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ABSTRACT

GULF OF CALIFORNIA PLEISTOCENE AND MODERN MOLLUSCAN
COMPARISON AS A TEST FOR GLOBAL CHANGE

by Carlos E. Cintra Buenrostro

Marine assemblages experienced distinct temporal changes related to climate and
sea level changes during the past several hundred thousand years. To evaluate the
potential effects of these changes on marine mollusc richness and similarity, modemn
assemblages associated with rhodolith beds in the Gulf of California were compared to
their fossil counterparts that experienced higher temperature (~ 3° C) and sea level (~ 6
m), approximately 125,000 years ago. A combined total of 219 taxa were found in fossil
(F) and modern (M) assemblages. In general, richness was significantly greater in F than
in M, and differences between assemblages suggest F is a time-averaged deposit.
Variation in similarity between F versus M was greater than that within F, which may be
a strong indication of change in assemblage taxonomic composition. The results suggest
the mollusc assemblage changed over time, but the amount of change is difficult to

quantify due to time-averaging.



Altlougl Uhe fo11il record casmot be wstd routinely T ludy details of population and
assenllage intractions and dyramics, A can reveal patlerns of avsaciation and clasge in
avsenblage comporFion aven Yime seales Ul are besyord Ue rsack of seoriology, avd To whick
modirs. patlernis carmel seoessanily be eotrapolated.

Valestine and Jablonsbi (1993).



Tcmwmwm,wwwwfﬂm

Tcn-you'louNM‘&V and A. Miclelle

memal«/ﬁyt{-wudwnywma, "mﬁq-lyw.’)

Vi



Buscando en el vacio me encontre con la materia.

A través del andar he ido conociéndola,

sabiendo muy poco de ella,

preguntando y urgando entre los que dicen haberla estudiado
y todo esto me ha llevado a innumerables viajes;

en los que me tope a la ignorancia

mala consejera pero dadivosa de maiias y malos habitos,

a la que considere amiga por momentos,

pero defraudome y causome sentir

esta realidad de no saber nada.
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There’s a dreamer

Who wishes to solve his problems,

but feels lonely even beside his girlfriend,

one of his greatest supports during those times,
and life is running

to introduce him into marine sciences

because he wants to learn sea mysteries and life,
which takes him away from his family and friends
something hard to do,

especially in a strange country,

but he is trying his best

Jjust to be the person he always dreamed.
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1. Introduction

The effects of global climate change on assemblages of marine organisms are, at
present, difficult to predict, but good predictions are imperative since food resources from
the sea are difficult to replace and the fisheries industry employs and supports directly
and indirectly a large proportion of the human population (Fields et al., 1993). How
might present environmental change affect modern assemblages? A logical approach to
this question is to look at the geologic past (Burke et al., 1990). By using the fossil
record, we can begin to test whether assemblages are constant or ephemeral through time
and to relate the degree of assemblage persistence to global environmental change. This
has, for example, been done with coral reefs whose fossil records are comparatively good
(Pandolfi, 1996; Pandolfi and Minchin, 1995).

The Gulf of California is a region of high diversity of Pleistocene and recent
benthic faunas of the Tropical Panamian Province (Valentine, 1961). Prominent
formations of Pleistocene fossil bearing marine sediments (formed during the sea level
high stand of oxygen isotope substége Se, LS. 5e, ~125,000 years old; Aharon, (1983) are
common and well preserved along the coast. These foss?l rich deposits, commonly called
shell beds, contain high concentrations of invertebrate bioclastic material representing
community, storm, beach berm, tidal channel or current/wave-winnowed beds (Meldahl,
1993). The recency of LS. Se is especially relevant for evaluating global climate change
questions because the geologic record of the earth’s most recent past has better time
resolution than earlier geological periods, contains extant faunas, and is the closest to

present conditions (Burke e al., 1990). Moreover, subtrcpical and tropical ecosystems
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appear to have suffered disproportionately high levels of extinction during past
environmental changes (Jablonski, 1989), and may thus be particularly sensitive to
climate change. The comparison of fossil and modern faunas in these regions is the
primary focus of many global change studies (Wilson, 1992).

Knowledge of the recent geological history of living reefs is essential to interpret
their long-term assemblage dynamics (Jackson, 1992). The contribution of rhodoliths,
unattached nongeniculate coralline algae, to sediments and fossil assemblages is
increasingly being assessed by geologists and used to establish paleoenvironmental
conditions (Bosence, 1983; Johnson and Hayes, 1993). Rhodolith-forming algae can be
the most important carbonate producers in shallow subtropical/temperate waters (Foster
etal., 1997), and can record and preserve information on depth, geography, temperature
and prevailing hydraulic energy (Bosence, 1983). The worldwide distribution of modemn
and fossil rhodolith assemblages gives them an advantage over geographically limited
coral reefs as environmental indicators. A fossil rhodolith bed is thus a potential record
of paleontologic and stratigraphic information that can be compared to a modern bed.
The abundance of modern rhodolith beds and the occurrence of widespread, well
preserved Pleistocene rhodolith assemblages in the southern Gulf of California have only
recently been recognized (Steller and Foster, 1995; Foster et al., 1997) and suggests such
comparative studies in this region would be particularly fruitful.

The Quaternary was a period of major environmental changes, possibly greater
than at any other time in the last 60 million years (Bradley, 1985). It is now accepted that

sea level has risen ~100 m between 18,000 and 6,000 years ago (during the Holocene
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transgression) (Kennett, 1982; Bradley, 1985), after which time sea level has remained
close to that of the present day. By 5,000 years ago, sea level was within 5 m of its
present level. During LS. Se sea level was 6 m above the present level (Kennett, 1982).
Mollusc data indicate that water temperatures along the western coast of North America
were significantly cooler during the Last Glacial Maximum (~18,000 years), and that
biogeographic regimes moved south as a result (Fields et al., 1993). In contrast
Pleistocene marine assemblages in California, the Gulf of California and the central
Pacific experienced warmer climatic conditions (~2 — 3° C) and higher sea level (~5 — 10
m) during /.S. 5e (~125,000 years ago) (Ortlieb, 1987; Valentine, 1989; Paulay, 1991).
Subsequent warming caused a northward shift in species ranges and additional warming
cause these ranges to shift further (Wise and Schopf, 1981; Davis, 1986; Valentine, 1989;
Fields et al., 1993; Valentine and Jablonski, 1993; Di Michelle, 1994; Enquist et al.,
1995). Thus, the differences between LS. Se and modern assemblages can indicate
changes that may occur as a result of future global warming, as well as how did the
assemblages persisted (or changed) since 125,000 years ago. Predicting assemblage
response to global climatic warming, however, becomes particularly difficult as the
forecasted temperature increase exceeds that of any period of the last 120,000 years. The
paleoecological record reveals that non-analog assemblages and our ability to predict
assemblage response to climate change diminishes as climate parameters move beyond
the boundaries of existing climates. Future climates may lie outside not only the existing
climate domain, but also outside our paleoclimate database and outside the climate to

which existing species are evolutionarily adapted (Graham and Grimm, 1990).



Molluscs are the most conspicuous fauna inhabiting rhodolith beds in the
southwestern Gulf of California (Steller, 1993; Foster et al., 1997; pers. observ.), and
qualitative observations suggest that modern-Pleistocene species correspondence is high
in the region. A perfect correspondence is unlikely. A critical question is: do observed
differences reflect real differences in assemblage structure, or other effects (geographic,
taphonomic, etc.)? If the former, predictions about global climatic change effects can be
made (assuming the predicted change is within the range of past change). If not, the
question is: what are these other effects, and can they be eliminated to determine real
differences in assemblage structure? For example, differences between modern and
Pleistocene assemblages may indicate the vagaries of fossil preservation. If a species is
present in the modern fauna but absent in the Pleistocene fauna, this may reflect
ecological differences (modern species could not tolerate Pleistocene conditions in that
area) or preservation failure (the species was present in the assemblage but was not
preserved). If differences reflect effects other than environmental change, then at least
the faunal composition in each formation can be characterized, extending the time frame
of observations on species and assemblage behaviors in the Gulf.

In this study, modern and Pleistocene (LS. 5¢) molluscan marine assemblages
associated with rhodolith beds in the southwestern Gulf of California at Punta Chivato
and Punta Galeras-Canal de San Lorenzo, B.C.S., México (Fig. 1) were compared.
Molluscs were selected because nearly all of the marine mollusc species that presently
occur along the Pacific coast of North America also occur virtually unchanged in

Pleistocene deposits in the same region (Valentine, 1989; Kidwell and Bosence, 1991).



Thus, it’s appropriate to use Pleistocene samples as an approach to test how future global
climate change might affect molluscan assemblages associated with rhodolith beds in the
southwestern Gulf of California. Also, both modern and Pleistocene molluscs are well
studied in the Guif (Keen, 1971; Brusca, 1980; Bernard et al., 1991; Meldahl, 1993;
Meldahl and Cutler, 1992; Meldahl et al., 1997), are generally well preserved (Kidwell
and Bosence, 1991; Kidwell and Flessa, 1995; Libbey and Johnson, 1997) and most
studies that compare modern, death and fossil assemblages focus on this group.
Differences between modern and Pleistocene mollusc assemblages were
documented, a determination if these differences reflect real assemblage changes versus
geographic or preservation effects was performed. To determine if the Pleistocene
mollusc assemblage (bivalves and gastropods) represents a once living local assemblage
(e.g. rhodolith bed) that persisted over geologic time or if it is an artifact of accumulation
over time, three assemblage attributes were compared: 1) number of species (richness), 2)
rarefied species richness, and 3) similarity between modern and Pleistocene assemblages.
This information was used to distinguish among the following models: Model I.
Pleistocene deposits are representative of a once living assemblage in a rhodolith bed (a
“snapshot” assemblage), Model [I. Pleistocene deposits are time averaged rhodolith
beds, Model III. Pleistocene deposits are an accumulation of molluscs from different
habitats, Model IV. Pleistocene deposits are the result of a combination of the previous
models, and Model V. Pleistocene deposits have lower values of the above assemblage
attributes than modern assemblages due to preservation losses. If Model I is accepted,

then modern-Pleistocene comparisons can be used to indicate how these assemblages



changed since the Pleistocene, and thus predict how they may change as a result of future
global warming and sea level rise. However, Model II is probably valid based on the
high concentration of shells and rhodoliths, high species richness, dominance of
disarticulated shells not in life position and evidence of strong wave and current
winnowing (e.g. coarse sediment grain sizes and cross-bedding) common characteristics
of other Pleistocene time-averaged deposits (Staff et al., 1986; Fiirsich and Aberhan,
1990; Kidwell, 1991; Kidwell and Bosence, 1991; Kidwell and Flessa, 1995).

Time-averaged fossil deposits, those in which many generations of individuals are
preserved within one stratigraphic layer, may record and mix a wide variety of
environmental conditions and ecological interactions (Flessa and Kowalewski, 1994).
Removing time averaging effects is critical to the interpretation of the past histories of
marine ecosystems (Staff et al., 1986; Fiirsich and Aberhan, 1990; Kidwell and Bosence,
1991; Kidwell and Flessa, 1995; Pandolfi and Minchin, 1995). To test the null
hypothesis that the Pleistocene samples are drawn from the same population but more
time-averaged than modern samples, artificial time averaging was done by combining
modern samples one by one to mimic time averaging. An additional taxa richness
reduction to the lowest value observed (rarefaction analyses) was also used to test time
averaging.

This approach also helped to determine if Pleistocene deposits reflect their ancient
source assemblage and whether the molluscan assemblages persisted through geologic
time. A fidelity (percent of modern species occurring as fossil in the same site) analysis

was performed, indicating how much assemblage variation occurred since the 1.S. 5e



Pleistocene. How environmental change affected mollusc assemblages may be

determined if there was not much variation.

