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ABSTRACT

COMPARISON OF TWO CLASSIFICATION METHODS FOR VEGETATION
MAPPING IN PALAU

By Julie K. Andersen

The goal of this thesis is to test and develop a classification method using
IKONOS imagery to produce a vegetation map for the tropical islands of Palau. Two
methods of classification are tested and compared: the use of per-pixel based
classifications and segmentation-based classification. Existing research on this subject
shows no current consensus on the best method of classification for tropical Pacific
vegetation. The two different classification methods were compared visually to
determine the suitability of IKONOS imagery to map diverse tropical vegetation on the

islands of Palau.
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CHAPTER 1: INTRODUCTION
BACKGROUND ON REMOTE SENSING IN TROPICAL VEGETATION

Remote Sensing involves the collection of information about an object or
geographic area from a distant vantage point using specialized instruments (Jensen,
1996). Remote sensing can be as simple as looking across a valley and stating what is on
the other side, to visual interpretation of aerial photographs, to the use of highly
specialized sensors orbiting high above the earth. For the purposes of this study the
distant vantage point is near-earth orbit and the specialized instrument is a sensor
mounted aboard a satellite. The sensor is used to measure the reflectance values of light
in different portions of the spectrum.

In instances when remote sensing is used in tropical coastal ecosystems, which
are intricate and geographically complex, high-resolution data must be used to accurately
rectify these features (Chauvaud, Boushon, & Maniere,1998). For the purposes of this
study two different methods of remotely sensed data classification are employed.

The first method studied is unsupervised classification. Unsupervised
classification is a traditional scientifically sound method used to classify remotely sensed
data using a per-pixel approach. An unsupervised classification is dependent on the data
itself for the definition of classes. This method is used when less is known about the data
before classification. The analyst’s responsibility, after classification, is to attach

meaning to the resulting classes (Jensen, 1996).



The next method is segmentation. Segmentation involves using an algorithm to
group (or segment) portions of the image into areas of like pixels. The groupings can
then be labeled with a corresponding class value.

This study is to test two classification methods including, unsupervised and
segmentation as a base for classifying, and mapping the diversity of vegetation types
found on Palau by using high-resolution satellite imagery. Previous vegetation maps
exist for Palau but are in need of updating. Updated maps will be used for resource
management, change detection, and to identify resources at risk. The Republic of Palau
and its diverse vegetation have undergone much change and have potential large scale
land use changes in their near future. Work was also completed to determine if the newly
developed classification based on satellite imagery is comparable with the previous
classification based on aerial photo interpretation. Obtaining a new vegetation
classification that does crosswalk with the previous classification allows for study of the
land use changes and patterns that emerge across the landscape over time.

LOCATION OF THE STUDY: PALAU

This study was conducted in The Republic of Palau. Palau is located between the
Philippine Sea to the west and the Pacific Ocean to the east. Palau lies in the South
Pacific and covers an area of 458 sq km (CIA World Factbook, 2006). The islands of
Palau run roughly from north to south, covering about 125 miles (Galibrath, Bendue,&
Friary, 2000). A map showing Palau and surrounding islands can be found in Appendix

A.



In order to map the diversity of vegetation on Palau, this study compares a
spectrally based per-pixel classification with a spatial object oriented classification each
using a different software package: ERDAS Imagine and eCognition respectively.
Additionally fieldwork and preprocessing of the imagery were also studied.

The following chapters provide background information on the Republic of Palau,
an overview of previous vegetation mapping efforts and methods used, as well as the
current classification methods used for mapping, followed by a discussion of the current

mapping approach, findings, and limitations.



CHAPTER 2: BACKGROUND
PALAU

Palau is one of the most varied, compact physical environments to be found in
any ocean. Palau’s flora and fauna are one of the richest in Micronesia (Levy, 2000).
Palau is considered the westernmost archipelago in the Caroline chain, consisting of six
island groups totaling more than 300 islands, including the World War II battleground of
Beliliou (Peleliu) and the world-famous rock islands (CIA World Factbook, 2006). The
six archipelagos of the Caroline chain, from east to west, are the Belau (Palau)
Archipelago, Yap Islands(s), Fais Island, Chuuk (Truk) Archipelago, Pohnpei (Ponape)
Island and Kosrae Island (Fosberg, 1980). The Carolines lie in the humid equatorial
region, where the climate is very warm and wet year round (between 3000 and 5000 mm
mean annual rainfall).

The Republic of Palau only recently gained independence in 1994 after a 12-year
compact of free association with the United States (CIA World Factbook, 2006). Palau’s
population is roughly 20,579 people (CIA World Factbook, 2006). The capital and
largest town, Koror, is also located in the State of Koror. The State of Koror has a
population of about 14,000 (as of 2004) and contains about 90% of the population of the
country. The town of Koror has a population of 11,200 (Wikipedia, 2006). Based on
Palau’s size and population, there are roughly 43.93 sq km per person in Palau.

The largest continuous land mass in Palau is Babeldoab, the second-largest island
in Micronesia (Levy, 2000). Babeldoab is 27 miles long, has a land area of 153 sq miles

or 398 sq km and makes up 87% of the nation (Galibrath, et al., 2000). The vegetation in



Palau is highly varied due to both limestone and volcanic geology. Variety lends itself to
a highly diverse and complex association of vegetation types. Babeldoab, volcanic in
origin, is thickly vegetated and many of the differing vegetation types are found here.
The area south of Babeldoab and Koror is riddled with hundreds of tiny umbrella-shaped
islands called the Rock Islands which were formed from the weathering of ancient
uplifted reefs (Levy, 2000). The rock islands are of a different soil type (limestone) than
Babeldoab as well as some of the other outlying islands. Babeldoab is mostly volcanic
and supports a 700-foot-high volcanic center, fringed with mangrove forests (Levy,
2000).

Presently, southern Babeldoab is, in essence, a suburb of Koror (Levy, 2000).
However, owing to the poor roads the rest of Babeldoab remains an island of villages and
open space (Levy, 2000). Work is underway to develop a paved road circling the island
of Babeldoab which is sure to bring changes to much of the large island. Conservation
groups are concerned about the environmental effects of the road itself and the influx of
population it may bring (Levy, 2000). Early stages of this road construction can be seen
in a portion of the satellite image used for this study in Figure 2.1.

Ongoing road construction as seen in Figure 2.2 was observed at the time of field
survey in March of 2005. Projected completion for the 53 mile road is during 2006.
Once the road is completed, a newly constructed capitol on the eastern side of Babeldoab
as seen in Figure 2.3 is set to begin operation. The new capitol is located about 20 km
northeast of Koror. This influx of governement jobs will draw some people away from

Koror and bolster the area around the new capitol.



The single most defining factor guiding land use change for the future of Palau is
the redistrubution of settlement and jobs due to the completion of the compact road.
Outside investors are already looking to develop parts of Palau that are currently
undeveloped and covered in vegetation. Having a current land use map is imperative to

help guide Palau’s growth.

Figure 2.1. Signs of Road Construction Observed on Satellite Imagery |



Figure 2.2. Road Construction Observed in Palau, March 2005

Figure 2.3. Palau’s New Capitol Building in Melekeok



VEGETATION OF PALAU

The mature vegetation of the Caroline Islands (to which Palau belongs) is
generally dominated by broad-leaved evergreen species (Fosberg, 1980). The original
vegetation of Palau is generally thought to have been forest with some areas of savanna
in places of impeded drainage, but human activities over time have greatly expanded the
savannas (Fosberg, 1980.) Much evidence of the shift away from forested land in the
nation of Palau. The people who settled the islands have a long-standing history of food
plant production including taro, tapioca, papaya, banana, and coconut. The need for
suitable growing areas results in the clearing of forest lands to make way for
agroforestry. A typical pattern observed in Palau is the clearing of a forested parcel of
land, often in a flat, low-lying area near a water source. This cleared land is then planted
with crops. A family or network of people from the nearby village or town usually does
the planting and farming. If the family continues to work the parcel, it remains in an
agroforest state. However, as some members of the family or village move toward the
urban areas of Koror, the cropland is often abandoned and will revert to either grassland
or marsh. In time, the forest may begin to encroach on these cleared properties.
However, before this happens, one of the members of the family usually decides it is time
to take up farming once again or may even lease the property to be cultivated by others.
The pattern that emerges is often agroforestry to grassland or marsh and then back to
agroforestry. Cleared for crop production rarely revert to a forested condition. When
this occurs it is usually a mass of tangled thick secondary vegetation until the tree species

present can grow to size. This was observed especially in areas that had once been



cultivated as coconut plantations. Coconut farming was at its peak during the time of
Japanese occupation of Palau, however; it is no longer a factor in the exports of Palau.
Much of the landscape of Palau changed after the Japanese left the islands shortly after
World War I, abandoning many cultivated areas. Remnants of these abandoned areas
were originally classified in 1987 as secondary vegetation. At a more recent visit to
Palau in 2005, it was observed that few areas of secondary vegetation remain. The
species composition is similar to that of upland forest and much of the tree species have
grown to a larger size class and resemble the upland forest type more than that of a
distinctly separate secondary vegetation type class.

Much of Palau has changed, is changing, or has the potential for change.



CHAPTER 3: PREVIOUS MAPPING METHODS AND SOFTWARE

The first step in mapping was to first analyze the previous classification (Cole,
Falanruw, MacLean, Whitesell, & Ambacher, 1987) before attempting to design a new
classification scheme. The previous classification broke the islands into four general
classes: forest, secondary vegetation, agroforestry and non-forest. Descriptions of the
species present in each class and overall characteristics of the classes can be found in the
Vegetation Survey of the Republic of Palau (Cole et al., 1987). An overview of the 19
classes present in the historic classification is presented in Table 3.1. Historically the
forested classes and coconut plantation type were also further subdivided into size and
density classes (Cole et al., 1987.)

Table 3.1. Classification Scheme 1987.
Forested Classes
Upland Forest
Swamp Forest
Mangrove Forest
Atoll Forest
Casuarina Forest

Limestone Forest
Rock Island Subtype
Plantation Forest

Palm Forest
Secondary Vegetation
Agroforest
Agroforest with Coconuts
Coconut Plantation
Non Forest Classes
Marsh
Grassland or Savanna
Strand
Cropland
Urban
Barren
Water

10



Preliminary analysis of the historic classification was performed to determine if
all of the historic classes were present in the IKONOS image. Upon visual inspection,

" the classes of atoll forest, casuarina forest, and limestone forest (non-rock island type)
were present only on the outlying islands of Kyangel, Peleliu and Angaur. These areas
are not covered in the satellite image. Classes found only in the outlying areas were
eliminated from the classification scheme.

