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Abstract
Group Representation Theory
with an Application to P.I. Algebras

by Gregory T. Daubenmire

This thesis begins with a general discussion of the
theory of representations of finite groups. We then look at
a particular method forl finding representations of the
finite symmetric group S . This method was developed
between 1900 and 1903 and involves the use of Young diagrams
and Young tables. We then follow with a brief discussion of
polynomial identity algebras and look at a rather suprising
applicaf&on‘ of the theorf of representations of the
symmetric group. The theory is applied to the problem of
finding an explicit identity for a polynomial identity
algebra A. Finally, this procedure is used to determine an
explicit identity for the tensor product of two P.I.-

algebras Ae B over a field F of characteristic zero.
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Chapter 1 Group Representations

Introduction

In chapter one the theory of finite group
representations is presented, for the most part, in general
terms. Though most of the discussion assumes that the
representation space is defined over the field of complex
numbers, the bulk of the theorems hold for a field of
characteristic zero or a field of characteristic p, where p
is relatively prime to the order of group G.

The major focus of section one is the complete
reducibility of a representation of a finite group. We
shall see that a representationvof a finite group over a
finite dimensional vector space is completely and uniquely
decomposable into a direct sum of irreducible
representations. A discussion of normal representations
completes section one. While this discussion may, at first,
seem out of place we shall find it useful in later sections.

We introduce, in section two, an actual representation
for a finite group called the regular representation. We
also note an interesting relationship between
representations of a finite group G and the normal subgroups
of G. Finally we look at some representations of the finite
symmetric group.

Two of the most important theorems of finite group



representations, Schur’s lemma and the homothety theoren,
are presented in section three. These theorems describe the
homomorphisms which commute with equivalent irreducible
representations of a finite group. In particular they give
us a tool for distinguishing between equivalent and
non-equivalent irreducible representations.

In section four we define an inner product on the space
of complex valued functions on a finite group G. This inner
product allows us to identify the following: irreducible
representations, the equivalence of two irreducible
representations, and the number of equivalent irreducible
representations in a given representation. It will be shown
that each irreducible representation of a group G occurs in
the regular representation with multiplicity equal to its
degree.

We finish off chapter one with a discussion of the
conjugacy classes of a group G. We then show that the
number of non-equivalent irreducible representations of a
finite group G is equal to the number of distinct conjugacy

classes of G.



Section 1.1 Basic Definitions and Theorems

et G be a group with identity 1, and composition
(s,t) » st, s,t e G. Let V be a vector space over the field
of complex numbers €, and GL(V) the group of non-singular
linear transformations from V onto V. A linear
representation of G in V is a homomorphism h from G into
GL(V), that is

h: G » GL(V) where
h(st) = h(s)h(t) for each s,t € G.

Since h is a homomorphism, it follows that h(1G) is the
identity transformation and h(s'l) = (h(s))'1 for each s
in 6. If the mapping h is also 1-1, the representation is
said to be faithful. The vector space V 1is called the
representation space of h, and the dimension of V is the
degree of the representation. For simplicity each 1linear
transformation h(s) shall, henceforth, be denoted hs.

The definition makes no restriction on the order of G
or the dimension of V. However, our main focus will be
linear representations of the symmetric groups of finite
order. It will be shown that vector spaces of finite
dimension are sufficient in case the group has finite order.
Thus it is to be assumed, unless stated otherwise, that
groups have finite order and vector spaces have finite

dimension.



When V has dimension n, each linear transformation
a:vV » V is defined by a square marix A = (au) of order n.
The coefficients a, 4 are complex numbers dependent on a
given basis (el) of V, and are obtained by expressing the

n
images a(e)) in terms of the basis, so a(ej) =Y a.e.

r=1 1!
Recall that if a € GL(V) and matrix A represents a with
respect to some basis (ei), then A € GL(n,C), the group
under multiplication, of invertible n x n matrices over the
field C. Let Hs be the matrix defining hs, with respect to
a basis (el) , and let h”(s) denote the coefficients of H_,
then for each s,t € G

(1) det H_* 0

(2) Hge= HH = (8, (st)) = (L hy,(s)h (L) ).

Since GL(V) is isomorphic with GL(n,C), no confusion
should arise if one considers the homomorphism h as a
mapping of G into GL(n,C). Though not strictly accurate,
the group h(G) of linear transformations or, given a basis
for Vv, the group of matrices defining these transformations,
is often referred to as the representation of G.

Linear representations h and hl of the group G in V and
VI, both vector spaces over C, are said to be equivalent
(similar,isomorphic) if there exists a linear isomorphism
£:V» V such that fh, = h;f for each s € G. Or when h_ and

’

hs are given in matrix form H and Hg respectively, there

exists invertible matrix F such that FHS = H’SF for each



s € G, commonly written H;= FHSF'I. Note V and V' must have
the same dimension; therefore, h and hl have the same degree.

A subspace W of V is said to be jnvariant (stable)
under the action of G if hs(W) S W for each s € G. If also
0 < dim W < dim V, W is called a proper invariant subspace
of V. We actually have hs(W) = W since hs is an isomorphism
for each s € 6 and W is finite dimensional. The restriction
R"(hs) of hs to W is then an isomorphism of W onto W with
R"(hst) R"(hs) -R"(ht) for each s,t € G. Thus the
restriction R"(h): G » GL(W) is a representation of G in W,
and W is called a subrepresentation space of V.

If the representation space V # {0} contains a proper
invariant subspace, the representaion is said to be
reducible. Otherwise the representation is <called
irreducible.

Let W # {0) be a proper subspace of V with dimension

m < n and choose a basis for v, say

B = {w

WLV, V) such that the first m elements

lie in W. To say that W is invariant under the action of G

is equivalent to saying that each matrix H_ defining

the linear transformation hs € h{(G) with respect to B has
HL 7

the form H, = 2

(] OHs

1 2 .
where Hs and Hs are square matrices of order m and n-m

respectively, 7 is an m x n-m matrix, and 0 is an n-m x m



zero matrix. If for any representation h, we have that each
matrix H, defining h, € h(G) has this form, or if h is
equvialent to a representation h' such that each H; has this
form, then h is reducible; otherwise, h is irreducible.
Note that if h' is the restriction of h to W, then H; is the
matrix defining h; with respect to the basis {wl,.. .-,wm} for
each s € G.

The subspaces W and W’ are said to be complementary in
V if V is the direct sum of W and W° denoted W @ W’. Let us
now suppose that in addition to a proper invariant subspace
W there exists an invariant subspace W° complementary to W.
Then, as above, if we let W have dimension m, then W° has
dimension n-m. Choose a basis {wl,---,wm,w:,---,w:_m} where
the first m elements lie in W and the last (n-m) elements
lie in W°. With respect to this basis, each H, defining
hs € h(G) has the form

H, = [ I;; ;2 ]
s

where the m by n-m matrix n is here replaced by the zero
matrix of equal size. ILet h' be the restriction of h to W
and h? be the restriction.to W°. Then one says that h is a
direct sum of h' and h?, where H; defines h; with respect to
the basis {wl,“-,wn}, and H: defines h: with respect to the
basis (w:,---,w:_n}.

A finite sum of vector subspaces w‘, denoted

W o+ W et W", is said to be direct if for each i we have



W ( > W' ) = {(0). When a finite sum of subspaces W' is
J#1

direct, it shall be denoted by W e --0 W-.

A representation h is said to be completely reducible
analysable, decomposable) if the representation space V can
be expressed as a direct sum of irreducible invariant
subspaces v denoted V = V' e--:0 V- Though in general
reducibility does not imply complete reducibility, in the
case of finite groups this implication holds, as we shall

see below.

Theorem 1.1 (Maschke’s Theorem). Let V be a finite
dimensional representation space of finite group G. Then
for each invariant subspace W of V there exists an invariant
subspace W°, such that V = W o W’. The p“roof follows two

lemmas.

Lemma 1: ILet h be a representation of degree n. The

symmetrization of a linear map f given by f£f° = Iélz hs-1 fhs

seG
commutes with each hs in h(G).

. o0 - 4 _
Proof: f'h GI )s: hs 1 fhsht

t |

= &
= 15| 2 heh -1 h -t £h h,

o

= 1 =
- h1:.|(;| E Bgt)? Thgy = Nt

since st runs over G as s runs over G.o



Lemma 2: If a linear map f: V » V is a projection,
that is £ = £, and if the image space f(V) is invariant
under the action of the group G, then (£°)® = £° and
£°(V) = £(V), where f° is the symmetrization of f.

Proof: Recall, if a linear map f is a projection then
f acts like the identity on £(V). Also we have that the
image space £(V) is invariant under G, thus each isomorphism
hs maps f(V) onto f(V). Now since V is finite dimensional,
it is clear that for any finite composition of h ’s and f’s
that all but the right most f may be omitted. We then have

£°F = I%I I bgt fn f = I%l Ibgihgf=f and

fO

££° = I%I g fh 1 fh_ = Iél )s:hs-1 £h_
thus (£°)% = £°(££°) = (£°£)f° = ££° = £°.
Now, £°f = £ and ff° = f° implies that f and f° have
equal rank, since rank f£f°f = rank f£ff°. Also since
we have f°(V) = f£f°(V) c £(V) and £(V) = f£°£(V) ¢ £5(V) we

may conclude £°(V) = £(V).o

‘Proof of Maschke’s Theorem: Given an invariant
subspace W we must find an invariant subspace W°
complementary to W in V., Let w' be any subspace
complementary to W, and let p be the projection of V onto W
along w'. Let p° be the projection of V onto W formed by

the symmetrization of p, as was defined in lemma 1. Now

denote by W°, the kernel of p°. Since p° is a projection of



V into itself, we have by an elementary theorem of linear
algebra that V is the direct sum of W and W°, the image and
kernel of p° respectively. Thus W° is complementary to W in
the representation space V. According to lemma 1 we have,
for each s € G, p°hs(w°) = hsp°(w°) = h (0) = 0 ; thus

h, (W’) ¢ W’ and ®° is invariant under the action of G.m

Theorem 1.2 (Theorem of Complete Reducibility). Every

representation h of finite group G in a representation space
V of finite dimension decomposes completely into a direct
sum of irreducible representations.

Proof by finite induction: If representation h is
irreducible we are done, otherwise by Maschke’s Theorem h
decomposes into two representations n' and h® with
representation spaces v and V° where V = V! o V. Now if
both h! and h® are irreducible, we are done; otherwise,
apply Maschke’s Theorem to h! or h® or both. This procedure
can be repeated until each h' is irreducible in
representation space vi. Clearly this is attained after a
finite number of steps, since dim V is finite.m

We may, given finite order and degree, have defined
complete reducibility as follows. Representation h is
completely reducible if and only if there exists a
non-singular matrix F with coefficients in € such that

1
-1 _ H- O
FHsF - s k for each s € G

0 Hs



where each H' is irreducible.

Since every representation of a finite group G in a
finite dimensional vector space V is decomposable into a
direct sum of irreducible representations, a study of group
representations simplifies to a study of irreducible
representations. In particular, since equivalence divides
the irreducible representations into classés, it is
sufficient to determine a representation for each class. It
will be shown that the number of equivalence classes is
finite and in fact has group order |G| as an upper bound.
Furthermore, /m will be shown to be an upper bound for
the degree of an irreducible representation. It still
remains for us to show that a decomposition of a

representation h is unique.

Theorem 1.3 Theorem of Uniqueness: The decomposition
of a finite dimensional representation space V of a finite

group G is unique except for order and equivalence.
The proof follows two lemmas.

Lemma 1: If V is a direct sum of irreducible invariant
subspaces V’, vV = Ve--o Vk, and if W* is an invariant
subspace, then V is a direct sum of W° and some 6f the Vv'.

Proof: Let W' be the invariant subspace of V spanned

by W° and V. Since V' is irreducible and W° n V' is

10



invariant, we have either W n V! = 0 or W’ n V! = v!, thus

W =W

° & V' or W = W°. Now let W° be the invariant

subspace spanned by w' and V°. A similar argument yields
either W = W' o V> or W = W'. After k-steps, we have
W = V and we are done. V is the direct sum of W° and the

v! for which W' n V! = 0.0

Lemma 2: Given a representation h in a vector space V
with invariant subspaces v!,v® and V°, such that Vv =‘ vl e V°
and V=V e V3, then V? and V° are equivalent subspaces.

Proof: Let h' be a representation on v! for
i e {(1,2,3) such that h can be expressed as either the
direct sum of h' and h® or h' and n°. Then we must show

3 such that

there exists a 1linear isomorphism £: v v
2 _ 3
fhs(vz) = hsf(vz) for all s € G and v, € ve. For each
v, € VZ ¢ V there exist unique v, € v and v, € v’ such
that v, = Vvt v. Now define the map £:v%» v as follows
f(va) = f(vl-l- va) = V,. Clearly f is well defined and 1-1,
f is also onto since for each w, € Vv’c V there exists W e v!
and LA v? such that w, = - w1+ W, Now we have
f(av2+ bwz) = f((av1+ bwl) + (av3+ bws))
= av3+ bw3 = af(vz) + bf(wa),
thus f is 1linear. It remains only to show that
2 _ 3 _ _
fhs(va) = hsf(vz). Let v, = v1+ v, then hs(vz) =
L3 L3 1] l
hs(vi) + hs(vs) since each hs is linear. Also hs(vl) cV

for 1 € {(1,2,3) since each v' is invariant in V. Thus

11



we have fhs(vz) = hs(va) . Taking hs to be the direct sum of

h! and h® on the left of the previous equality, and taking

hs to be the direct sum of h' and h® on the right gives
2 - 3 . . -

fhs(vz) = hs(va). Finally, since f(va) = Vv, Wwe have
2 _ 3.3 .3

fhs(va) = hs(va) = hsf(vz) as was to be shown.o

Proof of < the theorem of Uniqueness: Let the
representation space V have two decompositions given by
V = Vle:-:e V® and V = We- e W where each V' and W' are
irreducible invariant subspaces. One needs to show k = m
and that there exists a suitable renumbering of the v' such
that V) is equivalent to w! for j e {(1,...,k}. Suppose

! ¢--c0 V' ¢ W o---0 W for some

k = m. We claim V =V
renumbering. This expression is true for j = 1. Now assume
the expression is true for any j, 1 < j = k. That is, there
exists a suitable renumbering of the vl for i e {1,...,3-1}
so that the relation holds. let U ¢ V be given by
U = Ve e V%% w0 W. Then, by lemma 1, V is a
direct sum of U and some V' with i = j. Denote this sum

oo WV e TV e W oeie W Comparing this

1z}

v =1y

expression with the previous expression for V gives, by
lemma 2, that W is equivalent to ) v'. This implies oy V'
iz) 12}

is irreducible and consists of a single summand which may be

assigned the number j. Thus we have

1

Vv=v ooV o W o0 ¥

12



and the stated assertion follows by induction.s

The uniqueness of the decomposition assures that any
method that completely reduces representation h is
acceptable. Thus one may choose a method tailored to the
group being represented. For example, a method which
decomposes representations of a c¢yclic group may not
decompose representations of a symmetric group. In chapter
two we shall look at a method for decomposing
representations of the finite symmetric group, S -

Let a representation space V be endowed with an inner
product. This means there is a positive definite Hermitian
form (inner product) in V mapping V x V into €. Denote this
inner product by <u,v> where u,v € V. A linear
transformation (linear operator) h: V -+ V is said to be
unitary if it preserves this inner product, that is,
<h(u),h(v)> = <u,v> for all u,v € V. A representation of G
is called normal if each hse h(G) is equivalent to a unitary
operator. That is, there exists non-singular matrix P such
that P'IHSP is unitary for each s € G.

Now recall from linear algebra that each 1linear
operator h has a unique adjoint operator h' on Vv such that
<h(u),v> = <u,h'(v)> for all u,v € V. Moreover if H
represents h with respect to an orthonormal basis, then the
conjugate transpose H of H represents h* in this basis.

Note that if matrix H defines a linear operator h with

13



respect to an orthonormal basis with HH = 1 then h is

nl
unitary. This is clear, since for each u,v € V we have

<h(u) ,h(v)> = <u,h'h(v)> = <u,v>. Thus the condition
HH = I, is a sufficient condition for an operator h to be
unitary.

A matrix M is called positive definite Hermitian if
M' = M and <M(v),v> > 0 for all non-zero v. Note that for
any non-singular operator M, MM is positive definite
. . . \J L 2 s a8 L]
Hermitian, since (MM) = MM = MM and

<M'M(V),v> = <M(v),M(v)> > 0 for all v # O.

