prim's algorithm is provided in Listing 25. 

import java.awt.Color; 
import java.net.URL; 
import java.util.ArrayList; 
import Java.util.Collections; 
import Java.util.Comparator; 
import java.util.PriorityQueue; 
import Java.util.Scanner; 

import edu.sj su.cs.1pp.engine.*; 
import edu.sjsu.cs.lpp.tools.*; 
import edu.sjsu.cs.lpp.graph.*; 
import edu.uci.ics.jung.visualization.LayoutMutable; 

public class Prim4 extends Problem 
{ 

private TransformTool ttl = null; 
private SelectTool stl = null; 
private PutTool ptl = null; 
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private PutTool pt2 = null; 
private PickEdgeTool petl = null; 
private PlayAnimationTool play = null; 
private ShowNextStepTool showNext = null; 

public Prim4() 

{ 
setName("Prim's Algorithm"); 
ttl = new TransformTool (); 
ttl.setName("Clean up graph"); 
ttl.setToolTip ("Use this Tool to reposition vertices."); 
stl = new SelectTool (); 
stl.setName("Select a node"); 
stl.setToolTip("Select the next vertex to be removed 

from the queue."); 

ptl = new PutTool (); 
ptl.ValueType = Integer.class; 
ptl.setName("Select neighbor, set key value"); 
ptl.setToolTip("Click on the next neighbor (in alphabetical 

order), then enter its new key value."); 

pt2 = new PutTool(); 
pt2.ValueType = LPPVertex.class; 
pt2.setName("Set \u03C0 value"); 
pt2.setToolTip("Click on another node to set it as the 

\u03C0 value of the orange node."); 

play = new PlayAnimationTool(); 
play.setName("Play Animation"); 
play.setToolTip("Select this Tool to play and pause an 

animation of the algorithm."); 

showNext = new ShowNextStepTool (); 
showNext.setName("Show Next Step"); 
showNext.setToolTip("Select this Tool to see the next step 

in the animation of the algorithm."); 

addTool (ttl); 
addTool(stl); 
addTool(ptl); 
addTool(pt2); 
addTool(showNext); 
addTool(play); 

} 

public LayoutMutable generateProblem() 
{ 

return Problem.generateRandomGraph(7) ; 

} 
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public void run() 

{ 

for (LPPVertex u : getNodesO) 

{ 
u.put("key", Integer.MAX_VALUE); 
u.put("pi", null); 

} 
final Comparator<LPPVertex> vertexComparator = new 

Comparator<LPPVertex>() 

{ 
public int compare(LPPVertex a, LPPVertex b) 
{ 

int d = (Integer) (a.get("key")) - (Integer) 
(b.get("key")); 

return d != 0 ? d : a.name().compareTo(b.name()); 
} 

}; 
PriorityQueue<LPPVertex> q = new 

PriorityQueue<LPPVertex>(getNodes() 
.sized , vertexComparator); 

q.addAll(getNodes() ) ; 
LPPVertex r = q.peek(); 
r.put("key", 0); 
while (q.sizeO > 0) 
{ 

final LPPVertex u = q.remove(); 
selectTool(stl); 
stl.expectSelect(u); 
u.put("color", Color.YELLOW); 
glow(u); 
ArrayList<LPPEdge> incidentEdges = new 

ArrayList<LPPEdge>(u 
.incidentEdges() ) ; 

Collections.sort(incidentEdges, new 
Comparator<LPPEdge>() 

{ 
public int compare(LPPEdge a, LPPEdge b) 
{ 

return 
a.other(u).name().compareTo(b.other(u).name()); 

} 
}); 
for (LPPEdge e : incidentEdges) 
{ 

LPPVertex v = e.other (u); 
int w = (Integer) e.get("w"); 
if (q.contains(v) && w < (Integer) v.get("key")) 
{ 

selectTool (ptl); 
ptl.expectSelectAndPut(v, "key", w); 
v.put("color", Color.ORANGE); 
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} 

} 

} 

} 

} 

Listing 25: Our implementation of Prim's algorithm 

5.2 Adding a Tool 

Tools enable user interaction and they are an essential part of any problem. The 

framework provides tools for common user actions like: item selection, value entry and 

paired item selection. 

The addition of a new problem type could require the addition of a new tool. The 

method for adding a new tool is to extend the Tool base class. All tools in the framework 

are derived from the Tool class. 

