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ABSTRACT

EQUIPMENT CONTROL AND PROCESS CONTROL IN
SEMICONDUCTOR CIM SYSTEMS

by
Steve K.P. Wong

A recent study [1] shows that control system failure accounts for fifty percent
equipment failure in semiconductor fabrication. In response to this study, an overview of
today's Computer Integrated Manufacturing (CIM) systems for equipment control and
process control in fabs is presented here. Three CIM systems developed in different
environment are investigated. They are the Strategic Cell Controller developed in
SEMATECH, the semiconductor consortium industry, the MIT Computer Aided
Fabrication Environment developed in academia, and the Microelectronics Manufacturing
Science Technology CIM system developed by Texas Instruments under the industry and
government's support. These CIM systems are being studied in the areas of computer
architecture, user interface, distribution of software and hardware, supporting resources,

development tools, and development and implementation cost.

Six equipment and process control systems and three CIM implemenation projects
will be presented here to highlight the adaptability and flexibility of control systems in

today's CIM environment.
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INTRODUCTION

As shown in Figure 1 [1] below, semiconductor manufacturing industry is in a very
unique position in contrast to many other manufacturing industries - the processes are
highly complex and uncertain. A wafer typically goes through hundreds of processing
steps and tens of pieces of equipment before it is completed. It requires complex
relationships between process parameters at various steps and from step to step in order to
perform process control. Because the processes are often difficult to control, typical
process yield is about 40 to 80 percent. Due to difficulty in equipment and process control,

process equipment utilization is also low. It is not uncommon to have below 50% overall

Semiconductor
Manufacturing

usage of process equipment.

&

D

ing// Metals
J— Manufacturing
Pulp &

Food er
Manufacturin 5’

PROCESS COMPLEXITY

PROCESS UNCERTAINTY

>

Figure 1: Manufacturing industry Perspective in terms of process uncertainty
and process complexity

In the current semiconductor manufacturing industry, different kinds of computer

software are used to improve the intelligence and integration of equipment. However, the



industry may be too small to support a dedicated supplier base for software development
and, thus, must used shared manufacturing software [2]. Because of the usage of different
software developed on different software platform, the scope of equipment integration must

include software integration as well.

Today's manufacturing systems for the semiconductor industry have evolved over the .
past 20 years. The current technology status of these systems has shown that the industry
suffers from a variety of limitations [3]. First, they are costly to implement and maintain.
Every factory is different, and the systems ( even the so-called standard products ) must be
extensively customized to support a particular manufacturing site. Second, they are
inflexible, often dictating a compromise manufacturing approach rather than supporting a
desired one. Third, many systems are difficult to use and interrupt rather than aid the

manufacturing users. For this reason, needed information about the manufacturing process

is often inaccurate or missing altogether. Fourth, the systems are poorly integrated. They
have been developed over many years by many people in an environment of changing

requirements and changing technology [3].

Another problem of today's semiconductor manufacturing systems is that the
development has been dependent on systems to catch the mistakes of a less qualified work
force rather than relying on skills and discipline of their work force. This results in needing
a more complex manufacturing system. Moreover, manufacturing system is viewed as a
burdensome add-on that has to be separately justified rather than an essential part of the
initial capital investment just like process equipment. Furthermore, the rather short length
of service and instability of the work force means that the team is seldom responsible for

multiple implementations, carrying their learning and effectiveness with them [3].



Equipment is usually designed with little understanding of its relation to process
stability and control, and its relation to the manufacturing system. Semiconductor
manufacturing equipment has evolved over the past thirty years from relatively simple tools
to complex systems. It is highly specialized and expensive. The equipment is usually
produced by small companies or small work groups of a company [3]. These companies
and work groups design new equipment based on past experience and extrapolation, rather
than a common knowledge base and a formal design discipline. Their equipment design is
very subjective. Integrating equipment into an existing manufacturing system is another
challenge in the industry. Also, in most cases, only empirical understanding is available

for processing modeling design. This limits the design of predictable process equipment.

This thesis consists of three chapters. First, an overview of the software architecture
and user interface of three semiconductor manufacturing systems is given. In this chapter,
the Strategic Cell Controller of SEMATECH, the Microelectronics Manufacturing Science
and Technology CIM system of Texas Instruments and the Computer Aided Fabrication
Environment of MIT are described. Second, five equipment and process control systems
are reviewed. They are the Adaptable Tool Platform of IBM, process and equipment
control systems of MMST, ControlWORKS of Texas Instruments, Generic Cell Controller
of the University of Michigan, the Run-by-Run process control system of MIT and the
BCAM system of U.C. Berkeley. Third, three CIM systems implementation projects are
reviewed. They are the Run-by-Run control of the CMP process developed by Fairchild
Research Center of the National Semiconductor Corporation and San Jose State University,
FABCON from Japan, and the Adaptable Manufacturing System of Stanford's cluster-
based fab. The paper is ended with concluding remarks from the author. Please refer to the

List of Abbreviations on page vii for the abbreviations used in this thesis.



CHAPTER 1: THE CURRENT CIM SYSTEMS FOR
SEMICONDUCTOR FABRICATION

Traditional CIM systems tend to depend on one huge software program running on one
single main frame. Whenever the main frame is down, the information flow of the
manufacturing facility is crippled. The gigantic software program is difficult to customize
and update due to the complexity and the length of the coding. It can only be modified
through a painful debugging process. In some cases, the software program is written by
the main frame developer and comes with the main frame. Then, software program is -
updated when the main frame developer comes up with a new version. In either case, these
traditional CIM systems are not made flexible to the manufacturing facility, rather, the
facility has to make itself flexible to accustom the CIM system. For example, one of the
aerospace manufacturing companies in southern California used a MRP II system running
on an IBM AS400. The planning function of the system restricted each operation
description to a length of 40 characters, which is not enough for the engineers to put down
their instructions. Moreover, the traditional CIM systems tend to have an abstract ASCII
terminal for the user interface. It makes the training of the CIM system user to be difficult,
and it makes the implementation of the CIM system to be even more agonizing and

expensive.

Modern semiconductor CIM systems use distributed computing. Compared with the
traditional CIM systems, a distributed system provides a less hierarchical software structure
so that both hardware and software applications can be used in a more independent fashion.
Multiple users can run the same application simultaneously from any node on the network.
Therefore, distributed computing is fast becoming an important trend in CIM systems in

various industries. The advantage of distributed computing includes the following:



a.

The CIM network will be more reliable and robust to the failure of hardware or
software. When failure of one part of the distributed hardware or software occurs,
the network can still function because it does not solely rely on one single piece of
hardware or software like the conventional CIM systems.

The distributed software system makes the customization and debugging easier.
Most of the systems consist of graphical user interface. It is much more intuitive
than ASCII terminals, and thus, less training is needed for new users.

Distributed computing also makes data transparent to all users on the network;
therefore, it reduces redundancies of data entry.

Distributed computing enables the use of heterogeneous hardware; therefore it better

utilizes existing hardware.

The down side of distributed computing is that it is highly dependent on the behavior of the

network and the messaging protocol. In the following semiconductor CIM systems to be

examined, the general approach is distributed computing.




1.1. SEMATECH STRATEGIC CELL CONTROLLER

The SEMATECH! SCC (Strategic Cell Controller) is a CIM system that is developed
for the SEMATECH member companies. It is supported by the semiconductor industry.
The main objective of the SCC program is to supply a common and flexible framework for
cell controllers for the members of SEMATECH. This common framework provides an
adaptable platform for software vendors to develop application software packages and
equipment interface for different modules of SCC. The framework is flexible that SCC can
control and monitor manufacturing cells at remote locations. Also, it has virtually unlimited
expandability. C++, Motif, Xwindows and CELLworks (a manufacturing cell development

software package from FASTech) are the primary development tools of the SCC.

1.1.1. SCC_Architecture

Figure 2 illustrates the architecture of SCC CIM system. SCC operates between the
Shop Floor Control (SFC) system and the equipment. SECS II is the primary equipment
message protocol for the SCC. The servers in Figure 2 represent either a device interface or
application software. Regardless of the physical location of these servers, they are available
to serve at any nodes on the network once they have been integrated into the system.
Servers can exchange information with each other using a standard set of messages that is
developed for the SCC program. Additional servers can be easily integrated into the SCC
architecture as long as the server's developer employs the standard SCC messaging

protocol. In addition to the development of the distributed client-server architecture and

1 SEmiconductor MAnufacturing TECHnology consortium is a non-profit
organization representing majority-owned and controlled U.S. semiconductor
manufacturing equipment, processing materials, software, and service
companies such as Hewlett Packard, IBM, National Semiconductor, Applied
Material and Varian.




messaging protocol, standardization of development methodology of cell applications is
also the main focus of the SCC Program [4]. Much effort has been made to create a
common equipment model for the factories of the SEMATECH members so that the SCC
CIM system is able to satisfy the needs of each member. Member companies can still
maintain their proprietary technology, and yet be able to use a common framework to adapt

a variety of application software and device interface.

Shop Floor
Control System
Scope of SCC
GUI Equipment Srgfn};&m Job Control Validation
Server Server Server Server Server
| | | I |
Messaging Bus | I i
Message Alarm Database
Equipment Log Server Server
Driver Server
Interface
Scope of SCC
SECS
RS-232
Driver
i
Equipment

Figure 2. SCC CIM architecture. The servers are chosen as an example. Depending on
necessity, other applications, devices and equipment can be integrated into the framework
above. SCC operates between equipment and the SFC (Shop Floor Control) system.

Thinking of the SCC Program as a mother board of a computer , the architecture of the
program can be described by Figure 3. The different slots represent the plug-in boards of

the different servers, or applications, that are within the system. Servers can obtain



information from the factory and feed back to the management level, and execute process
on the shop floor following the management's request. SCC can have as many applications
as the factory needs and view all of them as one single application. The idea of this is
similar to a personal computer running different applications under Microsoft Windows.
For example, Figure 3 contains 4 slots for different servers. As long as the servers can be
inserted into the mother board, the servers would function as part of the SCC. Virtually,
this SCC mother board can have an unlimited number of slots. This common framework

also makes the technology transfer between member companies easy.

LAN Connection as MANAGER
Management Contains decision
- B making coding
SLOT 1 User Interface CPU as
Factory

SLOT 2 Equipment Interface

SLOT3 Data Base Power supply

as SCC
Methodology

SLOT4 SPC

Figure. 3: SCC CIM architecture is similar to a PC mother board.

1.1.2. SCC Graphical User Interface

Having the same look and feel for the user interface in the fab area is a challenge since
each piece of fab equipment tends to have its own style of user interface. They vary from

pure ASCII terminals with monochrome screen to graphical user interfaces with thousands



of colors. It is not an easy task for fab operators to adopt many different user interface

styles.