The methodology used by Cole et al. to classify Palau’s vegetation was based on
aerial photograph interpretation. Aerial photographs were taken at a scale of 1:10000
during 1976. The minimum mapping unit for the project was 1 acre. Fieldwork was
completed in 1985. Vegetation types were identified by examining the photos
stereoscopically for differences in tone, texture and pattern. The accuracy of the
vegetative typing depended on the age and quality of the photographs, the skill and
training of the photo interpreter, and on comparisons of potential types to actual field
characteristics (Cole et al., 1987).

Aerial photograph interpretation as a form of remote sensing is useful visually
and spatially, but no spectral information is available. The advantage of modern remote
sensing is the availability of both spectral and spatial information, with the ability to use
a computer to do much of the analysis. Image processing software, allows for spatial
patterns, tone and texture to be separated by the computer, leaving the identification of

the classes to the interpreter.
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CHAPTER 4: METHODS

SOFTWARE

Two different image processing software packages were used to conduct the
study: ERDAS Imagine version 8.7 and Definiens e-Cognition version 3.1. Bundled
features of the software packages, segmentation algorithms, were applied using both
ERDAS Imagine and Definiens eCognition. The USDA Forest Service Remote Sensing
Applications Center (RSAC) developed the segmentation algorithm used by ERDAS,
while the eCognition algorithm is a commercially available product from the Definiens
Company. Though the Forest Service Application is free, a copy of ERDAS Imagine and
license are also needed to run the algorithm. Both products require an initial monetary
investment, though the eCognition software package is considerably more expensive than
the ERDAS package. The USDA Forest Service supplied both products; otherwise cost
for the project would have substantially increased.
IMAGERY

The USDA Forest Service (FS) provided November 2000 IKONOS satellite
imagery for the study. IKONOS produces 1-meter black-and-white (panchromatic) and
4-meter multispectral (red, blue, green, near infrared) imagery (Space Imaging, 2006).
The 4-meter multispectral imagery was used in order to run classifications using image-
processing software.

Most of the preprocessing, such as georeferencing or bringing the map into
alignment with a map projection, was done at the Pacific Northwest Laboratory in

Portland, Oregon, before the study began. Unfortunately, the imagery still included

12



approximately 20% cloud cover. This limitation was possible to overcome because
IKONOS imagery includes enough information to remove all non-vegetated classes from
vegetated classes. Once this is complete, it is then possible to separate the clouds from
other non-vegetated features.

Creating a ratio of band four to band one was used for removal of cloud cover in
ERDAS Imagine software. This ratio separates vegetation is separated from cloud, urban
and barren areas. This occurs because clouds present high radiances in the visible band
and very low radiances in the thermal channels, so the highest ratio values are closely
related to cloud cover (Karteris, 1992). This worked well in ERDAS to separate the
clouds and other non-vegetated classes. However, further work was needed to separate
the clouds from urban and barren areas, which tend to reflect similarly. This was
achieved by using the eCognition segmentation algorithm; the clouds were separated into
their own polygons by the computer. Both programs are suitable for the purpose of cloud
removal, though eCognition was better suited for the final step of removing the clouds
from other non-vegetated features.

Removal of the clouds did not address the fact that the area under the clouds
would still require classification. For the purposes of this study the area was simply
classified as clouds. If classes are desired under the clouds, use of another image that is
cloud free in those areas is recommended. Another IKONOS image, taken during the
same month, would retain consistency; however, this would substantially increase the
cost of image acquisition and may not be possible given the weather and satellite

patterns.
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Resolution of satellite data refers to the capability of a remote sensing system to
resolve adjacent objects or conditions in the recorded imagery (Gao, 1999). Each
IKONOS pixel captured by the sensor represents an area 4m by 4m on the ground.
Choosing the IKONOS platform was a step towards trying to classify vegetation at a
higher resolution. In the past Forest Service land cover classification was often done
using Landsat thematic mapper images, which only have a 30m resolution. The idea
behind using finer resolution for Palau was that in an area with such diverse vegetation, a
higher resolution would be needed to capture the diversity in the different vegetation type
covers.

The 4 bands provided (red, blue, green, near infrared) cover specific areas of the
spectrum and have a particular bandwidth. Table 4.1 which shows both the spectral and
spatial resolution for all four bands is developed from the Space Imaging website at
http://www.spaceimaging.com/products/ikonos/index.htm

Table 4.1. IKONOS SPECTRAL BAND CHARACTERISTICS

Band Spectral Resolution (um) Resolution (m)
Blue 0.45-0.52 4x4
Green 0.52-0.60 4x4
Red 0.63-0.69 4x4
Near IR 0.76-0.85 4x4

Using IKONOS imagery instead of Landsat TM data in order to achieve higher
resolution does mean giving up the additional wavelength regions at 1.55-1.75 and 2.08-
2.35 um. Gao, 1999 used these longer wavelengths to achieve higher accuracy of

mapping mangroves. Mangrove is one of the desired classes to map on Palau.
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Increasing the spatial resolution in exchange for less spectral resolution may actually
make it harder to classify some of the classes.

In cases where vegetation cover is patchy, the finer resolution will reflect more of
the patches and create more noise and speckle in the classifications. Using a lower
resolution can essentially average out this noise. However, lower resolution imagery
often averages too much information. When forest type cover is highly complex and
patch sizes are small, some of the desired classes can become averaged together loosing
much of the actual on the ground distribution. IKONOS’ limited bandwidth did not
provide for much separation of the desired classes, which may have been alleviated if
using a platform with a greater amount of bandwidth as well as better spectral resolution
had been used.

As mentioned in the previous section, IKONOS imagery is better at capturing
smaller patches of vegetation than traditional LANDSAT imagery. This finer resolution
brings with it much noise often relating to confusion between classes. The noise was
analyzed by determining if it was present consistently across the entire image, or if it was
localized in certain areas. This helped to determine if the noise was a product of the
image or if it was related to the distribution of the vegetation. The vegetation in many of
the classes is highly complex in arrangement, often including some of the same species in
different classes. This caused areas of different vegetation types to reflect at similar
values. In addition, the image itself did contain more noise than had been seen in lower

resolution images used in other non-related studies. Thus the IKONOS image was noisy
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because the vegetation was noisy but it also included some noise due to the higher
resolution of image itself.

The IKONOS Image provided was taken in November of 2000, but not provided
for study until 2004. This proved to be problematic, as a field survey could not be
conducted until 2005, five years after image capture. This means that when visiting the
islands, some of the observed data may or may not be present in the image taken five
years earlier. Examples of this include cleared areas, recently planted areas, and burned
areas.

In order to overcome this, if an area was recently disturbed it was noted on the
field datasheet, but not used in the actual classification of the image. Additionally the
image was taken in November, while the on the ground field survey was performed in
March. This was due to researcher and funding availability. Some of the vegetation
changes seasonally. For some of the vegetation, what appears to have a full crown upon
visiting in March, which would definitely influence the sensor, may not actually have the
same amount of foliage in November. Many of the forest types in Palau are not usually
dominated by a single species, but by a complex association of species. Vegetation that
may appear to be of an aggregate type of forest in November may not appear aggregate in
May, due to different peak seasons for the species that make up each forest type.
Additional studies of the changes in vegetation within each forest type would be needed
to determine if this factor significantly affects the classification process. However such a

focus is outside the scope of this thesis.
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TIME OF YEAR AND RAINFALL

Rainfall amounts vary from November to May, potentially affecting how the
remote sensor captures vegetation. Typical rain forest climate still prevails in Belau
(Palau). This rainfall gradient shows up in the vegetation (Fosberg, 1980). The average
monthly rainfall can be seen in Figure 4.1.

The time of year of the image, November 2000, was neither the highest nor the
lowest month for rainfall for the islands of Palau. November 2000 also did not deviate
significantly from the average November data across multiple years. Essentially
November is an average time to collect the imagery. However during the month of

November, the satellite sensor will not capture the vegetation classes when they are at

Monthly Rainfall Averages for Palau
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Figure 4.1. Monthly Rainfall Averages for Palau
their peak moisture levels, which is during the months of June and July. Nor will it
reflect the vegetation when it is at its lowest amount of available moisture in the months

of March and April. Thus some difference between what was observed by the sensor in
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November would be different that what was observed on the ground in March. This
suggests that the classes that are most affected by changes in moisture may not be best
suited for capture by the sensor during a median moisture month such as November.
However, trying to obtain a cloud free image during the peak rainy season could prove
problematic. Comparing reflectance values for the November image to one taken in
March or April for classes most affected by available moisture does warrant further
study.

Though rainfall may have something to do with vegetation distribution on the
islands the difference may also be attributed to a combination of factors, including the
geologic substrate and the difference from the continental floristic source areas (Fosberg,
1980). Given the image availability, and researcher availability, the study was conducted
with these limitations in mind.

The IKONOS image has a limited bandwidth, but initial work separating out
vegetation from non-vegetation yielded positive results in two different software
environments. Some additional problems to work around were the time of year of the
image, the age of the image and the “averageness” of the image. Looking at rainfall data,
allows the analyst to determine if the month and year used are representative of a typical
year, however on the ground observations may differ from sensor observations due to the
time lag in collection of on the ground data, as well as the difference in the vegetation

during the year.
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ANCILLARY DATA LAYERS

Imperative to the study was collection of both primary and ancillary data layers.
The primary data layer was the IKONOS 4 Band, 4-meter imagery discussed previously.
Additional data layers were also obtained, both through manipulations of the original
image as well as individual acquisitions. Additional data layers were used for quality
control, forest type classification and validity testing

Data layers created from the IKONOS Image included a Normalized Difference
Vegetation Index (NDVI). The NDVI image was created using the following formula:

NDVI=NIR - Red/ NIR + Red

ERDAS Imagine was used to compute the NDVI Image. When using ERDAS for this
purpose IKONOS is not a valid sensor type listed in the available menus. Thus,
LandsatTM was selected as the sensor type, since it uses the same band combinations to
calculate the index. Float single was selected for the output file type. This is because
NDVI is dimensionless as it is a ratio between two bands (De Jong, Sluiter, Zeijlmans, &
Addink, 2006). The NDVI image was used to determine the amount of biomass and
chlorophyll content of an area. An excerpt of the NDVI image can be seen in Figure 4.2.
These parameters make it possible to distinguish areas of vegetation from non-vegetation.