Theorem 1.4 Normal Representation Theorem: Every
representation of a finite group G in a finite vector space

V over C is normal.
The proof follows two lemmas.

Lemma 1: If H is positive definite Hermitian, then
there exists non-singular P such that P'HP = 1I.

Proof: H is Hermitian implies, by a theorem of linear
algebra, that H is unitary and similar to a diagonal matrix.
That is, there exists a non-singular unitary matrix Q such
that H' = Q'HQ is diagonal. Since H positive definite
implies that H and therefore H'is non-singular, H’ has no
zero’s on the diagonal. Let R be diagonal with each

diagonal element r, equal to 1 /dl' where d1 is h’ ' the

14



corresponding diagonal element of H. Then, setting P = QR

R L L3R . !
gives PHP = RQHQR = RHR = I.o

Lemma 2: Y H;Hs is positive definite Hermitian.
seG

Proof: The note prior to Theorem 1.4 gives for each
s € G, that H;Hs is positive definite Hermitian. Thus it
suffices to show that a sum of two positive definite
Hermitian is also positive definite Hermitian, since the
conclusion would then clearly follow by finite induction on
elements of G. We have (A + B)' = a"+8B" ' =a+B and

<(A+B) (V) ,v> = <A(V),v> + <B(v),v> > 0 for v # 0.0

Proof of the normal representation theorem: One must
find non-singular P such that P'IHSP is unitary for each
s € G. To show P'1HSP is unitary it is sufficient to show

that (P'H_P) (P'H_P) = I. We have Y H.H_ is posifive
s s ceg S S

definite Hermitian by lemma 2. By lemma 1, there exists

non-singular P such that P'éZGH;Hs)P = I. This last
€
equality implies that S}E:GH;HS = (P')"'P'. Thus we have, for
each t € G
(p"Htp)'(p"Htp) = P'H;(p")'p"utp = p’H; g HOH_ H, P
= P'éEGH;tHSt)p =In

This result yields yet another proof of Maschke’s

15



theorem. For if we let h be a unitary representation with
invariant subspace W in V, one can show W‘L, the orthogonal
complement of W in V, is invariant. Now each H, maps W onto
W, thus for w € W there is w' € W such that Hs(w’) = w. Let
vV € w*, then <Hs(v),w> = <Hs(v),Hs(w’)> = <v,w'> = 0. Thus
for each v € W' we have Hs(v) e W' and so W' is invariant.

If a representation h is unitary, and Hsl defines hs

with respect to an orthonormal basis, then for each s € G

the map hs-1 is represented by Hs-l = H: = H;. Also, since
L] - . s
HsHs =1I-= HSHS implies that
n - n -
u§1h“‘(5)h”‘(5) = am = k);‘.1hjk(s)h“‘(s),

we have for each Hs mutually orthonormal columns and
mutually orthonormal rows.

Recall for H unitary there exists matrix P unitary such
that H' = PHP = PHP is diagonal, thus H is equivalent to
a diagonal matrix. Furthermore, éiven P and H unitary then
(PH) PH = HPPH = I implies that a product of unitary
matrices is unitary Thus H' as defined above is unitary and
(H')'H' = I. This then implies that each diagonal element
di of Hl has absolute value one since Eildl = 1. Thus H
unitary implies H is equivalent to a diagonal matrix where
each nonzero element has absolute value one.

In particular, let h be a unitary representation and
let Hg define hs with respect to an orthonormal basis. Then

each H is equivalent to a diagonal matrix where each

16



diagonal element has absolute value one. These diagonal
elements are eigenvalues of hs. Thus, if A is an eigenvalue
of h € h(G), for some representation h, then |A| = A = 1.

This does not imply that a representation' h is
equivalent to a representation in which each H is diagonal,
for this would only occur if the unitary matrix P which
diagonalized Hg also diagonalized all H e h(G). Notice
however, that given G a cyclic group and h a ‘unitary
representation of G, we can choose s € G such that s
generates G, <s> = G. Then H defining hs with respect to
an orthonormal basis generates a group of unitary matrices
representing G. One need only diagonalize H, to diagonalize
each matrix Ht' representing the group element t. This is
due to the identity (BAB™Y)™ = BA"B'. Thus for a cyclic
group G and an irreducible representation h of G, we see
that h has degree one. It will be shown later that this

statement holds also for any commutative group G.
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Section 1.2 Regular Representations of Finite Groups

Let V be a vector space over € with a basis (et)
indexed by the elements t of the finite group G. For each
s € G, let hs be the linear map of V onto V which sends e,
to e e This defines a linear representation of G, which is
called the regular representation; its degree is equal to
the order of G.

Since we have indexed the basis by elements of G, then
for each matrix H defining hs with respect to this basis it
is reasonable to speak of a u-row and t-column where
u,t € 6. Then for H, = (h_ut(s)) we have hut(s) = 1 if

st = u, 0 otherwise. 1In particular hut(lc) = aut and ch is

the identity matrix of order |[G|. Also for s = 1, we have
htt(s) = 0, for all t € G. More will be said of this in
section 1.4. For now, it is sufficient to point out that 1G
is the only element in the group G mapped to the identity
element in GL(V), thus the regular representation is an
isomorphism from G into GL(V).

Let h be a homomorphism from G into GL(V) (note V need
not be a vector space of dimension |G|) and let N be the
kernel of h. Then by the 1lst isomorphism theorem, N is a
normal subgroup of G and h(G) is isomorphic to G/N. If N
consists of 1G only, then the representation h is faithful.

Conversely, if N is a normal subgroup of G, then there

is a homomorphism h from G into GL(V) for some V such that
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the kernel of h is equal to N. The dimension of V is to be
determined along with the homomorphism h. First let h' be
an isomorphism from G/N into GL(V) for appropriate V. We
know one exists. For example, the regular representation of
G/N vwhere V has dimension |G/N]|. Now define h by
h(s) = h'(sN) for each s € G. Then each member of a coset is
assigned the same element of GL(V). One may say that the
representation h belongs to N.

While we have, for each normal subgroup N, a
representation of G which belongs to N, there need not exist
an irreducible representation of G which belongs to N. For
example, a group need not have a faithful representation
which is irreducible. There are, however, normal subgroups
which are assured the existence of one or more irreducible
representations which belong to them. In particular one can
demonstrate that any normal subgroup N for which G/N is
isomorphic to a «cyclic group will have irreducible
representations with kernel N.

In the previous section it was noted that any
irreducible representation of a cyclic group is necessarily
of degree one. Thus, if h is an irreducible representation
of the cyclic group C, of order n, then h maps C, into c',
where € is the multiplicative group of nonzero complex
numbers. Thus, the representation h must assign one of the
nth roots of unity to a generating member of the group. If

this root has order n, then the representation h is a
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monomorphism of C, into c’.

Since there exists ¢(n) primitive nth roots of unity,
where ¢(n) is the Euler phi function, we have ¢(n) faithful
irreducible representaions of C,- Recall, ¢(n) equals the
number of positive integers, not exceeding n, which are
relatively prime to n. Thus for N a normal subgroup of G
with G/N = cn there exists ¢(n) irreducible representations
of G which belong to N.

Subgroups of particular interest are N = G and N whose
indices in G are two. In either case N is a normal subgroup
of G. The factor group G/N, where G = N, consists of a
single coset and each element of G is assigned the value 1.
This results in an irreducible representation called the
unit (trivial) representation of G.

The factor group G/N where [G:N] = 2 is isomorphic with
Cz, thus there exists one, since ¢(2) = 1, irreducible
representation of G which belongs to N. This representation
assigns the value of 1 to each element of N and -1 to each
element of sN where s ¢ G and s ¢ N.

The symmetric group on n objects, denoted by Sn’ and
its subgroup denoted by A, consisting of even permutations,
are of particular interest, since subgroup An, called the
alternating group on n objects, has index two in S,- The
irreducible representation which belongs to A, is called the
alternating representation of She

A subgroup N is called a proper subgroup of G if N = G
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and N = {16}. We have, by a classical result in algebra,
that A, is simple for n > 4, that is A, has no proper normal

subgroups. Also since |A| = |A| =1, and [|A)| = 3, we

2
have that A, is simple for n < 4. Thus, we will show that

if N is a proper normal subgroup of Sn with n = 4, then
N = An.

Since the intersection of normal subgroups is normal,
we have either N n An = An or N n An = {1G}. In the first

case N = An' since the only proper subgroup of Sn containing

An is An itself. The second case, where N n A, = {1},

implies that each element in N, with the exception of the

identity, is an odd permutation. If we let s,t ¢ N with
s # lsat t, then st = s = t% = 1s . since the product of
n n

two odd permutations is even, and the identity is the only
even permutation in N. The product st = s® implies s = t so
N contains at most two elements. ILet N = {s,ls } be normal

n

in Sn. Note for n = 2 we have N = 8§ thus assume n > 2.

nl
Now N normal implies that for each t € Sn we have t'st = s.

Since only the identity commutes with each element in S, we

have s = ls and N = (1S }. Thus the alternating group A
n n

is the only proper normal subgroup of Sn for n # 4.

n

Each irreducible representation of a group G belongs to
a normal subgroup of G. For n > 1 the group sn has two
irreducible representations of degree one, the unit

representation belonging to S and the alternating

nl

21



representation belonging to A,. When n # 4, the group S,
has only one other normal subgroup, the subgroup consisting
of the identity alone. Thus any other irreducible
representation of sn, n = 4, must be faithful.

When n = 4, the group Sn has one other proper normal

subgroup. This subgroup consists of the four elements 1g s
: 4

(12) (34), (13)(24), (14)(23) and is isomorphic to the
Klein 4-group, denoted by V4. The factor group generated by
this subgroup is isomorphic to the group S, which will be
shown to have a faithful representation of degree two. Thus
the symmetric group S, has three unfaithful irreducible
representations; all other irreducible representations, as
above, must be faithful.

Note that since products of complex numbers commute,
any group G with a faithful representation of degree one is
necessarily abelian. In fact, the group G must be cyclic
since it is isomorphic to a finite subgroup of c¢'. Thus
each faithful representation of Sn, for n > 2, has degree

greater than one.
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Section 1.3 The Schur Relations

Recall that 1linear representations h and h' of the
finite group G in V and V', both vector spaces over'c, are
equivalent if there exists a linear isomorphism f:v - v'
such that fhs = h;f for each s ¢ G. We are now prepared to
show, by way of Schur’s 1lemma, that given. irreducible
representations h and h and a linear map f from V to v
such that fhs = h;f for all s € G, then either f is
non-singular and h and hl are equivalent, or £ = 0 and h and

'
h are non-equivalent.

Theorem 1.5: Let h and h' be linear representations of
a group G in vector spaces V and Vl respectively, and let £
be a linear map from Vl into V. Assume group G has finite
order and each vector space, V and v', has finite
dimension. Then, fhs = h;f for each s € G, if and only if

there exists a map g: V» V such that £ =Ié| ) héq gh_.
s

Proof: If f: VvV » Vlis such that fhs = h;f for each

s € G, and we let g = £, then

Y h g fh

h -1 h f = f =
L L HR

1 1
IG' IGlseG seG

Conversely, for a map g with the above property, we have

£h, h_-1 gh_h, = hehe -1 h_-1 gh_h
IG'SEG ghghy |G| L Pehe ghghy
1 r's
= -1 gh
IGIsEth (st) ghgt
= htf for each t € G.n
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The remaining theorems in this section are concerned

with irreducible representations of G.

Theorem 1.6 Schur’s lLemma: For h and hl irreducible
representations of G, let the homomorphism f: V-» V' be such
that fhs = h’sf for each s € G. If h and h' -are not
equivalent then £ = 0. |

Proof: There is nothing to prove when £ = 0, so assume
£f = 0. Let XK(f) ¢ V denote the kernel of f and let

Im(f) c V' denote the image of f£. Now v € K(f) gives

fhs(v) = h;f(v) = 0 thus K(f) is invariant under each hs'
Since V is irreducible we have either K(f) = (0} or
K(f) = V. Since £ # 0, we have K(f) = (0} and f is

one-to-one. If we now let v be any element of V then
hlsf(v) = fhs(v) belongs to Im(f), thus Im(f) is invariant
under each h’s. An argument, similar to the one above, gives
Im(f) = V’and so the map f is onto. Therefore f is an
isomorphism from V onto Vl and h and h' are equivalent.ms
Notice that, in proving Schur’s lemma, we have shown
that any map f satisfying the condition fhs = h;f for each

S € G, must either be the zero map or be an isomorphism.

Theorem 1.7 Homothety Theorem: Given an irreducible
representation of h in a finite dimensional vector space V,
let the map f: V » V be such that fhs = hsf for each s € G.

Then £ is a homothety, that is f is a scalar multiple of the
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identity in GL(V).

Proof: Let A be an eigenvalue of f. One exists since
V is a vector space over the field of complex numbers. We
then have hs(f~h) = (f—A)hs for each s € G. By the remark
preceding this theorem we have f-A = 0 since f-aA is
singular. Thus £ = A is a homothety.m

Let H, = (b (s)) and H, = (h:J(s)) be matrices
defining linear operators h, and h;. An immediate
consequence of theorem 1.7 is that any irreducible
representation h of an abelian group G must be of degree
one. For each t € G, ht is a linear map from V into V, also
for each s € G we have h.h, = hths since G is abelian. Now
if h is an irreducible representation we have, by theorem
1.7, that ht is a homothety for each t € G. That is, each
matrix H, defining h, is a scalar multiple of the identity

matrix. lLet A, € C be the scalar multiple associated with

t
the martix Ht' then for each t € G we have Ht = AtI. Thus

each ht € h(G) is mapped to At € C and h has degree one.

Theorem 1.8 Schur’s Relations: Let h and hl be
irreducible representations of a finite group G in a finite
dimensional vector space V over C. If the irreducible
representations h and h, are not equivalent, and n is the
degree of h, then

) % h:J(s'l)hkm(s) =0 for all i,j,k,n
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(11) L h (s)n (s) = lel 5,8,
n

Proof: For any matrix E of the right size 1let

_ l I- _ ’
F = |G| g Hsz E Hs, then by theorem 1.5 we have FHS = HSF

4
for each s € G. Since h and h are not equivalent, Schur’s
lemma implies that F is the zero matrix. Let matrix Ejk be

the matrix with e "o 1 and 0 elsewhere, then we have

= 4 "ot =
. |G| X h”(s )ejkhm(s) |G| ZGhU(S )h _(s) =
45y se
Since j,k were arbitrary in defining matrix E, we have

ZGh:J(s'l)hkm(s) = 0 for all i,j,k,m.
€

If h = h then F -t E Hg is a scalar matrix by

lG"seG

theorem 1.7. If we choose matrix E as above then

IGI Zh (S )h (S) = Ajkslm

where the subscript jk on A indicates its dependence on EJk
Now, summing over G by s is equivalent to summing by s,
thus we have

-1 -1 =
A8, —|G|s§Gh (s")h_(s) =15 Zhém(s )b, (s) = A8,
S €

From Ajk81m= ama” for arbitrary i,j,k, and m. We obtain

A“= A,r and since i and j are arbitrary we have
= = 1 =
A“ = 7«“ = A and |G| pX h (s )h (s) Aajkam. In order
seG

to solve for A, set 3 = k and i = m, thus

A = l-é'l r h (s™ )h (s) and summing both sides over k
seG

. 1 1

gives na =% Zh (1,) |I6] = 1 and so A = =
IG' seG IGI n
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- G| .
Thus Y h (s 1)h (s) = l 8 8 as required.s
sec M km - k=

The Schur relations can be combined if we adopt the
following notation: irreducible representations h* and h*
are equal if p = ¢, and nonequivalent if p #* q. It is

g, we have h* and h? are

important to note that when p
actually equal; it is not sufficient to require that h” and
h? be equivalent. If we now let np and ncl denote the degree

of h* and h' respectively, the Schur relations may be

. P -1 q = IGI
written sEGhu(s ) hkm(s) - amajkam.

P
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Section 1.4 Group Characters

Let V be a vector space over € with basis (el) of n
elements and let H = (h, j) be the matrix defining the linear
operator h with respect to this basis. The trace of the

n
operator h is defined by Tr(h) =7} h,. For all 1linear
1=1

ocperators £ and h we have Tr(hf) =¥ T hufn =Y ¥ f”h“ =
1) 1)

Tr(fh), thus it follows that equivalent operators have the
same trace. That is, given equivalent operators h and h,l
we have Tr(h’) = Tr(fhf'i) = Tr(ff"h) = Tr(h). This scalar
valued function is then a class function on the space of
linear operators.