SCC developers attack this phenomena by standardizing styles of different user
interface. This common Graphical User Interface ( GUI ) framework employed by the SCC
program is based primarily on the SEMATECH's SCC User Interface Style Guide. This
Style Guide provides guidelines and conventions for developing common OSF/Motif-style
user interface, which is a very common UNIX based window manager. The Style Guide
also provides guidelines for the software architecture of the GUI server. Within SCC, the
GUI server makes the appearance of client application user interface consistent and
performs in a predictable manner. The logic of the SEMATECH's SCC User Interface
Style Guide has been evaluated and approved. Using such a guideline for GUI

development accelerates the design and implementation effort [5].



1.2. TEXAS INSTRUMENTS MICROELECTRONICS
MANUFACTURING SCIENCE & TECHNOLOGY CIM SYSTEM

The Texas Instruments MMST (Microelectronics Manufacturing Science &
Technology) Program is supported by both the industry and the government. The goal of
the MMST Program is to create a factory that can provide fast (cycle time) and economical
(cost) production of a variety of devices (flexibility) with first pass success (quality) [6].
The MMST CIM system helps to implement such a factory through integration of wafer
processing equipment and the supporting systems for product and process specification,
production planning and scheduling, material handling and tracking, and process control.
The MMST CIM system is a distributed object-oriented client-server system [6]. The
fundamental object-oriented principles help to solve the three biggest problems in software
development today: quality, productivity and maintainability. Smalltaik-80 is the primary
development tool for the MMST CIM system. Based on an evaluation of several candidate
prototypes, the productivity of using Smalltalk for the object-oriented environment was
four times that of traditional development in C. For the initial deployment, the MMST CIM
system is running on UNIX. Deployment under other operating systems such as OS/2,
DOS and MacOS is supported without change to application code. Applications are
shielded from differences between the vendor supplied versions of UNIX by the Smalltalk
virtual machine (VM), which translates operating system specific services into Smalltalk-80

generic services.
The process control system of MMST will be discussed in Chapter 2 of this thesis. A

technological product, named ControlWORKS, has been developed by the MMST

Program. It is an equipment and process control software package that is commercially

10



available for the semiconductor industry. ControlWORKS will also be further discussed in

Chapter 2 of this thesis.

1.2.1. MMST Architecture

The architecture of a distributed object-oriented system is multi-dimensional. The two
most important dimensions are the logical and the physical. To illustrate the idea of the
logical architecture, Figure 4 is shown as an example. The object classes are arranged in a

logical hierarchy. The top of the hierarchy are the most generic classes of the CIM system.

Document |' Spec II Process Spec
( Plan } [WaferStartPlan|
Network Bus Ethernet
Machine TI AVP

ObjectBase

Process

Resource
' Resou@

U
Mechanism_——[_V_aI&%_]

Material Handling
Resource

Material| Wafer

Nitride Etch

Figure 4: Logical architecture of MMST CIM System
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The bottom of the hierarchy contains the most specific classes. For example, the class
Resource is generic enough to include a variety of resources such as machine, process
resource, mechanism and material handling resource. At the bottom of the Resource
hierarchy, the classes are specific enough to point at a particular advanced vacuum

processor, chamber, valve and robot arm.

The physical (object instance) architecture is shown in Figure 5. Objects are grouped
by the logical architecture and distributed throughout various compute nodes of the fab-
wise CIM system. Objects in MMST CIM system are instantiated by the applications at the
compute nodes. In other words, tasks are being done by running application software at the
compute nodes. At the same time, the information in the object base is updated accordingly.
Notice that in Figure 5, both the distributed workstations and the modular process
equipment can be viewed as compute nodes. Different classes of objects are instantiated
(starting of an object instance) at these compute nodes. For example, the objects in the class
of document and plan will be mainly instantiated at the distributed workstations, and the
objects in the class of machine and material handling resources will be mainly instantiated at
the modular process equipment. Each instantiated object performs certain tasks as services
to other objects upon authorized request. Other objects may by involved to accomplish the
tasks. For example, the robot must collaborate with both the source and destination objects
for material hand-off. Objects interact with each other in terms of parameter exchange.

These exchanged parameters are considered as objects as well.
In Figure 5, each modular processing system consists of a variety of processing

equipment such as vacuum cassette, vacuum load lock, robot handler, process chamber,

vacuum pumping network. All processing equipment is integrated with a host computer

12



(workstation). The host computer within the modular system receives commands from the

CIM network and drives each of the processing equipment accordingly. Processes within

Distributed workstations

'Workstation - Factory Planning
- Factory Scheduling

- Factory simulation/modeling
- Factory performance monitoring orkstation
- Spec. generation/management
- Production planning

- WIP tracking

Print Communication
Server Server

/ Modular Processing Equipment Modular
. Process
- Machine/process control System
- Machine/process diagnostics
Modular - Equipment performance monitoring
Process - Recipe download
System - Intramachine scheduling
- Process material scheduling/tracking
- Statistical quality control

- Data/event collecting/logging

Figure 5: Physical architecture of the MMST CIM system. In the shop floor level, the
distributed workstations contain applications for factory level tasks. In the manufacturing
equipment level, the cubes labeled as modular processing systems represent individual
compact wafer processing unit that contain different kinds Advanced Vacuum Processors.

these compact modular systems are highly automated [6]. These highly integrated modular

processing equipment systems are often called cluster tools. In contrast to the traditional

wafer processing, where each processing step has to be done at a different location, cluster

13



tools can handle multiple wafer processing steps in one location. Maintenance cost is very
high for traditional fab where the entire clean room environment is maintained at class 10 or
class 1. Using cluster tools, fab maintenance cost can be greatly reduced because only the
vacuum wafer cassettes and the vacuum load locks have to be maintained at class 10 or
class 1. The fab itself can be kept at a much higher clean room level. The advantages of the

MMST fab over the traditional fab are summarized in Table 1 [6].

Current Fabs MMST Fab

Fixed, 20,000-wafer Modular, 100 to 1000 wafer
Factory costs > $500M Factory costs $30M to $ 50M
Class 1 Cleanroom Class 100 Cleanroom
50,000 - 100,000 ft2 3,000 - 5,000 ft2

25 to 50 Wafers Batches Single-Wafer Processing
Batch Sampling Real-Time Process Control
1-3 months 5-15 days

Mixed Equipment Configuration Modular Processing Equipment
30% of Processes Use Liquids Liquid-Free Processing
Atmospheric cassettes Vacuum cassettes

Table 1: MMST Technology versus Current Technology.

The MMST program has recently been demonstrated on a sub-half micron CMOS flow
performed entirely on single-wafer processors. The process successfully used extensive
closed-loop real-time process control utilizing a variety of new in-situ process monitors.
Actual throughput times of 8.6 days for a 0.35 micron CMOS process have been reported
from the MMST fab. In terms of physical process technologies the MMST program was

14




significant in that it used single-wafer rapid thermal processing (RTP) in place of all
conventional furnace steps. RTP has high potential to replace most furnace steps over the
next decade. Whereas the MMST fab used wet single-wafer cleaning, successful dry
single-wafer cleaning has been recently reported using different gas phase approaches at
different labs. Also, the use of both cluster tools in general, and specifically open

architecture vacuum cluster tools, are rapidly growing in semiconductor manufacturing [7].

1.2.2. Graphical User Interface of the MMST CIM System

A User Interface Builder (UIB) has been developed to produce application screens and
facilitate the connection of screen components to application objects [6]. The UIB has a
What-You-See-Is-What-You-Get (WYSIWYG) style builder and comes with an extensive
library of flexible screen components. On the UNIX version of MMST, the X Window
System is used for user interface and Motif is used for window manager. The Smalltalk
VM supports the use of other X Window managers, as well as OS/2 PM, DOS Windows

and Macintosh Windows without change to application source code.

15



1.3. MIT COMPUTER AIDED FABRICATION ENVIRONMENT

MIT CAFE (Computer Aided Fabrication Environment) is a CIM system developed in
academia. The design, analysis, and execution of semiconductor fabrication processes are
the major functionality of CAFE. Currently, CAFE is being used in managing the
Microsystems Technology Laboratory fabs at MIT, Lincoln Laboratory and Case Western
University. The primary development tools of CAFE are C and LISP. CAFE will be
upgraded by adopting some of the MMST CIM system development approaches such as
using Smalltalk.

1.3.1. CAFE Architecture

The CAFE architecture, which is shown in Figure 6 [7], consists of three parts: an
infrastructure architecture, tool and data integration architecture, and applications. The
infrastructure architecture of CAFE defines and provides a set of domain-independent
components for use within the system, including the Fabform user interface package and
the Gestalt object-oriented database. The tool and data integration architecture defines the
conceptual schema and models used to represent and maintain knowledge and information
about IC manufacturing within the system, and provides both the user and programmatic
interfaces to that information. The applications of CAFE provide support for a wide variety
of activities, including not only process but also product, equipment, plant, and personnel

management capabilities.

Data integration in CAFE is achieved by a shared process flow representation (PFR).
Activity or tool integration is achieved partially by a shared process flow support

subsystem which is used by both fabrication and process development support systems. A

16



PER is converted from a textual process flows into instance hierarchies of process
operations. The process operations are defined in the Gestalt database. The database
provides shared, object-oriented access to PFR information for use by both design and
manufacturing activities, and can be accessed and updated by all of the tools and

applications in CAFE. The process flow editor is not one of the CAFE applications at this

Figure 6: The Architecture of MIT Computer Aided Fabrication Environment (CAFE).

stage. Currently, the vi editor of UNIX is used for generation and modification of process

flows.
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Wafer lots in CAFE are attached to new or existing process flows. Reports such as
work-in-progress (WIP) tracking are generated from process flow and lot information.
Operations on single or multiple lots can be scheduled for present or future execution by the
real-time scheduling system. Using the results from measurements, the PFR models of
these processing operations are updated by the fabrication system. Therefore, process

development is better informed by information generated during manufacturing.

Process design tools in CAFE provide help during process design, which takes place
by incrementally generating a PFR for the process. Design may be done on various levels,
including wafer-state-change, physical treatment, or machine settings. Simulation manager
supports incremental simulation of the process during development. Process advisor aids in
treatment level synthesis, providing analytic model-based estimates for the initial choice and
modification of process parameters to achieve process goals. Flow library of basic
processing operations for available equipment is maintained in the data base with the
necessary physical information such as change of wafer state and machine settings. The
data base can be accessed either by matching a defined name or by specification, which are
attributes of an operation. The PFR can then be used to support flexible process design
styles that are capable of a variety of possible manufacturing implementations. Design rule
checks are available to test the adherence of processes to fabrication facility guidelines and

policies before execution by the manufacturing subsystem [7].