Another vegetation index that was created from the IKONOS Image was a
Tasseled cap Transformation. ERDAS Imagine uses coefficients created by Horne in
2003 to compute the transformation. Interpretation of the tasseled cap image was best
achieved when setting the bands to 1, 2, 3 (RGB). When viewing the image as such,

Layer 1 (red) represents the brightness component (indicates areas of low vegetation and
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high reflectance). This is a good measure of soil: the lightest and brightest areas are soil
or barren areas as seen in Figure 4.4. When viewing the tasseled cap image, these areas

appear pink and have an above average brightness value. Layer 2 (green) illustrates the

Figure 4.2. NDVI Image of Downtown Koror. Green represents vegetation, while black
represents an absence of vegetation.

Figure 4.3. Satellite View of Downtown Koror. Even though this is the most urban area
in all of Palau, it is highly vegetated in the NDVI image of Figure 4.2. This reflects the
high percent cover of vegetation present both on the ground and in the imagery.

20



greenness component (indicates vegetation) the lightest and brightest areas are
vegetation. When viewing the tasseled cap image in Figure 4.5 these areas appear yellow
in color and have a high brightness value. Layer 3 (blue) shows the wetness component
(indicates water or moisture) these areas in 4.6 appear to be dark in the image and have a

low brightness value.

e e A
Figure 4.4. Tasseled Cap Image Layer 1. Bright p1nk areas show a hlgh reflectance
value with little vegetation, indicating a barren area. The barren areas in the figure above
are associated with the building site of the new Capitol located in Melekeok.

Figure 4.5. Tasseled Cap Image, Layer 2. The bright yellow color is a highly vegetated

area of Palau. Mangrove, rock island, upland and grassland cover are each present. This

illustrates that although the Tasseled cap image easily identifies areas of vegetation, it is
not adequate to distinguish between different types of vegetation.
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Figure 4.6. Tasseled ap Imagé, Layer 3. Nte the dark area 1nthe upper left, this area
is especially dark and can thus be identified as a water feature.

The tasseled cap transformation was extremely useful in determining areas of soil
and bare ground, as well as determining buildings and urban areas. The transformation
provided useful to pick out water features from the surrounding classes. However, the
vegetation classes were still lumped essentially into a single entity- having a bright
yellow appearance with high brightness values. At times the brightness within the
vegetated areas did vary, but significantly or consistently enough to separate individual
classes within the vegetated areas. Additional data layers were acquired to see if any of
these layers might yield additional findings.

The US Forest Service Pacific Northwest Laboratory provided a digitized soil
map of Palau. This digitized map was obtained from a soil survey performed by the
The US Department of Agriculture’s (USDA) Natural Resources Conservation Service
(NRCS), formerly Soil Conservation Service (SCS), which leads the National
Cooperative Soil Survey (NCSS). The NRCS is responsible for collecting, storing,
maintaining, and distributing soil survey information for privately owned lands in the

United States (Natural Resources Conservation Service, 1995). Palau was included in
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this soil survey as it was once viewed as a trust territory of the United States. The soil
maps are produced from different intensities and scales of mapping. The three soil
geographic data bases created are the Soil Survey Geographic (SSURGO) database, the
State Soil Geographic (STATSGO) data base, and the National Soil Geographic
(NATSGO) database. The Palau soils information was retrieved from the SSURGO soils
database. The SSURGO database provides the most detailed level of information and
was designed primarily for farm and ranch, landowner/user, township, county, or parish
natural resource planning and management (Natural Resources Conservation Service,
1995). Using the soil attributes, this data base serves as an excellent source for
determining erodible areas and developing erosion control practices, reviewing site
development proposals and land use potential; making land use assessments and
chemical fate assessments; and identifying potential wetlands and sand and gravel aquifer
areas (Natural Resources Conservation Service, 1995). Using NCSS mapping standards,
soil maps in the SSURGO data base are made using field methods. Surveyors observe
soils along delineation boundaries and determine map unit composition by field traverses
and transects. Aerial photographs are interpreted and used as the field map base. Maps
used by the NRCS for soil mapping in Palau used scales ranging from 1:12,000
t01:63,360. Typically scales are 1:15,840, 1:20,000, or 1:24,000. The maps, along with
comprehensive descriptions, produce an attribute and spatial database for NCSS
publications (Natural Resources Conservation Service, 1995). The soils map proved
interesting to use, as it contains encoded data and a large relational database is needed to

decipher the meaning of the different codes associated with each soil polygon. Though
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the soils information was complete, forest types did not stay true to any one-soil type,
with the exception of the rock island forest type. It was found primarily and exclusively

on limestone soils. An excerpt from the soils map can be seen in Figure 4.7.

Figure 4.7. Screen Capture of the SSURGO Soils Data Layer. The brown polygons in
the above image are all of a limestone soil type. Rock Island Forest type is confined to
this soil type.

When viewing the original satellite image as seen in Figure 4.8 it is not always
easy to pick out vegetation types. One particular vegetation type, the rock island forest
type, did not look significantly different from surrounding vegetation cover, nor did it
exhibit any special spectral characteristics that were enough to distinguish it from
surrounding vegetation.

In the instance of rock island forest, using the SSURGO soils data layer alone,
made it easy to identify potential areas of rock island forest type. This particular forest
type is confined to areas of limestone soils. The limestone soils are extremely steep and

rocky and prove unsuitable for most development. Little disturbance to the vegetation

covering this particular type of soil has occurred. Using the soils data layer to identify
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areas of limestone soils, made it was easy to identify rock island forest type. When field

visiting the islands, the local NRCS representative stated that the rock island
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Figure 4.8. Satellite View of the Same Area Shown in Figure 4.7. Although areas of
vegetation are evident (in green), It is not easy to find any areas of distinctly different
vegetation types.

forest type did not stray from the limestone soils and that the composition of the rock
island forest type did not seem to change significantly from island to island. Though the
species composition may vary by the amounts of individual species, it seems to always
be composed of the same types of species of vegetation. When visiting, little effort was
given to try to break apart the known areas of rock island forest type into more than one
class. Evidence of rock island forest outside of limestone soil was sought after, but not
found to occur. Using the SSURGO Soils data layer to identify this particular forest type

class was deemed acceptable. A portion of the final classification based on soils is seen

in Figure 4.9.
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An additional data layers included digital raster graphics of topographic maps.
The maps are geo-rectified digital copies of United State Geological Survey maps

compiled by photogrammetric methods from aerial photographs taken 1968-1971. The

Figure 4.9. Rock Island rest Areas Shown in Brown. This determination was made
using the limestone soil type from the SSURGO soils data layer shown in Figure 4.7.

maps were also field checked in 1980 and the final maps were edited in 1983. The
topographic maps were useful references to determine topography. The topographic
maps were especially useful for the rock islands. Though possible to determine areas of
rock island based on soil type alone, the soils map was not all-inclusive or the area
covered by the IKONOS image. Looking for similar types of land formations like those
identified as rock island in the soils layer, made it possible to find these similar types of
land formations in areas not covered by the soils layer. The maps were also useful in
confirming areas of suspected mangrove forest type. The maps were used mostly as a
validation aid and for their topographical data. Similar data could also have been

obtained from a digital elevation model; however, there are known reliability problems

26



with the current DEM available for Palau. An excerpt from one of the topological maps

can be seen in Figure 4.10.

BENY : A, ~
Figure 4.10. Topographlc Map Steep contours in the lower rlght indicate rock island
forest found on steep limestone soils. Mangroves are shown ringing the water in a dark
green pattern while the wider contours in the upper portion of the image need further
classification.

Building a Geographic Information System (GIS) in order to utilize ancillary data
layers proved useful to map the vegetation of Palau. Each layer was useful for either
direct classification or for validity checking of assigned classifications. This software
package allows the user to turn layers on and off, overlay the layers and make layers
transparent as needed. Through extensive visual interpretation the GIS was a much-
needed tool in order to classify Palau.

THE NEW CLASSIFICATION SCHEME
The USDA Forest Service proposed a new classification scheme for Palau based

on the 1987 USFS vegetation survey results by Cole et al., Vegetation of the Tropical

Pacific Islands (Mueller-Dombois & Fosberg 1998), preliminary comments from Palau
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foresters, and previous experiences of vegetation classification using IKONOS imagery
for Guam, American Samoa and the Commonwealth of the Northern Mariana Islands
(CNMI). A crosswalk between the two schemes is presented in Table 4.2.

Next, initial questions regarding the proposed scheme were generated in order to
resolve some of them before the field visit in March of 2005. Initial questions included:
Is the new scheme adequate? What forest types need to be divided added to or deleted?
After generating some initial questions, the next step was to study and understand each
class contained in the scheme. Literature review, web searches, and discussions were
conducted to identify key species for each class, view pictures of the representative
classes and vegetation as well as note any representative information about a particular
class. Upon inspection of the classes, specific class questions did come up. Examples
include: Is there a minimum size for cropland? Does the grassland class need further
separation? Does upland forest need further separation? Obviously the proposed
classification scheme needed revision in order to present classes that could be identified
in the vegetation as well as in the remotely sensed imagery. An important step was to
generate some initial classes based on the imagery alone. Having these classes present
when field visiting would help to determine if the classes identified by the computer

actually correspond to any of the classes identified in the classification scheme.
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Table 4.2. Crosswalk Between Previous and New Classification Schemes

Palau Vegetation Class (suggested)

Crosswalk to

Level 1 Level 2 Level 3 USFS Survey Class
Forest
Upland Forest on
Volcanic Islands Upland Forest
Interior Upland Forest Upland Forest
Ravine Forest Upland Forest
Limestone Forest Limestone Forest
Pisonia Forest (only on
Fanna Island) Limestone Forest
Rock Island Forest Rock Island Forest
Atoll Forest Atoll Forest
Casuarina Forest Casuarina Forest
Wetland Forest
Mangrove Mangrove Forest
Swamp Forest Swamp Forest
Leucaena Stand Secondary Vegetation
Agroforest Agroforest
Coconut Plantation Coconut Plantation
Other Agroforest Agroforest
Rangeland
Grass/Shrub
Savanna Complex Grassland/Savanna
Strand Vegetation Strand
Urban Vegetation Urban/Secondary Vegetation
Other Shrub/Grass Secondary Vegetation
Marsh Wetland Marsh
Cropland Cropland
Developed
Urban Built-up
Land Urban
Barren
Cleared Land Barren
Sandy Beach and
Bare Rocks Barren
Water Water
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UNSUPERVISED CLASSIFICATION

An unsupervised classification was selected for the first attempt to classify the
IKONOS image. The unsupervised classification was conducted using similar
techniques to those used by Liu, Fischer & Donnegan, 2005 to classify Guam, American
Samoa, and CNMI. These methods can be found online at:
http://www.fs.fed.us/r5/spf/thp/thm/landcover/islands/index.shtml

Software for preprocessing the imagery was used before classifications were run.
Discussion with Liu via email was conducted to identify any known areas of weakness.
Liu also asked questions that helped to further refine the new classification scheme for
Palau. During his field survey of Guam, Leucaena was observed in such abundance that
a new class was created to capture the vast stands. His question was whether or not
Leucaena was also present on Palau, and if so, did it warrant its own class? (It does not).
His experience in classifying other tropical islands provided a guide that was useful in
determining which layers to use during unsupervised classification.