Recall from linear algebra that for each complex matrix
H defining a 1linear operator h, there exists a unitary
matrix U such that H' = UHU is in superdiagonal form.
That is every element below the ma'in diagonal is zero. The
characteristic polynomial of the matrix H', and therefore of
the matrix H, is (hu- x)---(hm- x) . Thus the trace of
operator h is the sum of its eigenvalues, counted with their
multiplicities.

Let h: G » GL(V) be a linear representation of a finite
group G in a finite vector space V. For each s € G let
xh(s) = 'I'r(hs). This complex valued function ;th is called
the character of G afforded by the representation h. If the

representation h is irreducible, then Xy is said to be an
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irreducible character of G.

Theorem 1.9: Let ¥ be the character of a finite group
G for the representation h. Let h have degree n ahd let
s,t € 6. Then:

(i) (1) =n

(i) xh(s) is a sum of complex roots of unity

(iii) 2 (s™) = 2, (s)

(iv) 2, (t7'st) = xp(s)

Proof: Part (i) follows since X, (1) = Tr(h(1.)) =

n

Tr(lg (v

) = n. Now xh(s) = Tr(hs) =Ehl where Al are
1=1

eigenvalues of hs. In section one it was noted that each

eigenvalue of hs is a complex root of unity, and so we have

part (ii). Part (iii) follows from the observation that for

|Ai| = 1 we have AI‘ = i_l , thus for each A, an eigenvalue

of hs we have Azl is an eigenvalue of hs-i.' Therefore, we
n n

-1 = = -1 = X = Tr(h.) = 7.(s8)

have xh(s )y = Tr(hs-1) —1)3111 Eihi Tr(hs) xh(s).

. . -1 - - -

Finally, since xh(t st) = Tr(ht—1st) = Tr(ht-1hsht) =

'I'r(hs) = xh(s) we have part (iv).ms

Theorem 1.10: Let G be a finite group. Let the
representation h: G » GL(V) be the direct sum of 1linear
representations hl,...,hk, that is V = V'e---e V* and each
n' maps group G into GL(V’). Let Xy be the character of G

k
in h and xl’l the character of G in h’, then X, = ¥ xr’l.
1=1
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Proof:

We have that for each matrix Hs

defining hs'

there exists a non-singular matrix F such that

Hs- 0
-1 .
FH F = . for each s € G.
8 o B
s
Thus xh(s) = Tr(Hs) = Tr(FHqu) = Tr(H;) SRR ¢ Tr(H;) and

we are done.s

Let 6, x be complex valued functions on group G and let

<6,x> e(s)x then
e |G|s§G (s)x (=),

G L x(s)e(s) = <x,6>. Also,

I |seG G

<a191 + azea’x>c = a1<91,x>c

+ as<e,,x>.

L e(s)x(s) =

<9,x>G =
seG

1
le]
one can easily verify that

thus <e,x>G

defines a Hermitian form on the vector space of complex

valued functions on G.

Y e(s)e(s) > O,
seG

=1
<6,6>, =g

for all e =+ 0,

This form is positive definite since

and so <e,x>G is

an inner product on the space of complex valued functions on

G.

-1
2(s) = x(s™) and <8,%>. ==
¢ |Gl geq

Theorem 1.11:

of G in h and hl, where h is not equivalent to hl.

(i)
(ii) <xhrxh>c =1

<xh' 'xh>c =0

Proof: Let (hu(s)) define hs
then setting i = j and m =
Eh(S)h (s) = 0 , and
GJJ

30

If x is a character of G then, by theorem 1.9,

¥ e(s)x(s™) —IGI

we have

T 8(s)x(s).

seG

Let Xy and xh' be irreducible characters

Then

and (h‘j(s)) define hs,

k in the Schur relations gives

-1 =6l
sEGh“(s b (8) = 3.

n



Summing by Jj,k on both sides of each equation then gives

’ -1 _ -1 - IGI -
(8 )xn.(s) = 0 and (8 )x.(s) = ‘n = |G].
SEG n (5 )%p () SEG h h n Il

Part (i) follows since <xh',xh>c = I%I )X xh’ (s")xh(s) =0,
seG
similarly for part (ii) we have
i -1 = 1 =
< > = S S hend M G -_— 1..
ne¥n>c =|5| L An(s )2 (8) = |5 l¢]

In the Schur relationszhfj(s'i)h:m(s) - lels

seG n
P

h? when p = q, that is, it was

im jk pq’

it was necessary that hP
not sufficient that hP be equivalent to h? when p = q. This
is not the case when we restrict our attention to characters
since equivalent operators have the same trace. Thus we may
allow that h” be equivalent to h? when p = g and theorem
1.11 becomes <x§,xg>c = qu where h® is equivalent to h? if
and only if p = g. The irreducible characters of group G

then form a orthonormal set.

Theorem 1.12: Let the representation h: G » GL(V) be
the direct sum of irreducible representations hl,...,hk and
let Xy be the character of 6 in h. If h° is an irreducible
representation of G with character xg then the number of h'
equivalent to h° is given by <xh,xl‘;>c.

Proof: Let x;l be the character of G in h‘, then, by

k

theorem 1.10, X, = Y ;\:l'1 and so we have
1=1

MM w

k
° — 1 o - i °
<xhlxh>c - <’§1xhlxh > = 1<Xh,xh G*

1

Since <x1’1,x;>c equals one when h' is equivalent to h° and
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zero otherwise we have our result.s

The preceding theorem implies that the decomposition of
a given representation h is completely determined by its
character Xp . This means that for any two representations
with the same character, their respective decompositions
contain any given irreducible representation, wup to
equivalence, an equal number of tinmes. Thus two
representations with the same character are equivalent. This
then reduces the study of representations to that of their
characters.

Let x;l, see ,x;‘l be the irreducible characters of group G,
and let x;l be the character afforded by the unit
representation. Note x;l(s) =1 for each s € G. Let n, be
the degree of representation h' which affords xl’l. Then, by
theorem 1.9, we have xl;(lc) = n. If @ is the character
afforded by a representation of G we have, by theorem 1.12
and the remarks following it, that @ is a linear combination

x

of irreducible characters. That is 6 =¥ alzzf;l where each a,
1=1

represents the number of times h' occurs in 6. Thus

<e,x;1>c = a, for each i and we have

k

— ’ —
<6,6> =< e,lgia‘xh % =

Kk
i _ 2
1a1<9,xh>c Ela .°

nMmMr

1

Theorem 1.13: Let @ be the character afforded by a
representation of G, then 6 is irreducible if and only if

<9,6>G = 1.
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Kk k
Proof: Let 6 =Y} a’xl'l, then <6,9>G =Y af. If e is
i=1 i=

irreducible then @ = xljx’ for some j, and a =1 when i = j
and 0 otherwise, thus <9,6>, = 1. Conversely if <e,é>c =1,
then a, = 1 for some j and 0 otherwise, thus 6 = xl’l.-

Let h® be the regular representation of group G then
each matrix H: = (h t(s)) is defined hut(s) =1 if st =
zero otherwise. If s # 16, then for each t € G we have

st # t and so hP (s) = &_., thus we have, for s e G,
tt s1,

Tr(HS) = L h}, (s) = &_.-|G]|.
] teG tt 51G

Theorem 1.14: Each irreducible representation h' of
group G occurs in the regular representation with
multiplicity equal to its degree n .
® be the character afforded by h¥, then,

Proof: Let xh
by the remark preceding this theoremn, we have
R _ R _1 - _
xh(s) - IGI 8516' Thus <Xh:2fh>c = Iclz xh(s)xh(s ) =

1 R 1 =
6] *n(1)% (1) = |g|I6]n, = n .=
As an immediate consequence of this theorem we have
£ 2 R x 1 £ 2
that1§1n‘ = |G| since |G| = xp(1) = Einxxh(lc) = En
Note that this implies that the degree n, of each
irreducible representation h' is bounded by the square root
of the order of G. Also, since x;(s) = 0 for s # 1., we

k
have x;(s) =Y nixl;(s) =0 for each s € G, s # 16.
1=1
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Section 1.5 Orthogonality Relations for Characters

The group elements s and t are said to be conjugate in
G if there exists r € G such that s = r’'tr. This defines
an equivalence relation on G and thus partitions the group
into classes. For s € G, let cs denote the conjugacy class
of s. Then Cs= ct if and only if s is conjugate‘to t. Also

we have C1= “‘c} since r'ilcr = 1G for each r € G. Let
G

h:G » GL(V) be a linear representation of G with character
Xy Then by theorem 1.9 part iv, we have that each element
in cs has the same character. That is xh(s) = xh(rqtr) =
xh(t) for each s,t € Cge Thus Xy is a "class function" on

the group G.

The space of complex valued class functions on group G
consists of all complex valued functions @ which assign the
same value to each member of a conjugacy class. Thus 0 is
completely determined by its assignment of a complex value
to each distinct conjugacy class of G. Since each value
assigned to a conjugacy class is arbitrary the dimension of
this space must equal the number of distinct conjugacy
classes in G. In the last section the set of irreducible
characters of G were shown to be orthonormal in the space of
complex valued functions over G. Thus they must form an
orthonormal set in the space of complex valued class
functions. In fact we will show that they form an

orthonormal basis for this space.
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Theorem 1.15: Let 6 be a class function on G and let
h:G » GL(V) be a linear representation of 6 and let f: V » Vv

be the linear operator on V defined by f =} é(s)h,. If h
seG '

is irreducible of degree n with character Xy then £ is a

homothety of ratio A, where A = I <e,g>o.
n

Proof: Iet t € G be arbitrary then ht-I fht =

-1
Yy h -1 e(s)h_h = Y 6(s)h, 1 = ¥ 6(tut ")h where
seG t 87t seG t st ueG u
u = t'st. since @ is a class function on G, @(tut™) =
6(u) and ht-l fht = ugge(u)hu = f£. Thus fht = htf for each

t €e G and £ is a homothety by theorem 1.7. Now, since f has

degree n, we have n‘Aa = Tr(f) = Tr(} e(s)hs) =¥ e(s)Tr(hs)

seG SeG
=L 8(s)x;(s) = |G|<e,x_h>c and we have our result.s
seG
Theorem 1.16: The set of irreducible characters

xﬁ,...,xﬁ of a finite group G form an orthonormal basis of
the space of complex valued class functions on G.

Proof: By theorem 1.11 and the remarks preceding
theorem 1.15 we have that the irreducible characters form an
orthonormal set in this space. We will now show that this
set spans the space, or equivalently that any class function
@ which is mutually orthogonal to each irreducible character
xﬁ must be the zero function. Let h: G » GL(V) be a linear

®
representation of G. For each s € G, let hS = o) alh;
1=1

denote the direct sum decomposition of h into irreducible
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representations h' each with degree n and occuring a times

in h. Let 6 be a class function such that <e,xl’1>c = 0 for

each 1 € {(1,...,k), then also <e,x;1>c = 0 for each i, since

<e'xl;>c = <7c;l,a>G = <9,;§¢I’1>G = 0, Now let f: V » V be the

linear operator defined by f = ¥ 6(s) hs then
seG
k k .
f =Yo(s) o aih; = o} a:- ¥ o(s) h;. Now applying theorem
seG 1=1 1=1 seG
1.15 gives that each [ 6(s) h! = |6 <@,xl> thus
s _— h'c
seG nl
L. el G ot X . le]
f =0 a, 11 <6,x> = oy a __'-0 and £ is the zero map
1=1 n 1=1 n

1 1
for each representation h.

In particular let hf:¢ - GL(V) be the regular
representation and let the set {e.}, t € G, form the basis

of V. Recall, that for each s € G, h; maps e, to e thus

st’

h;(ei) = e for each s € 6. Let f be the zero map with
G

f =Y e(s)h® , then f =Y e nt =Ye =3
SEG (=)hs = (elc) ng () s(eic) SEG 5) e -

and so 6(s) = 0 for each s € G. Thus @ is the zero function
and we have the desired result.s

Since the dimension of the space of complex valued
class functions on G is equal to the number of distinct
conjugacy classes in G we have as a consequence of the
previous theorem that this number also equals the number of

inequivalent irreducible representations of G.
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Theorem 1.17: (Orthogonality relations) ILet x;l,...,x;
be the irreducible characters of G and let ci,...,ck be the
conjugacy classes of G. Let s, denote an element of G which

belongs to the conjugacy class C,. Then

. LIS N
(1)  <xpoxp> = 3,

k
. . ) ) )
(11) I xp(s,) %,(s)) = IE'l 8,
n=1 i
Proof: Part (i) is a result of theorem 1.11. Let 6J
be the function equal to 1 on the class cl and equal to 0
elsewhere. Since it is a class function on G, by the

previous theorem it can be expressed as a linear combination

k
of irreducible characters. That is @ ;= ¥ amx; where
m=1
a =<8, = L voe () x®t) = |&| 22(s) Then for
m 3"*h7c 16 e ! h [ e -
each s, € G we have
k
_ _ n - C n m
8, = 6,(s) = m§1a“xh(s‘) = | Il‘)=:1xh(s‘):r.'h(sj) '

and part (ii) follows.s
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Chapter 2 Representation Theory of Group Rings over C.

We are now prepared to look at a method for determining

irreducible representations of the finite symmetric group.

In the first section we define the concept of group rings
and linear representations of group rings. At first this
approach éeems unwieldy, but it reduces the problem of
finding irreducible representations to finding minimal left
ideals of the group ring. Also, we shall see that the
regular representation introduced in chapter one is, in this
context, simply right multiplication by a fixed element of
the ring. We then restate the main three theorems of
section 1.1 in terms of the group ring structure.

In section two we introduce elements of the group ring
called primitive idempotents which generate minimal 1left
ideals. We then show that two minimal left ideals are
equivalent if and only if there exist special non-zero ring
elements that multiply minimal left ideals on the right to
generate equivlalent minimal 1left ideals. We end the
section by showing that the regular representation of the
group ring is decomposable into a direct sum of simple
two-sided ideals. Each of these simple two-sided ideals is,
in turn, decomposable into a direct sum of equivalent
minimal left ideals.

The final section of chapter two is devoted to a method

for determining irreducible representations of a finite
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symmetric group. This method involves the introduction of
Young diagrams and Young tables. These devices allow us to
determine primitive idempotents, and therefore, irreducible
representations of the symmetric group. We will also
introduce a formula for computing the degree of an

irreducible representation.
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Section 2.1 Basic Definitions and Theorenms

The group ring denoted R, is the additive abelian group
YR where R is a ring and G is a finite multiplicative
seG
group. Denote a e Rc by a =):as-s =Zs-as with each
seG seG

@, € R. Addition and multiplication are defined in R, as

follows:

(1) a+b=2as-s + zBs-s=Z(as+Bs)~s and

seG seG seG
ab =} o 'S - Y Bt-t =Y X ath-st =Y v
seG teG s t ueG
where Ty = Y ath = Y LA Bt' Thus we have
st=u teG

(ii) a'b = 1)_'i‘ E o et Bt-u.

It can be easily verified that RG, as defined, is indeed a
ring. For our purpose we will take the ring R to be the
field of complex numbers. Thus RG = C, is in fact a vector
space over C. Note that it is not necessary for us to
choose the field of complex numbers. For what is to follow
it is sufficient to choose any field of characteristic zero.
The group elements ({s)} then form a basis for Cc, with

s =Y crt-t where Op =1 if t = s, and 0 otherwise. The
teG
dimension of C, as a vector space is then equal to the order

of group G. Let us now define a linear representation of
the group ring c.-

A linear representation h of a finite group G in a
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finite dimensional vector space V over the field of complex
numbers C was defined in part one section one as a mapping h
from G into the set of linear transformations from V into v,
denoted L(V,V). We then noted that any such mapping h is a
homomorphism from the group G into the group of invertible
linear transformations from V onto Vv, denoted GL(V). We now
extend this definition to define a linear representation h
of the group ring c, in V. The representation h need not in
general map an element a e c. into GL(V). It is, however,
necessary that h map each group element s into the group
GL(V) .

Given a finite group G and a finite vector space V over
C a linear representation of c, in Vv is a mapping h from C,
into L(V,V) such that

h(st) = h(s)h(t) for each s,t € 6 and

h(aa + ub) = ah(a) + pgh(b) for each a,b € CG and A,u € C.

