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ABSTRACT 

OPTIMAL MICRO HEAT PIPE CONFIGURATION 
ON HIGH PERFORMANCE HEAT SPREADERS 

by Seema S. Singh 

The purpose of this research was to determine the optimal micro heat pipe (MHP) 

configuration on high performance heat spreaders. The ultimate goal was to reduce the 

spreading resistance and eliminate localized hot spots. Hot spots occur when the 

temperature is not evenly distributed throughout an area. To reduce these hot spots, an 

array of micro heat pipes was implemented into the heat spreader. Seven array 

configurations, ranging from 2 MHPs to 8 MHPs, were evaluated for a range of power 

inputs varying from 3 W to 21 W. The finite element software, MECHANICA 4.0, was 

utilized for the simulations. Through a comprehensive literature review, it was 

determined that evaluating the MHP limitations and finding an effective thermal 

conductivity were beyond the scope of this research. Therefore, a simplified equation 

was used for the MHP limitations, and the simulations were carried out for conductivities 

of 5,000 W/m°C, 50,000 W/m°C, and 100,000 W/m°C. The convective boundary 

condition was also varied to determine its effect on spreading resistance. 

It was determined that the spreading resistance was independent of the convection 

coefficient and power input for a specific MHP effective thermal conductivity. The 

spreading resistance decreased with increasing effective thermal conductivities until the 

conductivity reached about 50,000 W/m°C, at which point the spreading resistance 

leveled off. The spreading resistance was found to decrease with increasing numbers of 

MHPs in the array. Overall, MHPs did aid in decreasing the spreading resistance. 



ACKNOWLEDGEMENTS 

This thesis could not have been completed without the aid of my committee 

members, most especially my committee chair, Dr. Nicole Okamoto. Her guidance 

throughout the research period, patience, and willingness to do what she could to aid in 

the timely completion of this thesis is most appreciated. 

I'd also like to thank Dr. Eduardo Chan for his expertise in MECHANICA and for 

answering all my simulation-related questions. 

Finally, I cannot continue without thanking Ms. Karishma Singh for all her 

assistance, not only in the completion of this thesis, but for her continual support 

throughout my academic studies. 

v 



Table of Contents 

List of Figures viii 

List of Tables.. ix 

Nomenclature x 

1 Introduction 1 

2 Objectives and Methods 3 

3 Literature Review 5 

3.1 Spreading Resistance 5 

3.2 Heat Pipes 7 
3.2.1 Operation 7 
3.2.2 Construction 8 
3.2.3 Advantages ; 9 
3.2.4 Limitations 9 

3.3 Micro Heat Pipes 11 
3.3.1 Overview 11 
3.3.2 Limitations 12 
3.3.3 Cross-Sectional Area 14 
3.3.4 Orientation and Quantity 15 
3.3.5 Effective Thermal Conductivity 17 

4 Benchmark 18 

4.1 Benchmark Model Setup 19 

4.2 Benchmark Results and Discussion 24 

4.3 Convergence and Accuracy in the Solution 27 

5 Array Configurations 30 

5.1 Model Setup 30 
5.1.1 Engineering Equation Solver (EES) 30 
5.1.2 MECHANICA 33 

5.2 Results and Discussion 38 
5.2.1 Surface Temperatures and Power Input 38 
5.2.2 Array Configuration and Effective Thermal Conductivity 40 
5.2.3 Convection Boundary Condition... 44 
5.2.4 Pattern Radius 45 

vi 



5.2.5 Diamond Heat Spreader.. ....46 

6 Conclusions and Recommendations .......49 

Works Cited..... ......53 

Appendix............. ,. .....,„... ,.„., 55 

EES Formula Sheet 55 

Array Configurations 56 

vii 



List of Figures 

Fig. 1: The radial MHP configuration to be studied 3 
Fig. 2: Heat pipe operation 8 
Fig. 3: Star and rhombus MHPs .15 
Fig. 4: Kang and Huang's experimental setup 19 
Fig. 5: Settings selections in AutoGem .....21 
Fig. 6: Shape and dimensions of the benchmark MHP 22 
Fig. 7: The 4 in x 4 in silicon wafer with embedded MHPs 23 
Fig. 8: Plot of maximum temperature vs. power input 25 
Fig. 9: Plot of effective thermal conductivity vs. power input 26 
Fig. 10: Maximum temperature and effective thermal conductivity 27 
Fig. 11: Cross-sectional area of the MHP .....31 
Fig. 12: Power inputs as a function of the quantity of MHPs 33 
Fig. 13: Temperature measures 35 
Fig. 14: Surface temperatures as a function of power input 39 
Fig. 15: Average and maximum spreading resistance as a function of power 40 
Fig. 16: Average and maximum spreading resistance as function of the quantity of 

MHPs 40 
Fig. 17: Average and maximum spreading resistance as a function of effective thermal 

conductivity 42 
Fig. 18: Average and maximum spreading resistance for a range of effective thermal 

conductivities 43 
Fig. 19: Average and maximum spreading resistance 45 
Fig. 20: Pattern radius ...46 
Fig. 21: Spreading resistance of three different types of diamond spreaders, all 

compared to MHP Array 8 48 
Fig. 22: Array 3 patterned around the heat source with a radius of 4.25 mm 52 

vm 



List of Tables 

Table 1: MECHANIC A options used to complete the benchmark study .20 
Table 2: Parameters defined hi the MECHANICA simulations 37 
Table 3: Temperature and spreading resistance 39 
Table 4: Spreading resistance percent decrease from 2 MHPs to 8 MHPs .42 
Table 5: Results of pattern radius for Array 4 at h=100W/m2oC and keff= 100,000 

W/m°C ..46 
Table 6: Spreading resistance comparison between no MHPs and with an array of 8 

MHPs 50 

IX 



Nomencla ture 

A cross sectional area, m 
avg average 
b plate radius, rn 
Bi Biot number = fab/k 
cf correction factor 
CVD chemical vapor deposition 
d source radius, m 
Dh hydraulic diameter, m 
h heat transfer coefficient, W/m °C 
hfg latent heat of vaporization, J/kg 
k thermal conductivity, W/m°C 
K shape factor 
kcff effective thermal conductivity for MHPs, W/m°C 
L length, m 
Leff effective length, m 
q heat flux, W/m2 

Qi„ heat input to evaporator, W 
Qmax maximum power, W 
Ravg average thermal resistance, °C/W 
rca capillary radius, m 
rh hydraulic radius, m 
n radius of the inner heat pipe wall, m 
R-max m a x i m u m thermal resistance, °C /W 
rn nucleate site radius, m 
R s p thermal spreading resistance, °C/W 
t thickness of spreader plate, m 
T temperature, °C 
Tbase average base temperature, °C 
Tmax maximum base temperature, °C 
Tsource average source temperature, °C 

x 



Greek Symbols 

P liquid shape parameter 
s dimensionless contact radius, d/b 
A, dimensionless parameter 
v kinematic viscosity, m /s 
p density of fluid, kg/m2 

a surface tension, N/m 
x dimensionless plate thickness, t/b 
<|> dimensionless parameter 
\|/ dimensionless constriction resistance 
Ap change in pressure, N/m 

Subscripts 

a adiabatic 
ax axial 
b boiling 
c condenser 
ca capillary 
e evaporator 
1 liquid 
max maximum 
n normal hydrostatic 
v vapor 

XI 



1 Introduction 

The motivation for this research comes from a specific engineering problem seen 

in industry today. Rockwell Collins, a communications and aviation electronics solutions 

company, presented a cooling situation involving a heads-up display for military 

cockpits. The heads-up display allows the pilot to keep looking straight ahead instead of 

down when observing crucial flight markers. In the Rockwell Collins situation, 

conventional military cockpit displays are replaced with indicator lights known as Light 

Emitting Diodes or LEDs (Okamoto, Personal Interview). LEDs are becoming 

increasingly popular because they produce more light per watt than incandescent bulbs in 

a smaller footprint, saving space, energy, and money. They are also ideal for situations 

where there is frequent on/off cycling. Hence, using LEDs is a sensible solution for 

military cockpits. 

However, the recent trend of minimizing the size of electronic products, such as 

using LEDs, poses a challenge in thermal engineering. As the heat source gets smaller, 

the power density increases. This creates an issue on how to effectively remove heat 

from the heat source and how to effectively decrease the spreading resistance. Spreading 

resistance occurs when heat flows from a smaller surface area to a larger surface area, 

such as from a small heat source to a larger heat sink. Adequate heat removal is an 

extremely important issue to address because it affects component performance, life, and 

reliability. 