2. Materials and Methods
2.1 Study Areas

Modern rhodolith beds have been found in two main environment types: 1) gently
sloping, subtidal soft bottoms with moderate wave action (wave beds; 2 to 12 m deep),
and 2) relatively level bottoms in channels with tidal currents (current beds; below 12 m)
(Foster et al., 1997). Pleistocene (/.S. 5e) and modern mollusc assemblages were
sampled in two general areas in the Gulf of California. Modern beds were sampled as
near as possible to the locations of Pleistocene beds.

One area was Punta Chivato and Bahia Concepcidn (Fig. 1). Punta Chivato is a
small headland abutting directly into the open waters of the Gulf of California, and
affected by seasonal shifting winds and high wave energy from the north, east and south
(Libbey, 1995; Johnson, 1996; Libbey and Johnson, 1997; Johnson and Ledesma-
Vazquez, 1999). Consequently, all of its shores rise abruptly out of the water. From the
shoreline the land rises abruptly to elevations between 60 to 100 m (Johnson, 1996).
Abundant carbonate debris accumulates along the shoreline, indicative of high nearshore
productivity in shelled invertebrates and calcareous red algae (Ortlieb, 1984). Carbonate
shoreline deposits are important to this study as they are also present in the Pleistocene
record, helping to establish a continuum between the past and present in the Punta

Chivato area (Meldahl, 1993; Libbey and Johnson, 1997). Ortlieb (1984) interpreted a



succession of terraces at elevations of 15, 18, 25, 40, 50 and 75 m above sea level, the
lowest two being Pleistocene (LS. 5¢). Many of the Pleistocene sections exposed in
coastal arroyos at Punta Chivato are suggestive of the vertical stratification in modern
current beds. The modem rhodolith bed in Punta Chivato (Fig. 1) does not correspond to
any Foster et al. (1997) categories; its a “deep” (~12 m) subtidal bed apparently
controlled by wind generated waves.

Modern rhodolith beds in Bahia Concepcién were sampled to mimic time
averaging by adding them individually to modern samples from Punta Chivato (see
methods below). These beds correspond to Foster et al. (op. cit.) wave beds. They are
shallow subtidal (<12 m) assemblages controlled by water motion and sedimentation
(Steller and Foster, 1995). Mollusc assemblages among Bahia Concepcidn habitats are
overlapping and gradational, with many species shared among habitats and high
variability within habitats (Meldahl et al., 1997).

In the second area (Punta Galeras; Fig. 1), rhodolith beds occur in the San
Lorenzo Channel (Schlanger and Johnson, 1969; Foster et al., 1997) an area of strong
tidal currents between the islands and the coast (Roden, 1964; Marrack, 1999). These are
“deep” (= 12 m) subtidal beds controlled by tidal currents (Foster et al., op. cit.). Van
Andel (1964) described the nearshore sediments as calcarenite shelf facies characterized
by coarse, fairly well-sorted calcarenite sand containing a variety of skeletal debris, and
Schlanger and Johnson (1969) recognized distinct fossil depositional facies, some of
which were characterized by the presence of abundant rhodoliths. The approximately 1

m thick Pleistocene (IS. Se; Sirkin et al., 1984) deposit exposed along the shoreline at



Punta Galeras (Fig. 1) is a matrix of intact rhodoliths, molluscs and cobbles and may be
representative of the modern beds in this wave exposed area (Foster et al., 1997; K.

Meldahl pers comm.).

2.2 Methods
2.2.1 Sampling and identification

The mollusc assemblages in Pleistocene and modern rhodolith beds were sampled
in both areas. At Punta Chivato (PC), Bahia Concepcién (BC) and Canal de San Lorenzo
(CSL) (Fig. 1) modern beds were sampled with SCUBA during four field trips (one in
March 1997, two in June 1997 and one in March 1999). At PC and CSL ten random
samples were collected at minimum 50 m from each other using a steel cylinder with a
saw-like edge buried into the substratum. Material within the encircled area was
collected to ~20 cm deep and sieved underwater through a 1 cm mesh screen. At BC,
each sample was from one of the beds described in Steller and Foster (1995). A sample
was obtained by combining 3 to 4 subsamples collected along the 3 to 12 m depth

gradient in each bed. For all samples, the total volume sieved was ~200,000 cm’.

Sample volumes after sieving was ~20,000 cm’.

Exposed strata of Pleistocene rhodolith deposits at PC and Punta Galeras (Fig. 1)
were sampled systematically by choosing areas with high abundance of preserved
rhodolith material and molluscs. The Pleistocene sediments were easily disaggregated,
and thus could be bulk-sampled like the modern samples. During June 1997, ten samples

were collected at each location and sieved through a 1 cm mesh screen. For all samples,
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the total volume sieved was ~50,000 cm>. Sample volumes after sieving were ~10,000
cm’. The difference in sieved volume between the modern and Pleistocene samples was
due to low abundance of material in the former. Standardization of units (e.g.
individuals/cm®) was not appropriate given the composition of samples and variation in
total sieved volumes.

Molluscs were sorted and identified to the lowest taxonomic level possible using
Durham (1950), Keen (1971) and Skoglund (1991, 1992). Scallops (Pectinidae) and
limpets (Archaeogastropoda) were excluded from the analyses because the key features
for identification (auricles and internal shelf;, respectively) were not preserved in the
majority of the fossilized individuals. The abundance of each species beak or apex was
recorded for each sample. All clam valves were counted and divided by two to represent

bivalves (all data in Appendix 1).

2.2.2 Analyses

Species richness, rarefied richness and similarity were compared between the
modern and Pleistocene data sets. The analyses (similarity, raw and rarefied richness)
were performed at the taxonomic levels of all taxa (meaning all taxonomic categories
identified to their lowest level) and genus, and their trends compared.

Several lines of evidence (e.g. rarefaction of replicate live samples and maximum
individual longevity in an assemblage) suggest that several sampling decades in coastal
subtidal settings are necessary to improve the sampling of ephemeral and otherwise

sparse species to match time averaging (Kidwell and Flessa, 1995). Sampling over such
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an extended period was not possible. Instead, to test for time averaging in Pleistocene
rhodolith deposits, samples from the ten modern rhodolith beds in Bahia Concepcién
(BC) were used. Since within habitat assemblages sum within habitat perturbations in
assemblage state or physical environment (Kidwell and Bosence, 1991), using samples
from additional modern rhodolith beds in different habitats may compensate for the lack
of time replication. Time averaging was tested by adding one by one each of the ten
modern samples from BC to PC modern bed samples, to mimic shell accumulation
through time. To achieve a total of 10 modern samples combined, modern samples were
added in two different ways: 1) by randomly selecting a sample from each locality and 2)
by adding each BC to PC samples in the numerical order in which they were collected
(Appendix 1). Both approaches gave similar results and the second procedure is
presented in the results section. This allowed a test for time averaging (Model II) in the
Pleistocene beds. The assumption of statistical independence was violated in mimicking
time averaging because individual sample values were used more than once. Therefore in
this case, analyses on raw number and rarefied richness were done using only descriptive
statistics (e.g. mean and standard error).

A major effect of time averaging is to increase taxonomic richness in an
assemblage (Kidwell and Bosence, 1991; Flessa, 1993). Rarefaction analyses were
performed to correct for differences in raw richness. Rarefaction is a statistical method
for estimating the number of species expected in a random sample of individuals
(Rozenzweig, 1997). A reduction of taxa number to the lowest expected number

observed among a group of samples could remove the effect of taxa accumulating



through time, providing an alternative to test for time averaging (Model IT). Rarefaction
should remove the effects of time averaging on richness in the Pleistocene beds. If it
does not, the differences between modern and Pleistocene may still be due to time
averaging, but may also reflect other effects (e.g. habitat averaging or Pleistocene
deposits naturally richer than modern beds). If no significant differences are detected
between Pleistocene and modern samples, time averaging effects may have been removed
by the analyses. Alternatively, if significant differences remain, but modern sample
richness overlap more Pleistocene values than those for raw richness numbers rarefaction
suggests time averaging in Pleistocene deposits. Rarefaction is independent of species
names, but assemblages to be compared by rarefaction should be taxonomically similar
(Krebs, 1999). Therefore, after analyzing the total molluscan assemblages in each area,
the faunas were split into bivalves and gastropods, each analyzed separately, and their
trends compared with analyses at the Phylum level.

A two-sample t-test, oo = 0.05 (testing each area separately, e.g. Punta Chivato
modem bed versus Pleistocene bed, Punta Galeras modern bed versus Pleistocene bed,
etc.) was used to determine if raw and rarefied richness were different between modern
and Pleistocene beds. Any necessary data transformations are given in the resuits.
Several desired numbers of individuals are required by the rarefaction analysis. In this
study 25 categories were used (2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90,
100, 125, 150, 175, 200, 250, 300, 400 and 500) however, only results for the first 10
categories were obtained. Because rarefaction yielded several expected numbers of

species for each sample, each expected number was used in the statistical analyses (two-



sample t-tests). Just one rarefied species expected number is presented, it was selected
based on confidence intervals and precision estimates (standard errors, SE). Normal
distributions are very infrequent in death assemblages from bay environments (Cummins
et al., 1986a) so non-normality was expected in Pleistocene deposits. Kolmogorov-
Smirnov tests were used to check normality (Zar, 1996; Sokal and R&hlf, 1997). Non-
normality was common (either with or without transformed data), but two sample t-tests
were still used with non-transformed data because such tests are robust to violations of
this assumption (Underwood, 1997).

Taxonomic composition among rhodolith bed samples (modern and Pleistocene)
was compared using species presence-absence data. While coarser than relative
abundance, presence-absence is likely more robust because of factors that could alter
relative abundance in either the modern or the Pleistocene (e.g. selective harvesting of
commercial species from the modern beds, or selective preservation in the Pleistocene
beds) (Mc Donald, 1976; Fiirsich and Aberhan, 1990).

Time averaging and Pleistocene-modern assemblage differences were examined
using similarity. Results using Punta Chivato data from all the available indices in
Kenney and Krebs (1998) were compared to determine which performs best based on
estimated precision (Appendix 2). The values from each analysis were statistically tested
under the null hypothesis of no differences in assemblage similarity between Pleistocene
and modern samples, and within the Pleistocene samples. If similarities among
Pleistocene samples were less than similarities between Pleistocene and modern samples,

this would suggest high Pleistocene sample variation, implying that Pleistocene-modern
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samples should not be compared. Similarity analyses, in combination with rarefaction
analyses, is also used to test if time or habitat averaging effects were removed. If
similarities within Pleistocene samples and between Pleistocene and modern samples are
not significantly different, then averaging effects (time or habitat) may not be large
(supporting Model I) and the Pleistocene deposit may be used to evaluate future global
climate change effects.

Similarity analyses were performed using ANOSIM at oo = 0.05 (Primer.4
program, Plymouth Marine Laboratory, 1997) under the null hypothesis (Ho) of no
difference in similarities within Pleistocene samples and between Pleistocene and modern
samples. The ANOSIM coefficient R is ~0 if the Ho is true (Clarke and Warwick, 1994).
Sample interdependence can be a problem in similarity analyses because individual
sample values are used more than once. This problem may be compensated for by
randomization techniques (Sokal and R&hlf, 1997), and ANOSIM performs such a
procedure compensating for interdependence (R. Clarke, Plymouth Marine Laboratories,
pers. comm.).