This definition is sufficient to ensure that for any ring
elements a,b € CG that h(ab) = h(a)h(b). Thus h is a ring
homomorphism, and h is also a vector space homomorphism over
C. It is clear from the above definition that each linear
representation h of c, is in fact a representation of G when
one restricts h to the basis elements of C..

If we begin with a representation h of a finite group G
in finite vector space V over the complex field €, there is
in fact exactly one representation of C., say h‘, which

restricts to h. The group ring C, is constructed by taking
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the set of all possible linear combinations of the group
elements s in G with coefficients from C. Thus if h'

restricts to h then h' must be the mapping of c, into L(V,V)

derived from h by setting h'(a) = T ash(s) where
_ seG
a =Y a.-s. Since h' is derived from h by requiring
seG '

linearity over C, h' is a linear representation of C..
Recall two linear representations h and h' of G in Vv
and V are equivalent if there exists a linear isomorphism f
from V onto V such that h; = fhsf"1 for each s € G. The
two linear representations (h')' and h' of C, derived from

h and h, as above, are also equivalent since (h )'(a) =

T ath' (t) =L a fh(t) £ =7 fath(t)f'l = £(I oz,ch(t))f‘1 =
teG teG teG teG
fh‘(a)f'1 for each a € CG. Thus the equivalence of two

representations is preserved under the extension of h to h'.
Similarly if n' and ( h' ) *are equivalent linear
representations of C,, that is there exists an isomorphism f
from V onto V such that (h')%(a) = fh'(a)f?! for each
a e CG, then clearly n' and (h')' restricted to the group
elements are equivalent.

Note that if a subspace W of V is invariant under the
action of C, then it is necessarily invariant under the
action of G. The converse also holds since W is itself a

vector space over C. It is thus closed under vector

addition and scalar multiplication, and a linear
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representation n' preserves these operations. Since
irreducibility is defined in terms of invariant subspaces,
if a representation h* of c, in Vv is irreducible or
reducible then the restricted representation h of ¢ in V has
the same property.

A similar comment may be made regarding a
representation h of G in V and the derived representation n'
of CG in v. Thus the three theorems of section one,

Maschke’s Theorem, Theorem of Complete Reducibility, and

"Theorem of Uniqueness also hold for linear representations

of the group ring CG. A restatement of these theorems in
terms of the group ring structure will follow a brief
discussion about equivalent subspaces and the extension of
the regular representation h® to the group ring CG.

let us now turn our attention to the regular
representation h® of a finite group G. We shall show that
the regular representation when extended to the group ring
c, is equivalent to mapping each element a of C., to the
linear transformation ta from C into c, defined by left
multiplication with element a. Recall that the
representation space V has a basis (et) indexed by the
elements t of G. Thus the dimension of V is equal to the
order of group G. And as was pointed out above, the order
of the group ring c, viewed as a vector space is also equal
to the order of group G.

We must show that there exists an isomorphism £ from
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the vector space V into the group ring cc such that
f(h;)'f'1 = ¢, for each a € C,. A natural choice is for f
to map each basis element e, of V to the group element t
in CG. Now h“:G6 - GL(V) takes each group element s to a
homomorphism h; ¢V » V defined by h:(et) = e .. If we now
extend hR' to (h")":c. » L(V,V), then (n")°(a) = (h3)"

L a.h™(s) = L @ hl with a = «_s. We note that (h}) is
seG seG seG

a linear transformation from V into V.
Let us now define the linear mapping Z:CG - L(CG,CG) as

follows: for each a € CG, L(a) = ¢

a where Za(b) = ab =

D) a,¢-1Bgu for each b e C with b =ZBt-t. One can
u,teG teG

easily verify that ¢, as defined, is a linear representation
of the group ring C, in c, viewed as a vector space over C.
We need only show that £ (h;)'f'1 = la for each a in CG where
f is as defined above. Let a,b € c, be defined as above,

then £(h})'£7(b) = £(h}) (L B.e,)
teG

= £(Y L aut'IBt(eu)) =YX aut'ist'u = £a(b).
u, teG u, teG
Thus, left multiplication of elements of c, by a fixed

element a of C, is equivalent to the mapping (h;)' belonging
to the regular representation of the group ring C, in vector
space V. For simplicity then, we may refer to the mapping
IH c, ° L(CG,CG) defined above as a regular representation
of the group ring C,.

In section 1.4 theorem 1.14 we found that each
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irreducible representation of a finite group G occurs in the
regular representation with multiplicity equal to its
degree. Thus, from the above comments regarding irreducible
and invariant subspaces, the problem of finding irreducible
representations of a finite group G reduces to the problen
of finding irreducible invariant subspaces of the vector
space C. under the action of left multiplication by elements
of the group ring c..

The invariant subspaces of a vector space CE are
clearly just the left ideals of the group ring C.. And the
irreducible invariant subspaces are just the minimal left
ideals.

Let N and N' be two left ideals in C.. Then viewed as
representation spaces, N and l( are equivalent if there
exists an isomorphism £ from N onto N' that commutes with
left multiplication. More to the point, the linear
representation ¢ when restricted to the left ideal N is
equivalent to ¢ restricted to N'. An example of a linear
transformation which commutes with left multiplication is
right multiplication by a fixed element b of C,. Let us
denote this transformation by N

Let the left ideal N' = Nb and denote by R"(t) and
R"’(t) the restrictions of the representation ¢ to the left
ideals N and N' respectively, then we have an"aa) =
R"l(ta)nb for each a € c.. This is so, since by assumption

each element in N' is of the form nb where n € N and b is
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fixed in CG, thus for each n € N we have n.bR"(za) (n) =
n(an) = (am)b = a(nb) = E'(4,)(nb) = R'(L,)n (n). It will
be shown later that in fact every equivalence mapping f is a
right multiplication.

We are now prepared to restate, without proof, the
first three theorems of chapter one: Maschkefs Theoren,
- Theorem of Complete Reducibility and Theorem of Uniqueness.
The following three theorems: 2.1, 2.2 and 2.3, then, are
simply restatements of these theorems in terms of the above
group ring structure and the regular representation.

We may assume for each theorem that G is a finite
multiplicative group and C, is the corresponding group ring
constructed over the field of complex numbers C. Also the
regular representation of C, is denoted by the 1linear
mapping t:cc-» L(cc,cc), where for each a € C, t(a) = Za is
the 1linear transformation of C, which multiplies each
element of CE on the left by the element a.

In the regular representation, it is worth noting that
C,, as a group ring, is the object of the representation,
and that cc, as a vector space over the field C, is the
representation space. Thus CG plays a dual role here. It
is this that gives us a rather unique point of view, that of
the left ideals of the group ring C, as the invariant
subspaces of vector space CE'

Theorem 2.1. Iet G be a finite multiplicative group

and let C, be the finite dimensional representation space of

46



the group ring cG determined by the group G. Then for each
left ideal N S C, there exists a left ideal N’ s €  such
that C.=Noe N°.

Theorem 2.2. The regular representation ¢ of c;l group
ring C, in the representation space C, decomposes completely
into irreducible representations.

This is equivalent to saying that the representation
space C, decomposes completely into a direct sum of minimal

! ¢...¢ N* where each N'

left ideals. In particular C, =N
is a minimal left ideal.

Theorem 2.3. The decomposition of a finite
representation space c, is unique except for order and

equivalence.
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Section 2.2 Primitive Idempotents and Minimal Left Ideals

The left ideals of ¢, are easily determined or
generated. For example, if a is a ring element of any ring
R, then the set of products ra with arbitrary r € R is a
left ideal in R, which we may denote by Ra, and the set of
solutions r € R of the equation ra = 0 is a left ideal in R.
It will be shown that, in fact, every left ideal of C, can
.be generated in both of these ways, and that we may restrict
our attention to elements with particularly convenient
properties, namely the idempotents.

An element ¢ is called .idempotent or an idempotent if

Theorem 2.4. Let G be a finite multiplicative group
and let C. be the group ring, over the complex field C,
determined by the group G. The following two statements are
equivalent:
(1) In a left ideal N ¢ C, there exists at least one
idempotent e € N, called a generating unit of N, which
generates N: N = cce
(2) IfNs c, is a left ideal, then there exists an element
eeC with the following properties:
(i) for any a € CG we have ae € N
(ii) for any n € N we have n = ne.

Proof: It 1is clear that statement(l) implies
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statement (2). Conversely we will show that statement(2)
implies statement(l). let e be as in statement(2). By

part(i) we have that 1Ge € N, thus e belongs to N. Then we

have e = &° by part(ii). ©Now let n € N, then n = ne implies
that n € cae, therefore e generates N. Thus statement(1l)
and statement(2) are equivalent, and we are justified in
using the same notation in both statements.m

It is of interest to note that theorem 2.4 implies that
multiplication on the right by an idempotent e is equivalent
to the projection of the group ring c, onto a left ideal N.
One may, therefore, consider an idempotent e as either a
generating unit for N or as a projection of C. onto N.

We say that a left ideal N s c, is annihilated on the
right by an element a if na = 0 for all n € N. We may
denote this by Na = 0. It is not obvious that such elements
necessarily exist for each left ideal N, but in fact this is
the case.

Given a generating unit e for N it is easy to show that

(lc - €) is also idempotent. We have, by the previous
G

theorem, that ne = n for each element n belonging to N, thus

n -ne=20 or n(1c- ) = 0 for all n € N. Therefore the
G

idempotent (1 - @ annihilates the 1left ideal N on the
("

right. Now, according to theorem 2.1, we have for each left
ideal N s c, there exists a left ideal N° such that c, is

the direct sum of N and N°. In the theorem following these
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comments we shall see that a generating unit of N
annihilates N° on the right and vice versa. We then see
that every such left ideal is the set of solutions to an

equation ae =0 with idempotent e

Theorem 2.5. ILet G be a finite multiplicative group
and let cc. be the group ring determined by G. Let N and N°
be left ideals such that C, =Ne N°. Then N has a
generating unit e and N° has a generating unit e,, such that
N is annihilated on the right by e, and N° is annihilated
on the right by e. In particular we have ee, = ee = 0.

Proof: The method of this proof is often called
Peirce’s decomposition. The group ring C, is a direct sum
of the left ideals N and N°. Therefore each element a e C,
can be expressed uniquely as a = n + n, where n € N and
n, € N°. Let the decomposition of the identity element in

the group ring c, be given by 1.= e + e, Due to the

CG
identity (1 )2 = 1 we have e = e & = e and
CG Cc ' ° o!
ee = e = 0, since the sum is direct and the components
are left ideals. Then for a € cc we have n + n = a =
a-lc = ae + ae . Since N and N° are left ideals we have

(]
that ae Jies in N and ae, lies in N°. Because of the

uniqueness of the decomposition of element a we must have
n = ae and n, = ae,. Now, if a lies in N then a = ae by the

idempotency of e and so ae, = 0. Thus e, annihilates the
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left ideal N on the right. Similarly, we have if a lies in
N°, then ae = 0 and e annihilates the left ideal N° on the
right.s

The previous theorem also holds if the group ring cC. is
replaced by a left ideal N which is a direct sum of two left

ideals N' and N°. 1In this case the identity element 1C is

(
replaced by a generating element e of N. We know such an

element exists by theorem 2.4. With these changes the proof
is very much the same as above. With this remark and the
use of finite induction one can easily prove the following

theorem, which is stated without proof.

Theorem 2.6. Let G be a finite multiplicative group
and let CG be the group ring determined by G. If a
decomposition of C, into 1left ideals is given, say

CG = N o0 N"‘, then one obtains a set A EERYLN of

generating units for these left ideals by the decomposition

of the identity 1, . Each left ideal N' is generated by e
G

and annihilated on the right by e, when i1 # j, in particular

we have ee = 0 for i = j.

An idempotent e is called primitive if there exists no

1 1 - 4 t— = 2 -
decomposition e = e + e with ee ee 0, and e, 2,
e * 0 for i € {1,2).
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Theorem 2.7. Let G be a finite multiplicative group
and let C, be the group ring determined by G. If an
idempotent e is primitive, then the left ideal C.e generated
by e is minimal. If a left ideal N is minimal, then every
generating unit ¢ of N is primitive.

Proof: The remark following theorem 2.5 asserts the
existence of a decomposition of the generatin§ units of
non-minimal left ideals of a kind forbidden for primitive
idempotents. Thus if an idempotent e is primitive then the
left ideal generated by e is necessarily minimal. We now
assume a left ideal N to be minimal and show indirectly that
the generating units of N are primitive. Let us suppose

that there exists a decomposition for a generating unit e of

the left ideal N. That is e = e + e with ee = ee =0

and e‘f =e, ¢ *0 for i € {(1,2). These conditions imply
= ] = p = 2 =

that ee = e since ee ei(e1 + ez) e + ee, e + 0.

Thus e = ee must belong to the left ideal N generated by
the idempotent e, and therefore d:Ge1 & N. Now !:Ge1 does not
equal N since e, like e, is in N, but e, does not belong
to Ccei. Hence G:Gt»:1 is a proper subspace of N = cce, and we
conclude that N is not minimal.ms

We are now prepared to return to the question of
equivalence. Recall that two 1left ideals N and N' are
equivalent if there exists an isomorphism f from N onto Nl

that commutes with left multiplication.
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Theorem 2.8. Let G be a finite multiplicative group
and let CE be the group ring determined by 6. If the left
ideals N and N’ are equivalent, then every equivalence
mapping £ from N onto N' is given by a right multiplication
with some fixed element b, denoted nb(n) = nb.

Proof: Let e be any generating unit of N and b its
image under the equivalence mapping f. ILet RP(Q and RF?Q
be the restrictions of the regqular representation & to the
left ideals N and N' respectively. Then for each a € CE and
for each n ¢ N we have f£(R'(f)(n)) = R“'(ta)(f(n)). This
implies that f(an) = af(n), since f(an) = f(R"(la) (n)) =
R"’(ea) (£(n)) = af(n). Now n € N implies that n = ne , thus
f(an) = af(n) = af(ne) = anf(e) = anb. Therefore we have
f(an) = anb = nb(an) as was to be shown.s

The element b introduced above has several interesting
properties. For one we have Nl = Nb; this is clear since
N = £(N) = f(Ne) = Nf(e) = Nb. Also since & = e we have
b = f(e) = £(¢f) = ef(e) = e b. On the other hand, since
the element b is the image of idempotent e in N’ we have
that b is idempotent and lies in the left ideal N'. Also
the element b is reproduced on the right by any generating
unit e’ of N'. Thus the element b has the property that
b = e be’, since b = be’ = ¢ be’. All elements of the form
Yy = e xe for any x e€ cb has this property, since
e ye' = &xe'? = & xe' = Y. Elements of the form e xe’ play

an important role in the next theorenm.
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Theorem 2.9. Let G be a finite multiplicative group
and let CG be the group ring determined by G. ILet N and N’
be minimal left ideals with generating units e and e&’. Then
right multiplication with any element exe’ # 0 defines an
equivalence mapping of N onto N'.

Proof: Recall that minimal left ideals N and N are
irreducible representation spaces of the group ring C.. Now
clearly right multiplication with exe’ is a linear mapping
of N into N' which commutes with left multiplication Za for
each a € CG. We have thus met all of the conditions of
Schur’s lemma, therefore right multiplication by exe’ is
either the zero map or an isomorphism from N onto N'. Now

since the idempotent e is mapped by ~ to exe’ = 0, we

exe’

must have that the map n___, defines an equivalence mapping

exe
from N onto N .s
We are, in fact, able to make a much stonger claim

about elements of the form exe’.

Theorem 2.10. Let G be a finite multiplicative group
and let €. be the group ring determined by G. Two minimal
left ideals N and Nl with generating units e and e’ are
equivalent if and only if there exist non-zero elements of
the form exe’. The equivalence mappings from N onto N' are
given by right multiplication with these elements.

Proof: If there exist non-zero elements of the form

exe’, then by theorem 2.9 we have an equivalence mapping
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from N onto N . Thus the minimal left ideals N and N are
equivalent. Conversely, let us assume that N and N' are
equivalent minimal left ideals and show the existence of a
non-zero element of the form exe’. By theorem 2.8 we have
that the equivalence mapping from N onto N' is given by a
right multiplication. Let the element x be such, that Ny
defines this equivalence mapping, then for each n € N we
have nx(n) = nxX € N’. While the element x need not belong
to N’ the element ex must, since ex = nx(e) € N'. Also ex
is the image of e # 0 under the equivalence map n, thus
eXx # 0. We then have exe’ = ex # 0. Now for each n € N we
have n = ne, therefore n.x(n) = nx(ne) = nex = aex(n) =

oo (n) for all n € N.=
Let us now prove the most important property of

primitive idempotents.