In the Rockwell Collins example, an array of 9 x 9 LEDs are placed together, 

dissipating power in a 9 mm x 9 mm area. Each array produces 45 W of power and is 
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attached to a 2 inch x 2 inch heat spreader. This results in an extremely high power 

density and makes it difficult to adequately remove heat, especially at altitudes of up to 

25,000 feet where air for convection cooling is minimal. Such a high concentration of 

heat also creates numerous problems with spreading resistance. Therefore, other methods 

of cooling must be utilized to decrease the spreading resistance. 

The most current solution proposed, applied to the Rockwell Collins' problem, 

was to use synthetic diamond as a heat spreader between the concentrated LED array to 

the heatsink base. Although this proved to be an exceptional way to decrease the 

spreading resistance, it was too expensive to be plausible. As a result, cost-effective 

solutions were proposed. It was determined from preliminary calculations that a copper 

substrate with embedded micro heat pipes would be comparable to the diamond spreader 

in thermal performance, and would result in a much cheaper thermal package (Okamoto, 

Rhee, Lee, and Gleixner). 
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2 Objectives and Methods 

The objective of this research was to find the optimal MHP configuration 

embedded in a copper heat spreader that would significantly reduce the spreading 

resistance. The goal was to introduce a procedure and document trends on how different 

parameters affect the spreading resistance. Arrays with increasing numbers of MHPs 

were examined. In each array configuration, the angle between the MHPs was equally 

spaced as shown for an array of eight MHPs in Fig, 1. As the number of MHPs changed, 

the angle changed as well. To determine the most effective MHP configuration, finite 

element analysis was performed using MECHANICA 4.0 software. 

Fig. 1: The radial MHP configuration to be studied. 
The angle 9 was varied along with the number of MHPs. 

Before any simulations were conducted, a literature review was completed 

examining heat pipes and spreading resistance in general, followed by a more extensive 

review on MHPs. In particular, typical MHP diameters and lengths, effective thermal 
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conductivities, and MHP limitations were ail examined. A benchmark of a current heat 

pipe configuration was completed to validate the use of MECHANICA for an array of 

MHPs. Simulations were conducted for several MHP geometries. Each MHP in the 

model was assigned a typical effective thermal conductivity that was determined from the 

literature review, and different boundary conditions were applied. The inner workings of 

the MHP, including evaporation and condensation, were not modeled due to the scope of 

this research. Data were presented in terms of spreading resistance with respect to 

various parameters, such as the number of MHPs and boundary conditions. The range of 

power inputs modeled was found in the literature review and through preliminary 

simulations. Plots of the different trends were presented along with general 

recommendations outlining the most effective MHP configuration that most effectively 

reduced the spreading resistance. 
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3 Literature Review 

3.1 Spreading Resistance 

Spreading resistance occurs when there is a change in cross-sectional area, 

particularly when a large area is used to spread the heat from a small heat source. As 

electronic devices and components continue to shrink, the spreading resistance becomes 

an increasingly important issue. In electronics packaging, it is typically in the form of the 

small heat source connected to the base of a larger heat sink. The heat spreads across the 

heat sink base such that there is a much higher heat flux near the source in the middle of 

the heat sink than there is at the outer edges of the heat sink base. As a result, the heat 

sink is not able work as efficiently as it could if the heat had been spread uniformly 

across the heat sink base. Thus, the spreading resistance is an extremely important 

subject matter to address, and one must understand what factors affect it before any 

progress is be made to decrease it. 

In their research, Lee, Song, Au, and Moran discuss how the spreading resistance 

is calculated from the geometry and size of the heat source and spreader plate. The 

source and spreader radius, d and b, are determined from the source and spreader areas by 

using Equation 1 and Equation 2, respectively. The equations are valid for a square heat 

source that is centered on a square base plate. 
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» = , P (2) 
V 71 

The spreading resistance is then calculated from the resulting radii using Equations 3 to 

9. It is shown that the spreading resistance is a function of the ratio of the effective radii, 

d and b, the thickness of the spreader plate, t, the thermal conductivity of the spreader 

plate, k, and the heat transfer coefficient, h. 

" (3) 

(4) 
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k -a • VTT 

While Lee, Song, Au, and Moran sought to determine the spreading resistance in 

terms of the heat source and spreader geometry, Song, Lee, and Au developed simplified 
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equations for finding the spreading resistance where the base of the spreader plate is not 

isothermal but instead exposed to a uniform heat transfer coefficient. Here the thermal 

spreading resistance is defined by temperatures and the rate of heat transfer. The average 

thermal spreading resistance is shown by Equation 10, and the maximum thermal 

spreading resistance is shown by Equation 11, where TS0Urce is the average source 

temperature, Tbase is the average base temperature on the opposite side of the heat source, 

Tmax is the maximum temperature at the heat source, and Q is the rate of heat transfer. 

These resistances take into account both the spreading resistance and the bulk material 

resistance from the plate thickness. 

n 1 source 1 base , - .-. s. 

g=_-l> 

n ^max ~ T base R
mm = J. ( U ) 

y 

3.2 Heat Pipes 

3.2.1 Operation 

Heat pipes are hollow tubes made of a thermally conductive material. The inside 

of the tube consists of a wick and the liquid and vapor forms of a working fluid. Heat 

pipes operate on the principle of latent heat in the form of an internal evaporator and 

condenser on the two ends. As shown in Fig. 2, heat enters the evaporator section from 

the heat source where the liquid changes phase and turns into vapor. The vapor travels 

up to the condenser section of the pipe. The vapor condenses into a liquid as it releases 

heat energy and employs capillary pressure from the wick to travel back down to the 
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evaporator. Thus, the cycle continues by continuously removing heat away from the heat 

source. 

Fig. 2: Heat pipe operation. 
Heat enters the evaporator portion and travels to the condenser as a vapor where it is 

dissipated by a phase change. The condensed liquid travels back to the evaporator by the 
wick and the cycle continues (Faghri 4). Reprinted with permission. 

Heat pipes are extremely efficient components that rapidly transport large heat 

fluxes away from a heat source and are used in situations that have a relatively small 

temperature difference between the two ends of the heat pipe. The evaporator and 

condenser are isothermal in nature, meaning that they keep a constant temperature for 

small variations in power input. This constant temperature is at the saturation 

temperature at a specified heat-pipe pressure. 

3,2.2 Construction 

Heat pipes are simple devices with simple construction. The outer portion of the 

heat pipe is made from a thermally conductive material, such as copper or aluminum. 
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Inside the tube is a wick that uses capillary pressure to transfer the liquid back to the 

evaporator. The wick can be grooves in the pipe, fine fiber, a screen mesh, or sintered 

metal (McCloskey). The fluid inside the heat pipe, the working fluid, varies as well and 

depends on the heat source temperature and the application for which it is being used. 

For most cases, such as in electronic equipment, water, ethanol or ammonia is used. The 

working fluid must be chosen carefully. In general, the fluid should be in the liquid 

phase at the cooler end of the heat pipe and in the vapor phase at the hotter end of the 

pipe and must be compatible with the outer heat pipe material. 

3.2.3 Advantages 

There are many advantages of using heat pipes. Heat pipes have no moving parts, 

so they are quiet, require virtually no maintenance and are highly reliable. They do not 

require an external power source other than the heat source itself to operate. They are 

relatively small in size and weight, making them desirable components for cooling small 

devices. Heat pipes have "precise isothermal control" so that the input heat fluxes can 

vary without large changes in the operating temperature (Yeh and Chu). They also work 

in any orientation. 

3.2.4 Limitations 

Although heat pipes are very beneficial, there are many limits that must be 

acknowledged before they can be implemented. For one, the capillary pressure must be 

great enough to wick the liquid back to the evaporator. The capillary pressure between 

the condenser and the evaporator must be greater than the sum of the pressure drops due 
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to the normal hydrostatic pressure, the axial pressure, the viscous liquid pressure, and the 

viscous vapor pressure as shown in Equation 12 (Yeh and Chu). 

&Pca > Ap„ + A/?m + A/?, + A/?v (12) 

If the capillary pressure is too low, liquid cannot be brought back to the evaporator. 

Hence, the evaporator has no liquid to evaporate and dryout occurs. Once dryout occurs, 

the heat pipe no longer functions properly. 