Because habitat averaging may have an influence on Pleistocene deposits (Model
IIT), a literature search was used to determine where the “exclusive” Pleistocene taxa
normally occur. Distributional and habitat information was obtained from the taxonomic
references above and other published records (Oldroyd, 1924; Olsson, 1961; Wara and
Wright, 1964; Carpenter, 1967; Radwin and D’ Attilio, 1976; Santos-Galindo, 1977;
Houbrick, 1978; Mc. Lean, 1978; Bernard, 1983; Kaiser, 1997). To further test for

Model III, analyses were also done only at the species level, excluding taxa only found in
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the Pleistocene deposits. Analyses were performed assuming that even if some species
common in both times occurred intertidally, all could be present in a Pleistocene

rhodolith bed at the time of deposition.

3. Results
3.1 Composition of taxa
3.1.1 Lowest identified taxonomic level

A total of 30,433 shells were found, yielding 219 mollusc taxa in the modern and
Pleistocene beds combined (Appendix 1 and 3), representing 101 and 118 “species”, 59
and 63 “genera”, 27 and 31 families, 8 and 4 orders of bivalves and gastropods,
respectively. Twenty seven clam and 39 snail taxa could not be identified to species level
(Appendix 3), either because of damage or lack of appropriate identification within
Pleistocene taxa. Two bivalve and 3 gastropod generic identifications were doubtful due
to erosion or encrustations. Of the 101 bivalve taxa, 2 were undetermined, and of
gastropods, 6 out of 118 were undetermined (Appendix 3).

Geographically, there were 172 taxa in the Punta Chivato area (PC), increasing to
189 when Bahia Concepcién (BC) was included. Punta Galeras-Canal de San Lorenzo
(PG from here on) richness was 148. By class, PC had 84 bivalve (B) and 88 gastropod
(G) taxa, PC + BC had 92 B and 97 G, and PG had 66 B and 82 G taxa.

Overall, 16.4 % of total taxa were found only in the modern and 35.2 % found
only in the Pleistocene samples. Thus, 36 of the modern taxa were not found as fossils,

and 77 of the Pleistocene taxa were not represented in modern populations. Omitting BC
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samples, 24 modern taxa were not found as fossils, and 101 Pleistocene taxa were not
found in modern beds. “Exclusiveness” was geographically distributed as 41 taxa for PC
(14 Band 27 G), 18 for PC + BC (17 B and 1 G), and 30 for PG (9 B and 21 G).

Among the 101 total clams, 22 of the modern taxa were not found as fossils, and
16 of the Pleistocene taxa were not represented in modern population samples. If
samples from BC are omitted, the figures are 18 and 34 for modern and Pleistocene taxa,
respectively. Among the 118 snails, 14 of the modern taxa were not found as fossils, and

61 of the Pleistocene taxa were not represented in modern populations. Without BC, this

became 6 modern and 67 Pleistocene taxa.

3.1.2 Genus level

Geographically, there were 104 total genera in PC samples (increasing to 115
when BC was included), and 100 genera in PG samples. Composition by class was PC =
52 and 52, PC + BC =57 and 58, and PG =44 and 56 B and G taxa, respectively.
Overall, 15.2 % of total genera were found only in the modern and 27.3 % only in the
Pleistocene samples. Thus, 20 of the modern genera were not found as fossils, and 36 of
the Pleistocene genera were not represented in modern populations. Excluding samples
from BC there werel3 and 49 for modern and Pleistocene taxa, respectively.
“Exclusiveness™ was geographically distributed as 12 genera for PC (5 B and 7 G), PC +

BC had 12 (11 B and 1 G), while PG had 17 (5 B and 12 G).
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On average, taxa richness versus sample size in each locality leveled off around 6
samples suggesting a very robust estimation of richness in the present study (n = 10 / area

/ time).

3.2 Numerical analyses
3.2.1 Lowest identified taxonomic level

Based on total taxa, Pleistocene samples were richer than modern ones.
Segregation by class yielded a greater number of bivalve taxa in modern rhodolith beds,
while gastropods were richer in the Pleistocene beds (Table I). Averaged taxonomic
richness was greater in the more northern PC area (Table ). To achieve
homoscedasticity, total (T) and B richness within the PC samples from both times were
square root transformed for statistical analyses. Taxa richness was significantly higher in
the Pleistocene for all taxonomic levels (two sample t-tests g g5 (18): t = 7.6, P < 107 t=
5.93,P<10%t=7.59,P <107 for T, B and G taxa, respectively). No transformation
was necessary for PG samples, and taxa richness at all taxonomic levels was also
significantly higher in the Pleistocene (two sample t-testsgoss): t = 7.03, P < 10'7; t=
7.6,P<10%t=5.63,P <107 for T, Band G, respectively).

Expected number of individuals varied among rarefaction analyses, as explained
in methods, one was selected based on its performance (confidence intervals after
statistical tests). Selected expected number of individuals from rarefaction analyses were
35, 45 and 45 for T, B and G, respectively. Taxa richness of PC Pleistocene samples

remained significantly higher than modern beds at all taxonomic levels (two sample t-test
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00sasy: t=3.7,P<10%t=3.3,P=0.002andt=6.4,P <10%for T, Band G,
respectively). Although differences were highly significant, the number of modermn
samples overlapping Pleistocene sample within taxa richness (raw versus rarefied,
respectively) ranges between Pleistocene and modern samples increased from 0 to 4 for
T, 3 to 4 for B and G did not change.

Rarefied taxa richness of Pleistocene versus modern samples from PG was not
significantly different when expected number of individuals was 20 for T (two sample t-
testoos (18) = -1.1, P = 0.14). Bivalve rarefied richness was significantly higher in
Pleistocene samples when the expected number of individuals was 15 (two sample t-test
0.05 (18) = - 2.9, P = 0.005). Gastropod rarefied richness within PG samples was not
homoscedastic and square root transformation did not make it so. The statistical test was,
however, performed assuming robustness. Pleistocene sample richness was significantly
higher when expected number of individuals was 45 (two sample t-test g o5 15y = 3.2, P =
0.002). Although significant differences were detected at the class level, in general the
number of modern samples overlapping Pleistocene samples within richness (raw versus
rarefied, respectively) ranges between Pleistocene and modern samples increased from 2
to 5 for B and from 1 to 2 for G.

When modern PC samples were combined with modern BC samples to test for
differences in total richness between Pleistocene and modern samples, statistical testing
was not possible due to lack of independence. Descriptive statistics and trends suggest
total taxa were not different after combining the first 4 samples from BC with modern PC

samples. Further additions of BC samples yielded differences related to the bivalve fauna



(Fig. 2a). As more BC samples were added, the number of bivalve modern taxa exceeded
the Pleistocene, while gastropod taxa richness remained relatively constant until the last
four samples were added (Fig. 2a). Results for total rarefied taxa were similar (Fig. 2b).
Rarefaction comparisons are presented with a fixed (35) and variable expected number of
individuals based on their two sample t-test precision estimates (see above) and when
considering individually the more robust expected numbers, respectively. Given the
results and the test performance (graphic outcome), it is recommended to use only the
fixed number in future analyses as the expected trends won’t be detected with the
variable expected number of individuals.

Similarity within Pleistocene samples at PC was significantly higher than
similarity between Pleistocene and modern samples (ANOSIM test R = 0.86, R =0.78,R
= (.68 for T, B and G, respectively with P =0.001 in all cases). The same results and P
values were obtained for PG (ANOSIM test R=0.92, R=0.8, R=0.92 for T, B and G,
respectively). When combined samples were used to mimic time averaging the
differences remained and became slightly larger as BC samples were added to modern

PC samples (Table II).

3.2.2 Genus level

Overall, Pleistocene samples were richer than modern ones (Table III). Fossil PC
average taxa richness was higher than PG richness (Table III). Generic richness in PC
Pleistocene samples was significantly higher (two sample t-test g 05 13): t =6.92, P < 10'7;

t=523,P<10>:t=7.79,P <107 for T, B and G taxa, respectively). To achieve



homoscedasticity, square root transformation was necessary for bivalves in PG samples.
Generic richness between Pleistocene and modern samples in this region was alsc
significantly higher in the Pleistocene at all taxonomic levels (two sample t-test o5 (18): t
=6,P<10°%t=4.45P<10%t=5.36,P <107 for T, B and G, respectively).

Expected number of individuals varied among rarefaction analyses, as explained
in methods, one was selected based on its performance (confidence intervals after
statistical tests). Selected values were 30, 45 and 45 for T, B and G, respectively.
Generic rarefied richness between Pleistocene and modern samples in PC was still
significantly higher in Pleistocene samples at all taxonomic levels (two sample t-test g.os
():t=3.1,P=0.003; t=2.1,P=0.02and t=5.1, P < 10 for T, B and G, respectively).
Although significant differences were detected, in general the number of modern samples
overlapping Pleistocene samples within richness (raw versus rarefied, respectively)
ranges between Pleistocene and modern samples increased from 1 to 5 for T, 4 to 5 for B
and 1 to 2 for G.

Rarefied genera richness of Pleistocene versus modern samples from PG was not
significantly different when expected number of individuals was 20 for T (two sample t-
testo.os 18) = -1.4, P = 0.09). Bivalve rarefied richness was significantly higher in
Pleistocene samples when the expected number of individuals was 15 (two sample t-test
00518y = - 3.3, P=0.002). Gastropod rarefied richness within PG samples was not
homoscedastic and square root transformation did not make it so. The statistical test was,
however, performed assuming robustness. Pleistocene sample richness was significantly

higher when expected number of individuals was 15 (two sample t-testggs 18y = - 3.3, P =



0.002). Although significant differences were detected at the class level, in general the
number of modern samples overlapping Pleistocene samples within richness (raw versus
rarefied, respectively) ranges between Pleistocene and modern samples increased from 4
to 6 for B and did not change for G.

In summary, all statistical analyses (all taxa and generic level) in PC showed
greater molluscan richness (raw and rarefied) in the Pleistocene deposits. On the other
hand, PG did not show significant differences in total richness (all taxa or generic), but
analyses at the class level yielded significantly richer fauna (all taxa and generic) in the
Pleistocene.

Similarity within Pleistocene samples at both areas (PC and PG) was significantly
higher than similarity between Pleistocene and modern samples (ANOSIM test R = 0.82,
P =0.001 for both). When taxa were segregated into class the differences remained
(ANOSIM test R =0.77 and 0.58 for B and G, respectively in PC, and R =0.71 and 0.77
for B and G in PG, all at the same P value = 0.001). Because this generic approach was
used only to compare trends between the lowest taxonomic level identified and genus, the

fauna was not analyzed using combined modern (M) PC with MBC samples.

3.3 Distribution analyses
To evaluate time and habitat averaging within Pleistocene samples, the
distribution of taxa found only in these samples was evaluated. Of the 77 Pleistocene

taxa not found in modern samples, 16 were bivalves (a total of 48 shells), and 61 were



gastropods (726 shells). The difference may be related to better preservation of the
stronger snail shells.

Five clam taxa were damaged and could not be identified to species. Two
species, Mactra sp. cf. isthmica and Trachycardium panamense, have not previously
been recorded in the recent shell fauna within the Gulf of California. Mactra sp. cf.
isthmica has not been reported in the Pleistocene, but the record must await certain
species identification. Of the 10 species with information on bammemc distribution, all
occur within the sampled depth. Six of these also occur in the intertidal zone, and none
have been associated with calcareous algal environments (Table I[V).