Theorem 2.11. Let G be a finite multiplicative group
and let c, be the group ring determined by G. If e is a
primitive idempotent, then all elements exe are numerical
multiples £e of e. Conversely, if e is idempotent and
exe = £e for all x e C., then e is primitive.

Proof: Let e be a primitive idempotent, then Ce =N
is a minimal left ideal by theorem 2.7. Now according to
theorem 2.10 the non-zero elements exe determine a
collection M of equivalence mappings from the left ideal N

onto itself. Note that different elements exe define
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different linear transformations, since the idempotent e is
transformed into exe. Let R"(l) be the restriction of the
regular representation ¢ to the left ideal N. The minimal
left ideal N is an irreducible representation space and each
equivalence mapping nwe ©f N onto N commutes with left
multiplica'tion R"(ta) for all a e C.. All the conditions
are met to apply the homothety theorem following Schur’s
lemma, thus each linear transformation in M is a scalar
multiple of the identity element in GL(N). Since right
multiplication by the idempotent e acts as the identity on

the minimal left ideal N, we have exe = fe.

Conversely, lLet e = e + e with ee, = ee = 0 and

e = e for i e (1,2). Then ee = ee = e, thus also

ece = e. Since all exe are numerical multiples of e, we

have e = ae. This is idempotent only for A = 0 or A = 1,
thus there does not exist a proper decomposition of
idempotent e.m

The following theorems refer to two-sided ideals, that
is, linear subspaces of c, which are simultaneously left and
right ideals. We shall show that a two-sided ideal A is
decomposable into a direct sum of equivalent minimal 1left
ideals. Moreover, we shall show that if a minimal left

ideal N is contained in the two-sided ideal A, then every

left ideal equivalent to N is in A.
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Theorem 2.12. Let G be a finite multiplicative group
and let C, be the group ring determined by G. If C, is the
direct sum of the two-sided ideals A and A°, then A and a°
annihilate each other, that is aa, = aa = 0 for arbitrary
a€Aand a e a’. Also the generating units e and e, are
uniquely determined and commute with all ring elements.

Proof: If a e A and a e A° then aa € A, since A is a
right ideal; and aa e a°% since a° is a left ideal. Thus
aa is zero. Similarly, we have aa equal to zero.
Therefore the two-sided ideals A and A° annihilate each
other.

Let «,B € CG, then o = a + a and 8 = b + l:)0 for some
a,b € A and ao'bo € A°, since CG = A o A°. As a result of
the two-sided ideals A and A° annihilating each other we
have af = ab + aobo' Now as a result of this multiplication
property, we can show that idempotents commute with group
ring elements. Recall that, according to theorem 2.5, one
finds certain generating units e and e, by decomposing the

identity element 1 This theorem, then, holds for A and

C

A° in their property as a left ideal. Let lo= e + e and
G

let a be any element in A, then ae = ea for all a € A,

that is ae = a(e + e) = a-lcc= lc;a = (e + e)a = ea. If
we now let a € C, be arbitrary with a« = a + a, then ae =
ae = ea = ed. Similarly, we have ae, = ea, thus the

idempotents e and e, commute with all group ring elements.
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Finally, if e’ is another generating unit of A as a
left ideal, we have e = e’e = ee’ = e. Thus idempotent e

is unique, similarly idempotent e, is unique.ns

Theorem 2.13. Let G be a finite multiplicative group
and let C be the group ring determined by G. If A is a two
sided ideal and N is a minimal left ideal with generating
unit e, then either N is contained in A or A is annihilated
on the right by e: ae = 0 for all a € A

Proof: We consider the set Ae of elements ae. This
set is first of all a left ideal, since A is one. Secondly,
all ae lie in A, since A is a right ideal. Thirdly, they
all lie in N, since e is a generating unit for N. The left
ideal N is minimal, therefore it follows that the set Ae is
either N or {0). 1In the first case N < A, in the second all
ae = O.m

We see,from theorem 2.13,that if the group ring C, is a
direct sum of two-sided ideals A and A°, then every left
ideal N lies either in A or in A°. Otherwise, we would have
e = ae + ae = 0 for each o € c. which is certainly not

the case, for example choose a = 1c or a = e,
G

Theorem 2.14. Let G be a finite multipliecative group
and let c, be the group ring determined by 6. If A is a two
sided ideal, and if the minimal left ideal N lies in A, then

also every left ideal N' equivalent to N lies in A.
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Proof: The left ideals N and N' are equivalent thus
according to theorem 2.10 there &exists a right
multiplicai;ion by a non-zero element exe’ which transforms N
into Nl. Right multiplication does not lead out of A‘.-

In chapter one we showed that each irreducible
representation h' of finite group G occurs in the regular
representation with multiplicity equal to its degree n,.
With regards to the regular representation of the group ring
c, this implies that vector space C, is decomposable into a
direct sum of minimal left ideals N' and each N' occurs with
multiplicity equal to its dimension. We know, by theorem
2.14 and the remark preceding the theorem, that all
equivalent minimal left ideals belong to the same two-sided
ideal. We shall see, in fact, that the direct sum of
equivalent minimal left ideals forms a two-sided ideal.

A two-sided ideal A is simple if it contains no
two-sided ideal other than itself or the zero ideal. We
will show that c, is uniquely decomposable into a direct sum
of simple two-sided ideals Al , with each A' the direct sum

of equivalent minimal left ideals.

Theorem 2.15. Let G be a finite multiplicative group
and let C., be the group ring determined by G. If there
exists a decomposition of C, into a direct sum of simple

1

two-sided ideals, say cc = A @0 Ak, then there is at

most one such decomposition.
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Proof: Let € = B! e---e B’ be a second decomposition,
and let 8 reeer® be the generating units of A’,...,Ak, then

1°c= e ++e. Let B’ ={ be | be =eb , b € B},
then B° constitutes a two-sided ideal contained in A' and in
B'. Thus either B° = {0} or B' = B’ = A, The first case
cannot occur for all i, for this implies that b1ex = 0 for
all b e B' and all i. But this is not possible, since we

have b1 = b11c= b1e1 +oret blek and not all b1 = 0. Thus

the simple two-sided ideal B' must be one of the A’, and
similarly for the rest.m

It has not yet been determined whether such a
decomposition exists, but if so, it must be unique. We
know, however, that the group ring CG is completely
decomposable into a direct sum of minimal left ideals. We
may then order the minimal ideals so that equivalent ideals
are together. If we introduce the notation N; for each
minimal left ideal so that ideals with the same upper index
are equivalent, and those with different upper indices are

not equivalent, then cG = N: LR N: IR N: DR N’t‘

i

Now, 1let al = N1 CIRRY ] N: then € = A! e---0 A* where each

G
of the subspaces A' are left ideals since they are direct
sums of left ideals. In fact the following theorem shows

that each A' is a simple two-sided ideal.
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Theorem 2.16. Let G be a finite multiplicative group

and let C, be the group ring determined by G. Let c, have

- the following decomposition: c, = A' o---0 A* where each a'

is decomposed into a direct sum of equivalent minimal left
ideals. And each minimal left ideal in A' is not equivalent
to any minimal left ideals in A’ when i = j. Then al,...,a*
are simple two sided ideals.

Proof: By the remarks preceding this theorem, we have
that each A! is a left ideal, thus it remains for us to show
that each A' is a right ideal and that each is simple. The

decomposition of 1, gives us generating units e, with
("

1CG= e1+---+ e = eu+---+ els+---+ ek1+---+ 2.

Then, for i # j, we have eXxe = eXxe = 0 for all x € C.,

since in the sum exe = ) e Xe all of the summands are
m,n

zero by theorem 2.10. Moreover, if a, € A' and aj e A! then
aa = aa = 0, since a = ae and a = age. If now x is
arbitrary with decomposition x = X 4+ x and a e a',
then ax = ax and therefore ax e A'. Thus each a' is a
right ideal.

Now let A° = {0) be a two-sided ideal contained in al.
Consider one of the left ideals N; , according to theorem
2.13, either N; is contained in a° or age,, = 0 for all

0 _ - . 0
ao € A. But ao = aoel aoeu-i- + aoe" for all ao in A
and A% is not the zero ideal, thus not all summands can

vanish for all j. Therefore, at least one of the N; is
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contained in a°. Then, by theorem 2.14, A% must contain all
equivalent left ideals of N;, and so all of Al. Thus each
A' is simple.sm

The group ring c, is then uniquely decomposable into a
direct sum of simple two-sided ideals A', each of which is a
direct sum of equivalent minimal 1left ideals. In the
regular 'representation each distinct irreducible
representation occurs with multiplicity equal to its degree.
We may then assume that the number of egivalent left ideals
N; in the simple two-sided ideal a! is equal to the
dimension of N;.

Also recall, by the remark following theorem 1.16,
that a finite group G has as many distinct irreducible
representations as there are classes of conjugate group

elements in G. Therefore, the number of simple two-sided

ideals A' must equal the number of conjugacy classes in G.
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Section 2.3 Young Tables and Semiidempotents

We will now restrict our attention to finding primitive
idempotents for the group ring determined by the symmetric
group S, . It will prove convenient not to demand
idempotence in the strong sense, but to be satisfied with
"idempotence except for a numerical factor.”

An element e is said to be sgemiidempotent if there
exists a number x * 0 such that & = xe.

While e is not idempotent, e/x is since (e/x)2 =
&/x% = re/r® = e/x. Rather than attach the factor 1/x each
time, we will, instead, search for semiidempotents which may
be expressed more simply as e.

ILet P=) o , the sum of all permutations of (1,...,n},
o€S
n

then P is semiidempotent. This is clear, since for .any

permutation t we have TP = Pt = P, thus P? = Y TP = nl!P.
TES
n

The same also holds for Q =} €50 where €, = %1 according
oeS
n

to whether o is an even or odd permutation. Here we have
TQ = QT = €.Q and again ¢® = n!Q. We shall see that the
representations which correspond to these semiidempotents
are already familiar to us.

Let x € C with x =} £.-s then xP =] £ 'sP = [ £_°P,
n seS s s

thus the 1left ideal C P is a one dimensional subspace
n

consisting of numerical multiples of P. Similarly, we have
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that cs-Q is one dimensional; therefore both left ideals

generated by P and Q are minimal, and their corresponding
representations are thus irreducible.
The regular representation ta' of the group ring

element a =Y oS, when restricted to CS-P, simply
s€eS n
n

multiplies each element AP in C,'P by the numerical factor
n

E e In the case of symmetric group elements the numerical
factor is 1, thus the corresponding representation is the
unit representation. Similarly, we see that the
representation corresponding to Q 1is the alternating
representation, which assigns 1 to every even permutation
and -1 to every odd permutation.

We will now generalize the procedure, for which the two
examples above are the simplest special cases. First we
draw a diagram, which is called a Young diagram. The
diagram contains r rows of squares with each row containing
m, squares, where subscript i refers to the row number. We

r
> 0 for each i, and § m = n.

require that r = n, m ozm,
1=1

1
The diagram is arranged so that the leftmost squares of each

row form a column.
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Let nj be the number of squares in each column, where
the subscript j refers to the column number, and let s be
the number of columns in the diagram. Then we have' s = n,

8

n . =n., > 0 for all j <s, and ¥ n, =n.

J=1

A Young table (or Young tableau) is formed by placing
the numbers 1 to n in any order into the n squares of the
Young diagram. To each diagram, then, corresponds n!
tables.

For each table we consider two special kinds of
permutations, the p and the q. Any permutation which
permutes only the numbers in each row will be denoted by p.
The rows, then, are invariant under the action of p.
Similarly, the columns are invariant under q. Now let T be
a Young table, and define the following quantities P=YPp
and Q =} e 'd where e = *1 according to whether gq is
even or odd. The sums P and Q are taken over all p and g
which, respectively, leave the rows and columns of T
invariant. The quantities P and Q play an essential role in

determining the primitive semiidempotents.

We intend to show the following: The product PQ = e is
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semiidempotent and the left ideal Ce generated by e yields
n

an irreducible representation of Spe It will be shown later
that different diagrams yield nonequivalent representations
and that representations belonging to different tables with
the same diagram are equivalent.

Since two permutations of n objects are conjugate if
and only if they have the same cycle structure, the number
of conjugacy classes in the group Sh equals the number of
partitions { m,...,m} of n. But this is equal to the
number of distinct Young diagrams. Thus, to each distinct
Young diagram corresponds an irreducible representation of
the group sn.

The Young diagrams which correspond to the two
representations already given turn out as follows. To the
unit representation belongs the diagram with a single row of
length n. While to the alternating representation belongs
the diagram with a single column of length n. |

Let T be a Young table and ¢ a permutation, then denote
by oT the table, with the same diagram, which results from T
after applying the permutation ¢ té its numbers. The
transition from T to Tl= oT is simply a renumbering of the
table T. Now, let the permutation T be arbitrary, then for
the transition T'= oT, we have (1:'1')' = o(TT) = oto loT =
otoer'. If we let t' = ote™' then (1:T)' = ©T. It is
clear that T’ acts on Tl in exactly the same way as T acts

on T. In particular the element in the i-th row and j-th
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column of table T is moved by T to the same position that t’
moves the i-th row and j-th column element of table T’. We
shall refer to T’ = oto ' as the permutation corresponding
to T for table T = oT. Thus, if the permutation p’ = ops
corresponds to a permutation p which leaves the rows of T
invariant then p’ does the same for T’. Similarly, if g’
corresponds to a permutation q which leaves the columns of T
invariant then q’ does the same for Tl.

For the Young table T, let P = (p € Sn| p leaves the
rows of T invariant) and let 2 = (g € Snl qd leaves the
columns of T invariant), then clearly P and 2 are subgroups

4 ’ ’
of Sn. Now, for T = oT, the corresponding groups P and 2

are given by 1)‘= 090! and 2= o20t, Furthermore, the
quantities corresponding to P =Y p and Q =Y eq are
peP qef 1

’

- ’ - . ’ -
P = oPoc! and Q = oQo 1. Regarding Q we note that o ! ana
o are either both even or both odd, the same holds for crqo"1

and gq, thus €s = E.- Finally, for the element e = PQ we

’ 4
have e’ = ges ', since ¢ = P Q = oPo '0Qr ! = oPQo .
Let us now take a closer look at the element e, and the

terms pq which make up the double sum e=PQ = ¥ [ £pdg.
peP qGQ 9

We actually have e = )X eqpq , since every element in S

MESn n

can be written in the form pq in at most one way. For, if
wve let pgq = P9, then we have p:p = qoq'I. Now, p and P,
belong to the group P implies that p;1p € P, similarly, we

67



have qoq'1 € 2. The only permutation which belongs to both
P and 2 is 1, therefore p = P and q = q,-

We observe by simple enumeration that the pg’s do not
account for all pérmutations in Sn. Consider for example

this simple diagram for n = 3.

Here P and 0 each consists of the identity and one

transposition, thus there are four elements of the form pq.
Since S, has six elements this leaves two permutations which
are not expressible in the form pgq.

Each permutation of the form pgq transforms the table T
as follows: Permutation p acts first leaving the rows of T
invariant. Next the permutation pqu acts on pT. Note
that pqp"1 is the permutation corresponding to q for pT, and
that (pap )p = pq. Thus we have T = paT = pagp 'pT. It is
useful to note that pqu leaves the columns of pT

invariant, thus pgp™’ e 2 for T = pqT.

Theorem 2.17. Let T be a Young table, and let P and 2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant.
Two numbers which occur in the same row in the table T can
never occur in the same column in the table T'= pqT, where

pPp€9Pand q € Q.
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Proof: This follows immediately since pq = (pqp")p
transforms T by permutation p first which leaves each row
invariant, thus the two numbers still occur in the same row
and so in different columns. The permutaticn pqp'1 leaves
each column of pT invariant, thus the two numbers cannot

occur in the same column of '1"= pqT.m

Theorem 2.18 Let T be a Young table, and let P and 2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant. If
two numbers which occur in the same row in the table T never
occur in the same column in the table 'I'l= rT, then r = pgq
for some p € P and q € Q.