Another important limitation is the boiling limit. The boiling limit is when 

boiling occurs in the wick causing the liquid in the wick to evaporate before it makes it to 

the evaporator, preventing the liquid from completing the cycle in the heat pipe (Yeh and 

Chu). This is caused by a radial instead of axial heat flux and causes dryout in the heat 

pipe. The maximum heat flux that can be used is found in Equation 13. 

2;r • (0.54+Za + 0.54 K # - r v **=—: r~, 'eff 2a 

\Vn 
•4P 0 

(13) 

Other limitations such as the sonic, entrainment, and viscous vapor flow limits 

must also be observed. The sonic limit occurs when the vapor velocity in the evaporator 

reaches sonic speed. When the condenser temperature is lowered in normal heat pipe 

operation, the evaporator temperature is lowered which increases the heat transfer rate. 

However, when the sonic limit is reached the vapor flow gets choked so the evaporator 

temperature is not affected when the condenser temperature is lowered (Yeh and Chu). 

Entrainment occurs when the vapor velocity is high enough that some of the liquid in the 

wick gets picked up in the vapor flow. Not enough liquid is carried to the evaporator 

which leads to dryout (Yeh and Chu). The viscous vapor flow limit occurs at a low heat 
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pipe operating temperature when the viscous forces prevent vapor flow from going to the 

condenser; the vapor pressure difference between the evaporator and condenser cannot 

overcome the viscous forces (Yeh and Chu). 

3.3 Micro Heat Pipes 

3.3.1 Overview 

A literature review was conducted to find the best way to design the heat pipe 

model taking into account the specifications of the project and limitations of MHPs. 

Several factors had to be considered such as the shape, diameter, length, and orientation 

of the MHP before simulations could be conducted. All the factors had to be analyzed to 

determine if a MHP array could effectively distribute the heat that a LED array 

dissipates. 

Over the years, numerous studies have been completed to analyze MHPs and their 

operation. MHPs used to cool microelectronic devices were first introduced by Cotter in 

1984 who defined a micro heat pipe "as one so small that the mean curvature of the vapor 

liquid interface is necessarily comparable in magnitude to the reciprocal of the hydraulic 

radius of the total flow channel." This is shown in Equation 14 where rca is the capillary 

radius and rh is the hydraulic radius of the MHP. 

- ^ > 1 (14) 

h 

MHPs are approximately 100-1000 um in hydraulic diameter and about 10-20 mm in 

length (Yeh and Chu). They operate in a similar manner to regular heat pipes. The main 
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difference is that MHPs don't have a wicking material. Instead, they have sharp comers 

that create the capillary pressure. 

33.2 Limitations 

MHPs are extremely sensitive to the operation limitations because of their small 

size, so care must be taken when designing them. Li et al. studied the heat transfer 

performance of small heat pipes and found that the entrainment factor for the capillary 

limit is more of a factor for heat pipes with a smaller diameter (Cao and Faghri). Cao and 

Faghri found that as the heat pipe size decreases, the vapor continuum limitation becomes 

more important for lower temperature heat pipes. The vapor continuum limit is a 

complicated phenomena involving "rarefied or free molecular flow resulting in a large 

temperature gradient along the heat pipe length" (Cao and Faghri 268). Even the amount 

of working fluid is important in MHPs. Too much working fluid can flood the heat pipe 

and too little can easily cause dryout. 

Numerous articles have summarized that in most heat pipe applications the 

capillary pressure is the determining limit in MHP operation, no matter what type of heat 

pipe you have. Cao, Gao, Beam, and Donovan found through their experiments with flat 

miniature heat pipes that the capillary heat transfer limit was always the dominating limit, 

and it was largely due to the working temperature. In their experiments, they gradually 

increased the power until dryout occurred. They found that when dryout occurred at the 

end of the evaporator section, part of the adiabatic section of the heat pipe started to 

perform as the evaporator. It then became difficult to measure how much of the MHP 

was acting as the evaporator (Ha and Peterson). To find the maximum power, Ha and 
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Peterson proposed a semi-empirical correlation using Cotter's and Babin, Peterson, Wu's 

data as shown in Equation 15. 

0.160JK,KV ohfg HT 3/ 
fi- = Cf\ (ntr+T Ln*r\ \ A ( 1 5 ) 

8^(0.5Le + La + 0.5ZC) vt \ vv 

Equation 15 is a function of several variables: the liquid shape parameter, p, the 

dimensionless liquid and vapor shape factors, K| and Kv, the surface tension, a, the latent 

heat of vaporization, hfg, the liquid and vapor kinematic viscosities, vi and vv, the cross-

sectional area, A, and the lengths of the evaporator, adiabatic and condenser sections, Le, 

La and Lc, respectively. The entire equation is multiplied by a correction factor, cf, which 

for a copper-water heat pipe is 0.33, according to Babin, Peterson, and Wu. Equation 15 

requires in depth coverage of the MHP, including analysis of the radius of curvature in 

the intrinsic meniscus, the local mass flow rates, half groove angles and several other 

involved variables and equations. Comprehensive analysis of the physics of MHP 

operation and limits is beyond the scope of this project but still extremely important. 

Therefore, it is suggested that detailed MHP analysis be completed to add to this 

research. To make calculations simpler and tie back into what this research entails, the 

maximum power equation proposed by Cao and Faghri is used. Shown by Equation 16, 

the maximum power is a function of only the liquid surface tension, the latent heat of 

evaporation, the hydraulic diameter, the vapor kinematic viscosity, and the total length of 

the MHP. 
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By using Equation 16, the heat transfer limit is found fairly easily. Given the power to be 

dissipated from the LED array, a specific MHP length is calculated by changing the 

hydraulic diameter. The working fluid is easily changed by changing the liquid surface 

tension, latent heat of evaporation, and kinematic viscosity. By experimenting with the 

variables, an acceptable MHP diameter and length is found that fits onto the heat 

spreader. 

3.3.3 Cross-Sectional Area 

The shape of the MHP can greatly affect the heat transfer capacity. As mentioned 

before, MHPs have sharp corners in their design to create adequate capillary pressure. 

Common MHPs have rectangular or triangular cross-sections. Peterson, Duncan, and 

Weichold investigated arrays of MHPs in silicon wafers. They analyzed machined, 

rectangular channels 45 urn wide and 80 jam deep and etched, triangular channels 120 um 

wide and 80 um deep. Both heat pipe arrays reduced the maximum wafer temperature 

and intensity of localized hot spots. However, the triangular cross section MHP 

outperformed the rectangular one. The rectangular MHPs resulted in an effective thermal 

conductivity 31 percent greater than with no heat pipes, while the triangular heat pipes 

resulted in an effective thermal conductivity of 81 percent greater than with no heat 

pipes. The authors concluded that because the machined rectangular channels had more 

rounded comers the capillary numnin° nressure decreased thus lowering the heat 
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transfer rate. The authors also mentioned that the machined MHPs also had scaly 

deposits which may also have contributed to the low heat transfer rate. 

Similar results were also obtained by Suman, De, and DasGupta. The authors 

also tested triangular and rectangular MHPs, but their model was valid for any polygon 

shape. It was found that the MHP's sharper corners (smaller angle between the two 

adjacent sides) resulted in a greater capillary pumping pressure. Therefore, the triangular 

MHP with angles of 60 degrees each had a greater capillary pressure than a rectangle 

with angles of 90 degrees each. 

Kang and Huang conducted a similar experiment with star and rhombus shaped 

MHPs as shown in Fig. 3. Both designs have sharp, acute angles and micro gaps that aid 

in capillary pressure. It was found that the effective thermal conductivity was over 34 

percent better for the star and rhombus cross sections when compared to the triangular 

cross-sections. 

1 i \ ' * 
Vapor 

Fig. 3: Star and rhombus MHPs. 
MHPs with a star (left) and rhombus (right) cross-sectional area as shown in Kang and 

Huang. Reprinted with permission. 

3.3.4 Orientation and Quantity 

Suman, De, and DasGupta tested MHPs with rectangular and triangular cross-

sectional areas at different inclination angles and found that the tilt angle cannot be 

Liquid 

4 3 
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ignored. Gravity affected the dryout and capillary limits of MHPs. The greater the tilt 

angle, the faster the capillary limit was reached. This means greater inclination angles 

increased the time at which the critical heat input limit was reached. It was assumed that 

the condenser was at a lower position than the evaporator. Similarly, in their 

experiments, Cao, Gao, Beam, and Donovan found that placing the heat pipe in a vertical 

orientation with the evaporator at the bottom greatly enhanced the heat transfer because 

of the reflux working conditions of the heat pipe. 