1.3.2. The User Interface of CAFE

The user interface of CAFE is mostly driven by Fabform, a generalized form editor.
Menu screens in CAFE can be considered as forms or templates containing a number of

blank fields. These forms or templates are Fabforms. Within Fabform, users can have

18




blank fields. These forms or templates are Fabforms. Within Fabform, users can have
access to the menu including data entry, predefined choice selection, delete, save, move

from one field to another and so forth.

Fabform is designed to run as a separate process and communicates with the associated
application via the template file and the parameter file. The template file describes the layout
of the menu screen, fields and the types of data that can be entered in the various fields.
The parameter file specifies the contents of the various fields defined in the template file.
Fabform takes a template and/or parameter file as input and produces a parameter file as an
output. Both input and output parameter files may be read from/written to pipes if desired.
Once the application program invokes Fabform, it can no longer communicate with
Fabform. All interaction between the two processes is done only through the files described
above, and the input template and parameter files are read only when Fabform is invoked.
The output parameter file is first written as soon as Fabform finishes reading the input
parameter file and is updated whenever the user executes a save command, so the

application can write the latest changes to the output file.

By incorporating Fabform into the application itself, it becomes possible to associate a
function, which may be written in C or Lisp, with each field. The function will be called
whenever the value of that particular field changes (the changes can be a complete entry or

any individual key stroke) [8].
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CHAPTER 2: EQUIPMENT CONTROL AND PROCESS CONTROL IN
SEMICONDUCTOR FABRICATION

Time is important in the semiconductor fabrication industry. A new piece of
technology, which required enormous amount of research and development cost and effort,
can only take the lead for a short period of time. Therefore, having a flexible and adaptable -
CIM system is one of the most important factors for success in this industry. Three
equipment and process control systems with emphasis on flexibility and adaptability are
presented in the following chapters. Among the three systems, the TI Control WORKS and
the IBM Adaptable Tool Platform are two of the off-the-shelf software packages that are
commercially available for the industry. The advantage of using off-the-shelf software
product is the saving in terms of development time and effort. Besides the Control WORKS
and the Adaptable Tool Platform, the Generic Cell Controller of University of Michigan,
RbR Process Control System of MIT, and BCAM of U.C. Berkeley, are also discussed in

the following chapters.

2.1. ADAPTABLE TOOL PLATFORM OF IBM

The Adaptable Tool Platform (ATP) is developed by the Manufacturing Technology
Center (MTC) of IBM. The ATP is written in C, and it runs on OS/2. Similar to the SCC
program, the philosophy behind the ATP is provide a common framework for both the
users and the software developers. For the users, they can " plug in" as much application
software as they need without worrying the compatibility to their existing system. For the
software developers, as long as the industry enjoys this common software platform, the

demand of application software for this platform will grow.
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The ATP system has a modular architecture that allows software components to be
independent. It provides supports such as data collection and management, tool
configuration, event and error handling, user management and security, network support,
message handling, and programming for creating modules. Currently, both the MTC of
IBM and other software developers have already created many application modules such as
Particle Detector Module, NetBIOS Network Module, Digital and Analog Sensor Module
and TCP/IP Network Module for ATP. The functionality of ATP will grow with the
number of application modules available. The ATP system also provides a Application

Programming Interface (API) for users to develop their own modules.

The architecture of ATP consists of three levels: the control node, tool node and view
node. The control nodes are responsible for running the control algorithms. They
communicate with the manufacturing equipment through the tool nodes and achieve
equipment and process control. The tool nodes are the equipment interface of the ATP
system. Information from the control nodes will be collected at the tool nodes and
translated into action. The view nodes allow users to monitor the tool nodes and displays
real-time data through a configurable graphical user interface. The view nodes also allow

users to control the tool node, and thus control any equipment.
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2.2. PROCESS CONTROL AND EQUIPMENT CONTROL SYSTEM
OF MMST

2.2.1. PROCESS CONTROL SYSTEM

Figure 7 [9] illustrates the run-to-run control aspect of the MMST process control
system. The supervisory controller obtains desired target values and the current states of
the predictive model (from process control system) and generates machine settings (from
process control system). The regulatory controller will use the machine settings to control
the machine in real-time. The observables are collected through the sensor in the machine
and sent to the analysis and model adjustment component, which monitors the observed
results and makes adjustments to the process model accordingly. The adjusted process

model is used to generate machine settings for the next run.

Predictive Process Model

Desired Target %
Values ) )
S Supervisory Machine Settings o
Controller

Machine

Analysis and Model Observables
Adjustment <%
(Monitor Control)

Figure 7: Model-based process control with feedback.

The process control system of MMST acts as a server to the MMST CIM system. It

appears to the CIM system as an encapsulated system. It provides services to the CIM
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system, a client application, through a defined message protocol. This is a typical object-
oriented design approach where the client does not need to know how the server operates.
Whenever the client (CIM system) requires a process control service from the server
(process control system), it sends an inquiry to the server to obtain the corresponding

service [9].

A process control model object consists of three attributes: an index that identifies the
process in terms of the external environment; a process model that defines the process
behavior; and a control strategy that defines how the process model is used to control the
process [9]. A control strategy consists of components such as data transform, data
analysis test, and optimization strategy. The optimization strategy defines which

optimization procedure and objective function are to be used.

The process control model object is interpreted by the process control system. There are

seven services supported by the process control system [9]:

Selecting process control models:  Process model is selected from an existing process
model library based on a given description. The
description includes the process to be performed, the
process resource, the process material, and indicators
of the position of the process in the processing
sequence and product flow.

Calculating machine settings: Given a process control model and the target values,
the machine settings are calculated based on the current
process model (original process model + adjustment),
and the constraints and optimization procedure defined
by the control strategy.
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Creating and storing information:

Measuring and analyzing
from run information:

Measuring and analyzing
from sensor information:

Creating and editing
process control models:

Displaying process results:

The information of each run is created and stored under
an object called run. Run has its own data structure.
The Generic Equipment Model (GEM) is responsible
for creating run objects that represents process steps.

Upon completion of the run, post-run analysis is
performed based on the measurement data. The control
strategy components measurement calculators, data
transforms, data analysis tests and tuners are executed
in the post-run analysis. Each component produces
results when it executes. Analysis is completed when
execution of the strategy components is finished.

The procedure is similar to the previous service.
Sensor information requires a separate service because,
while the data may be available at runtime for a process
resource with in situ measurements, some Processes
may require off-line metrology before the analysis can
be performed.

A user interface is provided for engineer to define
process control models. The user interface allows the
engineer to select a process model or a control strategy
for editing.

A graphical display called Process Operation Monitor
(POM) displays a parameter value over time.
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2.2.2. EQUIPMENT CONTROIL SYSTEM

The MMST equipment control architecture consists of four layers as shown in Figure 8
[10]. The Common Equipment Model layer defines the interface to the factory and provides
a structure for further specialization. This layer generalizes the machine requirement and
interface definition. The Cluster Tool layer allows for implementation on distributed CPUs
(VME bus-chassis). At the Plasma layer, further refinement of abstractions adds behavior
and plasma specific processing mechanisms such as RF generator, vacuum system and gas
systems. The Vendor-Product layer implements specific machine mechanisms for the
mechanical architecture of a machine operation, such as gate, inner-chamber and AVP robot

arm. This layer includes the GUI control panel for each of the specific machine types

developed.
4 N
Common Equipment .
Model (CEM) MMST - MACHINE
Partitioning of
Compute Architecture CLUSTER TOOL
Process Specific PLASMA EQUIPMENT
Behavior Implementation MODEL
Vendor-Product VP AMAT
Specific Implementation A
\_ J

Figure 8: MMST machine control architecture.

CEM consists of four messaging protocols: CIM System Interface, Machine

Scheduling, Material Transfer and Process Execution. The CIM System Interface protocol
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allows the factory to obtain information and control operations. The Machine Scheduling
protocol allows the factory to process material on a machine. The Material Transfer
protocol allows moving material and executing transfers. The Process Execution protocol
allows material to be processed. The development of Machine Performance and Machine

Maintenance protocols are still in progress [10].

The CIM System Interface protocol consists of four sections: Process Control
Interface, History Interface, Factory Scheduling Interface and Factory/Machine Transfer
Interface. The Process Control Interface is a set of messages that interface with the process
control system to obtain modified machine settings and report run-to-run data of a machine.
The History Interface is a set of messages that allows wafer-to-wafer processing data to be
stored. The Factory Scheduling Interface is a set of messages that allows the factory to
interact with the machine for determining the processing capability and for committing the
machine to specific processing. The Factory/Machine Transfer Interface is a set of
messages that allows the factory to interact with a machine to cause material movement

between machines [10].

Currently, the MMST Equipment Control system is integrated with thirteen pre-existing
machines, nineteen new Advanced Vacuum Processors (AVP) and an Applied Material

5200 PVD cluster tool [10].
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2.3. CONTROLWORKS OF TEXAS INSTRUMENTS

Contro]lWORKS is a technological product of the Texas Instruments' MMST program.
It is equipment and process control software that combines many of the process and
equipment control innovations in the MMST program. Recently, Texas Instruments has
made ControlWORKS a commércially available software program for the semiconductor

manufacturing industry.

ControlWORKS consists of four components for process and equipment control. They
are the Cluster Tool Control (CTC), the Transport Module Control (TMC), the Process
Module Control (PMC) and the Advanced Process Control (APC). The CTC provides a
user interface, material router, data store and factory interface for a variety of cluster tools.
The user interface of CTC can be customized to user's needs. The material router of the
CTC includes a scheduling framework that can be configured to fit the existing scheduling
algorithms. The TMC is responsible for controlling the central material handlers, vacuum
system of the transport module of a cluster tool, cassette elevators and load locks. Also, the
TMC provides interface to common hardware components such as robot arms, stepper
motors, isolation valves, vacuum pumps, and pressure and temperature sensors. The PMC
provides controls to energy sources such as heaters, coolers, RF, microwave, DC power
sources, magnetrons, and IR lamps. PMC also supports gas system control that works
with a wide variety of plumbing configurations. The APC employs number of different
control strategies such as flexible adaptation of models, feedback control, and univariate
and multivariate Statistical Process Control to generate equipment settings that lead to

desirable process target value.
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ControlWORKS was developed with two goals - CIM and Equipment. For the CIM
side, the goal is to develop a comprehensive, seamless information and control
management software that spans the factory, process and equipment domains. For the
Equipment side, there are five emphases: 1) develop a machine control software
architecture based on cluster tool topology that can be applied to a variety of hardware
control architecture including non-cluster equipment; 2) provide a common representation
and development environment from I/O board to user interface screen; 3) integrate with the
CIM system to provide capabilities for advanced factory level control; 4) integrate with
process control to provide run-to-run process control on a single wafer basis; 5) provide an

interface to third party equipment with and without SECS Il interfaces.