The Tool class provides several methods for use by any subclasses. The most 

commonly methods used by all tools are the expectSelection and expectPut methods 

which are shown in Listing 26 and Listing 27. expectSelection is available in the 

SelectTool, and expectPut is available in the PutTool. These methods are called 

whenever a user action is expected. In the case of expectSelection, a problem waits until 

the user has selected the expected item. If an incorrect item is selected, the expected and 

glow(v); 
selectTool(pt2); 
pt2.expectPut(v, "pi", u); 
v.put("color", Color.PINK); 
q.remove(v); 
q.add(v); 
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selected items are displayed to the user and the tool waits for the correct item to be 

selected. 

p r o t e c t e d void expectSelect ion(LPPVertex v, boolean compoundStep) 
{ 

i f (_animator .getMode() == AnimatorMode.ShowMe II 
_animator .getShowStep()) 

{ 

j a v a . a w t . P o i n t p = _ a n i m a t o r . g e t T o o l L o c a t i o n ( t h i s ) ; 
_animator .ge tProblem() .moveCursor(p .x , p .y - 75, 

( in t ) v .getXO - 15, ( in t ) v . getY () ) ; 

wa i t (1500) ; 

// toggle show step 
if(_animator.getShowStep() && !compoundStep) 

_animator.setShowStep(false); 
} 
else 
{ 

while (true) 
{ 

LPPVertex selected = 
_visual.waitForVertexSelection(this); 

// "Show Next Step" was clicked 
if(_animator.getShowStep() || _animator.getMode() == 

AnimatorMode.ShowMe) 

{ 
_animator.getProblem().selectTool(this); 
expectSelection(v, compoundStep); 

break; 
} 

if (v == selected) 
{ 

addCorrectMove(); 
return; 

} 
else if(selected != null) 
{ 

addWrongMove(); 
javax.swing.JOptionPane.showMessageDialog(null, 

"Incorrect Item Selected\n\nExpected: " + 
v.name() 

+ "\nSelected: " + 
selected.name()); 

} 
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} 

} 

} 

Listing 26: The expectSelection method 

In the case of expectPut, behavior varies depending on the type of the value 

parameter. If it is a String or an Integer, the user is presented with a dialog prompt and 

must enter the expected value. Otherwise, the tool assumes that the expected value is a 

vertex selection and the user must selected the expected vertex. 

public void expectPut(LPPVertex v, String key, Object value) 

{ 
if(_animator.getMode() == AnimatorMode.ShowMe || 

^animator.getShowStep()) 
{ 

if (ValueType == Integer.class || ValueType == 

String.class) 

{ 
_animator.getProblem().showlnformation("In the dialog 
that appears, enter " + value); 

} 
else 
{ 

// assume vertex 
LPPVertex v2 = (LPPVertex)value; 

Java.awt.Point p = _animator.getToolLocation(this); 
_animator.getProblem().moveCursor(p.x, p.y - 75, 

(int)v2.getX() - 15, (int)v2.getY()); 
} 

v.put(key, value); 

// toggle show step 
if(_animator.getShowStep()) 

_animator.setShowStep(false); 
} 
else 
{ 

while (true) 
{ 

// "Show Next Step" was clicked 
if(_animator.getShowStep() || _animator.getMode() == 
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AnimatorMode.ShowMe) 

__animator . get Problem () .selectTool(this) ; 
expectPut(v, key, value); 
break; 

int or string? 
(ValueType == Integer.class || ValueType == 

String.class) 

String response = null; 
do 

{ 
response = JOptionPane.showInputDialog(null, 

"Enter the new " + key + " value:", 
this.getName(), 

JOptionPane.QUESTION_MESSAGE); 
} 
while (null != response && 0 == 

response.length() ) ; 
if (response.equalsIgnoreCase("" + value)) 
{ 

v.put(key, value); 
addCorrectMove(); 
return; 

} 
else 

{ 
addWrongMove() ; 

javax.swing.JOptionPane.showMessageDialog(null, 
"Incorrect Value Entered\n\nExpected: 
" + value.toString() + "\nEntered: 
" + response); 

// TODO: assume vertex 
LPPVertex lastSelected = 
_visual.waitForVertexSelection(this); 

// "Show Next Step" was clicked 
if(_animator.getShowStep()) 

{ 
expectPut(v, key, value); 

break; 