The orientation of a heat pipe refers to the way heat pipes are positioned with 

respect to gravity. If the heat pipe is positioned such that the evaporator portion is lower 

than the condenser portion, the vapor rises and gravity assists the wick in bringing the 

liquid down the heat pipe. A heat pipe oriented this way is "gravity assisted". When 

placing heat pipes, one must always make sure that they are oriented favorably with 

respect to gravity. Since gravity effects were disregarded in this research, all MHPs were 

oriented the same way by placing them all horizontally. 

The quantity of heat pipes was also analyzed. Mallik, Peterson, and Weichold 

used heat pipes as part of semiconductor devices. They varied the number of heat pipes 

and found that increasing the number of heat pipes greatly reduced the maximum chip 

temperature. However, at 19 heat pipes, the percentage of temperature reduction reduced 

significantly in their setup. Thus, in their setup, there was no reason to add additional 

heat pipes at this point; the increase in thermal performance starts to slow down. The 

maximum number of MHPs varies for different setups depending on the MHP geometry 

and the heat flux applied. 
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3.3.5 Effective Thermal Conductivity 

Because heat pipes utilize latent heat, they have extremely high effective thermal 

conductivities. Therefore, when modeling a heat pipe as a solid rod in simulation studies, 

an effective thermal conductivity, keff, must be used. Sobhan and Peterson presented this 

effective thermal conductivity as shown in Equation 17, where Qjn is the heat input to the 

evaporator section, A is the overall cross-sectional area of the heat pipe, Te and Tc are the 

temperatures at the evaporator and condenser ends of the heat pipe, respectively, and L is 

the total length of the heat pipe. 

Kff= ,-„""„-, 07) 
A 

T-T 

From the equation, it's seen that keff must be re-evaluated each time the heat input is 

changed. To get an accurate value of the effective thermal conductivity, a detailed 

analysis must be conducted regarding the inner workings of the MHP, such as the liquid 

charge, contact angles and shear stresses. However, that was beyond the scope of this 

research. Instead, a suggested value of 50,000 W/m°C was used as an average value of 

keff (Thyrum). Effective thermal conductivities of 5,000 W/m°C and 100,000 W/m°C 

were also tested for each array configuration to determine how the effective thermal 

conductivity affected the spreading resistance. 
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4 Benchmark 

A benchmark was completed to validate the use of MECHANICA by comparing 

results with an existing paper. The paper utilized as the benchmark was Kang and 

Huang's "Fabrication of star grooves and rhombus grooves micro heat pipe". In this 

paper, the authors set up experiments measuring the maximum and minimum 

temperatures of a silicon wafer with 31 embedded star shaped MHPs. They did this for a 

range of power inputs. Fig. 4 shows the experimental setup. Power was supplied to the 

heater portion by a Topward 6303D power supply. K-type thermocouples were attached 

close to the evaporator and condenser areas of the wafer and was read by an Omega 

OMB-1100 data acquisition unit which was connected to a computer. Water kept at 19 ± 

0.1 °C and regulated by a thermostat was used to cool the condenser portion of the MHP 

array. Although star and rhombus shaped MHPs were tested, only the star-shaped MHP 

experiment was used for this benchmark. The experiment was modeled in 

MECHANICA using an effective thermal conductivity for the MHPs. The goal was to 

obtain a similar trend to the that of Kang and Huang's experimental results. 
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PC Data Acquisition 

Fig. 4: Kang and Huang's experimental setup. 
Reprinted with permission. 

4.1 Benchmark Model Setup 

The options and selections in MECHANICA used to complete the benchmark 

study are shown in Table 1. The integration mode allows for easy integration from 

Pro/Engineer, whereas in the independent mode, MECHANICA is independent of 

Pro/Engineer. The model is a 3D model with solid elements. There is an option of doing 

a steady-state or thermal analysis. For the present work, only the steady-state case is 

evaluated. There are a few options for convergence methods. One is the quick check 

method where the model is run at a low polynomial order and should only be used as an 

initial review of possible errors in the model. The single pass adaptive (SPA) performs 

only one pass, meaning that MECHANICA only fixes the problem elements once using 
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an edge order it thinks accurate. The multi-pass adaptive (MPA), which is the 

convergence method used in this study, increases the edge polynomial order until 

convergence or the maximum order is reached. For the benchmark study, the 

convergence was set to 10 percent on local temperature and local energy norms and was 

set to the 9th polynomial order. The mesh settings were monitored by AutoGEM. The 

AutoGEM settings used in the model are shown in Fig. 5. Most of the default values 

were used. However, due to the size and angles of the MHPs used in this study, the 

maximum edge turn had to be changed. The smallest MHP angle was 54.7 degrees so the 

edge turn was lowered to 50 degrees from the default value of 95 degrees to ensure that 

elements were created within the MHP. 

Table 1: MECHANIC A options used to complete the benchmark study. 

Mode of Operation 

Type of Model 

Type of Element 
Analysis Method 
(Thermal Only) 

Convergence Method 

Design Study 

Options 
Independent, Integrated 
3D, Plane Stress, Plane Strain, 
Axisymmetric 
Shell, Beam, Solid, Spring, Mass 

Steady State, Transient 

Quick Check, Single Pass 
Adaptive, Multi-Pass Adaptive 
Standard, Sensitivity, Optimization 

Selection 
Integrated 

3D 

Solid Elements 

Steady State 

Multi-Pass Adaptive 

Standard 
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Fig. 5: Settings selections in AutoGem. 
All settings are MECHANICA defaults except for the max edge turn which was set to a 

lower value of 50 degrees. 

The star-shaped MHP was modeled with the cross section and dimensions shown 

in Fig. 6. Three parts were created and assembled together to simulate the three sections 

of the MHP. The evaporator and condenser lengths were 6 mm each, and the adiabatic 

length was 13.4 mm as obtained from Kang and Huang's paper. The 4 inch x 4 inch, 

1.37 mm thick silicon wafer was then created with 31 cuts for each MHP. The MHPs 

were 0.820 mm apart and located in the center of the wafer occupying only a 25.4 mm x 

25.4 mm area. The MHPs were then assembled into the wafer with a bonded interface. 

The bonded interface assured that heat was transferred through the different components. 
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An additional interface was created on the adiabatic section of the MHP such that there 

was no heat transfer from that portion of the MHP to the silicon wafer. 

Fig. 6: Shape and dimensions of the benchmark MHP. 
Length dimensions are in millimeters. Angle dimensions are in degrees. 

The wafer was assigned the material silicon which had a thermal conductivity of 

124 W/m°C . The effective thermal conductivity of the MHPs was not stated in Kang 

and Huang's analysis and could not be backed out from the data given. Therefore, an 

estimated value of 100,000 W/m2oC was assigned to each MHP. All surfaces of the 

wafer were adiabatic with the exception of the boundary conditions: the heat load applied 

and the convection condition. The input power was applied to the evaporator section of 

the MHP, and the convection boundary condition was applied to the condenser section. 

The power applied was varied from 0 W to 20 W as Kang and Huang did in their 

experiments. The boundary condition that was applied to the condenser portion of the 

silicon wafer could not be accurately found with the information given in the paper. It 
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was known that the area was being cooled by water at 19°C, but neither the velocity of 

the water nor the tube geometry were given, making the heat transfer coefficient 

impossible to calculate. It was assumed, however, that the heat transfer coefficient would 

be fairly high. Therefore, an estimated value of 1,000 W/m°C was used with a bulk 

temperature of 19°C. The boundary conditions were applied on the evaporator and 

condenser portions covering a 25.4 mm by 6 mm area as shown in Fig 7. 

Evaporator sod inn where 
heat load is upniicd 

\ 
Condenser section where 
convection condition is 
applied 

Fig. 7: The 4 in x 4 in silicon wafer with embedded MHPs. 
The MHPs only occupy a 25.4 mm x 25.4 mm area. Each boundary condition is applied 

to a 24.5 mm x 6 mm area on the condenser and evaporator sections of the MHP. 