Proof: The numbers which occupy column one of T' are
found in different rows of T. Thus these numbers can be
brought into the first column by a permutation P, which
leaves the rows of T invariant. Next, the numbers which
occupy column two of T' are found in different rows of T and
thus pi'I'. These numbers can be brought into the second
column by a permutation P, which leaves the first number in
each row of p,T fixed and leaves each row of T invariant.
We continue in this manner until all of the numbers are
placed in the correct columns. Now a permutation g’ may be
applied which brings each of these numbers into the correct
rows of T'. The permutation q’ leaves each column of pT

invariant, where p is the composition of the p,’s. Since
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each p, € P we have p € P. ILet permutation q € 2 be such
that g’ corresponds to q for pT. Then the table 'I" = pqT
with pe P and q € Q.=

We see, from the previous two theorems, that any
permutation which can be written in the form pq is
characterized by the following property: The permutation
transforms the table T into a table Tl in such a way that
any two elements which occupy the same row of T can never
dccupy the same column of 'I".

While the previous theorems and subsequent remark deal
with the transformation of different Young tables, only a
single diagram has been involved. We will now broaden the
discussion and consider different diagrams.

A Young diagram for the group S, is characterized by a
set of integers m = {m,...,m} which satisfy the following

r
conditions Y} m =n and m zm > 0 for all i < r. We
1=1

order these sets, and so order the Young diagrams, by
writing m > m’ if the first non-zero difference m - m; is

positive.

Theorem 2.19. Iet T and Tl be Young tables which
belong to the diagrams determined by the sets m and m',
respectively. If m > m', then there exists ‘two numbers
which occupy one row in T and one column in T'.

Proof: Assume that there do not exist two numbers

which occupy one row in T and one column of 'I". Then the m
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numbers in the first row of T are found in different columns
in T'. The table Tl, then, must possess at least m columns
and so m; z m. But by assumption m, = m;, therefore we
have m = m; . Now, we may apply a permutation q’ to the
table T’ which brings each of these m, numbers into the
first row of T' while leaving each column of T' invariant.
Next, we consider the tables T and qu’ minus their first
rows. The m, numbers in row tw6 of T are found in different
columns of q’T' and again, as above, we conclude that
m = m;. We continue in this manner until we have m = w’,

2
in contradiction with the assumption.=s

Theorem 2.20. Let T be a Young table and let P and 2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant.

let P=}) pand Q =} € g where € = *1 according to whether
peP qeR ¥ 4

q is even or odd, and let e = PQ, then for p e P and q € 2
PP = Pp =P , qQ = Qq = qu and peq = e e

Proof: Since P and 92 are groups we have, for p € P and
q €, that pp = Pp = P and g = Qg = 2. In particular, for
p a fixed group element we have as r varies through the
whole group then so does pr and rp. A similar comment may
be made regarding the fixed element q in Q2. Note that when
permutation q is odd the product gr is even (odd) when r is

odd (even). We therefore have
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PP=pfr=fpr=% pr=P=F] rp=Lrp=~F and

re) re) pre) rpe) rep
@Q=qYer=Yeqr=} e qr=€Q =} € € rq
reQ T reld T qreQ 1 97 9 rqe ¢ 79

=Y € rq= Qq.
refd

Finally, peq = pPPQQ (pP)-(Qa) = (P)(e Q) = & PQ = €e¢, as

was to be shown.s

Theorem 2.21. Let T and T' be Young tables. Let P and
2 be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant.
Similarly let 1)l and Ql be the corresponding groups for T'.
Let the quantities P,Q,Pland.Ql be defined in the usual way
and let e = PQ and &' = P'Q’. If there exists two numbers
which occur in one row in T, and in one column in T', then
Q'P = 0 and consequently e'e = 0.

Proof: Let t be the transposition of the two numbers
which occupy one row of T and one column of T', then clearly
tePand t € 2. Also, it is clear that ¢ = -1. Now, due
- Q' , thus

to theorem 2.20, we have tP = P and Qlt = etQ'
QP =Q (tP) = (Qt)P = - Q' P. This implies that QP = 0
and consequently e‘e = (P'Q’) (PQ) = P'(Q'P)Q = 0.8

In theorem 2.21 we made no assumption regarding the
diagrams of the tables T and T’. Let m and m’ be the set of
integers which characterize the diagrams for T and ‘I" . Then
according to theorem 2.19, if m > m’ there exist two numbers

which occupy one row of T and one column of T . Therefore,
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’ ’
we have e’'e = 0 for all tables T and T whenever their

diagrams are different.

Theorem 2.22. Let T be a Young table and let P and Q2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant.
Let T'= pqT with p e P and g € 2. Then Q'qu = qulP.

Proof: Let q° = pgp® then pg = (pap ')p = g'p. By
the remark preceding theorem 2.17, the permutation g’
belongs to the group Q' of permutations which leaves the
columns of Tl= paT invariant. Thus, according to theorem
2.20, we have qu’ = eq,Q’ and pP = P. Finally, since q and

q’ are conjugate we have eq, = eq, and so

leqP = qu’pP eq,Q'P = qu'P.-

Theorem 2.23. ILet T be a Young table and let P and 2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant. If
a permutation o cannot be written in the form pg with p ¢ P
and q € 9, then there exist a transposition p € P and a
transposition q € 2 such that poq = o.

Proof: According to theorem 2.18 there exist two
numbers which occur in the same row in T and the same column
in 'I"= ocT. Let T be the transposition of these two numbers.
Clearly Tt lies in P and Q'. Let p =t and let q € 2 be such

that © is the permutation corresponding to q for 'I"= oT. We

73



then have T = oqcr'l, thus q = o lto is also a transposition.

Therefore we have poq = ('c)a(a'”'co‘) = TTO = ls-cr = o.0
n

According to theorem 2.20 the element e belonging to a
given table T has the property that peq = eqe for every
pe€P and q € 2. It is clear that this property holds also
for numerical multiples Ae of the element e. In the

following theorem we see that the converse is also true.

Theorem 2.24. Iet T be a Young table and let P and 2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant.

Let an element a =Y a_+0c of the group ring C have the
O‘ESnG Sn

property that pag = ea for all p € P and g € 2. Then
there exists a number A such that a = ae.

Proof: It suffices to show the following: Whenever
the permutation o can be expressed in the form pq with p € P
and g € 2 then a, = apq = Aeq, otherwise o, = 0. For the

fixed elements p and q of sn we have that pog runs through

all of Sl_1 as o does. Therefore, in the following equation

Ya - pogq=pag=¢ca=¢€ } a_-0
oesno 9 “a‘«ssncr

every element of Sn occurs exactly one time in each sum.

The element pg occurs on the left when o = 1S and on the
n

right when ¢ = pq. Therefore o = eqapq for every element

S
n
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of the form pq. We then let a = o . If o cannot be
sn

expressed in the form pg with p €e P and g € 2, then by

theorem 2.23 there exist a transposition p and a

transposition g such that pog = 0. Note that since q is a

transposition we have eq = =1. Then from paq = eqa follows

@, = eqao, = - a and so @, = 0 whenever o cannot be

expressed in the form pg.m

Theorem 2.25. Let T be a Young table and let P and 2
be the corresponding groups of permutations which,
respectively, leave the rows and columns of T invariant.

Then the element e =Y € pg is semiidempotent and the left
Pq€ES
n

ideal Cgee generated by e is minimal. Therefore Cg-e yields
n n

an irreducible representation of CS . The dimension of Cyee

n n

and thus the degree of the representation is a factor of n!.

Proof: Iet p € P and g € 2 then pezq = eqez since
p’q = p(PQ)%a = POP(c @) = £ (PQ)* = e . Thus & has the
property of theorem 2.24 and we have & = xe. The element
& is semiidempotent if and only if x # 0, we must therefore
show this to be the case.

Regardless of whether x = 0 or not, the left ideal C_.-e

n

S
is defined and its dimension de is at least one since e # 0.
Right multiplication with e, denoted g is a 1linear

transformation in Cg which maps every element a into an
n
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element ae of C_.-e and multiplies every element ae of Cge

n n

S
by the number k. Now, the trace of the transformation n, is

independent of the coordinate system, thus we may choose the

natural coordinate system for cs . Denote by €. the
n
components of e, then n,e(a) = ae = Y Y ol €0 with
oeS_TeS
, n n
a= Ya p-p and o0 = pt. In particular the component found
peSn

in the o-th position of =~ e(a) is given by Yo -1 e =
TES ot T
n

Yae -1 . Thus, if E is the matrix representing n_with
pes PP O . e
n

respect to the natural basis, the element in the p-th row

and o-th column of E is ¢ p"o" The trace is therefore
given by Y Eply = pX e; = n!t:1 = n!. Let us now compute
oeS oeS s s,

the trace in a coordinate system chosen so that the first d,

basis elements span the linear subspace Cgre. Let E be the

n

matrix representing n, with respect to this basis. 1In this
system, the 1linear transformation n, Waps an arbitrary

element a with components (“1""'“n:) to the element ae in

S

C.'e with components (a;, oo ,a; ¢0,00.,0). Thus the last
n e

(n! - d,) rows of the transformation matrix E' consist of

zeros., For any element ae in cs-e we have ne(ae) = aé =

n

k(ae), thus the upper left block of the matrix E' consists
of x times the identity matrix of dimension d,. The trace

of the matrix E’ is therefore x-de. Since Tr(E) = Tr(E’) we
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have x-de = n!{, and so x = n!/de # 0. We may then conclude

that e = ¥ € pq is semiidempotent.
pqean

Note that the element e has components eq = #1, thus

the product & must have integral components. Now since

& = re, we have that the number x is an integer. Therefore

the dimension d_, of the linear subspace C; e must divide n!,
. n

since x = n!/de.

We will now prove that the 1linear subspace Cgye

n
generated by the semiidempotent e is minimal. It is
sufficient, according to theorem 2.7, to show that e/x is
primitive. Let a be an arbitrary element of the group ring

Cs » the product eae has the property that p(eae)q = eqeae

n

for all p € P and q € 4. This is clear since p(eae)q =
pP(PRaPQ)q = (pP)QaP(Qq) = (P)QaP(eQ) = € PQaPQ = £ eae.
Then, according to theorem 2.24, there exists a number a
such that the element eae = ae. Finally, as a result of
theorem 2.11, we are able to conclude that e is primitive
and so also e/k.

Thus every VYoung table determines a primitive
semiidempotent which in turn determines a minimal 1left
ideal. Each minimal left ideal is an invariant subspace
under the action of the group Sn and therefore yields an

irreducible representation as was to be shown.s
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Theorem 2.26. Young tables which belong to the same
Young diagram yield equivalent representations. Young
tables with different diagrams yield nonequivalent
representations.

Proof: 1Iet T and '1'" be Young tables which belong to
the same Young diagram. Then table T is transformed into
table TI by a permutation o, that is T'= oT. Let e be the
semiidempotent belonging to the table T, then & = ges ! is
the corresponding semiidempotent for Tl . According to
theorem 2.10, two minimal left ideals are equivalent if and
only if there exist non-zero elements of the form exe’. It
therefore suffices to show that exe’ is not zero for all x.
Choose x = o' then er e’ = eo'oer ' = &0 ' = reg’! = oO.
The equivalence mapping in this case is given by right
multiplication with the element res™.

Let us now assume that the Young tables T and Tl belong
to different Young diagrams. Let m and m’ be the set of
integers which characterize the diagrams for T and T',
respectively. Let e and ¢ be the semiidempotents belonging
to the tables T and T'. We may assume, without loss of
generality, that m < m’, then according to the remark
following theorem 2.21 we have e‘e = 0.

If we now consider the table oT with its semiidempotent
0‘60‘-1, we also have by the previous remark that e'gest = 0.
Now multiplying, each side, on the right by ¢ leads to the

following property: e‘’ce = 0 for all o € Sn. let a € cs be

n
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arbitrary then e’ae = e'(} ao_-a)e = Zao.e’oe = 0 , thus
o‘eSn oesn

there do not exist non-zero elements of the form e’ae.
Therefore according to theorem 2.10 the tables T and T' are
nonequivalent.ms

Recall that the group ring Cg is a direct sum of
n

simple two-sided ideals A' which annihilate each other on
the left and right. Also each al is spanned by a collection
of equivalent minimal left ideals. The minimal left ideals
N and N' occur in different simple two-sided ideals if and
only if they are nonequivalent. 1In the terminology of Young
diagrams and Young tables the above comments translate as
follows. Each simple two-sided ideal al belongs to one
diagram. Each A' contains the minimal left ideals Cge

n
defined by the n! tables which belong to the diagram for A'.

We will show in fact that each a' is spanned by the n!

minimal left ideals cs-e.

n
Theorem 2.27. Let D be a Young diagram and let A be
the corresponding simple two-sided ideal. Denote by
‘I‘l,...,Tm the n! tables belonging to D. Let e be the
semiidempotent defined by the table T,. Then the n! minimal

left ideals d:s-el span the entire corresponding two-sided

ideal A.

Proof: Let A’ be the linear subspace spanned by the n!
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left ideals Cg-e. Clearly A° € A is a left ideal. If we

can show that A° is also a right ideal, and thus two-sided,

S

we are done since A is simple implies that the only non-zero
two-sided ideal contained in A is A itself. Let x € A’ then

X has the form x = x e Feeot X e et a =Y o0 be an

! o€sS
n

arbitrary ‘element of the group ring C we must show that

S ’

n
xa is again in a%. It is actually enough to show that xo
belongs to a° for all ¢ e Sn.

When the permutation ¢ is applied to a table T, it
simply permutes the numbers in '1‘l to form another table, say
T,' If o is applied to the entire set of tables T, it
simply permutes the set. Thus we have for each i there
exists a j such that T, = oT, and e = a'elo"i. Then for
each term in xoc we have xjejcr = xj(a‘e‘o’l)a = xjae!. Thus
the product xo can be expressed as a linear combination of
the el's for all o € Sn. Therefore xa belongs to A° and 2°
equals the simple two-sided ideal A.m

While the previous set of semiidempotents e generate

the minimal left ideals C ‘e, which span A, the set is not

n

S
linearly independent. Any proper two-sided ideal A must be

a proper subspace of CS : therefore dim(A) < dim CS = n!.
n n
We will now consider certain special tables which Young
referred to as "standard tableaux." We shall see that a set

of standard tables correspond to a linearly independent set
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of semiidempotents which generate a spanning set of minimal
left ideals for the two-sided ideal A.

A table T, for a given young diagram, is called a
sta table if the numbers increase in every row of T
from left to right and in every column of T downwards.

Note that the number of standard tables for a diagram
consisting of a single row or a single column is one. This
is in agreement with the degree of the corresponding
irreducible wunit and alternating representations. This
simple observation generalizes as we shall see.

The final two theorems will be stated without proof.
The first theorem is not actually necessary for the
application of representation theory of the symmetric group
to the problem of finding explicit identities for a P.I.
algebra. It is offered here for completeness only. The
second theorem is necessary for what is to come in bart
three. However, the proof is tedious and involves several
technical lemmas. The interested reader may refer to

Boerner (page 138).

Theorem 2.28. The left ideals which arise from the
standard tables belonging to one diagram D, with
characteristic set of integers m, are linearly independent
and they span the corresponding ideal A'. Their number is

thus equal to the degree dm of the corresponding irreducible
1

representation.
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Theorem 2.29. The number of standard tables which

belong to the diagram with row lengths Wyeee,B is

= n! e (478)
m L1}
1 r

where l1 =n+r - 1, 22 =m, +r - 2,...,£r =m.

The number of standard tables and thus the degree of
the corresponding irreducible representation ﬁay also be
computed using "hook numbers."

Let D be a Young diagram characterized by the set of
integers m = Mmyeee, M. Let H, s be the hook which is formed
by the square in the i-th row and j-th column of D along
with all squares to its right and below. Let hu be the

number of squares in the hook H 5

H l |i-throw

j=th column

The number dm of standard tables which belong to the Young

diagram D is then

d = ———— wherelsisrandlsjsml.
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Chapter 3 An Application of the Theory of Representations

of the Symmetric Group

It is now time to apply the theory of represeﬁtations
of the symmetric group to the problem of finding explicit
identities for a polynomial identity algebra. In section
one we introduce the basic definitions of polynomial
identity algebras and give some examples. We define such
terms a T-ideals and co-dimensions of order n for a given
T-ideal.