The first classification was run using ERDAS Imagine on the raw IKONOS
remotely sensed data. This classification was run to determine if any immediately
obvious classes were present in the imagery before utilizing some of the enhanced data
layers such as the tasseled cap or NDVI layers. In order to perform this classification,
clouds were removed from the original image and then the image was classified into 15
classes using the ERDAS ISODATA algorithm. Using this technique enabled some
classes to be distinguishable from others. Urban and barren areas as well as grasslands

were distinctly different from the surrounding forest. Mangrove areas also showed
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promise as a separate class. An excerpt of this resulting classification can be seen in
Figure 4.11. The yellow and green areas indicate grasslands, while the bluish purple
areas to the left represent mangroves. Dark areas within the image are either roaded or
barren while the darker areas to either side are ocean. However, the area on the right side
of the image is a jumble of many classes and colors. Much of Palau was also a similar
jumble of classes. While the preliminary unsupervised classification showed promise for
some classes, it also contained many confused classes. This may have been a result of
noise in the original image; however, it was also possible that the vegetation was indeed
so diverse that it appeared as a jumble of classes to a high-resolution remote sensor. In
order to determine if this was the case, a comparison was made with the historic
vegetation map. When viewing the historic map, the areas containing jumbles of pixels
were not small patches of intermixed classes, but usually one larger class. This indicated
that either extreme change had occurred on the islands of Palau, or a problem with the
new classification.

Some of the confusion may have been due to the fact that the original image was
noisy. A possible cause for some of the confusion may have been the angle of the sun at
the time of image capture. Testing to see if the image was picking up a difference in east
side versus west side vegetation due to the orientation of the sun at the time of capture
was possible by zooming the image to the islands south of Koror. As mentioned in the
previous chapters, the islands south of Koror are known as the rock islands and exhibit

distinct vegetation based on the limestone soils. However, when viewing a portion of the
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classified image over this area, a distinct difference is observed in east side versus west

side vegetation. This can be seen in Figure 4.12.

Figure 4.11. Unsupervised Classification. Yellowish-green areas are grassland while
bluish purple areas on the left are mangrove classes. Note the confusion of classes on the
right hand side of the image.

Figure 4.12. East Side vs. West Side Vegetation. Blue represents Ocean. The darker
reddish purple is east side vegetation, while the lighter colors represent west side
vegetation.
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Perhaps the rock islands are different west side versus east side, but perhaps the
imagery was the actual problem. Additional classifications were run in hopes of
obtaining a less confused classification. Results from the different classifications were
similar. Attempts to increase the number of classes and then combine made the image
appear even more pixelated initially making it difficult to combine classes.
Distinguishable classes were best preserved in thel5 class range. However the number of
classes needed for level three of the proposed classification scheme was 13, and the 15
classes that were obtained in the classifications did not seem to match up particularly
well with the proposed classification scheme.

A Principal Components Analysis (PCA) was run to eliminate noise in the
imagery. PCA is often used as a method of data compression. It allows redundant data
to be compacted into fewer bands—that is, the dimensionality of the data is reduced. The
bands of PCA data are non-correlated and independent, and are often more interpretable
than the source data (Jensen, 1996; Faust, 1989). Based on the statistics behind principal
component analysis, the most data should fall in the first few principal components. In
order to determine which principal components to use to both retain valuable data and
eliminate the noise, scatter plots were created. An example of the scatter plots of the
principal components of Band 1 compared with bands 2, 3, and 4 of the IKONOS image
can be seen in Figure 4.13. When viewing each component as a scatter plot, you can see

where the pixels are distributed.
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Figure 4.13. Scatter Plots of the Principal Components. Band 1 is compared with
bands 2,3 and 4 respectively.

The lack of an ellipse shape in the scatter plots shows that the data is not normally
distributed. Additionally the plot of bands one and four in the example above show the
most separability. The high correlation between bands 1 and 2 shows that in the principal
components image, those two bands are highly redundant as their values are tightly
distributed linearly along a central axis. Scatter plots provided information that may not
have been derived visually from the original images. After looking at the scatter plots,
the principal components of band 1 were selected for the next round of classifications.

A layer stack based on the principal components was then created by combining
the first principal components from band one with band 2 of the tasseled cap image
indicating greenness, (which should show changes within the different vegetation
classes), the NDVI image for band 3 and the Near Infrared from the original image
(which is also known to be useful in vegetation classification). Include the near infrared
band is redundaant since bands one and four of the principal components showed the
most separability. This band was selected for inclusion because vegetation differences

often show up in the infrared portions of the spectrum. This stacked image relies on the
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principal components of the original image as well as data derived from two different
vegetation indices and information from the near infrared part of the spectrum know to be
useful in vegetation classification.

The classification produced from the layer-stacked image was not significantly
better than the first classification. It had some strengths at identifying mangrove
swamps, but one of the classes in a known mangrove area was also found in grassy areas
indicating that either mangrove reflectance levels are similar to grass, or that perhaps the
sensor is actually picking up moisture amounts in the vegetation and that when wet, the
grassy areas, may reflect similar to the wet mangrove areas. Because the two
classifications were so similar, incorporating spatial values into the classification was
determined to be the next step.

A low pass filter algorithm in ERDAS Imagine was used to include spatial
information into the classification. A 3x3 and 5x5 mean filter was applied to the original
image as well as the principal component image, and the images were reclassified. This
was successful at reducing some of the noise in the images, but also created another
problem; in places the classifications were too smooth, resulting in loss of road networks,
and creation of new classes along boundaries. Noise, or an extreme speckling of
different classes was also still prevalent. Noise is a problem often associated with using
high-resolution data, especially in areas of high diversity. Additional classifications
involving minor modifications to try and eliminate residual classes around clouds were
also performed. This was done to get true classes of vegetation with minimal effect from

moisture levels around cloud features. Experimental classifications involving different
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layer stacks with both more and less dimensionality did not yield classifications that were
any less noisy, or better suited to separating vegetation classes. After running many
classifications with little to no significant differences, the classifications were examined
to determine which ones were best suited to use in the field study.

Classifications involving the low pass filter seem to contain less noise, which
indicates that the spatial patterns in the image contain valuable information. Those
classifications using either a 3x3 filter were best suited to reduce some noise without
smoothing out important features such as roads, urban areas and waterways. One
commonality among all of the classifications was that all seemed to identify classes near
water features. Vegetation may exhibit change near water bodies, but uncertainty arose
as to whether or not the observed effect was due to actual changes in the vegetation or
changes in moisture levels alone that the imagery may have captured. Efforts to
eliminate moisture effects were made by choosing to use the greenness layer of the
tasseled cap image rather than the moisture layer. However trying to eliminate moisture
effects proved difficult as vegetation changes may or may not occur based on moisture
amounts. Consideration was given as to whether what was observed was due to
vegetation class changes, or changes due to changes in moisture content. Basically some
parts of the forest may contain more moisture than others, but not change forest types.

None of the classifications yielded small isolated classes. Either large individual
class was present or many different small isolated pixels were present. Some of the
classes in the proposed classification scheme were expected to be very small isolated

areas within the imagery, such as small patches of cropland or plantation forest. Not
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finding any small isolated classes meant that either those classes were no longer present,
had changed or additional classification was needed. If additional classification was
needed, additional ancillary layers may be the key to identifying these areas, or perhaps
even manual coding of these classes may be necessary.

Preliminary review of the classifications seemed to indicate that many of the
forest type classes identified in the classification scheme did not seem to have
homogeneous spectral values in the image. Fieldwork was needed to determine if these
classes were distinct across the landscape. The unsupervised classifications appeared to
be useful in identifying some of the classes, but may prove unsuitable for identifying
other additional classes in the imagery. Unsupervised classification is useful only if the
classes can be interpreted. It did not appear that some of the jumbled areas of the image
were going to be interpretable. This raises serious concerns as to whether or not the areas
of jumbled pixels were going to be classifiable using an unsupervised classification
alone.

After initial questions and review, a new proposed classification scheme was
created for use when field visiting Palau. Initial questions helped refine the proposed
classes as well as provide a guideline of questions to investigate during the field visit. A
series of unsupervised classifications was created using ERDAS Imagine. The
classifications were inspected visually and compared with known facts regarding
vegetation distribution across Palau. Two of the classifications were picked for beta
testing during the field survey. Some of the vegetation types contained within the

classification scheme appeared to be noticeable in the unsupervised classification.
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However, when other classes were not immediately discernable, concerns about the
suitability of the unsupervised classifications were raised. These concerns, questions and

assumptions were documented in order to prepare for the field survey and visit to Palau

in March of 2005.