The maximum and minimum temperatures at the evaporator and condenser were 

determined using MECHANIC A. The maximum temperature was calculated as the 

average value of four temperature readings located 1.5 mm apart along the center line that 

is 1 mm from the edge of the evaporator. The minimum temperature was calculated as 

the average value of four temperature readings located 1.5 mm apart along the centerline 

•D 
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that is 1 mm from the edge of the condenser. The maximum temperature was then 

plotted for each power input. The effective thermal conductivity of the silicon wafer was 

also plotted as a function of power. The formulas Kang and Huang used to calculate this 

conductivity is found in Equation 18, where Leff is the effective length shown in Equation 

19, and Aeff is the cross-sectional area of the wafer. Leff had a value of 19.4 mm, and Aeff 

had a value of 70 mm2. Te and Tc were the average temperatures on the evaporator and 

condenser sides, respectively. 

O • I 
, _ Mir, ^eff n $ n 
K-eff,silicon ~ j^ (f _f \ V ' 

ejj \ 6 c / 

Leff=L + ^ ^ (19) 

It should be noted that since the convection boundary condition could not be calculated 

and the effective thermal conductivity of the MHPs was estimated, the results shown in 

Kang and Huang's paper could not be duplicated precisely. Instead, a successful 

benchmark was one in which the trends of the two plots presented were similar. 

4.2 Benchmark Results and Discussion 

The temperature versus power input plots obtained from the MECHANICA 

simulations were compared with those presented by Kang and Huang and are shown in 

Fig. 8. Although both plots are linear, the MECHANICA plot has a slope of 6.6 °C/W, 

and the paper result has a smaller slope of 5.05 °C/W. This could be due to the fact that 

the convection coefficient was too low. For a constant power input, cross sectional area, 

and ambient temperature, if the heat transfer coefficient is increased, the maximum 

surface temperature must decrease. Therefore, if a greater coefficient value was chosen, 
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the maximum temperatures would be lower and better match the values and slope 

presented by Kang and Huang. 
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Fig. 8: Plot of maximum temperature vs. power input. 
Obtained from Kang and Huang (top) (reprinted with permission) and from the 

MECHANICA simulation (bottom). Both plots show a similar trend. 

The effective thermal conductivity of the wafer as a function of power for both 

Kang and Huang's and the MECHANICA plots are shown in Fig. 9. Both plots show the 

same trend. In both plots, for higher power inputs, the effective thermal conductivity of 

the wafer is constant. It was expected that the thermal conductivity would stay constant 
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at higher power inputs because the power was directly proportional to the temperature 

difference between the evaporator and condenser sections of the wafer. This shows that 

at a constant effective length and area, as the power input increases the temperature 

difference must also increase in addition to the actual maximum temperature. 
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Fig. 9: Plot of effective thermal conductivity vs. power input. 
Obtained from Kang and Huang (top) (reprinted with permission) and from the 

MECHANICA simulation (bottom). Both plots show a similar trend. 
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Although not part of the benchmark procedure, it was interesting to examine the 

effect MHPs had on the maximum temperature and effective thermal conductivity of the 

wafer. To accomplish this a separate simulation was completed without any MHPs. The 

boundary conditions were applied to just the silicon wafer at the same location, and the 

temperatures were measured. The results are shown in Fig. 10. At higher power inputs 

the maximum surface temperature decreased with the addition of the MHP array. At 20 

W the temperature decreased by as much as 44PC. The effective thermal conductivity of 

the wafer also improved with the addition of the MHP array. The conductivity increased 

from 117 W/m°C to 8000 W/m°C. Note that these results were from the MECHANICA 

simulation and did not reflect the exact physics of the problem. It was expected that there 

would be a maximum conductivity of the wafer close to that of the MHP where the 

conductivity could not get any higher with further addition of MHPs. 

Maximum Temperature - Power 
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Fig. 10: Maximum temperature and effective thermal conductivity. 
Maximum temperature (left) and effective thermal conductivity (right) of the wafer as a 

function of power input. 

4.3 Convergence and Accuracy in the Solution 

When meshing a model two types of elements can be used, h-type or p-type. H-

type elements always have a linear edge order regardless of the element shape. These 
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edges are derived and connected by Gaussian points. The h refers to the increment size. 

Larger increments result in more significant errors. The error is reduced by increasing 

the number of elements in the model using mesh refinement. One must keep refining the 

mesh until there are no significant changes in the solution, meaning that the solution has 

converged. 

P-type elements, on the other hand, refer to the element edge polynomial order. 

Here, instead of increasing the number of elements to obtain convergence, the polynomial 

order on each element is increased while the mesh geometry stays the same; there is no 

need to increase the number of elements. 

MECHANICA uses p-type elements in its calculations. If an element is in need 

of refinement, it is automatically bumped up to a higher order. However, not all elements 

are changed to a higher order. Only the elements that need refinement are increased. 

This process is continued until the solution reaches a value defined by the user. This 

selection is chosen by the AutoGEM and the Multi-Pass Adaptive options in 

MECHANICA under percent convergence. Mechanica increases the polynomial size up 

to a 9th order. Although it is rare, if the solution still does not converge with the 9th order, 

the mesh can be refined by increasing the number of elements. Because of 

MECHANICA's ability to automatically monitor convergence, it was not necessary to 

do a separate polynomial or grid analysis. 

Although a grid or polynomial analysis was not needed, a convergence analysis 

was completed. In MECHANICA, the convergence percent could be set to a certain 

value. There were three options that values converge on: 1) local temperatures and local 

28 



energy norms, 2) local temperatures and local and global energy norms or 3) the 

measures the user specifies. The default value of converging on local temperatures and 

local energy norms was used for this study. The benchmark example was run at 30, 20, 

10 and 5 percent convergence to determine how the maximum silicon surface 

temperature was affected. 

From the results obtained, it was determined that the convergence value did not 

significantly change any of the temperature values. The difference between a 30% and 

10% convergence was approximately 0.2%. Therefore, a 30% convergence value could 

be used to obtain accurate results. However, to save setup time, the default value of 10% 

converging on local temperature and local energy norms was used for this study. The 

default polynomial edge order of 6 was also used. 
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5 Array Configurations 

5.1 Model Setup 

5.1.1 Engineering Equation Solver (EES) 

A 2 inch by 2 inch copper spreader characterized by a thermal conductivity of 

400 W/m°C, was subject to heat load centered on a 9 mm by 9 mm area. Star shaped 

MHPs with an effective thermal conductivity and with the cross-sectional area shown in 

Fig. 11 .were placed around this heat source to decrease the spreading resistance. It was 

determined from the literature review that the capillary limit was one of the most 

important MHP limitations. To find this limit, Equation 16 was used and implemented 

into EES. EES was then utilized to experiment with, and to determine various 

parameters, such as the cross-sectional size of the heat pipe, the maximum power each 

heat pipe dissipated, the circular radius within the heat source area which the MHPs were 

patterned around, the maximum number of MHPs that could fit on the spreader, and the 

minimum number of MHPs needed to dissipate the total power. The formulas used in 

EES is found in the EES Formula Sheet in the Appendix. 
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Fig. 11: Cross-sectional area of the MHP. 
The section is symmetric about the vertical and horizontal axes. The section has a side 

length, s, and each vertex has an angle of 60 degrees. 

Several relationships were noted. As the size and, therefore, the hydraulic 

diameter of the MHP increased, each MHP was capable of dissipating more heat. 

However, increasing the size limited the number of MHPs the spreader could 

accommodate, thereby reducing the total power that could be applied. The pattern radius 

could be increased allowing a greater number of MHPs to fit on the spreader, but doing 

so would limit the contact area of the evaporator to the heat source and limit the number 

of MHPs because of the heat capacity. After several iterations, it was determined that a 

pattern radius of 4.25 mm and a star side length of 1.1 mm would result in the greatest 

heat capacity and the greatest quantity of MHPs. These chosen parameters resulted in a 

maximum number of 8 MHPs that could be used. 
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It was found that the MHP heat capacity was largely dependant on the working 

temperature used to obtain the fluid properties. Based on the heat capacity equation used, 

at higher working temperatures the MHP was able to dissipate more heat, which affected 

the power input that could be applied to the spreader. The minimum surface temperature 

of the spreader was not allowed to fall below the working temperature of the MHP to 

ensure proper MHP operation. In practice, the working temperature of a heat pipe is 

found through detailed analysis of heat pipe operation that involves the casing material, 

the working fluid, the liquid charge, the inner heat pipe pressure etc. In this study, the 

working temperature was not allowed to exceed the maximum desired surface 

temperature of the spreader for all power inputs. For the purposes of this study, the 

maximum surface temperature could not exceed 105°C, per Rockwell Collins' 

specifications. The minimum surface temperature was assumed to be 30°C. Thus, the 

maximum and minimum working temperatures were chosen to be 100°C and 35°C, 

respectively. For each quantity of MHPs, the maximum power input was calculated for 

the maximum and minimum working temperature. The results are shown in Fig 12. At a 

working temperature of 35°C, the power input range was 2.1 W to 17.1 W where each 

MHP had a heat capacity of 2.1 W. At a working temperature of 100°C, the power input 

range was 22.4 W to 179.1 W where each MHP could dissipate 22.4 W. 
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Fig. 12: Power inputs as a function of the quantity of MHPs. 
Shown at working temperatures of 35°C (left) and 100°C (right). 

