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ABSTRACT

WEIGHTED LEAST-SQUARES ORBIT ESTIMATION
USING GPS SPS NAVIGATION SOLUTION DATA

by Christopher George Bryan

We have implemented a Batch Weighted Least-Squares orbit estimation
algorithm which processes Global Positioning System (GPS) Navigation Solution
(position/velocity) measurement data. The purpose was to determine the
viability of Navigation Solution data (as opposed to the raw GPS observables) for
orbit estimation, as well as to determine the extent to which batch estimation
techniques may be able to overcome the largest error source effecting most

Standard Positioning Service (SPS) GPS receivers, Selective Availability (SA).

The algorithm was used to process simulated Navigation Solution data
with SA errors. Other measurement errors were not considered. Results
indicate that the SA contribution to the over-all orbit determination error

budget is on the order of 6 meters RMS over a 12 hour estimation span.

The algorithm was also used to process actual Navigation Solution data
from a NASA spacecraft (EUVE). Results indicate that the EUVE velocity data

contains a significant time bias.
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I. Introduction

The estimation and prediction of a spacecraft's trajectory using sparse
measurements which have been corrupted by various error sources, and
imperfect physical models of the forces acting on the spacecraft, is sometimes
called the '"orbit determination problem". Although the fundamental
mathematical and physical concepts required for modern spacecraft orbit
determination have been well understood for many years, much progress has
been made in recent years in the level of accuracy that can be achieved on a
routine basis. Much of this improvement in accuracy is due to better models of
the Earth’s gravitational field, atmospheric density, and other perturbing
influences. The accuracy of measurement data has also steadily increased (laser
ranging data, for example); but the accuracy of the final orbit solution is often
limited by the availability of sufficient quantities of the measurement data since
it must generally be gathered in short arcs over fixed ground sites. Data
sparseness becomes especially important in low Earth orbit where mismodeling

of the geopotential and atmospheric drag forces is largest.

If, however, a spacecraft is equipped with an on-board Global Positioning
System (GPS) receiver, tracking measurements are available on a nearly
continuous basis. The data may either be used on-board in near-realtime or
stored for later downlink for processing by ground software. The precision of
GPS data can be excellent depending on the sophistication of the receiver and

the subsequent processing of the data.



Most research into orbit estimation accuracy using GPS data has been
focused on determining the ultimate accuracy limits that GPS can offer. The
best example thus far is GPS data processing for the TOPEX/POSEIDON spacecraft
(Yunck [18]). A principal mission of this spacecraft is the collection of radar
altimetry data on the Earth’s oceans, requiring very precise position
determination of the spacecraft itself. NASA’s Jet Propulsion Laboratory (JPL)
has developed a number of novel orbit estimation techniques to achieve the
level of orbit accuracy required by this mission. These techniques include
reduced-dynamic sequential state estimation, processing of dual frequency
pseudo-range and carrier phase data, and Differential GPS (DGPS) to remove the
effects of Selective Availability (SA). DGPS and SA will be discussed in further

detail in sections II and VI.

As more and more spacecraft begin to use on-board GPS receivers, the
question arises: "What data processing technique is most appropriate for the
majority of these missions?". It is unlikely that the same techniques used for
TOPEX/POSEIDON are appropriate for most other spacecraft for a number of

reasons including:

1. Most space missions do not require centimeter-level orbit accuracy.
2. Most spacecraft will have single frequency SPS (Standard Positioning
Service) GPS receivers, not dual frequency.

3. DGPS orbit determination methods require access to a world-wide
network of ground-based GPS receivers. Also, the amount of time
required to collect and process the data may not be suitable for

operational needs.



4. Some spacecraft store and downlink the derived position/velocity
"Navigation Solutions" but not the raw measurements due to on-board

storage limitations.

It is therefore appropriate to seek GPS data processing strategies tailored
to the needs of the majority of spacecraft missions. This often means the use of

single frequency Navigation Solution data with SA effects.

The research contained in this thesis suggests that Batch Weighted Least-
Squares Estimation techniques are a viable alternative to sequential filtering,
especially for standard ground-based orbit determination in the presence of
Selective Availability effects. In addition, this thesis suggests that the use of
Navigation Solution data can offer good results using less complex processing

techniques than the above-mentioned methods.

We will present an overview of GPS and the fundamental concepts of orbit
determination by classical Weighted Least-Squares (WLS) Differential
Correction. For this research, an algorithm has been coded in MATLAB to
optimally determine the orbit of a satellite from measurements of its position
and velocity. The program can be used to generate its own simulated
measurement data corrupted by either Gaussian or Selective Availability errors,
which may then be input to the orbit determination algorithm. The algorithm
is also used to process several spans of actual GPS Navigation Solution data from
a NASA spacecraft, the Extreme Ultra-Violet Explorer (see Gold [1]). The results

of both the simulated and actual orbit fits are discussed in section V.



II. A Description of the Global Positioning System
and its Measurements

A. GPS Overview

Until the recent advent of the GPS era, traditional orbit determination
techniques have principally employed tracking data obtained from line-of-
sight observations of spacecraft, most commonly topocentric range, azimuth,
elevation and range-rate data. More precise observations can be obtained by
laser-ranging techniques (for spacecraft equipped with corner-cube
reflectors). However, the main drawback of this data is its sparseness. That is,
it can only be obtained over short arcs during line-of-sight tracking passes

relative to fixed ground sites.

If a spacecraft is equipped with a GPS receiver, nearly continuous
tracking observations are available. This data is in the form of pseudo-range
and carrier phase measurements (see [5], [19] and Part B below). If these
observations are taken simultaneously from four or more GPS satellites, a
geometric determination of position and velocity can be obtained (the

Navigation Solution) which can be considered a "derived measurement".

Figure 1 below shows the configuration of the 21-spacecraft GPS

constellation.



Figure 1: The GPS Constellation [19]

Although, in principle, the measurement of the position and velocity of
a spacecraft is equivalent to determining its orbital elements, in practice this is

not sufficient due to the following factors:

1. Individual position and velocity measurements may be corrupted by a
number of error sources including the effects of "Selective Availability"
(SA), the deliberate degradation by the Department of Defense (DOD) of

the accuracy of the GPS signal.

2. Other elements of spacecraft state are often required for accurate
propagation such as an estimate of the force due to atmospheric drag. An
accurate estimate of this drag force is essential for the prediction of the
future position of a spacecraft in low Earth orbit because atmospheric

density is poorly modeled a priori. This is primarily due to the



unpredictable nature of solar activity which can often cause predictions
of atmospheric density in the upper atmosphere to be in error by a factor

of three or more.

For these reasons, a single measurement of GPS position and velocity will not in

general be sufficient to predict the future position of a spacecraft.

Therefore, it is preferable to use the techniques of Optimal State
Estimation to determine the orbital elements (see Smith [9]). In this technique,
many GPS observations are processed simultaneously to obtain an "optimal”
estimate of the spacecraft "state vector", which includes position, velocity, drag
factor, and other parameters which may need to be corrected to improve orbit

determination accuracy and ephemeris prediction.

In the case of GPS, the observations to be processed may be in either
"raw" form (pseudo-range and carrier phase) or "derived" form (the position
and velocity "Navigation Solution"), and the estimation of the state vector may
take place in either "measurement space" or "solution space". This research will
focus on the processing of the derived measurements of position and velocity,

but the same concepts could apply to measurements of any type.



B. The GPS Navigation Solution

Figure 2 below shows the concept of simultaneous measurements of four
pseudo-ranges from four GPS spacecraft to geometrically determine the

position of a spacecraft equipped with an on-board GPS receiver.

GPS2 GPS3

: P 2 K
GPS1 L P2 GPS4

+
aboard spacecraft -~
to be located

Figure 2. Simultaneous Measurement of GPS Pseudo-Ranges

The pseudo-range observable is defined as:

Pki = (tx - ti)c +errors (1)



where the superscript refers to GPS satellite i, the subscript refers to GPS
receiver K, ti is the time of transmission of the GPS signal as measured by the
on-board atomic clock of GPS satellite i, ty is the time of reception of the GPS

signal as measured by the clock of receiver k, and c is the speed of light. The
"errors" generally include unmodeled measurement effects such as ionospheric
delays, receiver noise, etc. Assuming that the GPS satellite clock time is known
precisely relative to "GPS Time" (a continuous time scale whose fundamental

unit is the SI second) and that receiver k has some initially unknown offset dty

relative to GPS Time, equation (1) may be re-written as:

P i = RJ +cdt +errors

where Rki is the true geometric range (distance) between GPS satellite i

and the on-board receiver k (to be located). Clearly, pseudo-range is a biased

range measurement. If dty is determined, the principal bias in the measurement

may be removed and, in addition, the receiver may be synchronized to GPS Time.

If (xx, Yx» Zx) are the unknown Cartesian components of receiver k

position, and (xi, yi, zi) are the known Cartesian components of GPS satellite i

position, then given four measurements of pseudo-range P, i we have

(neglecting the "errors"):



J 1 2 1 2 1 2
x'-x) +(y -y) +(z —z) +c-dy

o
=
]

2 2 2 2 2 2
Ppr=y&x"=x) +(y -y +(z -2z) +c-dt

3 2 3 2 3 2
(X =x) +(y -y) +(z"~z) +c-dt

)
=
f

4 2 4 2 4 2
(x' -x) +(y -y) +(z -z) +c-dy

n)
=
]

These are four simultaneous equations in the four unknowns Xir Yio 2o

dtk. Thus (in theory), both the receiver position and the offset of the receiver
clock from GPS Time may be determined. In this way, each position
measurement may be associated with a very precise time tag since the time
offset measurement will usually permit the synchronization of the receiver

clock to within a few hundred nanoseconds of GPS Time.

In a similar fashion, four simultaneous measurements of GPS carrier
phase will yield the Cartesian components of receiver velocity. That is, the
receiver measures integrated carrier phase over some small time interval in
order to determine the doppler shift, which is proportional to the line-of-sight
relative velocity between the receiver and the GPS satellite (see May [11]). The
geometric determination of the GPS receiver position and velocity from pseudo-

range and carrier phase measurements is called the "Navigation Solution".



C. Characterization of GPS Error Sources

The sources of error in the pseudo-range measurement have been

estimated and are listed in Table 1 below:

Source Range Error
GPS SV Clock Errors
& Ephemeris Errors 6mto8m
lonospheric Delays (uncorrected) 10mto ~100 m
Tropospheric Delays (modeled) 2m
Multipath (dependent on receiver 1mto~10m
antenna configuration)
Receiver Noise / Resolution 7m
C/A Code
Receiver Noise / Resolution im
P Code
Selective Availability ~30 m (1)
Geometric Dilution of Precision
{multiplier) 2-5

Table 1: Typical GPS Pseudo-Range Measurement Errors ([15], [16], [17], [20])

According to Conley [17], velocity errors (in the presence of SA) on the
order of of approximately 0.4 meters per second RMS are also to be expected, with

occasional transients of up to 2 meters per second.

As can be seen from Table 1, errors due to poor modeling of ionospheric
delays can be particularly significant (although less so at orbital altitudes). For
this reason, the GPS signal is transmitted on two L-band frequencies

simultaneously ("L1" and "L2"). Since ionospheric delays are proportional to

10



frequency, this delay may be estimated and removed if both L1 and L2 data are
processed by the receiver. However, only specially equipped (and authorized)

receivers have guaranteed access to the GPS signal on both frequencies [19].

There are two pseudo-random codes which are impressed on the GPS
carrier to facilitate the measurenient of pseudo-range: the C/A (Clear
Acquisition) code and the P-code (Precise code). The L1 signal contains both the
C/A and P-codes while L2 contains (currently) only the P-code. The P-code is
transmitted at a higher bit-rate and so is inherently somewhat more precise,
however the DOD may at any time encrypt the P-code, denying access to civilian
users. Since the P-code is the only code on both frequencies, civilian users are
also denied the capability to correct for ionospheric errors. In addition, the
Clear Acquisition code is subject to the effects of Selective Availability (SA), as

will now be discussed.