There are four layers of interfaces to enable the reusability of ControlWORKS. The
Common Equipment Model (CEM) layer of ControlWORKS, in compliance with other
emerging industry standards such as the Generic Equipment Model (GEM) of SEML,
encompasses the generic concepts of equipment. The Cluster Tool layer allows for physical
partitions, communications and database support. The Vacuum layer provides the
necessary controller for specific processing concepts such as RF, gas control, vacuum and

etc. The Product-Supplier level implements vendor specifics [11].
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2.4. GENERIC CELL CONTROLLER OF THE UNIVERSITY OF
MICHIGAN

The Generic Cell Controller (GCC) is developed in academia. The goal of GCC is to
achieve Run-to-Run (RtR) control by coordinating the information flow between process

modules [12]. Figure 9 shows the architecture and the basic functionality of GCC. GCC is
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é % Controller Database
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Figure 9: GCC CIM architecture

an expert system that uses the sequential control algorithm stored within a relational

database to control a cell. The design guidelines is intended to enable the GCC to be
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hardware, software, and communications protocol independent, and is generic to the
multitude of semiconductor processes. Currently, GCC is being developed on NEXT
computers. Object C is being used in the coding. Object C is a much more object-oriented
programming language than C++. It can be viewed as a combination of Smalltalk and C++.
The NEXT platform is capable of generating DOS executables. NEXT is also Sun

compatible.

There are basically six objects in the GCC framework: modules, message (un)parser,
/O gateway, conductor, timer and database as shown in Figure 10. The term "object” in

here is the object in the object-oriented design framework. They communicate with each

Parent: GCC or Child: GCC or Equipment

Human V\ /g Controller
4 Sa & )

1/0 Gateway
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# Actions routines
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Data &
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State data
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Figure 10: GCC Data Flow Diagram.
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other using a messaging format, which is a standard procedure in object-oriented
programming. Message is sent simply by pointing an arrow to another object; for example,
cout<<"output " in c++, would send the word "output” to an object called cout. Note that
the modules, which are objects in the GCC framework, do not communicate with other
modules directly. Modules are in passive positions. They would not be executed unless the -
database tells them to do so. First, the database would accept a request from the user. Then
the database would search for an appropriate response, which includes the execution
sequence of the individual modules and the corresponding data or setting that goes with the
module. Then the conductor takes the inquiries from the database and executes individual
modules in the sequence provided by the database. Each module would acknowledge the
conductor once the modules have finished their tasks. Then the conductor would execute

the next module and so on.

Communication between individual modules and the equipment is established through
the message parser and the /O gateway. The modules sends out a c++ message to the
message parser. Then the message is forwarded to the I/O gateway which handles all the
TCP/IP networking communication to the “outside” world. However, the individual
modules can be written in such a way that they communicate with equipment directly
without going through the message parser and the I/O gateway. This could apply in real-

time control.
The database has two sides; one is the knowledge base and system state data (in

individual data file format). The knowledge base stores the information about the actions on

a given message. When a message comes in, the database searches for the corresponding
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action items. The action items are then translated into specific names of routines, and the
corresponding parameters that associate with the routine. Then, this message that consists
of the names of the routine and the corresponding arguments in order will be sent to the
conductor so that the ordered routines can be executed in sequence. This is called an expert
system, which consists of a knowledge base, an inference engine and working memory.
The knowledge base defines the rules oii how to manipulate and analyze a given set of data .
that is in the working memory. The manipulation is done through the iiiference engine. In
GCC, the knowledge base is represented by the relational database system, the working
memory is the data that is generated by the processes, and the inference engine is

represented by the different modules.

In order to put additional modules into GCC, one must follow a set of specifications.
This set of specifications is nothing more than the definition of an object. To be more
precise, the specification is the class definition in object-oriented programming (similar to
the variable and/or type declaration section of a non-OO program). Once the specification is
incorporated, the next thing to do is to tell the database when to use this new module. It is
done by creating a new set of response or modifying an existing set of response. In the
relational table of the relational database, this is nothing more than putting in an additional

set of entries to the database.

The term "multi-thread" refers to the different selections of control algorithms as shown
in Figure 11. Assuming the performance of different control algorithms varies on different
processes and different optimization level of a process, fuzzy logic can play a role here to
determine which algorithms to be used. At this point, the multi-thread idea is a proposal. A
lot of factors have to be considered in terms of establishing a logic to choose which

algorithm to be used. For example, some algorithms tend to build up the accuracy as the
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run number increases. Whether a given process has that much room to improve is also

another question.
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Figure 11: The process optimization and control module with multiple threads
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An implementation of the GCC is in progress for the optimization and control of a
plasma etching process in an Applied Materials 8300 Reactive Ion Etcher. Figure 12 shows
the configuration of the control system. The plasma controller is a real-time controller that
attempts to hold the control parameters at the Plasma Generation Subsystem given by the
run-to-run controller. It is a very common control configuration for utilizing both real-time

and run-to-run controllers,

‘ﬂp-__& Etch Ratef»>
CF3 . .
Plasma Generation |  Wafer Etch Umf°"“%
Subsystem Fluorine Subsystem _
Throttle y m: A msotrolg"
Plasma [®—
Controller j@§————
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¢———
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Figure 12: Close-loop Control System for Plasma Etching

A report of the work at the University of Michigan is documented in Appendix IV.
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2.5. THE RUN-BY-RUN PROCESS CONTROL SYSTEM OF MIT FOR
VLSI FABRICATION

The RbR ( Run-by-Run ) process control system is being developed in a academic
research environment. It is a modular process contro! framework for VLSI fabrication. The
goal of the system is to enable higher yields on both small and large lots of wafers. The
system consists of three core modules: the flexible recipe generator, the RbR controller,

and the real-time controller.

The structure of the system is shown in Figure 13. Based on the mask geometry and
specifications of each new product design, the flexible recipe generator module provides a
recipe that brings the process into the general region of the best performance at the first run
[13]. This global optimization scheme seeks the region of process space that is most robust

against disturbances.

Starting from the recipe provided by the flexible recipe generator module, the RbR
Controller updates the recipe between each run of the fabrication process. Based on the
post-process measurements, the RbR Controller updates the process models and
recommends a change in the recipe to compensate for the drifts and shifts of the process.
Figure 14 shows the structure of the RbR Controller [14]. The RbR Controller consists of
three modules: the generalized SPC, rapid mode and gradual mode. The generalized SPC is
a diagnostic module that decides when to use the rapid mode module. The purpose of rapid
mode is to rapidly compensate for shifts to the process that are caused by, for example,
specification changes and maintenance operation. The gradual mode module is to

compensate for drifts in the process that are caused by noise [14]. The latest application of
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Figure 14: The block diagram of the Run by Run Controller. It has three major algorithmic
modules: the generalized SPC module, the rapid mode module and the gradual mode
module. It also has two branch points: one on whether the current run occurs right after a
specification change or maintenance operation, the other on whether to interrupt the process
to identify and correct the special cause.

37




the RbR Controller to CMP process is recorded in chapter 3 of this thesis

During a process step, the real-time controller module modifies the equipment settings
based on the in situ measurements. In order to accomplish this, equipment models that
include time is used to relate the equipment settings to in situ measurements of process

parameters.
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2.6. BERKELEY COMPUTER AIDED MANUFACTURING SYSTEM

The Berkeley computer aided manufacturing System (BCAM) is an object-oriented
framework that aims to support all aspects of equipment and process control in
semiconductor manufacturing. BCAM is a part of a CIM project, whose objective is to
develop and implement a prototype of a future semiconductor manufacturing plant. C++

and Common Lisp Object System (CLOS) are the primary development tools. X windows
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Figure 15: BCAM Architecture
are used in the monitoring, SPC and diagnostic modules. BCAM is a UNIX workstation
based system. It consists of six modules. They are the real time monitoring module, real

time SPC module, equipment maintenance record keeping module, real-time monitoring

and real-time SPC, automated diagnosis of equipment condition, fault diagnosis, recipe
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generator and model simulation module. Also, BCAM provides generic utilities, such as
communication server, graphical user interface, numerical and statistical libraries as

external resources [15].

Figure 15 shows the architecture of BCAM. Notice that the level under the cell
coordinator can be expanded to incorporate multiple cells with BCAM. The RTSPC (real-
time SPC) system inspects a process by applying SPC principles on data that is collected
through a real-time sensor via the SECS I interface. The data collection process is fully
automated, and an unsupervised time-series model generation feature is also included in the
system. The RTSPC system will be one of the commercialized process and equipment

control application software programs in the near future.
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CHAPTER 3: CIM SYSTEMS IMPLEMENTATION

Three CIM system implementation projects are reported in the following sections. They
are the Run-by-Run (RbR) Control of the Chemical Mechanical Planarization Process
(CMP) at National Semiconductor, the FABCON from Japan and the Adaptable
Manufacturing System (AMS) of the cluster-tool fab at Stanford University. The
implementation of the RbR control of the CMP process is currently in progress. The
FABCON is shown here to illustrate an implementation of CIM system that is relatively
low cost, and yet sophisticated and highly automated. The AMS is shown here to illustrate

the performance of AMS over the traditional Mass Manufacturing System (MMS).

3.1. RUN-BY-RUN CONTROL OF THE CHEMICAL MECHANICAL
PLANARIZATION PROCESS IN NSC

The RbR Controller [16] is a model-based control system which provides a framework
for controlling semiconductor manufacturing processes subject to disturbances such as
shifts and drifts as a normal part of their operation. The RbR Controller has been applied
[171118] successfully to a technically matured epitaxy process at AT&T Microelectronics,
Allentown, PA, and has demonstrated major improvements over the results from standard

process control methods in the fab.

However, the development of the process models for model-based controller can be
time consuming and expensive if done on-site, interrupting the production. To overcome
this problem, the RbR Controller is being deployed concurrently on the CMP process in
development at Fairchild Research Center at National Semiconductor Corporation (NSC).

The concurrent deployment of the RbR Controller during the CMP development phase
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Figure 16: Previous CMP configuration at NSC

building a cell controller to establish the interface between process equipment, metrology

station and fab operators.

New CMP process equipment (Westech) and metrology station (Tencor) have been
installed. The connection between the Tencor metrology station and the PC has been
established previously as shown in Figure 16. The metrology station and the PC shared the
same computer hard disk for data storage. An equipment interface program written in C and
SDR (SECS 1I driver from GW Associates ) is used to handle the communication between
the PC and the Tencor metrology station. The PC contained an algorithm written in Matlab
to retrieve the measurement data, perform analysis and generate a updated recipe. The
recipe was then loaded into the CMP equipment by the operator. The process model was

developed on the new CMP process equipment, and it will be used for RbR Control.