5.1.2 MECHANICA 

Each array configuration, from two equally spaced MHPs to eight equally spaced 

MHPs, was modeled in MECHANICA. All array configurations are shown in the Array 

Configuration section in the Appendix. The MHPs were patterned with equal angle 

spacing between each MHP about the pattern radius. For example, an array with 2 MHPs 

had MHPs that were 180 degrees apart, an array with 3 MHPs had MHPs that were 120 

degrees apart and so on. Each MHP consisted of three equal sections where the middle 

section had an adiabatic surface. Finding the optimal lengths for each section would 

require an in-depth analysis of the MHP physics, which was beyond the scope of this 

research. Therefore, equal lengths for each section was chosen. It should be noted that 
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these lengths do affect the results. For example, if the adiabatic section was too long, 

there would be more heat transferred to the end of the MHP, thereby overestimating the 

spreading resistance. For each configuration three different MHP effective thermal 

conductivities of 5,000 W/m°C, 50,000 W/m°C, and 100,000 W/m°C were tested for a 

range of power inputs. A convection boundary condition of h=100 W/m2cC with an 

ambient temperature of T»=20°C was applied to the base of the copper spreader on the 

opposite side of the heat source. All surfaces except the heat source area where the 

power was applied and the base where the convection condition was applied, were 

adiabatic. 

The heat source area was divided into four equal areas. For each area a 

temperature measure was placed in the center. A temperature measure is used at a point 

on the model where the temperature is to be measured. The base of the spreader was 

divided into 16 equal areas where 16 temperature measures were placed in the center. 

The location of where the temperatures were measured is shown in Fig. 13. 

Temperatures 01 to 04 were contained on the top surface of the spreader within the heat 

source area and temperatures 05 to 20 were located on the base of the spreader opposite 

the side of the heat source. Temperatures 01 to 04 were averaged to find the average 

source temperature, and temperatures 05 to 20 were averaged to find the average base 

temperature. Then using Equations 10 and 11, the average and maximum spreading 

resistances were calculated. 
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Fig. 13: Temperature measures. 
Copper spreader with applied heat load area showing where the temperatures are 

measured in MECHANIC A . Temperatures 1-4 are on the heat source surface whereas 
temperatures 5-20 are on the bottom surface of the base of the spreader. 

For one array, the convective boundary condition was varied to determine if it 

affected the spreading resistance. Also for one array, the effective thermal conductivity 

of the MHP was varied to examine how it affected the spreading resistance 

When using EES, the heat capacity of the MHPs was calculated as explained in 

the previous section. This, in turn, revealed the number of MHPs that could be used in 

the study, as well as what power range was acceptable such that the heat capacity of the 

MHP was not violated. However, the calculations did not factor in the spreader material, 

the MHP configuration, the boundary conditions, or the application in general. 

Therefore, a preliminary MECHANICA study was conducted to determine the range of 

input power values appropriate for the current application. For a convection boundary 

condition of h=100 W/m2oC and an ambient temperature of T«=20°C the maximum and 
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minimum surface temperatures were found. It was expected that the minimum surface 

temperature would occur at the lower end of the power range at the largest value of keff of 

100,000 W/m°C and the greatest number of MHPs of eight. Input powers of 1 W to 5 W 

were simulated and the resultant temperatures were examined. It was found that a power 

input less than 3W resulted in surface temperatures less than 30°C. Therefore, 3 W was 

the minimum power that was simulated for the remainder of this study. The maximum 

surface temperature was expected to occur at the higher end of the power range at the 

lowest keff of 5,000 W/m°C and at an array configuration of two MHPs. For this case, 

input powers ranging from 19 W to 25 W were simulated because these power inputs 

resulted in the range of surface temperatures that needed to be examined, which was 

around 105 °C. It was found that surface temperatures exceeded 105°C when the power 

input was greater than 21 W. Therefore, 21 W was the maximum value of input power 

that was simulated for the rest of the study. The 45 W that was originally thought to be 

tested no longer applied because of the MHP limitations. It should be noted that the 

MHPs reached their heat capacity limitation where the power was greater than the 

allowed value found from the EES calculations, which were shown in Fig 12. For 

example, for an operating temperature of 35°C the maximum heat that 5 MHPs could 

effectively dissipate was 10.7 W. Any higher and the MHP may reach dryout. The 

actual calculations for this were beyond the scope of this study. One must be aware of 

the MHP limitations when examining the results and be conscientious of the fact that the 

working temperature (as well as other parameters) greatly affected these MHP 

limitations. By changing parameters such as the working fluid, geometry or convection 
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boundary condition, a value of 45 W may be possible. The final parameters used for the 

study is found in Table 2. 

Table 2: Parameters defined in the MECHANIC A simulations. 

'Initial 'Specifications^ 
Material of the spreader 
Thermal conductivity for the spreader 
Size of the spreader 
Area of the heat source 
Maximum surface temperature 
Minimum surface temperature 

Input Parameters 
Cross-sectional side length of the MHP, s 
Longitudinal length of the MHP, L 
Pattern radius, r 

Calculated Parameters 
Hydraulic diameter of the MHP, Dh 

Maximum heat capacity per MHP, Qmax 

at working temp of 35°C 
at working temp of 100°C 

Maximum number of MHPs, QuantityMHPs 
Chosen Parameters 

Spreader thickness 
MHP kgff values 

Power inputs values 

Convective boundary condition 

Copper 
400 W/m°C 
2 in x 2 in 
9 mm x 9 mm 
105°C 
30°C 

1.10 mm 
20 mm 
4.25 mm 

1.9 mm 

2.14 W 
22.4 W 
8 

4.0 mm 
5,000 W/m°C, 50,000 W/m°C, 
and 100,000 W/m°C 
3W, 6W, 9W, 12W, 15W, 
18W, and 21W 
100 W/m2oC 
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5.2 Results and Discussion 

5.2.1 Surface Temperatures and Power Input 

For each array configuration, three thermal conductivities were tested. For each 

conductivity, power was varied from 3 W to 21 W. The temperature at each point, shown 

in Fig. 13, was recorded. The maximum source temperature, the average source 

temperature, and the average base temperature were all tabulated for each power input, 

shown in Table 3, along with the calculated values for the average and maximum 

spreading resistance. The results shown are for Array 8 with a heat transfer coefficient of 

100 W/m2oC and an effective thermal conductivity of 100,000 W/m°C. A plot of the 

temperature results are shown in Fig. 14. The plot shows the expected result that surface 

temperatures increase as power increases. Due to the scale of the plot it seems the source 

and base temperatures are identical. This is not the case, however. The temperature 

values are seen easier on the table. Although small, there is a difference between the 

source and base temperatures. Using this temperature difference, the average and 

maximum spreading resistance is determined. The plot of the spreading resistance is 

depicted in Fig. 15. The difference between the average and maximum spreading 

resistance is 31.7%. From the plot it is clearly seen that spreading resistance does not 

change as power increases, meaning that the spreading resistance is independent of power 

for a constant effective thermal conductivity. This trend was found to be typical for all 

array configurations with a constant conductivity. This was expected after examining the 

spreading resistance formulas seen in Equations 1 through 9. None of the equations show 

that the spreading resistance is a function of power input. Therefore, instead of plotting 
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the spreading resistance with respect to power, it should be examined with respect to the 

effective thermal conductivity of the MHP. The effective thermal conductivity with 

respect to the power input is shown in the next section. 

Table 3: Temperature and spreading resistance. 
Results are for Array 8, h=100 W/m2oC and keff=l 00,000 W/m°C. 