Unlike most other measurement errors, SA is neither the result of the
measurement process itself nor the result of limitations of physical models (e.g.
ionospheric models). Rather it is an additional error source which is
deliberately placed on the GPS signal by the Department of Defense (DOD) to
limit the accuracy of GPS data to unauthorized users. There can be two

contributions to this (see [12], [16]):

1. Epsilon: A deliberate error in the GPS "Ephemeris Message" (which
the receiver uses to calculate each GPS satellite position).
2. Clock Dither: A deliberate variation in the GPS carrier signal

frequency.

11



The algorithm used by the DOD to create SA is classified, however the
errors are bounded (by agreement) to approximately 150 meters spherical
error, two sigma. Examples of typical vertical and horizontal position and

velocity errors are shown in Figures 3a and 3b below from Conley [17].

North  NOTE: SCALES ARE
100 150+ oriical Esror (meters) Vertical Error 95% T
0
%04 1007
; w,“ A A
] 501
24
West 4 . h\ AL A ’,
100 80 -60 40"-30;'3' 0 L s % v:w
i ol
Hortzontat Emor | <40
95% Threshold ]
b <1001
w0t
.1:°um -150 Tine of Day (minutes)

Figure 3a: Typical Horizontal / Vertical Position Errors Due To SA

One-Minute Samples over One Hour

Figure 3b: Typical Velocity Errors Due To SA
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SA effects are a significant problem for most terrestrial applications
(although the techniques of Differential GPS can mitigate this in most cases -
see section VI) but the effect on orbit determination accuracy is less severe.

There are two basic reasons for this:

1. Although SA is effectively an unpredictable (though bounded) time-
varying bias (colored noise) which is highly correlated over a time span
of a few minutes, it may begin to take a more random appearance if
sampled at a lower frequency than this "de-correlation time," and if

sampled over a suitably long time span.

2. The true trajectory of a spacecraft is highly constrained by the laws of

Physics and therefore not easily masked by SA effects.

Although details on the implementation of SA are somewhat limited, we
know that when SA is turned on it can effect both the C/A and P-codes. Precise
Positioning Service (PPS) GPS receivers will have unrestricted access to the P-
code on both frequencies even when encrypted and will not be subject to the
effects of SA. However, most GPS users (including spacecraft) will only have

access to single frequency C/A code data with SA effects [16].

In section V we will explore in more detail the effect of SA on orbit

determination accuracy.

13



III. Theory of Weighted Least-Squares Orbit
Determination

As we shall see, modern orbit determination techniques require the
application of several different areas of Mathematics and Physics including
Optimal State Estimation (which also includes Probability and Statistics),
Astrodynamics (the application of Celestial Mechanics to spacecraft), and

Numerical Analysis.

A. Optimal State Estimation Overview

The problem of orbit determination involves finding a set of observation
and dynamical model parameters which "best" match a set of measurements.
These parameters form the "state vector", which will be denoted x. The
parameters in the dynamical model include the initial conditions (x, y, z, vy, Vy,
v, or the equivalent), as well as other model parameters to be estimated such as
a drag factor (usually the Ballistic coefficient, B). Observation model
parameters to be estimated as part of the state vector are typically parameters
such as the unknown biases in the measurements. The observation or

measurement model can be expressed as (see Smith [9]):
m = H(x) + v (2)

where x is the spacecraft state vector, v is measurement error (usually
assumed to be random with Gaussian distribution), H is some (generally non-

linear) function which maps the state to the measurements, and m is the

14



measurement itself. In other words, given a set of initial conditions x at some
epoch, a corresponding set of predicted tracking measurements m at any time t
may be generated by determining the position of the satellite at time t,
geometrically (or otherwise) calculating the measurement and adding an
appropriate amount of measurement error. These measurements may take
many forms such as range, azimuth, elevation or range-rate relative to a
particular ground site, or geocentric position and velocity as measured by an

on-board GPS receiver.

The problem then is: given a set of measurements m; at various times t;,
how do we determine the state vector x which "best" matches the
measurements? Unfortunately, due to the non-linearity of H, a unique closed-
form solution to (2) cannot readily be obtained. We therefore seek to linearize
(2) by assuming that an initial estimate or "guess" exists for the state vector (call
it xg) which is sufficiently close to the true state vector x such that we may
perform a Taylor Series expansion of (2) about xo. If x consists of X, y, z, vy, Vy,

v, and B, then the multi-variable Taylor expansion appears as:

N 2, , OH oH oH
m(x) = m(Xo) + = R (x—Xg) *ayl. (Y=Y +5; B (z-2y) (3)
Xo Xp X
oH oH JoH JH
+avx . (vx—vxo)+37 . (vy—vyo)+m— . (Vz—vzo).*'a_B;. (B-By)
%o Yz, %Iz %o

(]

where all higher order terms beyond linear have been excluded. Each

measurement m;(x) at each t; will result in an equation such as (3) above.
If the m;(x) are assumed to be the actual measurements corresponding to

the true trajectory, and m(x) is the vector of these measurements, we may then

15



form the vector of measurement "residuals”:

Az = m(x) - m(Xq)

and we may re-write (3) in matrix form as:

AZ = A Ax (4)

where AX = X - Xq, the vector of corrections to the initial state vector x,, and
A is the matrix of partial derivatives of the observations with respect to the state
vector elements, sometimes referred to as the "normal matrix."” In the case

where the measurements are position and velocity, A appears as:

9m 9m| m Im I Imy S
ox xI dy X| dz x| av X| av x| av xl oB x|
ty t t, Tx Ty Ty Ty Tz Ty t
0 d d d d d d
x| x|, x|, v | W ™| x|, 3B
t2 t2 t2 X t2 y t2 z t2 t2
[+] o o o o o [<]
d d d d d d d
—m =—m =—m ~——m =——m — =—m
o y|tl 3y y|tl 5 y|tl v, yl‘l v, yltl av, yltl 38 y|tl
d d d d d d d
E)_xmy|t meL Emylt E)—vxmy|t melt avz’“y|t aBmyIt
A = 2 2 2 2 Y h 2 2
-] o o o Q -] o
o o o L] [+ o [«
9 9m 9m 9. 9 9 9
dx V,| dy V,| dz vV, avx v, E)vy v, avz V| 9BV,
tl tl tl l:1 tl tl tl
0 2 2 d 0 d d
T A I A I TR A -
t ) ) ) ) ) )
o o [«] o o o o
-] o [+ -] -] [ (=]
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where for clarity we adopt the following notation:

3 2
ax iz, = ax™il,

That is, for each measurement type m; (in this case, j = 1...6), based on the
initial estimate of the state vector (xo) we form the partial derivatives of those

measurements with respect to changes in each element of the state vector at

each measurement time ;.

The vector of corrections to the state is simply:

v
Zp
| B-By |

and the vector Az of measurement residuals (observed minus predicted

measurements) is:
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Xobs1 ™ *p1
Xobs2 ™ *p2

-]

Yobs1 ™ ¥p1
Yobs2 ™ Yp2

o

Zobs1 ™ Zp1
Zobs2 ~ Zp2

]

v —-v
Xobsl Xpl

v -V
Xobs2 Xp2

o

Vyobs1 ™ Vyp1

v -v
Yobs2 Yp2

[+

Vzobs1 ~ Vzp 1

v -v
Zobs2z %p2
-]

where xp, yp, Zp, ... are the predicted position and velocity measurements m(xXg)
based on the initial estimate of the state, Xo and Xgps, Yobs» Zobs» --- are the observed

measurements m(x).

The partial derivatives contained in matrix A may be calculated either
analytically or numerically, although analytical partial derivatives can be
quite complex (if they can be found at all). The numerical partial derivatives

can, however, be formed quite easily as we will see.

If we had the same number of measurements as elements in the state
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vector, we could immediately invert the matrix A, and solve (4) for the first
order correction to the initial state vector Xq. If there are more measurements
than the number of elements in the state vector, A is no longer square, so we

multiply both sides of (4) by the transpose of A:

ATAaz = ATA Ax

or AxX = (ATA)1AT Az (5)

where ATA is now square and invertible (assuming it is non-singular).

Equation (S5) is the classical equation for least-squares estimation. Since
we have linearized a non-linear problem, this equation must be solved
iteratively in what is effectively a multi-dimensional Newton-Raphson

technique (Smith [9]).

When there is more than one type of measurement as in our case (GPS
position and velocity measurements), the measurements must be weighted
appropriately such that each measurement residual contributes to the state
correction in a way which is proportional to the measurement accuracy. If
equation (4) is multiplied by a vector containing the inverse of the standard

deviations of each of the measurements being considered, i.e.,
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xQ
—

we have now expressed each residual in compatible units (standard deviations).

The equation to be solved becomes:

WAz = WA AX
ATWTW Az = ATWTW A Ax

or Ax = (ATWTWA)-IATWTW az (6)

which is the classical equation for weighted least-squares. The matrix WTW is a
diagonal matrix whose elements are the inverse of the measurement variances.
Once again, since this is a linearization of a non-linear problem, (6) must be
solved iteratively, a process which is sometimes referred to as Weighted Least-
Squares Differential Correction (Bate [3]). (ATWTWA)-l is an important
quantity called the Covariance Matrix. The diagonal elements of the Covariance
Matrix are the variances (squares of the one-sigma uncertainties) of the state

vector elements being estimated, which is why state estimation techniques are

20



said to carry with them their own error analysis (see Smith [9]).

In most cases, a priori estimates of the measurement errors in W are
available based on analysis of the sources of error in the observation model
equations, or based upon empirical data. In the case of GPS measurements, these

error sources were discussed in section II.
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B. Implementation of the WLS Estimator

The WLS differential correction orbit determination algorithm is

implemented here as follows:

A. Form the vector of measurements (observations) m. The program will

process measurement data from two sources.g

1. Simulated x, y, 2, vy, Vy, v, Earth Centered Inertial (ECI) data generated
internally by the MATLAB program using a fourth order Runge-Kutta
numerical integrator with various levels of measurement error added
(either Gaussian or SA errors). The Runge-Kutta routine implemented
here is based on that shown in Garcia [8] with additional force modeling

as detailed later in section IV.

2. Actual GPS Navigation Solution data (position/velocity) from NASA’s
EUVE spacecraft. Since this data was obtained in an Earth-Centered,
Earth-Fixed (ECEF) coordinate system, it is transformed to ECI by an off-

line "C" program prior to input to the orbit determination algorithm.

B. Using a given initial estimate of the state xq, generate predicted values of
the measurements m(x,) corresponding to each time point of the

measurements (Xp, Yp, Zp, Vxps Vyps Vzp)-

C. Form the vector of measurement residuals Az, the observed minus
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predicted values of the measurements.

D. Form the matrix of partial derivatives A via the finite difference

definition of the partial derivative:

om, _ m, (X(.Ygse- 60 + AE,...,2,0) —~m (X,Yg0ee 06000 1Z,0) (7)

oF A

for each measurement m; at time t;. This will be accomplished by generating
a trajectory from X, and either six or seven other trajectories (depending on
whether we wish to solve for the B factor) resulting from small changes in
each of the elements of x, (denoted A{ in equation (7)) and the

corresponding changes to the predicted measurements. In this way, the A

matrix is built column-by-column.

E. Using given a priori measurement weights for each measurement type,

build the matrix W and solve for the correction to xg:

Ax = (ATWTWA)-IATWTW Az

Note: MATLAB performs the matrix inversion by Gaussian Elimination.
However, depending on how close the matrix is to singular it may be
necessary to use the technique of Singular Value Decomposition (SVD). This
involves the decomposition of the matrix to be inverted into a product of

three matrices, two of which are orthogonal and the other diagonal. The
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matrix may then (most of the time) be easily inverted. If the result is still
near singular, examination and modification of the diagonal matrix can
often lead to a solution (see Press [7]). Singular or badly conditioned
matrices are not uncommon in orbit estimation problems [14], therefore SVD

has been implemented for this research to perform the matrix inversion.