Incoming
Wafer

Ul
- WESTECH
Analysis &) | Equipment Recipe CMP Process
Plotting Interface Equipment
Tools
Control
Algorithm
TENCOR
Data Data @ —— (Measurement Metrology
Collection Storage; Data Station

v

Figure 17: Current configuration of the CMP cell controller

The current configuration of the cell controller at Fairchild Research Center is illustrated
in Figure 17. Visual Basic ( from Microsoft ) is used to code the control algorithm of the
cell controller. The cell controller will consists of a graphical user interface, data collection

routines, equipment interface routines and the control algorithm.

A gradual mode multivariate RbR Controller (MVRDbR) is currently being developed
and tested at San Jose State University. The formulation of the MVRDBR is documented in
Appendix ITI. An EWMA algorithm is used for the gradual mode. This algorithm will be
used to control the CMP process at the Fairchild Research Center. The CMP process will
be controlled by using the EWMA algorithm of the gradual mode will be used along with
the pad age effect, a compensation function that simulates the decade of the polishing pad

effectiveness obtained from a process characterization experiment. The software structure
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of the MVRDbR Controller is shown in Figure 18. Currently, the algorithm is being

implemented using Matlab.
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Figure 18: Software Structure of the Multivariate RbR Controller

The current version of the MISO (Multiple Inputs Single Output) RbR Controller is
1.2. The changes in this version enable the RbR Controller to run on PC and UNIX Matlab
4.0. Also, the rapid mode algorithm of the controller has been modified so that it can

function in situation where only rapid mode is needed. The detail changes are recorded in

Appendix II of this paper.



3.2. FABCON

An automation system called FABCON has been developed and implemented in an
ASIC fab as a joint venture between LSI Logic Corporation of U.S. and Kawasaki Steel
Corporation of Japan. Along with the traditional CIM functions of automatic lot tracking,
recipe setting, and process data collection, this system also creates the production schedule
automatically, and controls the transport of almost all wafer carriers throughout the fab by

robots.

All communication between FABCON and the process and measurement equipment is
based on the SECS standard. For the robot-equipment communication, optical PIO
interface units and an interlock communication protocol were used for interlock contrel

between inter-bay robots and equipment.

FABCON architecture is inherently distributed. The host factory MIS system manages
planning, inventory, and factory reporting. The distributed bay control system provides lot
tracking, equipment control and monitoring, fab workload balancing and real-time
scheduling. Bay control is hosted by a network of PCs, running the FABCON modules.
These modules run on top of the QNX operating system. QNX is a micro-kernel operating

system particularly suited to real-time distributed systems [19].

Similar to SCC, factory growth can be incrementally supported as shown in Figure 19.
As new bays are brought on-line, additional nodes can be added to the overall control
system with almost no software change. Also, PC based computer systems offer sufficient
speed and reliability in FABCON. Table 2 [19] shows the hardware configuration of the

system
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User Interface Server

Transport Server

Host Comm. Server

PC

486/50 with 600MB HD, 16 MB
memory
386/33 with 110MB HD, 16MB
memory
386/33 with 110 MB HD, 8MB
memory
486/50 with 110 MB HD, 16MB
memory
386/33 with 110 MB HD, 8MB
memory

Table 2: Hardware Configuration of FABCON modules.
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3.3. THE ADAPTABLE MANUFACTURING SYSTEM FOR CLUSTER-
BASED FAB

Product cost has been the only dominant measure of fab's economic performance for
the past ten years, which led to a primary focus on utilization and yield. Although they are
still crucial to a fab's profitability and productivity, the ability to produce various products,
time to market and capital cost are now of comparable importance to product cost. An
alternative approach, Adaptable Manufacturing System (AMS), has emerged in response to
these changing requirements on semiconductor manufacturing. The goal of AMS is to
optimize the cost versus throughput time tradeoff. Comparing this new approach with the
conventional approach, Mass Manufacturing System (MMS) has more emphasis on

minimizing cost per wafer.

The current conception of AMS at Stanford University is based heavily on the Texas
Instruments' MMST configuration. It is because of the significant contribution of single-
wafer processing technologies by the MMST program. By replacing slower batch
equipment with single-wafer processors, the throughput time of the entire process flow can
be reduced in AMS fab. Except for the high current implanter, all AMS equipment is
single-wafer and most are arranged into clusters of three or four process modules. The
current AMS model uses only dry processing. The dry wafer cleaning technologies that are
used in the AMS model are based on a number of recent publications by groups, including
those a Penn State and Fujitsu. However, the simulation results have shown that an AMS
fab could use wet processes in stand-alone or clustered single-wafer wet tools without

significant degradation of its performance.
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Closed-loop real-time process control must be used in order to make AMS feasible.
During the pilot stage, it is a competitive advantage to have the ability to quickly specify a

process to a machine, and then to have the machine accurately run the process. Also, in

I1C MMS AMS Fab
Fraction Single-Wafer 60% 98%
Processes
Typical Throughput Time 3 weeks 6 days
Dominant Equipment stand-alone clustered
Configuration
Process Control open-loop, in-line SPC closed-loop, real-time
Process Metrology stand-alone in-situ
Dominant Equipment closed open
Architecture
Lot Size 12 to 48 wafers 1 to 24 wafers
Efficient Capacity 10,000 to 25,000 5,000 to 20,000
(wafers/month)
Number of Products <10 1000s
Typical WIP Inventory 10,000 to 50,000 1,000 to 10,000
(wafers)
Product Type commodity value-added and commodity
Wafer Carriers standard cassettes vacuum sealed cassettes
1-wafer minimum cycle time 181.3 hrs 37.8 hrs
24-wafer minimum cycle 283.0 hrs 140.0 hrs
time

Table 3: Conception of a Mass Manufacturing System and Adaptable Manufacturing
System.
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order to be able to fabricate a wide variety of products, the ability to switch process
equipment reliably from one process to another is critical. Furthermore, closed-looped
process control can maintain yields by enabling more robust processes, and by detecting
equipment problems earlier than in an ex-situ process. Based mainly on the experience at
Stanford University 's AMS simulation and in MMST program, the modeled cost of in-situ
process monitors and software control would increase the total cost of most process
modules by up to 10%. Table 3 [20] shows some quantitative and qualitative conception of

a MMS and an AMS configuration.

The performance of AMS throughput is a result of a number of emerging enabling
technologies. There are basically three broad technological changes in process technology
enabling the AMS: the ability to replace almost all batch processors with single-wafer
processors, being able to cluster multiple processors without significant loss of process

control, and the reduction of setup times [20].
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CHAPTER 4: DiSCUSSIONS AND CONCLUSION

4.1 DISCUSSIONS

As the number of the process steps increases, the number of processes to be designed
and executed within a single facility increases accordingly. The use of information |
technology becomes essential in this situation. A computer-readable and computer-
manipulable representation of process can allow the use of such information technology so
that anyone in the fab can access information pertinent to his/her work in a common and
easily understand format. In this respect, the SCC's Baseline Scenario, the MMST's
logical architecture, and CAFE's process flow representation serve the purpose of having a

common process structure that can be understood and carried out in the CIM system.

Unlike the industrial CIM systems such as the MMST or SCC, equipment interface is
not the main focus of CAFE. CAFE does not know when a process is started or stopped
because there is no direct interface between machines and CAFE (except a Nanospec
metrology instrument in the fab, which has a single thread interface with CAFE that can
obtain measurement data automatically). The only bridge between CAFE and the machines
is the engineer who works in the fab. When a job starts, engineers would enter the starting
time into CAFE through the lab terminals in the fab. When a job has finished, engineers
would enter the time, results of the lot and additional comments into the CAFE system. In
the fab, CAFE acts as a fab record keeping and scheduling system. Through the inputs
from the engineers, it keeps track of the status of each wafer lot and records scientific data.
Although CAFE seems to lack efficiency in terms of automation and equipment interface, it
is appropriate for research and development fabs that require flexibility to do experiments.

A CIM system that has delicate equipment interface for automation would be more suitable
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for some industrial fabs that need to avoid human errors and maintain fabrication

consistency.

In contrast to other industrial client server environments such as Strategic Cell
Controller (SCC) of SEMATECH, the main focus for CAFE's client server environment is
in the fab. Client server environment in other CIM systems usually involves sharing of
databases, applications ( development software ), and CPU. CAFE has more focus on
sharing the database and CPU. Moreover the sharing of database and CPU concentrates in
the fab area. CAFE itself runs as a one huge program that stands alone. Although
application is one of the menu items of the CAFE system, there are no other development
software applications being integrated into CAFE. Development is being done outside the
scope of CAFE. Integrating an application into a CIM system is not a simple matter. In an
industrial environment, it is more important to integrate applications into the CIM to reduce
the cost of incompatibility. For example, SGI's CIM system contains one single circuit
CAD tool that is being used throughout the entire company. Designs can be downloaded to
the manufacturing line within minutes. In a research and development environment, this

kind of speed might not be necessary.

In terms of process representation, PFR strongly emphasizes the declarative
specification of information about a process and minimizes the manipulative and
computational flexibility accessible within the PFR. Interpreters have the responsibility for
the manipulation of PFR objects. Fabrication methods are supported only within an
interpreter, and not within the PFR, which consists of only simple functions. This
approach is different from that of some other process representations, where the user

specifies operation data objects and methods [8].
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In terms of implementation methodology, SCC develops standards along with the CIM
system and its different modules, whereas MMST develops the CIM system before the
standardization is fully considered. Developing standards and the CIM system together
seems to be a logical approach at the first glance. However, the progress of the
development on two issues can interfere with each other and affect the overall development
of the program. Utilizing existing standards can speed up the development of the CIM
system and its different modules. With less concern for commercial standardjzation, more
new ideas can be incorporated into the development without additional obstacles, and this is
the implementation methodology that is used by the MMST program. First, Smalltalk, an
object oriented equipment interface, was used at the development stage. After the
development had come to a satisfactory stage, a process control software named
ControlWORKS based on the MMST program was developed for the industry, in which
the software is generic enough to fit different equipment interfaces and different CIM

systems.

The development of the software industry is much faster than the development of the
semiconductor fabrication technology. Often, software being used would have gone
through a several upgrades during one design and implementation cycle of a new
technology. A fully developed new technology might be implemented through outdated
software, which can no longer be used to communicate with the newly developed CIM
system. Or, a fully developed new technology is implemented through the latest software

. that the engineer who developed the new technology is not familiar with. Software
implementation is a big burden for the implementation of a new technology. To reduce the
occurrence of software implementation failure, one possible solution is to develop the new
technology and the related software concurrently. This solution makes the MMST program

stand out among many other CIM system developers. MMST program concurrently
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develops software, processing equipment, processing techniques, process control,
equipment control and sensors. The gap between software implementation and

technological development is greatly reduced.