Section two is entirely devoted to determining explicit
identities for a P.I. algebra and the tensor product of two
P.I. algebras. The work is based on several recent articles

by Amitai Regev.
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Section 3.1 Polynomial XIdentity Algebras

Definition. An algebra A over a field F is said to
satiéfy a polynomial identity if there exists an £ # 0 in
F[xl,...,xn], the free algebra over F in the noncommuting

indeterminants XopeeerXy

= 0 for all CERRL W in A. Such an algebra A is called a

P.I. algebra. Some examples of P.I. algebras are given

for some n, such that f(aI',...,an)

below:
1. Any commutative algebra A over a field F is a P.I.
algebra since each pair of elements a,a € A satisfies
f(xl,xa) = XX -XX = 0.
2. Let A = M_(F) be the set of 2x2 matrices over a field F.
It is simple to verify that A satisfies the polynomial
identity f(xl,xz,xa) = (xIxz-xle)zx3 - xa(xixz-x‘_’_gqri)2 = 0,
3. Let A be a nil algebra of bounded index of nilpotentcy
that is a* = 0 holds for every a in A and some integer k
where {k} is bounded. Then every element of A satisfies
f(xi) = xlill = 0, for a suitable fixed integer m.
4. More generally let A be an algebra containing an ideal N
such that (v) N is a nil algebra of bounded index, (L.) A/N
is commutative. Then there exists an integer m such that
= - n ;

f(xi,xz) = (x1>q:2 xzxi) vanishes on A.

Definition. 1In F[xi,...,xn] the standard jidentity of

L] 0

degree n is [xl,...,xn] =Y (-1) Xoay' X where ¢ runs

O (n)
o € Sn
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over Sn, the symmetric group on n elements, and where (-1)0
is 1 or -1 according as ¢ is an even or odd permutation.

An algekra A is said to satisfy a standard identity if
[xl,...,xn] vanishes on A for some n. We have already noted
that any commutative algebra satisfies the standard identity
of degree two [xi,xa] = XX XX . In this sense we may
consider algebras which satisfy a standard identity of
degree n to generalize the class of commutative algebras.

We see from the definition of the standard identity
that it is multilinear and homogeneous in its variables, and
that the identity vanishes if two of its arguments are
equal. These properties lead to many general examples of
P.I. algebras for if A is any n-dimensional algebra over a
field F, it can be shown that the algebra A satisfies a
standard identity of degree n+l. To see this, note that an
algebra A of dimension n has a basis {Ba"”'Bn) over F and

each element A yeee,d in A can be expressed as a linear

1
combination of the g8 i's. By the multilinearity of
[xl,...,xnﬂ] we have that [ai,...,anﬂ] is a 1linear

combination of terms of the form [Bi ,...,Bi ] Now each
1 n+l

of these terms vanish in A since each Bi is one of n
3

possible basis elements and thus two arguments are equal.
Since each term vanishes we have that [ai,...,anﬂ] vanishes
on the algebra A. Therefore any finite dimensional algebra

A over a field F is a P.I. algebra. In particular M (F) the
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algebra of nxn matrices over a field F satisfies the
standard identity [%,...,X2 ] of degree n%+1.

Amitsur has shown that any P.I. algebra A that
satisfies a polynomial of degree d, satisfies some identity
of the form sf[x] where 5,[x] = [xl,...,xl] is the standard
polynomial of degree ¢. Also the exponent & was shown by
Anmitsur ar.xd Robinson to be dependent on 4. But they were
unable to find an effective way to compute & explicitly and
were thus unable to write an explicit identity for A. With
the application of representation theory of Sn, Regev has
been able to prove Amitsur’s s’;[x] theorem by determining
explicit values of ¢ and &. A necessary step in reproducing
Regev’s arguments is the following theorem about P.I.

algebras.

Theorem 3.1. If an algebra A over a field F satisfies
a polynomial identity of degree d, then it satisfies a
multilinear homogeneous identity of degree less than or
equal to d.

Proof. Let the algebra A satisfy the identity
f(xi,...,xn) of degree d and suppose X has degree d1>1 in
the polynomial £. Then A also satisfies g(X ,eeeX ,X ) =
f(x1+xn+1,xz,...,xn) - f(xi,xa,...,xn) - f(xmi,xz,...,xn)
which is of lower degree in x, than is £f. If we continue in
this manner the result will be an identity which is linear

in X, SO that X, will occur in each monomial at most once.

86



Each time we reduce the degree of x we introduce one new
variable. Thus the degree of the new polynomial is at most
d. Now go on to X, If x, has degree d2> 1 then repeat the
procedure, otherwise go to X,. If wve run through all of the
variables in this way, we end up with a polynomial g of
degree s d which is of degree = 1 in each of the variables.

Now we may assume that the degree of each variable is
exactly one in each term of this polynomial. Otherwise,
suppose X, does not occur in each term; we then collect the
terms of g not involving X . If we specialize x= 0 in A we
see that the remaining terms give a nontrivial identity for
the algebra A. After a finite number of these steps we have
finally a multilinear homogeneous identity of degree = d
which vanishes on the algebra A.m

We need a few more concepts from P.I. algebras before
we can begin constructing actual identities in an arbitfary
P.I. algebra.

Let A be a P.I. algebra over a field F. Let F[X] be
the free ring in noncommutative indeterminants x x € X- Let
Q be the subset of F[X] whose elements are mapped into 0 by
every homomorphism of F(X] into A. Then it is clear that @
is a nonzero ideal in F[X] and that Q is invariant under
every homomorphism of F[X] into itself. This last point is
clear, for if we 1let h:F[X] -+ F[X] and g:F[{X] > A be
homomorphisms, then geh is a homomorphism from F[X] into A

and so for each q € Q, gech(d) = g(h(q)) = 0. Since this
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must hold for all homomorphisms g:F[X] -+ A, we must have
h(q) € Q.

Definition. Let A be a P.I. algebra over a field F and
let Q be a nonzero ideal in F([X] whose elements are mapped
into 0 by every homomorphism of F[X] into A. Then the ideal
Q is called a T-ideal (in F[X]) of polynomial identities of
algebra A. '

In general an ideal H < F[X] is a T-ideal if for each
tj(xI,...,xn) € H and each h1""’hn € F[X] we have that
g(hi,...,hn) € H. Thus if H is the T-ideal of identies of A
then each g(xl,...,xn) € H must also vanish on A. The
relationship between P.I. algebras over a field F and
T-ideals in the ring F[X] is made explicit in the following

proposition which will be stated without »roof.

Proposition 3.2. (1) Let H be any non-zero T-ideal in
F[X]. Then A = F[X]/H is a P.I. algebra whose ideal of
polynomial identies is H.

(2) Every P.I. algebra is a homomorphic image of an algebra
of the form F[X]/H where H is a T-ideal # {0}.
Let Vn be the vector space over a field F spanned by

the n! monomials XXy where ol=a(i) and o € sn the group
1 n

of permutations of (1,...,n). It is clear that Vn is the
subspace of F[X ,ee0,X,] consisting of all multilinear
homogeneous polynomials of degree n in XigeeesX,. If we let
F be the field C of complex numbers and identify each
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monomial Xy X, with the permutation o e Spo then we have
1 n
in fact identified the vector space v, with the group

algebra cs since vn = sp(xc---xb,|a € Sn} and

CS== sp{c|o € sn}. Also by theorem 3.1 we have that if a

n
P.I. algebra A satisfies a polynomial £f#0 in F[X] of degree
n then A satisfies a multilinear homogeneous polynomial g in
vector space A\ These last two observations alloy us to
bring to bear the full power of +the theory of
representations of group Sn into the problem of finding
explicit identities for an abitrary P.I. algebra.
Definition. Let A be an algebra over a field F
satisfying a polynomial identity of degree d. Let Q ¢ F[X]
be the T-ideal of polynomial identities of A and let 0 < n

be an arbitrary integer. The integer

Yn

Qn Vn

c. = dinm

n e = dim Vn - dim(Q n Vn)

is called the co-dimension of order n of Q. The sequence
{cn} is called the sequence of co-dimensions of Q. Since we
have from the above proposition that the T-ideal Q is so
closely related to the algebra A we may refer to {cn} as the
co-dimensions of the algebra A. If we let Qn =Qn Vn, then
C, = dim vn/Qn for each integer n > 0.

In order to construct explicit polynomial identities
for arbitrary P.I. algebras over a field F we first identify
elements of the group algebra Fg with polynomials in the

n
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vector space Vn over F, as above. We next look at a way of
relating polynomials to Young diagrams and show that they
are almost products of standard polynomials. Recall that,
to each Young diagram corresponds an irreducible
representation, and therefore, an irreducible character X,
where A is a partition of n. We will show that the sequence
{dh} of the degrees of irreducible characters Xy for some
sequences of Young diagrams, grows at a faster rate, as
n » o, than the sequence {cn} of codimensions of algebra A.
We will then show that for any P.I. algebra A, there exists
a certain two~sided ideal I, of identities in the group

algebra F for n big enough. And finally we prove

S
n
Anmitsur’s sﬁ'[x] theorem, in character zero, by giving

explicit ¢ and k.
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Section 3.2 Explicit Identities for a P.I. Algebra

Let vn be the vector space over a field F of
multilinear and homogeneous polynomials in X seeesX, Of

degree n. Let the monomial Ma.(x) = xcr;"xon in v be

identified with the permutation ¢ in the group algebra Fg .

Let us denote the identification by Mo.(x) = 0. This
identification then induces a multiplication on v, with the
following properties:

(1) For o,T € Sn,

oT = O'M_c(xi,...,xn) = M‘c(xcri""'xa'n)
and therefore, if f(xl,...,xn) € V., then

af(xi,. . .,xn) = f(xa_I,...,xo_n) .

(2) 0T = Mg ()T = (X %5 )T = Xp(5) " ¥e(o,) "

We see from property (1) that multiplication by a
permutation o on the left is equivalent to a substitution
that corresponds to that permutation. That is, for each
variable X, in the polynomial f(xl,...,xn) € V., permutation

o substitutes the variable x Property (2), on the

o)’
other hand, indicates that multiplication by a permutation =T

on the right changes the order in each monomial, of
polynomial f e Vn, by that permutation. For example if the

monomial X X is a term in f(xI,...,xn) € Vn, then <
1 n

reorders the factors by replacing each X, by S
J J
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Note that the definition of left multiplication implies
that Qn= Qn Vn is a left ideal in vector space Vn, where
Q § F[X] is a T-ideal. 1In particular if we let Q be the
T-ideal of polynomiél identities of a P.I. algebra A, then

for each n, Q.  is a left ideal in V- Since v, may be

n
identified with the group algebra Fg , we have that each Q,
n

is identified with a left ideal in FS . Thus each Qn

n
corresponds to an invariant subspace in the regular
representation space of the group Sn' We shall return to
this point later, but for now we turn our attention to the
polynomials that correspond to a Young diagram.

Let A be a partition of n, D(A) the corresponding Young
diagram and T(A) a Young table based on D(A). Let

e be the semiidempotent that corresponds to T(a).

A e'1‘(7\)
If Cs Sn is the group of column preserving permutations of

T(A) and R < sn the row preserving permutations, then

e, = Y p(E sgn(o)-0). We may write
P€R oeC

Y sgn(o) -0 = -1)0-0 = (-1)¢M (X, ,000,%X. ) = £(X. ,e000,X%
oeC agc( GEC g1 n ™ n)

thus e, (X ,...,x.) = Y £(x_,,+..,X_). We shall see that
AT n peR Py Py

in general f(xi,...,xn) is almost a product of standard
polynomials.
Among the n! tables based on D(A), choose the following

standard tableau
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T,(A) = 3l N s

h
1

where the numbers are in increasing order in the columns and
the columns are ordered from left to right. This table
decomposes the set Pn = {(1,...,n) into a union of subsets

H:' That is Pn = H1 (VXYY Ht where l-ll = entries of ith

column = {h1+"'+ h‘_1+ 1,-0.'h1+"'+ hl}' Ho = 0, and

# H= hi. The group of column preserving permutations C is

then given by Shl(Hl)x---x ShEHc) where

Shi(Hi) = {0 € Snla(j) =3j if j ¢ H}. We then have
1 L
¢
zc(-l)"-o =( I (-1)%a")-( , T (-1)%-0%)
oe 1
o e Sh(Hi) g € Sh(Hl)
1 e
es [X,.00,% ]-'s_[x oot x + 1,.0.,%].
h Firee ¥y 008 By h, T ' n

If we now let f(xl,...,xn) s Y (-1)°-a , then f(x) in this
oeC

case is a product of standard polynomials and we have
e, (X ,eee,X ) =Y £(x_,.0.%x_)
Ao 1’ ‘n PER P 1' Py

where e, is the semiidempotent that corresponds to the
(

Young table TO(A)
Now suppose we rename the variables XogoeesXy to
reflect the partition A of n. Since A determines the

columns and rows of the Young table 'I'O(A) , We have
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(xi,...,xn) = (xu,...,xlh R ATETENE AN "“'xh""x!hl)
1 2

where x , corresponds to the position in the ith column and

jth row of T, (3) and so
f(xi,...,xn) = f(x”) = shi[xn,...,thI]---shl[xh,...,x&hel.

As noted above the columns of table 'I'O(A) are ordered
from left to right, that is hz2hz.--2h, , thus we have h,
rows in TO(A) . To each of these h1 rows there corresponds a
permutation group. The group R of row preserving

permutations of T, (}) is then the direct product of these h,

h
permutation groups. That is for p € R, we have p = pi---p 1

where p’ is a permutation of the ith row of table T,(2). It
is clear that p' permutes only the variables X 1X 00 and

so we can effectively compute p-E(x _1)' Since x,, are

arbitrary indeterminants we <can make the following

substitutions

X1 XTUUT XyT Yo X5 XT0E yz""'xihl:”.: yh1.

We then have for any p € R
p-f(xu) = p-shl[xu,...,xlhl]---she[xh,...,x£h£]

= shilyllo..'Yhi']"'shl[yx,o-o,yhl], for x!] = yj'
h
This is clear since we may write p = p‘...p 1 , where each

1

p permutes only the variables x Xyreee which were all

11’
assigned the same value Y,
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Lemma 3.3. Let A be a partition of n, and let D(A) be
the Young diagram determined by A. Again, as above choose
the Young table TO(A) based on D(A). Rename the variables

X so that f(x ,...,x. ) = £f(x ), where f(i’:) E ) (-1)°~o',

1 1 n 13
oeC

and so that we have

f(x”) = sh1[x11' cee 'x1h1]' . -sht[xh, cee ’xlhtl'

)

and let m, denote the length of the ith row of D(a).

Also let e, be the corresponding semiidempotent of TO(A)

Then er(xij) =
mil"'m}i !'Sh iyl’...yh ]"'sh [yi'...,yh]' for x“ = yjo
1 1 1 ] //
Proof. e, (%) =Y p(f(x )))
Ao 1) peR 1)

=Y P Sy [xu, eee ,xth]-- -shc[xh, cee ,xehzl

PER 1
=Y s [Yieees¥p 1008 Y. seee,¥y ]
peR h, 1’ **h, h, 1’ *¥n,

= mil---mhll-shl[yl,...,th]---shtlyl,...,yhl].-
If we now let T(A) be an arbitrary table based on D(A)

and let e, be the corresponding semiidempotent, then there

exists T € sn such that e, = Te, t!. That is we have
o

e, E e, (X, c0erx,) = t(eho(xﬂ cee ,:q:n))v:'1
where the right hand side of this equation can be computed

from e, by applying the multiplcation properties (1) and

Ao
(2) to the factors Tt and ! respectively.
Let F be a field of characteristic zero, and consider A

a partition of n. We know that A defines, by way of a Young
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diagram and table, an irreducible representation with degree

dh' Also to A corresponds a unique two-sided ideal I, in

Fg o and dA is the dimension of each minimal one-sided ideal
n

JA contained in IA' The dimension dA can be effectively

computed using the "Hook-Fomula" fA = nl/f h%j where h?; is
i,

A
1)

We will now study the rate of growth of the degrees of

the number of nodes in hook H| K of the Young diagram D(A).

some sequences of Young diagrams. In particular we will
compare the rate of growth of dA' as n » o , for partitions
of n corresponding to rectangular diagrams. This rate of
growth will then be compared with the rate of growth of

co-dimensions of a P.I. algebra A.

Lemma 3.4. Let ¢,k be integers with 2 = ¢ , f?z < k,

and n = {-k. Note that this implies ¢ < &, and that n » o

as & » w. Let A e Par(n) with a = (k,...k) = (k) or

A= (¢...,0) = () and let 4, = g, be the degree of %,.
&y (E-1)/2 g [ _(F-1) (282 1]

Then dA>A2(k) fk 1 157 Al

where A, = (¢ - 1)(t - 2)%-- ()12 ( =1yl 02,
(2m)

The proof of lemma 3.4 requires a technical lemma

(lemma 3.5) which will be stated below without proof.