F. Form the new estimate of the state:

X1 = Xp + AX

G. Using X, as the new set of initial conditions, iterate through this process

again. Exit either when Ax is very small, or when the weighted RMS of the
residuals does not change appreciably between iterations, or when a set
number of maximum iterations has been reached. The weighted RMS is

defined as:

where n is the total number of measurements.

A coordinate transformation of the residuals to radial, in-track, and
cross-track coordinates (RIC) will often reveal important information about
orbit determination and prediction errors since radial and cross-track errors

are often periodic and bounded while in-track errors usually display both
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periodic oscillations and secular growth. The conversion from cartesian to RIC

coordinates is accomplished as follows:

If we form unit vectors in the direction of r and v, i.e.:

Lo ¥

<

|

=

| <

We may then form cross-track, in-track, and radial unit vectors as follows:

We then form the residual vector Ar at each time point:

AT = Axi+ Ayj +Azk
Where Ax, Ay, and Az are the observed minus predicted values of x, y, and z. The

residuals expressed in RIC coordinates are then:
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RIC Coordinates are depicted in Figure 4 below:

direction of
spacecraft travel

Earth's
Equatorial Plane

xandyin
Equatorial Plane

Figure 4: RIC Coordinates
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IV. Numerical Integration of the Equations of Motion

A. Cowell Formulation of the Equations of Motion

In order to generate predicted measurements we must form the equations
of motion of the spacecraft and, using the given initial conditions xq, propagate
the state forward to each measurement time. We choose the so-called Cowell
formulation of the equations of motion. These equations will be numerically
integrated via standard fourth order Runge-Kutta techniques. The Cowell

formulation is:

N

L L

dt® P

-t

where u = GM, (the gravitational constant of the Earth), the second term

on the left is the gravitational acceleration if the Earth were a spherically

symmetric mass distribution (i.e. two-body Keplerian motion), and ap is the sum

of any perturbative accelerations due to factors including:

asymmetric mass distribution of the Earth.
non-conservative perturbations such as atmospheric drag.

Solar-lunar-planetary gravitational perturbations.

> W N

Space vehicle thrusting.
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This differs from other, somewhat more complex techniques such as
Encke’s method, which integrates the difference between the accelerations of a
reference orbit (e.g. pure Keplerian motion) and the true or perturbed orbit

(see Bate [3]).

For this research, the primary perturbative accelerations to be
considered will be due to Earth asphericity and atmospheric drag. For an
arbitrary mass distribution such as that of the Earth, it is convenient to form the
geopotential as an expansion in spherical harmonics. A form of the
geopotential expansion which is independent of longitude (i.e., the "zonal"

harmonics which show axial symmetry about the Earth’s spin axis) is:

oo R \k
or0) = £ |1- ZJk(T"') P, (sin@) ®)
k=2

where the P, (sin(@)) are Legendre Polynomials of order k, 6 is the geocentric
latitude, p = GMe, and Jk are coefficients which have been determined

empirically by observing the motion of satellites. In fact, these coefficients
have been determined by optimal estimation techniques similar to those

discussed here. That is, previous estimates of the Jk have been differentially

corrected based on actual track data by including these terms as "solve-for

parameters” in the state vector. The so-called “J,” term, which accounts for

most of the gravitational perturbation due to the Earth’s equatorial bulge, is
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several orders of magnitude larger than the other effects due to J3, J4, etc. (see

Figure 5 below. The data for Figures 5 through 7 was produced by the OASYS
software tool [14]).

From Figure S below, at the EUVE orbital altitude it is clear that ephemeris
errors can be decreased from over 100 km to within a few kilometers over a 12

hour span by incorporation of the J, term.
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Figure 5: RSS of X, Y, Z Errors Due Geopotential Truncation

Figure 6 below shows the difference between the ephemeris predictions

of a model which accounts for geopotential terms through J4 versus a J,

propagation, and Figure 7 compares the predictions of a precise gravity model

(21x21 zonal and tesseral terms) against a J4 zonal model.
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From these figures we see that inclusion of zonal terms up through J4
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yields a similar accuracy improvement (relative to J,) as can be achieved if all
additional zonal/tesseral terms through 21x21 are used. For this reason, we will
truncate the geopotential after J4 (zonals only). However, we should therefore
expect trajectory position modeling errors on the order of 0.5 to 1 km over

prediction spans of a few hours. This will be important when interpreting the

results of EUVE orbit determination in Section V.

The gravitational acceleration is obtained by taking the gradient of the

geopotential;

2

_ _ 9P = 8_(I>_e ad>_a
ag—V(D- [ﬁ 1+ay ]+5-£ ]

The first few Legendre Polynomials are:

Po(x) 1

P1(x)

X

Pa(x) = (3x% - 1)/2
P3(x) = (5x3 - 3x)/2

P4(x) = (35x* - 30x% + 3)/8

Inserting P,(x) through P4(x) into (8) and noting that sin(e) = z/r we

have:
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where terms beyond J4 are not shown. The above equations have been
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implemented in the Cowell equations of motion for this research. It should be
noted that references [2] and [3] both contain typographical errors in the

equations describing these acceleration terms.

Another potentially significant perturbation, that due to atmospheric

drag, can be modeled as follows:

2
da ~_ 1727 . 2%
dtzrd 2’ m P a
=‘%'B'P'Va2‘“’a 9)

where c, is the unitless drag coefficient, A is the spacecraft cross-sectional area

in the direction of the velocity vector, m is the spacecraft mass, p is the
atmospheric density, and v, is the magnitude of the spacecraft velocity vector
relative to the rotating atmosphere of the Earth. Numerous models of the Earth’s
atmosphere exist, but their predictions for the density of the upper atmosphere
are only approximate since this is highly correlated with unpredictable solar
activity. Since B is a direct multiplier in equation (9), estimation of B will reduce

the effect of errors in the modeling of p on the determination of the drag force.
If we assume that the atmosphere of the Earth is rotating with the Earth

at a constant angular velocity o (i.e., the rotational rate of the Earth), then we

may use the transformation:
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where the subscripts R and F refer to rotating and fixed reference frames
respectively. Therefore, the velocity components to be inserted into equation

(9) are:

where vy, vy, and v, are the components of the spacecraft velocity in the inertial

reference frame.

Since we will be investigating orbit determination techniques for
spacecraft such as EUVE in nearly circular low Earth orbits, we will make the
simplifying assumption that the atmospheric density is approximately constant

for the EUVE orbit. From tabulated values of atmosplieric density [13], we will

assume a value of 1 x 10713 kilograms per cubic meter at the EUVE orbital altitude

of approximately 500 km (see Figure 8 below).
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Figure 8: Atmospheric Density as Function of Altitude [13]
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B. Fourth Order Runge-Kutta Numerical Integration

Since the Cowell formulation of the equations of motion is a second order
vector ordinary differential equation, this can be reduced to two first order
vector ODEs by introducing a new variable v. The two first order vector ODEs to

be solved are then (see Bate [3]):

ds _ 3
—r =V
dt

d.;_; [,I, a

a—tV—ap—l—j r

which is equivalent to the following six scalar equations:

dx
dt X

4y
at "y

dz
at

(10)
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Here ap will include gravitational perturbations through J4 and the

acceleration due to atmospheric drag.

These equations are of the form:
d s = a
Z¥0 = TG

where y is the vector of initial conditions (x, y, z, vy, vy, V) and f(y, t) are

known functions which are the derivative of the state (i.e. the right hand sides

of equations (10) above).

The fourth order Runge-Kutta algorithm which will be used to

numerically integrate the Cowell equations of motion is (see Garcia [8]):

k, k, k, k,
Tt ThITEIFTIE

—

where:

ky = hf(ty, yn)

b
N
|

= hf(ty +h/2,y, + k1/2)

bt
w
]

hf(ty +h/2, yy+ kp/2)

kg = hf(ta+h, yp+ k3)

Here h is the integration step-size and n is the integration step number. The
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equations of motion of eccentric orbits are best integrated with some form of
adaptive step-size control which varies the integration step-size to make it as
large as possible while guaranteeing that the truncation error will not exceed
some maximum value. However, for the nearly circular orbit of EUVE being
considered here a fixed step-size may be used. This is especially advantageous
when there is a fixed time interval between tracking data measurements since

the state may be propagated directly from one measurement time to the next.

Figure 9 below shows the variation in integration step-size when using

adaptive step-size control for the EUVE orbit with a maximum error tolerance of

1.0x 103,
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Figure 9: Adaptive Step-Size for EUVE Orbit (seconds)

As can be seen from the figure, the adaptively chosen step-size never
falls below 100 seconds. For this research, a fixed stepsize of 30 seconds will be

used and the error tolerance should never be exceeded (a 30 second stepsize

guarantees 1.0 x 10”7 maximum error).
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V. Results and Discussion

The results to be analyzed here are in two parts:

Part A. We will generate simulated GPS position and velocity
measurements using the fourth order Runge-Kutta propagator with two
types of measurement error (Gaussian and "SA-like"). This data will then be
processed by the Weighted Least-Squares (WLS) batch orbit estimation
routine. It is expected that the results of this processing should be superior
to part B below because both the data generation and the orbit estimation
routines will be internally self-consistent with respect to force modeling

and trajectory propagation.

For each type of measurement error three different orbit fits will be

performed and contrasted:

1. Fits to position data only.
2. Fits to velocity data only.

3. Fits to both position and velocity data simultaneously.

The intention here is to determine how well a batch WLS orbit estimation
routine handles Selective Availability measurement errors relative to
Gaussian measurement errors. An additional objective is to determine the
relative merits of position data, velocity data, and a combination of both.
Some care, however, must be taken in generalizing these results to the

processing of actual measurement data since there are additional
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measurement and force model errors which are not included in this analysis.

Part B. The WLS orbit estimation routine will then be used to process actual
GPS position and velocity data from the NASA Extreme Ultra-Violet Explorer
spacecraft. Two data sets will be analyzed: one containing the effects of
Selective Availability and the other without SA effects. For each of these data
sets, three types of orbit fits will be performed (as in Part A above) and the

results will be analyzed.

Part A
Simulated Navigation Solution Data Processing

with Gaussian and SA Errors

Using the fourth order Runge-Kutta integrator, a set of initial conditions
were propagated which are representative of the actual EUVE orbit. A

description of the EUVE orbital parameters is provided in Table 2 below:

Parameter Value
eccentricity 0.00104
inclination 28.45 deg
apogee height 533.1 km
perigee height 518.7 km

Table 2: EUVE Orbital Parameters
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A.1 Simulated Orbit Fits with Gaussian Errors

The initial conditions were propagated over a time span of twelve hours.
This trajectory was then saved as the "truth" trajectory. Gaussian-distributed
errors with a standard deviation of 35 meters were then added to the "truth" data
to form the simulated measurements. The time span and magnitude of error
were chosen for consistency with the SA error fits as will be seen later. The
integration stepsize was 30 seconds, but measurement data was created every 10

integration steps (5 minute intervals).

The initial conditions were then perturbed along each axis by one
kilometer in position and one meter per second in velocity. These initial
conditions were then used as the a priori estimate of the spacecraft state vector
to be differentially corrected by the WLS estimator using the simulated

measurements.

First, the X, y, and z measurements were processed alone (no velocity
data). The results are shown in Figure 10 below. As should be expected, the mean
of the measurement residuals was essentially zero upon convergence

(approximately six iterations).
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Figure 10: Final Iteration Gaussian Position Fit Data (sigma = 35m)

The final corrected state was then propagated 24 hours and compared to

the "truth" trajectory in order to assess the predictive capability of the solution

well beyond the measurement span. The results are shown in Figure 11 below:
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Figure 11: Final Propagated State vs Truth (Gaussian Position Fit)

As can be seen in Figure 11, a maximum error of 25 meters occurs near
the end of the prediction span, with the in-track error dominating the secular
growth as expected. Cross-track and radial errors are periodic and bounded to

within approximately 5 meters.