Distribution analyses of Pleistocene “exclusive” taxa indicates that modern and
Pleistocene environments are highly comparable. Information was found on the
bathymetric distribution of 15 of the snail species; all but one (Tegula funebralis) occurs
within the sampled depth. Sixteen of the 33 species also occurred in the intertidal zone
and only Persicula imbricata has been associated with calcareous algae rubble (Table V).
Twenty eight snail taxa were not identified to species level duc to damage or
encrustations. Distribution analyses of the 33 remaining taxa indicated 4 species (P.
imbricata, Splendrillia sp. cf. arga, Tegula funebralis and Terebra hancocki) that have
not been previously recorded for the Gulf. Again, this first record of S. sp. cf. arga must
be considered tentative. The remaining 3 species were found only in the Pleistocene, and
are the first known records in the Gulf.

These distributional data indicate the Pleistocene deposits contain taxa not now

associated with rhodolith beds. The abundance of “alien” taxa was negligible (~2.4 % of
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the total individuals), but their contribution to taxonomic composition was substantial
(~35.2 %), and thus affected the analyses conducted on presence-absence data. To test
for “alien” effects additional analyses were done only at the species level, excluding all
“exclusive” Pleistocene taxa to remove possible habitat averaging effects. Overall,
Pleistocene samples remained richer than modern ones but differences were not as large
as in previous analyses. Segregation by class yielded similar results: bivalve taxa
richness was higher in modern rhodolith beds, but now gastropods were not richer than
bivalves in the Pleistocene beds (compare Table I versus VI). Average taxa richness was
greater in PC than in PG (Table VI). Pleistocene samples were also significantly richer
than modern in PC at all taxonomic levels (two sample t-test g o5 (13): t = 6.5, P < 10'6; t=
525,P<10>;t=7.1,P <107 for T, B and G taxa, respectively). Punta Galeras richness
showed similar results (two sample t-testg s (1): t =5.33, P < 10'5; t=555P< 10'5; t=
3.62, P <10 for T, B and G, respectively).

Rarefaction analyses were done after removing “exclusive” Pleistocene species.
Again, rarefied richness in PC Pleistocene samples was higher than in modern samples
(two sample t-test 05 18): t =2.67, P =0.008; t =2.71, P = 0.007 and t = 3.63, P < 10™ for
T, B and G, respectively) when expected number of individuals were 25, 45 and 25 for T,
B and G, respectively. The number of modern samples overlapping Pleistocene samples
within richness (raw versus rarefied, respectively) ranges between Pleistocene and
modern samples also increased from 1 to 6 for T, 4 to 5 for B and 1 to 3 for G.

Pleistocene Punta Galeras T rarefied taxa richness without “exclusive”

Pleistocene species became significantly higher than modern (two sample t-testg s (18) = -



2.42, P =0.013), expected number of individuals was 25. Bivalve rarefied richness
remained significantly higher in the Pleistocene when expected number of B was 15 (two
sample t-test g o5 18y = - 3.09, P = 0.003). A significantly higher Pleistocene rarefied G
richness (heteroscedasticity and assumed test robustness) remained within PG when the
expected number of individuals was 15 (two sample t-test s 1) = - 1.09, P = 0.14).
Again, there were more modem samples overlapping Pleistocene samples within the
compared richness (raw versus rarefied) T increased from 1 to 4 and B from 2 to 7.

Both (PC and PG) within Pleistocene similarities were significantly higher than
between Pleistocene and modern samples (PC: ANOSIM test R=0.75,R=0.75,R=
0.56 for T, B and G, respectively with P =0.001 in all cases. PG: ANOSIM testR =
0.84,R=0.75,R=0.78 for T, B and G, respectively with P = 0.001 for T and B, and P =
0.002 for G). Positive values of R indicate that similarities between Pleistocene and

modern samples tend to be lower than similarities within the Pleistocene samples.

4. Discussion and conclusions

Raw taxa richness was greater in the Pleistocene deposits than in any modern bed
(Table I, Fig. 2a). The richness of modern beds in Bahia Concepcién was closest to a
Pleistocene bed (Table I), suggesting that sampling additional modern rhodolith beds in a
different geographic area can compensate for the lack of time replication when testing for
time averaging effects. Greenstein and Curran (1997) reported a similar pattern for coral

assemblages at Devils Point.
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Mollusc richness (raw and rarefied) in modern and Pleistocene rhodolith beds was
significantly different. If the differences are attributed to greater richness in the
Pleistocene deposits expected global climatic change would have a positive effect on
molluscan faunas associated with rhodolith beds in the southwestern Gulf of California.
Alternatively, differences may be due to time averaging (Model II). The fact that
taxonomic richness remained higher in the Pleistocene even after pooling of modern
samples (MPC + MBC) further supports Model II. The absence of significant differences
for total rarefied PG richness (specific or generic) indicates some time averaging bias can
be removed with rarefaction analyses. However, it also suggests that the Pleistocene
rhodolith beds had a richer molluscan fauna when sea level and water temperature were
higher than today, again implying that future global climate change may not reduce the
richness of this particular fauna in the Gulf. Given all environmental fluctuation in
between the Pleistocene and modern deposits, the important question is how the
molluscan taxa persisted or changed as a result of changes in sea level and water
temperature? Most of the analyses (including rarefied richness) yielded significantly
higher richness in Pleistocene samples, which supports a time averaged Pleistocene
deposit. Furthermore, when “exclusive” Pleistocene species were removed to avoid
possible habitat averaging the differences in fauna composition between Pleistocene and
modern samples remained, supporting a time averaged hypothesis based on more modern
samples with overlapping Pleistocene values within richness (raw and rarefied) ranges.
Therefore, mollusc Pleistocene deposits associated with rhodolith beds in the

southwestern Gulf of California can be considered as within habitat time averaged



assemblages sensu (Johnson, 1960). While reworking of fossils cannot conclusively be
eliminated, it probably represents only a minor fraction of any Pleistocene sample.

Energy levels on the coast of Punta Chivato during the winter are, and probably
were in the Pleistocene, affected by waves refracted around it (Johnson and Ledesma-
Vazquez, 1999). The Pleistocene beds are sedimentologic concentrations as there are no
nonbioclastic matrices, and the shells have undergone some transportation, behaving as
sedimentary particles (Libbey, 1995). According to Meldahl (1993) large, robust and
well-cemented corals tend to resist displacement and transport better than molluscs. Thus
a greater proportion are preserved as autochthonous assemblage beds. Rhodolith beds act
similarly, but most rhodoliths in the sampled Pleistocene material were preserved as
small fragments. Corals were present (especially among Punta Galeras) and indicate
little habitat transport. For total PG rarefied richness (all taxa and generic) time
averaging bias was efficiently removed, could this be an effect of corals in Pleistocene
samples reducing the amount of interhabitat transportation or an artifact of combining
gastropod and bivalves? Because analyses at PC showed differences at all taxonomic
levels (both classes and Phylum) the second option is unlikely. Thus, its concluded that
PG is probably a within habitat time averaged deposit, while PC may have experienced
important out of habitat effects either by leakage or transportation.

Based on different shell presence (e.g. Turbo fluctuosus) Johnson (pers. comm.)
suggests that the PC molluscan fauna in Pleistocene rhodolith beds may be intertidal.
However, nowadays there is hardly any “intertidal” zone in the area. The relative

frequencies of the number of specimens associated with different substrata is indicative



of the habitat type (Russell, 1991) and the bulk sampled material was associated with
rhodolith beds (no living rhodoliths have been found intertidally in the Gulif), in a
subtidal environment, as suggested by Libbey (1995). Even if T. fluctuosus are
numerically more representative of an intertidal environment, they were also collected
alive (Appendix 1) supporting the assumption of taxa presence from two different
environments (intertidal and subtidal) used in habitat averaging analyses. Furthermore,
many of the Pleistocene sections exposed in coastal arroyos at Punta Chivato are
suggestive of the vertical stratification in modern current rhodolith beds. Based on
species composition and results, it seems that the Pleistocene deposit in PC was more like
Bahia Concepcion modern rhodolith beds if the deposit is merely time averaged and not a
mixture of Models II and III. The ~1m thick deposit exposed along the shore at Punta
Galeras is a matrix of intact rhodoliths, clams and cobbles and may be representative of
the modern beds in this wave exposed area (Foster et al., 1997). Unfortunately, due to
time averaging bias this could not be precisely determined.

Overall, there were 36 modern (~16.4 %) and 77 Pleistocene (~35.2 %) taxa not
shared, adding to > 50 % of all the taxa. When habitat averaging was removed, there was
a reduction among positive values of the ANOSIM coefficients, indicating an increase in
similarity between Pleistocene and modern samples and within Pleistocene assemblages
at both localities. Differences in similarity can be the result of stochastic processes of
dispersal and persistence, but this seems unlikely given suggested averaging (time and
habitat) effects. Differences in similarity between Pleistocene and modern samples and

within Pleistocene are attributed to the low amount of taxa overlap. Overall, PC data



show ~48 % taxa overlap, leaving around 52 % different, a much greater difference than
when specific samples are compared (Table VII).

Taxa not identified to species level (Tables IV and V, Appendix 3) may have had
an influence on the similarity results, but the generic analyses indicate this effect is not
important. Furthermore, in a comparison of biotas from different ages it is useful to
incorporate data from several levels in the taxonomic hierarchy in the same similarity
coefficient (Briggs and Gall, 1990). Segregation by class also yielded the same results as
the Phylum similarity analyses. As expected, a few variations in particular analyses were
observed (e.g. P values varied an order of magnitude but remained appropriate when
testing the null hypotheses). ANOSIM coefficients varied by as much as 15 %
(gastropod analyses for PG), but P values were the same in all the analyses. Thus, to save
time in future, similar mollusc comparisons in the studied areas and environments there is
no need to segregate taxa into class components.

Positive values of ANOSIM coefficient (R) indicate that similarities between
Pleistocene and modern samples tend to be lower than within the Pleistocene, suggesting
that the taxonomic composition of the assemblages changed somehow between the
Pleistocene and the modern. Four factors may influence the degree of taxonomic
similarity: age, environment, taphonomy and recorded diversity (Briggs and Gall, 1990).
While relative age may have an insignificant influence on the comparison between
geologic times, the effect of environment may be pronounced. However, this was not the
case because most of the Pleistocene species were found in modern beds and

distributional analyses showed that both environments are highly comparable.



29

Taphonomic losses can clearly reduce the diversity of organisms preserved, but as the
sampled Pleistocene deposits were richer than the modern assemblages, this is not the
case for molluscs from the studied southwestern Gulf of California localities. Pleistocene
beds were richer than their modern counterparts, primarily because of the lack of a
variety of mollusc taxa in modern rhodolith beds. Finally, the results of this study
suggest greater variability in the taxonomic composition of mollusc shell assemblages
between the Pleistocene and modern samples than within Pleistocene rhodolith beds, a
possible strong indication of assemblage change with time.