Power Input 

Max Temp [°C] 
Source Avg [°C] 

Base Avg [°CJ 

Ravg [°C/W] 

Rmax r°C/W] 

keff=100,000 W/m°C 

3W 

31.878 

31.798 
31.624 
0.058 
0.085 

6W 

43.756 
43.595 
43.247 
0.058 
0.085 

9W 

55.634 

55.393 
54.871 
0.058 
0.085 

12W 

67.512 
67.190 
66.494 
0.058 
0.085 

15W 

79.391 

78.988 
78.118 
0.058 
0.085 

18W 

91.269 

90.785 
89.741 
0.058 
0.085 

W 

103.147 

102.583 
101.365 

0.058 
0.085 
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Fig. 14: Surface temperatures as a function of power input. 
The temperatures increase linearly with respect to power. 

39 



0.1 

0.095 -
o. 

p 
* 
1 

ng
 R

 

S 

0.09 

0.085 

0.08 

0.075 -
0.07 

0.065 

0.06 

0.055 

0.05 

Spreading Resistance - Power input 

Array 8, h=100W/m2C, keff=100,000 W/mC 

-

I—I ,__, 

10 15 

Power Input fl/V] 

20 

-Rsp, avg 

.Rsp, max 

25 

Fig. 15: Average and maximum spreading resistance as a function of power. 
Spreading resistance is constant over all power inputs. 

5.2.2 Array Configuration and Effective Thermal Conductivity 

For each array, the average and maximum spreading resistance as a function of 

the number of MHPs in the array was simulated for each effective thermal conductivity. 

The resultant plots are shown in Fig. 16. 
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Fig. 16: Average and maximum spreading resistance as function of the quantity of 
MHPs. 

The plot is shown for three different conductivities. 
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Both plots have the same scale and are placed next to each other so that the difference 

between the average and maximum spreading resistance are easily compared. Both plots 

show a similar trend with respect to the number of MHPs, but the maximum spreading 

resistance is shifted up by approximately 18.2%. For each conductivity the spreading 

resistance decreases as the number of MHPs increases. Due to the limitations for the star 

shaped MHP, arrays consisting of more than eight MHPs are not studied. Nonetheless, 

as the number of MHPs goes beyond eight, it is expected that the spreading resistance 

will continue to drop until it levels off at a certain value. It is shown from the plot that 

the slope changes considerably between two to four MHPs and four to eight MHPs. It is 

expected to decrease further until reaching a value close to zero. When this occurs, it 

would reveal the maximum number of MHPs and the minimum spreading resistance that 

can be achieved. As long as the size of the heat source and spreader are the same, this 

minimum value of spreading resistance will be constant for all values of power input, 

according to the previous discussion. 

The spreading resistances were also plotted as a function of the conductivity 

tested for each array configuration. The plot is shown in Fig. 17. The same information 

is conveyed in Fig. 17 as in Fig. 16, but with the dependant variable changed. From this 

plot, it's also easily seen that both the average and maximum spreading resistance 

decreases as the number of MHPs increases. Table 4 shows the decrease in spreading 

resistance for each thermal conductivity when the number of MHPs is increased from two 

to eight. The greatest decrease occurs at the highest conductivity of 100,000 W/m°C, 
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where the average spreading resistance decreases by 45.4%, and the maximum spreading 

resistance decreases by 35.7% as the number of MHPs increases from two to eight. 

Fig. 17: Average and maximum spreading resistance as a function of effective 
thermal conductivity. 

Table 4: Spreading resistance percent decrease from 2 MHPs to 8 MHPs. 

k=5,000 W/m°C 
k=50,000 W/m°C 
k=100,000 W/m°C 

Average Spreadini 

2 MHPs 
0.13305 
0.1087 
0.1063 

8 MHPs 
0.08712 

0.0598 
0.058 

3 Resistance 
% decrease 

34.5 
45.0 
45.4 

Average Spreading Resistance 
2 MHPs 
0.15733 
0.13408 
0.13184 

8 MHPs 
0.11246 
0.08665 
0.0848 

% decrease 
28.5 
35.4 
35.7 

Figure Fig. 17 also shows an interesting trend with respect to the effective thermal 

conductivity. The spreading resistance starts to decrease but then becomes more or less 

constant between 50,000 W/m°C and 100,000 W/m°C. This leads one to believe that 

beyond 50,000 W/m°C, the effective thermal conductivity can no longer lead to a lower 

spreading resistance. To develop an appropriate trend between spreading resistance and 
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the MHP effective thermal conductivity, further investigation was required. Array 8 was 

used as an example and was tested for a wider range of conductivities. The array was 

tested from 400 W/m°C to 200,000 W/m°C. The results are presented in Fig. 18. 

£ a 
CO 

J 
• 

0 -

Spreading Resistance - Effective Thermal Conductivity 
Array 8, h=100 W/m2C 

• • D • 
• • • 

-Rsp, avg 

-Rsp, max 

50000 100000 150000 

Keff [W/mC] 

200000 250000 

Fig. 18: Average and maximum spreading resistance for a range of effective thermal 
conductivities. 

Spreading resistance is shown to level off at a conductivity of around 50,000 W/m°C. 

At lower conductivities the spreading resistance decreases sharply. However, once the 

spreading resistance reaches approximately 50,000 W/m°C, it levels off. This trend 

shows that once this conductivity is reached, increasing the effective thermal conductivity 

no longer affects the spreading resistance. From the trends shown in Fig. 17, and in 

comparing them to this particular study, it seems that these results are typical for all array 

configurations. Therefore, when designing a MHP with similar specifications as in this 

research, the components of the MHP, such as the working fluid type and liquid charge, 

should be chosen such that the effective thermal conductivity results in a value of around 

50,000 W/m°C, assuming a similar MHP is used. As long as the effective thermal 

conductivity is at least 50,000 W/m°C, the exact value is not significant. 
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5.2.3 Convection Boundary Condition 

A convection boundary condition analysis was conducted to determine the effect 

the heat transfer coefficient had on the average and maximum spreading resistance. This 

analysis was carried out for Array 8 which had 8 MHPs spaced 45 degrees apart. Heat 

transfer coefficients of 10 W/m2oC, 100 W/m2oC and 1000 W/m2oC were analyzed at a 

bulk temperature of 20°C. These coefficient values were simulated for thermal 

conductivities of 5,000 W/m°C, 50,000 W/m°C, and 100,000 W/m°C. The results are 

shown in Fig. 19. The plot shows that the spreading resistance is rather constant, with 

only a maximum of a 5% increase from h=10 W/m2°C to h=100 W/m2°C. This means 

that the spreading resistance is independent of the boundary conditions applied for this 

application. The 100 W/m2oC that was used for all simulations was valid because it was 

representative of all boundary conditions. The boundary conditions did not have a 

significant effect on the spreading resistance. When inputting different convection 

coefficient values in the spreading resistance Equations 1 through 9, the spreading 

resistance value did not change significantly, showing agreement between the results 

from MECHANICA and theory. The MECHANICA results were also confirmed when 

examining Figure 7 in Ellison's paper, "Maximum Thermal Spreading Resistance for 

Rectangular Sources and Plates With Nonunity Aspect Ratios." In that particular figure, 

it was shown that there was little or no difference in the convective boundary condition 

for the tau value of 0.4 which was representative of the this application. 
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Fig. 19: Average and maximum spreading resistance. 
The average (left) and maximum (right) spreading resistance as a function of the heat 

transfer coefficient for each effective thermal conductivity. 

5.2.4 Pattern Radius 

A study was conducted on one array to briefly examine the affect the pattern 

radius had on the spreading resistance. The study was carried out for an array containing 

four MHPs, one with the original pattern radius of 4.25 mm and one with a radius of 1.66 

mm, such that more of the MHP end was within the heat source area as shown in Fig. 20. 

The simulation was performed for a convection coefficient of 100 W/m °C and an 

effective thermal conductivity of 100,000 W/m°C. From the results presented in Table 5, 

it was shown that the array with the smaller pattern radius had a much lower spreading 

resistance. Decreasing the radius by 2.59 mm decreased the average spreading results by 

66.6% and the maximum spreading resistance by 45.6%, showing that the pattern radius 

can significantly affect the spreading resistance value. 
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Fig. 20: Pattern radius. 
Array 4 with a pattern radius of 4.25 mm (left) and 1.66 mm (right). A smaller pattern 

radius allows greater contact within the heat source area. 

Table 5: Results of pattern radius for Array 4 at h=100W/m2°C and kefr=100,000 
W/m°C. 