With the same perturbed initial conditions, orbit determination was then
performed using only simulated velocity measurement data with one-sigma
Gaussian errors of 0.40 meters/second. Again, this standard deviation was

chosen to maintain consistency with the SA orbit fits.
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Finally, using the same perturbed initial conditions, a twelve hour orbit
fit was performed using both position and velocity data simultaneously with
measurement weights of 35 meters and 0.4 meters/second respectively.
Graphical results of the WLS position/velocity fit, as well as the velocity-only
fit, can be found in Appendix B. Table 3 below summarizes and compares the
results obtained from each of the three types of orbit fits with Gaussian

measurement errors.

True Minus Converged Solution (m, cm/s)
24 hr mean RSS Converged
of RIC Errors Residual RMS
AX | Ay | Az | Avy | Avy | Av,
Position Data | -5.1 1.1 -3.0 0.5 -0.6 0.1 11.3m 35.29 m
Velocity Data |-116.1| -26.2| -38.7 | 44 | -47 | -9.0 71.8m 0.40 m/s
Both Position 35.20m
and Velocity -5.6 12 | -33 0.5 -0.6 0.1 10.8 m
Data 0.41 m/s

Table 3: Summary Results of Gaussian Measurement Error Fits

From Table 3 we see that good results were obtained for the position-only
fit as well as the WLS position/velocity fit. The fit to velocity data alone was
significantly less accurate than either of the other two methods, even though
the converged residual RMS equaled the a priori measurement standard

deviation.



A.2 Simulated Orbit Fits With Selective Availability Effects

Thus far we have examined WLS orbit determination accuracy when the
error characteristics of the measurements were Gaussian. We will now
investigate the effect of measurement errors which display the "colored noise"

characteristics of Selective Availability.

A routine was coded in MATLAB to generate pseudo-range errors at one
second intervals which mimic the effects of SA. The algorithm used does not
duplicate the precise effects of the true SA algorithm used by the GPS spacecraft,
but the resulting data has nearly equivalent statistical characteristics. The SA
generation algorithm implemented here is due to Zyla [15]. The SA data is

generated recursively as follows:

Sk+1 =218k + A28k-1 + a3Sk-2 + D1Mg41 + bong + bangg

where the coefficients a,, ay, a3, by, by, and b; were determined empirically, and

n is Normally distributed with mean zero and variance one. The general
technique by which empirical data is used to determine the best model which
may have produced the data is called "Model Identification". The specific method
employed by Zyla is referred to as the Auto-Regressive Integrated Moving
Average (ARIMA) technique. Further details on the techniques of Model

Identification may be found in Gelb [6].
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A one hour time span of simulated pseudo-range errors generated for this

research is shown in Figure 12 below.

Figure 12: Simulated SA Pseudo-Range Errors (Zyla ARIMA 3x2)

Simulated SA pseudo-range errors were generated for four GPS
spacecraft in an arbitrary (though fairly typical) assumed orientation and the
vector sum of these errors was taken. Figure 13 below shows the assumed
simulation geometry. Since all GPS receivers have "satellite selection"
algorithms which attempt to choose the GPS satellites in view that will result in

the best Navigation Solution geometry, a configuration of GPS satellites similar
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to Figure 13 often results.

plane normal to
radius vector

Figure 13: Simulation Geometry

Figure 14 below shows a representative example of a one hour time span
of the resulting horizontal and vertical SA errors which were generated for this

simulation (compare with Figure 3a).
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Figure 14: Simulated Horizontal/Vertical SA Errors (one hour- Zyla ARIMA 3x2)

Although it is not obvious from Figures 12 and 14, when observed over a
sufficiently long period the SA error distribution begins to exhibit distinctly
Gaussian characteristics. Figure 15 below shows the error distribution of

simulated SA errors when viewed over a time span of twelve hours.
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Figure 15: 12 Hour Error Distribution of Simulated SA Data

The statistics of the SA data generated for this research, expressed in RIC
coordinates, is shown in Table 4 below. It is the result of a vector summation of
SA errors from four GPS satellites in the configuration shown in Figure 13. In
order to provide additional realism, several "satellite switches" are included in
the simulated data in order to mimic the discontinuity which results when the

on-board GPS receiver selects a new GPS satellite as one satellite fades and

another rises.

Direction Mean (meters) Standard Deviation (meters)
Radial -3.06 34.83
In-Track 0.80 33.56
Cross-Track -1.54 31.66

Table 4: SA Error Statistics for this Simulation (12 hour span)
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These simulated SA errors were then superimposed 6n simulated x, y, and
z measurement data. A twleve hour fit span was selected in order to allow the
Gaussian nature of the Selective Availability errors to exhibit itself. As before,
the true initial conditions were perturbed by one kilometer and one meter per
second in each axis to initialize the estimation. Figures 16 and 17 below show the
orbit determination results and subsequent propagation of the converged
solution as compared with "truth" over a 24 hour time span.
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Figure 16: Final Iteration Data for Position Fit with SA
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Figure 17: Final Iteration Solution vs Truth (Position Fit with SA)

The maximum propagated error over 24 hours did not exceed 20 meters
and the RMS error over that span was 9.3 meters. For the 12 hour span during

which data was present the RMS error was 5.7 meters.
Next, a 12 hour orbit fit using only velocity data was performed. Zyla

ARIMA 3x2 SA errors were superimposed on the measurements, scaled such that

the standard deviation of the errors was 0.40 meters per second to correspond
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with the current observed velocity error distribution (Conley [17]). See

Appendix B for graphical results.

Finally, both position and velocity measurements were processed
simultaneously with measurement weights of 35 meters and 0.40 meters per

second respectively (see Appendix B).

Table 5 summarizes and compares the results of the three orbit fits with

SA measurement errors.

True Minus Converged Solution (m, cm/s})
24 hr mean RSS | Converged

of RIC Errors Residual RMS
A | Ay | Az | Av, | Avy | Av,
PositionData| -70 | 03 | -31 | o5 | -06 | 0.02 9.3m 33.7m
Velocity Data | -37.7 7.3 ]1-326 | 0.15 1.5 -5.3 79.9m 0.40 mv/s
Both Position 33.7m
and Velocity -6.7 0.1 -3.4 0.5 -06 | 0.06 9.3m

Table 5: Summary Results of SA Measurement Error Fits

Once again, we see results of essentially equivalent accuracy for the position-

only and WLS position/velocity fits.
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Figure 18 below summarizes the comparison between orbit estimation/
prediction accuracy for Gaussian versus Selective Availability measurement
errors with respect to a key figure of merit, i.e., the 24 hour mean RSS of

propagated RIC errors relative to "truth".
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201

24 Hour Mean RSS of RIC Errors (meters)
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o , \

Gaussian SA Gaussian SA Gaussian SA
Position Position Velocity Velocity Pos/Vel Pos/Vel
Fit Fit Fit Fit Fit Fit

Figure 18: Comparison of Gaussian vs SA Orbit Estimation Results
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Part B

Processing of EUVE GPS Navigation Solution Data

We will now use the WLS batch estimator to process GPS data from the
EUVE spacecraft. Two data sets were obtained and will be examined. The first
data set is from 14 September 1992 when the DOD had not yet turned on the
effects of Selective Availability. The second data set was taken on 22 September

1992 during a period when SA was in effect.

Since the measurement and dynamic models used in the WLS orbit
estimation routine implemented for this research are not high fidelity, the
objective here is not to determine the ultimate potential accuracy of WLS
processing of GPS data. Instead, we seek to examine in a qualitative sense the
nature of the data to give additional insight into problems which may be

encountered when processing real data.

B.1 Description of the EUVE GPS Receiver

The Extreme Ultra-Violet Explorer was launched in June 1992. It carries
a single frequency (L1) P-code receiver capable of processing pseudo-range
and carrier phase data from six GPS satellites simultaneously from each of two
antennas (twelve independent channels). The receiver performs an on-board
least-squares point position estimate (Navigation Solution) every ten seconds

and downlinks this data (along with the raw observables) via TDRSS satellites to
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the Goddard Space Flight Center where it is stored. The EUVE GPS receiver has
no on-board Kalman Filter to smooth the data. In addition, its GPS antennas are

placed directly on the spacecraft body causing fairly frequent multipath errors

(see Gold [1]).

The EUVE solution data was provided in the WGS-84 Earth Centered Earth
Fixed (ECEF) coordinate system. Therefore, the data was first rotated to an Earth
Centered Inertial (ECI) True-of-Date coordinate system prior to input to the WLS
estimator. The relationship between the ECI and ECEF coordinate systems is

shown in Figure 19 below.
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Greenwich Hour Angle
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Figure 19: True of Date ECI and ECEF Coordinates
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B.2 EUVE Orbit Fit Results

To initialize the orbit estimation routine, the first Navigation Solution
state in the data span was used as the a priori state vector. In addition, although
poorly observable over a span of a few hours, the ballistic coefficient B was
included as a solve-for parameter in all of the EUVE orbit fits. It is likely that
some unmodeled geopotential acceleration will alias into the drag parameter,

helping to minimize the observation residuals.

As an initial check on the data quality, the first iteration measurement
residuals were plotted. Figure 20 below shows these residuals from the 14

September 1992 data set.

Magnitude of First lteration RIC errors (km)
2‘5 1 ] 1 1 ]

1.5}
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Figure ‘20: First Iteration EUVE RIC Position Residuals, 14 Sept. 1992

It is clear from the above figure that a short span of data from the

beginning of the data set is suspect and must be edited out. A similar problem
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was observed near the end of the 22 September 1992 data set, and this was also

edited out.

As was done in Part A, three orbit fits were performed with each data set.
Final iteration summary graphs for each may be found in Appendix B. We

proceed now to discuss the salient results of these orbit fits.

First, as regards the fits to position-only data, a direct comparison of the
final iteration RSS RIC residuals is shown in Figure 21 below for the two data sets
(with and without SA, 3-sigma outliers removed). For consistency, the same fit

span (approximately three hours) was used in both cases.
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Figure 21: Final Iteration EUVE Position Residuals, With and Without SA
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The magnitude of the position residuals for the data without SA is
approximately 50 meters. This is somewhat lower than what might have been
expected given that geopotential terms beyond J4 have been truncated in the
force model (see Figure 7). It is likely that, to some extent, geopotential
modeling errors have been aliased into corrections to each element of the state

vector.

Although somewhat difficult to discern since the residuals appear to
contain a combination of both systematic measurement errors (such as multi-
path) and force modeling errors, it is fairly evident that an additional error
source exists in the first graph of Figure 21. The error appears to be varying
between zero and approximately 150 meters, and so we would surmise that SA is
a contributor. This was also reflected in an increase in the standard deviation

of the RSS RIC residuals from 32.2 meters (no SA) to 61.5 meters (with SA).

When each measurement type was processed separately, the mean of the
measurement residuals was near zero as expected (see Appendix B). However,
when WLS orbit fits were performed using position and velocity data
simultaneously, a bias of 1.1 meters per second appeared in the radial velocity

residuals for both data sets (with and without SA). See Figure 22 below.
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Figure 22: Final Iteration EUVE Position/Velocity Fit Data, No SA

Since the radial velocity bias appeared only when both position and velocity
were processed together, this would indicate that an inconsistency exists

between the two data types for the EUVE data sets examined here.

An initial hypothesis was that the velocity measurements contained a

bias which somehow manifested itself in the radial direction. To test this
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hypothesis, the orbit estimation routine was modified to solve for x, y, and z
velocity biases. This involved the addition of three columns to the matrix of

partial derivatives, A, such that;

om. O forj = k

abk 1 forj =k

where by is a bias in the k™ measurement type (j, k = 1, 2, ... 6). The
addition of these three solve-for parameters did not, however, remove the
observed bias in radial velocity, and no appreciable bias in any of the x, y, and

z velocity measurements was found.