The semiconductor manufacturing industry may be too young (compared with other
industries) to support a dedicated software supplier base. As an alternative, software from
other industries is widely used by process and equipment control engineers. However,
these software packages, which are not designed for this industry, require enormous
amounts of customization effort from the engineers simply because of the complexity and
instability of semiconductor manufacturing processes. Moreover, because of the varieties
of software available in the market, different groups of engineers within a facility often use
different software packages for their design and analysis. As the process and equipment
control technology grows, reusability of the non-standardized and highly customized
software is low. Consequently, the software environment in the semiconductor
manufacturing systems is highly fragmented, and process and equipment integration
become even more difficult. The fragmentation is being accelerated by the fact that the
semiconductor manufacturing industry lacks a common software development platform and

the support from the fast growth of software development.

Instead of treating process and equipment control technologies as proprietary products,
companies such as TI have started commercializing their technologies. As a result, there are
some emerging process and equipment control software packages, such as
ControlWORKS and RTSPC, that are specifically designed for the semiconductor
manufacturing industry. These software packages are usually ready-to-use. Engineers can
avoid repetitive effort in terms of implementing control algorithms into software coding by

utilizing these software packages as process and equipment control modules.
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The philosophy of adaptability behind SCC, ATP and GCC is applicable in terms of
solving the fragmentation problem in the software environment of the industry. Fragmented
software can be integrated into one single plaiform using an object-oriented approach. A
standard should be established for the software developer so that individual software can be
treated as an object or module. Notice that object-oriented and the traditional function/data
software development approach are different. Software developed using object-oriented
approach has proven to be more adaptable and less time consuming in terms of
development. Treating individual application software as an independent object, using the
object-oriented development approach, allows the system to be developed in modules. The
integration of different modules can be simplified by establishing a common platform that
can supervise and communicate with each module. Since the growth of process and
equipment control is much faster than the shop floor control, this common platform should

first be targeted to implement at the cell level.
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4.2 CONCLUSION

From the studies of different equipment and process control CIM system for

semiconductor fabrication, the author has the following suggestions for future CIM system

developers:

Object-Oriented design approach: This approach would enhance software adaptability
and expandability. Currently, C++ and Smalltalk are the most popular object-oriented
design tools.

Use of existing software product: Save time and effort in process and equipment
control software development. Avoid re-inventing existing technology. Software
packages such as TI's ControlWORKSs, provide lower level equipment control as well
as the higher level user interface developer.

Use of relational database system: Relational database should be used to systematicaily
record the dynamic data (data about the current system status) and static data (initial
values or knowledge-base type of instructions) of a CIM system. This would provide a
frame work for programmers to obtain information or instruction of the system using
Standard Query Language.

Messaging protocol: Before choosing a messaging protocol, developers should
consider carefully about the capability of networking (outside the CIM system) and the
expandability (within the CIM systems client-server frame work).

Cluster tool: Cluster tool based fab is considered as fab of the future. In equipment
control, CIM systems developers need to construct the system so that multiple process
chambers of a cluster tool can be controlled through one control module. This is quite
different than one control module controlling one equipment. The processing sequence

of jobs in cluster tool makes the control logic more complex.
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APPENDIX I: MIT CAFE SYSTEM
A. HARDWARE & SOFTWARE REQUIREMENTS
e Sun O.S.4.1.3

e 48M of RAM minimum. MIT has 128M in the CAFE machine. Thomas Lohman
recommended 64M of RAM.
Approximately 16M of RAM will be taken by the database.

* 400M of disk space minimum is required for CAFE and Ingres. This is not including the
disk space for the O.S. and the Xwindow system. 600M of total disk space will be needed
to accommodate the O.S.(140M approx.) and the Xwindow (50M approx.). MIT currently
has two 1G external disk drive for the CAFE machine. Thomas Lohman recommended 1G

of disk space.

o Ask for the large generic Kernel from Sun. The large generic Kernel will have everything
CAFE needs. No modification is required on the Kernel in order to get CAFE running.

« For simplicity, do not ask for the multi-processor architecture version of the Sun. MIT
currently is using the single processor version of a Sun SPARC 10.

* Ingres 6.4/03.

» The following menus from Ingres are needed: Installation & Operation Guide, Database
Administration Guide, Ingres/Net and Embedded Quel/SQL.

Ingres/Net is a menu specifically for setting up a client server environment. Assuming that
more than one workstation is going to share the Ingres database, this menu will explain
what the setup for Ingres will be.

Embedded Quel/SQL do not come with the standard package but we must ask for it.
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B. INSTALLATION OF CAFE SYSTEM

« Installation sequence:
1. The Sun O.S. 4.1.3
2. Ingres Database
3. Xwindow
4. Gestalt & Schema
5. CAFE

o The Sun O.S. will be installed by Sun. The installation of Ingres should follow the Ingres
Installation menu. The X11 library can be loaded from the public domain of MIT and copy

into our machine.

« Thomas Lohman will use the following routines to make a compressed "tar" version of all
the source code and directories and ftp to San Jose State U:

tar-CAFE, tar-source and distrib-source.

These c routines are in the /CAFE directory of the CAFE machine in MIT. What they do is
to make a copy a CAFE release from the development CAFE tree. The routine tar-source
search through directory tree and tar all source code ( including symbolic links, which only
points to different directories on the same workstation in this case ) and released copies of
RCS files ( RCS is a revision control system which documented all the revisions, reason
for revising and the corresponding corrections ) up into one single compressed file. The
routine distrib-tree will create a compressed version of the source directory tree from the
development source tree. This will allow us to build the source directory tree and the

corresponding source codes.

« Installation of GESTALT

A higher-level view of the procedure:

1. Building the core system. This complies all the Gestalt source code, packaging the
result in the form of a library.

2. Build test database. This simply provides a database, which is required before any
programs may be run. ( This step also builds a C interface to the test database )

3. Testing the DBTEST database. There are two test programs in the DBTEST database,
predef and test_db. The programs are self-checking and report any errors with a message.
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4. Creating additional GESTALT database ( the real one).

A step-by-step 6-page-menu written by Thomas Lohman contains details of the procedure
above.

The above procedure included creating the minimal schema for the GESTALT to function
normally. However, if we have a schema source file at the time of installation ( the most
likely case ), we can put that file into the load_schema.c file under the misc subdirectory in
the database's root source directory. This will allow a complete schema to be built.

» To install CAFE, MIT will provide a compressed version of CAFE directory tree and
source code. The directory tree should be " un-tar " first. Then " un-tar " the source code
itself.

» The previous procedure is very straight forward. Although CAFE contains a lot of source
code files, the process should take less than a day to finish. The main concern is the
"factory " setup of our side - SJSU. According to Thomas Lohman and Greg Fischer, none
of the data ( data such as facility, machine, operation sets, process flow and specifications
that are unique to MIT ) will be transferred to us. There is an unique machine, nanospec,
that CAFE will look for. We must make changes to the corresponding pfr files to avoid
error. All these files are within a directory called /CAFE/pfr/opsets. In order to run our own
CAFE system, we have to set up our own " factory," which has machine, process flow and
operation sets. To avoid problems at the beginning, the pattern of the " factory " should
follow the one in MIT.

» George Young is the person who installed CAFE at Lincoln recently. A good reference
source besides Greg and Thomas. The following are the reference sources in terms of
installing and tuning the CAFE:

George Young gry@mtl.mit.edu

Greg Fischer  fischer@mtl.mit.edu MIT Room 39-315 617-253-3371

Thomas Lohman thomasl@mtl.mit.eda MIT Room 36-287 617-258-6485

For RbR controller integration, contact the following person for the latest progress:

Mihir mihir@athena.mitedu or mihir@goesser.mit.edu or mihir@mtl.mit.edu
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C. MECHANISM OF CAFE

There is more than one way to utilize CAFE. The following is an example to show one
of the ways that starts a process using a process flow representation file (pfr). Also, the
sequences below are not unique. Other combinations are possible. It is meant to be a
sample tour of the CAFE system from both an user and software developer point of view.

« A process flow representation file should first be available before going into CAFE and
start a process.

- pfr file is a file written in Common Lisp. User either creates a pfr file using an
editor (UNIX vi is one of the possibilities) or modify an existing one. Although pfr
files are written in Lisp, they are easy enough to be read for someone who does not
know Lisp. They contains a process flow name and a series of pre-defined
operation names. These operations are actually subroutine calls which contain
information for creating a process flow tree. A process flow tree is nothing more
than a series of sub-processes. To create a process, one must first get familiar with
the baseline processes of CAFE system. The baseline processes are the standard
building blocks of process flow. Next section will discuss baseline in more detail.

o After CAFE is invoked, specify a facility at the facility field on the menu screen. Itisnot a
requirement to put in the facility first. However, knowing that machine is a subset of
facility, it is a logical approach to select the facility first. The name of the facility can either
be typed manually or selected from the scrolling choices (Cntrl A).
- The menu itself is created by running the Lisp source codes ( Initialize lisp, Input-
screen.lisp ) in /ust/CAFE/stc directory. Not only the format and text arrangement
are done by the Lisp source codes, but also the features of going from one menu to
another (the layering of the menus). The scrolling feature at some of the fields on
the menu is made possible by a routine called one-of, which restricts the choices of
a specific field. The choices come from the database.

« Go to Process Flow menu, then go to Install Process menu. Input the process name. Note
that the inputting process name must be identical to the one at the first line of the process

flow file. Input the user name. For the PFR Filename field, the actual path should also be
specified. Press Cntrl C to save or Cntrl X to quit without save.
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- CAFE runs the pfr file according to the information specified at the PFR Filename
field. The subroutine within the pfr file will be invoked. A process tree will be
created by a Lisp code called PROCESSFLOW lisp. Also process description will
be created by another Lisp code called PROCESSDESCRIPTION.lisp. These are
called schema. We now have schema called processflow and processdescription.
Tools that allow us to visualize schema will be introduced later.

« After the pfr file has been loaded, we need to create a wafer lot to manufacture using the
processes specified in the pfr file. Hit space bar to return to the top level menus. Go to Lot
Management menu. Then go to create a lot menu. The User name field can be filled in by
hitting return. A lot name can also be assigned by hitting return at the lot name field. At the
Process name field, again choices can be scrolled by pressing Cntrl A. Number of wafers,
separate wafer sets and numbering can also be specified on this menu. Press Cnurl C to
save or Cntrl X to quit without save.

- This step creates another schema called process instance. This is being done by

invoking a routine called PROCESSINSTANCE.lisp. Note that the restricted

scrolling choices at the processing name field are the ones that are installed at the

Install Process menu.