} 

LPPVertex vrtx = (LPPVertex) value; 
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if(lastSelected.toString().compareToIgnoreCase( 
vrtx.name()) == 0) 

{ 
v.put(key, value); 
addCorrectMove() ; 
return; 

} 
else 

{ 
addWrongMove(); 

javax.swing.JOptionPane.showMessageDialog(null, 
"Incorrect Item Selected\n\nExpected: 
" + vrtx.name() + "\nSelected: 
" + lastSelected.name()); 

} 
} 

} 
} 

} 

Listing 27: The expectPut method 

The suggested pattern of development is to define methods with appropriate 

signatures in the new tool class while leveraging the methods provided by the Tool base 

class. As an example, suppose a problem requires a tool that allows a user to select three 

items in a specific order. First, a new subclass of Tool should be created. Second, a new 

method with three parameters should be defined. The new method should pass each of 

the parameters to the expectSelection method of the base class. An example is provided 

in Listing 28. 

protected void expectSelectThreelnOrder(LPPVertex vl, LPPVertex v2, 
LPPVertex v3) 

{ 
expectSelection(vl); 
expectSelection(v2); 

expectSelection(v3); 
} 
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Listing 28: A sample method for a new Tool 

Any new tool should support Show Me Mode. Support for Show Me Mode 

usually entails the addition of a block of code at the beginning of any public methods. 

An abstraction for Show Me Mode is two consider two components. The first is the 

visualization, and it involves showing the user the expected action, and the second is the 

data seeding which involves setting values that allow algorithm code to proceed. Support 

for Show Me Mode in existing tools follows this abstraction. First, the correct action is 

shown to the user and second, and variables are set to the expected values. An example 

is outlined in Listing 29. 

protected void expectSelection(LPPVertex v, boolean compoundStep) 
{ 
if(_animator.getMode() == AnimatorMode.ShowMe || 

_animator.getShowStep()) 
{ 

Java.awt.Point p = _animator.getToolLocation(this); 
_animator.getProblem().moveCursor(p.x, p.y - 75, 

(int)v.getXO - 15, (int) v.getY () ) ; 

wait (1500); 

// toggle show step 
if(_animator.getShowStep() && !compoundStep) 

_animator.setShowStep(false); 
} 
else 
{ 

while (true) 
{ 

LPPVertex selected = 
_visual.waitForVertexSelection(this); 

// "Show Next Step" was clicked 
if(_animator.getShowStep() || _animator.getMode() == 

AnimatorMode.ShowMe) 
{ 

_animator.getProblem().selectTool(this); 
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expectSelection(v, compoundStep); 
break; 

} 

Listing 29: Show Me Mode Support in the expectSelection method 

The first if block checks if the system is in Show Me Mode or Show Next Step 

Mode. If this is the case, the cursor is moved to the location of the expected selection. 

Additionally, the Show Next Step Mode flag is toggled is this is not part of a compound 

step. A compound step is anything that involves more than one user action. An example 

would be if the user was expected to select an item, and enter a new value for it. At this 

point, the selection would be complete. The else block (which is the execution path if the 

first if block is not entered) also checks for the Show Next Step Mode and calls itself if 

the system is in Show Me Mode or Show Next Step Mode. This code may seem 

duplicitous, but it is needed since the system could enter Show Me Mode or Show Next 

Step Mode in two ways. First, the system could enter either mode before the call to 

expectSelection. In this case, the code in the if block will be executed and the method 

will return. Second, if the user is in the middle of an algorithm and the system is 

currently waiting for a selection, the system would continually execute the while loop in 

the else block. The seemingly duplicitous check for Show Me Mode or Show Next Step 

Mode will allow the method to exit the loop and return. 

As a reference, the implementation of the PickEdgeTool is provided in Listing 30. 