The next possibility considered was the existence of a bias in the time-tags
of the velocity measurements. Since position and velocity are based on
independent measurements of pseudo-range and carrier phase data, it is
possible that the epochs of each position/velocity pair be non-coincident and
potentially inconsistent, especially since velocity is determined by integrating

carrier phase over some finite time interval.

The WLS estimator was modified again to solve for a velocity measurement
time bias. In this case, a single additional column was added to the A matrix by
time-shifting the a priori propagated ephemeris and comparing the x, y, and z
velocity shift relative to the time shift. When this was done, a velocity time-tag
bias of 0.14 seconds was found. Figure 23 below shows the effect of a 0.14 second

time bias on the radial, in-track, and cross-track components of velocity.
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Figure 23: Effect of 0.14 Second Time Bias on Velocity Data

As can be seen from Figure 23, a 0.14 second time bias introduces a nearly
constant bias of approximately 1.1 meters per second to radial velocity, but the
effect on in-track and cross-track velocity is two orders of magnitude smaller
and un-biased. We therefore conclude that this time bias is the likely source of

the measurement error.
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Part C

Conclusions

The simulation presented here allows us to conclude that Weighted Least-
Squares Batch Estimation is a viable orbit determination technique for the
processing of GPS Navigation Solution Data in the presence of Selective
Availability effects. Results indicate that the SA contribution to the over-all
orbit determination error budget will be on the order of 6 meters over a 12 hour
fit span, assuming that the SA model used here accurately reflects the true SA
error distribution. Other techniques such as Kalman Filtering are also
important, especially if the orbit solution is required in near-realtime, but WLS
Batch Estimation should be considered an important tool to "defeat SA" since we
are able to consider long spans of data in the orbit solution, allowing the

Gaussian nature of SA to manifest itself,

Although it is possible that adjustments or additional features (such as
incorporation of a position/velocity cross-correlation matrix) to the WLS
estimator may provide improved performance, the results here indicate that the
addition of velocity data does not significantly improve orbit accuracy beyond
that achievable with position data alone. Velocity data neither improved nor
degraded the WLS position/velocity fits, and the processing of velocity data
alone led to significantly less accurate orbit solutions than position-only fits,
possibly due to the velocity measurement error characteristics simulated here.
Nevertheless, the use of velocity data should not be discounted, especially in

cases where sufficient quantities of position data may not be available.
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From the results of orbit fits to actual Navigation Solution data from the
EUVE spacecraft it is clear that although SA may be the largest source of
measurement error, other measurement errors must also be dealt with such as
multipath and ionospheric delays. In addition, even larger error sources than
SA are occasionally evident in the EUVE data, perhaps due to loss of receiver

lock.

It is therefore important to implement a robust data editing capability in
conjunction with the WLS estimator. Accurate force modeling is also important
in order to distinguish measurement error from force model error. However,
since geopotential models of degree and order 50 (or even higher) are readily
avaijlable, as well as dynamic atmospheric density models to assist in drag
estimation, force model errors below 10 meters are achievable even in low Earth

orbit (see Gold [1]).

As we saw, when the EUVE velocity data was used in conjunction with
position data, a bias in the velocity time-tags was detected. This points out the
advantage to processing independent measurement types simultaneously in
order to "cross check" the data and possibly expose measurement errors which
might otherwise go undetected. It is therefore important to implement the

capability to solve for such measurement biases.
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VI. Future Work

The research presented here may be extended in a number of different

areas including the following:

1. Modification of the algorithm to process the raw GPS measurements of
pseudo-range and carrier phase.

2. Improved measurement error modeling such as GPS spacecraft orbital
position errors, ionospheric errors, antenna phase center, etc. Robust
data editing techniques should also be explored.

3. Improved force modeling including geopotential, atmospheric drag,
and third body gravitational perturbations.

4. Use of Differential GPS techniques.

As we have seen, a major source of measurement error in the GPS
Navigation Solution data is due to the effects of Selective Availability One way
to remove the SA errors is to use Differential GPS (DGPS) techniques. These
techniques may be applied in “measurement space” or in “solution space,” i.e.
the SA errors may be removed from the pseudo-range and carrier phase data or
from the Navigation Solutions, either prior to or during the orbit estimation

process.

The basic idea is to incorporate information taken from reference GPS
receivers at known locations around the world (the locations are known to

millimeter level). Since the locations of these GPS receivers are known, any



difference between the real-time, GPS derived position and the true position will
be due (primarily) to the effects of SA. The most common way to eliminate SA is
to form "differenced data”. This involves the formation of a new derived
measurement by subtracting pseudo-range or carrier phase measurements
taken simultaneously from two GPS receivers or from two GPS satellites. In this
way, a number of errors which are common to each measurement may be
eliminated or reduced. As previously mentioned, this requires access to data
from a world-wide network of GPS receivers such as was used by JPL for TOPEX/

POSEIDON.
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Appendix A

Program Listings
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A.1 EUVWLS_OD

% Program to perform Weighted Least-Squares Batch
% orbit estimation using GPS Navigation Solution
% data (Position and Velocity) from the EUVE spacecraft.

clear;
tau = 30.0; % integration stepsize (seconds)
maxiter = 6; % maximum iterations desired
skip = 4; % skip every nth integration point to
% get predicted/actual observation times
Bsolve = 1; % O = no solve, 1 = solve for drag param

savedata = 1; % O = do not save, 1 = save

sigmaP = 35; % position sigma in meters
sigmaV = .40; % velocity sigma in meters/sec
endobs = 500; % keep first n obs in GPS data file
tol = .001; % convergence criteria for WRMS

sigmaPkm = sigmaP/1000.; % Convert to km
sigmaVkm = sigmaV/1000.;

dx =.5; % delta x for partial deriv (km)
dy =.5;

dz =.5;

dxdot = .001; % km/sec

dydot = .001;

dzdot = .001;

Binit = 2.3*%(.01)*(.01)/500.; % Apriori Cd*A/M in MKS units.
dB = Binit; % for partial deriv

load INERT6x30.dat; % GPS Nav Solution data at 30 second
load INERT6y30.dat; % increments from EUVE spacecraft
load INERT6z30.dat; % in TOD ECI coordinates, km, km/sec
load INERT6xdot30.dat;

load INERT6ydot30.dat;

load INERT6zdot30.dat;

qq = size(INERT6x30,1);
disp('size of initial file is:');
disp(qq);

% edit data from end of span

% it was determined that only the first 500 obs were valid

for i = 1:endobs,
edtINERT6x30(i) = INERT6x30(i); % create new edited obs files
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edtINERT6y30(i) = INERT6y30(i);

edtINERT6z30(i) = INERT6z30(i);

edtINERT6xdot30(i) = INERT6xdot30(i);

edtINERT6ydot30(i) = INERT6ydot30(i);

edtINERT6zdot30(i) = INERT6zdot30(i);
end

clear INERT6x30;
clear INERT6y30;
clear INERT6z30;
clear INERT6xdot30;
clear INERT6ydot30;
clear INERT6zdot30;

%--~--------———- use first point in files as initial conditions

rinit(1) = edtINERT6x30(1);
rinit(2) = edtINERT6y30(1);
rinit(3) = edtINERT6z30(1);
vinit(1) = edtINERT6xdot30(1);
vinit(2) = edtINERT6ydot30(1);
vinit(3) = edtINERT6zdot30(1);

% remove first point in file
% it is assumed that the epoch of initial conditions is 30 seconds before
% the first obs point

nn = size(edtINERT6x30,2);

nsteps =nn - 1; % total number of integration steps
disp('nsteps is:');

disp(nsteps);

for k = 2:nn,
Bigxobs(k-1) = edtINERT6x30(Kk);
Bigyobs(k-1) = edtINERT6y30(k);
Bigzobs(k-1) = edtINERT6z30(k);
Bigxdotobs(k-1) = edtINERT6xdot30(k);
Bigydotobs(k-1) = edtINERT6ydot30(k);
Bigzdotobs(k-1) = edtINERT6zdot30(k);
end
% thin data by skip factor
i=0;
for k = 1l:nsteps,
if rem(k,skip) == 0,
i=i+1;
xobs(i) = Bigxobs(k); % final observation data is thinned
yobs(i) = Bigyobs(k); % by skip factor
zobs(i) = Bigzobs(k);
xdotobs(i) = Bigxdotobs(k);
ydotobs(i) = Bigydotobs(k);
zdotobs(i) = Bigzdotobs(k);
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end
end

nobs = size(xobs,2);
disp('nobs is:");
disp(nobs);

clear Bigxdotobs;

clear Bigydotobs;

clear Bigzdotobs;

clear Bigxdotdotobs;
clear Bigydotdotobs;
clear Bigzdotdotobs;
clear edtINERT6x30;
clear edtINERT6y30;
clear edtINERT62z30;
clear edtINERT6xdot30;
clear edtINERT6ydot30;
clear edtINERT6zdot30;

% Create Matrix of measurement variances (WTW) -===---m---meuu-

for i = 1:(3*nobs),
W(i) = (1/sigmaPkm)A2.; % 1/kmetersA2
end

for i = ((3*nobs)+1):(6*nobs),

W(i) = (1/sigmaVkm)A2.; % 1/(kmeters/sec)A2
end

WTW = sparse(diag(W)); % nxn diagonal matrix of 1/variances

clear W;

% set apriori initial conditions

r = rinit;
Vv = vinit;
B = Binit;
% Main Loop

for j = 1:maxiter,

disp('iteration number: ');

disp(j);
time = 0.0; % initial time is assumed equal to zero

% generate initial unperturbed ephemeris
i=0;
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for k = l:nsteps,
state = [ r(1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,'J4gravPlusDrag’,B); % 4th order Runge Kutta
r = [state(1) state(2) state(3)]; % integration step
v = [state(4) state(5) state(6)];
time = time + tau;
if rem(k,skip) == 0, % skip to obs times
i=i+1;
propx(i) = r(1); % kilometers
propy(i) = r(2);
propz(i) = r(3);
propxdot(i) = v(1); % kilometers/sec
propydot(i) = v(2);
propzdot(i) = v(3);
proptime(i) = time;
rmag = norm(r); % calculate RIC unit vectors
vmag = norm(v);
rhat = r/rmag;
vhat = v/vmag;
Chat(i,1) = rhat(2)*vhat(3) - rhat(3)*vhat(2); % cross product
Chat(i,2) = rhat(3)*vhat(1) - rhat(1)*vhat(3);
Chat(i,3) = rhat(1)*vhat(2) - rhat(2)*vhat(1);
Ihat(i,1) = vhat(1);
Ihatfi,2) = vhat(2);
That(i,3) = vhat(3); .
Rhat(i,1) = vhat(2)*Chat(i,3) - vhat(3)*Chat(i,2);
Rhat(i,2) = vhat(3)*Chat(i,1) - vhat(1)*Chat(i,3);
Rhat(i,3) = vhat(1)*Chat(i,2) - vhat(2)*Chat(i,1);
end
end

disp(time);

% generate x-perturbed ephemeris
time = 0.;
r = rinit;
r(l) =r(1) + dx;
Vv = vinit;
i=0;
for k = l:nsteps,
state = [ r(1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,'J4gravPlusDrag',B);
r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
time = time + tau;
if rem(k,skip) == 0,
i=i+ 1,
pertdxx(i) = r(1);
pertdxy(i) = r(2);
pertdxz(i) = r(3);
pertdxvx(i) = v(1);
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pertdxvy(i) = v(2);
pertdxvz(i) = v(3);
end
end
disp(time);

% calculate first column of A matrix (partial derivatives)
for i = 1:nobs,
numer = pertdxx(i) - propx(i);
A(1,1) = numer/dx;

numer = pertdxy(i) - propy(i);
A(i+nobs,1) = numer/dx;

numer = pertdxz(i) - propz(i);
A(i+(2*nobs),1) = numer/dx;

numer = pertdxvx(i) - propxdot(i);
A(i+(3*nobs),1) = numer/dx;

numer = pertdxvy(i) - propydot(i);
A(i+(4*nobs),1) = numer/dx;

numer = pertdxvz(i) - propzdot(i);
A(i+(5*nobs),1) = numer/dx;
end

clear pertdxx;
clear pertdxy;
clear pertdxz;
clear pertdxvx;

clear pertdxvy;
clear pertdxvz;