FIELD SURVEY METHODS

In order to further investigate the proposed classification scheme as well as the
unsupervised classification schemes, a field visit to Palau was scheduled for March17-
April 1, of 2005. One of the local foresters was scheduled to provide transportation,
navigation and assistance for the trip. The objectives for the field visit were to gain
knowledge about the different types of vegetation, identify major species, work on the
proposed classification scheme and collect as many possible GPS points to use in
understanding the unsupervised classification and to use as potential training data for a
supervised classification. The main objective was to gather enough points to provide a
wide cross section of each class identified in the classification scheme. The final
objective of the field visit was to use the knowledge gained from the trip to produce a
new vegetation map for Palau.

In order to best sample the islands of Palau, it was necessary to identify a
sampling strategy. A random stratified by road access sampling procedure was identified
for each of the classes that were expected to be present. Polygons from the historic
vegetation map that either contained a road or were within 1000” feet of a road were
selected. From these polygons random points were created using a random number

generator in excel. Visual inspection of the random points reveled that some of the
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classes had more points than others. Also, some classes historically were much larger
than others. Thus a class-by-class assessment was done to determine if additional points
were needed in each class. The larger the historic land area covered by a class, the more
sampling points were established. This was planned in order to help determine the
answer to the question, do some of the larger classes need to be split into more than one
class, or are their forest types similar enough to retain the original class designation?
During this stage of visual inspection, an attempt was made to add at least 10 additional
sample points per class. The additional sample points were added based on the largest
polygons of a particular class that did not already have a sampling point contained within
them. An effort to use the centroid of these polygons was made. In addition, an
inspection of the historic map with the unsupervised classification was made. If an area
of like pixels could be identified in the historic classification, and one historic class
covered the same area, an attempt to sample the location was made by designating a
sample point. Only vegetated classes had sampling points established as it appeared easy
to separate urban and water features in the imagery using techniques outlined in Chapter
3.

Smaller classes that did not cover large areas made it difficult to identify at least
20 sample points per class. In these cases, as many possible points as could be identified
in the stratified area were established. A good example of this was in the palm forest
class. Only one polygon had been identified by the historic classification. By selecting a
sampling point in this polygon, all of the available sampling points had been covered. If

the polygon had been larger, however, additional points could have been added. Once
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initial plot selection had been made, a total of 208 potential survey points had been
identified covering 12 of the historic classes. Given a study timeline from Monday,
March 21 to Friday April 1¥ provided for 11 total days of fieldwork. The goal was to try
and visit 20 points per day in order to meet the goal of the 208 initial study points.
Before actual fieldwork could begin, a field datasheet was developed to identify
variables of study. An example of the datasheet can be seen in Appendix 2. Each point
was numbered 0-208, with a space to record the observers’ names, the GPS location of
the point, the time spent averaging the signal and the precision of the signal. The most
important data collected was an observation by the Palauan field staff of the current
forest type. Space was provided for both the primary forest type, as well as a secondary
forest type for points that straddled two separate conditions. Observations were then
recorded as to the dominant overstory species and the size class of the plants in the
overstory, identified as tree, shrub, forb, or grass. This step was to help identify the
species composition within the classes was highly variable, or if it was somewhat
predictable. An average canopy height was then recorded using a clinometer and
estimated in meters. A Density observation was then made selecting from High Density
of greater than 70 percent crown cover of main canopy, Medium percent crown cover of
30-70 percent, and Low Density of crown cover less that 30 percent. These values were
taken directly from the previous classification in order to remain consistent. A percent
slope was then recorded using the clinometer and also an aspect was taken using a
compass set to true north. The next observation that was recorded was the extent of the

class. Choices included were subplot (58.9 foot circle), hectare (185.1-foot circle), or
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beyond estimated in meters. This variable was supposed to help in pixel assessment. Ifa
point barely covered an area roughly 60 feet across, the point should appear as a distinct
pixel value with many different pixels surrounding the point, which could help to explain
much of the noise in the imagery. However, if the forest class of the observation point
were noted to extend for miles beyond, the point should then appear as one pixel values
surrounded by similar pixel values which would show that the noise in the imagery is due
to something other than the distribution of different forested classes. This did not
eliminate the problem that noise in the image could still be accounted for by the diverse
distribution of vegetation within a single class, which would also appear as a point with
one pixel value surrounded by pixels with different reflectance values. The next
variables recorded were the original class that the point was assigned to (to help monitor
if particular classes were undergoing more change than others) as well as noting if it was
still the present class, or if the point is now a new class, what the new class should be.
Finally a notes section was added at the bottom to record any notes pertinent to the
observation point. Kashgar Rengulbai of Palau and Julie Andersen of the United States
made all field observations. Points ranged geographically from the far northern state of
Ngarchelong on Babeldoab to some of the southern most rock islands. At all field points
a Cannon Sure shot digital camera was used to take photographs looking North, East,
South and West from the center point. Using a feature of the camera, a sound file was
recorded with each photograph identifying the point number, direction and any notable
species or features present. This method made it easy to determine which pictures went

with which photographs.
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During the field survey efforts were made to ensure that points were measured in
as vast an area as possible given the limitation of access. This was both for data integrity
standards and to accommodate desires by the local governors that each of Palau’s states
be represented in the vegetation survey. Kyangel, Peleliu and Angaur could not be
included in the classification, as their states were not covered by the IKONOS image. A
four wheel drive vehicle provided by the Palau forestry department aided in gaining
access to areas that would otherwise be impossible to access. In some cases where stone
paths between villages had incorrectly been identified as roads, efforts to hike to points
that were less than one half mile away were made. All GPS readings were made with a
GARMIN GPS 1III. Efforts to average the readings for a count of 180 or greater were
made. When poor GPS coverage was a problem, an offset from an area of better
coverage was used to record the distance to the point center.

Beginning Monday, March 21, 2005, ten total days of fieldwork were completed.
Given the distance between points and the condition of the roads some of the initial study
points were not accessible without significant efforts. In an attempt to mitigate this
problem, any points that we could not be reached by walking less than 2 mile were noted
as no access. For each inaccessible point, the class that is was supposed to represent was
noted and if possible substitution points were established. Using this method a total of
130 initial plots were visited and a total of 54 substitution points were visited for a total
of 185 total sample points. The total number of plots by class can be seen in Table 4.3
Of the 15 classes that were sampled, 13 were vegetated classes. The other two classes

were urban and water which were sampled in areas that had been vegetated in the
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previous survey. Areas in the unsupervised classification that had been identified as
either urban or water were verified visually when driving from vegetation point to
vegetation point.

Table 4.3. Number of Field Points by Current Class.

Agroforest 12
Cropland 13
Barren 4
Grassland 25
Mangrove 19
Marsh 17
Plantation 14
Rock Island 11
Strand 8
SV 5
Swamp 16
Up 20
Secondary Vegetation 12
Urban 8
Water 1
Total 185

Most of the work involved in post processing was in GPS data correction. In
cases when the GPS receiver or the satellite configuration overhead was not cooperating
with the field data collectors, an offset collection point distance was recorded. These two
variables record the azimuth to the plot center from the offset location point as well as the
distance in feet of the offset. This was adapted from the procedure outlined in the Field
Instructions for the Inventory of the Pacific Islands (Forest Service 2005). In order to
correct offset locations, some trigonometry was applied using a excel spreadsheet. The
formula used in the spreadsheet software to correct for easting is as follows:

SIN(RADIANS(GPS Azimuth))*GPS Distance
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This yields the amount in feet that is offset for the X, or easting axis. Additionally the
conversion factor of 1 meter= 3.2808399 feet was used to find the amount in meters that
was offset for the X or easting axis. This correction factor was added to the original
UTM easting to arrive at the corrected easting and the actual location where plot data was
collected. Only a slight modification to the formula was needed to correct for northing:
COS(RADIANS(GPS Azimuth))*GPS Distance
This yielded the amount in feet of offset for the Y, or Northing axis. The correction
factor of 1 meter= 3.2808399 feet was again applied to yield the amount in meters that
was offset for the Y (Northing axis). This correction factor was then added to the
original UTM Northing to arrive at the corrected Northing.

If possible field staff waited for accurate readings at the actual plot location, but
in order to save time and attempt the target goal of 20 field points per day, some plot
locations were offset. Visual inspection to verify the plot locations followed after data
correction. Only one field point was deemed unusable due to an error in GPS data
collection. A map of the 185 field points can be seen in Appendix 3.

Results of the field survey provided instantaneous answers to some of our
classification questions. The field study also created additional questions. Merremia
peltata was present in abundance and at times did cover areas greater than 4 square m,
which meant that it might show up as a distinct pixel, if not class of its own. Efforts to
sample particularly large patches of M. peltata were made during the field survey, though
only 5 locations were found where merremia was abundant enough as well as the primary

species. Comparing spectral values of pixels to those in other forest classes showed that
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although distinctly different on the ground, the merremia patches were not distinctly
different enough to be picked out with IKONOS data. However, given the limited
abundance of merremia in Palau, it is recommended to field survey using a GPS to map
individual polygons of Merremia and designate a separate class.

The classification that had been devised was adequate, but some modifications
were needed. The original class of palm forest no longer applies, as it had been an
isolated polygon of the introduced ivory nut palm, which has been cleared for an urban
building site as seen in Figure 4.14. An additional question that was answered during the
field visits was the minimum size required for cropland. Anything under 1 acre was not
likely used for crop production on a commercial scale, but for either personal or family
use. Cropland over 1 acre in size usually provided enough crops that at least some of the
produce would be used outside the landowners immediate family or even sold as a
product, so a minimum size of 1 acre was selected. Patches of cropland less than one
acre in size are not separate classes in the new classifications. Trickier questions to
answer were whether or not some classes needed further separation. Grasslands did
exhibit some species differentiation between grass and fern cover. Points were taken in
both the fern-dominated and grass-dominated areas of grassland areas, however the
spectral signatures from the IKONOS imagery were not different enough to warrant
separating the two into separate classes. If separating the two becomes important at
another date, using a hyperspectral sensor in order to try and distinguish a portion of the

spectrum in which the two differ more dramatically is recommended.
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Using the previous classification to designate field sites allowed us to field test
the existing vegetation map, as well as determine the relevancy of using the older map

until a more suitable and current map could be produced. Initial findings were that

Figure 4.14. Site of Former Palm Forest Vegetation Site. Now converted to urban use.

the older map is still very useful but, some important changes were also observed. Many
areas that were previously designated as swamp or marsh have become cultivated and are
now agroforest or cropland. Additionally, some areas that were previously agroforest or
cropland have been abandoned and are now reverting to grassland or upland forest types.
An additional observation is that much of what was secondary vegetation has
significantly recovered and can now be designated as upland forest, instead of secondary
vegetation. Secondary vegetation for the purpose of this classification is an area that
does not exhibit the traits of a well-developed upland forest. Often, secondary vegetation
was instead dominated by a layer of colonizing plant species such as Macaranga,

Hibiscus and/or Merremia without a well-developed canopy of larger trees in multiple
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layers. An additional observed change is the decline in coconut plantation forests. Since
the previous survey no new plantations have been established and those that were
previously established are not maintained. In many cases the natural vegetation or
colonizing vines are moving in and changing the vegetation from that of a coconut
plantation to upland forest or secondary vegetation. Also in places, people have cut the
coconut to make way for agroforestry. Due to these changes, a likely decline in the
coconut plantation forest type class as well as an increase in the upland forest type class
is expected.