The PickEdgeTool is intended for use when a user selected two vertices to indicate 

selection of this adjoining edge. 
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package edu.sjsu.cs.1pp.tools; 

import edu.sj su.cs.lpp.graph.LPPVertex; 

public class PickEdgeTool extends Tool 
{ 

public void expectEdge(LPPVertex vl, LPPVertex v2) 
{ 

while (true) 

{ 
LPPVertex selectedl = 

_visual.waitForVertexSelection(this); 
LPPVertex selected2 = 

_visual.waitForVertexSelection(this); 
if (selectedl == vl && selected2 == v2 || selectedl == 

v2 && selected2 == vl) 
{ 

addCorrectMove(); 
return; 

} 
else 
{ 

addWrongMove(); 
javax.swing.JOptionPane.showMessageDialog(null, 

"Incorrect Edge Selected\n\nExpected: " + 
vl.name() + "-" + v2.name()); 

} 
} 

} 
} 

Listing 30: The implementation of PickEdgeTool 

5.3 Adding a Layout 

A problem's visualization is driven by its layout. Each problem is required to 

associate itself with a layout. New problem types may require the addition of a layout 

not supported by the framework. As required, support for new layouts can be added to 

the framework. 
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This framework utilizes the JUNG framework for its visualizations. Accordingly, 

adding support for a new layout requires an extension of JUNG's AbstractLayout class. 

All layouts in the framework are derived from this class. Listing 31 depicts an extension 

of the AbstractLayout class. 

package edu.sjsu.cs.lpp.engine; 

import edu.uci.ics.jung.graph.Vertex; 
import edu.uci.ics.jung.visualization.* 

public class ArrayLayout extends AbstractLayout implements 
LayoutMutable 

Listing 31: A extension of AbstractLayout 

The addition of a new layout will most probably stem from a need to control the 

positional placement of items in the visualization. Varying problem types can require 

linear, random, or other placement of items in the visualization. To add a new layout, 

first, create a subclass of AbstractLayout and second, override the initializeLocations 

method. 

The new implementation of initializeLocations will most likely enumerate the 

items in the visualization and set location information for each. An enumeration of the 

visualization elements can be obtained by calling the method getGraph, and positional 

information can be persisted via a call to the setLocation method. Listing 32 illustrates 

how LPPGraph enumerates the items and sets location information to generate random 

placement of vertices. 

dOverride 
protected void initializeLocation(Vertex v, Coordinates coord, 

56 



Dimension d) 
{ 

double x = 20 + Math.random() * (d.getWidth() - 40); 
double y = 20 + Math.random() * (d.getHeight() - 40); 

coord.setX(x); 
coord.setY(y); 
((LPPVertex) v).setLayout(this); 

} 

Listing 32: initialize!.ayout from LPPGraph 

As a reference, the implementation of the ArrayLayout layout is provided in Listing 33. 

package edu.sjsu.cs.lpp.engine; 

import Java.awt.Dimension; 
import java.util.Collection; 

import edu.uci.ics.jung.graph.Vertex; 
import edu.uci.ics.jung.visualization.*; 
import edu.sj su.cs.lpp.graph.LPPGraph; 
import edu.sj su.cs.lpp.graph.LPPVertex; 

/* * 

* Lays out the nodes in a linear fashion. 
* @author cay 

V 
public class ArrayLayout extends AbstractLayout implements 

LayoutMutable 
{ 

public ArrayLayout(LPPGraph g) 
{ 

super(g); 
} 

@Override 
protected void initializeLocations() 
{ 

super.initializeLocations (); 
final int DISTANCE = 5; 

int maxx = 0; 
int maxy = 0; 

for (LPPVertex node : ((LPPGraph) getGraph()).nodes ()) 
{ 
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Dimension dim = node.getPreferredSize (); 
if (dim.width > maxx) maxx = dim.width; 
if (dim.height > maxy) maxy = dim.height; 

} 

int x = DISTANCE; 

for (LPPVertex node : ((LPPGraph) getGraph()).nodes ()) 
{ 

int dl = maxx / 2; 
x += dl; 
getCoordinates(node).setLocation(x, maxy / 2); 
x += maxx - maxx / 2 + DISTANCE; 
node.setLayout(this); 
node.setMinimumSize(new Dimension(maxx, maxy)); 

} 
} 

public void update() 
{ 

initialize_local(); 

initializeLocations (); 
} 

protected void initializeLocation(Vertex v, Coordinates coord, 
Dimension d) 

{ 
double x = ((LPPVertex) v).getX(); 
double y = ((LPPVertex) v).getY(); 
coord.setX(x); 
coord.setY(y); 

} 

dOverride 
public void advancePositions() 

{ 
} 

@Override 
protected void initialize_local_vertex(Vertex argO) 

{ 
} 

public boolean incrementsAreDone () 
{ 

return true; 
} 

public boolean islncremental() 

{ 
return false; 
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} 

} 

Listing 33: The implementation of ArrayLayout 

5.4 Adding an Effect 

Effective visualizations of algorithm execution often require visual effects. The 

addition of a new problem type may require the addition of a new effect. Adding an 

effect requires two steps. First, the new effect must be added to the Effects class in the 

effects package. Second, the new effect must be invoked by the problem. 