% generate y-perturbed ephemeris
time = 0.;
r = rinit;
1r(2) =r(2) + dy;
v = vinit;
i=0;
for k = 1:nsteps,
state = [ r(1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,’ J4gravPlusDrag’,B);
r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
time = time + tau;
if rem(k,skip) == O,
i=i+1;
pertdyx(i) = r(1);
pertdyy(i) = r(2);
pertdyz(i) = r(3);
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pertdyvx(i) = v(1);
pertdyvy(i) = v(2);
pertdyvz(i) = v(3);
end
end
disp(time);

% calculate second column of A matrix
fori = 1:nobs,
numer = pertdyx(i) - propx(i);
A(i,2) = numer/dy;

numer = pertdyy(i) - propy(i);
A(i+nobs,2) = numer/dy;

numer = pertdyz(i) - propz(i);
A(i+(2*nobs),2) = yy;

numer = pertdyvx(i) - propxdot(i);
A(i+(3*nobs),2) = numer/dy;

numer = pertdyvy(i) - propydot(i);
A(i+(4*nobs),2) = numer/dy;

numer = pertdyvz(i) - propzdot(i);
A(i+(5*nobs),2) = numer/dy;
end

clear pertdyx;
clear pertdyy;
clear pertdyz;
clear pertdyvx;
clear pertdyvy;
clear pertdyvz;

% generate z-perturbed ephemeris
time = 0.;
r = rinit;
r(3) =r(3) + dz;
Vv = vinit;
i=0;
for k = 1:nsteps,
state = [ (1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,'J4gravPlusDrag',B);
r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
time = time + tau;
if rem(k,skip) == 0,
i=i+1;
pertdzx(i) = r(1);
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pertdzy(i) = r(2);
pertdzz(i) = r(3);
pertdzvx(i) = v(1);
pertdzvy(i) = v(2);
pertdzvz(i) = v(3);
end
end
disp(time);

% calculate third column of A matrix
for i = 1:nobs,
numer = pertdzx(i) - propx(i);
A(i,3) = numer/dz;

numer = pertdzy(i) - propy(i);
A(i+nobs,3) = numer/dz;

numer = pertdzz(i) - propz(i);
A(i+(2*nobs),3) = numer/dz;

numer = pertdzvx(i) - propxdot(i);
A(i+(3*nobs),3) = numer/dz;

numer = pertdzvy(i) - propydot(i);
A(i+(4*nobs),3) = numer/dz;

numer = pertdzvz(i) - propzdot(i);
A(i+(5*nobs),3) = numer/dz;
end

clear pertdzx;
clear pertdzy;
clear pertdzz;
clear pertdzvx;
clear pertdzvy;
clear pertdzvz;

% generate xdot-perturbed ephemeris

time = 0.;
r = rinit;
v = vinit;
v(1) = v(1) + dxdot;
i=0;
for k = 1:nsteps,

state = [ r(1) r(2) r(3) v(1) v(2) v(3)];

state = rk4(state,time,tau,’'J4gravPlusDrag',B);

r = [state(1) state(2) state(3)];

v = [state(4) state(5) state(6)];

time = time + tau;

if rem(k,skip) == 0O,

i=i+1;
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pertdxdotx(i) = r(1);
pertdxdoty(i) = r(2);
pertdxdotz(i) = r(3);
pertdxdotvx(i) = v(1);
pertdxdotvy(i) = v(2);
pertdxdotvz(i) = v(3);
end
end
disp(time);

for i = 1:nobs,

% calculate fourth column of A matrix

numer = pertdxdotx(i) - propx(i);
A(i,4) = numer/dxdot;

numer = pertdxdoty(i) - propy(i);
A(i+nobs,4) = numer/dxdot;

numer = pertdxdotz(i) - propz(i);
A(i+(2*nobs),4) = numer/dxdot;

numer = pertdxdotvx(i) - propxdot(i);
A(i+(3*nobs),4) = numer/dxdot;

numer = pertdxdotvy(i) - propydot(i);
A(i+(4*nobs),4) = numer/dxdot;

numer = pertdxdotvz(i) - propzdot(i);
A(i+(5*nobs),4) = numer/dxdot;

end

clear pertdxdotx;
clear pertdxdoty;
clear pertdxdotz;
clear pertdxdotvx;
clear pertdxdotvy;
clear pertdxdotvz;

time = 0.;

r = rinit;

v = vinit;

v(2) = v(2) + dydot;
i=0;

for k = 1:nsteps,

% generate ydot-perturbed ephemeris

state = [ r(1) r(2) r(3) v(1) v(2) v(3)];

state = rk4(state,time,tau,'J4gravPlusDrag’,B);
r = [state(1) state(2) state(3)];

v = [state(4) state(5) state(6)];

time = time + tau;
if rem(k,skip) == O,
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i=i+1;
pertdydotx(i) = r(1);
pertdydoty(i) = r(2);
pertdydotz(i) = r(3);
pertdydotvx(i) = v(1);
pertdydotvy(i) = v(2);
pertdydotvz(i) = v(3);
end
end
disp(time);

% calculate fifth column of A matrix
for i = 1:nobs,
numer = pertdydotx(i) - propx(i);
A(i,5) = numer/dydot;

numer = pertdydoty(i) - propy(i);
A(i+nobs,5) = numer/dydot;

numer = pertdydotz(i) - propz(i);
A(i+(2*nobs),5) = numer/dydot;

numer = pertdydotvx(i) - propxdot(i);
A(i+(3*nobs),5) = numer/dydot;

numer = pertdydotvy(i) - propydot(i);
A(i+(4*nobs),5) = numer/dydot;

numer = pertdydotvz(i) - propzdot(i);
A(i+(5*nobs),5) = numer/dydot;
end

clear pertdydotx;
clear pertdydoty;
clear pertdydotz;
clear pertdydotvx;
clear pertdydotvy;
clear pertdydotvz;

% generate zdot-perturbed ephemeris
time = 0.;
r = rinit;
Vv = vinit;
v(3) = v(3) + dzdot;
i=0;
for k = l:nsteps,
state = [ r(1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,"'J4gravPlusDrag',B);
r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
time = time + tau;
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if rem(k,skip) == 0,
i=i+1;
pertdzdotx(i) = r(1);
pertdzdoty(i) = r(2);
pertdzdotz(i) = r(3);
pertdzdotvx(i) = v(1);
pertdzdotvy(i) = v(2);
pertdzdotvz(i) = v(3);

end

end
disp(time);

for i = 1:nobs,

% calculate sixth column of A matrix

numer = pertdzdotx(i) - propx(i);
A(i,6) = numer/dzdot;

numer = pertdzdoty(i) - propy(i);
A(i+nobs,6) = numer/dzdot;

numer = pertdzdotz(i) - propz(i);
A(i+(2*nobs),6) = numer/dzdot;

numer = pertdzdotvx(i) - propxdot(i);
A(i+(3*nobs),6) = numer/dzdot;

numer = pertdzdotvy(i) - propydot(i);
A(i+(4*nobs),6) = numer/dzdot;

numer = pertdzdotvz(i) - propzdot(i);
A(i+(5*nobs),6) = numer/dzdot;

end

clear pertdzdotx;
clear pertdzdoty;
clear pertdzdotz;
clear pertdzdotvx;
clear pertdzdotvy;
clear pertdzdotvz;

if Bsolve == 1,

time = 0.;

r = rinit;

v = vinit;
B=B+ dB;
i=0;

for k = 1:nsteps,

% generate B-perturbed ephemeris

state = { (1) r(2) r(3) v(1) v(2) v(3)1;
state = rk4(state,time,tau,'J4gravPlusDrag',B);
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r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
time = time + tau;
if rem(k,skip) == 0,
i=i+1;
pertdBx(i) = r(1);
pertdBy(i) = r(2);
pertdBz(i) = r(3);
pertdBvx(i) = v(1);
pertdBvy(i) = v(2);
pertdBvz(i) = v(3);
end
end
disp(time);

% calculate seventh column of A matrix
for i = 1:nobs,
numer = pertdBx(i) - propx(i);
A(i,7) = numer/dB;

numer = pertdBy(i) - propy(i);
A(i+nobs,7) = numer/dB;

numer = pertdBz(i) - propz(i);
A(i+(2*nobs),7) = numer/dB;

numer = pertdBvx(i) - propxdot(i);
A(i+(3*nobs),7) = numer/dB;

numer = pertdBvy(i) - propydot(i);
A(i+(4*nobs),7) = numer/dB;

numer = pertdBvz(i) - propzdot(i);
A(i+(5*nobs),7) = numer/dB;
end

end

ATWTWA = (A")*WTW*A;
[U,S,V] = svd(ATWTWA); %decompose via SVD

d = diag(S); % column vector of diagonal elements of S
n = size(d,1); % number of diagonal elements
fori= 1:n,
if d(i) == 0;
q(i) = 0.;
disp(‘found zero element of S matrix");
else
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q(i) = 1./d(); % create row vector of 1/diagonal elements

end
end
S1 = diag(q); % create diagonal matrix with elements of q
ATAi = V*S1*U"; %matrix inverse by SVD method
disp('ATA inverse with W by SVD is:');
disp(ATAI);
% TEST

GE_ATA = (A")*A;

GE_ATAI = inv(GE_ATA);

disp('ATA inverse by Gaussian Elimination is:');
disp(GE_ATAIi);

clear S1;
clear V;
clear U;
clear S;

W.cvrreirscnsssnerancananne calculate residuals.......c.ccoeverruerrrannnns
residx = xobs - propx;
residy = yobs - propy;
residz = zobs - propz;
residvx = xdotobs - propxdot;
residvy = ydotobs - propydot;
residvz = zdotobs - propzdot;

resid = residx; % build vector of residuals
for i = (nobs+1):(2*nobs),
resid(i) = residy(i-nobs);
end
for i = ((2*nobs)+1):(3*nobs),
resid(i) = residz(i-(2*nobs));
end

for i = ((3*nobs)+1):(4*nobs),

resid(i) = residvx(i-(3*nobs));
end
for i = ((4*nobs)+1):(5*nobs),

resid(i) = residvy(i-(4*nobs));

end
for i = ((5*nobs)+1):(6*nobs),

resid(i) = residvz(i-(5*nobs));
end

residT = resid’;
clear resid;

clear propx;
clear propy;
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clear propz;

clear propxdot;
clear propydot;
clear propzdot;

sumres = 0.;
sumresP = 0.;
sumresV = 0.;
wsumresP = 0.;
wsumresV = 0.;

for i = 1:nobs,
sqrdl = (residx(i))A2; % unweighted
sgrd2 = (residy(i))A2;
sgrd3 = (residz(i))A2;
sqrd4 = (residvx(i))A2;
sqrd5 = (residvy(i))A2;
sqrd6 = (residvz(i))A2;
sumresP = sumresP+sqrd1+sqrd2+sqrd3;
sumresV = sumresV+sqrd4+sqrd5+sqrd6;

wsqrdl = (residx(i)/sigmaPkm)A2; % weighted

wsqrd2 = (residy(i)/sigmaPkm)A2;

wsqrd3 = (residz(i)/sigmaPkm)A2;

wsqrd4 = (residvx(i)/sigmaVkm)A2;

wsqrd5S = (residvy(i)/sigmaVkm)A2;

wsqrd6 = (residvz(i)/sigmaVkm)A2;

wsumresP = wsumresP+wsqrd1+wsqrd2+wsqrd3;

wsumresV = wsumresV+wsqrd4+wsgrdS5+wsqrd6;
end

wsumres = wsumresP + wsumresV;

rmsP = sqrt(sumresP/ (3*nobs));
rmsV = sqrt(sumresV/(3*nobs));
TWRMS = sqrt(wsumres/(6*nobs));

disp("TWRMS of residuals is (sigma units): ');
disp(TWRMS);

disp('RMS of position residuals is (km): ');
disp(rmsP);

disp('RMS of velocity residuals is (km/sec): ');
disp(rmsV);

wrmssave(j) = TWRMS;

rmsPsave(j) = rmsP;
rmsVsave(j) = rmsV;
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sumy = 0.;

sumz = 0.;

sumxd = 0.;
sumyd = 0.;
sumzd = 0.;

for i = 1:nobs,
sumx = sumx + residx(i); 9% km
sumy = sumy + residy(i);
sumz = sumz + residz(i);
sumxd = sumxd + residvx(i); % km/sec
sumyd = sumyd + residvy(i);
sumzd = sumzd + residvz(i);
end

meanx(j) = sumx/nobs;
meany(j) = sumy/nobs;
meanz(j) = sumz/nobs;
meanxd(j) = sumxd/nobs;
meanyd(j) = sumyd/nobs;
meanzd(j) = sumzd/nobs;

meanP(j) = (meanx(j) + meany(j) + meanz(j))/3.;
meanV(j) = (meanxd(j) + meanyd(j) + meanzd(j))/3.;