Though useful as training for the researcher and in initial observations, the field
study was in no way comprehensive enough to produce a final classification without
further work. The next phase of the study will involve compiling the field data and using
the information gathered to attempt to train a computer-based software program to
classify a satellite image into forest type classes. Based on field observation, some
classes should be easier to differentiate than others. Mangrove forests were highly
homogenous and seemed to form rather distinct boundaries and should prove easier to
map. However some classes such as grasslands and marsh share common species and
may appear similar in reflectance to a satellite and thus be harder for a computer to
differentiate. In cases such as these, it may become imperative to utilize the ancillary
data layers discussed in Chapter 3 in order to improve the classification.

Overall, the field visit was highly successful, as many representative stands of
vegetation were visited. The field study also helped to refine the proposed vegetation

classification scheme into one that better reflects the vegetation classes currently present
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in Palau. Additionally, areas of change were noted and further questions generated and
potential difficulties identified.
SEGMENTATION

A classification using a segmentation algorithm in e-Cognition was conducted.
This process uses both spectral values as well as spatial context of the pixels to one
another to generate polygons with like values. Performing this step of the analysis was
necessary to determine if per pixel based unsupervised classifications are not the best-
suited method to use with high-resolution imagery of tropical island vegetation.

Using the Forest Service’s Segmentation algorithm proved to be more difficult.
First the executable files and other supporting files must be downloaded and installed on
the user’s machine. These steps were fairly straightforward and not too difficult to
follow even for a novice user. Next the image to be segmented is selected and the user
selects the option to run the algorithm. Input values for block size, spectral threshold
distance and minimum region size are required. The image is processed in blocks and the
user can set the processing block size. The larger the block, the faster the program will
run and the output will have fewer “artificial” lines. However, a large block size also
uses more memory, which may adversely affect the computer running image
segmentation (Ruefenacht, Vanderzanden, & Morrison, 2002). Experiments were
conducted using different block sizes, and though smaller block sizes would process
faster, larger block sizes did produce a more useable result. A block size of fifty was
better suited than a block size of five. A spectral threshold distance value is entered to

limit region growth. Experiments were run to increase or decrease this number in order

48



to change the average region size. The Minimum Region Size defines the size for the
minimum region. The unit value is in pixels. All regions less than or equal to this value
will be merged with the most similar adjacent region (Ruefenacht et al., 2002). A
minimum block size of 50 was initially selected, but some variation of this was also tried
to improve results. Once the user selects these values the algorithm is run and an Arc
Info coverage is generated. However, upon trying to run the algorithm the first time,
ERDAS error message was generated. Upon contacting Ms. Ruefenacht, the error
message was attributed to using Windows XP. At the time of research, the algorithm was
not supported for that environment. As the Forest Service upgrades to newer operating
systems, the algorithm would need to be developed to match the operating environment.
However until this happens, having only a windows 2000 based algorithm is limiting for
non Forest Service based users. After acquiring access to a Windows 2000 based
machine, work on segmentation was continued. The segmentation algorithm was still
problematic when trying to utilize the original image. Ms. Ruefenacht thought that the
problem might actually be with the image. As the background values were ocean
(because Palau is an island environment, a large portion of the background values of the
image were ocean) these values were causing the program to crash. A mask of the
islands was created to remove the problematic background values. The ERDAS
segmentation algorithm only worked when the original IKONOS image was subset to

exclude background values.
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A spreadsheet was generated to document the input values selected as well as
observations of the resulting segmentation based classifications. An excerpt from this
spreadsheet can be seen in Table 4.4.

Results from using the ERDAS Segmentation algorithm were unsatisfactory
because the resulting polygons do not reflect the patterns found in the landscape patterns,
but based on the reflectance values of the pixels in relation to the surrounding pixels.
Examples of this directional artifact can be found in Figure 4.14 and 4.15.

Table 4.4. Segmentation Notes

Block {Threshold
inputfiles  1Band(s) |Size |Difference/Size |output file Notes:
/subset 1234 60 110 5 segb0_10_5  |very small segment sizes
larger block sizes, but still very
/subset 1234 50 10 50 seg50_10_50 |busy
better size, but grouped urban
/subset 1,234 50 |10 500 |seg50_10_500 |and forest
/subset 1234 50 5 500 |sub50_5_500 |linear segments make no sense
you can tell the algorithm works
/subset 1234 50 |1 500 |seg50_1_500 lleft to right
/subsett |1 50 10 50 sub1_50_10_50no difference from 2
/subsetd 4 50 |10 50 seg4_50_10_50 |no difference from 2 or 6
/subset 1,234 1500 10 50 sub_500_10_50 some difference from7
/subset 1,234 15000 5 50 seg5000_5_50 [too much left to right
entireimage|1,2,3,4 50_10_50 wouldnotrun

Figure 4.15. Initial Segmentation Attempts. A subset of the original image is on the left;
the segmented image in the middle shows the left to right bias of the segmentation
algorithm, while the image to the left shows an unsuccessful three-class reclassification.
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In Figure 4.15, the segmentation algorithm is able to generate many polygons, but
they do not capture the obvious patterning in the original image. The subset of the
original image was chosen because it has a good mix of urban and vegetated areas, but
the algorithm either grouped these areas together into many small polygons. In an
attempt to reduce the number of polygons, the image was reclassified into 3 classes,
which are shown on the right in Figure 4.15. However, the algorithm was not sufficient.
This illustrates that the groupings created by the segmentation algorithm for ERDAS are
not sufficient for even simplifying the image into three basic classes. Instead the three
are lumped together unsuccessfully resulting in the useless classifications shown in
Figure 4.15. Even attempting to group the segmented polygons by hand into three basic
classes proved too difficult, as the initial groupings were too confused between the
classes. Additional attempts to utilize the segmentation algorithm for ERDAS with
different input parameters yielded similar unsuccessful results. Additional ERDAS

segmentation correction attempts can be viewed in Figure 4.16.

L
- v, -

F gure 4.16. Additional egmentation Attempts. Here, utilizg differentinput values.
Neither of the two outputs to the right resembles the patterns obvious in the original
image on the left, and both reflect the left to right top to bottom bias of the algorithm.
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Preliminary work with Segmentation in the ERDAS environment painted a bleak
picture for the use of the spatial properties inherent in the IKONOS image. However,
some algorithms are better suited than others for a particular type of imagery, thus an
attempt was made to utilize the eCognition segmentation algorithm. This particular
software package is much more cost prohibitive than the ERDAS software. Due to the
economic constraints of obtaining a license for eCognition, only one attempt at
segmentation could be run. The original image was brought to the USDA Forest Service
Remote Sensing Laboratory in Sacramento, California. Zhanfeng Liu was then able to
use the office copy of eCognition to run the algorithm on the original image. The
patented eCognition segmentation algorithm creates image segments based on four
criteria: scale, color, smoothness and compactness. These criteria can be combined in
numerous ways to obtain varying output results, thus enabling the user to create
homogeneous image objects in any chosen resolution (Definiens, 2006). Of the four
parameters, the scale factor is the most important to set the size of output polygons.
Zhanfeng Liu selected a scale factor of 50 based on his experience in mapping Guam.
Color, smoothness, and compactness are all variables that optimize the segment's spectral
homogeneity and spatial complexity. The balance at which these criteria are applied
depends on the desired output (Definiens, 2006). Liu also selected the input parameters
for these factors. The eCognition algorithm was then executed and the result was an
ESRI shapefile. If licensing and software price were not an issue this is an area that
could use further experimentation to try to determine the best values for each of the input

parameters given the image provided.
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The segmented image created by Liu was then compared to the ERDAS
segmentation classifications in order to determine if the eCognition algorithm was any
better suited for grouping polygons of like pixels when using the IKONOS image. An
excerpt of the segmented image can be seen in Figure 4.17.

The eCognition segmentation algorithm was much better suited for the IKONOS
Imagery. Most of the urban areas were visually separate from vegetated areas and water

features fell into their own set of polygons. A few of the polygons had both urban and

F igu .17. Sbset ent Iage fro eCognition
vegetated features in the same polygon, but overall the separation between the two was
distinct. A simple three-class classification could be immediately made from the
segmented image: urban, vegetation and water. If desired a fourth class could be added
for urban/vegetation mix. Running only one session of eCognition was more successful
than the many attempts with ERDAS Imagine. Though eCognition carries a higher price
tag, the success of the segmentation algorithm alone may make it invaluable to Forest

Service staff.
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Once a useful segmented image had been obtained, the task was then to identify
areas of known forest type covers and label polygons that cover those areas accordingly.
This process is one that carries much subjectivity, as one researcher might label a
polygon one forest type class, while another researcher may call it another. However,
some steps to limit the subjectivity were in place. The unsupervised classification was
successful at separating barren, urban, water, grass and to some degree mangrove
features. Using the GIS software the per-pixel based classification could be placed below
the segmented shapefile and those features from the unsupervised classification could be
compared to their overlying polygons. When the two matched more or less, those
features could easily be labeled. Some of the other classes from the proposed vegetation
scheme though separable were not immediately apparent. Instead of trying to break the
segments apart and automate their values based on any number of factors, it was
proposed instead to use the GIS and the original image to essentially visually interpret the
image. This idea was selected due to the time involved in trying to find the correct
values in any number of layers needed to automate individual polygon class labeling. It
is well known that remote sensing data of a higher spatial resolution increases visual
interpretability (Munechika, Warnick, Salvaggio and Schott, 1993). Though automated
labeling of polygons would be much faster than labeling by hand, that is only possible
when the variables needed to automate the system are known. In the case of a Pacific
island such as Palau, where the area to be interpreted is rather small, labeling the
segmentation generated polygons by hand may prove faster. The researcher responsible

must have knowledge of visual image interpretation as well as the ability to work within
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a GIS. Ancillary data layers can prove quite helpful in identifying specific class
boundaries that can then be assigned to polygons in the segmented image.