Lemma 3.5. Let k,a,b be real numbers such that £ > b =

azo,a+b-1=21, and k£ > (b-a)(a+b-1)/2. Then
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l"(gk:ag > (%)b-a.[l_ (b-a)£:+b-1)] ,
where I'(4) is the Gamma function.

Proof of lemma 3.4. Since the partitions (k)t and (e)"

are conjugate, their characters have the same degree. We
choose to work with a = (k)z, whose Young diagram D(A) is an
¢ x k rectangle. If we now fill in this diagram with its

"hook numbers" we obtain

k+ ¢ -1 &+ 1 ¢
k+1 3 2
k 2 1

It is clear that the hook numbers are the same on the
diagonals of slope + 1 of this diagram and since ¢ < & we
have
A n!
A
nl.JhU

(ke) !
1122 b (a1 b S (k1) BTN L (ReE-2) 2 (RHE-1)
-1

(ke) 1. (2-1) - (2=2) 2. .- (2)*72. (1)
k) b k1) (Re2-2) 2 (Re2-1)

B.. (k) !
L RT (RF1) 1+ - (RHE=1) 1

- B. I'(k + 1)
L T (RF1) T (k+2) - - - T (KH)

vhere B, = (£-1) (¢-2)%-- (2)*™2.
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By Gauss’s multiplication formula,

r(nz) = (—=—)"10""2.r(z)- (z + 1/m)+--T(z +

(2m) 172

m-=1
)

and the identity I'(n + 1) = n-T'(n) we have d;l =

T(k) -T(k+ 3+ T(h+ 553)

1 -1 -1/2
Bg'l'k'('—'T}'z') * (luC Y ) T (k+1) ‘T (k+2) - -T (k+l)
(2m)
z’." k-T (k) -T(k+ -})---I‘(H l—zi)
= Byt T EFL) T (RF2) - T (RFD)

-1 TI(k + %)

= a,.tk.

. , since &k-T'(k) = I'(k+1).

T
3=1 T (k+3+1)
We will now let a = j/¢, and b = j + 1. It has already

been noted that £ > ¢ and since j € {1,...,{-1} we have
£k > ¢ =2 j + 1, thus & > b > a > 0. Also we have
a+b-12z1sincea+b-1=3+ 1+ (j/8) - 1> 3 = 1.

Finally we have

(b-a)(a+b-1)=j2+j+%-(%)z
2 3

.2 L}
<J—+§j—u,sinceo<%<1

2
sf—'z-t—l"—z—, since j s ¢ -1
2
s 3 since by assumption £ = 2
2

s & , since by assumption % s k.

We have thus met the conditions of lemma 3.5 and may

T(k + 7)
therefore apply this lemma to each factor THEST to get

ree + 3 " 45+ =37
- = @Yo - 2% ]
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$2+3+3- @7

It is clear that, 0 < 5K < 1 . Therefore
8-11 Fri+g-@F 1££1j2+j+%-(%)2
il |-

RiA 2% 2 2K
ey - -1+ 2

122 k

n n
The inequality follows from fj (1 - a!) z 1 - {:al whenever
1=1 1=1

0 < a < 1, a fact which is easily shown by induction. The

equality is due to the finite series formulas

E i = Mg_.l-]_'l. and E iz = n(2n';1) (n+1) .
1=1 121
Also IT( L1y1-3rt = “(m S (1)(3 -1)/2,

J=1
and so we have
- G (B-1)/2 0 (B - 1) (288 + 1)1
dy = dyg > 3 ¢ ® [1 122 "xl--
Several authors have shown that there is an exponent;ial

bound on the co-dimensions c, of a P.I. algebra A. 1In fact
Regev was able to show that if an algebra A satifies an
identity of degree d, then Sn = o where a = 3.4973, In a
later paper, by Klein and Regev, this estimate was improved
to a < 3-(d2-7d+16). A simpler proof of the exponential
bound of the co~dimensions c, was given by Latyshev, along
with the improved estimate of a s (d-1)2. We will now state

Latyshev’s theorem without proof.

Theorem 3.6. Let A be an algebra satisfying a

polynomial identity of degree d and 1let S be its
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codimensions, then
c, = Td—-i—)!" (a-1)>.

We see in lemma 3.4 that the sequence {dA}, of the
degree of irreducible representations corresponding to a
particular sequence of partitions (A}, grows faster than a
particular exponential sequence. On the otherhand, theorem
3;6 impliés that the sequence of co~dimensions {cn} is
bounded by an exponential sequence. We will now show that

there exists some partition A of n such that dA > cp.

Theorem 3.7. Let A be a P.I. algebra satisfying an
identity of degree d, and let c, be its co-dimensions. Let
¢ = (d-l)a + 1, and let ko = ko(l) be a number such that for
any k& > ko, k/1n(k) = (82-1)/2. If we now let K(4d) =
max{£3/3,ko}', then for any & > K(d4) .we have dA = dlk > Chpe e

Proof. If d = 2 then c, =1 and there is nothing to
prove. Assume 3 s d, so 5 s ¢, and let £ =z K(d). Then we
have &k 2 t3/3, so that

_ (B-1y (2841) 1,
12¢ &k

1
1 z

and
ay, » [% ) (+) (B-1)/2 k.

2
Since ¢ = 5 we have A, > 2 and so 4, > (/%) ¢ 1) /2
By theorem 3.6, we have (d-l)z" > c,. Hence it will suffice

2
for us to show, that [%] (¢ -1)/2.“&)& z (d-1)2’k, or
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2
equivalently that [_t_é)lk z (k)(l “1)/2,  1f we now
(d-1)

take the natural log on each side of the inequality we have

2
/] ]z !

k-ln[ @ 1)2 5 In(k) .

Now, since ¢ = (d-:l)2 + 1 we have

2
@ @-1)3t = 1 + (/@13 > ¢, and
1n@/(a-1)3% > 1n(e) = 1, thus k-1n(/(da-1)3% > k.
If we now recall that "o was to be chosen so that & > ko

implied that &/1n(k) = (£#-1) /2 , we then have

2
k-ln[ ¢ z]t >k = 551 ‘1n(k).
(d-1)

Finally we have

[ ¢ z)m . (k)(za-l)/z
(d-1)
as was to be shown.s

We will now apply the previous results to construct
actual identities in an arbitrary P.I. algebra A and in
particular in A e. B where A, B are two P.I. algebras. We
must first show the existence of a (big) two-sided ideal
inside the left ideal Q, ¢V, Recall that V_ is the vector
space of multilinear and homogeneous polynomials in
X, seee,X, OVer a field F, and Q, = 2 n vn where Q is a

T-ideal in F{X].

Lemma 3.8. Let F be a field and Q € F[X) be a T-ideal.

Let A be an arbitrary P.I. algebra and let the sequence {cn}
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be its co-dimensions. Assume that A € Par(n) satisfies

d, > c_ and that the corresponding representation of F_. is

A n S

irreducible. Then there exists IA s Q. where IA is the
two-sided ideal in vn that corresponds to the partition a.

Proof. Let JA # '(0) be any minimal 1left ideal

contained in IA‘ Since X, is irreducible we have

dim(Jh) =d If we assume that I\ is not contained in Q.

A.
then Jh n Qn = (0) and we have dA = dlm(JA) = dlm(Vn/Qn) =
Che This contradicts our assumptj.on that dh > Cps therefore
we have J, £ Q,- Now since J, €I, was an arbitrary minimal

left ideal in IA, and I, is the sum of its minimal 1left

A
ideals we have IA [ Qn"

We are now prepared to obtain our main result.

Theorem 3.9. Let F be a field of characteristic zero
and let Q < F[X] be a nonzero T-ideal. Assume there is a
polynomial £ (3':) € Q of degree d with f (S’c) # 0. Then there

exists n = n(d) and A € Par(n) such that 9, =21 where

A
Q, = Qn VvV, and I, is the two-sided ideal in v, which
corresponds to the partition A.

Proof. Let the sequence {cn} be the codimensions of Q.
By theorem 3.6 we have c, = [/ (d—l)!](d-l)zn. Since
char(F) = 0, the representation which corresponds to the
partition A is irreducible for every A € Par(n). Let
o = (d-l)z, ¢t =a + 1, and & =z K({,a) = K(d) as in theorem

3.7. We then have for A = (kt) or (lk), that d)\ = 4, >

ek
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a”‘. Thus we conclude, 'by lemma 3.8, that there exists a

two-sided ideal I, s, for n = k.n

A theorem by Amitsur states that if an algebra A
satisfies a polynomial identity, then algebra A satisfies
s';[i':] = 0 for some ¢ and k. The next theorem gives an

effective way of computing the values of ¢ and k.

Theorem 3.10. Let F be a field of characteristic zero
and let A be an algebra satisfying an identity of degree d.
Iet £ = (4 - 1)2 + 1 and K = K(d) = max{£3/3,ko} where ko is
a number such that for any & > ko we have k/1ln(k) =
(22-1)/2. Then for any k& =z K, the algebra A satisfies the
identities s':[;c] = 0 and sfc[i':] = 0. In particular, we can
choose & = 8‘/4.

Proof. Let £ = (d-1)2 + 1, & = K(d), and A = (&) or

172

A = (lk). We may choose & = Z‘/4, so that & = 82/2 >

(£-1)/2. Now since #&/1n(k) > &Y > (£-1)/2 and
74 > £/3 we have & = &/4 = K(d). By theorem 3.9, we

have Qek 2 I Consider, for example, A = (kt). Then D(A)

<
is an &xk rectangle. Since I, is two sided, we can fill in
D(a) arbitrarily with the numbers 1,...,8, and the
semiidempotent that corresponds to the resulting Young table
will belong to I and hence to Q,,. As was done earlier we

choose
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11 e8+1 s . e L(k~1) + 1
TO(A) = - . N . . ] -
¢ 28 - Lk

and use lemma 3.3 to conclude that
en)tshixy e g -
Since char(F) = 0, we have
s'z[i’:] €Q, .u

We will next show that the tensor product of two P.I.
algebras is again a P.I. algebra. The following proof does
not rely on the representation theory of the symmetric group
Sn. It is, nevertheless, interesting to see the results of
an earlier paper by Regev, in which values of k& and ¢ were
not explicitly determined. Also in the discussion many of
the concepts mentioned above will be given more attention.

let A and B be two P.I. algebras over a field F. The
elements {aie b‘| ae A, bie B} are linear generators of
A® FB the tensor product of algebras A and B. If
g(xi,...,xn) is a multilinear polynomial in XogeeerXy with
coefficients in F, then g(i’:) is an identity for Ao B if and
only if for any sets {ai,...,an} € A and {bx""'bn} S B we
have g(aie b1,...,ane bn) = 0.

let Q € F[X] be the T-ideal of identities of a P.I.
algebra A, and let {cn} be its sequence of co-dimensions.

If we write Q. = 2 n vn then, by definition we have
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<n dlmrvn/on' Now the n! monomials {xo, X,

o € S}
1 nl n

span Vn, hence they also generate Vn modulo Qn' Since the
dimension of Vn modulo Qn is S, there exists S, monomials

Ml(xl,...,xn), ""Mc‘fxﬂ'“'xn) which form a basis for v,

over Qn' Thus we have for any monomial XX, € vn there
1 n

exists ¢‘(cr) eF, 1= 1,0000C, such that
cn
xo; . .xonsx§1¢‘ (o*)M’ (xi, ces ,xn) (modulo Qn) .

Since Qn S Q its elements are identities for algebra A. It
follows therefore that for any substitution A yeeed, € A we

have the equality
c

n
ao;"aon =i§1¢l(o)nl(a1,...,an), o € Sn.

With these remarks we are now ready to prove the following

theoren.

Theorem 3.11. Let A and B be two P.I. algebras over a
field F, then Ae B is a P.I. algebra.

Proof. Let {an} be the sequence of co-dimensions of A,
and (bn} that of B. By theorem 3.6 there exist real
positive numbers a and B8 such that for all n, a, = a” and
bn s Bn. It is well known that there exists n such that
an~Bn < n!, hence an-bn < n!. We will prove that for this
n, AeB satisfies a non trivial multilinear homogeneous
identity of degree n.

Let us denote the T-ideals for the P.I. algebras A and
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B by Q‘ and QB respectively. And denote the complement of
(Vn n'Q‘) by An and the complement of (Vn n QB) by Bn.

Now let M:(x1""'xn)"”'Malfxx""'xn) be a, monomials
in variables XopeoerXy which generate An. Let ¢1 (0) € F for
l = i s a, and o € sn, such that for any substitution

a,e004a € A and o € Sn we have

n a
n
a -cra; = hX ¢1(0)Ml(a1,...,an).
1 n 1=1

This is clearly possible by the remark preceeding this
theoren.

Similarly, 1let N1(x1,...,xn),...,Nb:xl,...,xn) be bn

monomials in variables XopoensXy which generate Bn. For
1 s3j s bn' let '/11(0‘) € F with o € Sn, be coefficients in

the field F such that for any substitution bi""’bn € B and

b
n
(o - Sn we have bcr'"bcr = ¥ Wj(q)Nj(bﬁ""bn)'
1 n j=1
Let g(x1,...,xn) =Y (P SRR} N be any multilinear
0‘€Sn 1 n
polynomial with arbitrary coefficients {v,) s F. Let

{al,...,an} € A and {b1""’bn} S B, we may then write
g(axe bx,...,ane bn)

=Y7v(aeb )--(aeb_ )
O'ESno 01 01 on on
= z  § (a Y- ) ® (b -..b )
O'ESno 01 on an on

a b

=75 16,008, (2, 30X T ¥, (0N, (B, . b))
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a b
2 Z ( Z 9, (0)'/1 (0)7,) M (a,...,a, )eN (Byrecerby).

1=1 3j=1 O€S
Now consider the system of homogeneous equations

Y ¢ ()Y (0)y, = 0 for all i and j. This is a set of a_-b
es ! 1 4 n*n

equations with coefficients 4)1 (a‘)wj(o) and n! unknown
indeterminants 70'5. Since n was chosen so that an'bn < n!,
there exists a non trivial solution {10,) for this
homogeneous system. If we now chose one such non .trivial

solution {v,) and define g(xl,...,xn) =Y [PRE SRESS S then
0‘€S n

it is clear from above that we have g(ae b ,. «esa,® b ) =
a b

2 Z (L ¢ (a)y,(0)7,)M (a,,...,a ) @ N (b,...,b ) =

i=1 §=1 aes
Therefore, by the remark preceding this theorem, we have

g(xl,...,xn) Zsz'o. xo, X, is a non trivial identity for
g€ n

Ao B and thus AeFB is a P.I. algebra.ms

While theorem 3.11 states the existence of a polynomial
identity for the tensor product of two P.I. algebras, it
does not explicitly define such an identity. The following

theorem will enable us to construct such an identity.

Theorem 3.12. Let A and B be two P.I. algebras, and

let a, and bn be their co-dimensions. Let S be the

- L3 L3 s . .
co-dimensions of AeFB, then C, 5 a, bn

Proof. Let C = AeB and let o° denote the T-ideal for
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the P.I. algebra A@FB. let (’:n denote the complement of

(v

n [+

c
n Q). Now let g(xX ,..e,%X.) =Y 7 X X% be any
v’ n aesno 7 n

multilinear polynomial in Chr then as in the above argument,

we have for all (ai,...,an) € A and {b1""’bn} S B
a, b,

9(31@ bi,...,an@ bn) =l§1]§1r“‘,ul(a1,ooo'an) ® Nj(bil... ,bn)

where I'’ =Y ¢ (0)¥ (0)7v_.. This implies that
1 ges ! J 4
n

a b

n n

g(xi,...,xn) =1§1 ’Elr‘UMi(xi,...,xn) -] NJ(xI,...,xn) + q

where q € Q°. Thus, dim C, s dim An-dim B,orc, = an~bn as
was to be shown.m

We have finally, that if the degrees of some identities
of algebras A and B are given, say degree dA for the algebra
A and degree dB for the algebra B, then by theorem 3.6
C, = anbn = [(dA-l) (dB-l)]zn where S, is the co-dimensions
of A@FB. Theorem 3.10 can now be used to construct an.
explicit identity for Ae B. If char(F) = 0, we may then
choose ¢ = [(dA-l) (dB—l)]2 + 1 and & = 54/4 to conclude as

before that s';[i'c] = 0 is an identity for Ae B.
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