Wmean(j) = (meanP(j)/sigmaPkm + meanV(j)/sigmaVkm)/2.;

for i = 1:nobs,

radialP(i) = residx(i)*Rhat(i,1) + residy(i)*Rhat(i,2) + residz(i)*Rhat(i,3);
intrackP(i) = residx(i)*Ihat(i,1) + residy(i)*Ihat(i,2) + residz(i)*That(i,3);
crosstrkP(i) = residx(i)*Chat(i,1)+ residy(i)*Chat(i,2) + residz(i)*Chat(i,3);
deltaRICP = [radialP(i) intrackP(i) crosstrkP(i)];

magRICP(i) = norm(deltaRICP);

end

fori = 1:nobs,

radialV(i) =residvx(i)*Rhat(i,1) + residvy(i)*Rhat(i,2) + residvz(i)*Rhat(i,3);
intrackV(i)=residvx(i)*Ihat(i,1) + residvy(i)*Ihat(i,2) + residvz(i)*Ihat(i,3);
crosstrkV(i)=residvx(i)*Chat(i,1)+ residvy(i)*Chat(i,2) + residvz(i)*Chat(i,3);
deltaRICV = [radialV(i) intrackV(i) crosstrkV(i)];

magRICV(i) = norm(deltaRICV);

end

clear residx;
clear residy;
clear residz;
clear residvx;
clear residvy;
clear residvz;
clear Rhat;
clear IThat;
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clear Chat;

00..ervverirerersannennenaene generate PlotS....veeiieircrenseniscssensens

subplot(331),

plot(proptime,radialP)

title("Radial P Residual in km')
subplot(332),

plot(proptime,intrackP)

title("Intrack P Residual in km')
subplot(333),

plot(proptime,crosstrkP)

title("Crosstrack P Residual in km')
subplot(334),

plot(proptime,magRICP)

title("Mag of RIC P Residuals in km"')
subplot(335),

plot(proptime,radialV)

title('Radial V Residual in km/sec')
subplot(336),

plot(proptime,intrackV)

title("Intrack V Residual in km/sec')
subplot(337),

plot(proptime,crosstrkV)

title('Crosstrack V Residual in km/sec')
subplot(338),

plot(proptime,magRICV)

title("Mag of RIC V Residuals in km/sec')
subplot(111)

if j < maxiter,
clear radialP;
clear intrackP;
clear crosstrkP;
clear magRICP;
clear radialV;
clear intrackV;
clear crosstrkV;
clear magRICV;
clear proptime;

end

deltaX = ATAI*(A'Y*WTW*residT;

disp('correction to Xis: ");
disp(deltaX);

% TEST:
GE_deltaX = GE_ATAi*(A")*residT;
disp('Gauss Elimination correction to X is : ');
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disp(GE_deltaX);

% eigenvalues
E_ATAIi = eig(ATAI);
disp('eigenvalues of Cov Matrix are: ');
disp(E_ATAI);

clear ATAI;
clear A;
clear residT;

% compose state vector
if Bsolve == 1,

oldX = [rinit(1) rinit(2) rinit(3) vinit(1) vinit(2) vinit(3) Binit];
else

oldX = [rinit(1) rinit(2) rinit(3) vinit(1) vinit(2) vinit(3)];
end

oldXT = oldX";

newX = oldXT + deltaX;
disp('new X is: ');

disp(newX);
if Bsolve == 1,
Bsave(j) = newX(7);
end
OBurererreresereerrennennes set initial values of state......ccovereeeecerenes

r = [newX(1) newX(2) newX(3)];
v = [newX(4) newX(5) newX(6)];
rinit =r;
vinit = v;

if Bsolve == 1,
Binit = newX(7);
B = Binit;

end

% exit if delta WRMS < tolerance ------------------
ifj>1,
if abs(wrmssave(j) - wrmssave(j-1))) < tol,
j = maxiter + 1;
disp(‘converged');
end
end

end
% end of main loop

if savedata == 1,
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proptimeT = proptime';
radialPT = radialP’;
intrackPT = intrackP’;
crosstrkPT = crosstrkP';
magRICPT = magRICP’;
radialVT = radialV";
intrackVT = intrackV";
crosstrkVT = crosstrkV';
magRICVT = magRICV";

save timeT.dat proptimeT -ascii;
save radialPT.dat radialPT -ascii;
save intrackPT.dat intrackPT -ascii;
save crosstrkPT.dat crosstrkPT -ascii;
save magRICPT.dat magRICPT -ascii;

save radialVT.dat radialVT -ascii;
save intrackVT.dat intrackVT -ascii;
save crosstrkVT.dat crosstrkVT -ascii;
save magRICVT.dat magRICVT -ascii;

save rmsP.dat rmsPsave -ascii;
save rmsV.dat rmsVsave -ascii;
save twrms.dat wrmssave -ascii;

save Wmean.dat Wmean -ascii;
save meanP.dat meanP -ascii;
save meanV.dat meanV -ascii;

if Bsolve ==1,
save B.dat Bsave -ascii;
end

end
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A.2 J4gravPlusDrag

function deriv = J4gravPlusDrag(time,y,B)

% This program takes a set of initial conditions y (the state) where
% y=[r(1) r(2) r(3) v(1) v(2) v(3)] in km and km/sec

% and the Drag Parameter B, and returns the derivative of the state
% deriv = [dr(1)/dt dr(2)/dt dr(3)/dt dv(1)/dt dv(2)/dt dv(3)/dt]
% The time is not used in this version

[=)

Re = 6378.140; % Equatorial radius of Earth in Km
J2 =1082.627e-6; % second zonal

J3 =-2.536414e-6; % third zonal

J4 =-1.623350e-6; % fourth zonal

GM = 398600.5; % Grav. const. in km cubed per sec squared

omegaE = 7.292115856e-5; % rotation rate of Earth in radians/sec

rho = 5.0e-13; % atmos density assumed constant at SO0km altitude (kg/m
sqrd)

r = [y(1) y(2) y(3)]; % Separate the state vector into r, v components
v = [y(4) y(5) y(6)];

% Compute acceleration due to drag---------------

Vrel(1) = v(1) + omegaE*r(2); % components of velocity relative to
Vrel(2) = v(2) - omegaE*r(1); % rotating atmosphere

Vrel(3) = v(3);

magVrel = norm(Vrel);

unitVrel = Vrel/magVrel;

drag(1) = - (1/2)*B*rho*(Vrel(1)A2.)*unitVrel(1);
drag(2) = - (1/2)*B*rho*(Vrel(2)A2.)*unitVrel(2);
drag(3) = - (1/2)*B*rho*(Vrel(3)A2.)*unitVrel(3);

% Compute gravitational acceleration------------—-
% include accelerations through J4 zonal------------

nr = norm(r);

a = -GM*((r(1)/nr)/nrA2.);
aa = -GM*((r(3)/nr)/nrA2.);
b = Re/nr;

bb = bA2,;

bbb = bA3,;

bbbb = bbA2.;

c=r(3)/nr;

CC =CcA2,;
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ccc = cA3,;
CCCC = CCA2,;

J2accell = J2*(3./2.)*bb*(1.0 - 5.0*cc);
J3accell = J3*(5./2.)*bbb*(3. - 7.*cc)*c;
J4accell = -J4*(5./8.)*bbbb*(3. - 42.*cc + 63.*cccc);
accelg(1) = a*(1.0 + J2accell + J3accell + Jd4accell);

accelg(2) = (r(2)/r(1))*accelg(1);

J2accel3 = J2*%(3./2.)*bb*(3.0 - 5.0%cc);

J3accel3 = J3*(3./2.)*bbb*(10.*c - (35./3.)*ccc - (nr/r(3)));
J4accel3 = -J4*(5./8.)*bbbb*(15. - 70.*cc + 63.*cccc);
accelg(3) = aa*(1.0 + J2accel3 + J3accel3 + Jdaccel3);

sumaccel(1) = accelg(1) + drag(1l);
sumaccel(2) = accelg(2) + drag(2);
sumaccel(3) = accelg(3) + drag(3);

deriv = [v(1) v(2) v(3) sumaccel(1) sumaccel(2) sumaccel(3)];
return;
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A.3 rk4 (due to Gardia, [8])

function xout = rk4(x,t,tau,derivsRK,param)

% Runge-Kutta integrator (4th order)

% Input arguments -

% x = current value of dependent variable

% t = independent variable (usually time)

% tau = step size (usually timestep)

% derivsRK = right hand side of the ODE; derivsRK is the
% name of the function with returns dx/dt
% Calling format derivsRK(t,x,param).

% param = extra parameters passed to derivsRK
% QOutput arguments -

% xout = new value of x after a step of size tau
half_tau = 0.5*tau;

F1 = feval(derivsRK,t,x,param);

th = t + half_tau;

Xt = X + half_tau*F1;

F2 = feval(derivsRK,th,xt,param);

Xt = X + half_tau*F2;

F3 = feval(derivsRK,th,xt,param);

th = t + tau;

Xt = X + tau*F3;

F4 = feval(derivsRK,th,xt,param);

xout = X + tau/6.*(F1 + F4 + 2.*(F2+F3));

return;
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A.4 Zyla3x2

% Program to generate simulate SA by the method of Zyla ARIMA 3x2
% The data must be generated in one second time steps
clear;

nsteps = 12000; % number of seconds of SA to generate

al = 2.671523955; % fit coefficients
a2 =-2.345122555;

a3 = 0.6735717069;

bl = 1.708581101;

b2 =-3.328413711;

b3 = 1.629545591;

s(1) = +4; % initialization - these may be varied
s(2) =-1.1;
s(3) =-3;

for i = l:nsteps,
n(i) = randn; % Normal with mean O, variance 1 - N(0,1)
plottime(i) = i; % 1 sec increments

end

for k = 3:(nsteps - 1),
s(k+1) = al*s(k) + a2*s(k-1) + a3*s(k-2) + bl*n(k+1) + b2*n(k) + b3*n(k-1);
end

meanSA = mean(s);
disp('mean is : ');
disp(mean);

sigmaSA = std(s);
disp('sigma is : ');
disp(sigma);

save sasave.txt s -ascii;
subplot(111),
plot(plottime,s)

title('SA PR Error vs Time')
subplot(111)
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A.5 simGauss_hdr

% Header file to generate GPS Navigation Solution data

% (position/velocity) with Gaussian errors. This header

% file may be inserted to replace the data setup portion of EUVWLS_OD
clear;

tau = 30.0; % integration stepsize

maxiter = 8; % maximum iterations

hours = 12; % fit span in hours

skip = 10; % skip every nth integration point
Bsolve = 0; % 0 = no solve, 1 = solve