The Effects class is part of the effects package which contains a series of classes 

that power the visualization effects of the framework. The suggested manner of adding 

an effect is to add a method to Effects class. Additionally, this method should be invoked 

from a method in the Problem base class. Usually, a problem's run method invokes 

methods in the Effects class. 

This framework uses the Timing framework to enable effects that occur over a 

time span. Pulsation and text movement are examples of such effects. Such effects 

require the addition of a method that is called at every interval in the duration of the 

effect. The straightLine effect provides an intuitive implementation. This effect moves 

an item along a liner path. The movement is accomplished by setting the position of the 

item at every interval in the duration. Listing 34 outlines how this is implemented in the 

straightLine effect. It may be helpful to use this as a template for any new effects. 

public static Animator straightLine(final Locatable object, final 
double xl, final double yl, final double x2, final double y2) 
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return new Animator(DEFAULT_DURATION, new TimingTargetAdapter() 

{ 
@Override 
public void timingEvent(float t) 
{ 

double dx = x2 - xl; 
double dy = y2 - yl; 
double x; 
double y; 
x = xl + t * dx; 
y = yl + t * dy; 
object.setX(x); 
object.setY(y); 

} 
}); 

Listing 34: The implementation of the straight line effect 

Once the new effect has been added to the Effects class, it is necessary to invoke 

it from the problem. Effect invocations often occur after a user action. A common 

scenario is to perform an effect after the user has selected an item. Listing 35 illustrates 

how to pulsate an item's borders after user selection. The effect name is Glow and it is 

invoked via calls to the glow method. 

selectTool(putTool); 
putTool.expectSelectAndPut(vertex, "key", value); 
vertex.put("color", Color.ORANGE); 
glow(vertex); 

Listing 35: Pulsating an item after selection 

As a reference, the implementation of Prim's run method is given in Listing 22 to 

illustrate the invocation of effects in the Effects class. 
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6 Conclusion and Future Work 

6.1 Conclusion 

Our initial goals were to create a framework that enabled active learning by: 

allowing for instructors to enable instances of a problem type by making a minimal 

amount of modifications to existing algorithm code, allowing students to iterate through 

visual representations of the intermediate steps of algorithm executions, and allowing 

random generation of problem instances. Additionally, it was decided that the framework 

should support modes in which the entire execution of an algorithm or the execution of a 

step is shown without user interaction 

As pertains to the goal of enabling new problem instances with minimal 

modifications to existing algorithm code, the current framework performs satisfactorily. 

The changes to existing code in the implementations of Prim's algorithm, Insertion sort 

and Heap sort were minimal, and the majority of the required effort dealt with tool and 

direction setup. 

Gauged against the goal of allowing students to iterate through visual 

representations of the intermediate step of algorithm execution, the current framework 

performs satisfactorily. A user can iterate through each step of the execution of Prim's 

algorithm, Insertion sort, and Heap sort. 
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With regard to the goal of allowing random generation of problem instances, the 

current framework performs satisfactorily. Every instance of Prim's algorithm, Insertion 

sort and Heap sort includes randomly or pseudo randomly generated data. 

Finally, with respect to the goal of the framework supporting modes in which the 

entire execution of an algorithm or the execution of a step is shown without user 

interaction, the current framework performs satisfactorily. 

6.2 Future Work 

The uniqueness of the framework lies in how easily it can be extended or adapted 

to new problem types and tools. In general, the framework should be augmented to 

support a larger variety of animations and should interface with a larger variety of 

systems. 

Currently, the framework supplies the infrastructure for the following three 

problem types: undirected graphs, trees and arrays. Support for directed graphs and hash 

tables should be added since they are extensions or existing supported problem types. 

Additionally, support for problem types involving representations like linked lists and B-

trees will likely fuel adoption. 

Several responses from the initial usage included suggestions for the framework. 

Most prevalent among the suggestions was an enhancement to the context sensitive 

information display. At present, information is displayed for the current problem and the 
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currently selected tool. A potential enhancement would be to display action sensitive 

information. Specifically, respondents requested a legend for any color coding, and a 

reminder about their last action. 
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