Field collected data also proved useful in labeling of polygons. If a polygon
contained a field point, the researcher can look at both field notes and the pattern within
the polygon. If it is not unreasonable based on ground observations, and the polygon
appears uniform in color and texture, it can be assigned the class of the ground point.
However, in some cases the ground observations did not match the segmentation. A
good example is a small area of cropland that was noted to extend only a few hundred
feet in either direction, yet the segmented polygon enclosed an area that extended for
miles from the ground point. This information was not useful for labeling s specific
polygon, but the information did prove quite useful. It helped to determine if some
classes were either not distinguishable based on spectral and/or spatial values alone, or
that the scale factor selected was too large for a smaller sized class. Selecting a smaller
scale factor to try to obtain a polygon more appropriately sized to the field observations
would be a useful experiment to run. However, even after trying this experiment, some
classes may not fall out into their own polygons at all. Thus, given the methods used
those classes are not determinable from the IKONOS imagery. Additional
transformations or combinations with other ancillary field data may be needed. For
especially small classes with known extents, walking the boundaries with a GPS and
importing the data, or by sketching in the boundaries from field observation will reduce

processing time trying to locate the classes in the image.
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Upland Forest is a large class found last in the imagery, as it is covers areas of
vegetation on the volcanic islands that do not fit into the other classes. Upland forest as
described by Cole et al. is the most species diverse. This could be due to its nature as a
catch-all class. The upland forest type could use further subdivision into smaller classes.
The high diversity and limited time made that possibility outside the realm of this study.
A suggested way to accomplish this task would be to follow the example of Zhanfeng
Liu in the classification of Guam and begin by separating the class into areas of interior
and ravine upland forest. This separation could be performed using either the
topographic map layer or DEM if desired. At lower elevations on the volcanic islands,
areas along ravines will tend to be either dominated by swamp or mangrove forest types,
which will cause some confusion.

Limestone Forest can be easily identified when combining the soils data layer
with the segmented image. Though Rock Island Forest type is a subset of the limestone
forest class, it was the only limestone forest identified in the current vegetation map.
This is due to the area covered by the IKONOS image. If a larger image were to be
obtained it would be useful to look for areas of limestone forest outside of the boundary
of the rock islands. However, at this time, as the imagery only covered limestone
forested areas of the rock islands, only rock island vegetation is noted.

Wetland vegetation proved difficult to separate in some regards and not difficult
in others. Mangrove proved easy to identify, thus it was identified as its own class.
However both swamp and marsh were more difficult. In visual appearance marsh looks

similar to both grasslands and upland forest. In cases where there was confusion with
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grasslands, upon closer inspection marsh often appeared smoother and greener and closer
to water as in Figure 4.18. On the left is the original image containing areas of both
grassland and marsh. However the marsh areas are smoother and a slightly different
green than the surrounding grassland. Also note the proximity to water that plays a role

in identifying marshy areas.

Figure 4.18. Before and after shot of Grasslands vs. marsh. Grasslands appear yellow,
while marsh appear pink. Water appears blue.

Another problem encountered with marsh is that it is often converted to either
cropland or grassland, thus it is not always a well-established distinctive class as at any
given time it may be in the process of being converted or reverting from either crop or
grassland causing some confusion. The swamp class proved the most difficult to extract
from the imagery. At times it is identical in appearance to either upland or mangrove
vegetation. The general idea is that swamp occurs slightly above the mangrove forests.
According to Cole et al. the most common habitat for such forests is low-lying areas just
inland of mangroves above tidal influences. However, when consulting the historic
vegetation map and comparing it with the imagery, no true discernable difference
between swamp and mangrove could be determined. In many of the low-lying areas,

what was historically labeled as swamp is now absorbed into the mangrove class.
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Table 4.5. Revised Classification Scheme

Palau Vegetation Classes

Crosswalk to

Level 1 Level 2 Level 3 USFS Survey Class
VEGETATED
Upland Forest on
Volcanic Islands Upland Forest
Interior Upland Forest Upland Forest
Ravine Forest Upland Forest
Limestone Forest Limestone Forest
Rock Island Forest Rock Island Forest
Wetland
Swamp Forest Swamp Forest
Marsh wetland Marsh
Mangrove
Mangrove Mangrove Forest
Agroforest Agroforest
Coconut Plantation Coconut Plantation
Other plantations Plantation Forest
Cropland Cropland
Grass/Shrub Land
Savanna Complex Grassland/Savanna
Other Shrub/Grass Secondary Vegetation
Strand Vegetation Strand
NONVEGETATED
Urban Urban Built up land Urban
Urban/Secondary
Urban Vegetation Vegetation
Barren Cleared Land Barren
Sandy Beach and Bare
Rocks Barren
WATER Water Water Water

In addition, areas along streams and waterways that reach into the upland areas did not

appear significantly different from the surrounding upland forest. More inland areas that

were once called swamp forest were absorbed into the upland class. Even though the
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swamp class was not spectrally, spatially or visually separable using the given research
techniques, it does not mean it is not a distinctive vegetation class. In order to
accomplish this task, a different remote sensor may prove useful. Certain types of forests
such as mangroves and swamp forests are found to be spectrally more distinct on ATSR
data than on sensors of similar spatial resolution (Eva, Achard, Mayaux, Stibig, &
Janodet, 1999). Further research is needed to separate the swamp class.

Though the swamp class was extremely difficult to separate in the imagery, one
class that did prove easy to visually identify on the IKONOS image was the mangrove
forest. Using the GIS, it was possible to verify that areas of suspected mangrove from
visual inspection were also labeled as areas of mangrove on both the topographic map as
well and the historic classification. This was possible because in Palau, the mangrove
forest occurs along lower portions of rivers and their mouths, on coastal mud flats, and
on some offshore islets (Cole et al.,1987). Sometimes a visually suspect area was
included in what was otherwise an obvious mangrove polygon. In these cases, it was
possible to see if the “arm” of a polygon that looked visually different from the rest of the
polygon was located at a low enough elevation with proximity to the sea or some other
waterway. If it was near enough to the water, the arm of the polygon was left as a
mangrove forest. However, if the arm extended too far up a steep slope, which would
prevent inundation from the sea or was, too far from other water sources, it could be
separated visually from the overall mangrove polygon and labeled with appropriately.

This tells me that usually the software was able to distinguish mangrove forest, but at
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times, some type of misclassification did occur, but it was possible to remedy using
visual interpretation and ancillary data layers.

Agroforest classes became any class created due to human influence. Thus the
classes that were historically cropland, agroforest and all types of plantations are now
lumped into level 2-category agroforestry. In the new classification at level three
agroforestry and cropland remain lumped as agroforestry. This is because the two were
historically separated by the presence of tree crop species. Those areas that had some
element of tree crop were called agroforest, while those areas with only ground level
crops such as taro were called cropland. However, even in the historic classification, it
was rare to have patches large enough to be called cropland. During the field visit in
2005, few areas of human crop cultivation were observed that were totally devoid of any
tree or tree like species. The normal pattern was a cultivated path of either taro or tapioca
intermixed with papaya, banana, mangos and the occasional coconut or betelnut palm.
Thus instead of trying to separate the two classes, they were lumped into one larger
agroforestry class.

Plantation forests were also small in size and rarely distinguishable on the
imagery, however, some remnants of historically larger coconut plantations were still
present during the field visit. Though few of them were being actively cultivated the
abundance and presence of coconut palms was enough that it changed the overall
vegetation present. Coconut plantation was left as a separate class, and the smaller
plantations of paperbark, acacia and teak were lumped into a generic plantation forest

class. The latter classes were too small and not spectrally or spatial different enough to
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be distinguishable in the imagery. However, having visited the islands and taken GPS
readings on site at many of the plantations made it possible to use the imagery almost like
an aerial photograph to outline the extent of the field visited plantations. In order to
better map these locations, it is recommended that the island forests take GPS units and
manually map the plantations, as they are small in size and few in number. The larger
coconut plantations were harder to pick out, as not as many of them could be field
visited. However, a distinctive dark pixel speckle pattern is often seen in the imagery in
areas of coconut plantation. An example of an area heavily covered with coconut and
exhibiting a high degree of speckling can be found in Figure 4.19. In areas with high
concentrations of coconut, this method worked well to pick out coconut plantations.
However, in areas where coconut may only be scattered it was harder to distinguish if a
dark pixel was due to either shadow (which also appears dark) or to the presence of
coconut or some other factor entirely. If areas on the historic classification had been
identified as coconut, an effort was made to look for the specking, otherwise, unless the
speckling was highly obvious a new plantation had been directly observed in the field, no
new areas of coconut plantation were mapped. Speckling often occurred within a
polygon only partially. In these cases it was a subjective call as to whether there was
enough speckling to call the entire polygon coconut plantation, or if the polygon was split
into two classes. Ideally, the best was to delineate coconut plantation (instead of relying
on speckle alone) would be to use higher resolution imagery. Examples include the
panchromatic band of the IKONOS image to achieve higher resolution or using an even

higher resolution sensor such as Digital Globe’s Quick Bird sensor. At these higher
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resolutions, coconut palms are visible with the naked eye and can easily be selected from

the imagery.

Figure 4.19. Coconut Plantation as Viewed in the Satellite Imagery.
The area inside the yellow polygon illustrates the scattered dark pixels typical of
coconut presence.

Grassland is a level two component in the new classification scheme. If desired
the grassland class could be further subdivided into additional level three components.
Some ideas for this separation include savanna, and/or a class for the fern dominated
portion of the grasslands, another grasses/shrubs class, or perhaps pandanus present
grasslands and those lacking pandanus. Though some spectral separation was seen
within the grassland class, further work to better separate the grassland is recommended
if desired by the island foresters, otherwise a simple grassland/savanna class is sufficient.
IKONOS is well suited to extract grassland from both software packages.