RSP, avg 

Rsp, max 

r=4.25 mm 

0.0695 

0.0991 

r=1.66mm 

0.0232 

0.0539 

Percent 
Decrease 

66.6% 

45.6% 

5.2.5 Diamond Heat Spreader 

MHP Array 8 was compared to three types of diamond spreaders: 1) a sintered 

polycrystalline diamond with thermal conductivities ranging from 300 W/m°C to 700 

W/m°C, 2) a polycrystalline diamond made from a low pressure CVD process with 

thermal conductivities ranging from 500 W/m°C to 1300 W/m°C, and 3) a single crystal 

diamond made from a high pressure CVD process with thermal conductivities ranging 
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from 1500 W/m°C to 2100 W/m°C (Rogacs and Rhee). The low and high ends of the 

thermal conductivities were simulated for each type of diamond with a convection 

coefficient of 100 W/m2oC. The maximum and average spreading resistance was 

calculated and is shown in Fig. 21 in comparison with the MHP array. The MHP array 

had 8 MHPs in a radial configuration with an effective thermal conductivity of 100,000 

W/m°C. These MHPs were embedded in a copper spreader where k=400 W/m°C. 

For the sintered polycrystalline diamond, both the average and maximum 

spreading resistances were greater than that of the MHP array suggesting that using 

MHPs instead of a sintered polycrystalline diamond would be more effective at 

decreasing the spreading resistance. For the CVD polycrystalline diamond, the use of 

MHPs on a copper spreader only improved performance if the diamond was at the lower 

thermal conductivity range close to 500 W/m°C. It was found that an array of eight 

MHPs would not be sufficient at decreasing the spreading resistance when compared to 

the single crystal diamond. However, from the trends presented earlier of spreading 

resistance as a function of the number of MHPs, if the number of MHPs was increased 

the spreading resistance would drop further. It was expected that the spreading resistance 

would level off at some point such that additional MHPs would not cause significant 

changes. Whether this leveling off point is greater or less than the spreading resistance of 

the single crystal diamond is currently unknown. Therefore, the thermal performance of 

an array with greater than eight MHPs could not be accurately compared to the single 

crystal diamond. 
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6 CoHctasions and Recommendations 

The spreading resistance of a 9 mm by 9 mm heat source applied to a 2 inch by 2 

inch spreader was reduced by implementing MHP arrays. Seven arrays, ranging from 

two MHPs to eight MHPs in a radial configuration were simulated using MECHANICA, 

Each array was tested at MHP effective thermal conductivities of 5,000 W/m°C, 50,000 

W/m°C, and 100,000 W/m°C, and for a range of power inputs from 3 W to 21 W. 

Several trends were observed. For a constant thermal conductivity, the surface 

temperatures of the spreader increased as the power input increased. The relationship 

was linear with a slope of approximately 3.96 °C/W for the maximum source 

temperature, 3.93 °C/W for the average source temperature, and 3.87 °C/W for the 

average base temperature. Although the surface temperature increased with power input, 

the spreading resistance remained constant, indicating that the spreading resistance was 

independent of power as expected from the spreading resistance theory. It was also 

shown that the spreading resistance was independent of the convection coefficient. At 

values of 10 W/m2oC, 100 W/m2oC, and 1,000 W/m2oC, the spreading resistance value 

remained fairly constant. The spreading resistance decreased, however, when the MHP 

effective thermal conductivities and number of MHPs were increased. It was found that 

once a thermal conductivity of around 50,000 W/m°C was achieved, the spreading 

resistance reached its limit and no longer changed significantly. The spreading resistance 

did not level off as the number of MHPs were increased. However, there was a 

noticeable decrease in slope suggesting that if additional MHPs were added, the 
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spreading resistance would eventually settle until reaching a final value where it would 

remain constant. 

By adding embedded MHPs on a heat spreader, the spreading resistance can be 

reduced dramatically. From Table 6, it is shown that for a MHP thermal conductivity of 

100,000 W/m°C and a convection coefficient of 100 W/m2cC, the average spreading 

resistance is lowered by over 70% just by adding eight MHPs, and can very well decrease 

further when adding additional MHPs. 

Table 6: Spreading resistance comparison between no MHPs and with an array of 8 
MHPs. 

Rsp, avg 

Rsp, max 

No MHPs 

0.1964 

0.2241 

With MHPs 
(Array 8, h=100 

W/m2oC, k=100,000 
W/m°C) 

0.0580 

0.0848 

Percent 
Decrease 

70.5% 

62.1% 

However, one cannot just blindly add more MHPs by decreasing the hydraulic diameter. 

One must be aware of all the limitations involved in designing a MHP, most importantly 

the boiling and capillary limits. The study presented here used a simplified heat capacity 

equation and by no means should be the only resource when designing a MHP for a 

specific application. A range of thermal conductivities and power inputs were examined 

because the actual calculations of these parameters were beyond the scope of this 

research. The best and most important way to improve the results is to examine, in detail, 

the physics and dynamics of MHP operation. By doing so, an accurate effective thermal 

conductivity can be found. Because the conductivity was strongly dependant on the 
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power input, it has to be re-evaluated to match the simulation parameters, such as the 

number of MHPs and the input power, thus giving more accurate trends specific to the 

particular application. 

There are additional points that may need to be acknowledged when setting up 

MHP simulations. It is suggested to try to design a MHP small enough such that a much 

greater quantity can be used on the spreader geometry specified. This would result in a 

more useful trend when analyzing the spreading resistance as a function of the number of 

MHPs. With more MHPs, it would be easier to find the minimum spreading resistance 

that can be attained. 

In the current research, the MHPs were patterned around the heat source with a 

4.25 mm radius so that a greater quantity of MHPs could be analyzed. It is suggested to 

try to decrease the radius such that more or all of the evaporator portion of the MHP is 

within the heat source area. This, in turn, would allow the MHP to be longer so that a 

greater area is covered, and the heat is spread more effectively. It may also be useful to 

not consider a pattern radius at all but instead position the MHP such that the same area is 

within the heat source for each MHP. Consider Array 3 shown in Fig. 22. It is shown, 

because of a circular pattern radius on a square heat source, that the two lower MHPs 

contact more of the heat source area than the top MHP. Adjusting the way the MHPs are 

positioned can not only increase the contact area but it would spread the heat more 

evenly, providing a lower spreading resistance. Another option is to use curved MHPs to 

create a larger contact area between the MHP and the heat source. This allows the 
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evaporator section to be longer which, in turn, provides greater heat capacity per MHP, 

resulting in a lower spreading resistance. 

Fig. 22: Array 3 patterned around the heat source with a radius of 4.25 mm. 
The two lower MHPs contact more of the heat source area than the top MHP. 

In conclusion, embedding MHPs on a spreader can dramatically reduce the 

spreading resistance and provides more effective cooling. The current research gives a 

general idea of how spreading resistance is affected by various parameters, such as 

boundary conditions, MHP quantity, and effective thermal conductivity. This research 

will prove to be a useful guide for implementing similar procedures in acquiring 

spreading resistance trends specific to a particular application. 
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Appendix 

EES Formula Sheet 

"Assume all triangles are the same size. Each triangle has the same angle of 80 degrees. Calculate D_h" 
s=.0D1100[m] 
b_tri=s 
h_tri=sqrt(sA2-(s/2f2) 
A_tri=0.5*(b_tri*h_tri) 
A_star=12*A_tri 
P_star=s*12 
D_hM*A_star/P_star 

"Calculate total height and width of the star" 
h_starM*h_tri 
w_star=3*s| 

"Max number of MHPs that can be used given the spreader geometry" 
r=.004250 
C=2*PI*r 
MaxNumber=C/w_star 

"Calculate max power for each MHP and minimum # of MHPs required" 
T_working= 100[C] 
Q_input=3 [W] 
L= .020 [m] 
sigma= surfacetension(water. T=T_working) 
h_fg= 2257000 [J/kg] 
mu_v=viscosity(Water,x=1,T=T_working) 
vol=Volume(Water,x=1,T=T_working) 
v_v=mu_v"Vol 
Q_max=0.01*((sigma*hJgTUi~3)/(vj/t)) 
Quantity_MHPs=Q_inpu1/Q_max 

{Q_max= maximum heat transport rate per MHP, W 
sigma= liquid surface tension, N/m 
h_fg= latent heat of evaporation, 2257000 J/kg 
D_h= hydraulic diameter, m 
v_v= vapor kinematic viscosity- m"2/s 
L= total length of the heat pipe, m} 
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Array Configurations 

Array 2 Array 3 Array 4 

Array 5 Array 6 Array 7 

Array 8 
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