The Pleistocene samples were much richer in taxa, especially gastropods,
suggesting that the Pleistocene samples are more time-averaged than the modern samples.
Alternatively, Pleistocene rhodolith beds may have been naturally richer. Most of the 77
Pleistocene taxa not found in the modern populations (Tables IV and V, Appendix 3) are
still extant based on Keen (1971). While not all taxa could be identified to species and
some need confirmation, the lack of similarity cannot be attributed to extinction, even if
this occurred in a few taxa. Local extinction could be possible since at least 35 % of the
“exclusive” Pleistocene taxa are known to be economically important food resources in
the Gulf of California and have been exploited constantly for a considerable period of
time. Around 60 % of the most common bivalves are still being exploited essentially
without regulation, and their remains are found on beaches and close to shore. Their
absence in modern samples may reflect this, but it should have no effect on Pleistocene
samples. The presence of taxa in the Pleistocene but not in the modern assemblages can

be explained in other ways. First, taxa may have been transported into the study area



dead (Kidwell, 1991; Kidwell and Bosence, 1991; Nebelsick, 1992; Kidwell and Flessa,
1995). This would support Model III (habitat averaging Pleistocene deposit) or Model IV
(a combination of Model I: a “snapshot”, Model II: a time averaging assemblage and
Model III). Secondly, the assemblage may be characterized by multiple stable points
(Connell and Sousa, 1983), some taxa that are normally present and characteristic of the
modern assemblage may have failed to recruit during the study (Cummins et al., 1986a),
which would support Models I or II. Thirdly, opportunistic species may have failed to
recruit during the study (Flessa, 1993) also supporting time averaging-in Pleistocene
samples. Finally, environmental changes may have been great enough so that the habitat
supported two or more assemblages representing different environmental conditions
(Staff et al., 1986), which would support Model III if remains from more than one habitat
are preserved. On the other hand, Model II (time averaging deposit) is supported if only
environmental conditions changed and affected rhodolith beds at different times, and a
third possibility would support Model IV (a combination of Models I: a “snapshot”
assemblage, II and III).

Transportation of material to the area is possible, as most organisms found in
modern samples were small suggesting they were recent recruits. Species that died
before reaching reproductive maturity might indicate settlement in a marginal habitat
even if they are numerically abundant (Cummins et al., 1986a; Staff et al., 1986). This
may be exemplified by Laevicardium spp. in modern PC samples, where many small

shells were found, but no living adults, even when at least one of the two species
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(Laevicardium elatum (Sowerby 1840)) in the area is quite abundant in onshore
accumulations of empty shells.

Transportation in modern habitats has been suggested to occur in this area via
water motion induced by local winds (Steller and Fostgr, 1995; Foster et al., 1997) and
currents and hurricanes (Schlanger and Johnson, 1969). Beaches become a reservoir for
shells transported from a variety of environments giving a high diversity assemblage, but
hydrodynamic sorting can segregate taxa by shell morphology giving a low diversity or
monospecific assemblage (Meldahl and Cutler, 1992). Moreover, Russell (1991)
indicated that subtidal sandy environments offer little topographic relief and the remains
of dead organisms, especially small ones, are easily swept away. This may happen in
recent rhodolith beds because most of the surrounding areas (especially in PC) are sandy
habitats, and rhodolith beds may act as traps for shell remains. If this is correct and
transportation plays an important role within modern rhodolith beds then species richness
should be different than reported here.

The degree of shell transport in the marine environment (either past or recent)
depends upon shell hydrodynamic properties such as shape, size and density and the type
and strength of the transporting agent (Cummins et al., 1986b; Kidwell, 1986).
Transported individuals may all be small (Cummins et al., 1986a). However, many
recent time-averaged assemblages show little evidence of significant between habitat
transport (Kidwell, 1991; Kidwell and Bosence, 1991; Kidwell and Flessa, 1995).
Moreover, regardless of size, adults are better preserved than juveniles because the

delicate architecture and high surface area to volume ratio makes small individuals



especially prone to post-mortem destruction by physical or chemical means (Flessa,
1993). This may explain why smaller individuals occurred abundantly in modern beds.
Because no comparison was done between living versus recent death assemblages to test
for interhabitat transportation, the argument applies to mollusc shells (alive or not) in
modern rhodolith beds. Furthermore, transported shells can be recognized as such
because they are chaotically distributed, broken and abraded in shallow water deposits
(Cadée, 1991). This was not observed in modern bed samples where the bulk sample
consisted of unarticulated small shells, confirming Kidwell and Bosence’s (1991)
hypothesis.

After removal of exclusively Pleistocene species (possible habitat averaging in
Pleistocene deposits) differences between Pleistocene and modern samples in taxonomic
composition and similarity remained. None of the eleven clam species found only in the
Pleistocene are known to associate with rhodolith beds or other calcareous algal
environments (Table IV), and only 1 gastropod (Persicula imbricata) of the 16 on which
reliable data were available is associated with such a habitat (Table V). Could this be an
indication of small habitat transportation or mixing in the Pleistocene deposits? As
previously mentioned, between habitat transportation was unlikely in modern beds.
However, Pleistocene deposits had taxa unrelated to rhodolith beds, suggesting
transportation may be important. Many hydraulic concentrations in supratidal and
intertidal environments carry away shells <2 mm, but in level bottom subtidal habitats
transportation is generally minor even above storm and far-weather wave bases (Kidwell,

1991). Although exotic shells were an important component of the Pleistocene deposits
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(over 30% based on presence-absence data) is hard to attribute their presence to out of
habitat transportation. Thus, Model III is disregarded.

Another possible reason for the reduction of taxa in modern samples is the
common practice of shell collecting. Because shell collection effects are higher in
relative abundance than in presence-absence data, and given the small number of divers
in rhodolith beds within the Gulf of California, collection effects are highly unlikely.

Why do 77 taxa occur only in Pleistocene deposits? The difference in class
compositicn may be related to preservation effects due to the stronger shells of snails.
Cummins et al. (1986a) found that on the average, gastropods had more adults than
bivalves. Gastropod survivorship may be generally higher or taphonomic loss may be
greater for adult bivalves. Consequently, gastropods may preserve better, but where do
the “exclusive” Pleistocene taxa occur? Even if Chama sp., Lithophaga sp., Saccella
spp., Semele spp. 2, the undetermined bivalve Sp. 1 and 28 snail taxa (Table V) were
preserved, shells were deteriorated such that it was not possible to determine species, and
their presence in modern rhodolith beds could not be corroborated. Undetermined taxa
should reduce richness either in modern or Pleistocene samples, such that differences in
taxonomic composition between Pleistocene and modern samples will not be as large.
Their presence in the data analyses did not have a significant effect; results were the same
when they were removed (see analyses, especially test for Model III: habitat averaging,
or at generic level).

Among exclusive clams: Mactra sp. cf. isthmica, Protothaca columbiensis and

Trachycardium panamense have distributional margins south of the study areas,



suggesting warmer temperatures during the Pleistocene in the Gulf of California. Even if
T. panamense is not a rare species in the modern Gulf, it is noteworthy that there were no
records on it in the reviewed literature. The presence of “extralimital” species in
Pleistocene deposits is commonly thought to indicate that the marine thermal regime was
at times warmer, cooler or at least quite different than it is today (Valentine, 1989; Fields
etal., 1993; Di Michele, 1994; Enquist et al., 1995). Distribution analyses of the 33 snail
taxa identified to species found only 4 taxa (Persicula imbricata, Splendrillia sp. cf.
arga, Tegula funebralis and Terebra hancocki) that were not currently distributed within
the study areas. Records for 7. funebralis, a north Pacific species, are hard to explain as
the other 3 snail taxa also have actual distribution ranges on southern localities also
suggesting warmer temperatures in the Gulf during the Pleistocene. Not only is the
geographic distribution of 7. funebralis unrelated, the species is exclusively intertidal.
Thus, the presence of 7. funebralis in the Pleistocene in a southern location and in
presumably deeper water may indicate migration to cooler water (Hall, 1960; Maluf,
1988; Fields et al., 1993), although, transportation by hermit crabs may also be a
possibility (Firsich and Aberhan, 1990; Kidwell and Bosence, 1991; Russell, 1991;
Flessa and Kowalewski, 1994). However, 3 cool periods occurred during the Pliocene
(Johnson and Simian, 1996), and Punta Chivato Pleistocene assemblages are surrounded
by Pliocene deposits (Durham, 1950; Ortlieb, 1984, 1987). Thus, T. funebralis may be
representative of the Pliocene fauna, as were some echinoids found in Pleistocene
samples. A very low rate of uplift may allow amalgamation of widely aged deposits

(Johnson and Libbey, 1997). This is unlikely at Punta Chivato as Ortlieb’s (1984, 1987)



studies and ages were supported by Libbey and Johnson (1997), Johnson and Ledesma-
Vazquez (1999) and Meldahl (pers. comm. 1999). Moreover, high uplift rates have been
suggested in the Punta Chivato area (Johnson and Simian, 1996; Johnson et al., 1997;
Johnson and Ledesma-Vazquez, 1999).

Alternatively, there may have been leakage from stratigraphically older deposits
(Kidwell and Bosence, 1991). Faunal condensation, when bioclasts not only from
successive generations (time averaged), but from successive assemblages and successive
chronozones become telescoped into a single stratigraphic interval (Kidwell, 1993) may
have played a role in what appear to be out of habitat “exclusive” Pleistocene taxa. Both
ideas may be relevant in other areas they are unlikely for Punta Galeras, or Punta
Chivato. The amount of leaked Pliocene shells is insignificant. Pliocene shells are easily
distinguished from Late Pleistocene shells by their significantly poorer preservation,
particularly dissolution due to subaerial exposure (Meldahl pers. comm.). Given results
and the abundance of 7. funebralis, Meldahl hypothesis seems feasible.

Environmental change during the period of accumulation may have influenced the
deposit. During the Pleistocene, species may have shifted independently up and down
the shelf as sea level rose and fall, and northward or southward as temperature warmed
and cooled; the living biota at any time was merely a “snapshot” of this process. The
shifts probably did not involve entire assemblages as such, but rather responses of
individual taxa (Wise and Schopf, 1981; Davis, 1986; Fields et al., 1993; Valentine and
Jablonski, 1993). Libbey (1995) found that Pleistocene species did not change from

arroyo to arroyo across Playa La Palmita, at Punta Chivato, indicating all samples
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represent the same widespread assemblage. Thus, conditions such as substrate and wave
energy were probably consistent across the site, and the environment at this site in the
Pleistocene remained stable enough through the substage 5e transgression and regression
that the same species could continue to exist until the water finally drained away (Libbey,
1995). Whenever environmental conditions remain similar (or return to a similar
geographic configuration, e.g. in glacial-interglacial climatic cycles) the range boundaries
and the regional pattern of abundance of an individual species should be relatively
unchanged (Enquist et al., 1995).

In conclusion, there is no evidence of wholesale replacement or reorganization of
mollusc faunas associated with rhodolith beds in the southwestern Gulf of California
between Pleistocene and modern samples. A similar pattern has been suggested for
marine faunas through the Pleistocene even though there were considerable changes in
habitable area (Wise and Schopf, 1981). Mollusc assembiages in Pleistocene PC and PG
rhodolith deposits in the southwestern Gulf of California are within habitat time averaged
assemblages. Overall, analyses at the genus level yielded similar results and precision
estimates as those obtained at the lowest identified taxonomic level achieved. General
trends also remained, but, as expected, there were a few variations related to the
assumptions for particular test at specific levels. Thus, time will be saved in future,
similar research in the area with analyses and identifications at the genus level,
supporting Campbell and Valentine (1977), Wise and Schopf (1981), Erwin (1990), and
Williams and Gaston (1994) suggestions. Results also suggest that althougﬁ some

change in taxonomic composition occurred over time, the amount of variation is difficult
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to quantify due to time averaging effects. After removal of these effects as best as
possible, it is suggested that, in spite of pronounced changes in sea level and temperature
that occurred globally during Late Pleistocene and Holocene time, the nearshore
molluscan fauna of the southwestern Gulf of California rhodolith beds persisted with only

minor changes in taxonomic composition.
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Fig. 1. Study areas in the southwestern Guif of California. PC = Punta Chivato, BC =

Bahia Concepcién, CSL = Canal de San Lorenzo, PG = Punta Galeras.