« Right after a lot is created, CAFE will ask for the wafer IDs and types. By leaving the
laser ID fields blank, the ID will be name as 'Wn' where n is an integer. For the Wafer
Type fields, CAFE has a sets of restricted types to choose from. Cntrl C will save the entry
and Cntrl X will quit without saving. After the verification of the wafer laser IDs and types,
CAFE will ask you to create a wafer set. If wafer set is needed, type a wafer set name and
select the wafers that you want to be in this set by changing the field next to the wafer ID
from No to Yes. After these entries have been saved, CAFE will ask if additional wafer set
is needed. If so, create another set as before. If not, CAFE will bring back the Lot
Management menus.

« At the Lot Management menus, we can now tell CAFE which lot we would like to work
with. Move the cursor to the Lot field and select the lot names that have been created earlier
by pressing Cntrl A. Now the lot can be processed by selecting Start Lot from the menu.
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CAFE will then list a set of operations which will be done based on the process that has
been selected earlier.
- CAFE creates a Task tree from the process description flowroot tree by invoking
TASK lisp and LOT.lisp. Each task under the Task tree has corresponding flow
objects form the process flow tree. There are only three types of tasks in CAFE -
planned, active or done.

» Now, go to the Fabrication Tools menu. Type in N for the next operation to be done on
the wafer lot. Then select a machine name, and put in the starting date and time from the
scheduling screen. After the operation is finished, the ending date and time should be
entered. Also, comment, machine settings and resulting reading ( if any ) on that particular
operation can be entered as well.
- Normally, when the operation performs in the fab, information will be entered
from the fab (unless it is only a demo ). CAFE is not a real time system. Engineers
who perform the operations will be responsible for putting in information to the
CAFE system after the operation has finished. The information usually includes
date, time, comments ( in text form, can be very detail ), machine setting, the recipe
code and the result reading (if any). There is another computer that stores all the
recipes. This computer is located in the fab and is a stand-alone unit. Engineer
usually obtains recipes from that computer and performs the operation. The name (
or code ) of the recipe will then be entered into the CAFE system as a record.
Through the Task editor, the recipe being used on every lot can be found.
- At the Fabrication Tools menu, typing in N (for the next operation) triggers the
nextop.lisp subroutine. It searches through the process flow tree and finds out what
the next operation is. Also, choosing " Operate a Machine " from the menu will
trigger the operate-machine.lisp subroutine. Based on the current operation,
operate-machine will find out what are the machines that can be used to complete
this step.

o After a Lot has been created, task tree will be created. Through the Task Editor, the
process flow and operation status can be viewed in a graphical manner. Clicking on the
tasks will show the sub-tasks windows. Further and further clicking will eventually bring
up the processes and what has been done on each wafer. '
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- This is a good tool to visualize what the schema looks like. So far, the following
schema have been created: PROCESSDESCRIPTION, PROCESS FLOW, LOT,
PROCESSINSTANCE, and TASK. All of these objects are created through
GESTALT using schema routines and located at the Ingres database. This graphical
tool allows us to look at the hierarchy of the task tree and how one object relates to
another. The mouse clicking and pop-up window feature is very user friendly.
Although CAFE is an ASCII driven system at the current stage, CAFE will be
further developed toward a more graphical user interface.

o All the transactions are recorded in the database. Documentation of the transactions can
be obtained from the Traveler Report menu. It will give the status of each operation in the

process flow for the lot.

The above procedure is an example of how to run the CAFE system. Besides the user
interface, it also shows the software action that runs behind the user interface. Basically,
users need to have a pfr file, which is a process planning file written in Lisp that outlines
what needs to be done on the wafer. After this has been done, the user would tell CAFE to
apply these processes to a specific set of wafers. This can be done by selecting an existing
wafer lot or creating a new one. Therefore, pfr file and wafer lot are the basic ingredients in
terms of running the CAFE system. Base on the information given by the pfr file, CAFE
would be able to find the corresponding information, such as choices of machines that can
do the operation, which lab would have such machine, the corresponding operations of
each process and sequence of the operations. This is the result of the formation of the
corresponding schema (install process) - processdescription, process flow, lot,
processinstance and task will be created, which can be considered as objects of the
database. A process flow tree will then be formed, and the entire job will follow the
sequence of this process flow tree.

D. SOFTWARE STRUCTURE OF CAFE

CAFE directory tree is very big. It is very difficult to map out and explain the
functionality of the entire directory tree. But there are some source code and files that play
important roles in CAFE system. Looking into these source code and files allows us to
understand more about the structure of CAFE system. Although some of these source code



or files are unique to MIT (might not be usable in SJISU), the structure and logic will still
applicable to most general cases. Knowing more about these source code or files will help
the " tuning " of our own CAFE system as well.

* Baseline is defined as unique information of factory and manufacturing at MIT's labs. It
defines sequence of processes, the operations sequence under each process, which machine
should run which operation, machine settings, which recipe to be used, time required,
written instruction. Basically, the hierarchy can be defined as follows: process flow, task,
process, operation and specifications. Baseline defines the relationship from process to
specifications. The following paragraphs briefly explain how this is arranged in terms of
coding. Again, this unique information can only be used in MIT. SISU will have to create
its own factory. However, the same methodology of defining process flow, task, process,
operation and specifications should be used.

« Directory /CAFE/pfr/opsets/opset_flow/baseline contains the " baseline " of the following
process: diff, etch, implant, metal and photo. " baseline " is understood as the detail content
of each process. For example, under /CAFE/pfr/opsets/opset_flow/baseline/diff, there are
about 13 diffusion process files ( their names are the name of diffusion processes ). In each
file, there are a series of *.fl call, which call the *.11 files from /CAFE/pfr/lib.

» Files under the directory /CAFE/pfr/opsets/opset_pfr/baseline have the same name as the
files in /CAFE/pfr/opsets/opset_flow/baseline. However, the content in the files is
different. These files do not have routine calls; rather, they have the specifications such as
which machine to be used, which recipe to be used, written instruction of the process, time
required, etc. Files under this directory are being called by the files in
/CAFE/pfr/opsets/opset_flow/baseline. This information is unique to each process. With
this information, engineers in the fab can actually set up their machines and run the job.
Using the task editor (still under development, tasks can only be viewed at this point) of the
CAFE system, the hierarchy of opset_flow and opset_pfrs can be visualized. The
information from the files in this directory can also be seen from the tasks editor.

* Under /CAFE/include, a lisp code fabform.h contains all the externally visible definitions

for subroutine callable version of Fabform. Looking into this file, one can find out what are
the current subroutines that are being used for Fabform.
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« Under /CAFE/include, a lisp code eqpmt-util.h contains the definitions of various
equipment utility routines. This file also explains the effects and requirements of each
equipment utility routine, and provides an overview of all the equipment routines.

* Any file in the directory /CAFE/include/gdm with a lisp extension is a database object.
By looking into these files, you can see what slots ( smaller objects ) are in each database
object and what function you can use to access the slots.

« schema_dump is an executable located in /CAFE/bin. It will list out the attributes of a
database object. For example, schema_dump task will print the attributes of a TASK
database object. Using this along with list the gdm files, one can find out what objects are
available in the database and what database objects point to what other objects.
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APPENDIX II: CHANGES IN THE VERSION 1.2 OF RBR
CONTROLLER RUNNING IN MATLAB 4.0 FOR WINDOWS 3.1 AND
UNIX SYSTEMS

 Change file names - The data file name of the RbR controller must not exceed 8
characters. Also, the suffix of the file names must not exceed 3 characters. For example,
hardmat.hard is a data file in the workstation version. This is not a valid file name to be
called in the PC version. hardmat.har would be a valid name. Another example is
file_util.m; it should be changed to a 8 character file name such as file_uti.m. The file
calling lines in the beginning portion of the Matlab file rbr.m should be changed according
to the new file names

e Check file format - All data files must be in ASCII format. Transferring workstation
ASCII data file into PC sometimes distorts the format of the data file. In that case, reading
error will occur. Modify the data files when necessary.

« Specify the path - Before running RbR controller in Matlab, the path that specifies the
location of the related files must be specified. Using the change directory command to
move to the current directory will not solve the problem, because the file calling lines tell
Matlab to search for files according to the path. For example, if all the rbr files are stored in
c:/matlab/toolbox/matlab/rbr, you must type in path(path,'c:/matlab/toolbox/matlab/rbr) at
the Matlab command window before running rbr.m

» Continuation statements - Generally, if the command lines are too long, they can be
separated into 2 lines by typing in 2 dots ( .. ). The PC version of Matlab does not like the
2 dots, it prefers 3 dots { ... ) or more. There are quite a few 2 dots being used in the entire
program. The best way to solve this problem is to use a editor that has a find/change option
to search through all the programs.

o Error trap - Currently, an error trap in onerun.m ( starting in line 247 ) is being
disabled. The error trap is to check the size of the matrix for the inputting data. However,
there were no lines before that error trap to initialize the dimension of that matrix. Error
occurs when it tries to read in the dimension of the matrix at the first loop. The second loop
would have been running fine since data is received starting from the second loop. The
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same problem should occur in the workstation version, but the fact is that it works fine in
the workstation version. This problem is still being investigated. However, this problem
does not affect the RbR algorithm at all. It runs safely unless the user does not follow the
directions and put in less data than the program expected.

» one command - The usage of the one() command has been changed. To obtain an
identity matrix that has the same dimension as, say matrix x, the command is one(size(x))
in the latest version of Matlab, as opposed to one(x). This will generate a number of -

incorrect matrix dimension error.

* Ployline is outdated - In graph.m, ployline is being used to plot the graphs.
However, this command is outdated in this version of Matlab. Matlab can still activate this
old algorithm but a message saying this command is outdated appears on the screen every
time ployline is used. The equivalent command for this version would be the line

command.

» File utility - The file utility of the RbR Controller did not function properly due to the
loading and saving command changes in Matlab. All files without a subscript .mat are
considered to be ASCII files. The matrices to be saved using the file utility are not in ASCII
format. The subscripts in the file utility have been changed to .mat.

» The New Logic for the Rapid Mode - In previous versions, the rapid mode would
only engage in situations where the generalized SPC alarm was on. If rapid mode was used
with the gradual mode off, the recipe would stay the same until the alarm was triggered.
Therefore, new logic is required for running the rapid mode alone. Three scenarios are
considered here:

a. When both the gradual mode and the rapid mode are on, alarm is required in order to
determine whether the rapid mode should be used. Therefore, alarm dependency is
required in this scenario.

b. When gradual mode is off and the rapid mode is on, alarm is not required because
rapid mode is the only algorithm to be used. Therefore, there is no alarm
dependency in this scenario.
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c. When gradual mode is on and the rapid mode is off, alarm is not required because
gradual mode is the only algorithm to be used. Therefore, this is an alarm

independent scenario.