A level three component listed on the new scheme is strand vegetation type. It is

listed under grassland/savanna for lack of a better location. Perhaps this class should be

elevated to a level two and carry its own distinction as it is often has tree species present
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and is really not much of a grassland whatsoever. The dominant species observed during
the field visit were Barringtonia and coconut palms. Though the class was observed, it
was not mapped as it a very narrow linear class, and many times not even wide enough to
cover a single column of pixels. The class is quite small and not really distinctive
enough to warrant mapping, but if so desired using a simple buffer around sandy barren
areas on the landward side would identify potential locations for this class.

Level 2 urban class is currently mapped to include both urban built up and urban
vegetation into one category. Using a simple mask of the areas currently identified as
urban and then using NDVI should easily separate the two classes if desired. However
for mapping purposes, urban vegetation was considered to be part of the overall urban
areas and not mapped separately. The other non-vegetated class of Barren could also be
further separated into cleared areas and sandy rocks and beach if desired. Visually
looking at the locations of polygons currently labeled as barren and selecting only those
that are mostly linear and follow the waters edge would manually separate the two barren
classes if so desired. Some barren roaded areas may appear as strand when located
alongside the shore, thus knowing the location of the road network is important to
completing this task correctly. Currently and barren roaded areas that fell within a
village, town or city were lumped with the urban class as part of the overall urban
boundary of that village.

Finally water features were mapped into a class. Further separation of the water
class into fresh and saltwater classes may be possible. However, that particular topic was

beyond the scope of this project. Overall, segmentation when coupled with the image
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transformations, per pixel based classifications, and visual interpretation proved suitable
to map most of the desired classes. Some classes are stronger represented than others,
while some classes such as swamp could not be determined given the methods used.
This does not mean that those classes cannot be extracted from the IKONOS imagerys; it

only means that additional work and study are needed.
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CHAPTER 5: ANALYSIS AND DISCUSSION

The original intent of the study was to compare an unsupervised classification,
and a segmentation based classifications using IKONOS imagery. Initial research
indicated that one of these classifications would be better suited than the other, especially
for particular vegetation types and in certain areas. However after conducting further
research, the best classification for Palau is actually a hybrid of the two different
classification techniques. However, after performing the unsupervised classifications and
finding the classes so jumbled, the integrity of the spectral data values was questioned for
many of the vegetated classes. This was hypothesized to be due to spectral overlap in the
classes selected for use in the classification scheme. Further analysis was conducted to
determine if this was true.

The first step in the analysis was to determine if vegetated and non-vegetated
classes could be distinguished given spectral values alone. A normal probability plot,
which plotted the vegetated values against the non-vegetated values, was used for this
analysis. Inspection of the resulting graph showed that the vegetated and non-vegetated
classes are separable based on pixel values alone for all four IKONOS band types. The
best separability occurs in the red, blue and green bands, with minimal overlap in the IR
band. This can be seen in Figure 5.1. In studying the probability chart, the red values do
not follow a straight line indicating that the data is not normally distributed. Vegetation
and non-vegetation were observed in the probablility chart to be seperable indicating that
they are separable spectrally using IKONOS. However, the distribution pointed to a

suspect distribution of the overall data values.
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Figure 5.1. Probability Chart Red Values

In order to explore the distribution of data, the band values for the field collected
data points were plotted against one another using Excel. The data points were grouped
by class and then plotted using the four bands of the IKONOS Imagery for a total of six
graphs. An example of one of these graphs can be seen in Figure 5.2. The collection of
all six graphs can be found in Appendix D.

Figure 5.2 illustrates that the field collected data points are found in two distinct
clusters. This indicates a bimodal distribution of the data. This bimodal distribution
occurs in the red band of the imagery across all land cover classes. Each scatter plot
displays a bimodal tendency whenever the red band is included. If the classes were each
spectrally unique, clusters around each class with little overlap are expected. However,
in viewing the pixel values plotted, no separable clusters and little to no distinction

between vegetated land cover classes. Though the vegetated classes appear inseparable,
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the non-vegetative classes do show separability from both the vegetated classes, and from
one another. Thus non-vegetated classes are separable in the IKONOS image using

spectral values alone.
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Figure 5.2. Red vs. Green Band Values by Class
Though the findings point to poor suitability of IKONOS imagery as a base layer
for per-pixel based classification, the results may not be due to the imagery, but in the
selection of sample points. Due to the limited time available for field sampling, the
dataset is small and may not best represent the spectral values for the desired classes.

This is a hypothesis worth mentioning, but every effort was made to secure the best
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possible field locations to represent to different classes. The idea that the problem lies
with the field collected data and not the imagery is possible but unlikely.

After plotting the spectral values for the field collected data points, a supervised
classification was not feasible. With the classes so confused, selecting credible training
data within the image is too difficult. The plotted values also illustrate that spectral
values alone are not enough to separate most of the classes in the imagery. Thus the
segmentation avenue was pursued, and the field data points used as validity checking and
interpretation of the segmentation based approach. Segmentation, which incorporates
more spatial based data, did help to alleviate much of the confusion when trying to

classify the vegetation based on spectral values alone.
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CHAPTER 6: CONCLUSION

This study investigated classifying tropical island vegetation. The most robust
method for classifying the vegetation of Palau was a segmentation-based classification
using visual interpretation built on the foundation of a traditional per pixel-based
approach. IKONOS is unsuitable to find all desired classes when only using spectral
values. Two segmentation algorithms were tested and compared visually including one
developed for ERDAS Imagine and one developed for e-Cognition. In this study, the e-
Cognition algorithm performed superbly in comparison with the algorithm designed for
ERDAS Imagine.

Segmentation eliminated some of the confusion in the image by delineating
polygons that could be labeled manually. However, hand labeling was quite time
consuming and highly subjective. Segmentation alone does not eliminate all of the
confusion, and in some ways may tend to over designate a forest type class. A good
example is the cropland/agroforestry class. Though patches of cropland vary in size,
some of the polygons designated as cropland were much larger than they may have been
on the ground. This is because the presence of a dwelling in an otherwise vegetated
polygon was used to determine cropland. Basically the presence of a dwelling in order to
tend to crops was used to make a class call, not any obvious change in the vegetation
values or patterns within the imagery. Using a smaller scale factor may have helped to
alleviate this problem. Segmentation provided a structure to work within, but visual
interpretation of the image proved to be the most useful method to pick out some of the

more difficult classes. Visually picking out many of the classes was not possible.
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Sometimes a polygon had to be labeled with what amounted to an educated guess using
all of the ancillary data layers and comparing it to the surrounding polygons. This
method can lend itself to inherent classification errors. If relying on visual interpretation
to define the troublesome classes is required, as it seems to be, obtaining even higher
resolution imagery (either aerial or satellite) to be used in tandem with the IKONOS
imagery may be the best possible solution. Though IKONOS is suitable for mapping
tropical vegetation, it is by no means the best possible solution. The high diversity of the
vegetation and high resolution of the sensor can cause undue confusion. At times less
resolution, which averages the noise, might prove easier to work with. Additional work
with hyperspectral imagery may find that classes that could not be determined by the
IKONOS sensor are blatantly obvious to a sensor that covers a greater portion of the
spectrum.

IKONOS imagery was best used to determine the classes of urban, barren, water,
grassland and mangrove. Using the image for visual interpretation is possible to pick out
areas of marsh, agroforestry, and coconut plantation with some certainty. Using ancillary
data made it possible to locate rock island forest type. However, the class of swamp
needs further work given the imagery provided. Mapping to level two of the
classification scheme proved possible given the IKONOS Imagery. Further work to
break out level 3 classes is warranted. Classes not covered by the image area will need to
be looked at individually to determine if they can also be mapped using IKONOS.

Further studies that would benefit this research include an accuracy assessment.

This step was not performed due to the lack of a sufficient number of spectrally
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homogeneous locations that had not already been used to help label the polygons in the
final classification. Using the same points for both labeling and accuracy assessment
would have introduced bias into the accuracy assessment. Utilizing external sample
points, which are more spectrally separate for the desired classes is recommended. An
example of field points that might be useable are the Forest Inventory and Analysis
points installed on the islands of Palau. Additional studies using another type of imagery
to extract the swamp class would be useful. Eva, Achard, Mayaux, Stibig, and Janodet
(1999) found that certain types of forests such as mangroves and swamp forests are
spectrally more distinct on ATSR data than on sensors of similar spatial resolution. This
is an avenue worth pursuing. Further comparison of reflectance values during different
parts of the year and the relation this plays out by classes most affected by available

moisture does warrant further study.
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APPENDIX A. Map of Palau and Surrounding Area
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APPENDIX B. Sample Data Sheet

Point # GPS:
Unit Garmin |l
easting

Recorded By: northing

zone

average:

error.

datum:  UTM/UPS, WGS 84

Primary Forest Type: (According to classification scheme)

Secondary Forest Type:

Dominant Overstory: Chose One:

species 1 Tree  Shrub Forb Grass
species 2 Tree  Shrub Forb Grass
species 3 Tree  Shrub Forb Grass
additional >3% Tree  Shrub Forb Grass

Tree Shrub Forb Grass
Tree Shrub Forb Grass

Canopy average height: Estimate in meters
Density: High Med Low Slope %
Aspect 0-
71-100% 30-70%  0-29% 359

Subplot Hectare  Beyond- Extent-meters:

Extent of the class: Y/N Y/N Y/N

Is this
Originally classified as: correct? Y/IN
Should be:
Notes:
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APPENDIX C. Location of Field Collected Data Points (in red)
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APPENDIX D. Graphed Reflectance Values for All Classes for All Four Bands
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Infrared vs. Red
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& Agrofimest & Agraforest/Croplhnd

+ Bamen o Buren/Trban

= Bure/Water 4 Cropland/Agroforest

s Croplmd Grasslad

* Mangrome = Mangrove/Swemp

& Muach o Marsh/Sarmp

+ Mememia ¢ Plartation Forest/Cocounat
= Pledation Forest Mihogay & Platation Forest- Othar
» Rock Islnd < Road

¢ Secondary Vegetation = Shadow

& Shadow/Road o Strand

+ Swemp o Uplnd

= Uplad Secondary Wegetation 4 Thban

s Trban Tegetation + Urbav Agroforest

» Utban Secondary Vegetation - Urban/Uplmd

& Water

Key to symbols in above graphs
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