Fig. 2. Effects of sample combination on taxonomic richness. A) Average raw total
richness between Pleistocene and modern samples for PC and PC + BC combined.
Standard errors did not exceed + 5 and are not shown. B) Average rarefied total
richness between Pleistocene and modern samples for PC and PC + BC combined data.
r # = expected number of individuals (fixed at 35 and variable; see methods). Standard
errors did not exceed + 2 and are not shown. FPC = Fossil Punta Chivato, MPC =
Modern Punta Chivato and MBC = Modern Bahia Concepcion. Numbers preceding

MBC indicate how many of these samples were added to MPC. n = 10.
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Table I. Total and averaged (n = 10) taxa richness by locality and time. SE = Standard

error, B = Bivalves, G = Gastropods, T = Total (both classes), PC = Punta Chivato, BC =

Bahia Concepcidn, and PG = Punta Galeras. Samples volume from BC was greater than

in other modern areas (see text), and only modern beds were sampled.

Area/ Time T Total B Total G Total T Mean B Mean G Mean
(SE) (SE) (SE)
PC Pleistocene 155 73 82 62.4(4.9) 31.6(2.5) 30.8(2.7)
PC Modern 76 46 30 234(24) 154(1.2) 8(1.4)
BC Modern 89 59 30 354(2.8) 222(1.7) 13.2(1.6)
PG Pleistocene 123 50 73 54134 263(L.1) 27.8(29)
PG Modern 74 41 33 227(29) 13.2(1.8) 95(1.5)
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Table II. ANOSIM coefficients for Bray-Curtis similarity within Pleistocene deposit and
between Pleistocene and modern samples for PC and PC + BC combined. MPC =
Modermn Punta Chivato and MBC = Modern Bahia Concepcién. Numbers preceding
MBC indicate the number of samples from this area added to MPC. n = 10. P values

were all 0.001 except for MPC + 6 MBC, which was 0.002.

Area R
MPC + 1 MBC 0.92
MPC +2 MBC 0.92
MPC +3 MBC 0.92
MPC + 4 MBC 0.94
MPC + 5 MBC 0.92
MPC + 6 MBC 0.94
MPC +7 MBC 0.96
MPC + 8 MBC 0.95
MPC + 9 MBC 0.96

MPC + 10 MBC 0.95
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Table III. Total and averaged (n = 10) genera richness by locality and time. SE =

Standard error, B = Bivalves, G = Gastropods, T = Total (both classes), PC = Punta

Chivato, BC = Bahia Concepcién, and PG = Punta Galeras. Samples volume from BC

was greater than in other modern areas (see text), and only modern beds were sampled.

Area / Time T Total G Total T Mean B Mean G Mean
(SE) (SE) (SE)

PC Pleistocene 97 50 472 (3.2) 243(1.8) 229(1.6)

PC Modern 58 24 20.8 (2.1) 13.3(1.1) 7.5(1.2)

BC Modern 63 23 30.8(2.4) 194(1.5) 11.4(.3)

PG Pleistocene 82 50 43.3(2.5) 20.8(0.7) 225(2.1)

PG Modern 62 29 21.7(2.6) 125(1.6) 9.2(1.3)



Table IV. Geographic distribution and habitat of bivalves found only in Pleistocene

samples. Depth in m. B = Bahia, I =Isla or Islas, G = Gulf, Ca = California, Int =

Intertidal and # = abundance (1 —10 =*“rare” to “common”). See text for references.

Taxa Geographic Habitat Depth #
Amerycina cultrata Ca and Guaymas to [ 5-91 0.5
Partida, BCS
Chama sp. 0.5
Ctena clarionensis B San Carlos to I Clarion, 35 0.5
Revillagigedo
Cumingia Ca to Chile, including I Int on sand, clay, rock 0-25 2
lamellosa Galapagos crevices and sponges
Donax culter Ca to Panama Int on sandy beaches or 0-25 8
bays
Fugleria illota Puerto Pefiasco to Perd, Int on rocky shores 0-70 2.5
including I Galapagos
Leporimetis Sonora to Pert, including I  Int 0-100 5
cognata Galapagos
Lithophaga sp. 1



Table I'V. Continued.

56

Taxa Geographic Habitat Depth #
Mactra sp. cf. El Salvador and Int 0-15 1.5
isthmica Nicaragua to Panama
Protothaca Topolobampo to Peru Intertidal 1.5
columbiensis
Saccella spp. 1
Semele spp. 2 2.5
Sp. 1 0.5
Trachycardium Panama Int on mud 0-15 7.5
panamense
Trachycardium Baja Ca to Peru Int and shallow muddy 0-25 12
senticosum bottoms
Trachycardium sp. cf. G of Ca to Chile, 5-15 1.5
procerum including I Galédpagos



Table V. Geographic distribution and habitat of gastropods found only in Pleistocene

samples. Depth in m. B = Bahia, I = Isla or Islas, Pto = Puerto, G = Gulf, Ca=

California, Int = Intertidal, S = Southern and # = abundance (1 —10 = “rare” to

“common”). See text for references.

Taxa Geographic Habitat Depth #
Astraea unguis Guaymas to Ecuador ~ Rocky areas at low tide, 1
offshore

Attiliosa nodulosa Pto Peiiasco to 18 -80 1
Panama

Caducifer biliratus GofCatol 7-146 = 3
Galapagos

Calliostoma bonita B San Carlos to 37-100 30
Acapulco

Calliostoma sp. 1

Cancellaria San Diego to Pert, Int at extreme low tides 0-37 2

cassidiformis including G of Ca

Cancellaria sp. 1 6

Cancellaria sp. 2 4

Cancellaria sp. 3 1

Cerithium ? sp. 2



Table V. Continued.

58

Taxa Geographic Habitat Depth #
Chicoreus sp. 1
Columabella I Cedros to 13

aureomexicana Topolobampo
Columbella fuscata B San Carlos to Pert, Int under stones 97
including I Galapagos
Colunzbella sp. 5
Colunzbella G of Cato Pertt Under rocks between 1
strombiformis tides
Conus californicus Sparingly into the Rocky and sandy 0-30 1
Panamic Province bottoms
Conus diadema B San Carlos to [ Int on rocky ledges 35
Galapagos
Crassispira sp. 1 1
Crassispira sp. 2 3
Crassispira spp. 7
Dermomurex bakeri G of Ca to Manzanillo 1
Fusinues sp. 5



Table V. Continued.

59

Taxa Geographic Habitat Depth #

Hexaplex princeps Guaymas to Perq, Int on rocks and offshore 1
including I Galapagos in shallow waters

Kurtziella plumbea Central Alaska to 10-50 1
Mazatlan and in G of
Ca

Leukozonia ? sp. 1

Liocerithium B Magdalena to Under rocks between tides 10

Judithae Mazatldn
Mancinella speciosa B Magdalena to Peri, Rocks between tides 11

Mancinella
triangularis
Mancinella

tuberculara

including I Galapagos
G of Cato Peru,
including I Galapagos
G of Ca to Mazatlén,
Costa Rica and I

Galapagos as ?

Int on rocks

Rocks between tides
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Table V. Continued.

Taxa Geographic Habitat Depth #
Mitra sp. 4
Nassarius iodes G of Ca to Mazatlan 82
Natica sp. 1 4
Natica sp. 2 1
Oliva davisae GofCa 31
Persicula imbricata  Cabo San Lucas to Rubble 16 — 60 1

Ecuador, including I

Galapagos
Pilsbryspira sp. 1 2
Pilsbryspira sp. 2 1
Polinices sp. 4
Pyramidella sp. 4
Rhinoclavis B Magdalena to Ecuador, Subtidally on sandy 3-130 150
gemmata including I Galapagos bottoms
Rhinocoryne sp. cf. Sonora to Chile Estuaries and offshore 0-27 8

humboldti

Solenosteira sp. 1 6



Table V. Continued.

6

1

Taxa Geographic Habitat Depth #
Solenosteira sp. 3 5
Solenosteira sp. 4 1
Splendrillia sp. cf. Huatulco 15 4
arga
Strombina sp. cf. GofCa Int 0-73 137
solidula
Subcancilla sulcata  Guaymas to Ecuador, I Int 0-112 4
Galapagos as ?
Tegula funebralis Vancouver Island to Int, abundant in rocky 02 2
central Baja Ca areas
Tegula rugosa GofCa Rocks in upper int 2
Terebra hancocki I Marias to Ecuador Int and offshore 0-90 l
Terebra intertincta Baja Ca to Ecuador Int 0-37m 2
Terebra spp. 1

Trivia solandri

S Ca to Pert, including G

of Ca and [ Galdpagos

Int, under rocks and in

beach drift

(9]



Table V. Continued.

62

Taxa Geographic Habitat Depth #
Turritella lentiginosa GofCa 1
Turritella sp. 2 2
UNK 1 1
UNK 2 1
UNK 4 1
UNK 5 6
Vermetus indentatus Pto Pefiasco to I Marias 1
Vermicularia pellucida S Ca to Ecuador, Among gravel and 4

eburnea

including I Galapagos

small stones



Table V1. Total and averaged (n = 10) taxa richness by locality and time with
Pleistocene “exclusive” species removed. SE = Standard error, B = Bivalves, G =

Gastropods, T = Total (both classes), PC = Punta Chivato, and PG = Punta Galeras.

Area/ Time T Total B Total G Total T Mean B Mean G Mean

(SE) (SE) (SE)
PC Pleistocene 96 59 37 49.7(3.3) 28.1(2.1) 21.6(l.4)
PC Modern 76 46 30 233(2.4) 154(.2) 8(1.4)
PG Pleistocene 78 42 36 414(2.1) 24(0.9) 17.4(1.6)

PG Modern 74 41 33 22.7(29) 13.2(1.8) 9.5(1.3)
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Table VII. Molluscan taxa from Punta Chivato. n=10. F =fossil, M = Modern and t =

times. Each row represents richness from a combination of one sample per time, e.g.

fossil versus living (FPC1 versus MPC).

Total richness Taxa present in botht  Exclusive F taxa Exclusive M taxa

66 8 56 2
57 21 19 17
64 18 36 10
72 16 54 2
52 11 29 12
76 14 57 5
65 16 43 6
99 15 78 6
72 13 52 7
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Appendix 2. Selection of most appropriate similarity index.

Molluscs from Punta Chivato Pleistocene and recent rhodolith assemblages were
used to compare the performance of the four binary similarity indices (Jaccard, Sorensen,
Baroni-Urbani and Buser, and Simple matching coefficients) provided in Kenney and
Krebs (1998). Most of the indices vary between 0 and 1, but some discrepancies have
been reported as a result of sample size variation (Wolda, 1981; Krebs 1999). Therefore,
standardization was done if an index exceed range values. Similarity coefficients were
standardized to a 0 - 1 range using proportions. The null hypothesis of no difference in
similarity between Pleistocene and modern samples and within Pleistocene was tested.
Selection of the “best” similarity coefficient was done based on the relative performance
(precision and « level of the statistical test) of the four indices. Similarity variation
among all possible balanced sample sizes for each index was compared using graphic and
statistical techniques. Index performance variation was compared graphically using
average similarity values and their standard errors (SE). The statistical analyses for
similarity between Pleistocene and modern samples and within Pleistocene were
performed with only the 20 estimated coefficients (from each index) that were
independent from each other.

Similarity values were non-normally distributed and transformation did not make
them normal. Nevertheless, parametric statistical tests (two sample t-tests) were still
done as these tests were assumed to be robust to non-normality (Sokal and Ré6hlf, 1997;

Underwood, 1997). Although parametric tests are also robust to heteroscedasticity (Zar,
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1996), non-parametric tests (Wilkoxon ranks tests) were used when both parametric
assumptions were violated. Power analysis (o = 0.05) was estimated as tayw <8/ (2s*
p/0) -ty (Cohen, 1988; Zar 1996). Although Jaccard coefficient had the smallest SE
among the compared indices (Table I), it was not used because it was the only index that
violated both parametric criteria. The Sorensen coefficient had the best performance
relative to the other indices, but because the software used (Primer IV) did not includes
this coefficient, Bray Curtis, the inverse of Sorensen’s was used (Clifford and

Stephenson, 1975).