Based on the above three scenario, the following logical statement is used to determine
whether the rapid mode is needed:
if ( not(gradual) and rapid ) or (alarm and rapid and gradual) then
find the step location and run the rapid mode

end
The above expression is implemented in one of the RbR Matlab M-files called onerun.m.

The table below illustrates the logic of the expression above

Scenario Gradual Rapid Alarm Logic Result
a 1 0 1 (0&0)I(18&0&1) 0
a 1 0 0 (0&0)1(0&0& 1) 0
b 0 1 1 (1&1)I(1&1&0) 1
b 0 1 0 (1&1)(0&1&0) 1
c 1 1 1 (0&1)I(1&1&1) 1
c 1 1 0 (0&I(0&1&1) 0

s Starting with Rapid Mode at the First Run - In previous versions, size and
location of step change can not be determined at the first run because the algorithm expected
a series of data points ( or a single data point ) from the process before the step occurs.
Without the initial data points ( or point ), the algorithm could not make any estimates of
step location or step size. For the RbR Controller to recognize the step change, a set of
initial target values should be incorporated and have the Controller do the comparison
starting at the first run. This set of initial target values should be input by the user or
generated from the process model without adding any noise. The only condition that
requires such an adjustment is in the case of running rapid mode starting from the first run.
The following expressions are used in the algorithm to generate the initial values for the

comparison:

if ( not(gradual) and rapid and (run =1) ) then
set the first row of the corresponding matrices to the target values
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misc(7) =1
end
if (misc(7)=1)
increase the run number by 1

end

The above expressions are implemented in one of the RbR Matlab M-files called
onerun.m. Also, a global boolean variable is added to the rbr.m file as an indicator of using
rapid mode from the first run. This variable is the seventh element of the matrix "misc".
Note that the target values stay in the matrices. For the rest of the runs, only the run
number is modified so that the sizes of the matrices are consistent.
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APPENDIX III: MULTIVARIATE RBR CONTROL ALGORITHM

Multivariate RbR Control Algorithm: Gradual mede
The predicted output is given by: ?, =BX, +4, « - (1

where the predicted ouput f’, is { mx 1}, the slope terms B of the process model is {m x
n}, the recipe X, is{n x 1} and the constant terms A, of the process model is {mx1}.In

gradual mode, the constant term is updated using EWMA algorithm as follows:
A =AY-BX_)+U-ANA_ - 2)

where Y is the actual output from the process, and A isa {m x m} EWMA weight matrix.
To solve for X,, the following condition must be satisfied:

T=BX +4A,  -w-eemer 3)

In (3), T is the target value of the process. Depending on the number of inputs and the
number of output of the process model, the problem boils down into three cases.

Exact case: m=n

In this case, enough information is given to solve equation (3) above. The solution of X,

is given as follows:
X, =B T=A4) -wremeeme @)

Note that X, here is the exact solution of equation (3). Therefore the predicted ouput l"\', is

always equal to the target value T.

Overdetermined case: m > n
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In this case, too much information is given to solve for equation (3). So, there are infinite
numbers of solutions. The following expression wouid give a unique solution to equation

3
X,=(B"B) BT (T—4) - (5)

Note that equation (5) only gives a X, that is least square fitted to (T - A) and B.
Therefore, it is not an exact solution to equation (3). So, the predicted output I';, is always

a certain distance away from the target value T.

Underdetermined_case: m <n

In this case, not enough information is given to solve equation (3) above. Therefore,
additional information is needed in order to solve X,. Here we would like to find a X, that
is closest to X,_, such that |X, - X,_,|" is minimized. This implies the following:

Cost Function to be minimized: f(X,)= X"KX, , —2X_ X, + X X, |

Subject to an equality constraint: h(X,)=BX,—(T - A))

The Lagrange conditions are:

VF(X,)+AVAh(X,)=0
h(X,)=0

Assuming K is positive definite,

2KX, —-2X,_, + B'A=0 -ememee- 6)
BX,~(T-4)=0 - M
From (6),

2KX, =2X,, - B\
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X, =KXy =5 Bh) e ®

Substitute (8) into (7),

BK™'(X,_, —%BTX)—(T—A,) =0
BK'X,_, —%BK"BTK—(T—A,) =0

L pk-BA =B X +(T-A)
2

A=2(BK"B) [BK X, +(T=A4)] weereee- ©)

Substitute (9) into (8),

X, =KX, - B"(BK"B") [BK"X,, +(T- 4 )k

=K"'X,_,—K"B7(BK"B") BK"'X,_ + K"BT(BK"BT)_I (T-A)
The solution of Xt can be expressed in the following form:

X, =K1~ B(BK"B") BK"|X,, + K'B'(BKB) (T=A4)

For K =1, expression (10) can be reduced to

X,=[1-5"(BB") ' B|x. ., + B'(BB") (T -4) - (11
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APPENDIX IV: THE UNIVERSITY OF MICHIGAN CONFERENCE
REPORT

GCC

« Currently, GCC is being developed on NEXT computers. Object C is being used in the
coding. Object C is a much more object-oriented programming language than c++. It can
be viewed as a combination of Smalltalk and c++. The NEXT platform is capable of
generating executables that can be run on DOS machines, which serve the purpose of the
project since the deliverables are going to be loaded into a PC broad. Also, NEXT is Sun
compatible, which means anything that can run on Sun can run on NEXT.

» Nauman is responsible for the database development and Roland is responsible for the
overall development of GCC.

» There are basically six objects in the GCC framework: modules, message (un)parser, 1/O
gateway, conductor, timer and database. The term "object” in here is the object in the
object-oriented design framework. They communicate with each other using a messaging
format, which is a standard procedure in object-oriented programming (message is sent
simply by pointing an arrow to another object; for example, cout<<"output " in c++,
would send the word "output” to an object called cout). Note that the modules, which are
objects in the GCC framework, do not communicate with other modules directly.
Modules are in passive positions. They would not be executed unless the database tell
them to do so. First, the database would accept a request from the user. Then the
database would search for an appropriate response, which includes the execution
sequence of the individual modules and the corresponding data or setting that goes with
the module. Then the conductor takes the inquires from the database and executes
individual modules in the sequence that is provided by the database. Each module would
acknowledge the conductor once the modules have finished their tasks. Then the
conductor would execute the next module and so on.

» Communication between individual modules and the equipment is established through the
message parser and the /O gateway. The modules sends out a c++ message to the
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message parser. Then the message is forwarded to the I/O gateway which handles all the
TCP/IP networking communication to the “outside” world. However, the individual
modules can be written in such a way that they communicate with equipment directly
without going through the message parser and the I/O gateway. This could apply in real-
time control.

The database has two sides, the knowledge base and system state data (in individual data
file format). The knowledge base stores the information about the actions on a given
message. When a message comes in, the database search for the corresponding action
items. The action items then translated into specific names of routines, and the
corresnonding parameters that associate with the routine. Then, this message that consists
of the names of the routine and the corresponding arguments in order will be sent to the
conductor so that the ordered routines can be executed in sequence.

This is called an expert system, which consists of a knowledge base, an inference engine
and working memory. The knowledge base defines the rules on how to manipulate and
analyze a given set of data that is in the working memory. The manipulation is done
through the inference engine. In GCC, the knowledge base is represented by the
relational database system, the working memory is the data that generates by the
processes, and the inference engine is represented by the different modules.

In order to put additional modules into GCC, one must follow a set of specifications.
This set of specifications is nothing more than the definition of an object. To be more
precise, the specification is the class definition in object-oriented programming (similar to
the variable and/or type declaration section of a non-OO program). Once the specification
is incorporated, the next thing to do is to tell the database when to use this new module. It
is done by creating a new set of response or modifying an existing set of response. In the
relational table of the relational database, this is nothing more than putting in an additional
set of entries to the database.

Currently, the development of GCC is in a stage of "integration." Since different students

are responsible for different tasks, they have come to a point where they need to put their
portion together.
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« The demonstration was done on the NEXT computer. Mainly, the user interface was
demonstrated. Xwindows is being used for the user interface. Also, Ultramax is

currently integrated into the GCC.

Multi-thread Architecture of GCC

 Nauman is responsible for this development

« The term "multi-thread" refers to the different selections of control algorithms. Assuming
the performance of different control algorithms varies on different processes and different
optimization levels of a process, fuzzy logic can play a role here to determine which
algorithms to use.

« Currently, this is a proposal. A lot of factors have to be considered before an algorithm is
chosen. For example, some algorithms tend to build up the accuracy as the run number
increases. Whether a given process has that much room to improve is also another

question.

Suggestions on_the CIM Systems QOverview

s According to James, we have picked the major players in the overview. One other
possibility is the G2 system of GENSYN. They have not heard much about the AMS
system of Stanford.

o CAFE seems to be a much higher level system that handles supervision and scheduling.
The rest of the systems in the overview seem to be much more involved in process and

equipment control.

» Despite the fact that BCAM seems to have quite a lot of accomplishment, Amon said that
their deliverables were not easy to implement in the past. The industry has not gained
much from the BCAM program.
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e Controlworks: they would like to know more details about it, e.g., examples of
applications, their development tools, the plug-and-play capability, what do they use
specifically in their process control modules.

o ATP: they would like to know the plug-and-play specification for software vendors.

« BCAM: they would like to know how generic it is, and the plug-and-play capability

e In the software development side, why would they choose their development
environment and tools? Have they conducted any in-depth study on the effects?

« Application partitioning: it is a good idea; however, it has to be done dynamically in order
to have a truly flexible set up.

« Reusability and OOD: this is quite an involved question and is very difficult to evaluate.
» Memory paging and caching method that they use.

Real-time Control Update

» Pramod Khargonekar is responsible for the development. No handouts were available
after the presentation, but James promised that he will mail us one.

« Real-time control is applied in plasma etching. The system consists of two control loops,
one is the inner loop which is the real-time control loop that control the flow rate and the
temperature within the chamber, the other one is the outer loop which is the Run to Run
control loop that control the wafer to wafer etch rate.

» Note that at this stage only the real-time control loop is being implemented. The Run to
Run control loop has not been accomplished yet. But it will be their next tasks.

« Two example were shown, one is the etch rate using close loop real-time control versus

etch rate without using close loop real-time control under normal circumstance; the other
one is the stability of etch rate using close loop real-time control versus the stability of
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etch rate without using closed loop real-time control in a situation where the gas pump is
leaking.

Note

o In order to integrate our new RbR algorithm into the GCC, it will be easier if we modify
their existing R2R code (suggested by James). The main reason is that the code has
already incorporated the specification to integrate with GCC.
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