% tol = 0.001; % convergence criteria

savedata=1; % O = do not save, 1 = save
sigmaP = 35; % position sigma in meters
sigmaV = .40; 9% velocity sigma in meters/sec

ml = 1000/sigmaP; % to scale random data in km
m2 = 1000/sigmaV; % to scale random data in km/sec

nsteps = (3600*hours)/tau;

dx = .5; % kilometers
dy = .5;

dz =.5;

dxdot = .001; 9% km/sec
dydot = .001;

dzdot = .001;

rinit = [3042.8 -5257.4 -3274.9]; %perturbed initial condition (km)
vinit = [6.6522 3.6776 0.2531]; % km per sec
Binit = 2.3*(.01)*(.01)/500.;

rtrue = [3043.8 -5256.4 -3275.9]; %true initial condition
vtrue = [6.6532 3.6786 0.2541];
Btrue = 2.3*(.01)*(.01)/500.;

%---—--------—-- generate simulated obs and true trajectory--------—--—--
r = rtrue;

v = vtrue;

B = Btrue;

time = 0,; % t = 0 at initial r,v

i=0;
for k = 1:nsteps,
state = [ r(1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,'J4gravPlusDrag',B);
r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
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time = time + tau;
if rem(k,skip) == O,
i=i+1;
xobs(i) = r(1);
yobs(i) = r(2);
zobs(i) = r(3);
xdotobs(i) = v(1);
ydotobs(i) = v(2);
zdotobs(i) = v(3);
end
end
disp(time);

nobs = size(xobs,2);
disp('number of observations is:');
disp(nobs);

% add Gaussian errors

noisel = randn(size(xobs))/m1l;
noise2 = randn(size(yobs))/ml;
noise3 = randn(size(zobs))/m1l;
Xobs = xobs + noisel;
yobs = yobs + noise2;
Zobs = zobs + noise3;

noise4 = randn(size(xobs))/m2;
noise5 = randn(size(yobs))/m2;
noise6 = randn(size(zobs))/m2;
xdotobs = xdotobs + noise4;
ydotobs = ydotobs + noise5;
zdotobs = zdotobs + noise6;

9%6--—---—-- Create Matrix of measurement variances (WTW) --—--------
sigmaPkm = sigmaP/1000.;
sigmaVkm = sigmaV/1000.;
for i = 1:(3*nobs),
W(i) = (1/sigmaPkm)A2.; % 1/kmeters
end

for i = ((3*nobs)+1):(6*nobs),
W() = (1/sigmaVkm)A2.; % 1/kmeters/sec
end

WTW = sparse(diag(W)); % nxn diagonal matrix of 1/variances

r = rinit;

Vv = vinit;

B = Binit;

% Main Loop
%-----—--——--——— enter main orbit estimation loop
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A.6 simSA_hdr

% Header file to prepare simulated Navigation Solution data
% (position/velocity) with SA effects for input to the WLS

% Batch Estimator EUVWLS_OD

clear;

tau = 30.0; % integration stepsize (seconds)
maxiter = 6; % max iterations

hours = 12; % fit span in hours

skip = 10; % skip every nth integration point

Bsolve =0; % O = no solve, 1 = solve
savedata =1; % 0 = do not save, 1 = save
sigmaP = 35; % position sigma in meters
sigmaV = 40; % velocity sigma in meters/sec
tol = 0.001; % convergence criteria

sigmaPkm = sigmaP/1000.;
sigmaVkm = sigmaV/1000.;
nsteps = (3600*hours)/tau;

dx =.5; % kilometers
dy =.5;

dz =.5;

dxdot = .001; % km/sec
dydot = .001;

dzdot = .001;

rinit = [3042.8 -5257.4 -3274.9]; %perturbed initial condition (km)
vinit = [6.6522 3.6776 0.2531]; % km per sec
Binit = 2.3*(.01)*(.01)/500.;

rtrue = [3043.8 -5256.4 -3275.9]; %true initial condition
vtrue = [6.6532 3.6786 0.2541];
Btrue = 2.3*(.01)*(.01)/500.;

load R_SA.dat; % Orthogonal SA errors from Zyla ARIMA 3x2
load I_SA.dat; % at 30 second increments

load C_SA.dat;

load R_SA_vel.dat; % uncorrelated data for SA velocity errors
load I_SA_vel.dat;

load C_SA_vel.dat;

R_SA = R_SA/1000.; % convert to km
I_SA =1_SA/1000.;

C_SA = C_SA/1000.;

R_SA_vel = R_SA_vel/1000.;
I_SA_vel =1_SA_vel/1000.;

93



C_SA_vel = C_SA_vel/1000,;

%------mmmn generate simulated obs and true trajectory---------—---
I = rtrue;

v = vtrue;

B = Btrue;

time = 0.; % t = 0 at initial r,v

% generate truth obs
i=0;
for k = 1l:nsteps,
state = [ r(1) r(2) r(3) v(1) v(2) v(3)];
state = rk4(state,time,tau,'J4gravPlusDrag',B);
r = [state(1) state(2) state(3)];
v = [state(4) state(5) state(6)];
time = time + tau;
if rem(k,skip) == O,
i=i+1;
xobs(i) = r(1);
yobs(i) = r(2);
zobs(i) = r(3);
xdotobs(i) = v(1);
ydotobs(i) = v(2);
zdotobs(i) = v(3);
rmag = norm(r); % calculate RIC unit vectors
vmag = norm(v);
rhat = r/rmag;
vhat = v/vmag;
Chat(i,1) = rhat(2)*vhat(3) - rhat(3)*vhat(2);
Chat(i,2) = rhat(3)*vhat(1) - rhat(1)*vhat(3);
Chat(i,3) = rhat(1)*vhat(2) - rhat(2)*vhat(1);
That(i,1) = vhat{1);
That(i,2) = vhat(2);
That(i,3) = vhat(3);
Rhat(i,1) = vhat(2)*Chat(i,3) - vhat(3)*Chat(i,2);
Rhat(i,2) = vhat(3)*Chat(i,1) - vhat(1)*Chat(i,3);
Rhat(i,3) = vhat(1)*Chat(i,2) - vhat(2)*Chat(i,1);
end
end
disp(time);

nobs = size(xobs,2);
disp('nobs is');
disp(nn);

% Add SA effects

q = size(R_SA,1);
k =0;
fori=1:q,
if rem(i,skip) == 0; % thin data by skip factor
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k=k+1;

newR_SA(k) = R_SA(i);
newl_SA(Kk) = I_SA(i);
newC_SA(k) = C_SA(i);
newR_SA_vel(k) = R_SA_vel(i);
newl_SA_vel(k) = I_SA_vel(i);
newC_SA_vel(k) = C_SA_vel(i);

end
end
Werrrrrerressoneasons add SA errors to x y z data first ......c.eecerneene
%Buereenens create SA error vector by dotting into RIC unit vector .........

fori = 1:nobs,
Vsa = newR_SA(i)*Rhat(i,:) + newl_SA(i)*That(i,:) + newC_SA(i)*Chat(i,:);
SAx = Vsa(l);
SAy = Vsa(2); % decompose X, y, and z components
SAz = Vsa(3);
xobs(i) = xobs(i) + SAx;
yobs(i) = yobs(i) + SAy;
zobs(i) = zobs(i) + SAz;
end

sigmaR_SA = .03483; % sigma of SA data file in km (calculated offline)
sigmal_SA = .03356;
sigmaC_SA = .031606;

scalel = sigmaVkm/sigmaR_SA;
scale2 = sigmaVkm/sigmal_SA;
scale3 = sigmaVkm/sigmaC_SA;

newR_SA_vel = newR_SA_vel*scalel; % convert to sigma = sigmaVkm
newl_SA_vel = newl_SA_vel*scale2;
newC_SA_vel = newC_SA_vel*scale3;

for i = 1:nobs,

Vsa = newR_SA_vel(i)*Rhat(i,:) + newl_SA_vel(i)*That(i,:) +
newC_SA_vel(i)*Chat(i,:);

SAx = Vsa(1);

SAy = Vsa(2); % decompose X, y, and z components

SAz = Vsa(3);

xdotobs(i) = xdotobs(i) + SAx;

ydotobs(i) = ydotobs(i) + SAy;

zdotobs(i) = zdotobs(i) + SAz;
end

%----—--- Create Matrix of measurement variances (WITW) -----------

fori = 1:(3*nobs),
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W(i) = (1/sigmaPkm)A2.; % 1/kmeters

end

for i = ((3*nobs)+1):(6*nobs),

W() = (1/sigmaVkm)A2.; % 1/kmeters/sec

end

WTW = sparse(diag(W));

clear W;

clear R_SA;

clear I_SA;

clear C_SA;

clear newR_SA;
clear newl_SA;
clear newC_SA;
clear R_SA_vel;
clear I_SA_vel;
clear C_SA_vel;
clear newR_SA_vel;
clear newl_SA_vel;
clear newC_SA_vel;

r = rinit;

v = vinit;

B = Binit;

% Main Loop
% enter main orbit estimation loop

% nxn diagonal matrix of 1/variances
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A.7 Horiz_VertSA

% Program to plot horizontal and vertical components of SA errors
clear;

skip = 2; % thin factor
start = 480; % where to start in data file

stop = start + 119; % stop after one hour at 60 second increments

load R_SA.dat; %45000 secs at 30 sec increments (1500 points)
load I_SA.dat; % data is orthogonal
load C_SA.dat;

for i = start:stop, %one hour of data
shortR_SA(i-(start-1)) = R_SA(i);
shortl_SA(i-(start-1)) = I_SA(i);
shortC_SA(i-(start-1)) = C_SA(i);

end

nsteps = size(shortR_SA,2);

k=0;
for i = l:nsteps,
if rem(i,skip) == 0,
k=k+1;
newR_SA(k) = shortR_SA(i);
newl_SA(k) = shortI_SA(i);
newC_SA(k) = shortC_SA(i);
isave(k) = k;
end
end

subplot(121),
plot(newl_SA,newC_SA,'-",newl_SA,newC_SA,'go");
title("Horozontal SA Error (m)')

subplot(122),
plot(isave,newR_SA,'-'isave,newR_SA,'go")
title('Vertical SA Error (m)')
xlabel('Time in Minutes")

subplot(111)
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A.8 VecSum_SA

% Program to take the vector sum of 4 SA error files
% assuming simulation orientation
clear;

xhat = [1 0O 0]; %intrack direction (GPS1)
yhat = [0 1 0]; %crosstrack
zhat = [0 O 1]; %radial (GPS4)

al = cos(pi/6.); % 30 deg
a2 = sin(pi/6.);

a3 = cos(pi/9.); % 20 deg
a4 = sin(pi/9.);

V1 = a3*xhat + a4*zhat; % assumed unit vector orientation of GPS SV 1
V2 = -a2*a3*xhat + al*a3*yhat + a4*zhat; % GPS SV 2
V3 = -a2*a3*xhat - al*a3*yhat + a4*zhat; % GPS SV 3

load patchT1.dat; % SA error file patched together to
load patchT2.dat; % simulate satellite switches

load patchT3.dat;

load patchT4.dat;

nsteps = size(patchT1,1);

for i = l:nsteps,
gl = patchT1(i)*V1; % SA error vector in direction of GPS 1
g2 = patchT2(i)*V2;
g3 = patchT3(i)*V3;
g4 = patchT4(i)*zhat; % GPS SV 4 assumed overhead

gvector = gl + g2 + g3 + g4;

Isave(i) = gvector(1); % decompose to orthogonal components
Csave(i) = gvector(2);
Rsave(i) = gvector(3);
isave(i) = i;
end

IT = Isave';
CT = Csave';
RT = Rsave';

save I_SA.dat IT -ascii;

save C_SA.dat CT -ascii;
save R_SA.dat RT -ascii;
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subplot(121),
plot(Isave,Csave,'-',Isave,Csave,'go’);
title('SA Horozontal PR Error')
subplot(122),
plot(isave, Rsave)
title('SA Vertical PR Error')
subplot(111)

929



Appendix B
Graphical Results
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