Appendix 2, Table L. Comparison of similarity coefficients. n = 10 per time. For
statistical analyses, only results from two sample t-tests are shown. F = within

Pleistocene and B = between Pleistocene and modern samples.

Index Mean (SE) to.osus) (P)

F Jaccard 0.52 (0.05)

B Jaccard 0.23 (0.02)

F Sorensen 0.67 (0.03) 6.17

B Sorensen 0.37 (0.03) (<10
F Simple matching 0.61 (0.04) 4.41

B Simple matching 0.37 (0.03) (<107
F Baroni-Urbani and Buser 0.64 (0.04) 5.14

B Baroni-Urbani and Buser 0.37 (0.03) (<10%)
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Appendix 3. Molluscan taxa found associated with rhodolith beds in the Guif of
California. F = Fossil (Pleistocene), M = Modern. Locations: PC = Punta Chivato, BC =
Bahia Concepcion, PG = Punta Galeras. ? = Uncertain identification at the taxa level

indicated.

Phylum Mollusca
Class Bivalvia Linnaeus, 1758
Order Nuculoidea (Gray, 1824 as superfamily)
Family Nuculanidae H. & A. Adams, 1858
Genus Saccella Woodring, 1925
Species Saccella acrita (Dall, 1908) FPC, MBC
Saccella spp. FPC
Order Arcoida Stoliczka, 1871
Family Arcidae Lamarck, 1809
Genus Arca Linnaeus, 1758
Species Arca mutabilis (Sowerby, 1833) FPC, MBC, FPG
Arca pacifica (Sowerby, 1833) FPC, MPC, MBC
Arca sp. FPC, MBC, FPG, MPG
Genus Barbatia Gray, 1842
Species Barbatia alternata (Sowerby, 1833) FPC, MBC, FPG

Barbatia reeveana (Orbigny, 1846) FPC, MBC, FPG, MPG
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Genus Fugleria Reinhart, 1937
Species Fugleria illota (Sowerby, 1833) FPC, FPG
Genus 4Anadara Gray, 1847
Species Anadara formosa (Sowerby, 1833) MPG
Anadara multicostata (Sowerby, 1833) In all samples
Anadara spp. FPC, MBC, FPG, MPG
Genus Arcopsis von Koenen, 1885
Species Arcopsis solida Sowerby, 1833 In all samples
Family Glycymerididae Newton, 1922
Genus Glycymeris Da Costa, 1778
Species Glycymeris spp. 1 In all samples
Glycymeris spp. 2 In all samples
Order Mytiloida Férussac, 1822
Family Mytilidae Rafinesque, 1815
Genus Brachidontes Swainson, 1840
Species Brachidontes semilaevis (Menke, 1849) FPC, MPG
Genus Lithophaga Réding, 1798
Species Lithophaga aristata (Dillwyn, 1817) MPC, MBC
Lithophaga sp. FPC
Genus Modiolus Lamarck, 1799
Species Modiolus sp. cf. americanus (Leach, 1815) MPC

Modiolus capax (Conrad, 1937) FPC, MPC, MBC



Order Pterioida Newell, 1965
Family Pinnidae Leach, 1819
Genus Pinna Linnaeus, 1758
Species Pinna rugosa Sowerby, 1835 MBC, MPG
Family Pteriidae Broderip, 1839
Genus Pteria Scopoli, 1777
Species Pteria sterna (Gould, 1851) MPG
Genus Pinctada Réding, 1798
Species Pinctada mazatlanica (Hanley, 1856) MBC
Order Ostreoida Férussac, 1822
Family Ostreidae Rafinesque, 1815
Genus Ostrea Linnaeus, 1758
Species Ostrea spp. In all samples
Family Plicatulidae Watson, 1930
Genus Plicatula Lamarck, 1801
Species Plicatula sp. cf. inezana Durham, 1950 In all samples
Family Spondylidae Gray, 1826
Genus Spondylus Linnaeus, 1758

Species Spondylus sp. FPG
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Order Veneroida H. & A. Adams, 1856
Family Carditidae Fleming, 1828
Genus Cardites Link, 1807
Species Cardites crassicostata (Sowerby, 1825) FPC, MPC, FPG
Genus Strophocardia Olsson, 1961
Species Strophocardia megastropha (Gray, 1825) FPC, MPC, FPG, MPG
Genus Carditamera Conrad, 1838
Species Carditamera affinis Sowerby, 1833 FPC, MBC, FPG
Family Lucinidae Fleming, 1828
Genus Lucina Bruguiére, 1797
Species Lucina lingualis Carpenter, 1864 In all samples
Lucina centrifuga (Dall, 1901) MPC
Lucina fenestrata Hinds, 1845 In all samples
Lucina spp. FPC, MPC, FPG
Genus Parvilucina Dall, 1901
Species Parvilucina approximata (Dall, 1901) FPC, MBC
Genus Linga de Gregorio, 1884
Species Linga cancellaris (Philippi, 1846) MBC, FPG
Genus Codakia Morch, 1860
Species Codakia distinguenda (Tryon, 1872) In all samples
Genus Ctena Méorch, 1860

Species Crena clarionensis Hertlein & Strong, 1946 FPC
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Ctena mexicana (Dall, 1901) In all samples
Genus Divalinga Chavan, 1951
Species Divalinga perparvula (Dall, 1901) FPC, FPG, MPG
Family Ungulinidae H. & A. Adams, 1857
Genus Diplodonta Bronn, 1831
Species Diplodonta inezensis (Hertlein & Strong, 1947) FPC, MBC
Genus Felaniella Dall, 1899
Species Felaniella cornea (Reeve, 1850) FPC, MBC
Family Erycinidae Deshayes, 1850
Genus Amerycina Chavan, 1959
Species Amerycina cultrata Keen, 1971 FPG
Family Kellidae Clark, 1851
Genus Bornia Philippi, 1836
Species Bornia sp. cf. papyracea (Deshayes, 1856) MPC, MPG
Family Sportellidae Dall, 1899
Genus Basterotia Hornes, 1859
Species Basterotia hertleini Durham, 1950 FPC, MPC
Family Chamidae Blainville, 1825
Genus Chama Linnaeus, 1758
Species Chama buddiana C.B. Adams, 1852 FPC, MBC, FPG
Chama frondosa Broderip, 1835 MBC

Chama mexicana Carpenter, 1857 FPC, MPC, MBC, FPG



Chama sp. FPG
Genus Pseudochama Odhner, 1917
Species Pseudochama clarionensis Willett, 1938 FPC, MBC
Family Cardiidae Lamarck, 1809
Genus Trachycardium Mérch, 1853
Species Trachycardium consors (Sowerby, 1833) FPC, MBC, FPG, MPG
Trachycardium senticosum (Sowerby, 1833) FPC, FPG
Trachycardium panamense (Sowerby, 1833) FPC, FPG
Trachycardium sp. cf. procerum (Sowerby, 1833) FPC
Trachycardium biangulata (Broderip & Sowerby, 1829) In all samples
Trachycardium spp. FPC, MBC, FPG
Genus Papyridea Swainson, 1840
Species Papyridea aspersa (Sowerby, 1833) FPC, MPC, MBC, FPG
Genus Trigoniocardia Stewart, 1930
Species Trigoniocardia granifera (Broderip & Sowerby, 1829) MBC
Genus Laevicardium Swainson, 1840
Species Laevicardium spp. In all samples
Family Veneridae Rafinesque, 1815
Genus Globivenus Coen, 1934
Species Globivenus isocardia (Verrill, 1870) MPC, FPG, MPG
Genus Tivela Link, 1807

Tivela spp. FPC, MPC, FPG, MPG
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Genus Transenella Dall, 1884
Species Transenella puella (Carpenter, 1864) MPC, MBC, MPG
Genus Pitar Rémer, 1857
Species Pitar sp. cf. berryi Keen, 1971 FPC, MPC, MBC, FPG
Pitar helenae Olsson, 1961 MBC
Pitar spp. In all samples
Genus Megapitaria Grant & Gale, 1931
Species Megapitaria spp. In all samples
Genus Dosinia Gray, 1835
Species Dosinia ponderosa (Schumacher, 1817) FPC, MPC, MBC, FPG
Genus Chione Megerle, 1811
Species Chione compta (Broderip, 1835) MPC
Chione subimbricata (Sowerby, 1835) FPC, MPC, FPG
Chione kellettii (Hinds, 1845) MPC, MBC
Chione mariae (Orbigny, 1846) FPC, MBC
Chione spp. In all samples
Genus Chionopsis Olsson, 1932
Species Chionopsis gnidia (Broderip & Sowerby, 1829) MPC, MBC, MPG
Chionopsis purpurissata (Dall, 1902) MBC, MPG
Genus Protothaca Dall, 1902
Species Protothaca columbiensis (Sowerby, 1835) FPG

Protothaca grata (Say, 1831) FPC, MPC, FPG
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Family Petricolidae Deshayes, 1831
Genus Rupellaria Fleuriau de Bellevue, 1802
Species Rupellaria denticulata (Sowerby, 1834) FPC, MBC
Family Mactridae Lamarck, 1809
Genus Mactra Linnaeus, 1767
Species Mactra sp. cf. isthmica Pilsbry & Lowe, 1932 FPC
Family Tellinidae Blainville, 1814
Genus Tellina Linnaeus, 1758
Species Tellina coani Keen, 1971 FPC, MBC
Tellina pacifica Dall, 1900 MPC, MPG
Tellina ochracea Carpenter, 1864 FPC, MBC, FPG
Tellina cumingii Hanley, 1844 In all samples
Tellina sp. 1 FPC, MPC, FPG
Tellina spp. FPC, MBC, FPG MPG
Tellina ? sp. MPG
Genus Leporimetis Iredale, 1930
Species Leporimetis cognata (Pilsbry & Vanatta, 1902) FPC, FPG
Genus Psammotreta Dall, 1900
Species Psammotreta sp. MPG
Family Donacidae Fleming, 1828
Genus Donax Linnaeus, 1758

Species Donax culter Hanley, 1845 FPC, FPG
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Family Psammobiidae Fleming, 1828
Genus Gari Schumacher, 1817
Species Gari sp. MBC, MPG
Genus Tagelus Gray, 1847
Species Tagelus spp. FPC, MPC, MBC
Family Semelidae Stoliczka, 1870
Genus Semele Schumacher, 1817
Species Semele sp. FPC, MBC
Semele spp. 1 FPC, MPC, MBC, MPG
Semele spp. 2 FPC
Genus Cumingia Sowerby, 1833
Species Cumingia lamellosa Sowerby, 1833 FPC
Order Myoida Stoliczka, 1870
Family Myidae Lamarck, 1809
Genus Cryptomia Conrad, 1848
Species Crypromia californica (Conrad, 1837) FPC, MBC
Genus Sphenia Turton, 1822
Species Sphenia sp. FPC, MBC
Family Corbulidae Lamarck, 1818
Genus Corbula Bruguiére, 1797
Species Corbula sp. cf. ovulata Sowerby, 1833 FPC, MPG

Corbula esmeralda Olsson, 1961 FPC, MPC, MBC
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Corbula sp. cf. ira Dall, 1908 FPC, MPC
Corbula spp. MPG
Order Pholadomyoida Newell, 1965
Family Thraciidae Stoliczka, 1870 [1830]
Genus Cyathodonta Conrad, 1849
Species Cyathodonta ? spp. FPC, MPC, MPG
Undetermined taxa
Sp. 1 FPC

Sp. 2 MPC
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Class Gastropoda Cuvier, 1797
Order Patellogastropoda Lindberg, 1986
Family Turbinidae Rafinesque, 1815
Genus Macrarene Hertlein & Strong, 1951
Species Macrarene spp. In all samples
Genus Turbo Linnaeus, 1758
Species Turbo fluctuosus Wood, 1828 In all samples
Turbo squamiger Reeve, 1843 FPC, MPC, FPG
Genus 4straea Roding, 1798
Species Astraea unguis (Wood, 1828) FPC
Family Trochidae Rafinesque, 1815
Genus Tegula Lesson, 1835
Species Tegula rugosa (A. Adams, 1853) FPC
Tegula sp. cf. felipensis Mc Lean, 1970 FPC, MPC, MBC
Tegula funebralis (A. Adams, 1855) FPC
Tegula spp- FPC, MPC, MBC, FPG
Genus Calliostoma Swainson, 1840
Species Calliostoma bonita Strong, Hanna & Hertlein, 1933 FPC, FPG
Calliostoma sp. FPC
Family Neritidae Rafinesque, 1815
Genus Nerita Linnaeus, 1758

Species Nerita funiculata Menke, 1851 MBC, FPG



140

Order Neotaenioglossa Haller, 1882
Family Vermetidae Rafinesque, 1815
Genus Vermetus Daudin, 1800
Species Vermetus indentatus (Carpenter, 1857) FPC
Family Turritellidae Léven, 1847
Genus Turritella Lamarck, 1799
Species Turritella lentiginosa Reeve, 1849 FPC
Turritella nodulosa King & Broderip, 1832 FPC, FPG, MPG
Turritella sp. 1 MPC, FPG
Turritella sp. 2 FPC
Genus Vermicularia Lamarck, 1799
Species Vermicularia pellucida eburnea (Reeve, 1842) FPC, FPG
Family Modulidae Fischer, 1884
Genus Modulus Potiez & Michaud, 1838
Species Modulus cerodes (A. Adams, 1851) MBC
Family Cerithiidae Fleming, 1822
Genus Cerithium Bruguiére, 1789
Species Cerithium sp. cf. menkei Carpenter, 1857 FPC, MBC, FPG
Cerithium stercusmuscarum Valenciennes, 1833 FPC
Cerithium uncinatum (Gmelin, 1791) MPC, MPG

Cerithium ? sp. FPC
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Genus Liocerithium Tryon, 1887
Species Liocerithium judithae Keen, 1971 FPG
Genus Rhinoclavis Swainson, 1840
Species Rhinoclavis gemmata (Hinds, 1844) FPC, FPG
Family Potamididae Houbrick, 1991
Genus Cerithidea Swainson, 1840
Species Cerithidea californica mazatlanica Carpenter, 1857 FPC, MPC
Family Batillariidae Raised from subfamily (Houbrick, 1988, 1991)
Genus Rhinocoryne von Martens, 1900
Species Rhinocoryne sp. cf. humboldti (Valenciennes, 1832) FPC, FPG
Family Strombidae Rafinesque, 1815
Genus Strombus Linnaeus, 1758
Species Strombus spp. In all samples
Family Naticidae Forbes, 1838
Genus Natica Scopoli, 1777
Species Natica grayi Philippi, 1852 FPG, MPG
Natica sp. 1 FPG
Natica sp. 2 FPG
Genus Polinices Montfort, 1810
Species Polinices sp. FPC

Polinices spp. In all samples
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Genus Neverita Risso, 1826
Species Neverita reclusiana (Deshayes, 1839) FPC, MPC, FPG
Family Triviidae Troschel, 1863
Genus Trivia Broderip, 1837
Species Trivia solandri (Sowerby, 1832) FPC, FPG
Family Cypraeidae Rafinesque, 1815
Genus Cypraea Linnaeus, 1758
Species Cypraea albuginosa Gray, 1825 MPG
Cypraea annettae Dall, 1909 In all samples
Family Cassidae Latreille, 1825
Genus Cassis Scopoli, 1777
Species Cassis sp. MPG
Family Ranellidae Gray, 1854
Genus Cymatium Réding, 1798
Species Cymatium sp. MPC
Family Epitoniidae Berry, 1910
Genus Asperiscala De Boury, 1909
Species Asperiscala sp. cf. elenense (Sowerby, 1844) MBC
Family Muricidae Rafinesque, 1815
Genus Chicoreus Montfort, 1810
Species Chicoreus erythrostomus (Swainson, 1831) MBC

Chicoreus sp. FPC



Genus Hexaplex Perry, 1810
Species Hexaplex princeps (Broderip, 1833) FPC
Genus Dermomurex Monterosato, 1890
Species Dermomurex bakeri (Hertlein & Strong, 1951) FPG
Genus Attiliosa Emerson, 1968
Species Attiliosa nodulosa (A. Adams, 1855) FPG
Genus Murexiella Clench & Pérez Farfante, 1945
Species Murexiella spp. FPC, MPG
Genus Muricopsis Bucquoy, Dautzenberg & Dollfus, 1892
Species Muricopsis armatus (A. Adams, 1854) MBC
Genus Eupleura H. & A. Adams, 1853
Species Eupleura muriciformis (Broderip, 1833) FPC, MPC, MPG
Genus Mancinella Link, 1807
Species Mancinella speciosa (Valenciennes, 1832) FPC, FPG
Mancinella triangularis (Blainville, 1832) FPG
Mancinella tuberculata (Sowerby, 1835) FPG
Genus Acanthina Fischer de Waldheim, 1809
Species Acanthina ? sp. FPC, FPG, MPG

Genus Trachypollia Woodring, 1928

Species Trachypollia lugubris (C.B. Adams, 1852) FPC, MPC, FPG, MPG
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Family Buccinidae Rafinesque, 1815
Genus Caducifer Dall, 1904
Species Caducifer biliratus (Reeve, 1846) FPC, FPG
Genus Cantharus Réding, 1798
Species Cantharus pallidus (Broderip & Sowerby, 1829) FPC, FPG, MPG
Genus Solenosteira Dall, 1890
Species Solenosteira sp. 1 FPC, FPG
Solenosteira sp. 2 FPC, MPG
Solenosteira sp. 3 FPC, FPG
Solenosteira sp. 4 FPC
Genus Engina Gray, 1839
Species Engina fusiformis Stearns, 1894 FPC, MPC, MPG
Genus Nassarius Duméril, 1806
Species Nassarius iodes (Dall, 1917) FPC
Nassarius [uteostomus (Broderip & Sowerby, 1829) FPC, MBC, FPG
Nassarius nodicinctus (A. Adams, 1852) In all samples
Nassarius sp. | FPC, MBC, FPG
Nassarius sp. 2 In all samples
Genus Leukozonia Gray, 1847

Species Leukozonia ? sp. FPC
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Genus Fusinus Rafinesque, 1815
Species Fusinus ambustus (Gould, 1853) FPC, MBC, FPG
Fusinus sp. FPC, FPG
Family Columbellidae Swainson, 1840
Genus Columbella Lamarck, 1799
Species Columbella aureomexicana (Howard, 1963) FPC, FPG
Columbella fuscata Sowerby, 1832 FPC, FPG
Columbella haemastoma Sowerby, 1832 MPC, FPG, MPG
Columbella strombiformis Lamarck, 1822 FPC
Columbella sp. FPC, FPG
Genus Anachis H. & A. Adams, 1853
Species Anachis sp. MPG
Genus Costoanachis Sacco, 1890
Species Costoanachis sp. cf. ritteri (Hertlein & Strong, 1951) FPG, MPG
Costoanachis varicosa (Gaskoin, 1852) In all samples
Genus Mitrella Risso, 1826
Species Mitrella sp. cf. dorma Baker, Hanna & Strong, 1938 MPC, MPG
Genus Strombina Morch, 1852
Species Strombina sp. cf. solidula (Reeve, 1859) FPG

Strombina maculosa (Sowerby, 1832) In all samples
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Family Volutidae Rafinesque, 1815
Genus Enaeta H. & A. Adams, 1853
Species Enaeta sp. cf. barnesii (Gray, 1825) MBC
Enaeta cumingii (Broderip, 1832) FPC, MBC, FPG, MPG
Family Olividae Latreille, 1825
Genus Oliva Bruguiére, 1789
Species Oliva davisae Durham, 1950 FPC
Oliva spp. FPC, MPC, FPG, MPG
Family Olivellidae Troschel, 1869
Genus Olivella Swainson, 1840
Species Olivella dama (Wood, 1828) In all samples
Family Marginellidae Fleming, 1828
Genus Persicula Schumacher, 1817
Species Persicula imbricata (Hinds, 1844) FPG
Family Mitridae Swainson, 1831
Genus Mitra Lamarck, 1798
Species Mitra sp. FPC, FPG
Genus Subcancilla Olsson & Harbison, 1953
Species Subcancilla sulcata (Swainson in Sowerby, 1825) FPC, FPG
Family Cancellariidae Forbes & Hanley, 1851
Genus Cancellaria Lamarck, 1799

Species Cancellaria cassidiformis Sowerby, 1832 FPC
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Cancellaria sp. 1 FPG
Cancellaria sp. 2 FPC, FPG
Cancellaria sp. 3 FPC
Genus 7rigonostoma Blainville, 1827
Species Trigonostoma sp. MBC
Family Conidae Fleming, 1822
Genus Conus Linnaeus, 1758
Species Conus brunneus Wood, 1828 FPC, MPC, FPG, MPG
Conus diadema Sowerby, 1834 FPC, FPG
Conus californicus Reeve, 1844 FPC
Conus poormani Berry, 1968 FPC, MPC, MBC, FPG
Conus regularis Sowerby, 1833 In all samples
Conus archon Broderip, 1833 MBC
Family Terebridae Morch, 1852
Genus 7erebra Bruguieére, 1789
Species Terebra hancocki Bratcher & Burch, 1970 FPC
Terebra intertincta Hinds, 1844 FPC, FPG
Terebra ornata Gray, 1834 MPC, FPG, MPG
Terebra variegata Gray, 1834 FPC, MPC, FPG

Terebra spp. FPC
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Family Turridae Swainson, 1840
Genus Splendrillia Hedley, 1922
Species Splendrillia sp. cf. arga Mc Lean & Poorman, 1971 FPG
Genus Crassispira Swainson, 1840
Species Crassispira sp. 1 FPG
Crassispira sp. 2 FPC, FPG
Crassispira spp. FPC, FPG
Genus Pilsbryspira Bartsch, 1950
Species Pilsbryspira sp. 1 FPC, FPG
Pilsbryspira sp. 2 FPC
Genus Kurtziella Dall, 1918
Species Kurtziella plumbea (Hinds, 1843) FPC
Order Heterostropha Fischer, 1885
Family Architectonicidae Gray, 1850
Genus Architectonica Roding, 1798
Species Architectonica nobilis Réding, 1798 FPC, MPC, MBC, FPG
Family Pyramidellidae Gray, 1840
Genus Pyramidella Lamarck, 1799

Species Pyramidella sp. FPG
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Order Cephalaspidea Fischer, 1883
Family Bullidae Lamarck, 1801
Genus Haminoea Turton & Kingston in Carrington, 1830

Species Haminoea angelensis Baker & Hanna, 1927 FPC, MBC, FPG, MPG
UNK = Unknown (for the author) taxa

UNK I FPG

UNK 2 FPC

UNK 3 FPC, FPG, MPG

UNK 4 FPG

UNK 5 FPG

UNK 6 MBC
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